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Abstract

An Artificial Intelligence Approach to the Processing
of Radar Return Signals For Target Detection

Vincent Yiu Fai Li
ABSTRACT

Most of the operating vessel traffic management systems experience problems, such
as track loss.and track swap, which may cause confusion to the traffic regulators and
lead to potential hazards in the harbour operation. The reason is mainly due to the
limited adaptive capabilities of the algorithms used in the detection process. The
decision on whether a target is present is usually based on the magnitude of the
returning echoes. Such a method has a low efficiency in discriminating between the
target and clutter, especially when the signal to noise ratio is low. The performance
of radar target detection depends on the features, which can be used to discriminate
between clutter and targets. To have a significant improvement in the detection of
weak targels, more obvious discriminating features must be identified and extracted.

This research investigates conventional Constant False Alarm Rate (CFAR)
algorithms and introduces the approach of applying artificial intelligence methods to
the target detection problems. Previous research has been undertaken to improve the
detectton capability of the radar system in the heavy clutter environment and many
new CFAR algorithms, whtch are based on amplitude information only, have been
developed. This research studies these algorithms and proposes that it is feasible to
design and develop an advanced target detection system that is capable of
discriminating targets from clutters by learning the different features extracted from
radar returns.

The approach adopted for this further work into target detection was the use of
neural networks. Results presented show that such a network is able to learn
particular features of specific radar return signals, e.g. rain clutter, sea clutter, target,
and to decide if a target is present in a finite window of data. The work includes a
study of the characteristics of radar signals and identification of the features that can
be used in the process of effective detection. The use of a general purpose marine
radar has allowed the collection of live signals from the Plymouth harbour for
analysis, training and validation. The approach of using data from the real
environment has enabled the developed detection system to be exposed to real clutter
conditions that cannot be obtained when using simulated data.

The performance of the neural network detection system is evaluated with further
recorded data and the results obtained are compared with the conventional CFAR
algorithms. It is shown that the neural system can learn the features of specific radar
signals and provide a superior performance in detecting targets from clutters. Areas
for further rescarch and development are presented; these include the use of a
sophisticated recording system, high speed processors and the potential for target
classification.
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Introduction

CHAPTER 1

INTRODUCTION

1.1 Preface

Vessel traffic management systems extract data from the raster of the incoming radar
signal. These data are further processed to gencrate target tracks that are then
displayed for traffic control. In a dense harbour situation where vessels are usually
manoeuvring in very close proximity to each other, targets may be swapped giving
the controller a false impression of ships manoeuvres and their masters™ intentions.
Furthermore, reflections from land based objects such as buildings increase the level
of interference to the received signals and provide further confusion to the tracking
algorithms employed. When the weather is bad, clutter due to sea waves and fog wil!
also affect the quality of the signals. All these restrictions limit the detection/tracking
capability of the vessel traffic management system and hence the information
provided to the operator. Any resulting target loss or swap that may occur will cause
burden to the safety operation of managing traffic in the harbour. It was stated by
Ming Po (1994) that statistics in 1993 showed there were over {ive thousand general
type vessels and forty high speed ferries manoeuvuring at the same time in Hong
Kong harbour. It 1s important that an efficient radar system with good detection
capability is required to reduce the possibility of collision between these vessels in
the area. As such, there is a need to review the radar signal processing techniques
that are currently employed and possible alternatives with the objective of making

the processing more adaptive to dynamic changes of the environment.
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1.2 Introduction

Radar is an electronics device for the detection and location of objects. It operates by
transmitting an electromagnetic wave at a given frequency, which may be up to several
GHz, and detects the nature of the reflected signal from an object. Usually the echo is
the result of the reflected wave when the objects are hit by the transmitted wave. The
electromagnetic waves travel at the speed of light, nearly 3 x 10° meters per second,
which is dependent on atmospheric conditions. The distance between the object and
the radar can be calculated by measuring the time required between transmission of
radar pulse and reception of the returning echo. Since the time includes both the
transmission and the reception, the result will be divided by two. It transpires (hat a
two way travel time of | microsecond corresponds to a di-stance of approximately 150

meters.

The initial step in radar signal processing can be regarded as the task of removing all
the non-useful data. The returned radar information from the receiver must be
reduced to a few signals that represent the known and new targets. The key operation
to achieve this data reduction is the thresholding process, where the data sets
acquired are compared with a reference level. Only those signals with magnitudes
exceeding some threshold levels are processed further. However, the radar signal
from a target is usually embedded in both thermal noisc and clutter. The magnitude
of the noise and clutter will vary in different swecps, ranges and scans. To achieve a
low false alarm rate and a high probability of detection, the setting of a threshold

with constant amplitude is not feasible.
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1.3 Constant False Alarm Rate (CFAR) Algorithms

The constant false alarm rate (CFAR) processing technique has been developed to
adjust the threshold value according to the noise power of the retum signal at
specific times. The threshold of individual cells is decided based on the signal
strength of a group of reference cells nearby. In the conventional cell averaging
constant false alarm rate (CA-CFAR) detector (Barkat, 1989), digitized radar video
1s clocked through a moving window (delay line). For each range cell, which
corresponds to a given range on some bearing, the mean video levels of the 'N'
preceding cells and of the 'N' following cells are calculated. The threshold
comparator calculates the average of these two mean levels, and the resulting
threshold 1s compared with the radar signal. For those that are above the threshold
level, they will be processed as a target for the following stages. Otherwise, they are
treated as noise. The probability of detection of the CA-CFAR detector depends on
the threshold multiplier (which is a function of the probability of false alarm), the

signal to noise ratio and the number of range cells in the window (Steenson, 1968).

CA-CFAR provides optimum detection in a homogeneous environment where the
noisc power in the range cells is such that the observations are independent and
identically distributed (Kassam, 1988). However, this assumption is frequently false
due to the environment in which the radar system is operating. A reference window
.may contain cells with large sudden changes in the noise power due to some other
phenomena providing a reflection that -appears as clutter on the system. If the target
is embedded in the test cell, this transition will unnecessarily increase the threshold
to a high level and lower the detection probability. Yet, if the test cell contains the

clutter, the threshold value is not high enough to reject the clutter because cells with
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low noise level will have also contributed to the calculation of mean value. As a
result, an excessive false alarm rate will occur. Also, when multiple targets are very
close in range and appear in the same window, the noise associated with these
targets may cause the threshold to increase. Such an effect will allow only the

strongest target in the window to be detected.

In view of the above drawbacks of CA-CFAR, alternative solutions have been
proposed to improve the effect of nonhomogeneous noise backgrounds to the CFAR
detector. A 'greatest of’ logic selection (GO-CFAR) was proposed by Hansen and
Sawyers (1980) (o reduce the number of excessive false alarms at clutter transitions.
Two reference windows are formed in the leading and lagging sides of the test cell
and a target is declared if the amplitude of the test cell exceeds the greater of the two
windows. A slight reduction in detection probability may be expected when the
leading window contains signals with low noise power while the lagging window
contains clutter with large magnitude. However, the use ol greatest selection will not
allow the CFAR detector to efficiently detect closely spaced targets. Also, the
detection probability will be greatly affected when interfering targets appear in the

leading and lagging windows (Al-Hussaini, 1988 and Weiss, 1982).

It has been shown (Trunk, 1983) that the use of the 'smallest of (SO-CFAR)
selection method is able to resolve targets which are closely spaced in range. The
smaller value of the leading or the lagging windows is used to estimate the noise
power. Again. the performance of the SO-CFAR detector will be degraded if
interfering targets are found in the leading and lagging windows. The SO-CFAR

detector is not able to limit the false alarm rates during the clutter transitions. For
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example, if there is a clutter transition in the window then the clear background will
contribute to a low magnitude of estimated noise level. This will cause the threshold

to go low and increase the false alarm rate.

Research has been performed to provide adaptive CFAR algorithms, which are able
to handle radar detection in a non-homogeneous environment. Ordered statistics
(OS) CFAR has been developed to reject transient noise (Rohling, 1983). In this
algorithm, the range cells (c(1)...c(N)) in a window are first ordered according to
their magnitudes to yield the ordered samples, t.e. c(1) <c(2) <...c(N), where N is
the window size. The noise power is then estimated by selecting the magnitude of a
cell with a specific order to work out the threshold. The performance of OS CFAR in
clutter edges is good when the clutter returns have constant/slow varying amplitude
characteristics. However, OS CFAR suffers serious degradation during the clutter

power transitions.

