22 research outputs found

    A New Distributed Constant False Alarm Rate Detector

    Get PDF
    A new constant false alarm rate (CFAR) test termed signal-plus-order statistic CFAR (S+OS) using distributed sensors is developed. The sensor modeling assumes that the returns of the test cells of different sensors are all independent and identically distributed. In the S+OS scheme, each sensor transmits its test sample and a designated order statistic of its surrounding observations to the fusion center. At the fusion center, the sum of the samples of the test cells is compared with a constant multiplied by a function of the order statistics. For a two-sensor network, the functions considered are the minimum of the order statistics (mOS) and the maximum of the order statistics (MOS). For detecting a Rayleigh fluctuating target in Gaussian noise, closed-form expressions for the false alarm and detection probabilities are obtained. The numerical results indicate that the performance of the MOS detector is very close to that of a centralized OS-CFAR, and it performs considerably better than the OS-CFAR detector with the AND or the OR fusion rule. Extension to an N-sensor network is also considered, and general equations for the false alarm probabilities under homogeneous and nonhomogeneous background noise are presented

    A comparative analysis of local and global adaptive threshold estimation techniques for energy detection in cognitive radio

    Get PDF
    In this paper, we compare local and global adaptive threshold estimation techniques for energy detection in Cognitive Radio (CR). By this comparison, a sum-up synopsis is provided regarding the effective performance range and the operating conditions under which both classes best apply in CR. Representative methods from both classes were implemented and trained using synthesized signals to fine tune each algorithm’s parameter values. Further tests were conducted using real-life signals acquired via a spectrum survey exercise and results were analyzed using the probability of detection and the probability of false alarm computed for each algorithm. It is observed that while local based methods may be adept at maintaining a low constant probability of false alarm, they however suffer a grossly low probability of detection over a wide variety of CR spectra. Consequently, we concluded that global adaptive threshold estimation techniques are more suitable for signal detection in CR than their local adaptive thresholding counterparts.Research data for this article is available at https://data.mendeley.com/datasets/nyvcpv4s8k/1http://www.elsevier.com/locate/phycom2019-08-01hj2018Electrical, Electronic and Computer Engineerin

    AN ARTIFICIAL INTELLIGENCE APPROACH TO THE PROCESSING OF RADAR RETURN SIGNALS FOR TARGET DETECTION

    Get PDF
    Most of the operating vessel traffic management systems experience problems, such as track loss and track swap, which may cause confusion to the traffic regulators and lead to potential hazards in the harbour operation. The reason is mainly due to the limited adaptive capabilities of the algorithms used in the detection process. The decision on whether a target is present is usually based on the magnitude of the returning echoes. Such a method has a low efficiency in discriminating between the target and clutter, especially when the signal to noise ratio is low. The performance of radar target detection depends on the features, which can be used to discriminate between clutter and targets. To have a significant improvement in the detection of weak targets, more obvious discriminating features must be identified and extracted. This research investigates conventional Constant False Alarm Rate (CFAR) algorithms and introduces the approach of applying ar1ificial intelligence methods to the target detection problems. Previous research has been unde11aken to improve the detection capability of the radar system in the heavy clutter environment and many new CFAR algorithms, which are based on amplitude information only, have been developed. This research studies these algorithms and proposes that it is feasible to design and develop an advanced target detection system that is capable of discriminating targets from clutters by learning the .different features extracted from radar returns. The approach adopted for this further work into target detection was the use of neural networks. Results presented show that such a network is able to learn particular features of specific radar return signals, e.g. rain clutter, sea clutter, target, and to decide if a target is present in a finite window of data. The work includes a study of the characteristics of radar signals and identification of the features that can be used in the process of effective detection. The use of a general purpose marine radar has allowed the collection of live signals from the Plymouth harbour for analysis, training and validation. The approach of using data from the real environment has enabled the developed detection system to be exposed to real clutter conditions that cannot be obtained when using simulated data. The performance of the neural network detection system is evaluated with further recorded data and the results obtained are compared with the conventional CFAR algorithms. It is shown that the neural system can learn the features of specific radar signals and provide a superior performance in detecting targets from clutters. Areas for further research and development arc presented; these include the use of a sophisticated recording system, high speed processors and the potential for target classification

