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Abstract 

An Artificial Intelligence Approach to the Processing 

of Radar Return Signals lFor Target Detection 

Vincent Yiu Fai Li 

ABSTRACT 

Most of the operating vessel traffic management systems experience problems, such 
as track loss.and track swap, which may cause confusion to the traffic regulators and 
lead to potential hazards in the harbour operation. The reason is mainly due to the 
limited adaptive capabilities of the algorithms used in the detection process. The 
decision on whether a target is present is usually based on the magnitude of the 
returning echoes. Such a method has a low efficiency in discriminating between the 
target and cluller, especially when the signal to noise ratio is low. The performance 
of radar target detection depends on the features, which can be used to discriminate 
between clutter and targets. To have a significant improvement in the detection of 
weak targets, more obvious discriminating features must be identified and extracted. 

This research investigates conventional Constant False Alarm Rate (CFAR) 
algorithms and introduces the approach of applying ar1ificial intelligence methods to 
the target detection problems. Previous research has been unde11aken to improve the 
detection capability of the radar system in the heavy clutter environment and many 
new CFAR algorithms, which arc based on amplitude information only, have been 
developed. This research studies these algorithms and proposes that it is feasible to 
design and develop an advanced target detection system that is .capable of 
discriminating targets from clUtters by learning the .different features extracted from 
radar returns. 

The approach adopted for this further work into target detection was the use of 
neural networks. Results presented show that such a network is able to learn 
particular features of specific radar return signals, e.g. rain clutter, sea clutter, target, 
and to decide if a target is present in a finite window of data. The work includes a 
study of the characteristics of radar signals and identification of the features that can 
be used in the process of effective detection. The use of a general purpose marine 
radar has allowed the collection of live signals from the Plymouth harbour for 
analysis, training and validation. The approach of using data from the real 
environment has enabled the developed detection system to be exposed to real clutter 
conditions that cannot be obtained when using simulated data. 

The performance of the neural network detection system is evaluated with further 
recorded data and the results obtained are compared with the conventional CFAR 
algorithms. It is shown that the neural system can learn the features of specific radar 
signals and provide a superior performance in detecting targets from clutters. Areas 
for fmther research and development arc presented; these include the use of a 
sophisticated recording system, high speed processors and the potential for target 
classification. 
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CHAPTER 1 

INTRODUCTION 

1.1 Preface 

Introduction 

Vessel traffic management systems.extract data from the raster of the incoming radar 

signal. These data are further processed to generate target tracks that are then 

displayed for traffic control. In a dense harbour situation where vessels are usually 

manoeuvring in very close proximity to each other, targets may be swapped giving 

the controller a false impression of ships manoeuvres and their masters' intentions. 

Furthermore, reflections from land based objects such as buildings increase the level 

ofinterferencc to the received signals and provide further confusion to the tracking 

algorithms employed. When the weather is bad, clutter due to sea waves and fog will 

also affect the quality of the signals. All these restrictions limit the detection/tracking 

capability of the vessel traffic management system and hence the information 

provided to the operator. Any resulting target loss or swap that may occur will cause 

burden to the safety operation of managing traffic in the harbour. It was stated by 

Ming Po (1994) that statistics in 1993 showed there were over five thousand general 

type vessels and forty high speed ferries manoeuvuring at the same time in Hong 

Kong harbour. It is important that an efficient radar system with good detection 

capability is required to reduce the possibility of collision between these vessels in 

the area. As such, there is a need to review the radar signal processing techniques 

that are currently employed and possible alternatives with the objective of making 

the processing more adaptive to dynamic changes of the environment. 



Introduction 

1.2 Introduction 

Radar is an electronics device for the detection and location of objects. It operates by 

transmitting an electromagnetic wave at a given frequency, which may be up to several 

GHz, and detects the nature of the reflected signal from an object. Usually the echo is 

the result of the reflected wave when the objects are hit by the transmitted wave. The 

electromagnetic waves travel at the speed of light, nearly 3 x I 08 meters per second, 

which is dependent on atmospheric conditions. The distance between the object and 

the radar can be calculated by measuring the time required between transmission of 

radar pulse and reception of the returning echo. Since the time includes both the 

transmission and the reception, the result will be divided by two. It transpires that a 

two way travel time of I microsecond corresponds to a distance of approximately 1'50 

meters. 

The initial step in radar signal processing can be regarded as 'the task of removing all 

the non-useful data. The returned radar illformation from the receiver must be 

reduced to a few signals that represent the known and new targets. The key operation 

to achieve this data reduction is the thresholding process, where the data sets 

acquired are compared with a reference level. Only those signals with magnitudes 

exceeding some threshold levels are processed further. However, the radar signal 

from a target is usually embedded in both thermal noise and clutter. The magnitude 

of the noise and clutter will vary in different sweeps, ranges and scans. To achieve a 

low 1:1Ise alarm rate and a high probability of detection, the setting of a threshold 

with constant amplitude is not feasible. 

2 



Introduction 

1.3 Constant False Alarm Rate (CF AR) Algorithms 

The constant false alarm rate (CF AR) processing technique has been developed to 

adjust the threshold value according to the noise power of the return signal at 

specific times. The threshold of individual cells is decided based on the signal 

strength of a group of reference cells nearby. In the conventional cell averaging 

constant false alarm rate (CA-CF AR) detector (Barkat, 1989), digitized radar video 

is clocked through a moving window (delay line). For each range cell, which 

corresponds to a given range on some bearing, the mean video levels of the 'N' 

preceding cells and of the 'N' following cells are calculated. The threshold 

comparator calculates the average of these two mean levels, and the resulting 

threshold is compared with the radar signal. For those that are above the threshold 

level, they will be processed as a target for the following stages. Otherwise, they are 

treated as noise. The probability of detection ofthe CA-CFAR detector depends on 

the threshold multiplier (which is a function of the probability of false alarm), the 

signal to noise ratio and the number or range cells in the window (Steenson, 1968). 

CA-CF AR provides optimum detection in a homogeneous environment where the 

noise power in the range cells is such that the observations are independent and 

identically distributed (Kassam, 1988). However, this assumption is frequently false 

due to the environment in which the radar system is operating. A reference window 

may contain cells with large sudden changes in the noise power due to some other 

phenomena providing a reflection that appears as clutter on the system. If the target 

is embedded in the test cell, this transition will unnecessarily increase the threshold 

to a high level and lower the detection probability. Yet, if the test cell contains the 

clutter, the threshold value is not high enough to reject the clutter because cells with 
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low noise level will have also contributed to the calculation of mean value. As a 

result, an excessive false alarm rate will occur. Also, when multiple targets are very 

close in range and appear in the same window, the noise associated with these 

targets may cause the threshold to increase. Such an effect will allow only the 

strongest target in the window to be detected. 

In v1ew of the above drawbacks of CA-CF AR, alternative solutions have been 

proposed to improve the effect of nonhomogeneous noise backgrounds to the CFAR 

detector. A 'greatest or logic selection (GO-CFAR) was proposed by Hansen and 

Sawyers ( 1980) to reduce the number of excessive false alarms at clutter transitions. 

Two reference windows are formed in the leading and lagging sides of the test cell 

and a target is declared if the amplitude of the test cell exceeds the greater of the two 

windows. A slight reduction in detection probability may be expected when the 

leading window contains signals with low noise power while the lagging window 

contains clutter with large magnitude. However, the use of greatest selection will not 

allow the CF AR detector to efficiently detect closely spaced targets, Also, the 

detection probability will be greatly affected when interfering targets appear in the 

leading and lagging windows (AI-1-Iussaini, 1988 and Weiss, 1982). 

It has been shown (Trunk, 1983) that the use of the 'smallest or (SO-CF AR) 

selection method is able to resolve targets which are closely spaced in range. The 

smaller value of the leading or ,the lagging windows is used to estimate the noise 

power. Again. the performance of the SO-CF AR detector will be degraded if 

interfering targets are found in the leading and lagging windows. The SO-CFAR 

detector is not able to limit the false alarm rates during the clutter transitions. For 
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example, if there is a clutter transition in the window then the clear background will 

contribute to a low magnitude of estimated noise level. This will cause the threshold 

to go low and increase the false alarm rate. 

Research has been performed to provide adaptive CF AR algorithms, which are able 

to handle radar detection in a non-homogeneous environment. Ordered statistics 

(OS) CF AR has been developed to reject transient noise (Rohling, 1983). In this 

algorithm, the range cells (c(l) ... c(N)) in a window are first ordered according to 

their magnitudes to yield the ordered samples, i.e. c(l) < c(2) < .... c(N), where N is 

the windmv size. The noise power is then estimated by selecting the magnitude of a 

cell with a specific order to work out the threshold. The performance of OS CFAR in 

clutter edges is good when the clutter returns have constant/slow varying amplitude 

characteristics. However, OS CFAR suffers serious degradation during the clutter 

power transitions. 

Trimmed mean filtering has been used in signal and image restoration processes 

(Bovik, Huang, and Munson , 1983). The noise power of the trimmed mean CFAR 

(Wilson, 1993) is estimated by combining the ordered samples linearly. lt firstly 

ranks the samples according to their magnitude and then filters Tl samples from the 

lower end and T2 samples from the higher end. The remaining samples are summed 

to work out the threshold. Optimization of such an algorithm is then a matter of fine 

tuning these parameters and is dependent on the amount of clutter and number of 

targets. 

Rickard and Di I lard ( 1971) proposed the censored mean level (CML) CF AR to deal 
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with interfering targets. The outputs from the range cells are ranked according to 

their magnitude and the largest n samples are censored. The remaining Ncn samples 

are used to estimate the noise level (c) of the cell under test. This estimate (c) is 

multiplied by a threshold multiplier (M), which is based on the desired false alarm 

rate (Fa). If the magnitude of the strength of the signal return in a cell exceeds Me 

then.a target is assumed to be present. Ideally, if the samples to be censored are equal 

to the number of the interfering targets in the window, the performance of CML will 

be optimal. However, it will be degraded if the censorship does not include all the 

interfering targets. This may be the case when the number of interfering targets is 

unknown. Thus, if an interfering target is included in the process of noise estimation, 

the threshold will be unnecessarily high and lower the probability of detection. 

However, if the number of interfering targets is underestimated, this will cause the 

threshold to be low and increase the false alarm rate. 

The generalized censored mean-level (GCML) CFAR does not require the exact 

knowledge of numbers of interfering targets (Rickard and Dillard, 1971). The 

samples of both the leading and the lagging windows are ordered independently. The 

returning signals in the cells, which are considered as interfering targets, will be 

censored. To decide whether the cell should be censored or not, the higher ordered 

samples are compared with the lower ones in sequence. A scaling multiplier (M), 

which is a function of the desired false alarm rate, will be introduced to the lower 

ordered samples. If c~k) is greater than Mc(k-1 ), then samples c(k) (k, k+ I, ... N) are 

regarded as echoes from interfering targets and they will be censored. The noise 

estimate is processed based on the magnitude of the remaining samples. The 

performance of the GCML CF AR is optimum when the interfering targets appear in 
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both the leading and lagging window. The performance will be slightly degraded 

when the interfering targets fall in one of the windows only. The number of range 

cells in a window will also affect the performance, the higher the number the better 

the performance. 

The greatest of order statistics estimator CF AR (GOOSE-CFAR) (Wilson, 1993) 

takes the nth ordered samples from both the leading and the lagging windows. It 

compares these two samples and takes the larger one to estimate the threshold. Since 

n is less than N/2 (the number of samples in each window), GOOSE-CF AR can 

handle interfering targets in both windows and such targets will normally appear in 

samples from n+ I to N/2. When a clutter boundary appears in the window, the worst 

case occurs when the cell under test is in the heavy clutter. With the larger of the two 

ordered samples being taken for threshold estimation, the threshold will be high 

enough to prevent excessive false alarms. GO-CFAR has demonstrated its good 

performance in clutter boundaries when interfering targets arc not present. However, 

with GOOSE-CFAR. targets with magnitude larger than the nth sample in both 

windows will be filtered. This will prevent the masking of multiple targets in the 

window and improve the detection capability in the clutter boundary. 

Censored greater-of (CGO) CFAR (AI-1-lussaini, 1988) filters n largest range cell 

from both leading and the lagging windows. The remaining samples of each window 

are summed. A threshold multiplier to give the required threshold will multiply the 

larger of the two. The choice of numbers of cells to be censored depends on the 

likelihood of the number of interfering targets in the windows. When the number of 

interfering targets exceeds the number of samples to be censored, the performance of 
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CGO CFAR will be degraded. However, the detection loss of COO CFAR will be 

less than the OS and GOOSE CF AR because CGO CFAR takes the mean of the 

magnitude of the interfering targets and the noise samples, while OS and GOOSE 

CF AR will use the ordered magnitude alone, Both GOOSE and CGO CFAR have 

the greatest-of logic which is able to reduce the sharp rise of false alarm rate at the 

cl utter boundary. 

MEMO CFAR (Al-Hussaini, 1988) combines both median and morphological 

filtering (Vassilis and Lampropoulos, 1992) to decide the threshold level. The first 

median filter transforms the input into a new series of samples in which those 

samples less than the mean power of the clutter will be replaced by this mean value. 

As such, it changes the smaller values of clutter to the estimate of the mean 11oise 

power. Also, any samples with a magnitude greater than a fixed multiple of the mean 

power will also be replaced by the mean value. The objective is to reduce the effect 

caused by interfering targets. 1he second median filter will be used to smooth out 

the samples from the first filter and gives an unbiased estimate of the original 

samples. The output from the second filter is then processed by a morphological 

filter that uses an open-closing technique (.lain, 1989; and Stevenson and Arce, 

1987). 'Open' breaks small targets and smoothes boundary while 'close' fills up 

narrow gaps between targets. MEMO CF AR detectors have superior performance in 

the presence of interfering targets since it gives a mean estimate of noise power with 

minimum bias and smaller variance. It is able to overcome problems due to masking 

of targets by clutter boundaries. However, it requires much more computer execution 

time to process the samples than other CFAR detectors. 
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1.4 Intelligent Methods in Radar Oetection 

Fuzzy logic has become a valuable tool in practical engineering applications; it is 

capable of addressing the imprecise information from a physical system by applying 

rule-based algorithms that resemble the flexibility of human decision making. 

Successful applications of fuzzy logic in various fields have been reported (Kosko, 

1992; and Li and Lau, 1989). Recently, fuzzy approach to signal detection has also 

been addressed (Russo, 1992; Son, Song and Kim, 1991, Boston, 1995). Radar 

detection has been using probability theory to correctly decide the presence of a 

target. A two state binary logic is usually used to define the state of the signal, i.e. a 

threshold is applied to the signal. A signal above the threshold level will be accepted 

as a target and others will be rejected. Since the targets in a radar return are not 

ahvays clearly defined (e.g. embedded in clutter or noise), uncertainty can appear in 

every task of the detection stage. Any premature decision based on limited 

information made at an early task of the radar processing will have a large impact on 

the following stages, such as tracking and feature extraction. Processing techniques 

that use binary logic to .quantify the input signal rely on threshold values and may 

provide false information. With the aid of fuzzy logic, radar detection will not be 

solely limited to the likelihood of detection/false alarm, it can also be expressed in 

degrees to which an event will happen. Instead of offering a combination on 

conditional probabilities, the membership functions used in fuzzy logic theory 

combines inexact information. The fuzzy associative memO!)' function defines the 

degree of likelihood of the returned signal to be a target and its exact value is of no 

absolute importance. When the magnitude of the returned signal is increasing, it is 

more likely that the signal would be detected as a target and the false alarm rate will 

be reduced. Such a model provides an explicit feature to represent uncertainty in the 
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radar detection process. 

In binary hypothesis testing, Bayes Iheory (Zadeh, 1965) formulates the 

minimization of the expected cost, called the Bayes risk, and leads to the likelihood 

ratio test (LRT). Assuming that the priori probabilities of the two hypotheses H 1 and 

Ho are 0.5, the test can be formulated as follows:-

LR = exp{0.5[R2
- (R- X)2J} > I (HJ) 

LR = exp{0.5[R2
- (R- X)2l} < I ~Ho) 

where LR is the likelihood ratio 

R is the observed data 

X is a positive mean of the signal amplitude 

To model the uncertainties of the received radar signals, the binai)' hypothesis 

testing can be reformulated using fuzzy set theory (Zadeh, 1965). 

HI:R=X+N 

1-10: R = N 

where N is the standardised Gaussian noise. 

Now. X is a fuzzy parameter and ~t,(X) is the membership function of X. For 

convenience, a triangular membership function centered about a nominal amplitude 

value and extending between X1 and X2 is used, such that ~t,(X0)=1. The likelihood 

ratio (-LR) becomes a fuzzy set. As shown by Saade ( 1990), the fuzzy threshold of 

the likelihood ratio can be determined from prior probabilities and cost functions, 

which are agai11 fuzzy or uncertain in nature. The computation of the fuzzy decision 

on the optimum threshold of detection requires the ordering of the fuzzy sets over 

the real line to obtain the expression for the utility ranking index of LR, which has 
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been described by Saade (1992). The performance of the fuzzy algorithms is 

evaluated on the basis of the probability of error technique (Saade, .]994 ). It was 

shown that the fuzzy logic method provided a better result than binary logic in 

treating the false alarms and misses in decision making process for radar detection. 

The detection of ship wake signatures against sea clutters have been adopted to 

reject false targets. It produces fuzzy decisions which associate with a confidence 

level for each entity based on suitable fuzzification functions (Benelli, Garzelli and 

Mecocci, 1994). To define a membership function for a fuzzy set of radar echoes for 

vessels, features that will not be critically affected by speckled noise, such as mean 

gray level and elongation. need to be selected. Ship classes are selected according to 

the area of the target e.g. class I for area less than 60 pixels, class 2 for area less 

than 120 pixels and so on. Each potential ship echo is compared with prototypes of 

true ships and a weighting for distance applied. The classifier associates a true ship 

to a high fuzzy index (approx. I) and a false ship to a low fuzzy index (less than 

0.5). Information with respect to the ship/wake relation is processed to give a 

coupling coefficient that is a function of the distance between the centroid of the 

ship and its closest extreme of wake. This coefficient, between 0 and I, defines the 

position of a ship with respect to its wake in the radar image. The coefficient will 

finally be multiplied by the fuzzy index from the classifier to give a global value that 

measures the reliability of the detected ship-wake couple, It was demonstrated by 

Henelli (1994) that this method presented advantages with respect to the classical 

method of wake detection using conventional signal processing techniques on· noisy 

·Images. 
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The detection of amplitude transitions (edge detection) has been used as a means of 

classification for radar images. However, the decision on whether a point in the 

return is an edge or not possesses ambiguity. The fuzzy reasoning technique, as 

proposed by Cho (1994), detects the transition on intensity changes of the radar 

signal. Both the brightness and contrast measures of the pixel intensity are processed 

as fuzzy inputs. 'If and 'Then' fuzzy rules are used to determine the threshold 

decision, which will be in the form of membership function. To defuzzify the 

threshold decision, the centroid of the calculated membership function is evaluated 

by summing the confidence level of the function multiplied by the individual 

measurement value. This technique extracts edge features effectively because 

various types of objects and regions have different gray level range within a single 

image which makes a global threshold method difficult to deal with. 

In recent years, with the improvement of methods in signal processmg, more 

attention has been paid to the waveform recognition of the radar returns as a 

detection technique. The amplitude information of radar videos will no longer be 

the only component for processing a threshold decision. Valuable information is 

contained in a radar return that can be processed to provide effective detection. 

These include symmetry/spread and width of waveform, correlation of special 

features, shape and gradient of waveform and so on. To extract features from ship 

radar returns, Guo ( 1989) proposed to use a ship target recognition algorithm using 

multipletransform techniques. 

F(X) = F3(F2(Fl (X))), 

where F I is the Fourier transformation or maximum entropy spectral transformation 

F2 is the Mellin transformation 
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To enable the transformation to be done effectively, a suitable width and shift for the 

calculation window should be selected for sampling. The width should be slightly 

larger than the radar pulse width and the shift should be smaller than half the radar 

pulse width. It was shown by Guo (1989) that most sea clutter spiky signals have 

narrower and sharper features than general weak targets. A threshold in the width 

will be able to remove obvious sea spikes, 

Radar detection in a dynamic processing environment can be achieved by extracting 

and combining different features in a complex waveform system. However, an 

intelligent radar detection system should not only rely on the features themselves and 

the interrelationships between them, but also on the a priori information about the 

ship targets, such as speed and course of a ship, wind situation, distance of the ship 

from radar centre and so on. Rules that incorporate this information are stored in a 

database. This method of detection requires high-speed signal processing hardware 

to cater for the needs of target detection in real time and will be able to detect weak 

targets under strong sea clutter (Guo, 1992). 

Neural networks have been used for pattern recognition in very noisy environments. 

Lippmann ( 1989) has shown an example of character recognition using a Hopfield 

network in which the input to the network is corrupted by noise and is 

unrecognizable. The capability of extracting desired patterns from noisy 

backgrounds makes neural networks suitable to be extended to the application of 
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detecting weak targets in heavy clutters. The use of feed-forward and graded­

response Hopfield networks can implement the optimum post-detection target track 

receiver. Khotanzad ( 1989) developed a neural network for the detection of signals 

in underwater acoustic fields. The input to the network is the magnitude of the 

received signal and noise at different frequencies as time varies. The output is a 

multi-layer perceptron classifier trained using the back propagation algorithm, which 

decides the presence and absence of the target with high classification accuracy. 

1.5 Specific Aims and Objective 

Radar target detection in heavy clutter environments has been a challei1ging task. In 

undertaking this research. all the commonly used CF AR algorithms have been 

reviewed and analyzed. Most of the research in the field of radar detection 

concentrates on the development of advanced algorithms to decide on the threshold 

to be applied to the signals based on their amplitude information. To improve the 

detection probability and reduce the false alarm rates, this research will study the 

detailed characteristics of the radar waveforms and to identify features that can be 

used for differentiation between targets and clutters. The objective is to develop an 

intelligent detection system that can extract the essential features from the radar 

signals and detect targets in heavy clutter environment with the help of these 

extracted features. 

All results provided in this thesis are based on the observations made by the author 

using the radar system in the University of Plymouth. The author designed and 
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developed all the necessary hardware and software to record the radar targets and 

clutter in the harbour. 

1.6 Organization of the Thesis 

The research is divided into three speci fie areas: 

1.6.1 The review of different CFAR algorithms and their performances. 

1..6.2 The construction of a set of tools, both hardware and software, for feature 

extraction and implementation of the intelligent detection system. 

1.6.3 The training, testing and verification of the intelligent detection system. 

The contents of the succeeding chapters of this thesis have been organized as 

follows: 

Chapter 2: Analysis ofCFAR detection algorithms 

Five commonly used CF AR algorithms are analyzed, with their performance being 

tested with live radar videos. The chapter concludes that more obvious 

discriminating features must be identified and extracted in order to have significant 

improvement in the detection of weak targets, 

Chapter 3: Characteristic of radar signals and feature extraction 

This chapter studies the characteristics of radar signals, and identifies features and 

extraction algorithms to improve the detection capability. These features can then be 

feel into nn informmion fusion process for making the final decision. The detection 

process is not based solely on the amplitude of the radar signals and provides a more 

reliable method for discrimination in target identification and tracking algorithms. 
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Chapter 4: Data fusion techniques in radar signal processing 

Methods are identified to relate the extracted features to a final decision on whether 

a target is present. Both fuzzy and neural network approaches are discussed and 

compared. The chapter concludes that neural networks are more suitable in this 

application as large amounts of sample data from simulated/live signals can be 

obtained and used as training sets for the net\Vork. 

Chapter 5: The radar system and data acquisition 

The radar system and the effect of its characteristics m signal processmg are 

discussed, followed by describing the development of the data acquisition system to 

match the characteristics of the.radar waveforms. 

Chapter 6: The integrated radar detection system 

This chapter describes the implementation of a data acquisition system to record the 

radar video signal for analysis purposes. Features are extracted from windows of 

signals containing targets and clutter and the criteria for selecting these features is 

also discussed. The chapter then describes the training procedures of the neural 

network and the algorithms for the final detection system. 

Chapter 7: Training, testing and verification ofthe radar detection system 

The neural network based radar detection system is presented and samples from live 

radar video data are used in the training process. The subsequent sections in this 

chapter detail the construction, testing and verification of the detection systems. The 

trained system is verified by trials with test scenarios that have not been used in the 
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training. Comparison on the performances with CFAR algorithms is also discussed. 

The approach that is finally adopted is then extended by combining the techniques 

employed with fuzzy logic to classify targets into large and small vessels. 

Chapter 8. Conclusion and further work 

This final chapter presents the conclusions on the tasks described in the thesis and 

proposes further research in this area. 
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CHAPTER TWO 

ANALYSIS OF CFAR DETECTION ALGORITHMS 

2.1 Introduction 

Various CF AR algorithms and their purposes have been briefly described in chapter one. 

In considering these CF AR detection schemes, there are two major problems that need 

careful studies. These are regions of clutter power transition and multiple target 

environments. The clutter power transition occurs when the total noise power received 

within single reference window changes sharply. Depending on whether the cell under 

test is a sample from a clutter background or from a clear background, the presence of 

this transition will severely degrade the performance of this adaptive threshold scheme. 

This leads to either excessive false alarms or serious target masking. The multiple target 

environments are encountered when there are two or more closely spaced targets in the 

same reference window. The interfering targets may raise the threshold unnecessarily. 

As a result, only the stronger targets are detected by the CFAR detector. 

Modifications or the CFAR schemes have been proposed to overcome the problems 

associated with nonhomogeneous noise backgrounds. These algorithms split the 

reference window into leading and lagging parts symmetrically about the cell under test. 

The noise power is no longer estimated efficiently, and therefore, some loss or detection 

in the homogeneous reference window is experienced when compared with scheme 

using a non-splitting window. In this section, the basic assumptions that have been used 

to analyze the perfonnance of the CA-CFAR processors are discussed. The exact 

expressions for the GO-CFAR and the SO-CFAR processor performance are derived for 
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both regions of clutter transitions and multiple target environments. Both the OS-CF AR 

and TM-CF AR processors are defined and analyzed. Simulation results of the false 

alanns are given in the region of Gaussian noise, rain clutter transitions and multi-target 

enviromnent by using recorded signals from the radar at the University of Plymouth. 

2.2 Description of the Theoretical Model 

Figure 2. 1 shows the block diagram of a typical CF AR processor. The detected video 

range samples are sent serially into a shift register of length 2n+ 1. The statistic Z is 

prop011ional to the estimate of the total noise power. It is evaluated by processing the 

contents of the reference cells suJTounding the test cell whose value is Y. A target is 

declared to be present if Y exceeds the threshold TZ. T is a scaling factor to achieve the 

desired constant fa lse alarm rate for a given window of size N. The processor 

configuration varies with different CF AR algorithms. 

Test cell 

Input 

S 
--1:------.JX l n .. . Xn+2 n+ l y X n 
amp es 

Comparator 
Target 

CF AR Processor 
No Target 

z Threshold 

Fig. 2. 1 Block diagram of a typical CFAR processor 
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.. 