Trimmed mean filtering has been used in signal and image restoration processes
(Bovik. Huang, and Munson , 1983). The noise power of the trimmed mean CFAR
(Wilson, 1993) is estimated by combining the ordered samples linearly. It furstly
ranks the samples according to their magnitude and then filters T1 samples from the
lower end and T2 samples from the higher end. The remaining samples are summed
to work out the threshold. Optimization of such an algorithm is then a matter of fine
tuning these parameters and is dependent on the amount of clutter and number of

targets.

Rickard and Dillard (1971) proposed the censored mean level (CML) CFAR to deal
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with interfering targets. The outputs from the range cells are ranked according to
their magnitude and the largest n samples are censored. The remaining N-n samples
are used to estimate the noise level (c) of the cell under test. This estimate (c) is
multiplied by a threshold multiplier (M), which is based on the desired false alarm
rate (Fa). If the magnitude of the strength of the signal return in a cell exceeds Mc
then a target is assumed to be present. Ideally, if the samples to be.censored are equal
to the number of the interfering targets in the window, the performance of CML will
be optimal. However, it will be degraded if the censorship does not include all the
interfering targets. This may be the case when the number of interfering targets is
unknown. Thus, if an interfering target is included in the process of noise estimgtion,
the threshold will be unnecessarily high and lower the probability of detection.
However, if the number of interfering targets is underestimated, this will cause the

threshold to be low and increase the false alarm rate.

The generalized censored mean-level (GCML) CFAR does not require the exact
knowledge of numbers of interfering targets (Rickard and Dillard, 1971). The
samples of both the leading and the lagging windows are ordered independently. The
returning signals in the cells, which are considered as interfering targets, will be
censored. To decide whether the cell should be censored or not, the higher ordered
samples are compared with the lower ones in sequence. A scaling multiplier (M),
which 1s a function of the desired false alarm rate, will be introduced to the lower
ordered samples. If c(k) is greater than Mc(k-1), then samples c(k) (k, k+1, ...N) are
regarded as echoes from interfering targets and they will be censored. The noise

estimate is processed based on the magnitude of the remaining samples. The

performance of the GCML CFAR is optimum when the interfering targets appear in
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both the leading and lagging window. The performance will be slightly degraded
when the interfering targets fall in one of the windows only. The number of range
cells in a window will also affect the performance, the higher the number the better

the performance.

The greatest of order statistics estimator CFAR (GOOSE-CFAR) (Wilson, 1993)
takes the nth ordered samples from both the leading and the lagging windows. It
compares these two sanmples and takes the larger one to estimate the threshold. Since
n is less than N/2 (the number of samples in each window), GOOSE-CFAR can
handle interfering targets in both windows and such targets will normally appear in
samples from n+1 to N/2. When a clutter boundary appears in the window, the worst
case occurs when the cell under test is in the heavy clutter. With the larger of the two
ordered samples being taken for threshold estimation, the threshold will be high
enough to prevent excessive false alarms. GO-CFAR has demonstrated its good
performance in clutter boundaries when interfering targets are not present. However,
with GOOSE-CFAR. 1argets with magnitude larger than the nth sample in both
windows will be filtered. This will prevent the masking of mulliple targets in the

window and improve the detection capability in the clutter boundary.

Censored greater-of (CGO) CFAR (Al-Hussaini, 1988) filters n largest range cell
from both leading and the lagging windows. The remaining samples of each window
are summed. A threshold multiplier to give the required threshold will multiply the
larger of the two. The choice of numbers of cells to be censored depends on the
likelihood of the number of interfering targets in the windows. When the number of

interfering targets exceeds the number of samples to be censored, the performance of
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CGO CFAR will be degraded. However, the detection loss of CGO CFAR will be
less than the OS and GOOSE CFAR because CGO- CFAR takes the mean of the
magnitude of the interfering targets and the noise samples, while OS and GOOSE
CFAR will use the ordered magnitude alone. Both GOOSE and CGO CFAR have
the greatest-of logic which is able to reduce the sharp rise of false alarm rate at the

clutter boundary.

MEMO CFAR (Al-Hussaini, 1988) combines both median and morphological
hiltering (Vassilis and Lampropoulos, 1992) to decide the threshold level. The first
median filter transforms the input into a new series of samples in which those
samples less than the mean power of the clutter will be replaced by this mean value.
As such, it changes the smaller values of clutter to the estimate of the mean noise
power. Also, any samples with a magnitude greater than a fixed multiple of the mean
power will also be replaced by the mean value. The objective is to reduce the effect
caused by interfering targets. The second median filter will be used to smooth out
the samples from the first filter and gives an unbiased estimate of the original
samples. The output from the second filter is then processed by a morphological
filter that uses an open-closing technique (Jain, 1989; and Stevenson and Arce,
1987). 'Open’ breaks small targets and smoothes boundary while 'close' fills up
narrow gaps between targets. MEMO CFAR detectors have superior performance in
the presence of interfering targets since it gives a mean estimate of noise power with
minimum bias and smaller variance. It is able to overcome problems due to masking
of targets by clutter boundaries. However, it requires much more compulter execution

time to process the samples than other CFAR detectors.
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1.4 Intelligent Methods in Radar Detection

Fuzzy logic has become a valuable tool in practical engineering applications; it is
capable of addressing the imprecise information from a physical system by applying
rule-based algorithms that resemble the flexibility of human decision making.
Successful applications of fuzzy logic in various fields have been reported (Kosko,
1992; and Li and Lau, 1989). Recently, fuzzy approach to signal detection has also
been addressed (Russo, 1992; Son, Song and Kim, 1991, Boston, 1995). Radar
detection has been using probability theory to correctly decide the presence of a
target. A two state binary logic is usually used to define the state of the signal, i.e. a
threshold is applied to the signal. A signal above the threshold level will be accepted
as a target and others will be rejected. Since the targets in a radar return are not
always clearly defined (e.g. embedded in clutter or noise), uncertainty can appear in
every task of the detection stage. Any premature decision based on limited
information made at an early task of the radar processing will have a large impact on
the following stages, such as tracking and feature extraction. Processing techniques
that use binary logic o .quantify the input signal rely on lhréshold values and may
provide false information. With the aid of fuzzy logic, radar detection will not be
solely limited to the likelihood of detection/false alarm, it can also be expressed in
degrees to which an event will happen. Instead of offering a combination on
conditional ‘probabilities, the membership functions used in fuzzy logic theory
combines nexact information. The fuzzy associative memory function defines the
degree of likelihood of the returned signal to be a target and its exact value is of no
absolute importance. When the magnitude of the returned signal is increasing, it is
more likely that the signal would be detected as a target and the false alarm rate will

be reduced. Such a model provides an explicit feature to represent uncertainty in the
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radar detection process.

In binary hypothesis testing, Bayes Theory (Zadeh, 1965) formulates the
minimization of the expected cost, called the Bayes risk, and leads to the likelihood
ratio test (LRT). Assuming that the priori probabilities of the two hypotheses H; and
Hg are 0.5, the test can be formulated as follows:-

LR = exp{0.5[R*- (R - X)’]} >1 (H)

LR = exp{0.5[R>- (R-X)’]} <1 (Hp)

where LR is the likelihood ratio
R is the observed data
X is a positive mean of the signal amplitude
To model the uncertainties of the received radar signals, the binary hypothesis
testing can be reformutated using fuzzy set theory (Zadeh, 1965).
HI:R=X+N
HO:R=N
where N is the standardised Gaussian noise.
Now, X is a fuzzy parameter and p(X) is the membership function of X. For
convenience, a triangular membership function centered about a nominal amplitude
value and .extending between X; and X3 is used, such that p(Xg)=1. The likelihood
ratio (L.LR) becomes a fuzzy set. As shown by Saade (1990), the fuzzy threshold of
the likelihood ratio can be determined from prior probabilities and cost functions,
which are again fuzzy or uncertain in nature. The computation of the fuzzy decision

on the optimum threshold of detection requires the ordering of the fuzzy sets over

the real line to obtain the expression for the utility ranking index of LR, which has




Introduction

been described by Saade (1992). The performance of the fuzzy algorithms is
evaluated on the basis of the probability of error technique (Saade, 1994). It was
shown that the fuzzy logic method provided a better result than binary logic in

treating the false alarms and misses in decision making process for radar detection.