    On the sum of random samples with bounded Pareto distribution

    Get PDF
    Heavy-tailed random samples, as well as their sum or average, are encountered in a number of signal pro-cessing applications in radar, communications, finance, and natural sciences. Modeling such data through the Pareto distribution is particularly attractive due to its simple analytical form, but may lead to infinite variance and/or mean, which is not physically plausible: in fact, samples are always bounded in practice, namely because of clipping during the signal acquisition or deliberate censoring or trimming (truncation) at the processing stage. Based on this motivation, the paper derives and analyzes the distribution of the sum of right-censored Pareto Type-II variables, which generalizes the conventional Pareto (Type-I) and Lomax distributions. The distribution of the sum of truncated Pareto is also obtained, and an analytical connection is drawn with the unbounded case. A numerical analysis illustrates the findings, providing insights on several aspects, including the intimate mixture structure of the obtained expressions. An il-lustrative application to the analysis of real radar data is also provided. (c) 2021 Elsevier B.V. All rights reserved

    A scalable real-time processing chain for radar exploiting illuminators of opportunity

    Get PDF
    Includes bibliographical references.This thesis details the design of a processing chain and system software for a commensal radar system, that is, a radar that makes use of illuminators of opportunity to provide the transmitted waveform. The stages of data acquisition from receiver back-end, direct path interference and clutter suppression, range/Doppler processing and target detection are described and targeted to general purpose commercial off-the-shelf computing hardware. A detailed low level design of such a processing chain for commensal radar which includes both processing stages and processing stage interactions has, to date, not been presented in the Literature. Furthermore, a novel deployment configuration for a networked multi-site FM broadcast band commensal radar system is presented in which the reference and surveillance channels are record at separate locations