CA: VI + Y2 
GO: max(YI ,Y2) 
SO : min(Y I, Y2) 

f------<~· z 

Fig.2.2 Mean-level CF AR Processor 

~, ~, 

Sort and Select k-th cell 

Fig. 2.3 OS-CFAR Processor 
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For example, figure 2.2 shows the mean level CF AR detection schemes. The processor 

sums Y1 and Y2 of the leading and lagging windows. In the CA-CFAR processor Z is 

simply the sum of Y l and Y2, and in the GO- and the SO-CF AR processor, it is the 

larger or smaller of the outputs Y l and Y2 respectively. The OS-CF AR processor, 

which involves a so1t routine, is shown in figure 2.3 . The kth largest range cell is 

selected to determine the threshold. The TM _ CF AR processor includes censoring 

circuitry and a summing circuit along with the so1t routine as show in fig.2.4. Ln this 

scheme T l samples are trimmed from the lower end and T2 samples from the upper end 

of the ordered range samples. The statistic Z is fonned by summing the N - T l - T2 

remai ning samples. 

X (2n-T2) ,, 

Sort and Censor 

r 

z 

Fig. 2.4. TM-CF AR Processor 
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In a homogeneous environment, it is assumed that the detected output for any range cell 

is exponentially distributed, with probability density function (pdf1 as given by Van 

Trees (I 968). 

I < =~ l 
f(x) = -e ~~- ,x 2" 0. 

2A. 

Under the null hypothesis Ho of no target in a range cell and homogeneous background, 

·;_ is the total background clutter-plus-them1al noise power, which is denoted by ll· Under 

hypothesis I-1 I (presence of a target), A is ~1(.1 +S), where S is the average signal to total 

noise ratio (SNR}of a target. 

In a nonhomogeneous background, the reference cells do not follow a single common 

pelf. During a single transition from a lower total noise background power level to a 

higher level, the initial pm1ion of the reference cells have thermal noise only with A= p= 

p0, and that the remaining reference cells arise from a clutter background with themml 

noise so that here ), = .p= p0( I +C), with C being the clutter-to-them1al noise ratio 

(CNR). The optimum detector sets a fixed threshold to cletennine the presence of a 

target under the assumption that the total homogeneous noise power p is known. The 

false alarm probability P10 is given by: 

( - ) ~~ ) 

P = P[Y > Y IF-I ] = e 21
' fo 0 0 

where Y0 denotes the fixed optimum threshold. Similarly, the optimum detection 

probability P d is given by: 
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-);] I 

P,, = P[Y > Yo I HI]= el.uii+Sl =[P;,,]i+.l' 

Therefore, the statistic Z is a random variable whose distribution depends upon the 

particular CF AR scheme chosen and the underlying distribution of each of the reference 

range samples. Thus the processor performance is detem1ined by average detection and 

false alam1 probabilities. As shown by Kassam ( 1988), Pra can be expressed by: 

-I' -JZ 

P E { 1 I 2;. d } E { _2--;;} , ·f ( T ) 
1 = ~z - e y = ~z e . = w z -
" z 2p . . 2p 

Where Mz (.) denotes the moment generating function (mgf) of the random variable Z. 

Similarly. the detection probability Pd is given by: 

T 
P =M. [ ] 
" . z 2p(l + S) 

There is an inherent loss of detection probability in a CFAR processor compared with 

the optimum processor detection perfonnance in homogeneous noise background. This 

is because the CFAR processor sets the threshold by estimating the total noise power 

within a finite reference window. The optimum processor, on the other hand, sets a fixed 

threshold under the assumption that the total noise power is known. 

2.3 Analysis of Mean-Level CF AI~ Algorithms 

Mean-level CFAR algorithms incorporate arithmetic averagmg to estimate the total 

noise power. In this section, three such types of CFAR algorithms namely, CA-,00-, 

and SO-CF AR algorithms are analysed. Their performance in homogeneous 

backgrounds as well as in regions of clutter transition and multiple target environments 

are· studied. 
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2.3.1. Cell Averaging CF ~R Processor 

In the CA-CFAR processor, total noise power is estimated by the_ sum of N range cells 

of the reference window (Bar kat, 1990): 

.I' 

Z=l:X, 
!=] 

Where Xi's are range cells sunounding the cell under test. The probability of detection 

can be found as: 

P,, =[I+ T /(I+ S)r"' 

The constant scale factor T is computed by S=O: 

T =(P )-IIN -I 
'" 

In cases where the reference window no longer contains radar returns from a 

homogeneous background. e.g. in the clutter edge, the statistical characteristics of the 

reference cell is assumed to be independent. When the reference window contains r cells 

from clutter background with noise power ~to( I +C) and N - r cells from clear 

background with noise power Po. Then, the estimated total noise power is: 

I X 

z = 2:x, + Ix, ""zt +Z2 
i=l ;=r+l 

Since Z1 and Z2 are independent, the moment generating functioi1 of Z is simply the 

product of the individual moment generating functions of Z1 and Z2 ~Rohling, 1983). 

When the lest cell is from clear background, the false alam1 probability is: 
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P1, = (I + T 1(1 + C)r' (<I + T)'-N 

When the test cell comes under a clutter background, the false alarm probability 

becomes: 

P,, =(I + rr' (I + T 1(1 +C))'-"' 

In cases when the reference window contains two or more closely spaced targets, the 

detection probability is given by Steenson ( 1968) as: 

P,1 =[I+ ('I+ I)T 1(1 + S)r'.[l + Tl(l + s)f-x 

Where r represents the cells in the reference window that contains the interfering targets. 

C and I are assumed to be different noise conditions (themwl noise for C and clutter-

plus-thermal noise for I). 

2.3.2 The Greatest Of and Smallest Of CF AR Algorithms 

The greatest of(GO) CFAR is specifically developed to reduce the false alan11S at clutter 

edges. The total noise power is estimated from the larger of the two separate sums 

computed for the leading and lagging window (1-lansen and Sawyers, 1980), i.e. 

n N 

Z=max(Y"Y2 );}~ =2:X,;Y2 =IX, 
1=1 i~ll+] 

H-1 ( . I)' 
P_ · = 2(1 + T)-" -2' /1 +I- . (2 + T)-(u+•l 

'" L..., "I( J)l '"0 1. n + . 

The false alarm rate is found by computing the moment generating function of Z. The 

detection probability P0 is found by simply replacing T with T/( I +S} The GO 
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modification introduces additional loss of detection compared with the CA-CF AR 

processor loss when the background is unifonn. 

The smallest of (SO) CFAR is introduced to solve problems associated with closely 

spaced targets leading to two or more targets appearing in the reference window. The 

algorithm estimates the smaller of the sums Y1 and Y2, i.e. Z = min(Y 1Y 2) and the false 

alarm probability is (Trunk, 1983):-

Myt(T) and MY2(T) are the moment generating functions of Yl and Y2 respectively. 

This expression gives a very simple relationship between the perf01mance of SO-CF AR 

and GO-CFAR. The GO-CFAR processor exhibits minor additional degradation in 

performance compared with the CA-CF AR processor. On the other hand, perfonnance 

of the SOcCFAR processor is highly dependent on the value of N. For small N the loss 

is quite large compared with the other CFAR schemes, but decreases considerably for 

increasing N. Weiss (1982) has shown that the additional detection loss in the SO-CFAR 

scheme at Pt>, is 10-6 is !!dB for N = 4 but is only 0.7 dB at N=32. 

Consider the special case where the lagging window has no1se values from clear 

background and the leading window has noise samples from the clutter region. If the test 

cell contains a sample from the clear background, the false alann probability is (Gandhi 

and Kassam, 1988):-

n-1 ( · J)l J 
P1, = ( 1 +IT' + o +(I+ C)rr" - 2: ~~+' - ~· x o + r + --r('"'1 x [(I +er" + o + cr1 J 

1= 0 J.(n+l). l+C 

26 



Analysis ofCFAR dclcclion algorilhms 

As the reference window sweeps over the clutter edge, the detection rate of the GO-

CFAR is superior to that of both the CA and SO-CFAR. 

In the presence of interfering targets, intolerable masking of a primary target occurs in 

the CA- and GO-CFAR and this gets worse as the interference to signal ratio increases. 

The effect is greater in the GO-CFAR than in the CA-CFAR. Tmnk ( 1978) shows that 

the SO-CF AR has better perfom1ance in resolving multiple targets in the reference 

window as long as all the interfering targets appear either in the leading or lagging 

window. Suppose there is one interfering target in each of the leading and lagging 

windows. The detection performance of the SO-CFAR will be degraded significantly. 

This is due to the fact that there is one interfering target in each of the half window, the 

noise power estimate includes power of the interfering target regardless of the specific 

half window chosen. This results in an increased threshold leading to a decrease in the 

overall detection probability. 

2.3.3 Ordered Statistics (OS) CF AR Algorithm 

The threshold of the OS-CFAR is obtained from one of the ordered samples of the 

reference window. The range samples are first ordered according to their magnitudes, 

and the statistic A is taken to be the kth largest sample, X(k). The detection probability 

Pd can now be expressed as (Rohling, 1983 ): 

The constant T is now a function of k. As k increases, T decreases accordingly. For 

higher k values the noise estimate Z is one of the reference range samples that has 
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relatively large magnitude. Thus T decreases to compensate for this increase in Z to 

maintain the design false alam1 rate at a constant value. As reported by Gandhi and 

Kassam (1988), the OS-CF AR is perfonning better than the SO-CFAR especially for 

smaller window lengths, although the OS-CFAR processor perfonnance is inferior to 

that of both the CA and GO-CFAR. 

Consider the situation where the reference window contains r clutter-plus thermal noise 

cells each with power level (I +C)/2, the remaining N - r cells have the thermal-noise-

only with a power level of Y,. The following expression shows the false alarm 

probability for the case when the cell under test is from the clutter-free region (Peterson, 

Lee and Kassan1, 1988): 

When the test cell is from the clutter region, the Pn, is obtained from the above results by 

replacing T with T/( 1 +C). The k = N value cannot be used in practice due to suppression 

of targets. Therefore, for k = N the noise estimate Z will be the highest ordered sample 

which may contain the interfering target with high probability. The false alarm 

probability will worsen in the clutter region, just after the transition, for decreasing k. 

This is due to lower thresholds which in turn increases the false alarm rate. 

Consider the OS-CFAR of window size 24 with k=21. In the worst case, there are 12 

clutter plus thermal noise samples in the lagging window and 12 clutter free samples in 

the leading window. The clutter samples occupy the top 12 positions of the ordered 
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range samples and the total noise power estimate tends to be selected as the 91
h largest 

sample among the 12 clutter samples. Suppose the test cell contains a sample from clear 

background. Then the threshold will be unnecessarily high, leading to a much lower 

false alann rate, If the test cell is from a clutter background, the processor acts as if it 

were an OS(9) processor of window size 12 in a homogeneous situation. The false alann 

rate increases significantly. 

In case of the presence of interfering targets in a reference window, the perfonnance of 

the OS-CF AR processor is highly dependent upon the values fork. If a single interfering 

target appears in the reference window of appreciable magnitude, it occupies the highest 

ranked cell with high probability. If k is chosen to be 24, the estimate will set the 

threshold based on the value of the interfering target. This results in an increase in the 

overall threshold and leads to a target miss. If k is chosen to be less than the maximum 

value, the OS-CFAR processor will be influenced only slightly for up to N ~ k 

interfering targets. For example, if k is chosen to be 21. then the processor is able to 

discriminate the primary target from, at the most, three interfering targets with little 

degradation in detection performance. 

Though the OS-CF AR exhibits some loss of detection power 111 homogeneous nmse 

background compared with the CA and GO CFARs, its perfonnance in a multiple target 

environment is clearly superior. By selecting k to be near the maximum, a false alam1 

rate pcrfonnance close to that of the GO-CF AR is obtained. The detection .perfomwnce 

of the OS-CF AR is independem of the location of the interfering targets in the reference 

window while the SO-CFAR suppresses the primary target if the interfering targets are 

located in both the leading and lagging window. In addition, the detection performance 
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of the OS-CF AR in homogeneous background noise is superior compared with the SO-

CFAR with k values approaching maximum. 

2.3.4 The Trimmed-Mean TM CFAR Algorithm 

The TM-CFAR scheme is similar to.OS-CI~AR in which the noise power is estimated by 

a linear combination of the ordered range samples. It first orders the range cells 

according to their magnitude and then trims T1 cells form lower end and T2 cells form 

the upper end before summing the rest. The TM filter with symmetric trimming has been 

used in signal and image restoration (Bovik, Huang and Munson, 1983). The statistic Z 

of the TM-CFAR is given by:-

N--1;-T, 

z = 2)', 
1=1 

The OS-CFAR and the CA-CFAR are special cases of the TM~CFAR with (T1,T2) = (k 

- I, N - k) and (0,0), respectively. The false almm rate is given by Bednar and Watt 

(1984) as: 

,\'-/j -J; 

P," = TI M,; (T) 
1=1 

T,l 
. ___ L (-1)7;-, 

\ /1 1, 'I(T ')1 \I (T 1. . "\;'.J.l,-J. 
I' ,., ) = T, I ( N - T. - I) I ( N - T, - T ) X L. N - j' 

I. I . I 2 t=O . - - - + T 
(N-T,-7~) 

(/ i . 
M,,(T) = ,1 = 2, ... ,N- T,- T, 

a, + T · 
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a, =(N-7; -i+I)/(N-7; -0_ -i+l) 

The detection probability Pd is obtained by replacing T with T/( I + S). As the trimming 

increases, T increases. Symmetric trimming can not offer advantages in perfonnance 

over the other er: AR schemes in regions of clutter transitions. With symmetric 

trimming, Z is given by the sum of the middle N - T1 - T2 range cells of the ordered 

window. Consider the situation where the leading half of the reference window contains 

cells from clutter-plus-noise background and the lagging half from clear background. 

The noise power estimate Z will include samples from both the clear and clutter-plus­

noise background. The corresponding threshold will not be high enough to regulate the 

false alarm rate if the test cell contains a return from the clutter-plus-noise background. 

As the upper trimming is increased with no lower trimming, the value ofT increases. On 

the other hand, if the lower trimming is increased with no upper trimming, the value ofT 

increases slowly and approaches the COJTesponding values for the OS-CF AR. In order to 

be less sensitive to interfering targets, T2 should be different from zero. The actual value 

of T2 depends on the maximum number of interfering targets present in the reference 

window. The value of T1 should be small to attain good detection perfonnance in a 

homogeneous background. However, if the primary concern is to follow clutter edges, 

T1 should be large and T2 should be small. 

2.4 Application of CFAR Algorithms 

In this section, the quality of the CFAR algorithms is compared. For this purpose, two 

40 microsecond sweeps of radar returns (containing both sea clutter and rain clutter 

region) at Plymouth harbour were combined to form a 80 microsecond sea target 

scenario in the video domain. The objective was to use this specific scenario to test 
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the performance of the CF AR algorithms. The signal consists of 11 targets (including 

multiple targets) and clutter transitions. The length of the radar sweep is 80 

microseconds, which corresponds to a range of 12 Km. The video signal is sampled at 

25 MHz, i.e. a range cell of 40ns corresponding to a range resolution cell of 6 m. 

Figure 2.5 shows a plot of the sea target scenario with 11 targets identified. 

Fig.2.5. Plot of the Sea Target Scenario for Testing the CFAR Algorithms 
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Figures 2.6 to 2.10 show the CFAR thresholds for CA. GO, SO, OS and TM 

algorithms. For the given sampling rate and range resolution cell size, the optimum 

length of the CF AR window is chosen to be 120 (Holfele, 1998). To have a 

reasonable comparison between these algorithms, the threshold of individual CF AR 

algorithms have no fa lse alarms, i.e. the signal amplitudes in the scenario exceed the 

CF AR threshold only for targets. The scaling factor T is set to 1. 
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Fig.2.6. Sea Target Signal witll CA-CFAR Threshold 
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Fig.2.7 Sea Target Signal with GO-CFAR Tl1reshold) 
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Fig.2.8. Sea Target Signal wi th SO-CFAR Threshold 
1.4 

1 5 9 
1.2 

1 

(f) 0.8 ....... 
0 
> 
c 0.6 
Q) 
u 
:::J 0.4 ....... 
Q. 

E 
<( 0.2 

0 

-0 .2 

-0 4 
0 10 20 30 40 50 60 70 80 

Time in microseconds 

Fig.2.9. Sea Target Signal witll OS-CFAR Threshold, 1<=80 
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Fig.2.10 Sea Target Signal with TM-CFAR Threshold, T1 =40,T2=40) 
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To determine the quality of a CFAR threshold, a crite1ion is established to calculate the 

fitness of the threshold to the clutter and target environment. The criterion is based on 

the assumption that there is no false alarm in the detection. This is perfonned by 

summing the threshold crossings. i.e. 

q = L[Y( i ) - Z(i) ] 

for all i with Y(i)>Z(i), where Y is the magnitude of the range cell and Z is the 

threshold. The following results are obtained for the five CFAR algoritluns. 
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Table 2.1 Quality of the CFAR Algorithms 

CFAR Type Quality q 

TM 17.0497 

0S 

so 

CA 

GO 

16.0247 

15.2160 

12.0613 

I 0,6400 

TM-CFAR has the best quality. However, two targets that are embedded in clutters 

are still missed. GO-CF AR has a worse quality than CA-CF AR. This is due to its 

poor performance in the region of multiple targets. 

2.5 Conclusion 

The performances of five different CF AR processing algorithms in both homogeneous 

and nonhomogeneous backgrounds have been analysed. The multiple target 

environment and regions of clutter are used as examples for nonhomogeneous 

backgrounds. A sea target scenario is used to indicate the variation of perfonnance 

between the algorithms in a specific environment, i.e. multiple targets and clutter edges. 

The detection performance of the CA- and GO-CF AR processors IS supenor m 

homogenous background. However, the perfom1ance of CA-CF AR degrades 

significantly in nonhomogeneous background. The false alam1 rate mcreases 

considerably at the clutter edges, and target masking is experienced in multiple targets. 

Although the false alann rate perfmmance of the GO-CFAR in regions of clutter 

transition is better than that of any other mean-level CF ARs, the detection performance 
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in a multiple target environment is quite poor. The SO-CFAR does not appear to offer 

any advantage over the CA and GO CFAR. In addition to exhibiting high loss of 

detection power in homogeneous background, the SO-CF AR is unable to resolve 

multiple targets and to control the false alam1 rate at clutter edges. Yet, it has good 

perfmmance in the multiple target environment when a clutter of radar targets appear in 

the reference window. 

The CF AR algoritlm1s based on ordered range cells have in general better overall 

performance than the mean-level CF AR schemes (Kassam, 1988). The TM-CF AR may 

have a slightly better performance in a homogeneous background for isolated targets 

compared with the OS-CFAR. The performance of the OS-CFAR processor is relatively 

unaffected if the clutter area is less than the window length as long as r, the number of 

clutter samples present in the reference window, is greater than N - k. The false alarm 

rate does not suffer considerably at the clutter edges if r $ N- k. On the other hand, the 

CA and GO-CFAR exhibit fu11her false alam1 rate degradation if the extent of clutter 

area is smaller than the window size. This is because the noise power estimate consists 

of samples from clutter background as well as from clear background leading to overall 

decrease in threshold. However, the performance of the OS-CFAR is highly dependent 

upon the values of k. If k is chosen to be a high value, the noise estimate will set a large 

threshold and it will result in target misses. Also, a low value of k will give excessive 

false alarms. With regard to the TM-CFAR, again the choice of trimming factor T 

affects the overall false alarm rate as well as the detection probability. 

The experiment using the sea target scenario showed that the five CFAR algorithms 

were unable to detect targets embedded in strong clutter. TM-CF AR with a good choice 
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of trimming factor could have a better perfom1ance in this specific case, However, two 

targets were still missed. It is important to note that each algorithm aims to tackle a 

specific problem in detection and it is obvious that no single CFAR algorithm is 

adequate to solve problems in a complex detection environment, such as that in which a 

YTS system is likely to be operated. A drawback on the CF AR algorithms is that the 

decision is made only from the magnitude ofthe retum echoes (Li and Miller, 1997). To 

have significant improvement in the detection of weak targets, more obvious 

discriminating features must be identified and extracted. The following chapter will look 

at the other characteristics of the radar signals for improvement in detection. 
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CHAPTER THREE 

CHARACTERISTIC OF RADAR SIGNALS AND FEATURE 

EXTRACTION 

3.1 Introduction 

The limitations of the CFAR algoritlm1s in radar detection are mainly caused by their 

static processing structures that they rely only on the amplitude infom1ation of the return 

signal from targets and clutters. These algorithms are not suitable for a complex 

dynamic environment such as the Hong Kong harbour. It is quite evident that the 

detection capability of CFAR is vei)' limited under strong clutter background, as the 

signal is embedded in the clutter which itself has a large amplitude. To provide a 

significant improvement in the detection of weak targets, more obvious discriminating 

features must be identified and extracted (Li and Miller, 1998). The radar detection 

system may perfonn better when the characteristics of target and clutter are in line with 

their predicted values. A wide range of targets and clutters will be received by the radar 

systems and it is necessary to formulate descriptions about these signals at specific 

times. In deciding whethc1: a target is present, there are factors other than the magnitude 

of signal to be considered. The echo from the reflecting objects may consist of many 

components of energy scattered from points over the surface. Their spatial and 

correlation characteristics will vary as a function of time, angle of incident and 

transmitting frequency. Radar returns of weak targets will have a closer temporal 

correlation than those of a fairly strong sea clutter. Also, in the spatial domain, the 

targets have some different features when compared with spiky clutter signals. An 

effective approach to solve the problems in target detection is to develop algorithms 

which are able to extract these discriminating features of signals in the radar return. With 
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the recent development in the processing speed of computers, more radar information 

can be handled in real time. This chapter will study the characteristics from radar return 

signals in order to identify the features and extraction algorithms that can improve the 

detection capability of a radar system. 

3.2 Radar Cross Section 

When a radar illuminates a target, the power that is backscattered or reflected back to the 

radar is defined in terms of a measurable quantity, the target cross section. Since there is 

substantial variation of the reflected power about the target for any given illumination 

angle, an equivalent hypothetical target which re-radiates isotropically, is used as the 

basis for measurement. The radar cross section (RCS), cr, implies an area of an isotropic 

reflecting body which creates at the radar the same power density as does the actual 

target. 

Where I\ is the backscattered power at the target and P; is the incident or transmitted 

power measured at the radar, and R is radar-to-target range. The RCS depends on the 

characteristics of the target, namely the pennittivity and the pem1eability of the target 

material. the target aspect angle relative to the radar, the shape and dimensions of the 

target structural elements relative to wavelength, and on the polarization of the radar 

receiving and transmitting antennas. 

Some of the electromagnetic energy intercepted by the target is absorbed as heat and the 

rest is scattered. Portions of the energy scattered in the direction of the receiving antenna 

are received by the antenna and subsequently processed in the target detection system. 
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Since radar targets such as ships, aircraft, missiles, and ground terrain have a variety of 

fom1s and shapes, the use of mathematical models for smooth surfaces would lead to 

incorrect calculations. As such, experimental measurements with the use of the target 

itself or of smaller scale models form the basis of radar cross section calculations. 

Measurement errors caused by parasitic reflections can be reduced by placing the model 

in an anechoic chamber. 

The target cross section fluctuates as a function of time. This is due to the scattering 

effects that intercept the transmitted electromagnetic energy. A complex scintillating 

target to a first approximation can be represented by an exponential distribution 

(1-lovanessian, 1972). The radar illuminates the target once every revolution of the radar 

antenna, with the duration of illumination proportional to the rotational speed of the 

antenna, which is in terms of milliseconds. The target cross section used in the radar 

equation is the average value of the cross section and the target scintillation is 

incorporated in the probability of detection calculation. 

The cross section of vessel type targets, as presented to the radar, is also a function of 

aspect angle. lt can be seen initially that a vessel presents a larger physical area when 

viewed from both sides rather than from the bow or the stern. A target viewed from the 

sides may have an average cross section of 5 times larger than the same target in the 

bow aspect. 

A single value of RCS cannot be assigned to a target, e.g. a ship, as it will depend on the 

aspect at which the target is viewed, both in azimuth and elevation, and also on the 

polarization angle of the radar. These factors, combined with interference from different 
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scattering surfaces on the target, would mean that the RCS of the ship will fluctuate. 

These fluctuations can be treated by finding the mean value of the RCS O"av and a 

probability density function (PDF) p(a) to describe the variations about the mean. A 

commonly used density function for random variables is the chi-squared variable with 

two or four degrees of freedom, in the fom1s of: 

I 1- ?. > 

p(a") = -e a_. 

am· 
'a 4a (-~> 

p(a) = -, -e a.,. 
(J- (/\" 

a~O 

For most of the surveillance radar, typical values of RCS (a .. ,.) that might be expected 

are given in table I (Kingsley and Quegan, 1992). 

Table 3.1 Typical RCS values for some common targets 

Target RCS on Linear Scale RCS on Log Scale 

Bird 0.001m2 -30dBm2 

Cruise missile 1 
o.otom- -20dBm2 

Small boat I.OOOm 2 OdBm2 

Cargo ship IO.OOOm 2 
IOdBm2 

Large aircraft I 00.000m2 20dBm2 

Large tanker I 000.000m2 30dBm2 

3.3 Clutter 

Clutter is hard to quantify. and in many ground based systems it varies dramatically with 

azimuth. The clutter seen by a marine radar depends on the sea-state and wind direction. 
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Weather clutter is inherently variable and unpredictable. In spite of these difficulties, it is 

imponant to have an overall appreciation of clutter cross sections for target detection. 

Sea clutter is often distributed over a considerable area, unlike the point targets. Its 

backscattering effect may be described in terms of a radar cross section density, cr0. If a 

clutter area Ac produces an effective radar cross section O"c, then 

ac a-­o- A ,. 

If the radar energy strikes the surface at an angle ~, a clutter area corresponding to one 

resolution cell of the radar can then be specified. The cell's extent in the range direction 

is detennined by the pulse length. A pulse duration of t seconds corresponds to a 

transmit and return path of ct/2 metres. The equivalent distance along the clutter surface 

is ctsec~/2 metres. The surface area lying within one resolution cell is therefore 

The effective radar cross-section of the clutter area is 

Suppose that a point target of area cr competes with clutter of effective area O"c in the 

same resolution cell. If the power of the rettirn signals are represented by S and C 

respectively. then the signal to clutter ratio is: 
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S a 2a 
= =------

When the clutter is heavy, the clutter power will be much greater than the receiver noise 

power. Hence the maximum range at which a target is detectable depends on the signal 

to clutter ratio rather than the signal to noise ratio. If the minimum acceptable signal to 

clutter ratio at the receiver input is (S/C)min, then 

S' ? _a 
( ---;-)min = R O 
C a 0c r sec 1/1 111" · H 

From the above equation, it can be concluded that an effective way of improving the 

signal to clutter ratio is to reduce the size of the radar resolution cell. This may be 

achieved by reducing the pulse length, the antenna beamwidth or both. However, the 

actual values of the clutter cross-section density cr0 depend heavily on the type of 

surface, or terrain, and on the grazing angle ~· It is also affected by the choice or radar 

frequency and the polarization. By taking a small grazing angles (~<I 0°) which are 

widely used in marine radar, typical values of cr0 for city in X band, cultivated land and 

sea are shown in the following table (Lynn, 1987). 