The detection of ship wake signatures against sea clutters have been adopted to
reject false targets. It produces fuzzy decisions which associate with a confidence
level for each entity based on suitable fuzzification functions (Benelli, Garzelli and
Mecoccei, 1994). To define a membership function for a fuzzy set of radar echoes for
vessels, features that will not be critically affected by speckled noise, such as mean
gray level and elongation. need to be selected. Ship classes are selected according to
the area of the target. e.g. class 1 for area less than 60 pixels, class 2 for area l.ess
than 120 pixels and so on. Each potential ship echo is compared with prototypes of
true ships and a weighting for distance applied. The classifier associates a true ship
1o a high fuzzy index (approx. 1) and a false ship to a low fuzzy index (less than
0.5). Information with respect to the ship/wake relation is processed to give a
coupling coefficient that is a function of the distance between the centroid of the
ship and its closest extreme of wake. This coefficient, between 0 and 1, defines the
position of a ship with respect to its wake in the radar image. The coefficient will
finally be multiplied by the fuzzy index from the classifier to give a global value that
measures the reliability of the detected ship-wake couple. it was demonstrated by
Benelli (1994) that this method presented advantages with respect to the classical

method of wake detection using conventional signal processing lechniques on noisy

1mages.
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The detection of amplitude transitions (edge detection) has been used as a means of
classification for radar images. However, the decision on whether a point in the
return 1s an edge or not possesses ambiguity. The fuzzy reasoning technique, as
proposed by Cho (1994), detects the transition on intensity changes of the radar
signal. Both the brightness and contrast measures of the pixel intensity are processed
as fuzzy inputs. ‘If and ‘Then’ fuzzy rules are used to determine the threshold
decision, which will be in the form of membership [unction. To defuzzify the
threshold decision, the centroid of the calculated membership [unction is evaluated
by summing the confidence level of the function multiplied by the individual
measurement value. This technique extracts edge features effectively because
various types of objects and regions have different gray level range within a single

image which makes a global threshold method difficult to deal with.

In recent years, with the improvement of methods in signal processing, more
altention has been paid to the waveform recognition of the radar returns as a
detection technique. The amplitude information of radar videos will no longer be
the only component for processing a threshold decision. Valuable information 1is
contained in a radar return that can be processed to provide effective detection.
These include symmetry/spread and width of waveform, correlation of special
features, shape and gradient of waveform and so on. To extract features from ship
radar returns, Guo (1989) proposed to use a ship target recognition algorithm using
multiple transform techniques.

F(X) = F3(F2(F1(X))),
where F1 is the Fourier transformation or maximum entropy spectral transformation

IF2 is the Mellin transformation
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F3 is coding transformation and selection of the events

X is an one dimensional digitized waveform

To enable the transformation to be done effectively, a suitable width and shift for the
calculation window should be selected for sampling. The width should be slightly
larger than the radar pulse width and the shift should be smaller than half the radar
pulse width. It was shown by Guo (1989) that most sea clutter spiky signals have
narrower and sharper features than general weak targets. A threshold in the width

will be able to remove obvious sea spikes:

Radar detection in a dynamic processing environment can be achieved by éxtracting
and combining different features in a complex waveform system. However, -an
intelligent radar detection system should not.only rely on the features themselves and
the interrelationships between them, but also on the a priori information about the
ship targets, such as speed and course of a ship, wind situation, distance-of the ship
from radar centre and so on. Rules that incorporate this information are stored in a
database. This method of detection requires high-speed signal processing hardware
to cater for the needs of target detection in real time and will be able to detect weak

targets under strong sea clutter (Guo, 1992).

Neural networks have been used for pattern recognition in very noisy environments.
Lippmann (1989) has shown an example of character recognition using a Hopfield
network in which the input to the network is corrupted by noise and is
unrecognizable. The capability of extracting desired patterns from noisy

backgrounds makes neural networks suitable to be extended to the application of
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detecting weak targets in heavy clutiers. The use of feed-forward and graded-
response Hopfield networks can implement the optimum post-detection target track
receiver. Khotanzad (1989) developed a neural network for the detection of signals
in underwater acoustic fields. The input to the network is the magnitude of the
received signal and noise at different frequencies as time varies. The output is a
multi-layer perceptron classifier trained using the back propagation algorithm, which

decides the presence and absence of the target with high classification accuracy.

1.5  Specific Aims and Objective

Radar target detection in heavy clutter environments has been a challenging task. In
undertaking this research. all the commonly used CFAR algorithms have been
reviewed and analyzed. Most of the research in the field of radar detection
concentrates on the development of advanced algorithms to decide on the threshold
to be applied to the signals based on their amplitude information. To improve the
detection probability and reduce the false alarm rates, this research will study the
detailed characteristics of the radar waveforms and to identify features that can be
used for differentiation between targets and clutlers. The objective is to develop an
intelligent detection system that can extract the essential features from the radar
signals and detect targets in heavy clutter environment with the help of these

extracted features.

All results provided in this thesis are based on the observations made by the author

using the radar system in the Universilty of Plymouth. The author designed and
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developed all the necessary hardware and software to record the radar targets and

clutter in the harbour..

1.6  Organization of the Thesis

The research is divided into three specific areas:

1.6.1 The review of different CFAR algorithms and their performances.

1.6.2 The construction of a set of tools, both hardware and software, for feature
extraction and implementation of the intelligent detection system.

1.6.3 The training, testing and verification of the intelligent detection system.

The contents of the succeeding chapters of this thesis have been organized as

follows:

Chapter 2: Analysis of CFAR dectection algorithms

Five commonly used CFAR algorithms are analyzed, with their performance being
tested with live radar videos. The chapter concludes that more obvious
discriminating features must be identified and extracted in order to have significant

improvement in the detection of weak targets.

Chapter 3: Characteristic of radar signals and feature extraction

This chapter studies the characteristics of radar signals, and identifies features and
extraction algorithms to improve the detection capability. These features can then be
fed into an information fusion process for making the final decision. The detection
process is not based solely on the amplitude of the radar signals and provides a more

reliable method for discrimination in target identification and tracking algorithms.
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Chapter 4: Data fusion techniques in radar signal processing

Methods are identified to relate the extracted features to a final decision on whether
a target is present. Both fuzzy and neural network approaches are discussed and
compared. The chapter concludes that neural networks are more suitable in this
application as large amounts of sample data from simulated/live signals can be

obtained and used as training sets for the network.

Chapter 5: The radar system and data acquisition
The radar system and the effect of its characteristics in signal processing are
discussed, followed by describing the development of the data acquisition system to

match the characteristics of the radar waveforms.

Chapter 6: The integrated radar detection system

This chapter describes the implementation of a data acquisition system to record the
radar video signal for analysis purposes. Features are extracted from windows of
signals containing targets and clutter and the criteria for selecting these features is
also discussed. The chapter then describes the training procedures of the neural

network and the algorithms for the final detection system.

Chapter 7: Training, testing and verification of the radar detection system

The neural network based radar detection system is presented and samples from live
radar video data are used in the training process. The subsequent sections in this
chapter detail the construction, testing and verification of the detection systems. The

trained system is verified by trials with test scenarios that have not been used in the

16
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training. Comparison on the performances with CFAR algorithms is also discussed.
The approach that is finally adopted is then extended by combining the techniques

employed with fuzzy logic to classify targets into large and small vessels.

Chapter 8. Conclusion and further work
This final chapter presents the conclusions on the tasks described in the thesis and

proposes further research in this area.
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CHAPTER TWO

ANALYSIS OF CFAR DETECTION ALGORITHMS

2.1 Introduction

Various CFAR algorithms and their purposes have been briefly described in chapter one.
In considering these CFAR detection schemes, there are two major problems that need
careful studies. These are regions of clutter power transition and multiple target
environments. The clutter power transition occurs when the total noise power received
within single reference window changes sharply. Depending on whether the cell under
test is a sample from a clutter background or from a clear background, the presence of
this transition will severely degrade the performance of this adaptive threshold scheme.
This leads to either excessive false alarms or serious target masking. The multiple target
environments are encountered when there are two or more closely spaced targets in the
same reference window. The interfering targets may raise the threshold unnecessarily.

As aresult, only the stronger targets are detected by the CFAR detector.

Modifications of the CFAR schemes have been proposed to overcome the problems
associated with nonhomogeneous noise backgrounds. These algorithms split the
reference window into leading and lagging parts symmetrically about the cell under test.
The noise power is no longer estimated efficiently, and therefore, some loss of detection
in the homogencous reference window is experienced when compared with scheme
using a non-splitting window. In this section, the basic assumptions that have been used
to analyze the performance of the CA-CFAR processors are discussed. The exact

expressions for the GO-CFAR and the SO-CFAR processor performance are derived for
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In a homogeneous environment, it is assumed that the detected output for any range-cell
1s exponentially distributed, with probability density function (pdf) as given by Van

Trees (1968).
f -y — l (Eg) . >0
(.\)—ge ,x 20,

Under the null hypothesis Hg of no target in a range cell and homogeneous background,
A 1s the total background clutter-plus-thermal noise power, which 1s denoted by p. Under
hypothesis HI (presence of a target), A is n(1+S), where S is the average signal to total

noise ratio (SNR):of a target.