    Automatic detection of signals by using artificial intelligence techniques

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en 2013Premio a la Mejor Tesis Doctoral en Seguridad y Defensa por el Colegio Oficial de Ingenieros de Telecomunicación (COIT) y la Asociación Española de Ingenieros de Telecomunicación (AEIT) en 2013La detección automática de señales (blancos) en interferencia aditiva (clutter más ruido) es un problema no resuelto hoy en día. Muchos y diversos esquemas de detección son propuestos constantemente en revistas especializadas sobre temas de investigación radar y de procesado de señal. Esos esquemas son adaptados normalmente a la casuística del problema, es decir, a los blancos y al tipo de clutter presentes en esos experimentos. Es por ello que la tesis presentada a continuación busca proponer un esquema de detección que trabaje con altas prestaciones en distintos entornos. En esta tesis se pretende resolver dos tipos de problemas: uno centrado en la detección de blancos radar de tipo Swerling 0 en presencia de clutter sintético modelado con una distribución Weibull y ruido blanco Gaussiano; y otro centrado en la detección de barcos en movimiento a partir de imágenes radar provenientes de un radar marino comercial. Se ha comprobado que los datos reales están estadísticamente relacionados con los datos sintéticos simulados, lo cual permitirá proponer un único esquema de detección que trabaje en ambos casos. Teniendo en cuenta los problemas de detección planteados, se asumen varias premisas. Las imágenes radar generadas en entornos simulados tienen en cuenta una correlación temporal entre celdas consecutivas de la imagen y una distribución espacial constante de los parámetros estadísticos del clutter dentro de una misma imagen, pero variable de una imagen a otra. Dentro de este entorno simulado, se asumen distintos tamaños y formas de blanco. Estos entornos han sido simulados mediante el uso de los parámetros estadísticos del clutter descritos en la literatura. Comparando dichos entornos, se observa una gran disparidad en sus parámetros estadísticos, haciendo más difícil aún si cabe la tarea de proponer un detector radar que trabaje correctamente y con altas prestaciones en distintos entornos radar. Para resolver los problemas de detección planteados, se han considerado detectores radar utilizados habitualmente en la literatura. Así, se ha seleccionado como detector de referencia para el caso de trabajar con datos procedente de un radar coherente el detector de blanco conocido a priori (TSKAP: target sequence known a priori). Detectores basados en técnicas CFAR (constant false alarm rate) han sido elegidos para el caso de trabajar con datos procedentes de un radar incoherente. Por otro lado, se ha estudiado el uso de técnicas de inteligencia artificial (IA) para crear detectores que resuelvan los dos problemas de detección planteados. De las posibles técnicas de IA existentes en la literatura, se han elegido dos tipos de redes neuronales artificiales (RNAs): el perceptron multicapa (MLP: Multilayer perceptron) y las RNAs basadas en funciones de base radial (RBFNs: Radial basis function networks). Mediante este tipo de técnicas, se proponen nuevas estrategias de detección para los casos coherente e incoherente. Aparte de la contribución en el uso de técnicas de IA en temas de detección radar, se presenta otra contribución importante: el uso de nuevos modos de selección de celdas de una imagen para la mejora de las prestaciones del detector radar propuesto. Estos modos están basados en esquemas de selección con retardo (en una o dos dimensiones), dentro de los cuales se pueden elegir más celdas para poder realizar una mejor estimación de los parámetros del clutter que rodea al blanco. Además, el uso de estos modos de selección en dos dimensiones en detectores CFAR también puede ser considerado contribución ya que antes no se habían presentado resultados para los modos aquí propuestos. Los experimentos desarrollados consideran entornos simulados de mar, mar helado y tierra para el diseño y test de los detectores coherentes tomados como referencia y los basados en IA. En estos experimentos, se estudió la influencia de los siguientes parámetros durante el diseño de los detectores bajo estudio: las propiedades del clutter presente en las imágenes de los conjuntos de diseño (para entrenar RNAs y establecer el umbral de detección); los modos de selección; el número de celdas seleccionadas; así como el número de neuronas ocultas en las RNAs. A partir de estos estudios, se obtienen los valores de dichos parámetros, de tal forma que se obtienen altas prestaciones, mientras que se mantiene un coste computacional moderado en el detector propuesto. Una vez diseñados los detectores, éstos se testean utilizando un conjunto de datos de test no utilizado previamente. Este conjunto de test está compuesto por imágenes radar con distintas propiedades estadísticas para simular lo que ocurre en entornos reales. Las prestaciones observadas para este conjunto son ligeramente inferiores a los obtenidas en la etapa de diseño. Además, se observa que las prestaciones del detector para las distintas imágenes radar del con- junto, es decir, para distintos condiciones de clutter, presentan pequeñas variaciones. Esto nos indica un alto grado de robustez en los detectores cuando las condiciones de clutter cambian con el tiempo. Teniendo en cuenta estas pequeñas variaciones de las prestaciones del detector, podemos inferir que las mismas prestaciones presentadas aquí se pueden obtener cuando el detector diseñado procese nuevas imágenes radar en el futuro. Por otro lado, se han realizado estudios similares para el caso de detectores incoherentes en entornos simulados de mar, mar helado y tierra. De estos estudios, destacamos las diferencias que existen entre los resultados obtenidos por los detectores coherentes e incoherentes en entornos simulados de clutter de mar. La primera diferencia que se observa es que las prestaciones del detector incoherente son ligeramente menores que las obtenidas por el coherente, aspecto que era de esperar porque sólo considera la información de amplitud. La segunda diferencia observada es la alta reducción de coste computacional que se obtiene, siendo esto debido a que en estos detectores se utiliza menos información a la entrada. Los resultados obtenidos para los entornos simulados de mar helado y tierra no han sido incorporados en la memoria de la tesis porque tanto las prestaciones como el coste computacional obtenidos son similares a los obtenidos para el caso de entornos marinos. Finalmente, se han diseñado y testeado detectores incoherentes para trabajar con imágenes provenientes de un radar marino comercial situado en la plataforma de investigación alemana FINO-1, la cual se encuentra localizada en el mar del Norte (Alemania). Antes de proceder con el diseño de estos detectores, se comprobó que las medidas de clutter contenidas en las imágenes radar seguían una distribución Weibull, tal y como se asumió en el entorno simulado de mar. Acto seguido a esta comprobación, se procedió con el ajuste de los parámetros de cada uno de los detectores bajo estudio (CFAR y basados en técnicas de IA) para obtener las mejores prestaciones posibles, así como un coste computacional moderado. Una vez diseñados los detectores, se procedió a testearlos, llegando a las mismas conclusiones a las que se llegó para el caso sintético: alta robustez frente a cambios en las condiciones de diseño y baja pérdida de prestaciones cuando se procesan nuevas imágenes radar. También se muestra cual es el coste computacional de la configuración seleccionada en los casos de detectores incoherentes basados en MLPs y RBFNs, así como la velocidad de computo necesaria para poder procesar imágenes radar en tiempo real. A partir de estos resultados, se llega a la conclusión final de que como las unidades de procesado disponibles en el mercado permiten trabajar a las velocidades que necesita el sistema, el procesado en tiempo real está garantizado. A partir del análisis de las prestaciones obtenidas para los distintos casos de estudio abordados en la tesis, se llega a la siguiente conclusión general: los detectores basados en técnicas de IA mejoran las prestaciones obtenidas por los detectores de referencia seleccionados de la literatura en todos los casos de estudio presentados. Ésta conclusión se obtiene para radares que trabajan a distintas frecuencias, con distintas resoluciones y con receptores diferentes (coherentes e incoherentes). Además, esta conclusión también es independiente del entorno radar bajo estudio (mar, mar helado y tierra)