Table 3.2 Typical values of clutter cross-section density 

Horizontal Vertical 

City -18dB -ISdB 

Cultivated land -25dB -22dB 

Sea -40dB -JOdB 
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The above quoted sea clutter values are typical of average sea conditions, in wind speed 

of around 15 knots. 

Rain or. other atmospheric conditions also produce clutters to radars. Such clutter is 

usually quantified in tenns of an effective cross-section l1 per unit volume. Thus, if a 

clutter volume Ye produces an effective radar cross-section O'c, then 

0'. 
'7=V,or 0',='7I~ 

' 

Now the radar resolution cell corresponds to a volume in space rather than a surface 

area. Its extent is defined in range by the pulse length, in azimuth by the horizontal 

bcamwidth 813 , and in elevation by the vertical beanl\vidth ~B· The approximate volume 

of a resolution cell is: 

Such types of volume clutter usually come from rain and cloud droplets. They are small 

compared with the radar wavelength, and the cross-section presented by an individual 

droplet is propmtional to the sixth power of its diameter. Heavy rain produces stronger 

clutter than light rain or cloud, not only because there are more droplets per unit volume, 

but also because they tend to be larger in size. Droplet cross-section is also proportional 

to the fmuth power of the transmitter frequency. Therefore, the systems operating at 

lower fl·equencies are much less susceptible to weather clutter. A typical relationship to 

describe the effects of rain clutter on radar perfmmance is, 

7/·~ 16 10-1' -1 '7"' .or·x -m 
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Where f0 is the transmitter frequency in GHz and r is the rainfall rate in mm/h. Given a 

light rainfall of I mm/h, their cross sections as presented by two different wavelengths 

(23 cm and 3 cm) at a range of 50nm (T = 211s, ell= I .SO, $u =l2°).are found to be 0.2m2 

at J..=23cm and about 800m2 at /,=3cm. 

3.3 Statistical Characteristics 

Most of the random noise arises m the initial stages of the radar recetver. Their 

behaviours during the target arrival period cannot be predicted. However, the statistical 

distribution of random noise at the input to the intermediate amp I ifier can be assumed as 

Gaussian, with zero mean value, which is mainly due to the thermal motion of electrons 

in the early amplification stages. The probability density function ofGaussian noise with 

zero mean is given by: 

where lflo is the variance and lf/(:12 is the standard deviation. The random not se will 

have a mean value close to zero. There is small chance that at a particular time the noise 

level will be several standard deviations above or below the mean (Barton, 1988). 

Most targets and clutters have a very complicated relationship to the cross section area. 

and it is difficult to fonnat equations based on the physical dimensions. A complex radar 

target (e.g. a ship) has many reflecting surfaces, such as the hull, accommodation, masts 

and stern. Each of these contributes to the overall return signal, including the relative 

phase as well as magnitude. lt is important to note that a speci fie target will not always 

have the same cross section area as 'looked at' by the radar for a given incidence angle. 
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Small changes in the direction of the incident wave can cause dramatic changes in the 

effective cross section area of the target and these are very unpredictable. Also, clutter is 

VC!)' difficult to define accurately, and it usually changes with environment and factors 

such as wind and weather. Measurement of radar cross section of complex targets 

requires readings to be taken at many frequencies, and with different polarisation. This 

would lead to a massive database for a single radar band and limit the usefulness of 

these data in radar performance analysis. These targets can be summarised in statistical 

form and four statistical models were established based on probability density function 

(Lynn, 1987). It was repot1ed that classes I and 2 are of Rayleigh type model and 

con·espond to targets to which many scattering sources are added. Basically, all complex 

targets having many comparable echo areas are very close to this model. For a target of 

average radar cross section of a,,., the probability density function is of the f01m: 

I a 
p,(a) = -exp(--), a~ 0 

a,". a,u· 

Classes 3 and 4 are more appropriate for targets having one dominant refiector, plus a 

number of other, smaller renectors. The probability density function is of the fonn: 

4a 2a 
p"(a) = -,-exp(--), a~O 

0"-ar atH' 

The intensity of the target echo depends on the aspect angle at which the target is 

observed, the transmitter frequency and radar polarization. The target cross section area 

changes with time, i.e. it varies between different sweeps due to aspect variation. These 

variations will be present even when the vessel approaches the radar at constant bearing, 

with the radar polarization and frequency remaining constant. This is caused by the 

random movement of the vessel, the different propagation characteristics of the 

atmosphere, performance of the electronic circuits in the radar equipment, and the 
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variation in the transmission pattern of the radar antenna. 

The Rayleigh scattering model can also apply to sea clutter if the sea is calm and the 

range cells are fairly large. However, the range cells are relatively small in a short pulse 

and high resolution radar. The size of individual sea waves may often be comparable 

with a range cell, especially in a rough sea condition. Under these circumstances, the 

distribution departs from the Rayleigh, with sharp peaks at the larger wave tops. Other 

forms of distributions have been used ·to model sea clutler received by marine radars. 

1ihese types of function have a longer 'tail' than the Rayleigh distribution. One of which 

is the Weibullmodel with the fom1 

where a and ~ are constants 

Alternatively, the Log-nonnal, which has a longer 'tail', has the distribution 

r v ' p(v) = -exp(-c5{ln[-]}-) 
V fJ 

where p,y and 8 are constants. 

The decision on which distribution is to be used depends on the sea state at that specific 

moment. Yet the Log~normal distributions are best suited to rough seas. Moreau (1993) 

has developed a model for sea clutter, which is a Rayleigh distribution modulated by a 

Gamma distribution. The amplitude is represented by a compound K-distribution model: 

p(v) = 
2

h (bx/2)' K,_
1 
(hx) 

!(v) 
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where K, (x) v- order modified Bessel function 

re X) Gamma function 

x clutter amplitude 

v shape parameter (function of sea-state, speed and direction of wind) 

h scale parameter 

The shape parameter v is a function of transverse resolution R, grazing angle $, wind 

direction a and a coefficient k (k depends on polarisation) in the form of: 

2 5 
log v = -log r/J +-log R +a- k 

3 8 

Moreau (1993) had made simulations with this sea clutter model usmg a correlated 

Gamma process. By estimating the high order statistics, he found out that, with v > 0.4, 

simulated results fit well to the theoretical definition. 

The volume cluller is usually caused by weather conditions such as ram and cloud 

droplets. The reflectivity of volume clutter is quantified in effective radar cross-section 

per unit volume. The rain and cloud droplets are usually very small compared with the 

radar wavelength. They can nom1ally be described by means of Rayleigh modelling. 

However, the radar cross section of droplets for cloud and rain is proportional to the 

fourth power of the transmitter frequency. This causes the high frequency radars to have 

more effects from the weather clutter. For shorter wavelength, the scattering prope11ies 

may depart from the pure Rayleigh distribution. 
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Figures 3.1 to 3.4 show the recorded noise, target, sea clutter and rain clutter, and their 

statistical distribution in a 2 microsecond time window. The window contains 50 samples of the 

radar retum signal, which COITesponds to a distance of 300 meters. 

Despite the fact that the magnitude of the random noise, sea clutter, rain clutter of these signals 

are close to each other, it can be observed from their distribution that each type of retum echo 

has its unique features. The random noise resembles a zero mean Gaussian function, with a 

maximum number of occurrences at 0 volts. The target is characterised by the long tail which 

extends by up to I volt. The majority of the sea clutter returns lie between 0 and 0.5 volt. The 

rain clutter has similar characteristics to the random noise, except that the maximum is shifted to 

around 0.5 volt. 

To characterize the differences between these signals, the amplitude and period parameters in 

the 4 microsecond windows are extracted. The waveforms contain a combination of several 

frequency components and they exhibit a series of extremes over the time interval. A segment 

boundary is declared each time that the waveform passes through a zero slope condition. The 

segment amplitude is the absolute amplitude differences between the bounding extreme of the 

segments, i.e. 

A, = la, - a,-11 

where A,= segment amplitude of the nth segment 

a,= wavefom1 amplitude at the highest extreme of the segment 

a,. 1 =waveform amplitude at the lowest extreme of the segment 

The segment periods are the time differences between the lowest extremes of the 

segments. This can be expressed as 
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T,, = 1, -t,_, 

where Tn = segment period of the nth segment 

tn =waveform elapsed time at the firstlowest extreme of the segment 

tn-1 =waveform elapsed time at the next lowest extreme of the segment 

To sample the wavefonl1S, a trigger signal is activated whenever the waveform exhibits 

a zero slope condition, indicating an extreme position. As such, direct extraction of the 

waveform amplitudes (ao; a1, ..... a11 ) as the amplitude outputs of the monitoring circuit 

can be achieved. The segment amplitude (A I, A2, ..... An) can then be calculated simply 

by subtracting consecutive waveform amplitudes and taking the absolute values of .the 

differences, The triggered sampling technique can also provide trigger signals at 

waveform extremes, which are the segment boundaries. These signals may be used to 

stimulate an electronic counter to retain its present count as an elapsed time 

measurement. Consecutive elapsed time measurements (tO, t I, ........ ,tn) are then 

subtracted to obtain the segment periods (T I, T2, ...... Tn). 

The absolute differences in amplitude between these extremes are then accumulated, and 

their mean and mean deviation are also calculated. The four wavefom1 parameters, ie. 

the amplitude mean, amplitude deviation, period mean and period deviation are the 

primary measures by which the wavefonn can be characterized statistically. The mean is 

the standard sample mean, in the conventional statistical sense, and is simply the sum of 

the sample values divided by the number of samples. The mean deviation, however, is 

neither the statistically conventional variance nor standard deviation. As only a measure 

of the average sample deviation from the sample set mean is required, the statistically 
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standard quantities, which involve the calculations of squares and square roots, cari be 

avoided to achieve the computational simplicity. The mean deviation is the average of 

the absolute differences between each sample and the sample mean. These parameters 

can be expressed mathematically as follows: 

\" 

D =~I A - Jv! IN 
tl L... I t1 _\ 

i=l 

'"'· 
M, = LCI;}I N, 

i=l 

\' 

M,= 't(A,)/ N, 
1=1 

X, 

D = " I T - M 11 N I ~I I \ 

t=l 

where, 

Ma =amplitude mean, 

Mt = period mean, 

Da =amplitude mean deviation 

Dt = period mean deviation 

Ai =amplitude of the ith segment 

Ti =period of the ith segment 

Ns =number of samples (segments) 

The period quantities are in temporal units of microseconds and amplitude units are in 

quantities of volts. The statistical data of target sea clutter, rain clutter and noise, as 

calculated by the author using the waveforms recorded at the Plymouth harbour, are 

given in the following table: 

52 



Characteristic of. Radar Signals and Feature E:draction 

Table 3.2 Statistical data of target, sea clutter, rain clutter and noise 

Target Sea Clutter Rain Clutter Noise 

Mean (amplitude in volts) 0.1952 0.2340 0.5880 0.0584 

Deviation (amplitude) 0.2296 0.2014 0.1960 0.1060 

Maximum (period in microseconds) 0.8 0.44 0.36 0.48 

Mean (period in microseconds) 0.1704 0.1508 0.1584 0.1523 

S. Deviation (period) 0.1550 0.1026 0:0905 0.0979 

The noise has a comparatively low mean amplitude. This can be explained that the noise 

is fluctuating randomly around zero and the sum of these amplitudes will be close to 

zero. The rain clutterhas a comparatively high mean amplitude giving high peaks in the 

radar receiver. The negative values of the amplitudes are due to the bias and offsets of 

the amplifiers in the radar equipment. The amplitude deviation of sea clutter is small as 

most of the amplitudes are varying along the means value. The mean period of the 

window containing target(s) is large, which signifies that targets have a wider pulse 

width when compared with noise and clutters. Such statistical characterization fonm the 

basis for a discrimination system for target detection. 

3.4 Correlation 

The ability to detect trlrgets from signals coming from the receiver is largely depending 

on the signal to noise ratio (SNR). Hence, it is impot1ant that the SNR is maximized. 

The noise power is dependent only on the gain of the receiver, not on the shape of its 

impulse response function. For fixed gain, the best SNR is obtained by maximizing the 

response to the signal tem1. This is achieved by coiTelating the retum echo with the 

transmitted pulse. The receiver can be regarded as a linear filter with impulse function 
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h(t), and the output from the receiver, y(t) is therefore given by a convolution operation: 

"' 
y(l) = u(l)*h(l) = Ju(r)h(l- r)dr 

_., 

where 1 is a time variable and u is the input 

According to the Cauchy-Schwartz Inequality (Kingsley and Quegan, 1992), the 

maximum value of signal to noise ratio can be obtained by choosing h( r) proportional 

to u( r + ( r" -I)) and h( r) is a reversed and shifted copy of u( r) where r" is the time 

delay. Hence, 

r 

y(l) = Ju( r)u( r + r" -l)dr 

where u( r) is the incoming signal 

11( r + r" -I) .is a copy of u shifted to a duration of 1- r,,. 

The product of the signal and its shi11ed version is integrated overthe ranges for which 

the integral is not equal to zero. y(t) has the same shape as the autocon'Ciation function 

of u(t). As t varies, the shifted u(l) will come to align with the incoming signal and then 

out of alignment again. When they are fully aligned, i.e. 1 = r" , the maximum signal to 

noise ratio will occur and the amplitude is given by, 

r 

y(l) = Ju 1 (r)dr 
0 

As such, the amplitude of the target after correlating with the transmitting pulse will be 

greatly enhanced. The signal to noise ratio is much improved and this will facilitate the 

target to be detected more easily. 
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Fig. 3.5a shows a radar return with a target (at 18 microsecond) being contaminated by 

noise. Since the transmitted pulse is rectangular in shape with a pulse width of 0.05 

microseconds, the return echo will be stretched. The width of the integrating pulse can 

be determined by trials. It is found that the best result can be obtained when it is around 

I 0 times the transmitting pulse. Fig. 3.5b shows the result of integrating the product of a 

0.4 micro second rectangular pulse by the radar return. It is obvious that the signal to 

noise ratio is much improved and this will facilitate the target to be detected more easily. 

New motion estimation algorithms in image processmg which exploit the motion 

correlation of neighbour blocks in temporal and spatial directions have been presented 

(1-lsieh, Lu and Shyn 1990 and Loui and Azimi-Sadjadi 1991 ). Winston, Yu, Meyer and 

Byme ( 1995) and Chen, Deng and Zhuan (1995) have reported techniques for automatic 

tracking and identification of moving targets using correlation algorithms. The targets 

from the radar return will normally appear in more than I sweep in the same scan. The 

same target will also appear in next scan within a certain limit of distance. depending on 

the speed of the target. The degree of correlation will depend on the size and type of 

targets. Large sized targets will be correlated in a greater number of consecutive sweeps 

than those small sized ones. The speed of a vessel is relatively slow when compared 

with the time between sweeps and it can be ignored in calculating the correlation, For 

example, the vessel is moving at a speed of 15 nm/hr (27.78 km/hr) and the Pulse 

Repetition Frequency (PRF) is 13001-lz (shmi/medium pulse).,i.e. one sweep takes 769.2 

microsecond. The vessel only travels 0.463 mm. Also, taking the rotational speed of the 

radar antenna is 20 rpm, one complete scan takes 3 seconds. The vessel travels 23.15 

mm in one scan period. The conelation between the targets within consecutive sweeps 

can be detennined by:-
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where C~ ~ (v) is the correlation of target points between n, and n+ I sweeps 
"tr' n·l 

V~ • .~,. is the amplitude of nth sweep at time m 

is the size of the correlation window 

Random nmse is usually uncorrelated and thus can be removed after the first order 

correlation process. Despite the fact that most of the uncotTelated noise is removed, there 

is still some cotTelated noise appearing which may affect the target detection process. 

The use of high order correlation method (Liou, 1991, 1992 and 1993) can provide a 

better discrimination capability between clutter and noise. This is achieved by 

cotTelating the cotTelated results ofN/N+I and N+I/N+2 to generate a new sequence of 

radar signals. 

Figures 3.6a, 3.6b and 3.6c show three consecutive sweeps of a radar retum with a time 

frame of I 0 microseconds. The correlation of N/N+ I and N+ 1/N+ 2 are shown in figures 

3.7a and 3.7b respectively. Figure 3.8 shows the effect of using high order correlation. The 

noise is suppressed and the targets can be discriminated from the trace easily. 

3.5 Spectral Chantctcristics 

Target motion in range introduces a doppler shift of2v/A. relative to the transmitted catTier 

frequency. As the target changes its velocity and heading, the spectral components are 

shifted. The movement of the target and its elements, as well as yaw, pitch, and roll, cause 

the spectrum of the received signal to fluctuate. The spectrum does not depend much on 

target dimension and is detem1ined by the rate at which the range to different reflecting 
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elements varies. Vmious techniques have been reported in detecting signals using their 

frequency characteristics, e.g. low pass filtering, integration and matched filtering (Van 

Trees, 1968). It appears that radar targets have distinct features in the frequency domain 

compared with clutter and noise. Targets appear at some specific time of the radar sweep 

and the corresponding changes in the immediate frequencies throughout the time sweep 

may be of use in the detection of targets. Annstrong and Ahmed (1989) have modelled the 

immediate frequency function for a broadband signal by considering an input of n 

frequency varying spectral components. 

By taking the square of the time derivative of the signal x(t), we have 

., " I ' ) 
[x'(l)]- =I- A,- rv,- (1){1- cos[2(b, (/)]} 

•=I 2 
+ other cross-multiplied terms 

" 
x(l) =I A, cos[~, (I)] 

i=l 

where uJ;(t) denotes the immediate frequency function ~;'(t) 

If a low pass filter is applied to the signal [x'(t)l2
, it will suppress the tenns associated with 

cos[2Nt)] and the other cross multiplied terms, so: 

' J n I 1 2 
[x (I)]- l, 1.r = I- A, rv, (I) 

1=1 2 

The low pass filter output of the square of the input is also calculated as follows: 
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The immediate frequency function w(t) can then be estimated as: 

The nomwlisation element provides the weights of the individual spectral components to 

calculate a reasonable estimate of the immediate frequency. 

The detection of radar targets in the frequency domain requires the immediate frequency 

at each time slot to be estimated. A moving window of a fixed number of range cells is 

shifted through the entire sweep. The immediate frequency for each window is calculated 

using the nonnalization technique as described. If the window size is made too large, 

frequency changes for small targets may be missed. However, a window that is too small 

will involve additional computation time as well as producing unwanted fluctuation of the 

frequency function due to random noise. 

The slope of the distribution of the immediate frequency (i.e. the rate of change) may also 

be significant in detecting targets. A large slope will imply that there is a target embedded 

in the high frequency noise. or that there has been an abrupt change in the frequency of the 

noise. To remove any sharp slopes caused by random noise, the immediate frequency is 

averaged over several samples so that short duration changes of slope can be filtered out. 

So, in addition to considering the frequency response of returned signals the presence of a 

target may be confirmed by examining the rate of change of the immediate frequency. 

This can be achieved by differentiating the immediate frequency function and detecting 
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the slope change. Differentiation of a signal in the time domain is equivalent to 

multiplication of the signal's Fourier transform by an imaginary ramp function, i.e. passing 

the signal through a filter that has a response H( w )=jw . 

The respective spatial and temporal characteristics of radar target signal and clutter are 

different to some extent on the return sweep. The targets have a lower frequency spectral 

component. The width of the distribution of clutter and noise is usually narrow and sharp, 

and this characteristic can easily be identified in the immediate frequency distribution. To 

detect these distinct features, thresholds on both frequency and width are applied to the 

incoming signal. The threshold for the frequency must be chosen so that the majority of 

the noise components are filtered, thus reducing the computation effort of the width 

detection in the next stage. As for the width threshold, the number of samples in the 

moving window contributes a crucial part in the value chosen. Further observation and 

analysis is required in order to optimize this process. This would compare retums obtained 

under various clutter, noise and target characteristics with respect to their width in the 

immediate frequency function. 

By looking at the amplitude alone, it may be difficult to discriminate the targets from the 

noise and clutter. The signal can be conve11ed into the frequency domain by taking the 

discrete Fourier transform of the sweep. New architectures of high throughput and real 

time Fast Fourier Transfom1 processors have been developed for radar signal processing 

(Bungard, Lau and Rorabaugh 1989). A trace of the Fourier transfmm for a window that 

contains noise alone is plotted in Fig. 3.9, this will be used as a benchmark against which 

to compare the frequency spectrum for traces which contain signals of targets. It can be 

observed that the frequency distribution for the noise alone is fairly constant at all 
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frequencies. It was thought that targets would have some different features in the 

rrequency domain when compared with noise. Figures 3.10 and 3.11 show the frequency 

characteristics of the window containing target and land clutter respectively. It has a 

smooth frequency distribution and is similar to the Fourier transform of a triangular wave, 

while that of the land clutter resembles a sync function, i.e. the Fourier transform for a 

square wave. The peak frequency components of the noise are equally distributed along 

the whole frequency spectrum. Using these features for discrimination, it is possible to 

develop the immediate frequencies of the radar return, which are able to extract the targets 

from the noise and clutter in the background. Observation windows are established and 

the magnitude of individual spectral components within each window is obtained by 

taking the fast f'ourier Transform. The immediate frequency is estimated by means of the 

nonnalization technique. Figure 3.12 shows a plot of the immediate frequency of the 

return echo at various time frames during a sweep, The landclutter has distinct 

characteristics of low variation in frequency and low frequency components. The target 

has a constant slope in its falling and rising edges and a lower frequency. To determine the 

threshold for the frequency and width of the detection algorithms, the immediate 

frequency function for a frequency for a sweep with only random noise is used for 

comparison and this is shown in fig. 3.13. To compromise in allowing for weak targets 

against time spent processing data, and thus provide efficient detection, upper and lower 

thresholds are set. 

3.6 Conclusion 

The characteristics of radar signals and methods for the extraction of features in the time 

domain have been discussed in this chapter. During a full rotation of the radar antenna; a 

variety of retum characteristics may be observed. For example, when operating in coastal 
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regions, very low clutter may be seen in the seaward sector and significant clutters due to 

the land sea interface and reflections may be received in other sectors. Targets and clutters 

have unique features in their statistical characterization over a finite window. These can be 

extracted for discrimination purposes. Radar retum signals, which have been reflected by 

different objects, possess unique features when correlated with other wavefonns. When 

the received signal is correlated with a square pules of similar pulse width, the signal to 

noise ratio is much improved. Radar pulses are transmitted at fixed time intervals and 

correlation of the targets between different sweeps reduces the amplitude of random noise. 

This is easily removed by the sweep to sweep con·elation process. The use of high order 

correlation, which perfonns the correlation between correlated results of two consecutive 

sweeps, further suppresses the partially correlated clutters. The time frequency 

characteristics can also be used to achieve effective target detection. To study such 

characteristics, the instant frequency value of the signal at any specific time of the sweep 

is estimated using a normalization technique. 

The statistical characterization, correlation, and time-frequency characteristics can be 

extracted from radar wavefonns to determine if a target is present. In a very complicated 

environment, e.g. boundaries between the sea and land, the sea clutter may have certain 

similar characteristics when compared with the targets. However, it is unlikely to have 

similarities in all these parameters, i.e. in a multi-dimensional space. These parameters 

themselves are extracted from moving windows along the radar retum and can be fed into 

an infonnation fusion process for making the final decision. Thus, the detection process is 

not based solely on the magnitude of the radar echoes and will provide a more reliable 

technique for discrimination in target identification and tracking algorithms. 
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Fig. 3.1b Statistical Distribution of Random Noise 
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CHAPTER FOUR 

DATA FUSION TECHNIQUES IN RADAR SIGNAL PROCESSING 

4.1 Introduction 

l'vlethods for the extraction of useful infom1ation from the radar signal were developed and 

discussed in the last chapter. The next step is to identify methods which can relate the extracted 

infom1ation to a final decision on whether a target is present. Data fusion has been a new strategic 

research field which deals with the incomplete and sometimes incoherent infonnation derived 

from different sources. This is the case of many impm1ant application areas such as target 

acquisition (Luperman, 1994), image processing (Zhou, 1994), feature extraction (Abdulghafour, 

Chandra and Abidi, 1993), computer vision (Tahani and Keller, 1990), and defense systems 

(Maloney, 1989). Processing extracted data requires a technique capable of addressing a very 

demanding issue, i.e. making decisions in unce11ain conditions. Since the individual infonnation 

extracted from the radar signals can be distorted, noisy and vague, adequate data fusion 

techniques must be developed in order extract the essential information which is not recognisable 

in any of the single sets of data. Hall (1992) provides an extensive overview and a description of 

classical data fusion techniques. These focus on the identity fusion algorithms based on feature 

extraction and identity declaration. One method of dealing with such task requires ideas from the 

advanced research in machine intelligence. Knowledge-based approaches are able to perfmm data 

fusion in intelligent multisensor instrumentation. However, imprecision represents a very critical 

issue for such knowledge-based systems as they arc generally inadequate for dealing with the 

intrinsic vagueness of input sensor data and very poorly suited to directly process input sensor 

data (Russo, 1994). On the other hand, fuzzy systems and neural networks offer the best solutions 
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to this type of applications (Kosko, 1992). Both fuzzy and neural network approaches, which 

numerically process knowledge, are particularly well suited to manage uncertainty and are 

becoming powerful technologies with a growing range of applications. This chapter describes 

how these two teclmiques are used in the data fusion of the extracted features from the radar 

signal and their comparison is also discussed. 

4.2 FUZZ)' Approach to Data Fusion 

The concept of fuzzy sets addresses problems in which imprecision is an inherent aspect of a 

reasoning process. Fuzzy reasoning allows the processing of problems to be expressed in the fom1 

of rules which resemble the mechanism of human decision making.· Indeed, one of the key 

features of fuzzy logic is its ability to deal with the typical uncertainty which characterizes any 

physical system (Zadeh, 1965). This is a very critical task because the infom1ation acquired from 

different sources can be incomplete and even conflicting. Fuzzy networks are usually structured in 

the fom1 of rules that pennit a clear understanding of their operation. Russo ( 1994) has reported 

the fuzzy techniques represent a comprehensive framework for intelligent instrumentation that 

deals with multisensory input data. One of this author's papers describes the development of fuzzy 

algorithms for a microprocessor based servomotor controller (Li and Lau, 1989). 

4.2.1 Fuzzy Set Theory 

A fuzzy set A with an element x has a membership function of ~tA(x) and is in the interval 

between 0 and I. If ~lA(x) is I, then the element is a member of the set. Alternatively, if ~tA(x) is 0, 

then it is not. Consider a fuzzy set A with five elements, which have the membership function of 

0.7, 0.9.1, 0.9,0.7. The element with a membership function of I is a full member of A. whereas 
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the other are only part members. The membership function detennines the degree to which the 

element belongs to the subset. If a fuzzy set A is defined as "around I 0 volts" on a scale from 9 to 

12, it can then be described by the following:-

A = (0.7/8, 0.9/9, 1110,0.9111, 0.7112) 

Where 0.7,0.9 and I are the membership functions and 8, 9, 10, !I and 12 are the universe of 

discourse. The following three definitions form the basis of the fuzzy algorithms. 