In a nonhomogeneous background, the reference cells do not follow a single common
pdf. During a single transition from a lower total noise background power level to a
higher level, the initial portion of the reference cells have thermal noise only with A = u=
o, and that the remaining reference cells arise from a clutter background with thermal
noise so that here A = p= pe(1+C), with C being the clutter-to-thermal noise ratio
(CNR). The optimum detector sets a fixed threshold to determine the presence of a
targel under the assumption that the total homogeneous noise power p is known. The
false alarm probability Py, is given by:

-t

P, =PlY >V | Hy)=e?

where Y, denotes the fixed optimum threshold. Similarly, the optimum detection

probability Py is given by:

=2
[\ ]
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-4

P = PY > ¥, | H]=e™" =[P,

|
_ ]|:
Therefore, the statistic Z is a random variable whose distribution depends upon the
particular CFAR scheme chosen and the underlying distribution of each of the reference

range samples. Thus the processor performance is determined by average detection and

false alarm probabilities. As shown by Kassam (1988), Py, can be expressed by:

-1Z

Crdyy = E e )= M, (1)
) T 2u

1
P]ﬂ - EZ {_[; 2[[1
Where My (.) denotes the moment generating function (mgf) of the random variable Z.

Similarly. the detection probability Pd is given by:

T
Pd = -’wz [————]
2u(1+5)

There 1s an inherent loss of detection probability in a CFAR processor compared with
the optimum processor detection performance in homogeneous noise background. This
is because the CFAR processor sets the threshold by estimating the total noise power
within a finite reference window. The optimum processor, on the other hand, sets a fixed

threshold under the assumption that the total noise power is known.

2.3 Analysis of Mean-Level CFAR Algorithms

Mecan-level CFAR algorithms incorporate arithmetic averaging to estimate the total
noise power. In this section, three such types of CFAR algorithms namely, CA-,GO-,
and SO-CFAR algorithms are analysed. Their performance in homogeneous
backgrounds as well as in regions of clutter transition and multiple larget environments

are-studied.
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2.3.1. Cell Averaging CFAR Processor
[n the CA-CFAR processor, total noise power is estimated by the sum of N range cells

of the reference window (Barkat, 1990}):

Where Xi’s are range cells surrounding the cell under test. The probability of detection

can be found as:

P, =[1+T/1+8)]"

The constant scale factor T 1s computed by S=0:

T=(P,)"" -1

In cases where the reference window no longer contains radar returns from a
homogeneous background. e.g. in the clutter edge, the statistical characteristics of the
reference cell is assumed to be independent. When the reference window contains r cells

from clutter background with noise power po(1+C) and N - r cells from clear

background with noise power g Then, the estimated total noise power is:

7= Z\ + ilx ~Z +7Z,

Since 7, and 7 are independent, the moment generating function of Z 1s simply the
product of the individual moment generating functions of Z, and Z; (Rohling, 1983).

When the test cell is from clear background, the false alarm probability is:
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P,=0+T/(A+CH"@+T)""

When the test cell comes under a clutter background, the false alarm probability

becomes:

P,=(+T)"(A+T/(1+CH

In cases when the reference window contains two or more closely spaced targets, the

detection probability is given by Steenson (1968) as:

Po=[1+@+ DT+ +T/(1+8)]"

Where r represents the cells in the reference window that contains the interfering targets.
C and I are assumed to be different noise conditions {thermal noise for C and clutter-

plus-thermal noise for I).

2.3.2  The Greatest Of and Smallest Of CFAR Algorithms
The greatest of (GO) CFAR is specifically developed to reduce the false alarms at clutter
edges. The total noise power is estimated from the larger of the two separate sums

computed for the leading and lagging window (Hansen and Sawyers, 1980), i.e.

" N
Z=max(}, 1, )Y, =D XY, = D X,
1= i=n+l
vy —H & (” + ’ ={n+i)
P.o=2(1+1 +T
Ju ( .) z '( + l)' )

The false alarm rate is found by computing the moment generating function of Z. The

detection probability Py is found by simply replacing T with T/(1+S). The GO
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modification introduces additional loss of detection compared with the CA-CFAR

processor loss when the background is uniform.

The smallest of (SO) CFAR is introduced to solve problems associated with closely
spaced targets leading to two or more targets appearing in the reference window. The
algorithm estimates the smaller of the sums Y| and Y, i.e. Z = min(Y, Y;) and the false

alarm probability is (Trunk, 1983):-

1)

e = My (T 1210+ M (T12p) - PP

My (T) and My»(T) are the moment generating functions of Y1 and Y2 respectively.
This expression gives a very simple relationship between the performance of SO-CFAR
and GO-CFAR. The GO-CFAR processor exhtbits minor additional degradation in
performance compared with the CA-CFAR processor. On the other hand, performance
of the SO-CFAR processor is highly dependent on the value of N. For small N the loss
1s quite large compared with the other CFAR schemes. but decreases considerably for
increasing N. Weiss (1982) has shown that the additional detection loss in the SO-CFAR

scheme at Py, is 109 is 11dB for N =4 but is only 0.7 dB at N=32.

Consider the special case where the lagging window has noise values from clear
background and the leading window has noise samples from the clutter region. If the test

cell contains a sample from the clear background, the false alarm probability is (Gandhi

and Kassam,1988):-
P.o=(1+T)" +(+(1+C)T)" - iw (14T 4 -yt [(1+C)" +(1+C)7]
& = i+ 1)! [+C -
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As the reference window sweeps over the clutter edge, the detection rate of the GO-

CFAR is superior to that of both the CA and SO-CFAR.

In the presence of interfering targets, intolerable masking of a primary target occurs in
the CA- and GO-CFAR and this gets worse as the interference to signal ratio increases.
The effect is greater in the GO-CFAR than in the CA-CFAR. Trunk (1978) shows that
the SO-CFAR has better performance in resolving multiple targets in the reference
window as long as all the interfering targets appear either in the leading or lagging
window. Suppose there is one interfering target in each of the leading and lagging
windows. The detection performance of the SO-CFAR will be degraded significantly.
This is due to the fact that there is one interfering target in each ol the half window, the
noise power estimate includes power of the interfering target regardless of the specific
half window chosen. This results in an increased threshold leading to a decrease in the

overall detection probability.

2.3.3  Ordered Statistics (OS) CFAR Algorithm

The threshold of the OS-CFFAR is obtained from one of the ordered samples of the
reference window. The range samples are first ordered according to their magnitudes,
and the statistic A is taken to be the kth largest sample, X(k). The detection probability

Pd can now be expressed as (Rohling, 1983):

N .. PO k-1 N —i
P, (5) :k(k )i (1—e )" ce e 'z :]—[—’

The constant T is now -a function of k. As k increases, T decreases accordingly. [For

higher k values the noise estimate Z is one of the reference range samples that has
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relatively large magnitude. Thus T decreases to compensate for this increase in Z to
mainltain the design false alarm rate at a constant value. As reported by Gandhi and
Kassam (1988), the OS-CFAR is performing better than the SO-CFAR especially for
smaller window lengths, although the OS-CFAR processor performance is inferior 1o

that of both the CA and GO-CFAR.

Consider the situation where the reference window contains r clutter-plus thermal noise
cells each with power level (1+C)/2, the remaining N — r cells have the thermal-noise-
only with a power level of ‘% The following expression shows the false alarm
probability for the case when the cell under test is from the clutter-free region (Peterson,
Lee and Kassam, 1988):

L! (i-L )

_] IR
< (J. (L - J.)')(J, Wi—L—j,) =D

—i+ L
N—r—L+T+j1+]2+’ o
1+C

Noomin(nN-r) IV _ ’)f 1.
P =T
. Z/ 1% ,,(L N —r - L)!)((f )'(f i+ L) ,Z

When the test cell is from the clutter region, the Py, is oblained from the above results by
replacing T with T/(1+C). The k = N value cannot be used in practice due to suppression
of targets. Therefore, for k = N the noise estimate Z will be the highest ordered sample
, which may contain the interfering target with high probability. The false alarm
probability will worsen in the clutter region, just after the transition, for decreasing k.

This is due 10 lower thresholds which in turn increases the false alarm rate.