    Automatic detection of signals by using artificial intelligence techniques

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en 2013Premio a la Mejor Tesis Doctoral en Seguridad y Defensa por el Colegio Oficial de Ingenieros de Telecomunicación (COIT) y la Asociación Española de Ingenieros de Telecomunicación (AEIT) en 2013La detección automática de señales (blancos) en interferencia aditiva (clutter más ruido) es un problema no resuelto hoy en día. Muchos y diversos esquemas de detección son propuestos constantemente en revistas especializadas sobre temas de investigación radar y de procesado de señal. Esos esquemas son adaptados normalmente a la casuística del problema, es decir, a los blancos y al tipo de clutter presentes en esos experimentos. Es por ello que la tesis presentada a continuación busca proponer un esquema de detección que trabaje con altas prestaciones en distintos entornos. En esta tesis se pretende resolver dos tipos de problemas: uno centrado en la detección de blancos radar de tipo Swerling 0 en presencia de clutter sintético modelado con una distribución Weibull y ruido blanco Gaussiano; y otro centrado en la detección de barcos en movimiento a partir de imágenes radar provenientes de un radar marino comercial. Se ha comprobado que los datos reales están estadísticamente relacionados con los datos sintéticos simulados, lo cual permitirá proponer un único esquema de detección que trabaje en ambos casos. Teniendo en cuenta los problemas de detección planteados, se asumen varias premisas. Las imágenes radar generadas en entornos simulados tienen en cuenta una correlación temporal entre celdas consecutivas de la imagen y una distribución espacial constante de los parámetros estadísticos del clutter dentro de una misma imagen, pero variable de una imagen a otra. Dentro de este entorno simulado, se asumen distintos tamaños y formas de blanco. Estos entornos han sido simulados mediante el uso de los parámetros estadísticos del clutter descritos en la literatura. Comparando dichos entornos, se observa una gran disparidad en sus parámetros estadísticos, haciendo más difícil aún si cabe la tarea de proponer un detector radar que trabaje correctamente y con altas prestaciones en distintos entornos radar. Para resolver los problemas de detección planteados, se han considerado detectores radar utilizados habitualmente en la literatura. Así, se ha seleccionado como detector de referencia para el caso de trabajar con datos procedente de un radar coherente el detector de blanco conocido a priori (TSKAP: target sequence known a priori). Detectores basados en técnicas CFAR (constant false alarm rate) han sido elegidos para el caso de trabajar con datos procedentes de un radar incoherente. Por otro lado, se ha estudiado el uso de técnicas de inteligencia artificial (IA) para crear detectores que resuelvan los dos problemas de detección planteados. De las posibles técnicas de IA existentes en la literatura, se han elegido dos tipos de redes neuronales artificiales (RNAs): el perceptron multicapa (MLP: Multilayer perceptron) y las RNAs basadas en funciones de base radial (RBFNs: Radial basis function networks). Mediante este tipo de técnicas, se proponen nuevas estrategias de detección para los casos coherente e incoherente. Aparte de la contribución en el uso de técnicas de IA en temas de detección radar, se presenta otra contribución importante: el uso de nuevos modos de selección de celdas de una imagen para la mejora de las prestaciones del detector radar propuesto. Estos modos están basados en esquemas de selección con retardo (en una o dos dimensiones), dentro de los cuales se pueden elegir más celdas para poder realizar una mejor estimación de los parámetros del clutter que rodea al blanco. Además, el uso de estos modos de selección en dos dimensiones en detectores CFAR también puede ser considerado contribución ya que antes no se habían presentado resultados para los modos aquí propuestos. Los experimentos desarrollados consideran entornos simulados de mar, mar helado y tierra para el diseño y test de los detectores coherentes tomados como referencia y los basados en IA. En estos experimentos, se estudió la influencia de los siguientes parámetros durante el diseño de los detectores bajo estudio: las propiedades del clutter presente en las imágenes