I. The union of two sets, A u 8, corresponds to the OR function and is defined by 

p(A OR B)= max(p,,(x), Pll(x)) 

2. The intersection of two sets, An 8, corresponds to the AND function and is defined by 

p(A AND B)= min(~tA(x), PB(x)) 

3. The complement of a set A corresponds to the NOT function and is defined by 

p(NOT A)= I - ~tA(x) 

To establish the fuzzy algorithms. it is necessary to interpret rules that are based on experience so 

as to give the output values that cmTesponding to situations of interest. A fuzzy rule consists of 

situation and action pairs. and they are expressed in IF and THEN statements. For example, if the 

signal has a high amplitude and its pulse width is wide, then it is likely to be a target. Such a rule 

has to be converted into a more general statement for application to fuzzy algorithms. First, the 

qualitative statements must be quantized into linguistic sets such as, large, medium, small and 

zero. The statement can then be converted into, 'If the signal amplitude is large and the pulse 

width is large. then the possibility that this is a target is high'. 
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Having fommlated the rule in fuzzy tem1s, the next step is to define the membership functions of 

the linguistic sets. The shape of the fuzzy set is quite arbitrary and depends on the user's 

preference. Trapezoidal and triangular shapes are usually used because of simplicity. The 

membership functions representing the decisions are weighted according to the corresponding 

input statements. A pair of input parameters may fire more than one rule. To determine the value 

of the final decision from these contributions, the centre of the summed area, which is contributed 

by individual rules, is evaluated. This can be expressed in mathematical terms as follows:-

11 11 

0 = L(J..l, X U, )ILJ..l, 
I I 

where ~~ is the membership function, U the universe of discourse, n the number of contributions 

and 0 the output. 

4.2.2. Fuzzy Algorithms for Data Fusion in Radar Signal Processing 

A radar signal at specific time frames can be identified as a member of a class of signals on the 

basis of l'vl different features of the wavefom1. Suppose that all the available infom1ation is 

acquired from N sweeps of the same scan. A fuzzy statement is formulated, which yields the 

degree ofmcmbership m of the input data. 

111 = { (~ 1 )or( F21 )or ........ ( F,, 1)} AND{ ( ~ 1 )or( F11 )or ....... ( F81 )} ...... AND{ ( F13 )or( F23 )or ...... ( F.v.11 ) } 

Where Fij( I :::; i :::; N, I :::; j :::; M) is the jth feature extracted from the signal from the ith sweep. The 

fuzzy connective logic OR is used to combine all the available infom1ation about the same feature. 

It maximises all the information about the same feature coming from different sweeps. On the 
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other hand, the choice of fuzzy connective logic AND is used for linking information about all the 

features makes the identification of a target. Then a fusion of information related to the same 

feature but derived from different sources can be perfonned. 

m, = {(F1,)0R(F21 ) .. .. .. .0R(F,," )} 

The membership function of all contributions mj( 1 ~ j ~ M) can then be fused together to obtain the 

final degree of membership. 

m= AND{m , : j = 1, ........ , M} 

Consider the task of identifying targets from a number of radar return signals recorded at the 

Plymouth Harbour, each consists of 50 samples. It is necessary to write a set of fuzzy rules based 

on the features of the input signals. To recognise the presence of the target, the features of mean 

pulse width (w) and mean amplitude (v) from each signal are extracted using the method as 

discussed in the previous chapter. The output is the membership function which shows the 

possibility of the signal being a target. Table 4.1 shows the membership matrix table for the 

membership functions. 

Table 4.1. Membership Matrix Table 

Linguistic sets Quantized levels 

w (microseconds) 0.5 1 1.5 2 2.5 3 3.5 4 
v (volts) 0.5 1 1.5 2 2.5 3 3.5 4 
output 0 1 2 3 4 5 6 7 

Large 0 0 0 0 0 0 0.6 I 
Medium 0 0 0 0 0.6 1 0.6 0 
Small 0 0 0.6 1 0.6 0 0 0 
Zero 0.6 1 0.6 0 0 0 0 0 

70 



Data Fusion Techniques in Radar Signai:Processing 

The quantized levels for v and w are from 0 to 0.4 volts and 0 to 4 microseconds. 

Nine fuzzy rules are formulated for this application. 

I. If v is large and w is large then the possibility of signal being the target is large. 

2. If vis large and w is medium then the possibility of signal being the target is medium. 

3. If v is large and w is small then the possibility of signal being the target is small. 

4. lfv is medium and w is large then the possibility of signal being the target is medium. 

5. lfv is medium and w is medium then the possibility of signal being the target is smalL 

6. lfv is medium and w is small then the possibility of signal being the target is zero. 

7. lfv is small and w is small then the possibility of signal being the target is zero. 

8. lfv is small and w is medium then the possibility of signal being the target is small. 

9. lfv is small and w is large then the possibility of signal being the target is medium. 

Rule I implies the ideal condition where a signal with both large amplitude and large pulse width is 

received. The signal is likely to be the target. Rule 7 shows a condition where signal' amplitude and 

pulse width are both small. There is high possibility that the signal is noise. These nlles are 

developed based on the experience of observing the waveforms from detected targets. Suppose a 

radar signal with a mean amplitude of 0.34 and a mean pulse width of 3.4 is applied to the fuzzy 

network. According to the range specified, only rules I, 2, 4 and 5 will be fired, and the output 

would be contributed by these four rules as follows:-

Q = 0.5 X 7 + 0.75 X 5 + 0.5 X 5 + 0.75 X J = 
4

.
8 

0.5 + 0.75 + 0.5 + 0.75 
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It is important to note that in this specific input, no contribution is given by rules 3, 6 and 7. 

Figures 4. 1 and 4.2 show the graphical representation of rule no. 5 and the output respectively. 

Mean pulse width Mean amplitude 

3.4J..LS 0.34v 

Fig.4. 1 Graphical representation of rule no.5 

3 5 7 

4.8 

Fig. 4.2 Determination of the output from a set of rules 
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Since the maximum quantized level is 7, the nonnalised value of the output is 0.68, which indicates 

that the signal is likely to a target. A similar calculation is done on 6 signals that consist of four 

targets and two noise data. The targets have a relatively low amplitude when compared with the 

two noise signals. This makes the detection using amplitude infom1ation extremely difficult. One 

of the noise data is having a wide pulse width. 1l1e objective is trying to test the integrity of the 

fuzzy algorithms in these extreme conditions and the result is shown in table 4 .2. 

Table 4.2 Testing Sets for Fuzzy Network 

Features of input signals Desired Output Normalized Output 
Mean Amplitude Mean Pulse Width 

0.40 3.2 target 0.76 

0.28 4.0 target 0.71 

0.34 3.4 target 0.68 

0.37 4.0 target 0.64 

0.38 1.8 nOISe 0.37 

0.28 3.4 nOISe 0.55 

It can be seen from the table that the targets have a high membership funct ion at the output. By 

applying a co1Tesponding threshold to such membership value the targets can be extracted from 

these radar signals. 

4.3 Data Fusion in Neural Networks 

Data fu ion combines information from several sources, typically sensors, towards a 

representational estimate. For example, the different information extracted from a single sensor 
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can be combined to give a more reliable output. The fusion of various information can reduce 

overall uncertainty and thus increase the accuracy with which the features are perceived by the 

system. The information provided by different sources can also serve to increase reliability in 

the case of error or failure of one information source. The complementary information from 

multiple sources allows.different features in the system to be perceived ~Luo and Kay, 1989). 

An artificial neural network can be defined by a set ofprocessing elements called neurons, a 

specific topology of weighted interconnections between these elements, and a learning law 

which updates the connection weights. Neurons provide non-linear input/output transfer 

functions. Data fusion techniques that adopt neural networks have·a number of advantages. The 

first is adaptive fusion inference in which neural networks can infer the relationship between 

the desired fusion output and the multi-source input. The second is generalisation from an 

incomplete set of information. This is useful when the information from an individual source is 

noisy or distorted. The third is non-linear filtering of noise. Neural networks are nonlinear so 

they can perform more complex functions than linear filters. The fourth is parallel computing, 

since the neurons in neural network function in parallel and they can process information from 

multiple sources simultaneously. 

4.3.1 Neural Nctworl• ThcOIJ' 

A neural network is an information processing system that operates in an intensely parallel 

mode. It consists of highly interconnected neurodes that are connected by a large number of 

weighted links, over which signal passes. A neurode receives input stimuli along its input 

connections and translates those stimuli into an output response, which is transmitted along the 
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neurode's output connection (Caudill, 1992). The output signal transmits over the neurode's 

outgoing connection and splits into a very large number of smaller connections, each of which 

terminates at a different destination. Most of these outgoing branches terminate at the incoming 

connection of some other neurode in the network, others may terminate outside the network 

and generate control or response patterns. The mathematical expression that describes the 

translation of the input pattern of signals at specific time frame to the output response signal 

consists of a three-step process. First, the neurode computes the net weighted input that it 

receives along its input connections. lt computes the value of Ij as shown below: 

" 
I,= I li'.;X, 

J=l 

In this expression, I; is the net weighted input received .by neurode i from a total of n neurodes 

in the network. The incoming signal from the jth neurode is designated by Xj, and the weight on 

the connection directed from neurode j to neurocle i is designated by wu (Caudill, 1992). Once 

the input signal patlern I is computed, all information about the amplitude of the input signal 

will be lost. Depending on the values of the weights, a strong input signal arriving over a 

weakly weighted connection may have less effect than a weaker signal arriving over a strongly 

weighted connection. A negative weight will reduce the overall stimulation of the receiving 

ncurode. 

The translation represented by the neurode's transfer function consists of converting the input 

signal pattern to an activation level for the neurode. The activation level of the neurode is 

equivalent to the level of excitement of a biological neuron. In most cases, the activation 
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function is a sigmoid function, i.e. the activation is expressed by an S-shape curve. The 

commonly used sigmoid function is: 

.f(l) = I I _, 
+e 

With a derivative of: 

d~/~1) = .f(/)(1- f(l)) 

The exact form of the sigmoid function is not particularly important, however, the function 

should be monotonically increasing and bounded with both lower and upper limits, In the case 

of t{l), the minimum value of f(l) as I approaches negative infinity is 0, and the maximum 

value off(l) as I approaches positive infinity is I. 

The final step accomplished by the transfer function is to convert the neurode's activation level 

to an output signal. Most commonly. this is achieved by setting the output signal to the 

foiiO\ving expression: 

/(/), if[f(i) > T] } 
)', = { 0. otherwise 

T is a threshold value. The neurode's output is its activation level as long as that activation 

value exceeds a given threshold. 

When a neural network is presented with a signal pattern, each neurode in the input layer of the 

network receives a small piece of the pattern. Each of the middle-layer neurodes thus receives 
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the entire input pattern, but the pattern is moditied by its passage through the weighted 

connections leading to the middle layer. Since the weights on the connections are typically 

different for each middle-layer neurode, each of these neurodes sees a somewhat different 

version of the input pattern than its neighbours do, i.e. it sees a projection. This results in a 

variety of output reponses from the middle-layer neurodes, ranging from no output at all to 

one, possibly with an extremely strong output. Figure 4.3a illustrates the physical connections 

of a typical neural network. 

Learning of the neural network is achieved not by modifying the neurodes in the network but 

by modifying the weights on the interconnections in the network. The output of each neurode 

is determined by a function of the incoming signals and the weights on the input connections to 

the neurode. Learning consists of making systematic changes to the weights in order to 

improve the network's response performance to acceptable levels. The network is provided 

with an input stimulus pattern along with the corresponding desired output pattern. The 

common learning law typically computes an error, i.e. how far from the desired output the 

network's actual output really is, This error is then used to modify the weights on the 

interconnections between the neurodes (Demuth and Beale. 1993 ). 

4.3.2 Neural Networks for Data Fusion of Radar Signal 

Neural network consists of parallel distributed processing elements that are interconnected by 

links. By defining the associated weights for each of the interconnections, it is possible to 

process data in a very rapid manner. This technique provides the potential to process radar 

information in real time. The difficulty of choosing an appropriate neural network architecture 
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Fig. 4.3a A typical neural network architecture 

Output Response 

Output layer 

Middle layer 

Input layer 

Input signals 
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for data fusion of radar signal processing is one of matching the problem domain with the 

network features. This includes the problem size (i.e. number of input features and processing 

elements, number of outputs), the form of data (continuous, time-varying, uncertain), and 

incomplete knowledge about the system parameters. 

The simplest format which can be applied to information fusion is a single layer network 

(ligure 4.3b) whose weights and biases could be trained to produce a correct target vector when 

presented with the corresponding input vector. The perceptron has a hard limit transfer 

function (Caudill, 1992). Each external input is weighted with an appropriate W, and the sum 

of the weighted inputs is sent to the hard limit transfer function, which also has a bias input. 

The transfer function classifies the input vectors by dividing the input space into two regions. 

Output vectors will be either 0 or I. The learning rule is applied to each neuron in order to 

calculate the new row of the weight matrix and a new neuron bias. The learning rule will 

converge to a solution in linite time if a solution exists. Vectors from a training set are 

presented to the network one after the other. I r the network's output is correct no change is 

made. Otherwise the weights and biases are updated using the learning rule. When an entire 

pass of the training set has occurred without error, training is complete. At this time any input 

training vector may be presented to the network and it will respond with the correct output 

target vector. If a vector is not in the training set and is presented to the network, the network 

will tend to exhibit generalisation by responding with an output similar to target vectors for 

input vectors close to the previously unseen input vector. 
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The network first presents the matrix of input vectors and calculates the network's matrix of 

output vectors. Then it will check to sec if each output vector is equal to the target vector 

associated with each input vector. The training process will stop if all input vectors have 

generated the correct output vectors for a specific set of weights and biases, or after a 

maximum number of epochs. lfnot, it will adjust the weights and biases and then return to the 

presentation phase. The mathematical model can be expressed as: 

Wncw = Wold +~yx 

where ~ = 0 if the perceptron's answer is correct 

~=-I if the perceptron's answer is wrong 

y = the perceptron' s answer 

Consider a simple information fusion problem of 24 radar signals that are recorded by the 

author using the radar at the University of Plymouth. The objective is to classify these signals 

into targets and noise. To achieve this, both the amplitude mean and maximum pulse width 

have already been extracted from the radar signals and these are served as input vectors to the 

network. In the training process, a I is assigned to targets and 0 to noise. The input vectors for 

the problem arc plotted in fig. 4.4. The targets are marked with an ;o' and the noise is marked 

with a ;+'. A network with two inputs, i.e; amplitude and pulse width, and one neuron is 

trained to distinguish between targets and noise. The initial conditions for the weights and bias 

arc generated from a random numbers. The result of the training is shown in fig. 4.4 where the 

network adjusts its weights and bias to classify the input space into targets and noise. A 

boundary line separates the two regions. The final values of weights and bias were obtained 

after training for 1700 epochs ( W = [219.5580 7.5843]; B=[-51.0778]). 
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Fig. 4.3b A perceptron with two inputs 
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Perceptrons are only good for solving real world problems when data is linearly separable. 

However, it is seldom the case. The development of the back propagation training algorithm in 

the 1970s and early 1980s demonstrated that training procedure was possible for a network of 

three or more layers. A backpropagation network operates in a two-step sequence during 

training. First, an input pattern is presented to the network's input layer. The resulting activity 

flows through the network from layer to layer until the network's response is generated at the 

output layer. Then, the network's output is compared to the desired output for that particular 

input pattern. If it is not correct, an error is generated, which is propagated backward through 

the network to the input layer. The weights on the interlayer connections are modified as the 

error passes backward based on the learning rules. Changes in each weight and bias are 

proportional to the pattern of the network's sum squared error. When the network is well 

trained, a new input will lead to an output similar to the correct output for input vectors used in 

the training. Such characteristic facilitates the training of a network on a representative set of 

input/target pairs as well as obtaining good results for new inputs, without training the network 

on all possible input/output pairs (Fincher, 1990). 

Backpropagation networks often use the sigmoid transfer function, which generates outputs 

between 0 and I as the neuron's net input goes from negative to positive infinity. The use of 

the bias tends to increase the chances that the network can find an acceptable solution and also 

tends to decrease the number of training epochs required. It is quite usual that the 

backpropagation networks have one or more hidden layers of sigmoid neurons followed by an 

output layer of linear neurons. Multiple layers of neurons with nonlincar transfer functions 

allow the network to learn nonlinear and linear relationships between input and output vectors. 
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Derivatives of error are calculated for the network's output layer and then backpropagated 

through the network until the errors are available for each hidden layer. The change to be made 

in a layer's weights and bias are calculated using the layer's error vectors and the layer's input 

vector according to the backpropagation rule. Before starting the training process, all the 

weights and bias must be initialised to small random numbers to ensures that the network is not 

saturated by large values. Training the backpropagation network requires the selection of the 

training parameter and application of input vector to the network input. Then both the output of 

the network and the error are calculated. The weights of the network are adjusted to minimise 

the error. The generalised rule specifies the change in a given connection weight as: 

W; = p E f(l) 

E is the error for this neurode, P is the learning constant (between zero and one). and !tl) is the 

input to the neurode. The process is then repeated until the error or the convergence of the 

entire network is to an acceptable level as specified. 

Consider the same fusion problem in which a group of 6 radar signals ( 4 targets and 2 noise 

signals) are input to the network for target detection. The backpropagation network is designed 

and trained to discriminate the target from clutters. The network consists of one input layer 

with 2 elements, one hidden layer with 2 neurons and one output layer as shown in figure 4.5. 

Both the mean amplitude and mean pulse width are extracted from these 6 radar signals and 

used in training the network. It will then be required to identify the target by responding a !­

clement output vector. The network should output a I if there is target presented in the signal 
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and output a 0 otherwise. The maximum error of O,OS is used as the limit for the training. The 

network completes the training after 1220 iterations. Once the network is trained, a testing set 

is used to evaluate the performance of the network. The set consists of mean amplitudes and 

mean periods extracted from 6 radar signals ( 4 targets and 2 noise signals) which are not used 

in the training. Table 4.3 and table 4.4 show the training data and the testing result 

respectively. From the table, it can be observed that the normalised outputs of the network are 

0.9702 to 0.9788 for target, and 0.0154 to 0.0378 for noise signals respectively. As such, a 

significant discrimination is achieved and the network is able to detect the targets from the 

radar returns effectively in this example. 
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Fig. 4.5 A three layer backpropagation network 
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Table 4.3 Training Sets for the Neural Network 

Features of input signals Desired Output 
Mean Amplitude Mean Pulse Width 

0.40 3.2 target 

0.28 4.0 target 

0.34 3.4 target 

0.37 4.0 target 

0.38 1.8 nmse 

0.28 2.4 noise 

Table 4.4 Testing Sets for the Neural Network 

Features of input signals Desired Output Normalized Output 
Mean Amplitude Mean Pulse Width 

0.34 3.4 target 0.9767 

0.33 3.0 target 0.9702 

0.24 3.0 target 0.9755 

0.28 4.0 target 0.9788 

0.4 1.7 noise 0.0378 

0.29 2.0 nOISe 0.01 54 
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4.4 Conclusion 

Data fusion techniques in radar signal processing using both fuzzy logic and a neural network 

have been discussed in this chapter. The performance of these methods is verified by applying 

signals from live radar videos to the network and observing the results. Fuzzy and neural 

systems do not require mathematical models to estimate functions from sample data. Neural 

network theory includes the mathematical fields of dynamical systems, adaptive control as well 

as statistics. Fuzzy theory adds probability, logic and knowledge base into these fields. 

The architectures of neural networks are parallel and consist of many simple nonlinear 

summing junctions connected together by weights of varying strength. it has been shown in 

this chapter that even a simple network can perform interesting and useful computations in data 

fusion of radar signals for target detection. Perceptrons can classify linearly separable input 

vectors very well. However, the output values of a perceptron can take on only one of two 

values due to the hard limit transfer function. If the vectors are not linearly separable, learning 

will never reach a point where all vectors are classified properly. Backpropagation is slow 

because of small learning rates and there are a large number of variables in multi-layered 

networks. Yet, the multi-layer perceptron can perform linear or nonlinear computations. In the 

example, a three layered backpropagation network can successfully identify the targets from 

clutters as shown in table 4.4. 

Fuzzy systems generally offer the advantage of a clear understanding of the operation as they 

can structure the knowledge in a way that resembles human thinking. The objective of the 

example is to recognise the presence of targets in radar signal. The pattern is composed of two 
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features (mean amplitude and mean pulse width for each radar signal) whose relative strengths 

are characterized by the corresponding membership function. The strength of each feature in 

the signals is obtained to calculate the overall degree of membership of the available 

information to the defined class of target. From these numerical values, the presence of the 

pattern of targets is more clearly defined. 

There are significant differences, as well as similarities, between neural networks and fuzzy 

systems. Neural networks learn from the training data to recognise future patterns or fuse 

future data to arrive at decisions based on knowledge or solve future computational problems. 

Fuzzy systems start from highly formalised insights about the behaviour of the systems and 

they learn from the associative rules to estimate functions or formulate control strategies. 

Learning from examples requires the formulation of a knowledge base with a collection of 

input-output pairs. In neural networks, a multilayer network is used as an approximation 

framework and both weights and bias are modified in according to the selected algorithms. As 

for fuzzy systems, fuzzy if-then rules are used to relate the linguistic or fuzzy variable, which 

allows an approximated match between the input and the antecedents of the rules. 

Fuzzy systems are suitable to be applied to areas where we can use people's experience or 

knowledge to develop the fuzzy if-then rules. Since there is no mature guidance in fuzzy set 

theory for the determination of the best shapes for fuzzy sets, different shapes for different set 

points need to be studied to obtain an optimum solution for various input vectors. The amount 

of overlap with the fuzzy sets affects the efficiency of the fuzzy controller. In the case of too 

much overlap, many rules will be applied for a single set of input vectors, and the situation will 
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not be represented accurately. If there is too little overlap, it will be difficult to derive the fuzzy 

decisions. In addition, it is extremely difficult to formulate universal rules for a complex radar 

target detection problem as the complexity changes at different periods. Therefore, neural 

networks are more commonly used in this type of problem where a large amount of sample 

data from simulated/live signals can be obtained and used as training sets for the network. 
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CHAPTER FIVE 

THE RADAR SYSTEM AND DATA ACQUISITION 

5.1 Introduction 

The radar system selected for the implementation is a Racal-Decca 'Series 70' installed at 

the roof of Fitzroy Building (University of Plymouth). The radar is located about 3,7 km 

from the sea front and is 'looking at' the Harbour of Plymouth. It picks up targets of 

ocean going vessels, as well as pleasure crafts. Both sea clutter and rain clutter are 

detected by the radar under adverse weather conditions, The data acquisition system was 

set up to record the raw radar video for analysis purposes. The recorded videos are then 

imported into the computer where processing takes place. This chapter describes the radar 

system and the effect of its characteristics in signal processing, as well as the 

development of the data acquisition system to match the characteristics of the radar 

waveforms. 

5.2 The Radar Equipment 

As stated in the service manual of the radar equipment, it includes an X-band transmitter 

(93 80-9440 MHz) with a nominal power output of I 0 KW. The top unit is fitted with 4 feet 

end-fed slotted waveguide aerial and the rotational speed is 25 rpm. lihe horizontal 

bcamwidth and vertical beamwidth arc 2 degrees and 23 degrees respectively. The sidclobes 

within I 0 degrees of the main beam are better than -23 dB. The aerial gain is.approximately 

28 dB with horizontal polarization. The pulse repetition frequency and pulse widths are 

2400Hz at 0.08 microsecond (short pulse), 1200 Hz at 0.3 microseconds (medium pulse) 
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and 600 Hz at 1.0 microseconds (long pulse). The receiver is equipped with a low noise 

front end with a noise factor of better than 7 dB. The intem1ediate frequency is centred on 

60 MHz with I. F. bandwidths of25 MHz (short pulse) and 4 MHz (medium and long pulse). 

The viewing unit uses a raster scan fom1at with 625 line/60 field per second and 2: I 

interlaced. There are 4 planes of 512 x 512 pixels for the radar picture memory and I plane 

of 768 x 576 pixels for the synthetic data memory [Racal-Decca 'Series 70' service 

manual]. 

5.3 Parameters Affecting the Radar Signal and Maximum Range 

The radar transmits a train of narrow pulses modulating a high frequency sine wave carrier 

and detects the nature of the reflected signal when hitting an object. The parameters which 

affect the reflected signal and the maximum range is discussed as follows:-

5.3.1 Beam Width 

The vetiical beam width indicates the height of the beam effect within the vertical plane. 

This parameter determines the minimum range which the target is 'seen' by the radar. The 

horizontal beam width is measured in degrees and indicates the width of the radar beam in 

the horizontal direction. In this case, the horizontal beam width is 2 degrees measured at the 

half power point. This is not a particularly fine beam as beam width can go down to 0.5 

degree for some sophisticated radar equipment. The horizontal beam width of the radar 

signal transmitted from the antenna has a decisive meaning in the bearing accuracy. 

Incorrect information will be indicated in cases where the distance between the two objects 

is smaller than the width of the beam at that range. The targets would be seen by the radar as 
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one uruque target instead of two objects and the radar is said to have a low bearing 

discrimination. The zero degree in bearing is represented by the heading marker which is 

nom1ally aligned with the ship's head. A reed relay is used to provide a closure signal to the 

control unit whenever the antenna passes this point. Figure 5.1 shows the heading marker 

signal for 4 complete revolutions of the antenna. 

Fig . 5.1 Heading Markers for 4 Revolutions 
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5.3.2. Pulse Repetition Frequency 

The pulse repetition frequency (PRF) is the number of pulses transmitted from the radar per 

second and it will limit the ma'<imum detectable range. Figures 5.2 and 5.3 show the PRF 

for short pulse and long pulse. In the sh011 pulse, the PRF is 2400 Hz ( 416:67 microsecond) 

which conesponds to a range of 62.5 km. For the long pulse, the PRF is 600 Hz ( 1667 

microsecond) which cones ponds to a range of 250 km. The pulse width will affect the range 

resolution of the radar. It is the time that the magnetron is active. In the radar used within 

this work, the pulse width for shot1 pulse is 0.08 microsecond, which conesponds to a 

distance of 12 meters, and the pulse width for long pulse is I microsecond which 

conesponds to a distance of 150 meters. The pulse width affects the radar range; longer 

pulse width tends to achieve a greater range due to the average power being higher. 

However. it will have less range resolution, that is, it is unable to discriminate targets which 

are less than 150 meters apart. For the s<m1e reason, the shot1er pulse width can achieve 

better range resolution. Thus, shot1 pulse is usually used for close ranges and long pulse for 

larger distance. Digitized radar video returns for both short pulse and long pulse are shown 

in figures 5.4 and 5.5. 