Constder the OS-CFAR of window size 24 with k=21. In the worst case, there are 12

clutter plus thermal noise samples in the lagging window and 12 clutter free samples in

the leading window. The clutter samples occupy the top 12 positions of the ordered
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range samples and the total noise power estimate tends to be selected as the 9™ largest
sample among the 12 clutter samples. Suppose the test cell contains a sample from clear
background. Then the threshold will be unnecessarily high, leading to a much lower
false alarm rate. If the test cell is from a clutter background, the processor acts as if it
were an OS(9) processor of window size 12 in a homogeneous situation. The false alarm

rate increases significantly.

In case of the presence of interfering targets in a reference window, the performance of
the OS-CFAR processor is highly dependent upon the values for k. If a single interfering
target appears in the reference window of appreciable magnitude, it occupies the highest
ranked cell with high probability. If k is chosen to be 24, the estimate will set the
threshold based on the value of the interfering target. This results in an increase in the
overall threshold and leads to a target miss. If k is chosen to be less than the maximum
value, the OS-CFAR processor will be influenced only slightly for up to N - k
interfering targets. For example, if K is chosen to be 21. then the processor is able to
discriminate the primary target from, at the most, three interfering targets with little

degradation in detection performance.

Though the OS-CFAR exhibits some loss of detection power in homogeneous noise
background compared with the CA and GO CFAR:s, its performance in a multiple target
environment is clearly superior. By selecting k to be near the maximum, a false alarm
rate performance close to that of the GO-CFAR is obtained. The detection performance
of the OS-CFAR is independent of the location of the interfering targets in the reference
window while the SO-CFAR suppresses the primary target if the interfering targets are

located in both the leading and lagging window. In addition, the detection performance
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of the OS-CFAR in homogeneous background noise is superior compared with the SO-

CFAR with k values approaching maximum.

2.3.4 The Trimmed-Mean ™ CFAR Algorithm

The TM-CFAR scheme is similar to OS-CFAR in which the noise power is estimated by
a linear combination of the ordered range samples. It first orders the range cells
according to their magnitude and then trims T, cells form lower end and T, cells form
the upper end before summing the rest. The TM filter with symmetric trimming has:been
used in signal and image restoration (Bovik, Huang and Munson, 1983). The statistic Z

of the TM-CFAR is given by:-

The OS-CFAR and the CA-CFAR are special cases of the TM-CFAR with (T,,T,) = (k
— 1, N = k) and (0,0). respectively. The false alarm rate is given by Bednar and Watt
(1984) as:

Nl -Th

P,= []M.(T

=1

N1 3 M)

J_.'L/,"_I (T = TN-T -O(N-T,=-T})

[
M (T)= —* =2, N =T, - T,
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a, =(N=T =i+ )/ (N=T, =T, —i+1)

The detection probability Py is obtained by replacing T with T/(1 + S). As the trimming
increases, T increases. Symmetric inmming can not offer advantages in performance
over the other CIFAR schemes in regions of clutter transitions. With symmetric
trimming, Z 1s given by the sum of the middle N — T, — T, range cells of the ordered
window. Consider the situation where the leading half of the reference window contains
cells from clutter-plus-noise background and the lagging half from clear background.
The noise power estimate Z will include samples from both the clear and clutter-plus-
noise background. The corresponding threshold will not be high enough to regulate the
false alarm rate 1f the test cell contains a return from the clutter-plus-noise background.
As the upper trimming is increased with no lower trimming, the value of T increases. On
the other hand. if the lower trimming is increased with no upper trimming, the value of T
increases slowly and approaches the corresponding values for the OS-CFAR. In order to
be less sensitive to interfering targets, T, should be different from zero. The actual value
of T, depends on the maximum number of interfering targets present in the reference
window. The value of T, should be small 10 attain good detection performance in a
homogeneous background. However, if the primary concem is to follow clutter edges,

T, should be large and T3 should be small.

24 Application of CFAR Algorithms

In this section, the quality of the CFAR algorithms is compared. For this purpose, two
40 microsecond sweeps of radar returns (containing both sea clutter and rain clutter
region} al Plymouth harbour were combined to form a 80 microsecond sea target

scenario in the video domain. The objective was 1o use this specific scenario to test















Analysis of CFAR detection algorithms

Table 2.1 Quality of the CFAR Algorithms

CFAR Type Quality q
™ 17.0497
OS 16.0247
SO 15.2160
CA 12.0613
GO 10:6400

TM-CFAR has the best quality. However, two targets that are embedded in clutters
are still missed. GO-CIFAR has a worse quality than CA-CFAR. This is due to its

poor performance in the region of multiple targets.

2.5 Conclusion

The performances of five different CFAR processing algorithms in both homogeneous
and nonhomogeneous backgrounds have been analysed. The multiple target
environment and regions of clutter are used as examples for nonhomogeneous
backgrounds. A sea targel scenario is used to indicate the vartation of performance

between the algorithms in a specific environment, i1.e. multiple targets and clutter edges.

The detection performance of the CA- and GO-CFAR processors is superior in
homogenous background. However, the performance of CA-CFAR degrades
significantly in nonhomogeneous background. The false alarm rate increases
considerably at the clutter edges, and target masking is experienced in multiple targets.
Although the false alarm rate performance of the GO-CFAR in regions of clutter

transition is better than that of any other mean-level CFARs, the detection performance
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in a multiple target environment is quite poor. The SO-CFAR does not appear to offer
any advantage over the CA and GO CFAR. In addition to exhibiting high loss of
detection power in homogeneous background, the SO-CFAR is unable to resolve
multiple targets and to control the false alarm rate at clutter edges. Yet, it has good
performance in the multiple target environment when a clutter of radar targets appear in

the reference window.

The CFAR algorithms based on ordered range cells have in general better overall
performance than the mean-level CFAR schemes (Kassam, 1988). The TM-CFAR may
have a slightly better performance in a homogeneous background for isolated targets
compared with the OS-CFAR. The performance of the OS-CFAR processor is relatively
unaffected if the clutter area is less than the window length as long as r, the number of
clutter samples present in the reference window, is greater than N — k. The false alarm
rate does not suffer considerably at the clutter edges if r < N — k. On the other hand, the
CA and GO-CFAR exhibit further false alarm rate degradation if the extent of clutier
area is smaller than the window size. This is because the noise power estimate consists
of samples {rom clutter background as well as from clear background leading to overall
decrease in threshold. However, the performance of the OS-CFAR is highly dependent
upon the values of k. If k is chosen 1o be a high value, the noise estimate will set a large
threshold and it will result in target misses. Also, a low value of k will give excessive
false alarms. With regard to the TM-CFAR, again the choice of trimming factor T

affects the overall false alarm rate as well as the detection probability.

The experiment using the sea target scenario showed that the five CFAR algorithms

were unable to detect targets embedded in strong clutter. TM-CFAR with a good choice

37



Analysis of CFAR detection algorithms

of trimming factor could have a better performance in this specific case. However, two
targets were still missed. It is important to note that each algorithm aims to tackle a
specific problem in detection and it is obvious that no single CFAR algorithm is
adequate to solve problems in a complex detection environment, such as that in which a
VTS system is likely to be operated. A drawback on the CFAR algorithms is that the
decision is made only from the magnitude of the return echoes (Li and Miller, 1997). To
have significant improvement in the detection of weak targets, more obvious
discriminating features must be identified and extracted. The following chapter will look

at the other characteristics of the radar signals for improvement in detection.
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CHAPTER THREE
CHARACTERISTIC OF RADAR SIGNALS AND FEATURE

EXTRACTION

3.1 Introduction

The limitations of the CFAR algorithms in radar detection are mainly caused by their
static processing structures that they rely only on the amplitude information of the return
signal from targets and clutters. These algorithms are not suitable for a complex
dynamic environment such as the Hong Kong harbour. It 1s quite evident that the
detection capability of CFAR is very limited under strong clutter background, as the
signal is embedded in the clutter which itself has a large amplitude. To provide a
significant improvement in the detection of weak targets, more obvious discriminating
[eatures must be identified and extracted (Li and Miller, 1998). The radar detection
system may perform better when the characteristics of target and clutter are in line with
their predicted values. A wide range of targets and clutters will be received by the radar
systems and it is necessary o formulate descriptions about these signals at specific
times. In deciding whether a target is present, there are [actors other than the magnitude
of signal 1o be considered. The echo from the rellecting objects may consist of many
components of energy scattered from points over the surface. Their spatial and
corrclation characteristics will vary as a function of time, angle of incident and
transmitting frequency. Radar returns of weak targets will have a closer temporal
correlation than those of a fairly strong sea clutter. Also, in the spatial domain, the
targets have some different features when compared with spiky clutter signals. An
effective approach to solve the problems in target detection is to develop algorithms

which are able 1o extract these discriminating features of signals in the radar return. With
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the recent development in the processing speed of computers, more radar information
can be handled in real time. This chapter will study the characteristics from radar retumn
signals in order to identify the features and extraction algorithms that can improve the

detection capability of a radar system.