de los conjuntos de diseño (para entrenar RNAs y establecer el umbral de detección); los modos de selección; el número de celdas seleccionadas; así como el número de neuronas ocultas en las RNAs. A partir de estos estudios, se obtienen los valores de dichos parámetros, de tal forma que se obtienen altas prestaciones, mientras que se mantiene un coste computacional moderado en el detector propuesto. Una vez diseñados los detectores, éstos se testean utilizando un conjunto de datos de test no utilizado previamente. Este conjunto de test está compuesto por imágenes radar con distintas propiedades estadísticas para simular lo que ocurre en entornos reales. Las prestaciones observadas para este conjunto son ligeramente inferiores a los obtenidas en la etapa de diseño. Además, se observa que las prestaciones del detector para las distintas imágenes radar del con- junto, es decir, para distintos condiciones de clutter, presentan pequeñas variaciones. Esto nos indica un alto grado de robustez en los detectores cuando las condiciones de clutter cambian con el tiempo. Teniendo en cuenta estas pequeñas variaciones de las prestaciones del detector, podemos inferir que las mismas prestaciones presentadas aquí se pueden obtener cuando el detector diseñado procese nuevas imágenes radar en el futuro. Por otro lado, se han realizado estudios similares para el caso de detectores incoherentes en entornos simulados de mar, mar helado y tierra. De estos estudios, destacamos las diferencias que existen entre los resultados obtenidos por los detectores coherentes e incoherentes en entornos simulados de clutter de mar. La primera diferencia que se observa es que las prestaciones del detector incoherente son ligeramente menores que las obtenidas por el coherente, aspecto que era de esperar porque sólo considera la información de amplitud. La segunda diferencia observada es la alta reducción de coste computacional que se obtiene, siendo esto debido a que en estos detectores se utiliza menos información a la entrada. Los resultados obtenidos para los entornos simulados de mar helado y tierra no han sido incorporados en la memoria de la tesis porque tanto las prestaciones como el coste computacional obtenidos son similares a los obtenidos para el caso de entornos marinos. Finalmente, se han diseñado y testeado detectores incoherentes para trabajar con imágenes provenientes de un radar marino comercial situado en la plataforma de investigación alemana FINO-1, la cual se encuentra localizada en el mar del Norte (Alemania). Antes de proceder con el diseño de estos detectores, se comprobó que las medidas de clutter contenidas en las imágenes radar seguían una distribución Weibull, tal y como se asumió en el entorno simulado de mar. Acto seguido a esta comprobación, se procedió con el ajuste de los parámetros de cada uno de los detectores bajo estudio (CFAR y basados en técnicas de IA) para obtener las mejores prestaciones posibles, así como un coste computacional moderado. Una vez diseñados los detectores, se procedió a testearlos, llegando a las mismas conclusiones a las que se llegó para el caso sintético: alta robustez frente a cambios en las condiciones de diseño y baja pérdida de prestaciones cuando se procesan nuevas imágenes radar. También se muestra cual es el coste computacional de la configuración seleccionada en los casos de detectores incoherentes basados en MLPs y RBFNs, así como la velocidad de computo necesaria para poder procesar imágenes radar en tiempo real. A partir de estos resultados, se llega a la conclusión final de que como las unidades de procesado disponibles en el mercado permiten trabajar a las velocidades que necesita el sistema, el procesado en tiempo real está garantizado. A partir del análisis de las prestaciones obtenidas para los distintos casos de estudio abordados en la tesis, se llega a la siguiente conclusión general: los detectores basados en técnicas de IA mejoran las prestaciones obtenidas por los detectores de referencia seleccionados de la literatura en todos los casos de estudio presentados. Ésta conclusión se obtiene para radares que trabajan a distintas frecuencias, con distintas resoluciones y con receptores diferentes (coherentes e incoherentes). Además, esta conclusión también es independiente del entorno radar bajo estudio (mar, mar helado y tierra)