5.3.3 Transmission Power 

During transmission, the peak power of the radar is I 0 KW and the transmitter is idle after 

this pulse period. The average power or the radar pulse in walls is given by: 

(Peak power (in KW) x Pulse Repetition Frequency x Pulse Width)/ I 000 
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The average power is 1.92 watts for short pulse and 6 watts for long pulse. Apart from the 

transmitted power, there are a number of factors which will affect the maximum radar 

Fig. 5.2 . Pulse Repetition Frequency fo r S ho rt P ulse 
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F ig . 5 .4 Six Sweep s of R adar Vi d eo for S ho rt P ulse 
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detection range. If the power of an omni-directional radar transmitter is denoted by P, the 

power density at a distance R from the radar is equal to the transmitter power divided by the 

spherical surface area of an imaginary sphere of radius R, i.e. P/4rrR2
• The gain G of an 

antenna is a measure of the increased power radiated in the direction of the target as 

compared with the power that would have been radiated from an isotropic source. The 

power density at the target from an antenna with a transmitting gain G would then be, 

PG/4rrR2 
. The target intercepts a portion of the radiated power and re-radiates it in the 

direction or the radar and the re-radiated power is PGcr/4rrR 2 where cr is the radar cross 

sectional area of the target. The power density of the echo at the radar receiving antenna is 

then, PGcr/(4rrR2l The radar antenna captures a potiion of the echo power. If the effective 

capture area of the receiving antenna is A. the echo power received at the radar is, 

PGAcr/(4rrR2i. Antenna theory gives the ralationship between antenna gain and effective 

area as, G = 4nA/),2. If the minimum signal that can be detected by a radar is: 

PG 2 ,fu 2 

Smin = (4;r)J(R'"" )~ 

then the maximum range for detection is 

The above equation shows that if longer ranges are desired, the transmitted power must be 

increased. This can be achieved by concentrating the radiated energy into a narrow beam 

(high transmilling antenna gain), the received echo energy must be collected with a large 

antenna apeiiure, and the receiver must be sensitive to weak signal (small Smin value). 
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However, the minimum detectable signal and the target cross section area are both statistical 

in nature and should therefore be expressed in statistical tem1s. Other statistical factors are 

the meteorological conditions (rain, fog, sea clutter) along the propagation path. The 

statistical nature of these several parameters does not allow the maximum radar range to be 

described by a single number and a statement of probability that the radar will detect certain 

type of target at a particular range must be specified. 

5.3.4 Receiver Noise 

Noise may originate within the receiver itself, or it may enter via the receiving antenna along 

with the desired signal. If the radar is operating in a perfectly noise-free environment so that 

no external sources of noise accompanies the desired signal, and if the receiver itself were so 

perfect that it did not generate any excess noise, then there would still exist an unavoidable 

component of noise generated by the thennal motion of the electrons in the receiver input 

stages. The available thennal-noise power generated by a receiver of bandwidth Bn at a 

temperature T (degrees Kelvin) is equal to, KTB 11 , where K=Boltzmann's constant= 1.38 x 

I o-D joule/degree. Kingsley and Quegan ( 1992) and Barton ( 1988) state that the total noise 

at the output of the receiver is equal to the thermal noise power obtained from an receiver 

multiplied by a factor called the noise figure. The noise figure F of a receiver is given by: 

F = ___ N_,.,_, -­

K * 1;, * B, * G" 

noise out of practical receiver 

noise out of ideal receiver std temp T,, 
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where No is the noise generated from receiver and G. is the available gain. Bn is the 

bandwidth of the IF amplifier in the receiver. The available gain Ga is the ratio of the output 

signal to the input signal of the receiver and Kt0 B, is the input noise level N; in an ideal 

receiver. Since the minimum detectable signal Smin is the value of S; corresponding to the 

minimum signal to noise ratio (SJNo)min necessary for detection, and 

Then F becomes: 

F = S, IN, 
S, IN, 

Practical systems are designed such that the radar pulse width t is approximately equal to 

the reciprocal of the receiver bandwidth B,. By considering the total loss L, which 

include the loss occurred throughout the system, the radar equation becomes: 

This shows that the maximum detectable range of a radar depends on the peak power, the 

antenna gain, the wavelength, the target cross sectional area, the pulse width, the thermal 

noise power, the noise figure, the total loss and the minimum signal to noise ratio 

(Hovanessian, 1972). 

SA Data Acquisition System 

To develop a suitable algorithm for the detection of target return signals that exist within 

the noise. it is necessary that these signals can be imported into the computer for analysis. 
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This requires a data acquisition system which can record the radar video with minimum 

distortion, as well as identify the bearing of each sweep so the both sweep to sweep and 

scan to scan correlation can be performed. To cope with the wide band width of the 

signals, a system with fast analogue to digital conversion rate is needed. 

5.4.1 Sampling Rate 

This parameter specifies how frequently conversions take place. A faster sampling rate 

can acquire more points in a given time, thus providing a better representation of the 

original signal. If the signal is changing faster than the sampling rate, errors will be 

introduced into the measured data. When the data sampling rate is too slow, the signal 

may appear to be at a completely different frequency due to aliasing. According to 

Nyquist theorem, the sample frequency must be at least twice the rate of the maximum 

frequency components. The frequency at one-half the sampling frequency is referred to 

as the Nyquist frequency. Theoretically, it is possible to recover information about 

signals with frequencies at or below the Nyquist frequency (Kuc, 1982). To sample the 

radar signals when operating in shm1 pulse (which has a bandwidth of 12.5 MHz). a 

sampling frequency of 25 MHz is needed. Video cassette recorders have been used to 

record the raw radar videos. However, due to the limited bandwidth available (only 

around 3 l'v!Hz), the video signal has to be compressed before being recorded. As such, a 

lot of detailed information will be lost in the compression. 
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5.4.2 Resolution and Range 

Resolution is the number of bits that the analogue to digital converter uses to represent 

the analog signal. The higher the resolution, the higher the number of divisions the 

voltage range is broken into, and therefore the smaller the detectable voltage change. For 

example, if a 3 bit converter is used, it will divide the analog range into 23
, or 8 divisions. 

Each division is represented by a binary code between 000 and Ill. It is obvious that the 

digital representation is not a good representation of the original analog signal because 

information has been lost in the conversion. If the number of bits is increased to 16 bits, 

the codes for the converter will be increased from 8 to 65,536 which can represent the 

analogue signal very accurately. However, this will also require a larger space in the 

random access memory of a digital system for storage. Taking the sampling rate as 

25MHz, i.e. the interval is 0.04 microsecond per sample, then in short pulse, the period 

for I sweep is 1/PRF, i.e. 417 microsecond. As such, there arc 417/0.04=10,417 samples 

in one sweep and this would require I 0,417x 16=166,666 bits. The antenna rotates at 25 

rpm, i.e. 2.4 seconds in one revolution. There are 5759 sweeps in one revolution and this 

would require 960 M bits orl20 M Bytes of storage media. As such, the radar recording 

system needs a large memory size as well as a fast data transfer rate to digitize the 

waveform data into the computer for analysis. 

5.5 Conclusion 

The radar equipment that is available for use in this research is a general purpose marine 

radar used in small commercial vessels. Selective sampling allows various weather 

conditions including Plymouth rain clutters and sea clutters to be observed and recorded. 
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The reflections from extraneous targets, such as those from nearbybuildings, are detected 

by the radar in addition to those from vessels. It is the returns from vessels however, that 

form the database for the analysis and implementing the feature extraction techniques. It 

has been shown that the system requires a very special data logging system for recording 

the waveforms, i.e. a high sampling rate and a large storage media. Also, the 

instrumentation must be able to identify the bearing of each sweep so that analysis on 

sweep to sweep and scan to scan correlation can be performed. One method is to divide 

one revolution of the radar antenna into 4096 steps and encode each sweep with a sync 

word at the zero range. A market survey has been undertaken by the author done and no 

data acquisition system, which is suitable for this application, is available from 

manufacturers. One company, Transas, has been developing a similar system using signal 

processing chips from Texas Instrument. The equipment is still under development and 

much of the processing will be undertaken by dedicated hardware. To overcome this 

problem, a Tektronix TDS41 0 digitize oscilloscope is used as a data recording system. 

The scope has a bandwidth of 1 OOMI-lz and is able to provide the sampling rate as 

required by the radar signal. The internal memory in the scope is limited so only a few 

sweeps can be recorded in one time. The number of sweeps will depend on the sampling 

rate used. The recorded waveform is then input to a IBM PC via a GPIB interface. 

Software from Tektronix, called the 'Wavestar' is used to acquire the data for fmiher 

analysis. The details of the complete system arc discussed in the next section. 
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CHAPTER SIX 

THE INTEGRATED RADAR DETECTION SYSTEM 

6.1 Introduction 

The radar system described in Chapter Five provides the raw radar videos from the environment 

in the vicinity of the antenna. A data acquisition system is then implemented to record the video 

signal for analysis purposes. In order to identity the targets and clutters, the recording is done at 

a specific bearing only. This is to ensure that the data can be compared with the visual scene and 

the observation on the radar display. Windows of signals containing targets and clutter would be 

extracted for feature identification. The features include amplitude mean and deviation, period 

mean and deviation, as well as the maximum pulse width. The criteria for selecting these 

features are also discussed in this chapter. Results presented in tables 4.3 and 4.4 indicated that 

neural networks may be suitable for target detection and this work is now expanded. The 

training procedure and the detection algorithms are discussed in detail in this chapter. 

6.2 System Hardware 

To record the waveforms of radar signals, the raw video, trigger signal and the heading marker 

from the radar transceiver are input to the Tektronix TDS41 0 digitised oscilloscope, which has a 

maximum sampling rate of I 00 MHz. The recording length is 50 points per division with a 

maximum of 15000 points, For exan1ple, at the 2 microsecond per division range the time 

interval for each sample will be 0.04 microsecond. Therefore, the total recorded length is 0.04 x 

15000 = 600 microseconds. This corresponds to around 1.3 sweeps of raw video in short pulse, 

0.3 sweep in long pulse. To increase the number of recorded sweeps in 15000 points, the 

sampling rate must be reduced. For example, at the 20 microsecond per division range, the time 

interval for each sample will be 0.4 microseconds. Therefore, the total recorded length will be 
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0.4 x 15000 = 6000 microseconds. This con·esponds to around 13 sweeps of raw video in short 

pulse, 3 sweeps in long pulse. The data is transferred from the oscilloscope to the IBM personal 

computer via a GPIB bus. The configmation is shown in fig. 6. 1. 

Fig. 6. 1 Block Diagram ofthe Experimental Set Up 
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To compare the recorded radar signal with the actual targets and environment, it is necessary to 

identi fy the bearing of each recorded sweep. One way is to use the electronic bearing marker as 

a trigger signal for the acquisition process of the oscilloscope. As such, the acquired waveform 

conesponds to the video shown on the display unit as marked by the electronic bearing marker. 

However, it was observed that the output signal from the electronic bearing marker was 

embedded in the electronic circuitry of the display unit. A considerable amount of effort would 

be required to trace the circuit diagram and build interface ci rcuit to extract the signal. Jt was 

decided that the heading marker signal , instead of the electronic bearing marker, would be used 

as the trigger signal. The heading marker signal can easily be taken from the transceiver output. 

lt was observed however that the heading marker is pointing south and there is a large radar 

shadow in that direction due to the nearby buildings. No targets can be seen in that sector to 

around 4 degrees either side of it. To enable the bearing of the marker signal to be adjusted, the 
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author designed and added a time delay circuit at the output of the transceiver. The objective is 

to introduce a variable time delay to the arrival of the heading marker signal. Since the antenna 

rotates at 2S rpm, one revolution will take 2.4 seconds. An RC time delay circuit with a resistor 

of I k ohm and a capacitor of I 000 micro farad is used. This contributes a delay of I second and it 

corresponds to a bearing of 360 x I /2.4 = ISO degrees. By adjusting the I OOk ohm resistor, a 

delay of 0 to ISO degrees on the heading marker can be achieved. The arrangement is shown in 

fig. 6.2. Adjustment of the resistor allows digitisation of targets that can be seen visually and 

observed on the radar display. 

6.3 Selection of Features to be Extracted from Radar Signals 

In Chapter 3, the characteristics of radar signal have been discussed and features can be 

extracted from the signals for detection purpose. However, it is impossible to extract all these 

features for detection due to the computational time involved in the process. As such, it is 

necessary to identify the features that are just sufficient for discriminating targets from clutters 

with the minimum computational time required. Discrete fourier transfonn (OFT) or fast 

Fourier transform ~FFT) technique is commonly used to assess the relative contributions of the 

frequency components in a radar wavefom1 and convert them into the frequency domain. The 

waveform can then be characterised according to the relative amplitude of the components. 

While this method is effective and accurate, it is also computationally intense. Consider a 

wavefom1 that consists of a fixed frequency component and a variable frequency component. 

The objective is to identify when one of the possible combinations of frequencies occurs in a 

particular sample. The mathematical representation is as follows: 

A(t,n) = A1 sin[(2m!,,)+~,]+ A1 sin[(2mf,,) +~,] 

where A 1 =peak amplitude of the fixed-frequency component, 
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A2 =peak amplitude of the variable-frequency component 

fo =frequency of the fixed, frequency component 

fn =frequency of the variable frequency component 

~ 1 =initial phase of the fixed frequency component 

~2 =initial phase of the variable frequency component 

t = elapsed time 

The Fourier Transfom1 can be used to identify the frequency components of the samples. 

Despite the fact that both Discrete Fourier Transfom1 and Fast Fourier Transform can solve the 

problem, the FFT takes advantage of powers of 2 relationships to achieve a transform with 

reduced computational complexity, compared to OFT. In either case, the number of basic 

mathematical computational operations (add, subtract, multiply and divide) is a direct function 

of the number of samples. 1-lirsch (1991). stated this relationship as: 

N, = N,1 (for the DFT) N, = 5N, log(N,) (for the FFT) 

where No is the number of operations required and N, is the number of samples. 

In view of the computational complexity of Fourier Transfonn, it is necessary to find an 

alternative means to characterise the frequency domain similarities and differences of 

waveforms without actually performing the transform. The process must use simple 

computational methods to extract the fi·equency domain significance of the waveform without 

actually transfonning the signals into the frequency domain. The statistical signal 

characterisation method characterises the radar wavefmm not only as a function of the frequency 

components but also as a function of the relative phases of its frequency components. The 

characterisation method is used to associate waveforms to,different types in a high signal density 

and real time environment. "J:he characteristics of radar wavefon11S can be manipulated with 
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simple statistical mathematics to produce a set of numerical parameters for a given waveform. It 

involves the division of a waveform into segments which are bounded by the extremes of the 

waveform, As shown in chapter 3, the absolute differences in amplitude between these extremes 

are then accumulated and their mean and mean deviation are calculated. Similarly, the mean and 

mean deviation of the times between the extremes are also calculated. The five \vaveform 

parameters, amplitude mean, amplitude deviation, period mean and period deviation are the 

primary measures which are used for characterisation purpose. In order to extract the special 

features of individual targets, the maximum period between extremes is also evaluated. The 

parameters on periods are numerically very close to the reciprocal of the frequencies of the 

components presented in the wavefonn. Therefore, the characterisation technique can determine 

the frequency indirectly, which is significantly simpler than a Fourier Transfom1. 

Computationally, this technique offers a considerable reduction in the number of operations as 

compared to the more classical methods such as Fourier Transfom1 and Correlation. It simply 

sums consecutive time segments and is divided by the number of segments. Hirsch ( 1992) 

worked out the number of operations required as follows: 

N, subtractions+ N, additions+ I division to calculate the amplitude mean 

+ I subtraction + I division to calculate the period mean 

+ N, subtractions+ N, additions+ I division to calculate the amplitude mean deviation 

+ N, subtractions + N, additions + I division to calculate the period mean deviation 

which gives a total of approximately 6 N, +5 operations. When continuous sampling is required, 

another N, operations would be needed to accomplish the detection of maximum and minimum. 

The technique requires fewer computational operations in comparison to Fourier Transfom1 or 

correlation (both auto correlation, and cross correlation). 
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Fig. 6.2 The Time Delay Circuit for the Heading Marker 
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6.4 Methods of Extracting Statistical Signal Characteristics 

The statistical signal characteristics are extracted from the radar signal at each time slot. A 

moving window of a fixed numbe~ of range cells is shifted through the entire sweep. As such, 

the size of the moving window has to be determined. If the window size is made too large, then 

the extracted characteristics will be comprised of a large number of samples and the accuracy of 

the detection algorithms will be reduced. However, too small a window will involve extra 

computational time as well as not truly representing the situation due to the limited amoui1t of 

samples available. The window size used for the initial testing is SO samples. Taking the 

sampling rate of 2SM samples per second, the window corresponds to a time slot of 2 

microsecond and a distance of 300 meters. The slot approximates the size of nominal targets. 

Figure 6.3 shows the wavefonn of a target that is contained in a window of SO samples. The 

maximum extreme is declared when the magnitudes of the previous and subsequent samples are 

both less than the present sample, i.e. A(n-1) < A(n) > A(n+ I) , where A is the amplitude and n 

is the sample number. Consideration is also given to conditions where the amplitude maximum 

extreme may be constant for a number of samples. Similarly, the minimum extreme is 

detem1ined when, A(n-1 )>A(n)<A(n+ I) 

From the figure, it can be observed that the maximum extremes occur at S points. These are 0.08 

volt at 0.2 microsecond, 0.2 volt at 0.32 microsecond, 0.12 volt at O.S6 microsecond, 1.24 volt at 

I microsecond and 0.28 volt at 0.18 microsecond. Similarly, the minimum extremes occur at 4 

points. These are 0.04 volt at 0.24 microsecond, -0.04 at 0.48 microsecond, 0.04 at 0.64 

microseconds and 0.12 at 1.64 microsecond. The statistical characteristics are then calculated 

out as follows: 
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Amplitude Mean = (0.08 + 0.2 +0.12 + 1.24 +0.28)/5 = 0.384 volts 

Amplitude Deviation = (10.08-0.3841 + 10.2-0.3841 + 10.12-0.3841 + 11.24-0.3841 + 10.28-

0.3841)/5 = 0.3424 volts 

Period Mean 

Period Deviation 

Maximum Period 

= (0.6 + 0.4 + I )/3 = 0.667 microseconds 

= (10.667-0.61 + 10.667-0.41 + 10.667-11)/3 = 0.222 microseconds 

= I microsecond 

Similarly, the statistical characteristics of eight sets of waveforms for targets (figures 6.4a to 

6.4h) and eight sets of wavefonn for noise (figures 6.Sa to 6.5h) are shown in tables 6.1 and 6.2 

respectively. The targets are returns from vessels in the vicinity of the radar and the noise 

consists of both rain and sea clutters. The figures on the table show that each set of wavefonn 

parameters is unique to a particular type of radar signals. Although there are similarities spread 

across more than one parameter, the similarities seldom spread across all five parameters. From 

these figures, different types of targets and noise can be extracted. 

6.5 Neural Target Detection 

The neural network's ability to learn, the fast on line processing ability and robustness of the 

system indicates that it is appropriate to be applied in radar target detection. The method chosen 

for the implementation of target detection is supervised learning using the backpropagation 

leaming rules. This panicular methodology is chosen because they are simple to implement and 

allow great flexibility in the structure of the system. The number of network inputs and the 

number of neurons in the output layer are constrained by the information available and 

requirements of the application. The number of neurons in the hidden layer(s) depend on the 

designer. The more neurons, the more likely solution will be found. However, more neurons 
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Fig. 6.4a Waveform of Target A in a 50 Samples Window 
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Fig . 6.4c Waveform of Target C in a 50 Samples Window 
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Fig. 6.4e Waveform of Target E in a 50 Samples Window 
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Fig. 6.4g Waveform of Target G in a 50 Samples Window 
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Fig . 6.411 Waveform of Target H in a 50 Samples Window 
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Fig. 6.5a Waveform of Noise A in a 50 Samples Window 
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Fig . 6.5c Waveform of Noise C in a 50 Samples Window 
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Fig . 6.5e Waveform of Noise E in a 50 Samples Window 
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Fig . 6.5g Waveform of Noise Gin a 50 Samples Window 
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Tnble 6.l. Statistical Characteristics of Targets 

Targets A 8 c D E F G H mean 

Mean Amplitude 0.8743 0.3022 0.3467 0.3314 0.4145 0.2850 0.2800 0.3418 0.3970 

Amp. Deviation 0.6694 0.2607 0.2104 0.3135 0.2003 0.1475 0.1600 0.3881 0.2925 

Period Mean 0.2150 0.1382 0.1911 0.2057 0.1309 0.1956 0.1640 0.1354 0.1720 

Period Deviation 0.1481 0.0939 0.0953 0.1388 0.0655 0:0988 0.1084 0.0847 0.1042 

Maximum Period 0,5600 0.5600 0.3600 0.7200 0.2800 0.4000 0.4400 0.4800 0.4750 

Table 6.2. Statistical Chamcteristics of Noise 

Noise A 8 c D E F G I-I Mean 

Mean Amplitude 0. I 343 0.0360 0. I 167 0.2520 0.3267 0.0360 0.2800 0.0920 0.1592 

Amp. Deviation 0.1333 0.0735 0.0600 0.0706 0.1448 0.0533 0.0600 0.1000 0.0869 

Period Mean 0.1143 0.1400 0.1229 0.1520 0.1233 0.1400 0.1354 0.1600 0.1360 

Period Deviation 0.0539 0.0783 0.0459 0.1016 0:0542 0.0783 0.0577 0.0800 0.0687 

Maximum Period 0.2800 0.3600 0.3200 0.4400 0.2800 0.3600 0.3200 0.3600 0.3400 

118 



The lnlcgralcd Radar Deleclion Syslem 

means longer training times with larger weight matrices and bias vectors in the solution. 

Initially, the test network consists of one input layer with 5 elements, one middle layer with two 

neurons and one output layer. The five inputs are the amplitude mean, amplitude deviation, 

period mean, period deviation and maximum period. These parameters for targets and clutter are 

extracted from different radar returns for training purpose. In the initial training process, targets 

are labelled as I while clutter and noises are labelled as 0. 

To train a network, the five inputs are presented to the input layer of the network and the error 

vectors are calculated. The maximum acceptable en·or is set within 5 percent of the desire value, 

i.e. 0.05. If the sum squared en-or for all the training vectors is less than the error goal then 

training stops and the corresponding vectors wi 11 be presented to the output layer. If the etTor 

goal is not reached then the error vectors are calculated and back-propagated through the 

network. Finally the weights are updated using the backcpropagation learning mle, i.e. 

t-,W(i,j) = [JE(i)J(j) & 68(i) = fJE(i) 

where 6 W is the weight change, I is the input vector E is the error vector and P is the learning 

rate. 

The learning rate specifics the size of changes that are made in the weights and biases at each 

training sequence. Small learning rates result in long training times but guarantee that the 

leaming process will not jump over valleys in the error surface. If a set of vectors from a radar 

waveform, which is not in the set of input training vectors, is presented to a well trained 

network. the network will try to exhibit generalisation in identifying whether the input vectors 

belong to a target or clutter. To prevent the network from getting stuck in shallow minimum, a 

term of 'momentum' is added into the network parameters. lt allows the network to respond not 
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only to the local gradient but also to recent trends in the error·surface. The effect of momentum 

is achieved by making weight changes equal to the sum of a fraction of the last weight change 

and.the new change as given by the back-propagation rule. The mathematical tem1 is: 

t..W(i,j) = mt..W * (i,j) + (1- m)fJJ(j) 

where W* is the last weight and m is the momentum constant. The effect of the last weight 

change is allowed to be mediated by a momentum constant. When the momentum constant is 0, 

the present weight change is based only on the gradient. When the momentum constant is I, the 

new weight change is equal to the last weight change and the gradient is simply ignored. 

Typically the momentum constant is set to 0.95 which will be used initially for this 

implementation (Demuth and Beale, 1993). 

In order to detect any targets that may be constrained within each sweep, the 50 sample window 

needs to be shifted along the complete sweep and analysis performed at each window. During 

the shift. there arc samples being overlapped. Excess overlap across samples will increase the 

number of windows to be processed and the measure processing time. Insufficient overlap could 

cause a target to me spread across different \Vindows and reduce the chance of detection. If 25 

overlapping samples are chosen, assuming that short pulse is used, the period for each sweep is 

416.67 microsecond and the sampling rate is 25 MHz. This means that approximately 20,800 

windows have to be analysed in each sweep. The number of overlapping samples is determined 

by trial and this is discussed in the next chapter. 

6.6 Conclusion 

A general purpose marine radar is used in the implementation. The objective of the detection 

system is trying to identify targets from the radar returns that are received from such radar 

equipment. As a complete set of data acquisition system is not available, a continuous recording 
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of radar videos cannot be performed. By using the storage oscilloscope, a number of sweeps can 

be recorded at one time. The number of recorded sweeps depend on the pulse width used, the 

sampling rate and the record length selected. In order to compare the recorded sweep with the 

image shown on the display, the heading marker signal is used as threshold for initiating the data 

acquisition by the oscilloscope. A time delay circuit is added to delay the heading marker signal 

so that the data recorded is in the region of interest. A neural network, that has been trained 

using back-propagation, then provides the essential part of the detection system. A simple three 

layer network is adopted for the initial implementation. The criteria for determining the initial 

setting, e.g. window size, overlapping samples, initial condition, learning rate and momentum 

constant are discussed. To prepare the training samples, hundreds of sweeps of radar returns are 

recorded at different times under different environment e.g. rainy or stormy weather. Also, 

different types of targets such as fishing boat, sailing yacht, cargo vessel and passenger liners are 

recorded. Hundreds of representative windows are extracted from these sweeps and various 

statistical characteristics of these windows are calculated. These values provide the training data 

for the neural network. The training, testing and verification of the detection system will be 

discussed in the next chapter. 

121 



Training, Testing and Verification of the Radar. Detection S)'Stem 

CHAPTER SEVEN 

TRAINING, TESTING AND VERIFICATION OF THE RADAR 
DETECTION SYSTEM 

7.1 Introduction 

Over two hundred sweeps of radar data were recorded using the data acquisition system as 

described in the previous chapter. Windows containing targets and clutters were extracted from 

these signals for training purposes. Initially, the mean amplitude, mean amplitude deviation, 

mean period, mean period deviation and maximum period are evaluated from the windows. The 

distribution of these parameters for both target and noise are discussed. Then the neural 

detection system was fomllllated using the backpropagation techniques. The training algorithm 

calculated and minimized the cost function or error value. The anticipated perfonnance of the 

system can be considered to be improved if the error function has a reduced value. The error is 

computed in each training cycle of the data set and is summed at the end of each pass through 

the patterns in the training set. When the detection system has been trained, new sweeps of data 

are used to ascertain whether the network can detect a target with the unseen data. The author 

used Matlab together with the neural network tool box (from Math Works Inc.) to develop the 

software for the implementation. 

7.2 Feature Extraction from Radar Sweeps 

To fonnulate the detection system, the first step is to obtain samples of targets, noise and clutter 

in a 2 microsecond window, which consists of 50 samples at a sampling frequency of 25 MHz. 

Targets close to the heading marker were first identified on the radar display. When the target 

just passed the marker, the digital scope would be triggered to acquire the sweep and the range 

of the target from the radar transmitter was measured. The target would then be identified from 
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the data recorded and the window extracted as one of the samples. Noise was also present in all 

the returns and this was extracted from the same sweep when targets were recorded. Rain.clutter 

was recorded when heavy rain was observed in the region of the heading marker. There were a 

number of occasions which gale force winds were encountered in the Plymouth area during the 

data recording periods. Sea clutters were observed in closed ranges of the radar and the scope 

was triggered to acquire such signals in the vicinity of the heading marker. To ensure that no 

targets existed in the recording of noise and clutter by chance, the gain; sea clutter and rain 

clutter control of the radar display unit were adjusted to see if targets were presented in the 

vicinity from the radar screen. Also, the record was carefully checked for any targets that were 

embedded in the noise. Initially, I 00 samples for targets, 50 samples for noise, 50 samples for 

rain clutter and 50 samples for sea clutter were recorded, i.e. a total of 250 samples. A Mat! ab 

program was written to calculate the five parameters from these samples. These include mean 

amplitude, mean amplitude deviation, mean period, mean period deviation and maximum 

period. The distribution of these parameters for targets, noise and clutter (rain and sea) is plotted 

(figures 7.1 to 7.5). 