3.2 Radar Cross Section

When a radar illuminates a target, the power that is backscattered or reflected back to the
radar is defined in terms of a measurable quantity, the target cross section. Since there is
substantial variation of the reflected power about the target for any given illumination
angle, an equivalent hypothetical target which re-radiates isotropically, is used as the
basis for measurement. The radar cross section (RCS), o, implies an area of an isotropic
reflecting body which creates at the radar the same power density as does the actual

target.

oc=4xR*P /P

Where P is the backscattered power at the target and P; is the incident or transmitted
power measured at the radar, and R is radar-to-target range. The RCS depends on the
characteristics of the target, namely the permittivity and the permeability of the target
material. the target aspect angle relative to the radar, the shape and dimensions of the
target structural elements relative to wavelength, and on the polarization of the radar

recetving and transmitting aniennas.

Some of the electromagnetic energy intercepted by the target 1s absorbed as heat and the
rest is scattered. Portions of the energy scattered in the direction of the receiving antenna

are received by the antenna and subsequently processed in the target detection system.
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Since radar targets such as ships, aircraft, missiles, and ground terrain have a variety of
forms and shapes, the use of mathematical models for smooth surfaces would lead to
incorrect calculations. As such, experimental measurements with the use of the target
itself or of smaller scale models form the basis of radar cross section calculations.
Measurement errors caused by parasitic reflections can be reduced by placing the model

in an anechoic chamber.

The target cross section fluctuates as a function of time. This is due to the scattering
effects that intercept the transmitted electromagnetic energy. A complex scintitlating
target 1o a first approximation can be represented by an exponential distribution
(Hovanesstan, 1972). The radar illuminates the target once every revolution of the radar
antenna, with the duration of illumination proportional to the rotational speed of the
antenna, which is in terms of milliseconds. The target cross section used in the radar
equation is the average value of the cross section and the target scintillation is

incorporated in the probability of detection calculation.

The cross section of vessel type targets, as presented to the radar, is also a lunclion of
aspect angle. It can be seen imitially that a vessel presents a larger physical area when
viewed from both sides rather than from the bow or the stern. A target viewed from the
sides may have an average cross section of 5 times larger than the same target in the

bow aspect.

A single value of RCS cannot be assigned 1o a target, e.g. a ship, as it will depend on the
aspect at which the target is viewed, both in azimuth and elevation, and also on the

polarization angle of tlie radar. These factors, combined with interference from different
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scattering surfaces on the target, would mean that the RCS of the ship will fluctuate.
These fluctuations can be treated by finding the mean value of the RCS o, and a
probability density function (PDF) p(c) to describe the variations about the mean. A
commonly used density function for random variables is the chi-squared variable with

two or four degrees of freedom, in the forms-of:

(=
plo)=—rc
av
4o (—%E)
plo)=—r-e o
o
cz20

For most of the surveillance radar, typical values of RCS (o,,) that might be expected

are given in table I (Kingsley and Quegan, 1992).

Table 3.1 Typical RCS values for some common targets

Target RCS on Linear Scale RCS on Log Scale
Bird 0.001m? -30dBm’
Cruise missile 0.010m> -20dBm?
Small boat 1.000m’ 0dBm*
Cargo ship 10.000m> 10dBm®
Large aircraft 100.000m2 20dBm2
Large tanker 1000.000m? 30dBm®
3.3 Clutter

Clutter is hard to quantify. and in many ground based systems it varies dramatically with

azimuth. The clutter seen by a marine radar depends on the sea-state and wind direction.
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Weather clutter is inherently variable and unpredictable. In spite of these difficulties, it is

important to have an overall appreciation of clutter cross sections for target detection.

Sea clutter is often distributed over a considerable area, unlike the point targets. Its
backscattertng effect may be described in terms of a radar cross section density, og. If a

clutter area A produces an effective radar cross section o then

If the radar energy strikes the surface at an angle ¢, a clutter area corresponding to one
resolution cell of the radar can then be specified. The cell’s extent in the range direction
is determined by the pulse length. A pulse duration of T seconds corresponds to a
transmit and return path of ct/2 metres. The equivalent distance along the clutter surface
is ctsecd/2 metres. The surface area lying within one resolution cell is therefore

A = @(R@H)

The effective radar cross-seclion of the clutter area is

o, .=0,4 =0, @(RBH)

Suppose that a point target of area ¢ competes with clutter of effective area o, in the
same resolution cell. If the power of the return signals are represented by S and C

respectively. then the signal Lo clutter ratio is:
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20
o,cTsec PR,

S o
C o,

When the clutter is heavy, the cluiter power will be much greater than the receiver noise
power. Hence the maximum range at which a target is detectable depends on the signal

to clutter ratio rather than the signal to noise ratio. [f the minimum acceptable signal to

clutter ratio at the receiverinput is (S/C)min, then

tn

2
(—)miu = =

C o.,crsecd R, 0,

nwax

From the above equation, it can be concluded that an effective way of improving the
signal to clutter ratio is to reduce the size of the radar resolution cell. This may be
achieved by reducing the pulse length, the antenna beamwidth or both. However, the
actual values of the clutter cross-section density op depend heavily on the type of
surface, or terrain, and on the grazing angle . It is also affected by the choice or radar
frequency and the polarization. By taking a small grazing angles (<10 which are
widely used in marine radar, typical values of oy for city in X band, cultivated land and

sea are shown in the following table (Lynn, 1987).

Table 3.2 Typical values of clutter cross-section density

Horizontal Vertical
City -18dB -15dB
Cultivated land -25dB -22dB
Sca -40dB -30dB
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The above quoted sea clutter values are typical of average sea conditions, in wind speed
of around 15 knolts.
Rain or other atmospheric conditions also produce clutters to radars. Such clutter is
usually quantified in terms of an effective cross-section 1 per unit volume. Thus, if a

clutter volume V. produces an effective radar cross-section O, then

a

1= 0r o, =1V,

Now the radar resolution cell corresponds to a volume in space rather than a surface
area. lts extent is defined in range by the pulse length, in azimuth by the horizantal
beamwidth 0y, and in elevation by the vertical beamwwidth ¢g. The approximate volume

of a resolution cell is:
cT
V. o= T(RH,, XR¢,)

Such types of volume clutter usually come from rain and cloud droplets. They are small
compared with the radar wavelength, and the cross-section presented by an individual
droplet is proportional to the sixth power of its diameter. Heavy rain produces stronger
clutter than light rain or cloud, not only because there are more droplets per unit volume,
but also because they tend to be larger in size. Droplet cross-section is also proportional
to the fourth power of the transmitter frequency. Therefore, the systems operating at
lower [requencies are much less susceptible to weather clutter. A typical relationship to

describe the effects of rain.clutter on radar performance is,

n=7fr"x10"m!
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Where f; is the transmitter frequency in GHz and r is the rainfall rate in mm/h. Given a
light rainfall of 1 mmvh, their cross sections as presented by two different wavelengths
(23 cm and 3 cm) at a range of 50nm (t = 2us, 83 = 1.5°, ¢ =12°).are found to be 0.2m?

at A=23cm and about 800m? at A=3cm.

33 Statistical Characteristics

Most of the random noise arises in the initial stages of the radar receiver. Their
behaviours during the target arrival period cannot be predicted. However, the statistical
distribution of random noise at the input to the intermediate amplifier can be assumed as
Gaussian, with zero mean value, which is mainly due to the thermal motion of electrons
in the early amplification stages. The probability density function of Gaussian noise with

zero mean is given by:

2
v

)

77 exp(

p( \1) = _
Qry,) 2y,

- - Y . . . r . .
where y, is the variance and ,” is the standard deviation. The random noise will

have a mean value close to zero. There is small chance that at a particular time the noise

level will be several standard deviations above or below the mean (Barton, 1988).