    Spectrum sensing for cognitive radio and radar systems

    Get PDF
    The use of the radio frequency spectrum is increasing at a rapid rate. Reliable and efficient operation in a crowded radio spectrum requires innovative solutions and techniques. Future wireless communication and radar systems should be aware of their surrounding radio environment in order to have the ability to adapt their operation to the effective situation. Spectrum sensing techniques such as detection, waveform recognition, and specific emitter identification are key sources of information for characterizing the surrounding radio environment and extracting valuable information, and consequently adjusting transceiver parameters for facilitating flexible, efficient, and reliable operation. In this thesis, spectrum sensing algorithms for cognitive radios and radar intercept receivers are proposed. Single-user and collaborative cyclostationarity-based detection algorithms are proposed: Multicycle detectors and robust nonparametric spatial sign cyclic correlation based fixed sample size and sequential detectors are proposed. Asymptotic distributions of the test statistics under the null hypothesis are established. A censoring scheme in which only informative test statistics are transmitted to the fusion center is proposed for collaborative detection. The proposed detectors and methods have the following benefits: employing cyclostationarity enables distinction among different systems, collaboration mitigates the effects of shadowing and multipath fading, using multiple strong cyclic frequencies improves the performance, robust detection provides reliable performance in heavy-tailed non-Gaussian noise, sequential detection reduces the average detection time, and censoring improves energy efficiency. In addition, a radar waveform recognition system for classifying common pulse compression waveforms is developed. The proposed supervised classification system classifies an intercepted radar pulse to one of eight different classes based on the pulse compression waveform: linear frequency modulation, Costas frequency codes, binary codes, as well as Frank, P1, P2, P3, and P4 polyphase codes. A robust M-estimation based method for radar emitter identification is proposed as well. A common modulation profile from a group of intercepted pulses is estimated and used for identifying the radar emitter. The M-estimation based approach provides robustness against preprocessing errors and deviations from the assumed noise model

    Survey of FPGA applications in the period 2000 – 2015 (Technical Report)

    Get PDF
    Romoth J, Porrmann M, Rückert U. Survey of FPGA applications in the period 2000 – 2015 (Technical Report).; 2017.Since their introduction, FPGAs can be seen in more and more different fields of applications. The key advantage is the combination of software-like flexibility with the performance otherwise common to hardware. Nevertheless, every application field introduces special requirements to the used computational architecture. This paper provides an overview of the different topics FPGAs have been used for in the last 15 years of research and why they have been chosen over other processing units like e.g. CPUs

    Deteção espetral de banda larga para rádio cógnitivo

    Get PDF
    Doutoramento em TelecomunicaçõesEsta tese tem como objetivo o desenvolvimento de uma unidade autónoma de deteção espetral em tempo real. Para tal são analisadas várias implementações para a estimação do nível de ruído de fundo de forma a se poder criar um limiar adaptativo para um detetor com uma taxa constante de falso alarme. Além da identificação binária da utilização do espetro, pretende-se também obter a classificação individual de cada transmissor e a sua ocupação ao longo do tempo. Para tal são exploradas duas soluções baseadas no algoritmo, de agrupamento de dados, conhecido como maximização de expectativas que permite identificar os sinais analisados pela potência recebida e relação de fase entre dois recetores. Um algoritmo de deteção de sinal baseado também na relação de fase de dois recetores e sem necessidade de estimação do ruído de fundo é também demonstrado. Este algoritmo foi otimizado para permitir uma implementação eficiente num arranjo de portas programáveis em campo a funcionar em tempo real para uma elevada largura de banda, permitindo também estimar a direção da transmissão detetada.The purpose of this thesis is to develop an autonomous unit for real time spectrum sensing. For this purpose, several implementations for the estimation of the background noise level are analysed to create an adaptive threshold and ensure a constant false alarm rate detector. In addition to the binary identification of the spectrum usage, it is also intended to obtain an individual classification of each transmitter occupation and its spectrum usage over time. To do so, two solutions based on the expectation maximization data clustering, that allow to identify the analyzed signals by the received power and phase relation between two receivers, were explored. A signal detection algorithm, also based on the phase relationship between two receivers and with no need for noise estimation is also demonstrated. This algorithm has been optimized to allow an efficient implementation in a FPGA operating in real time for a high bandwidth and it also allows the estimation of the direction of arrival of the detected transmission
    corecore