Traditional radar detection system has been using amplitude as a discrimination feature. From 

the distribution on mean amplitude (Fig.7.1), a large overlap between target, noise and clutter is 

observed. There were instances where the clutter had a very large amplitude, especially during 

the rain clutter environment. If a threshold is determined based on this amplitude distribution, 

large false alann rate and low detection probability would result. Distribution of amplitude 

deviation (fig 7.2) shows a better discrimination feature. The majority of the noise and clutter 

had a very low amplitude deviation from the mean and is independent of the type of clutter. This 

is due to the fact that the amplitude of noise and clutter tend to be more evenly spread in the 

window·, whereas, for targets, a sharp rise in amplitude usually occurs. A variation of the 
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window size would have an impact on the value of the amplitude deviation. The selection of the 

window size will be discussed in section 7.3. 

Figures 7.3 to 7.5 show the parameters related to the period of return signals. The noise signals 

are mainly spikes with a very fast rise and fall time. They consist of large high frequency 

components that cause the width of the pulse to be much narrower than those of the targets. The 

system detects the period between the consecutive negative extremes as an indication of the 

width of the pulse. The mean period of each window was evaluated and shown in fig. 7.3. The 

use of negative extremes (described in section 6.4 of Chapter 6) as detection criteria is a very 

effective way of detem1ining the pulse width of individual pulses in a radar retum. An ideal 

target would be one which has only two negative extremes, i.e. at the beginning and the ending 

of the pulse. However, not all targets belong to this category. The width of the pulse would be 

reduced if the number of detected negative extremes is increased. As such, some overlap still 

exists in the distribution of the mean period, the period deviation and the maximum period. The 

majority of the noise and clutters have a narrow pulse width and their deviation from the mean is 

small, as shown in fig. 7.4. ·rhe maximum period signifies the width of a specific pulse which 

has a maximum value in a window. This is useful in the identification and classification of a 

possible target in the window. 

Fom1 the graphs provided, it is observed that it would be a difficult task to discriminate the 

target tl·om noise and clutter based on any one of the statistical characteristics. However, it is 

impor1ant to note that redundancies may spread across more than one parameter but such 

redundancies will seldom spread across all the five parameters to a degree that may be 

inseparable by computational techniques. The spread of these five parameters for three targets 

and three noise samples is shown in fig. 7.6. Examination of these distributions and spreads 
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show that targets nonnally have a larger amplitude and period than noise. However, there are 

occasions where noise may also have similar characteristics in either amplitude or period, e.g. 

noise 2 has similar features to target 3 in both mean period and period deviation. Yet, they can 

still be discriminated by the amplitude parameters as well as the maximum period. Noise 3 has a 

larger mean amplitude than targets I, 2 and 3, however its amplitude deviation is much smaller 

than those of the targets. Therefore, it is necessary to include both amplitude and period 

parameters for feature discrimination in the detection system. 

Fig.7 .1 Distribution of Mean Amp litude 
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Fig. 7.3 Distribution of Mean Period 
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Fig.7.5 Distribution of Maximum Period 
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Fig.7 .6. Spread of the Five Parameters 
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7.3 Size of Moving Windows 

A moving window is required to shift along the complete sweep so that the statistical 

characterisation at specific time frame of the sweep can be evaluated. The effect of the window 

size on the discrimination performance was also studied. Window sizes of 1.6, 2.0, 2.4 and 2.8 

microseconds for both large and smal l targets were investigated, their waveforms and spreads 

are plotted in figures 7.7 to fig 7. 1 0. As shown in fig. 7.8, a width of 1.6 microsecond gives 

maximum relative amplitudes of the spread (for the five parameters of both large and small 

targets). The changes in relative an1plitude with respect to the window sizes were more distinct 

between 1.6 microseconds and 2 microseconds for large targets, however the changes were not 

so obvious for the small target. The smaller the window size, the larger the number of 

computations required to calculate the five sets of parameter. For example, to compute the 

parameters for 12 nautical mi les of radar range with a window size of 1.6 microseconds, it 

would require (assuming no overlapping window is used) 

( 12 x 1852 x 5)/( 150 x 1.6) = 463 computations 

If2 microseconds window size were used it would require 

(12 x 1852 x 5)/(150 x 2) =370 computations. 

[1 nm = 1.852 km, I microsecond = 150 meters] 

From fi gures 7.7 to 7.10, a window srze of 2 microseconds (150 meters) gtves a suitable 

discrimination against noise. 

7.4 Formulation of the Neural Detection System 

The fo llowing sections describe the methods used to formulate a neural detection system for 

radar targets. Different network topologies with various training parameters were investigated to 
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obtain the best performance for target detection. When the network was fully trained, it was 

implemented in selected sets of test data to allow system verification. 

7.4.1 Setting up the Initial Network 

The training data required for the neural detection system was obtained from a series of recorded 

sweeps (around 250) using the method as described in Chapter Six. Sampled targets, sea/rain 

clutter and noise were picked up from the retum radar signals. The five parameters of statistical 

characterisation, i.e. mean amplitude, mean period, mean amplitude deviation, mean period 

deviation and maximum period, were calculated for each san1pled window with two 

microseconds duration. A total number of 250 sets of data from these samples (1 00 samples of 

targets, 50 samples of noise, 50 samples of rain clutter and 50 samples of sea clutter) were used 

to train the network. The signal to noise ratio of the targets ranged from 1.45d8 to 24.5d8 . 

During the training process, the targets were identi tied as I and clutters/noise as 0. 

The number of hidden layers for the initial network was one with two neurons and there were 

five inputs. The required output was the decision on whether a target was present, i.e. a I or 0. 

To initialise the weights in the network, each weight was set to a small random number initially. 

These numbers were obtained from a random number generator that utilised a fixed range. The 

initial weights were made close to zero otherwise the leaming rate, which adapts the changes in 

the weight, would be slow. The changes in weights are dependent on the erTor term after each 

training sequence. The magnitude of the weight changes is controlled by the learning rate 

constant. ;. When s is large, the changes in weight value will be large and this causes the 

training process of the network becoming faster. However, a high value of s will increase the 

risk of oscillation. i.e. the netvvork keeps jumping over the error minimum v ithout converging. 

In order to decide the learning rate to be used tests were performed to compare the error values 
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for varying~· Six values of~ were used for this test and the results were plotted in figs. 7.11 a to 

7. 11 f. The performance of the network was assessed by the sum square error of the output 

vectors. When the learning rate is low, it requires a long overall teaming time. As the learning 

rate increases, oscillations are introduced into the training time of the network. If the teaming 

rate is made too large, it will cause the network to become unstable with the error value not 

converging. From the results obtained a value of ~ between 0.05 and 0.1 will be a suitable 

choice for the implementation. 

TI1e momenttm1 constant, a, can be used to damp the oscillation to facilitate the fast teaming 

rates. Figures 7 .12a to 7 .1 2f show the performance of the net work using different momentum 

values i.e. 0.1 , 0.5, I , 0.9 0.98 and 0.95. With low values of momentum, less oscillation was 

induced but longer training time was required as shown in figures 7.12a and & 7 .12b. A high 

value of momentum \ ill cause the network to become unstable and convergence of the erTor 

cannot be achieved. Fig. 7. 12c shows the performance with a momentum of 1 and the error is 

maintained at I 00. By slightly reducing the momentum from I the network converges again and, 

on the basis of this result, a value of0.95 was employed for the network. 

To obtain an effic ient neural detection system, efforts must be made to determine the optimum 

network topology. The input layers and the output layers were fixed by the application of the 

system, i.e. 5 inputs and I output. However, the number of the neurons in the hidden layers and 

the number of hidden layers had to be defined. If the number of neurons in the hidden layers is 

too large, the network work may take a long time to train. Also, the additional neurons increase 

the chance that even a local minimum will yield a low error. On the other hand, if there are not 

enough neurons in the hidden layer, the network may not be trained at all. There is no rule to 

derive the number of hidden layer neurons to achieve the optimtm1 performance. 
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Fig.7 .11 a Performance of training with learning rate=0.001, SSE=3.7596 
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Fig.7 .11 c Performance of training wi th learning rate=0.01, SSE=3.7845 
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Fig.7 .11 e Performance of training with learning rate=0 .1, SSE=3.7314 
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Fig.7 .11f Performance of the training with learning rate=0.3, SSE=3.7445 
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Fig .7.12a Performance of training wi th momentum=0.1, SSE=7 .8479 
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Fig 7 12b Performance of training with momentum=0.5, SSE=4 .9738 
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Fig .7 .12c Performance of the training wi th momentum=1 , SSE=1 00 
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Fig.7 .12d Performance of training with momentum=0.9, SSE=3.9437 
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Fig.7 .12e Performance of training with momentum=0.98, SSE=4 .5261 
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To define the topology of the network, a series of tests were performed using different 

combinations. These included networks with none, one and two hidden layers, the results with 

250 iterations are shown in fi gures 7.13a to 7.13f, which show the initial response of the 

network under different topologies. Table 7. 1 shows their sum-squared errors after 30,000 

iterations. 

Table 7.1 Training errors of the network after 30,000 iterations 

Topology 

No hidden layer 

One hidden layer wi th one neuron 

One hidden layer with two neurons 

One hidden layer wi th tlu·ee neurons 

Two hidden layers with one neurons 

Two hidden layers \ ith two neurons 

Sum Squared Error 

3.0180 

3.0231 

3.0007 

3.0497 

3.4937 

3.4942 

Higher training errors were obtained when the network had none or two hjdden layers. The 

optimum performance with least training error was found when the network had a single hidden 

layer wi th two neurons and this was chosen for the implementation. 

7.4.2 Application of the training algorithm 

The developed network with 5 inputs, I hidden layer (with two neurons) and I output layer was 

trained with the 250 sets of data. During each epoch, the five parameters of statistical 

characterisation were presented to the input layers of the network. For each set of parameters, 

the enor was calculated by comparing the network output with the desired output. When the 
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entire training set, i.e. 250 sets of input data, had been presented to the network, the error was 

summed to update the values of the weights. 

In the training algorithm, the training process was terminated by one of two criteria. The first 

was to identi fy a maximum error value to ensure that the network would perform to an 

acceptable level. However, as the error value might not be reduced to the specified limit wi th the 

data available, then under this condition alone training may never be terminated. So, in addition 

to this rule, an upper limit was placed on the number of training epochs. The training will then 

stop when this maximum specified number is reached. Under this condition, the training time 

can be estimated but the performance of the network cannot be guaranteed. In this 

implementation, the maximum en or of 0.05 was used as the limit for the training, and it took 3 

million training epochs to reduce the error to this value. The first and the last 300,000 iterations 

are shown in figures 7. 14a and 7.14b. Training was terminated on the perfonnance rule, when 

the etTOr reduced to 0.05. 
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Fig. 7.13a Network wi th a single layer, SSE=4 .009 
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Fig.7 .13c Network with two neurons in hidden layer. SSE=3.5629 
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Fig.7 .13e Network with 2 hidden layers, each with 2 neurons, SSE=4.4288 
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Fig.7 13f Network with 2 1lidden layers, each with 1 neuron, SSE=4 .0626 
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Fig .7.14a 2-Layer Backpropagation with Adaptive LR & Momentum, first 300,000 run: 
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Fig. 7.15 Distribution cl Trained Data 
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7.4.3 Testing the 'frained Network 

When the training process was terminated, it was necessary to assess the performance of the 

trained network with the final values of the weights. Figures 7.14a and 7.14b show the plot of 

en·ors against the number of epochs. The rate of change of error reduces as the number of 

training cycles increase. Figure 7.15 shows the final result after the training exercises. The 

majority of the targets have a value of one while majority of the noise has a value of zero. There 

is no overlap between these two values and discrimination can thus be achieved. 

A testing process is necessary to verify that the neural network is able to identify targets from 

data that was not used in the training exercise. The process was undertaken by using 40 fwther 

samples of data with different signal to noise ratio and noise background. Each data set consisted 

of a window of 50 samples and the five statistical characterization parameters were extracted 

from these data and input to the trained network. The value at the output determined when the 

data is a target or noise. Figures 7.16a to 7.16cl show targets with signal to noise ratio of 3. 7ciB, 

12.6 dB, 6,6dB and I OdB respectively. Figures 7.17a to 7.17cl shows part of the sampled noise 

used for the testing. The testing results are shown in fig. 7.18, where it can be seen that all the 

noise samples have an output value of 0 while the targets have an output value ranging from 

0. 76 to I. No overlap of the output for targets and noise occurs. Fig. 19 shows the distribution of 

signal to noise ratio for targets used in the testing, which ranges from 1.45dB to 24.5dB 
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Fig.7 .16a Plot of Test Data 1, S/N=3 .7dB, Output value=0.9986 
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Fig .7 .16c Plot of Test Data 3, S/N=6.6dB, output value=0.7732 
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Fi g.7 .17a Plot of Test Data 5 (noise), output value=O 
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Fig. 7.17 c Plot of T est Data 7 (noise), output value=O 
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Fig.7.18 Output values for target and 
noise 
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7.5 Investigation of applying the network to a trace of radar of return 

The network has been developed to identify whether the window (with 50 samples) is a target or 

noise. It has already been shown that there is large discrimination at the output of the network 

between target and noise. The next step was to enhance the network to perform the 

discrimination in a trace of radar return, which contained more than 50 samples of data. Fig.20a 

shows a trace of 100 samples ( 4 microseconds) of radar returns with a target present. To detect 

the target in this trace, the 50 sample (2 microseconds) window has to be shifted in time from 0 

to 4 microseconds. At first, the window was shifted by I sample each time and the 

COITesponding output of the network was recorded, Fig. 20b shows the result. The output has a 

result of 1 when the window stru1s from 7'11 sample and this output is maintained until the 

window exceeds 85th sample. The output is zero for the rest of the trace. If the window is set to 

act as a filter that allows only the samples contained in windows which have an output of one to 

pass tlU"ough the detection system, then the resulting output is shown in fig.20c. The detection 

system employing this approach would have the fo llowing drawbacks. 

I . The process will take 52 cycles of calculating the statistical characterization and 

obtaining output from the network. 

2. Part of the noise in the vicinity of the target is also accepted by the detection system as 

shown in fi g 20c. 

To overcome these problems, the number of overlapping cells between each window has to be 

reduced. However, the smaller the number of the overlapping cells, the less information is fed to 

the detection system. If the number of overlapping cells is made too small. there will be high 

chance that a target is missed, in particular the smaller targets that are contained within just a 

few samples. In the example of fig.20a, the target would not be detected if the overlap between 

windows is less than I 0 samples. By testing the detection system with different amounts of 

154 



Training, Testing and Vcritication of the Radar Detection System 

overlap, it was found that an overlap of around 20 samples gave reasonable results for this 

particular target. With this value, only 2 computer cycles were required to obtain the final result 

that is shown in fig. 7.20d. The overlap of 20 samples was tested with targets of different sizes 

and the result was found capable of discrimination in all cases, on each occasion the target could 

be detected with only two computations. The result of using this overlap in the detection a large 

target is shown in fi gures 7.20e and 7.20f. 

The detection system with this configuration was then applied to a longer trace as shown in 

figure 7.21 a. The following methods were used to ensure that the target was correctly identified 

from the trace to evaluate the performance of the detection system. 

I. The potential targets were confim1ed by checking against the radar display. The gain, 

rain clutter and sea cluner controls were adjusted to obtain the optimtm1 settings. 

2. If the targets did not appear on the radar display, successful scans of the radar sweeps 

were checked to ensure that the target appeared in the radar trace for more than one scan. 

3. It the target was in close range, visual confirmation by means of binoculars was used. 

4. The radar trace was carefully examined to observe any signs of targets. 

As found during the testing stage, there were occasions when the output of the network for some 

targets had a value less than I but larger than 0.76. To cater for these types of target, the 

detection system was set to accept signals with an output value of 0.7 or more. This would still 

allow sufficient discrimination from the noise as described in the early sections. The signal that 

is retained after passing through the detection system is shown in fig. 7.21 b and all targets are 

detected correctly. For comparison purposes, the same trace was applied to a detection system 

using TM-CF AR. which has the best quality of thresholds as indicated in Chapter 2. Again, the 
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comparison was based on the assumption that no false alam1 would occur. The result is shown in 

fig. 7.2 1 c. The TM-CFAR detection algori thm uses only the amplitude information and it is 

unable to identify weak targets that are embedded in the noise. If the threshold were lowered for 

better probability of detection, then it would accept strong noise and clutters and an excessive 

false alarm rate would occur. Pmt of these unwanted signals can be removed by scan to scan 

correlation and sweep to sweep correlation. However, under such circumstances the existence of 

a target can only be confirmed after a few scans and the worst case is that such algorithms 

cannot reject correlated noise and clutters. It is important to note that the developed detection 

system can detect weak targets as well as retain the shape of the waveform for further use in 

pattern recognition processes. 

Ten traces of live radar returns, which were not used in the training process, were used to test the 

developed system. Weak targets with low signal to noise ratio were added to the clutter edges in 

some traces. The results showed that the system was able to discriminate weak echoes from 

strong clutters by using the five statistical parameters, i.e. mean amplitude, mean amplitude 

deviation, mean pulse width, mean pulse width deviation and ma'<imum pulse width. The results 

of some of the tests are shown in figures 7.22 and 7.23 where the perfotmance ofthe TM-CFAR 

detection for these two traces is also shown for comparison. In fig. 7.22a, the retum signal 

consists or rain clutters with a weak target at the clutter edge. The signal to noise ratio at the 

edge of the rai n clutter is --4.97d8. Fig. 7.22b shows that all targets are detected by the neural 

network. The TM-CFAR system (fi g. 7.22c) is not able to adapt to the clutter edge and detect 

the weak echo. In f1g. 7 .23a, targets are detected from a radar trace with strong sea clutters. The 

signal to noise ratio of the weakest target is 5.19d8. Again, the result from TM-CF AR in such 

clutter environment is not satisfactory (fig. 7.23c). 
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Fig.7.20a A Trace of Radar Return wi th 100 Samples 
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Fig.7 .20c Output of the detection system with a shift of one sample 
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Fig .7 .20e A Trace of Radar Return with 100 Samples (large target) 
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Fig. 7.21 a A Radar trace with 2000 Samples 
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Fig.7 .21c Sea Target Signal witll TM-CFAR Threshold , T1=40,T2=40) 
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Fig .7 .22c Sea Target Signal wi th TM-CFAR Threshold, T1 =40,T2=40) 
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Fig.7 .23a Radar trace with sea clutters 
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Fig.7.23c Sea Target Signal wi th TM-CFAR Threshold, T1=40,T2=40) 
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7.6 Investigation of parameters required for target classification 

Radar systems transfonn complex infonnation from the targets into a one-dimensional 

wavefom1, which only presents the amplitude infonnation of the target at different times. The 

earlier sections show how the five statistical parameters (extracted from these wavefonns) may 

be used in the detection of marine targets. To develop the study further, it would be necessary to 

see if the extracted features can also be used in the target classification process. In general cases, 

radar observers would first classify the targets into two types, i.e. large and small vessels. Large 

vessels refer to bulk carriers, warships, tankers, general cargo ships and so on. Small vessels 

include pleasure craft, tugboats, fishing boats .... etc. After this preliminary classification, a 

follow up detailed classification could be carried out for further pattern recognition to identifY 

specific types/groups of targets. In order to reach the second stage, it is critical that the 

preliminary classification is efficient and accurate. The objective was to develop the technology 

further and investigate the potential for a system that can classify the targets into the two primary 

groups, The accuracy of a target recognition system depends on the certainty of their extracted 

features. The extracted feature should have the characteristics of the targets only and should not 

be affected by other external parameters such as range and the clutter environment. These 

features or their regular changing patterns can be observed at different time intervals. 

Two groups of vessels. large and small were extracted from the radar traces. These are 

distinguished by visual observation of the vessels as well as by manual inspection of the return 

signals. l'vlost of the aspects of viewing were from the broad side however, on some occasions 

echoes fi·om the front side of the vessels were recorded. 

To determine the features required in the target classification process, it is necessary to look at 

the discrimination properties of the five parameters for these two classes of vessels. The results 
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are shown in figures 7.24a to 7.24e. It can be seen that there is less discrimination in the period 

parameters than the amplitude parameters and there is noticeable discrimination in the amplitude 

deviation. Despite the fact that period parameter will give some indications about frequency 

components of the retum wave, the simplified method that has been adopted to date, in order to 

reduce the computation time, might not be able to provide the necessary details of the frequency 

distribution. As such, the immediate frequency method as described in Chapter 5 can be adopted 

in analyzing the target wavefonn in the frequency domain. The immediate frequency of each 

target was calculated. The discrimination in the immediate frequency between these two types of 

target is plotted in fig. 7.24f and shows that effective discrimination may be achieved with 

inclusion of this parameter. Therefore, these two parameters, i.e. the amplitude deviation and the 

instant frequency were used to set up the target classification system. 

The one-dimensional retum from the same target would vary from sweep to sweep as well as 

from scan to scan. It is difficult to specify a definite value about the parameter describing the 

class of targets, instead it is really a fuzzy pattern classification process. Figure 7.25a and 7.25b 

show the variation of the amplitude parameters and the period parameters between the two types 

of targets for 5 consecutive scans. The immediate frequencies and the amplitude deviation of 

these two target types vary from scan to scan and their variations are shown in table 7.2. 
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Table 7.2 Variation of Immediate Frequency and Amplitude Deviation between 5 scans 

Scan 1 2 3 4 5 

Imme. Freq. (large vessel) 2.6370 2.6762 2.8950 2.7366 2.5336 

Amp. Dev. (large vessel ) 0.337S 0.2S39 0.2S 19 0.3224 0.3127 

Imme. Freq. (small vessel) 2.0327 1.8309 2.4602 1.8631 1.967S 

Amp. Dev. (small vessel) 0.2900 0.6104 0.3S 17 0.4200 0.1772 

In view of the variations of the two parameters between scans, a fuzzy approach would be 

required to deal with the input data to the classification system. To maintain the performance of 

the neural network in the detection system, a neuro-fuzzy technique was used to classify these 

two types of targets. This approach has the benefit of handling the two parameters in fuzzy tenns 

as well as training a suitable network to achieve the task of classification. The block diagram of 

the neuro-fuzzy approach is shown in fig. 7.26. 

The input parameters were first fuzzified by means of the membership functions in fig 7.27. The 

functions were derived fl·om the statistical distributions of the I 00 samples, i.e. SO samples of 

large vessel and SO samples of small vessel. The fuzzified data was then used as input for 

training the network with lour input layers, two hidden layers and one output layer. 

A similar neural network approach to that adopted in the detection was used to recogmse 

specific targets from the radar retums. The network was trained using 100 samples to classify 

targets into large vessels (0) and small vessels (I). The output from the neural network system 

for the 20 test targets is shown in table 7.3. 
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Table 7.3 Testing set for the neural network 

TARGETS OUTPUTS FROM THE NEURAL NETWORK 

Small (I to 5) 0.5987 0.5468 0.55 

Small (6 to I 0) 

Large ( I to 5) 0.032 1 0 0 0 0 

Large (6 to I 0) 0 0 0 0 0 

It can be seen that there is no overlap between the outputs for the tvvo types of targets, and by 

using a threshold of 0.5, the network classifies the targets into large and small vessels. 
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Fig.7.24b Discrimination in Amplitude Deviation 
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Fig. 7.24d Discrimination in maximum period 
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Fig.7.24f Discrimination in Instant Frequency 
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Fig. 7 .25a Radar Return Sequence of Large Target 
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Fig. 7.26 A three layer backpropagation network with fuzzifier 
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Fig. 7.27a Membership Function of Amplitude Deviation 
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7. 7 Conclusion 

The neural network has been developed and optimised for use with the target detection system 

and enhanced to cater for a basic classification capability. Initially, studies were made to define 

the network topology as well as formulating the network parameters. The system was trained on 

250 waveforms that were extracted from live radar recordings on a system that is located at the 

University of Plymouth. The \Vavefom1s consisted of different targets, noise background, sea 

clutter and rain clutter. After the training process was completed, the developed system was 

tested to assess perfonnance. The performance of the detection system was compared with the 

Tl'vl-CFAR system and the result showed that the neural network based system has a much better 

capability for detecting targets amongst the variation in noise backgrounds presented. it can 

detect the targets correctly and retain the waveform of the retum signals after the detection 

process. 

The testing waveforms have included a variety of situations which have not been met by the 

system during the training process. Out of the 20 radar traces used in the training, two extreme 

cases with strong rain clutters and sea clutters were shown. The results of the testing process 

showed that the network had learnt to identify targets from clutters under all test situations 

presented to it. 

There were difficulties in obtaining sufficient samples to build up the database for both training 

and testing. As such, a lot of time has been spent in recording the return signals from vessels 

passing the harbour, and waiting for oppor1unity to record these under the varying backgrounds 

including sea clutters and rain clutters. Despite the fact that there were errors in the network 

output alter the training. there were still enough discriminating space between the target and the 

clutters for the detection process to give the appropriate response. The same philosophy, with the 
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addition of a fuzzier to match the uncertainties, was used in perfom1ing target classification, It 

proved that the system could classify the targets presented into large and small vessels 

effectively. To further recognise the vessels to specific types, e.g. destroyer, cruiser, cargo ship 

... etc, more samples would be required to train the neuro-fuzzy identifier. A comprehensive 

simulation environment with different models would be desirable to provide the wide variety of 

samples that are required for training. 

The results from the trials have proved to be encouraging. Simple processing techniques were 

able to provide valuable infmmation from the radar signal and fw1her computer methods were 

then able to detect the targets based on this infom1ation. The feature extraction process involved 

only simple mathematics. The objective was to avoid the use of complicated algorithms that 

require significant computation time. This would limit the application of the system in real time 

environment where speed of the process is essential. The speed could ftn1her be improved if all 

or part of the tasks were to be perfonned under parallel hardware implementation. 

The developed system is designed for radar target detection and classification purposes. 

However, the same design concept can also be applied to other signal detection process, such as 

medical imaging and pattern recognition. 
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CHAPTERS 

CONCLUSIONS AND FURTHER WORK 

8.1 Introduction 

The aim of this study was to adopt an artificial intelligence approach to the processing 

of radar return signals for target detection. The programme of work has involved the 

evaluation of artificial intelligence and the use of neural networks in this application. 

The research work was divided into a subset of major tasks: 

a. Survey of existing detection algorithms; 

b. Investigating the feature extraction techniques; 

c. Studying the possibilities of employing neural networks in target detection ; 

d. Developing software and hardware for acquiring radar signals for use in the 

research; 

e. Formulating the neural network based detectioi1 system; 

f. Considering the extension of these methods for the classification of targets. 

Recent research into radar target detection has concentrated on the improvement of 

the existing CFAR algorithms. This study has used a new approach in which detection 

is based on features extracted from the raw radar data. 