Most targets and clutters have a very complicated relationship to the cross section area.
and it is difficult to format equations based on the physical dimensions. A complex radar
target (c.g. a ship) has many reflecting surfaces, such as the hull, accommodation, masts
and stern. Each of these contributes to the overall return signal, including the relative
phase as well as magnitude. It is important to note that a specific target will not always

have the same cross section area as ‘looked at' by the radar for a given incidence angle.
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Small changes in the direclion of the incident wave can cause dramatic changes in the
effective cross section area of the target and these are very unpredictable. Also, clutter is
very difficult to define accurately, and it usually changes with environment and factors
such as wind and weather. Measurement of radar cross section of complex targets
requires readings to be taken at many frequencies, and with different polarisation. This
would iead to a massive database for a single radar band and limit the usefulness of
these data in radar performance analysis. These targets can be summarised in statistical
form and four statistical models were established based on probability density function
(Lynn, 1987). It was reported that classes 1 and 2 are of Rayleigh type model and
correspond Lo targets to which many scattering sources are added. Basically, all complex
targets having many comparable echo areas are very close to this model. For a target of

average radar cross section of @, the probability density function is of the form:

1

p, (o) = Lexp(—i), gz
o

ov oy

Classes 3 and 4 are more appropriate for targets having one dominant reflector, plus a

number of other, smaller reflectors. The probability density function is of the form:

4 2
p.o)= ? exp(- —U), c=0
C o

The intensity of the target echo depends on the aspect angle at which the target is
observed, the transmitter frequency and radar polarization. The target cross section area
changes with time, i.e. it varies between different sweeps due to aspect variation. These
variations will be present even when the vessel approaches the radar at constant bearing,
with the radar polarization and frequency remaining constant. This is caused by the

random movement of the vessel, the different propagation characteristics of the

atmosphere, performance of the electronic circuits in the radar equipment, and the
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variation in the transmission pattern of the radar antenna.

The Rayleigh scattering model can also apply to sea clutter if the sea is calm and the
range cells are fairly large. However, the range cells are relatively small in a short pulse
and high resolution radar. The size of individual sea waves may often be comparable
with a range cell, especially in a rough sea condition. Under these circumstances, the
distribution departs from the Rayleigh, with sharp peaks at the larger wave tops. Other
forms of distributions have been used to model sea clutter received by marine radars.
These types of function have a longer 'tail’ than the Rayleigh distribution. One of which

is the Weibull model with the form

¥y

PV =a In2(%)“‘I e.\'p(—ln2(ﬂ)“)

where a and 3 are constants
Alternatively, the Log-normal, which has a longer 'tail’, has the distribution

Vv

[).]}“)

p(v) = %e.\'p(—c?{ln[

where B,y and & are constants.

The decision on which distribution 1s to be used depends on the sea state at that specific
moment. Yet, the Log-normal distributions-are best suited to rough seas. Moreau (1993)
has developed a model for sea clutter, which is a Rayleigh distribution modulated by a

Gamma distribution. The amplitude is represented by a compound K-distribution model:

= 2P ik (o
p(\)—m(n ) K, (bx)
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where K (x) : v -order modified Bessel function
I'(x) : Gamma function
x :  clutter amplitude
v : shape parameter (function of sea-state, speed and direction of wind)
b 1 scale parameter

The shape parameter v is a function of transverse resolution R, grazing angle ¢, wind

direction ¢ and a coefficient k (k depends on polarisation) in the form of:
logv = ilog¢+%logﬁ'+a—k

Moreau (1993) had made simulations with this sea clutter model using a correlated
Gamma process. By estimating the high order statistics, he found out that, with v > 0.4,

simulated results fit well to the theoretical definttion.

The volume clutter is usually caused by weather conditions such as rain and cloud
droplets. The reflectivity of volume clutter is quantified in effective radar cross-section
per unit volume. The rain and cloud droplets are usually very small compared wilhl the
radar wavelength. They can normally be described by means of Rayleigh modelling.
However, the radar cross section of droplets for cloud and rain is proportional to the
fourth power of the transmitter frequency. This causes the high frequency radars to have
more effects from the weather clutter. For shorter wavelength, the scattering properties

may depart from the pure Rayleigh distribution.
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Figures 3.1 to 3.4 show the recorded noise, target, sea clutter and rain clutter, and their
statistical distribution in a 2 microsecond time window. The window contains 50 samples of the

radar return signal, which corresponds to a distance of 300 meters.

Despite the fact that the magnitude of the random noise, sea clutter, rain clutter of these signals
are close to each other, it can be observed from their distribution that each type of return echo
has its unique features. The random noise resembles a zero mean Gaussian function, with a
maximum number of occurrences at 0 volts. The target is characterised by the long tail which
extends by up to | volt. The majority of the sea clutter returns lie between 0 and 0.5 volt. The
rain clutter has similar characteristics to the random noise, except that the maximum is shified to

around 0.5 volt.

To characterize the differences between these signals, the amplitude and period parameters in
the 4 microsecond windows are extracted. The waveforms contain a combination of several
frequency components and they exhibit a series of extremes over the time interval. A segment
boundary is declared each time that the waveform passes through a zero slope condition. The
segment amplitude is the absolute amplitude differences between the bounding extreme of the

segments, i.e.

An = |(l” - an—l’

where Ap=segment amplitude of the nth segment
a, = waveform amplitude at the highest extreme of the segment

a,. = waveform amplitude at the lowest extreme of the segment

The segment periods are the time differences between the lowest extremes of the

segments. This can be expressed as
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where T, = segment period of the nth segment
t, = waveform elapsed time at the first lowest extreme of the segment

t,.; = waveform elapsed time at the next lowest extreme of the segment

To sample the waveforms, a trigger signal is activated whenever the waveform exhibits
a zero slope condition, indicating an extreme position. As such, direct extraction of the
waveform amplitudes (ag; ay, ..... a,) as the amplitude outputs of the monitoring circuit
can be achieved. The segment amplitude (Al, A2, .....An) can then be calculated simply
by subtracting consecutive waveform amplitudes and taking the absolute values of the
differences. The triggered sampling technique can also provide trigger signals at
waveform extremes, which are the segment boundaries. These signals may be used to
stimulate an electronic counter to retain its present count as an elapsed time
measurement. Consecutive elapsed time measurements (10, tl, ........in) are then

subtracted to obtain the segment periods (T1, T2, ...... Tn).

Thf; absolute differences in amplitude between these extremes-are then accumulated, and
their mean and mean deviation are also calculated. The four waveform parameters, ie.
the amplitude mean, amplitude deviation, period mean and period deviation are the
primary measures by which the waveform can be characterized statistically. The mean is
the standard sample mean, in the conventional statistical sense, and is simply the sum of
the sample values divided by the number of samples. The mean deviation, however, is
neither the statistically conventional variance nor standard deviation. As only a measure

of the average sample deviation from the sample set mean is required, the statistically
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standard quantities, which involve the calculations of squares and square roots, can be
avoided to achieve the computational simplicity. The mean deviation is the average of
the absolute differences between each sample and the sample mean. These parameters

can be expressed mathematically as follows:

N,
D, =D |4~ M,N,
i=|

N,

M, =3 (T)/ N,
i=|

N,

M, =D (A)/ N,
i=1

N,
D =T - M|/N,

1=1

where,

Ma = amplitude mean,

Mt = period mean,

Da = amplitude mean deviation
Dt = period mean deviation

Ai = amplitude of the ith segment
Ti = period of the ith segment

Ns = number of samples (segments)

The period quantities are in temporal units of microseconds and amplitude units are in
quantities of volts. The statistical data of target. sea clutter, rain clutier and noise, as
calculated by the author using the waveforms recorded at the Plymouth harbour, are

given in the following table:
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Table 3.2 Statistical data of target, sea clutter, rain clutter and noise

Target  Sea Clutter Rain Clutter Noise

Mean (amplitude in volts) 0.1952 0.2340 0.5880 0.0584
Deviation (amplitude) 0.2296 0.2014 0.1960 0.1060
Maximum (period in microseconds) 0.8 0.44 0.36 0.48

Mean (period in microseconds) 0.1704 0.1508 0.1584 0.1523
S. Deviation (period) 0.1550  0.1026 0:0905 0.0979

The noise-has a comparatively low mean amplitude. This can be explained that the noise
is fluctuating randomly around zero and the sum of these amplitudes will be close to
zero. The rain clutter has a comparatively high mean amplitude giving high peaks in the
radar recciver. The negative values of the amplitudes are due to the bias and offsets of
the amplifiers in the radar equipment. The amplitude deviation of sea clutter is small as
most of the amplitudes are varying along the means value. The mean period of the
window conlaining targel(s) 1s large, which signifies that targets have a wider pulse
width when compared with noise and clutiers. Such statistical characterization forms the

basis for a discrimination system for target detection.