This chapter summaries the key findings, draws conclusions from the results of this 

investigation and considers the possibilities for future developments. 
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8.2 Approach to the solution of problems in target detection 

In the design and evaluation of an intelligent target detection system, the following 

related problems have been considered. 

8.2.1 Drawback of commonly used detection algorithms 

Various current methods for target detection in radar have been discussed in chapter 

one. In a marine radar environment, both ground clutter and sea clutter can cause 

difficulties in detecting target vessels. These clutters often have sufficient magnitude 

to mask targets in a region. Clutter changes dramatically as the radar antenna turns. In 

one location of a single scan, clutter returns from a calm sea may be observed which 

behave as Rayleigh distributed random variable. In other locations, clutter returns 

from coastal waters, where land sea interface is situated, are observed. This clutter 

often behaves as a K-distributed random variable and the detection process in the 

clutter edge is very unpredictable. Under such a variety of circumstances, a simple 

detection method employing threshold techniques alone cannot meet the challenge 

and excessive false alarms or failed detections will be encountered. A comprehensive 

range of variations on the CF AR detection algorithm has been discussed. Each these 

aims to tackle a specific problem in detection, e.g. GO CFAR is appropriate for 

improving performance near clutter edges, SO CFAR was developed to detect closely 

spaced targets, OS CF AR is considered as a processor to deal with interfering targets. 

It is concluded in chapter I that no single CF AR algorithm, where the decision is 

made only from the amplitude information of the return echoes, is adequate to solve 

problems in a complex detection environment. 
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Research into alternative methods of target detection was reviewed. Papers reporting 

the success of application of fuzzy logic in signal detection has instigated the 

application of artificial intelligence in the area of target detection in radar. Fuzzy logic 

has a distinct advantage over other algorithms in handling information that has a high 

degree of uncertainty. The membership functions are assigned to the prior 

probabilities, the cost function and the received signal amplitude. Based on a 

particular situation and the corresponding statistics of the noise under each 

hypothesis, the processing mechanism works with this fuzzy information to determine 

the desired threshold. However, the final threshold depends on the shape of 

membership functions of the input parameters. It is necessary to ensure that the 

assignment of the membership is appropriate to the operating environment of the 

radar system. Also, the selection of rules plays an important role in the performance 

of the final system. The rules should be formulated to cover all the aspects that the 

radar will encounter. As such, it is difficult to achieve the optimum state when a fuzzy 

approach is adopted. 

8.2.2. Extraction of features from radar signals 

The primary limitation of traditional information processing techniques is their static 

processing methods which employs only the magnitude of the signals. With recent 

development in the processing speed of computers, more information can be handled 

in real time. Important information from radar returns, such as spatial components, 

amplitude deviations and so on, can be extracted to assist in deciding if a target is 

present. Theoretical analysis and experimental results provided in chapter 3 on one 

dimensional space of the radar waveforms show that characteristics of radar targets 

and clutters are different within a certain degree. Such differences were observed on 
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signals recorded from a general purpose marine radar and compared with expected 

values from knowledge/data bases to make a decision regarding the presence of a 

target. However, it is necessary to identify the amount of information required to 

make decision process in target detection efficient, bearing in mind the requirement to 

solve the problem in a computer in real time. For the purposes of this investigation, a 

number of characteristics of the return signal were identified. Conventional waveform 

analysis techniques such as Fourier transform and correlation were evaluated. These 

involve complex computational sequences, which did not prove to be practical for real 

time processing. Statistical signal characterization involves the division of the 

waveform into segments, which are bound by positive and negative extreme 

conditions. Eventually, five waveform parameters namely; amplitude mean, amplitude 

deviation, period mean, period deviation and maximum period were identi tied as the 

pnmary measures appropriate to this application. The use of these measures can 

achieve similar objectives to spectral analysis and correlation, but they need 

significantly fewer computer operations. Each set of waveform parameters is unique 

to a particular waveform. In very complex situations (e.g. heavy clutter), a 

redundancy may spread across more than one parameter between target and noise, but 

it does not spread across all the five parameters to a degree which is beyond the 

computational capabilities in discriminating the features. 

8.2.3. Data acquisition of radar signals 

The radar equipment used within this investigation is a general purpose marine radar, 

which looks out across Plymouth harbour. Ideally, the research required a data 

acquisition system that is able to record the radar signal continuously for a number of 

scans and incorporate bearing identification in each sweep. Such a recording system 
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was not available on the market during the research period, however it was at the 

development stage. This demonstrates the industrial drive towards further digital 

methods in the processing of radar return signals and the imminent possibility of 

implementation of this research. In order to progress with the original objectives, it 

was decided that a simple system should be designed to acquire the radar signals and 

transfer the data into a computer for analysis. The system consisted of a digitized 

oscilloscope with a maximum sampling frequency of I OOMHz which was able to 

record the signal for a number of sweeps, depending on the sampling rate used. The 

heading marker was employed as a trigger signal to initiate the recording and any 

targets passing the heading marker region could be recorded. As the existing heading 

marker of the radar at the University of Plymouth was in a radar blinding sector, a 

simple hardware circuit with variable delay was designed and built. This enabled the 

heading to be shifted by around I 0 degrees and facilitated the acquisition of returns 

from targets over a sector that looked across Plymouth Sound and beyond. The 

recording system proved to be satisfactory and was used to record over 300 sweeps 

from the radar transceiver to form a database of digital radar return signals. This 

included a variety of targets, sea clutter, rain clutter, land clutter and noise. A 

substantial amount of time was spent recording these returns, and it was also essential 

to maintain visual observation to verify and catalogue targets that were observed 

passing the heading marker region. 

8.3 The application of neural networks to radar detection 

The information fusion techniques using neural network have been discussed in 

chapter four. The strategies were based on a multi-layer perceptron network with 

backpropagation learning algorithms. The research concentrated on the application of 
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neural networks to improve the target detection and did not intend to develop new 

neural theories or revolutionary learning. Research into applications is a relevant 

subject of interest. The topology, structure, training requirements and input 

parameters are application dependent and the theory has not yet been developed to 

provide a rule base for design. By studying the performance of various topologies, a 3 

layer network with 5 inputs and I output was formulated to investigate the use of 

neural networks in solving complex detection problems. The five statistical 

characteristics were extracted from 250 samples of radar signals. The 250 samples 

were chosen to represent a wide variety of signals that would encompass the range of 

conditions that a radar system is likely to encounter in a complex port environment. 

Test runs were performed to determine the optimum parameters for use in the learning 

process, such as learning rates, momentum values and network structures. 

The integrated system and the results have been described in Chapter 6 and Chapter 7 

respectivdy. The resulting neural detection system was able to identify targets from 

samples of radar signals even at low signal to noise ratios. The performance of the 

network was found to be similar under both training and testing conditions and the 

maximum error of 0.05, chosen in the training process, allowed sufficient margin for 

the discrimination between targets and noise. In applying the detection system to the 

real time situation, a moving window was shifted along the complete sweep. The 

effect on the number of overlapping samples in the window was studied to obtain the 

optimum setting. Sweeps containing strong rain clutters and sea clutters were used in 

testing the system and the results showed that the network is able to discriminate 

targets that are embedded in the clutter edge. For the purpose of comparison, a TM-
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CFAR algorithm was tested with ·the same sweeps of radar signals and was unable to 

perform satisfactorily under such adverse conditions. 

The neural detection system was further extended to include a fuzzifier to investigate 

the potential for classification of targets. The inclusioil of fuzzy logic, and with 

immediate frequency as an additional input, the process was able to handle the 

uncertainties of the parameters between scans/sweeps, The combined neural-fuzzy 

system was able to classify the targets into large and small vessels by using only two 

parameters, i.e. amplitude deviation and immediate frequency, with satisfactory 

·results. 

8.4 Contribution of this study to radar detection system 

The result of this study is considered to be a break through in the existing technology 

of radar detection. The developed technique does not use the conventional CFAR 

algorithms to determine the thresholding level of the amplitudes. Instead, important 

features from the raw radar videos are extracted to determine the presence of a target. 

The features are not limited to the amplitude parameter, information such as 

amplitude/period deviation from the mean, mean period and maximum period are also 

used in the task of detection. The study introduced the concept of adopting data fusion 

in the detection stage of the radar signal processing to combine the extracted features. 

Live video was used in training the neural network to facilitate the developed system 

to handle the real radar data. The result showed that the system is efficient and is able 

to detect targets even when the amplitude is lower than that of clutters and 

background noise. The existing detection algorithms only accept the part of waveform 

that is above the threshold amplitude. As such, some valuable information in the 
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waveform will be lost. With the neural detection system, a large section of the target 

waveform was retained after the detection process and this information is available for 

use in subsequent processing such as target identification, as well as the tracking 

stage. This can further be used to improve the tracking reliability of present radar 

systems. The introduction of a neural-fuzzy system has demonstrated that the system 

was able to handle fuzzy data and classify the targets into small and large vessels. 

This neural-fuzzy approach can form a framework for any future sophisticated radar 

target identification processes. 

8.5 Future developments 

The work produced by this research has established an intelligent target detection 

system that can be used as a basis for the development of future detection methods in 

radar or other areas, such as recognition of patterns from medical instrumentation. To 

implement the developed system in pattern recognition, similar parameters can be 

extracted from incoming signals. Provided that redundancies do not appear in all the 

five parameters, then an individual database for different types of signals can be 

formulated to meet the requirements of the specific application. 

To further develop the system, it is suggested that the following improvements and 

future research are necessary. 

Additional outputs and inputs to the system 

The use of more sophisticated data recording system 

Using high speed parallel processor 

The investigation of alternative intelligent algorithms 

The use of additional features in the classification of radar targets 
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8.5.1 Additional inputs and outputs to the system 

The system has five inputs to the neural networks and these are mean amplitude, mean 

amplitude deviation, mean period, mean period deviation and maximum period. The 

neural network has only one output that is the weight to determine if a target is 

present in the window. The system could be enhanced if the environmental condition 

could be used as further inputs. The information on the sea-state or wind speed will 

provide the system with information regarding the amount of sea clutter that the radar 

is likely to receive. The database can then contain sea clutter signals at different sea 

states and this will assist the system to discriminate targets from heavy sea clutters. 

Similarly, the precipitation condition will provide important information about the 

expected magnitude of the rain clutters. 

The system could also be improved by producing outputs that are able to classify the 

input waveform into different categories. To achieve this requirement, the system 

would require a comprehensive database of different signals, which would in turn 

require a sophisticated data recording system. Also, the measurement of simulated 

targets in a controlled environment with different models of targets, such as could be 

provided in an anechoic chamber, may be necessary. This classification would enable 

the radar tracking system to process interesting signal/targets only. This would greatly 

reduce the processing time needed by the computer. 

8.5.2 The use of sophisticated data recording system 

The present recording system employed a digital oscilloscope which is limited to the 

size of memory in the equipment and hence can only record a few sweeps of radar 

signals at one time. As such, it is necessary to transfer the data between the 
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oscilloscope and the computer after each recording. This procedure caused difficulty 

in building up a long history of radar returns from specific targets. The ideal system 

should integrate the digitizer with a computer so that data can be transferred 

automatically when the buffer memory is full. llhe recording system should also be 

able to identify the bearing of each sweep uniquely so the targets at specific sectors 

can be searched quickly; however they would still need to be identified and 

catalogued visually. With this type of system, the radar returns from different types of 

targets could be recorded at various ranges and an extensive database constructed. 

Fw1her training of the neural network with more extensive data would improve the 

probability of detecting and identifying individual types of targets. It is understood 

that a company based in Russia is designing a digital acquisition system to work with 

its radar systems. Unfortunately, there is no indication as to when such recording 

system will be available in the market, or of the facilities that will be available to 

extract digital data from their dedicated hardware. This is a requirement for the 

purposes of further research into methods for integrating this detection system with 

the radar tracking processes to enhance the capability of the tracker. 

8.5.3 Using high speed parallel processor 

The detection system has to extract the features from windows of radar signal 

sequentially, then the features have to input to the neural network to decide the output 

value. This will take up considerable amount of computational time and induce delays 

in the detection system. For practical implementation, the delay can be improved by 

employing parallel high speed signal processing chips, e.g. TMS 320 family, to 

perform feature extraction of the radar returns. The duty of inference can then be 

performed by a fast speed PC, e.g. with a P3 family CPU. This arrangement will 
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enable better efficiency in the real time implementation of the target detection and 

recognition process. 

8.5.4 The implementation of alternative artificial intelligence methods 

The detection algorithms that have been studied are CF AR, fuzzy logic and neural 

network. The CF AR algorithms could not achieve the detection capability in adverse 

conditions due to their decision being based on amplitude information only. The fuzzy 

approach has many successful applications in engineering fields, but it requires the 

definition of a reliable rule base. In the area of target detection, the application of 

fuzzy algorithms alone will be difficult due to the requirement for the compilation of a 

comprehensive rule base that covers the different environments that are likely to be 

encountered by the radar. The neural network based detection system has the ability to 

learn, and the learning can be performed off-line. However, it requires the collection 

of training data, and the definition of suitable topology and various training 

parameters. f\'iore importantly, for the purposes of real time operation, a consideration 

is that neural work approach is relatively slow when operated in software. With the 

development of the neural network chips in the market, it is feasible that the system 

can be implemented in hardware to achieve the speed required in radar signal 

processmg. 

There are other techniques that may prove to be suitable for further investigation into 

target detection, such as Wavelet Transforms and neurofuzzy methods. The Wavelet 

Transform decomposes the radar return into signal bands that are orthogonal to one 

another, reducing the redundancy and increasing the chance of revealing the useful 

feature (Lu, Yu and Guo (1993), and Chan (1995)). Further studies can be performed 
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on the application of hybrid intelligent system, which combines two intelligent 

techniques to meet specific requirements, such as the fuzzy-decision neural networks 

(Taur and Kung, 1993, and Jang ( 1993)). Such hybrid system could be applicable to 

target detection and recognition with fuzzy decision system or other intelligent 

algorithms to optimize the performance of the neural network. 

8.5.5 The use of additional features in the classification of radar targets 

The proposed neural fuzzy network system can classify radar returns into large and 

small targets. To determine the type of vessels within the same category with 

minimum enor, e.g. discrimination between a tanker and a general cargo ship, a yacht 

and a small fishing boat, more distinct features have to be extracted from the signals. 

A method of target recognition using image processing techniques has been described 

by Nebabin (1984). The image of the target is formed by a number of consecutive 

sweeps of the radar signaL The range width of the two dimensional image is 

contributed by the length of the vessel, that may reach 400 meters for ships with 

displacements of several hundred thousand tons. The azimuth width of the image 

depends on the angular spread of the target. Additional features from these images, 

such as the area of the target, the intensity mean, intensity variance, and centroid of 

the image will further facilitate .the classification process. It is necessary that a 

database of different classes of targets of interest be created by observing similar 

models under laboratory conditions, with measurements being taken at various aspect 

angles. This database can then be searched to select an appropriate class to match with 

the target to be identified. 

8.6 Conclusion 
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The research work has shown the possibility of using an intelligent approach to detect 

targets in a clutter environment. The methodology used in developing the neural 

network has proved that this technique can produce better results in target detection 

when compared with conventional CFAR algorithms. However, in order to implement 

such improvements a more sophisticated digital data acquisition system is initially 

required. The data record will form a valuable tool to enhance the detection and 

tracking capability of a radar system for vessel traffic management, or shipboard use. 

This research has proved that neural networks can be used in radar target detection, 

and that they can provide an improvement in performance over conventional CF AR 

methods. The limitation of using a neural network is in the time required in both 

training and processing. A further consideration might be that the neural network has 

no tunable parameters to allow controllability by the operator through the man 

machine interface. lt would therefore not be easy for the operator to perform any 

online adjustment to the target detection system. At present CFAR algorithms are 

commonly used in marine radar equipment because of their simplicity. All the CFAR 

components can be constructed in hardware and as such they do not cause any delays 

to the detection process. If radar manufacturers decide to take up the option of using 

artificial intelligent algorithms such as neural networks within the detection system, 

then the speed of the algorithms and the controller interface would be prime 

considerations. With the advancement of technology, special chips for the application 

of artificial intelligence are already available on the market, which offer the prospect 

of suiting such needs, lt will therefore not be long before all radar system are 

equipped with artificial intelligence networks that are able to perform target detection 

and recognition in an efficient manner. 
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Target Detection In Radar Current 
Status and Future Possibilities 

Vincent Y. F. Li 

(Hona Kons Uni•·ersi~v cif Science and Technologv) 

and Keith M. Miller 

(fnscicuce cif.llarin• Scudies, Uni•·ersi~v cif P~vmouch) 

Most of the radar systems used in operating marine .,-esse! traffic management services 
experience problems, such as _t_~ack loss ar.d track swap, \ .. ·hich ma~· cause confusion to the 
trallic regulators and lead to potential hazards in the harbour operation. The reason is main!~· 
due to the limited adapti,·e capabilities of the algorithms used in the detection process. The 
decision on \vhether a target is present is usually based on the amplitude information of the 
returning echoes. Such method has a low efficiency in discriminating between the target and 
ch.Hter, especially when the signal~to;noise rdtio is low. \\'ith modern signal processing 
techni!]ues more Information can be extracted from the radar return signals and the tracking 
parameters or the previous scan. The objectives of this paper are·to re\'iew the methods which 
are curremb· a.doptl!d in radar target identification, identify technigues for extracting 
additional information and consider means of data analysis for deciding the presence of a target. 
Instead of employing traditional two-state logic, it is suggested that the radar signal should be 
a.llocJ.ted in terms of threshold le\·els into fuzzy sets \vith its membership functions being 
related to the inform.ttion extracted and the environment. Additional signal processing 
technigues are also suggested to explore-pattern recognition-aspects and discriminate features 
which arc associated with a return signa.! from- those of clutter. 

r. 1 N T R o o u c T 1 oN. Vessel traffic management systems extract data from the 
raster of the incoming radar signal. This data is further processed to generate 
target tracks which are then displayed for traffic control. In a dense harbour 
situation where vessels are usually manoeuvring in very close proximity to each 
other, targets may be swapped giving the controller a false impression of ships 
manoeuvres and intentions. Furthermore, reflections from land based objects 
such as buildings increase the level of interference to the received signals and 
provide further confusion to the tracking algorithms employed. When the 
weather is bad, clutter due to sea waves and fog will also affect the quality of the 
signals. All these restrictions limit the detection/tracking capability of the vessel 
traffic management to a great extent. Any resulting target loss or swap which may 
occur will create a burden for the safety operation of managing traffic in the 
harbour. There is a need to review the radar signal processing technique with the 
objective of making the processing more adaptive to dynamic changes of the 
environment. 

The initial step in radar signal processing can be regarded as the task of 
removing all the non-useful data. The returned radar information from the 
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receiver must be reduced to a few signals which represent the known and new 
targets. The key operation to achieve this data reduction is the thresholding 
process, where the data are compared with a reference level. Only those signals 
with magni tu des exceeding the threshold level are processed further. However, 
the radar signal from a target is usually embedded in both thermal noise and 
clutter. The magnitude of the noise and clutter will vary in different sweeps, 
ranges and scans. To achieve a low false alarm rate and a high probability of 
detection, the setting of a threshold with a constant amplitude is not feasible. 

The constant false alarm rate (CFAR) processing technique has been developed 
to adjust the threshold value according to the noise power of the return signal 
at. specific times. The threshold of individual cells is decided based on the signal 
strength of a group of reference cells nearby. In the conventional cell averaging 
constant false alarm rate (CA·CFAR) detector ,1 digitized radar video is clocked 
through a moving window (delay line). For each range cell, which corresponds 
to a given range on some bearing, the mean video levels of the 'N' preceding 
cells and of the 'N' following cells arc c~lculated. The threshold comparator 
calculates the average of these two mean levels, and the resulting threshold is 
compared with the radar signal. Those which are above the threshold level, will 
be processed as targets for the following stages. Otherwise, they are treated as 
noise. The probability of detection of the CA-CFAR detector depends on the 
threshold multiplier (which is a function of the probability of false alarm), the 
signal to noise ratio and the number of range cells in the window .2 

CA-CFAR pro,·ides optimum detection in a homogeneous environment where 
the noise power in the ranie cells is such that the observations are independent 
and identically distributed. However, this assumption frequently fails.due to the 
environment in which the radar system is operating. A reference window may 
contain cells with large sudden changes in the noise power due to some other 
phenomena providing a reflection which appears as clutter on the system. If the 
target is embedded in the test cell, this transition will unnecessarily increase the 
threshold to a high level and lower the detection probability. Yet, if the test cell 
contains the clutter, the threshold value may not be high enough to reject the 
clutter because cells with low noise level are also contributing to the calculation 
of the mean value. As a result, an excessive false alarm rate will occur. Also, 
when multiple targets are very close in range and appear in the same window, 
the noise associated with these targets may cause the threshold to increase. Such 
an effect will allow only the strongest target in the window to be detected. 

In Yiew of the above drawbacks of CA·CFAR, alternative solutions have been 
proposed to improve the effect of non-homogeneous noise backgrounds to the 
CFAR detector. A 'greatest of ' logic selection (GO·CFAR) was proposed by 
Hansen and Sa"')'ers• to reduce the number of excessive false alarms at clutter 
transitions . .Two reference windows are formed in the leading and lagging sides 
of the test cell and a target is declared if the amplitude of the test cell exceeds 
the greater of the two windows. A slight reduction in detection probability may 
be expected when the leading window contains signals with low noise power 
while the lagging window contains clutter with large magnitude. However, the 
use of greatest selection will not allow the CFAR detector to efficiently detect 



NO. 2 TARGET DETECTION IN RADAR J05 

closely spaced targets. Also, the detection probability will be greatly affected 
when interfering targets appear in the leading and lagging windows. 5 

• 6 

It has been shown' that the use of' smallest of' (so-CFAR) selection method is 
able to resolve targets which are closely spaced in range. The smaller value of the 
leading or the lagging windows will be used to estimate the noise power. 7 Again, 
the performance of the so-CFAR detector will be degraded if interfering targets 
are found in the leading and lagging windows, The so-CFAR detector is not able 
to limit the false alarm rates during the clutter transitions. For example, if there 
is a clutter transition in the window, and the clear background contributes to a 
low magnitude of estimated noise level, this will cause the threshold to go low 
and increase the false alarm rate. 

2. ADVANCED CBR ALGORITHMS. In view of drawbacks of the simple 
CFAR algorithms as described, a lot of research has been performed to provide 
adaptive CFAR algorithms which are able to handle radar detection in a non­
homogeneous environment. 

Ordered statistics (os) CFAR has been developed to reject transient noise.8 In 
this algorithm, the range cells (c(1) ... c(N)) in a window are first ordered 
according to their magnitudes to yield the ordered samples, c(1) < c(2) < 
... c(N), where N is the window size. The noise power is then estimated by 
selecting the nth largest cell to work out the threshold. To choose the order n, 

analysis has been performed by plotting the required signal-to-noise ratio as a 
function of n. 9 The plo: was based on a window (N) of 2a cells, with constant 
probability of detection (Pd) and false alarm (Fa). The broad minimum in the 
required signal-to-noise ratio was found to be from n = 14 ton= 19. This agrees 
with the general assumption10 that n approximately equals to 3N/ 4· As n 
increases from a low value, Pd improves until n reaches this optimum value, 
further increases in n degrade Pd. The detection performance does not depend 
on the position of the interfering targets in the window. Since os CFAR ranks the 
full range of cells in the window, the order of an interfering target will not be 
affected by its location. For optimization of the false alarm rate, os CFAR has the 
best performance when n = N. However, this is the highest order sample and it 
cannot be used in practice as it will suppress the targets. For n less than N, os 
CFAR can discriminate the target from N- n interfering targets without 
degradation in detection. The performance of os CFAR in clutter edges is good 
\V hen the clutter returns have constant/ slow varying amplitude characteristics. 
However, os CFAR suffers serious degradation if the clutter returns are fluctuating 
independently. 

Trimmed mean filtering has been used in signal and image restoration 
processes. 9 The noise power of the trimmed mean CFAR10 is estimated by 
combining the ordered samples linearly. It firstly ranks the samples according to 
their magnitude and then filters T 1 samples from the lower end and T2 samples 
from the higher end. The remaining samples are summed to work out the 
threshold. As the trimming increases, the threshold multiplier has to be 
increased to maintain the false alarm rate. When T 1 reaches n- 1 and T2 reaches 
N -n, the detector becomes an oS-CFAR. It corresponds to a CA-CFAR when there 
is no trimming at all (T 1 = T2 = a). Symmetric trimming that is T 1 = T2, limits 
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the performance of the detector in the clutter boundaries, especially when the 
leading window contains the clutter and noise, and the lagging window has a clear 
background. The symmetric trimming technique may de,·elop a threshold which 
will not be high enough to reduce the false alarm rate when the test cell contains 
a sample with clutter in the background. For asymmetric trimming, it is 
necessary to determine optimum trimming parameters T1 and T2. The value of 
T2 should correspond to the number of interfering targets in the window. For 
better performance in detection, T 1 should be kept as small as possible. Yet, for 
reducing false alarm rates in clutter boundaries, T 1 should be large and T2 should 
be small. Optimization of such an algorithm is then a matter of fine tuning these 
parameters and is dependent on the amount of clutter and number of targets. 

Another CFAR, which is proposed to deal with interfering targets, is the 
censored mean Ie,·el (otL) CFAR.

11 The outputs from the range cells arl! ranked 
according to their magnitude and the largest n samples are censored. The 
remaining N- n samples are used to estimate the noise !eYe! (c) of the cell under 
test. This estimate (c) is multiplied by a threshold multiplier (M) which is based 
on the desired false alarm rate (Fa). lf.the magnitude of the strength of the signal 
return in a cell exceeds ..He then a target is assumed to be present. Ideally, if the 
samples to be censored are equal to the number of the interfering targets in the 
window, the performance of OIL will be optimal. However, it will be degraded 
if the censorship does not include all the interfering targets. This may be the case 
when the number of interfering targets is unknown. Thus, if an interfering target 
is included in the process of noise estimation, the threshold will be unnecessarily 
high and will lower the probability of detection. Howe,·er, if we overestimate 
the number of interfering targets, this will cause the threshold to be low and will 
increase the false alarm rate. 

The generalized censored mean-le,·el (GCML) CFAR does not require an exact 
knowledge of numbers of interfering targets.'' The samples of both the leading 
and the lagging windows are ordered independently. The returning signals in the 
cells, which are considered as interfering targets, will be censored. To decide 
whether the cell should be censored or not, the higher ordered samples are 
compared with the lower ones in sequence. A scaling multiplier (M), which is 
a function of the desired false alarm rate, will be introduced to the lower ordered 
samples. If c(k) is greater than Mc(k -I), then samples c(k) (k, k + 1, ... , N) are 
regarded as echoes from interfering targets and they will be censored. The noise 
estimate is processed based on the magnitude of the remaining samples. The 
performance of the GCML CFAR is optimum when the interfering targets appear 
in both the leading and lagging window. The performance will be slightly 
degraded when the interfering targets fall in one of the windows only. The 
number of range cells in a window will also affect the performance, the higher 
the number the better the performance. 

The 'greatest of order statistics estimator' CFAR (GOOSE-CFAR)
10 takes the nth 

ordered samples from both the leading and the lagging windows. It compares 
these two samples and takes the larger one to estimate the threshold. Since n is 
less than N/2 (the number of samples in each window), GOOSE-CFAR can handle 
interfering targ('ts in both windows and such targets will normally appear in 
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samples from .n + 1 to N /1. When a clutter boundary appears in the window, the 
worst case occurs when the cell under test is in the heavy clutter. With the larger 
of the two ordered samples being taken for threshold estimation, the threshold 
will be high enough to prevent excessive false alarms. GO·CF.\R has demonstrated 
its good performance in clutter boundaries when interfering targets are not 
present. However, with GOOSE-Cf.'.R, targets with magnitude larger than the nth 
samples in both windows will be filtered. This will prevent the masking of 
multiple targets in .the window and improve the detection capability in the 
clutter boundary. 

'Censored greater-of' (coo) CFAR 13 filters n largest range cells from both 
leading and the lagging windows. The remaining samples of each window are 
summed. The larger of the two will be multiplied by a threshold multiplier to 
give the required threshold. The choice of the numbers of cells to be censored 
depends on the likelihood of the number of interfering targets in the windows. 
When the number of interfering targets exceeds the number of samples to be 
censored, the performance of CGO CF.\R will be degraded. However, the 
detection loss of CGO CF.\R will be less than the os and GOOSE CFAR because CGO 
CFAR takes the mean of the magnitude of the interfering targets and the noise 
samples, while os and GOOSE CfAR will use the ordered magnitude alone. Both 
GOOSE and CGo CFAR have the greatest-of logic which is able to reduce the sharp 
rise of false alarm rate at the clutter boundary. 

~IE.\10 CFAR 14 combines both median and morphological filtering 15 to decide 
the threshold le,·el. The first median filter transforms the input into a new series 
of samples in which those samples less than the mean power of the clutter will 
be replaced b)' this mean value. As such, it changes the smaller values of clutter 
to the estimate of the mean noise power. Any samples with a magnitude greater 
than a fixed multiple of the mean power will also be replaced by the mean value. 
The objective is to reduce the effect caused by interfering targets. The second 
median filter will be used to smooth out the samples from the first filter and gives 
an unbiased estimate of the original samples. Then the output from the second 
filter is processed by a morphological filter using an open-closing technique. 16 

'Open' breaks small targets and smoothes boundary while 'close' fills up narrow 
gaps between targets .. \IE.\10 CFAR detectors ha,·e superior performance in the 
presence of interfering targets since they give a mean estimate of noise power 
with minimum bias and smaller variance. They are able to overcome problems 
clue to masking of targets by clutter bolUldaries. However, they require much 
more computer execution time to process the samples than other CFAR detectors. 

3· INTELLIGENT METHODS IN RADAR DETECTION. fuzzy logic has the 
capability of addressing the imprecise information from a physical system and is 
becoming a valuable tool in practical engineering applications. It applies rule­
based algorithms to resemble the flexibility of the human decision making 
process. Successful applications of fuzzy logic in various fields have been 
reported. 17 

· 
18 

• 
19 

· 
20 Recently, a fuzzy approach to signal detection has also been 

addressed 21 
• 
22 · 

13 

Radar detection uses probability theory to decide on the presence of a target. 
A two state binary logic is usually used to define the state of the signal, that is 
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a threshold is applied to the signal. Signals above the threshold level will be 
accepted as targets and others will be rejected. Since the target in a radar return 
is not always clearly defined (for example if it is embedded in clutter or noise), 
uncertainty can appear in every task of the detection stage. Any premature 
decision based on limited information made at an early task of the radar 
processing will have an large impact on the following stages, such as tracking and 
feature extraction. Such processing techniques using binary logic quantize the 
input signal and cause incomplete information to be processed. With the aid of 
fuzzy logic, radar detection will not be only limited to the likelihood of 
detection/false alarm, it can also be expressed in degrees to which an event is 
likely to happen. Instead of offering a combination on conditional probabilities, 
the membership functions used in fuzzy logic theory combine inexact 
information. "rhe fuzzy associative memories function defines the degree of 
likelihood of the returned signal being a target and its exact value is of no absolute 
important. \Vhen the magnitude of the returned signal is increasing, it is more 
like! y that the signal will be detected as target and the false alarm rate will be 
decreased. Such a model provides explicit features torepresent uncertainty in the 
radar detection process. 

In binary hypothesis testing, Bayes "rheor/4 formulates the minimization of 
the expected cost, called the Bayes risk, and leads to the likelihood ratio test 
(LRT). 

where LR is the likelihood ratio; R is the observed data; X is a positive mean of 
the signal amplitude. 

To model the unceuainties of the received radar signals, binary hypothesis 
testing can be reformulated using fuzzy set theory 25 

H.1: R = X+N 

Ho: R = N 

where N is the standardized Gaussian noise. 
Now xis a fuzzy parameter, x ={[X, ux(X)J), in which X is an element of set 

R and ux is the membership function of X. For convenience, a triangular 
membership function is adopted, this is centred about a nominal amplitude value 
Xo and extending between X1 and X2, such that ux(Xo) = 1. "rhe likelihood ratio 
(LR) becomes a fuzzy set. As shown by Saade/6 the fuzzy threshold of the 
likelihood ratio can be determined from prior probabilities and cost functions, 
which are again fuzzy in nature. In order to compute the fuzzy decision on the 
optimum threshold of the detection, it is necessary to order the fuzzy sets over 
the real line and obtain the expression for the utility ranking index of LR, which 
has been described in. 27 The performance of the fuzzy algorithms may be 
e'·aluated using the probability of error technique/8 where it was shown that the 
method provided a better result in treating the false alarms and misses in decision 
making process for radar detection. 

Cross validation of wakes against bright spots has been adopted to reject false 
targets. This performs fuzzy decisions which associate a confidence level for each 
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entity based with suitable fuzzification functions. 29 In order to define a 
membership function for a fuzzy set of raoar echoes, a set of vessels features 
which will not be critically affected by speckle noise, such as mean grey level and 
elongation, need to be selected. Ship classes are selected according to the area 
of the target, for example class 1 for areas less than 6o pixels, class 2 for areas 
less than t lo pixels and so on. Each potential ship echo is compared with 
prototypes of true ships using a weighted distance method. The classifier, 
referred to the weighted results, associates a high fuzzy index (approximately 1) 
to a true ship and a low fuzzy index (less than o· 5) to a false ship. Information 
with respect to the ship/wake relation is processed to gi\·e a coupling coefficient 
which is worked out based on the distance between the centroid of the ship and 
its closest extreme of wake. This coefficient, between o and 1, defines the 
position oi a ship with respect to its wake in the radar image. The coefficient will 
finally be multiplied by the fuzzy index from the classifier to give a global value 
that measures the reliability of the detected sh!p-wake couple. It has been 
demonstrated29 that this method provides cdvantages with respect to the classical 
method of wake detection using Hough tr3nsforrns on noisy images. 

Edge detection has been used as a means of classification for radar images. 
However, the decision on whether it is the edge or not possesses ambiguity. A 
fuzzy rea~oning technique, as proposed by Cho,30 detects the transition on 
intensity changes. Both the brightness and contrast measures of the pixel intensity 
are processed as fuzzy input, then fuzzy rules are applied to determine the 
threshold decision, which will be in the form of a membership function. To 
defuzzify the threshold decision, the centroid of the calculated membership 
function is derived by summing the confidence level of the function multiplied 
by the individual measurement value. Such techniques are effective in extracting 
edge features because various types of objects and regions have different grey 
level ranges within a single image. This same phenomena makes it difficult for a 
global threshold method to identify such features. 

In recent years, with the improvement of methods in signal processing, more 
attention has been paid to the waveform recognition of the radar returns as a 
detection technique. The amplitude information of.radar videos will no longer 
be the only component for processing a threshold decision. Valuable information 
is contained in a radar return which can be processed for effective detection. 
Such information includes symmetry /spread and width of waveform, correlation 
of special features, shape and gradient of waveform and so on. To extract such 
features from ship radar returns, Guo31 proposed a ship target recognition 
algorithm using various transform techniques, for example: 

F(X) = F3(F2(F1(X))), 

where F 1 is the Fourier transformation or maximum entropy spectral 
transformation; F2 is the Mellin transformation; F3 is coding transformation and 
selection of the events; X is a one dimensional digitized waveform. To enable the 
transformation to be done effectively, a suitable width and shift for the 
calculation window should be selected for sampling. The width should be slightly 
larger than the radar pulse width and the shift should be smaller than half the 
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radar pulse width. It was shown byGuo that spikes in the signal due to sea clutter 
ha,·e narrower and sharper features than those of weak targets. A threshold in the 
width will be able to remove obvious sea spikes. 

Feature extraction techniques in dynamic processing, such as radar detection, 
can be regarded as an information fusion system to estimate, screen and combine 
the features in a complex waveform. However, an intelligent radar detection 
system should not only rely on the features themselves and the interrelationships 
between them, but also en the a priori information about the ships targets, such 
as speed and course of a ship, wind situation, distance of the ship from the radar 
centre and so on. Rules that incorporate this information are stored in a data 
base. Such detection systems require high speed signal processing hardware to 
cater for the needs of target detection in real time and will be able to detect weak 
targets under strong sea clutter. 32 

4. coN cL us 1 oN. Various methods for the detection of targets in marine 
radar ha,·e been discussed in this paper. In a ,·esse! traffic management system, 
both ground clutter and sea clutter cause difficulties for detecting target vessels, 
This clutter is often of sufficient magnitude to mask the targets in the region. 
Clutter changes dramatically as the radar antenna rotates. In one sector of a single 
scan, we ,may obsene clutter returns from a calm sea, which behave as Rayleigh 
distributed random ,·ariable. In other sectors, clutter returns from coastal 
waters, where the land sea interface is situated, may be observed. This clutter 
often beha,·es as a K-distributed random nriable33 and the detection process at 
this clutter edge is ,·ery unpredictable. It is obvious that a simple thresholding 
detection method cannot meet such a challenge and excessive false alarms or 
misses will be encountered. A comprehensive selection of CFAR algorithms, 
including those for non-homogeneous clutter environment, has been discussed, 
Each algorithm aims to tackle a specific problem in detection, for example GO 

CFAR is appropriate for improving performance near clutter edges, so CFAR was 
de,·eloped to detect closely spaced targets, os CFAR is considered as an 
appropriate processor to deal with interfering targets. It is obvious that no single 
CFAR algorithm is adequate to solve problem·s-- in a complex detection 
enYironment, such as a \"TS system. Another drawback on the CFAR algorithm is 
that the decision is made only from the amplitude information of the return 
echoes. 

Research has been,undertaken using approaches otherthan the CFAR technique. 
Papers reporting success of the application of fuzzy logic in signal detection have 
enlightened the development in the area of radar detection. Fuzzy logic has a 
distinct advantage o,·er other algorithms in terms of its ability to handle 
information which has a high degree of uncertainty. It is shown by Saade26 that, 
in order to apply fuzz)· logic in radar detection, it is necessary to establish the 
specific regime in which the radar is to be operated. This allows the assignment 
of membership functions to the prior probabilities, the cost function and the 
recei,·ed signal amplitude. Based on a particular situation and the corresponding 
statistics of the noise under each hypothesis, the processing mechanism works 
with this fuzzv information to determine the desired threshold. However, the 
final threshold depends on the shape of membership functions of the input 



NO. l TARGET DETECTION IN R.\0.\R J I I 

parameters. It is necessary to ensure that the assignment of the membership is 
appropriate to the operating environment of the radar system. Also, since the 
amplitude information is fuzzy, the implication is that the signal-to-noise is also 
fuzzy and so is the minimum detectable signal. As such, it is difficult to predict 
the range of a radar system if a fuzzy approach is adopted. 

Pattern recognition has already been used as an interesting tool for radar 
detection. Potential ship targets and their elongated wakes are examined to 
obtain a higher reliability in detection. A fuzzy ship wake coupling coefficient, 
together with a fuzzy index of the ship, gi"e a final reliability index of the result. 
As edges in radar images involve abrupt changes in amplitude, extracting this 
feature will enhance the accuracy of target detection. A method of using a 
contrast measure and a brightness measure as input parameters in edge detection 
is described. It is suggested that an edge detector could be applied to a wide class 
nf returns ranging from clear to vague images. 

With the recent development in the processing speed of computers, more 
information can be handled in real time. Important information from radar 
returns, such as spatial components, correlation features and so on, can be 
extracted to assist in deciding if a target is present. A vast number of algorithms 
for estimating unknown signal parameters from the measured output of a sensor 
system are now available to deal with signal extraction3 •· 35 -~ 6 which can be 
appiieJ in radar, radio/microwave communication, underwater acoustics, and 
geophysics. Research has been undertaken to develop the tool of artificial 
intelligence for application to the radar detection problem. The concept develops 
inference machines which process data from various knowledge/ data bases to 
evaluate the situation and provide a final decision. Initial work undertaken in this 
area has been described in this paper and the results appear to be promising. It 
is clear that future technology in radar signal processing will be moving towards 
artificial intelligence with required information from the returns being extracted 
by modern adapti,·e algorithms. The next step in the development of this 
technology is to identify the minimum amount of information which will be 
required to optimize the efficiency of the decision process in target detection, 
bearing in mind the limitation in the processing speed of the computers in real 
time. Also, the identification of methods which relate the available/extracted 
information to a final decision remains a challenge in the task of intelligent radar 
detection. 
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RADAR TARGET DETECTION USING FEATURE EXTRACTION 
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Target detection based on magnitude of the amplitude information alone has a very low 
efficiency in discriminating between targets and clutter, performance depends on the signal-to 
noise ratio environment. Conventional detectors that rely on these techniques can produce high 
false-alarm rates when they are operating in adverse conditions. However, valuable information 
is contained in a radar return that can be processed for effective detection. The methods of 
extracting this critical information from sequenced sweeps of a radar signal and the integration 
of such data have been a challenging problem. The objective of this paper is to study the 
characteristics of radar return signals and identify the features that can improve the detection 
capability of the radar system. Methods of extracting this information to identify the presence of 
targets are also discussed. 

Introduction 

Radar target detection has been a difficult task due to the presence of clutter. These unwanted 
signals are often of sufficient amplitude to mask any weak targets in the region. The statistical 
nature of radar signals changes dramatically as the radar antenna rotates and does not always 
conform to the established distributions. The constant false alarm rate (CFAR) processing 
technique has been developed to adjust the threshold value according to the noise power of the 
return signal at specific times and various CFAR algorithms have been reported [1, 2, 3). 
However, each algorithm aims to tackle a specific problem in detection; Greatest of (GO) CFAR 
is appropriate for improving performance near clutter edges, Smallest of (SO) CFAR was 
developed to detect closely space targets, Ordered Statistics (OS) CFAR is considered as a 
processor to deal with interfering targets. lt appears that no single CFAR algorithm, in which a 
decision is made only from the magnitude of amplitude information, is adequate to solve 
problems in a complex detection environment (4]. 

The performance of radar target detection depends on the features that can be used to 
discriminate between clutter and targets. To have a significant improvell}ent in the detection of 
weak targets, more obvious discriminating features must be identified. The detection system 
can give a better performance when the characteristics of target and clutter are in line with 
some predicted values. A wide range of targets and clutters will be received by radar systems 
and it is necessary to formulate descriptions about these signals at specific times. To decide 
whether a target is present, there are factors other than the magnitude of the return signal to be 
considered. The echo from reflecting objects may consist of many components of energy 
scattered from points over the surface. Their time-frequency and correlation characteristics will 
vary as a function of time, angle of incidence and transmitting frequency. The interaction of 
these components will affect the radar detection process. With the recent development in the 
processing speed of computers, more information can be handled in real time. The statistical 
nature of the clutter returns can be calculated using the probability distribution function of a 
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random variable in sequential windows. Time-frequency and correlation characteristics from 
radar returns can be extracted to assist in deciding if a target is present. 

Section 1 of this paper describes the statistical characterization of different radar returns and 
shows how such information can be extracted in target identification. The various correlation 
characteristics of radar signals are discussed in Section 2. Section 3 shows the time frequency 
characteristics of a radar return. All data presented has been acquired by the authors using a 
radar system operating at X band that looks out across the city and then the harbor at 
Plymouth, UK. 

1. Statistical Characterization 

Most of the random noise arises in the initial stages of the radar receiver. The behavior of the 
noise during the period that the return signal from the target is being received cannot be 
predicted. However, the statistical distribution of random noise at the input to the intermediate 
amplifier can be assumed as Gaussian, with zero mean. This is mainly due to the thermal 
motion of electrons in the early amplification stages. 

Most targets and clutters have a very complicated relationship to the cross section area seen 
by the radar, and it is difficult to format equations based on the physical dimensions. Swerling 
summarized these targets in statistical form and established four statistical models based on 
probability density function [5] . lt was reported that class 1 targets (constant amplitude on any 
one scan) and class 2 targets (rapidly fluctuating target) are Rayleigh type model and 
corresponds to targets which many scattering sources are added. Basically, all targets received 
by the radar equipment are very close to this model. 

The Rayleigh model can also apply to sea clutter if the sea is calm and the range cells are fairly 
large. However, when considering a short pulse radar of high resolution, the range cells at 
which the system discriminates are relatively small. The size of individual sea waves may often 
be comparable with a range cell, especially in a rough sea. The distribution then departs from 
the Rayleigh model, with sharp peaks at the larger wave tops. Other forms of distributions, e.g. 
Weibull and Log-normal have been used to model sea clutter received by marine radar 
systems. These types of function have a longer 'tail' than the Rayleigh distribution. The decision 
on which distribution is applicable depends on the sea state at that time. 

Volume clutter is usually caused by particles in the atmosphere such as rain and cloud droplets. 
The systems performance is then influenced by weather conditions. The reflectivity of volume 
clutter is quantified in effective radar cross-section per unit volume. The unit volume is 
calculated using the pulse length, horizontal beamwidth and vertical beamwidth. The rain and 
cloud droplets are usually very small compared with the radar wavelength. Their effect, in terms 
of noise characteristics, can normally be described by the Rayleigh distribution. However, the 
radar cross section of droplets for cloud and rain is proportional to the fourth power of the 
transmitter frequency. This causes high frequency radars to be more susceptible to effects on 
clutter caused by the weather. For shorter wavelength systems the scattering properties may 
cause the noise characteristics to depart from the pure Rayleigh distribution. 

Figures 1 to 4 show the recorded noise, target, sea clutter and rain clutter, and their statistical 
distribution in a 4 microsecond time window, which contains 100 samples of the radar return 
signal corresponding to a distance of 600 meters. 
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Despite the fact that the magnitude of the random noise, sea clutter and rain clutter of these 
signals are similar, their distributions show that each type of return has its unique features. To 
characterize the difference in amplitude between these signals, their mean value and standard 
deviation in the 4 microsecond windows are evaluated. lt can be seen that the width of echoes 
from clutters and noise are usuallY. narrow and sharp. Such characteristics can be extracted by 
calculating the time differences, i.e. the period between the negative extremes of the signals 
inside the window. Also, the maximum period in each window is evaluated. The details are 
shown in the following table. 

Target Sea Clutter Rain Clutter Noise 
Mean (amplitude in volts) 0.1952 0.2340 0.5880 0.0584 
S. Deviation (amplitude) 0.2296 0.2014 0.1960 0.1060 
Maximum (period in microseconds) 0.8 0.44 0.36 0.48 
Mean (period in microseconds) 0.1704 0.1508 0.1584 0.1523 
S. Deviation (period) 0.1550 0.1026 0.0905 0.9799 

By comparison, the noise has a low mean amplitude. This is because the noise is fluctuating 
randomly around zero and the sum of these amplitudes will be close to zero. The rain clutter 
has a high mean amplitude, caused by high peaks in the radar receiver. The period mean of 
sea clutter is small, most of these return signals are sharp and spiky. The period mean of the 
window containing target(s) is large, which signifies that targets have a wider pulse width when 
compared with noise and clutters. Such statistical characterization may form the basis for a 
discrimination system for target detection. 

2. Correlation 

According to the Cauchy-Schwartz Inequality [6]. the maximum value of signal to noise ratio · 
can be obtained by choosing h( r) proportional to u( r + ( rd - t)) and h( r) is a reversed and 

shifted copy of u(r) . r11 is the time delay, hence, 

r 

y(t) = Ju(r)u(r+rd - t)dr 
r-r~ 

where u( r) is the incoming signal 

u( r + rd - t) is a copy of u( r) shifted to a duration of t - -rd . 

The product of the signal and its shifted version is integrated over the ranges for which the 
integral is not equal to zero. y(t) has the same shape as the autocorrelation function of u(t). As t 
varies, the shifted u(t) will come to align with the incoming signal and then out of alignment 

again. When they are fully align, i.e. t = rd , the maximum signal to noise ratio will occur and 
the amplitude is given by: 

r 

y(t) = Ju2(r)dr 
0 

Fig. Sa shows a radar return with a target (at 18 microsecond) being contaminated by noise. 
Since the transmitting pulse is rectangular in shape with a pulse width of 0.05 microseconds, 
the return echo will be stretched. The width of the integrating pulse can be determined by trials, 
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and it has been found that the best result can be obtained when it is around 10 times the width 
of the transmitting pulse. Fig. Sb shows the result of integrating the product of a 0.4 micro 
second rectangular pulse by the radar return. lt is obvious that the signal to noise ratio is much 
improved and this will facilitate the target to be detected more easily. 

Due to the beam width of the radar antenna, the target will appear in more than one sweep and 
there exists correlation of such target between different sweeps. The degree of correlation will 
depend on the size and type of targets. Targets that present a large cross section to the radar 
will be correlated in a greater number of consecutive sweeps than smaller ones. The speed of a 
vessel is relatively slow when compared with the time between sweeps and can be ignored in 
calculating the correlation. For example, the vessel is moving at a speed of 15 knots (27.78 
kmlhr) and the Pulse Repetition Frequency (PRF) is 1300Hz (short/medium pulse).,i.e. one 
sweep takes 769.2 microsecond, then the vessel only travels 0.463 mm between sweeps. The 
correlation between the targets within consecutive sweeps can be determined by:-

where Cs.s •• , (v) is the correlation of target points between n, and n+1 sweeps 

Vs... is the amplitude of nth sweep at time m 

I is the size of the correlation window 

Random noise is usually uncorrelated and thus can be removed after the correlation 
process. Figures 6a, 6b and 6c show three consecutive sweeps of a radar return with a 
time frame of 10 microseconds. The correlation of N/N+1 and N+1/N+2 are shown in 
figures 7a and 7b respectively. Despite the fact that most of the uncorrelated noise is 
removed, there is still some correlated noise apparent which may affect the target detection 
process. The use of a high order correlation technique [7] can provide a better capability for 
discrimination between clutter and noise. This is achieved by correlating the correlated 
results of N/N+1 and N+1/N+2 to generated a new sequence of radar signals and the result 
is shown fig. 8. The noise is suppressed and the targets can be discriminated from the 
~~e~~ . 

3. Time Frequency Characteristics 

Radar targets have distinct features in the frequency domain compared with clutter and 
noise. Targets appear at some specific time of the radar sweep and the corresponding 
changes in the immediate frequencies throughout the l ime sweep are .of interest in the 
detection theory. Armstrong and Ahmed [10] have modeled the immediate frequency 
function for a broadband signal by considering an input of n frequency varying spectral 
components. . 
x(t) = ,L A1 cos[~1 (t)] 

1·1 

By taking the square of the time derivative of the signal x(t), we have 
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n ) 

[x' (t)]2 
::: L- A, 2 w, 2 (t){l- cos[2qW)]} 

••I 2 
+ other cross-multiplied terms 

where w;(t) denotes the time frequency function 

If a low pass filter is applied to the signal [x'(t)]2
, it will suppress the terms associated with 

cos(2$1(t)] and the other cross multiplied terms. 

The low pass filter output of the square of the input is also calculated as follows: 

2 ~I 2 [x(t )] ILPF::: L.... - A, 
1•1 2 

The immediate frequency function w(t) can then be estimated as:-

[cu (t) 2
] = [x'(t / ] l [x(t) 1

] = IA,2cu,(t) ! IA1
2 

1•1 1•1 

The normalization element provides the weights of the individual spectral components to 
calculate a reasonable estimate of the immediate frequency. 

The detection of radar targets in the frequency domain requires the instantaneous frequency at 
each time slot to be estimated. A moving window of a fixed number of range cells is shifted 
through the entire sweep. The immediate frequency for each window is calculated using the 
normalization technique as described. If the window size is made too large, frequency changes 
for small targets may be missed. However, a window that is too small will involve additional 
computation time as well as producing unwanted nuctuation of the frequency function due to 
random noise. A window consisting of 20 samples is currently used. 

The slope of the distribution of the instant frequency will also be significant in detecting targets. 
A large slope will imply that there is a target embedded in the high frequency noise, or that 
there has been an abrupt change in the frequency of the noise. To remove any sharp slopes 
caused by random noise, the immediate frequency is averaged over several samples so that 
short duration changes of slope can be filtered out. So, in addition to considering the frequency 
response of returned signals, the presence of target may be confirmed by examining the rate of 
change of the instant frequency. This can be achieved by differentiating the immediate 
frequency function and detecting the slope change. 

The respective time frequency characteristics of the signal returned by a radar target and that 
of clutter are different on the retum sweep. The targets have a lower frequency component and 
this characteristic can easily be identified and extracted in the instantaneous frequency 
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distribution. Figure 9a shows a radar return in which targets are embedded in a series of rain 
clutters. Their time frequency representation is shown in figure 9b, in which the targets are 
displayed with lower frequency components. 

Conclusion 

Various methods for the extraction of features in the time domain have been discussed. 
During a full rotation of the radar antenna, a variety of return characteristics may be 
observed. For example, when operating in coastal regions, very low clutter may be seen in 
the seaward sector and significant clutters due to the land sea interface and reflections 
may be received in other sectors. The research presented in this paper has been based on 
the acquisition and processing of digitized live radar signals, and has shown that targets 
and clutters have unique features in their statistical characterization over a finite window. 
These can be extracted for discrimination purposes. Radar return signals, which have been 
reflected by different objects, possess unique features when correlated with other 
waveforms. When the received signal is correlated with a square pules of similar pulse 
width, the signal to noise ratio is much improved. Radar pulses are transmitted at fixed time 
intervals and correlation of the targets between different sweeps reduces the amplitude of 
random noise. This is easily removed by the sweep to sweep correlation process. The use 
of high order correlation, which performs the correlation between correlated results of two 
consecutive sweeps, further suppresses the partially correlated clutters. The time 
frequency characteristics can also be used to achieve effective target detection. To study 
such characteristics, the instant frequency value of the signal at any specific time of the 
sweep is estimated using a normalization technique. 

The statistical characterization, correlation, and time-frequency characteristics can be 
extracted from radar waveforms to determine if a target is present. In a very complicated 
environment, e.g. boundaries between the sea and land, the sea clutter may have certain 
similar characteristics when compared with the targets. However, it is unlikely to have 
similarities in all these parameters. These parameters themselves are extracted from 
moving windows along the radar return and can be fed into an information fusion process 
for making the final decision. Thus, the detection process is not based solely on the 
magnitude of the radar echoes and will provide a more reliable technique for discrimination 
iri target identification and tracking algorithms. 
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