34 Correlation

The ability to detect targets from signals coming from the receiver is largely depending
on the signal to noise ratio (SNR). Hence, it 1s important that the SNR is maximized.
The noise power is dependent only on the gain of the receiver, not on the shape of its
impulse response function. For fixed gain, the best SNR is obtained by maximizing the
response o the signal term. This is achieved by correlating the return echo with the

transmitted pulse. The receiver can be regarded as a linear filter with impulse function
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h(t) , and the output from the receiver, y(t) is therefore given by a convolution operation:

yit) = u(y*xh(t) = Iu( Ot - r)dr

-0

where T is a time variable and u is the input

According to the Cauchy-Schwartz Inequality (Kingsley and Quegan, 1992), the
maximum value of signal to noise ratio can be obtained by choosing /(7) proportional
to u(r+(z, —t)) and h(r)is a reversed and shifted copy of u(r) wherer, is the time

delay. Hence,

r

W) = _[u(r)u(r +r,—1)dr

-1y

where () is the incoming signal

u(r+ 1, — 1) 1s.acopy of u shifted to a duration of ¢ - 7,.

The product of the signal and its shilted version is integrated over the ranges for which
the integral is not equal to zero. y(t) has the same shape as the autocorrelation function

of uft). As t varies, the shifted u(¢) will come to align with the incoming signal and then
out of alignment again. When they are fully aligned, i.e. ¢ = 7, , the maximum signal to

noise ratio will occur and the amplitude is given by,
r
¥ = it (e
]

As such, the amplitude of the target after correlating with the transmitting pulse will be
greatly enhanced. The signal to noise ratio s much improved and this will facilitate the

target to be detected more easily.
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Fig. 3.5a shows a radar return with a target (at 18 microsecond) being contaminated by
noise. Since the transmitted pulse is rectangular in shape with a pulse width of 0.05
microseconds, the return echo will be stretched. The width of the integrating pulse can
be determined by trials. It is found that the best result can be obtained when it is around
10 times the transmitting pulse. Fig. 3.5b shows the result of integrating the product of a
0.4 micro second rectangular pulse by the radar retumn. It is obvious that the signal to

noise ratio is much improved and this will facilitate the target to be detected more easily.

New motion estimation algorithms in image processing which exploit the motion
correlation of neighbour blocks in temporal and spatial directions have been presented
(Hsieh, Lu and Shyn 1990 and Loui and Azimi-Sadjadi 1991). Winston, Yu, Meyer and
Byme (1995) and Chen, Deng and Zhuan (1995) have reported techniques for automatic
tracking and identification of moving targets using correlation algorithms. The targets
from the radar return will normally appear in more than 1 sweep in the same scan. The
same target will also appear in next scan within a certain limit of distance, depending on
the speed of the targel. The degree of correlation will depend on the size and type of
targets. Large sized targets will be correlated in a greater number of consecutive sweeps
than those small sized ones. The speed of a vessel is relatively slow when compared
with the time between sweeps and it can be ignored in calculating the correlation. For
example, the vessel is moving at a speed of 15 nm/hr (27.78 km/hr) and the Pulse
Repelition Frequency (PRF) is 1300Hz (short/medium pulse).,i.e. one'sweep takes 769:2
microsecond. The vessel only travels 0.463 mm. Also, taking the rotational speed of the
radar antenna is 20 rpm, one complete scan takes 3 seconds. The vessel travels 23.15
mm in one scan period. The correlation between the targets within consecutive sweeps

can be determined by:-
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ar={
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m=0

where C ¢ (v) isthe correlation of target points between n, and n+1 sweeps

I

Sadm

is the amplitude of nth sweep at time m

! 1s the size of the correlation window

Random noise is usually uncorrelated and thus can be removed after the first order
correlation process. Despite the fact that most of the uncorrelated noise is removed, there
is still some correlated noise appearing which may affect the target detection process.
The use of high order correlation method (Liou, 1991, 1992 and 1993) can provide a
better discrimination capability between clutter and noise. This is achieved by
correlating the correlated results of N/N+1 and N+1/N+2 to generate a new sequence of

radar signals.

Figures 3.6a, 3.6b and 3.6¢ show three consecutive sweeps of a radar return with a time
frame of 10 microseconds. The correlation of N/N+1 and N+1/N+2 are shown in figures
3.7a and 3.7b respectively. Figure 3.8 shows the effect of using high order correlation. The

noise is suppressed and the targets can be discriminated {rom the trace easily.

35 Spectral Characteristics

‘Target motion in range introduces a doppler shift of 2v/A relative to the transmitted carrier
frequency. As the target changes its velocity and heading, the spectral components are
shifted. The movement of the target and its elements, as well as yaw, pitch, and roll, cause
the spectrum of the received signal to fluctuate. The spectrum does not depend much on

target dimension and is determined by the rate at which the range to different reflecting
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elements varies. Various techniques have been reported in detecting signals using their
frequency characteristics, e.g. low pass filtering, integration -and matched filtering (Van
Trees, 1968). It appears that radar targets have distinct features in the frequency domain
compared with clutter and noise. Targets appear at some-specific time of the radar sweep
and the corresponding changes in the immediate frequencies throughout the time sweep
may be of use in the detection of targets. Armstrong and Ahmed (1989) have modelled the
immediate frequency function for a broadband signal by considering an input of n

frequency varying spectral components.

By taking the square of the time derivative of the signal x(t), we have

"

[fUHB:EZ%Afwfunl—amD¢AUH

1=]

+ other cross-multiplied terms
x(1) = 2 A, cos[4 ()]
i=|
where ;(t) denotes the immediate frequency function ¢;'(t)

If a low pass filter is applied 1o the signal [x’(l)]z, it will suppress the terms-associated with

cos[2¢;(1)] and the other cross multiplied terms, so:

) < B
[wmww=254@0)

The low pass filter output of the square of the input is also calculated as follows:
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[ ]
2 2
[x] [ = Z" 4,
g

The immediate frequency function w(t) can then be estimated as;

n

[w(t)'] =[x' () V[x() 1= Aw (1) Z A

i=i

The normalisation element provides the weights of the individual spectral components to

calculate a reasonable estimate of the immediate {requency.

The detection of radar targets in the frequency domain requires the immediate frequency
at each time slot to be estimated. A moving window of a fixed number of range cells is
shifted through the entire sweep. The immediate frequency for cach window is calculated
using the normalization technique as described. I the window size is made too large,
frequency changes for small targels may be missed. However, a window that is too small
will involve additional computation time as well as producing unwanted fluctuation of the

frequency function due to random noise.

The slope of the distribution of the immediate frequency (i.e. the rate of change) may also
be significant in detecting targets. A large slope will imply that there is a target embedded
in the high frequency noise. or that there has been an abrupt change in the frequency of the
noise, To remove any sharp slopes caused by random noise, the immediate frequency is
averaged over several samples so that short duration changes of slope can be filtered out.
So, in addition to considering the frequency response of returned signals the presence of a
target may be confimied by examining the rate of change of the immediate frequency.

This can be achieved by differentiating the immediate frequency function and detecting
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the slope change. Differentiation of a signal in the time domain is equivalent to
multiplication of the signal's Fourier transform by an imaginary ramp function, i.e. passing

the signal through a filter that has a response H(w)=jw .

The respective spatial and temporal characteristics of radar target signa! and clutter are
different to some extent on the return sweep. The targets have a lower frequency spectral
component. The width of the distribution of clutter and noise is usually narrow and sharp,
and this characteristic can easily be identified in the immediate frequency distribution. To
detect these distinct features, thresholds on both frequency and width are applied to the
incoming signal. The threshold for the frequency must be chosen so that the majority of
the noise components are filtered, thus reducing the computation effort of the width
detection in the next stage. As for the width threshold, the number of samples in the
moving window contributes a crucial part in the value chosen. Further observation and
analysis is required in order to optimize this process. This would compare returns obtained
under various clutter, noise and target characteristics with respect to their width in the

immediate frequency function.

By looking at the amplitude alone, it may be difficult to discriminate the targets froﬁ the
noise and clutter. The signal can be converted into the frequency domain by taking the
discrete Fourier transform of the sweep. New architectures of high throughput and real
time Fast Fourier Transform processors have been developed for radar signal processing
(Bungard, Lau and Rorabaugh 1989). A trace of the Fourier transform for a window that
contains noise alone is plotted in Fig. 3.9, this will be used as a benchmark against which
to compare the frequency spectrum for traces which contain signals of targets. It can be

observed that the frequency distribution for the noise alone is fairly constant at all
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frequencies. It was thought that targets would have some different features in the
frequency domain when compared with noise. Figures 3.10 and 3.11 show the frequency
characteristics of the window containing target and land clutter respectively. It has a
smooth frequency distribution and is similar to the Fourier transform of a triangular wave,
while that of the land clutter resembles a sync function, i.e. the Fourier transform for a
square wave. The peak frequency components of the noise are equally distributed along
the whole frequency spectrum. Using these features for discrimination, it is possible to
develop the immediate frequencies of the radar return, which are able to extract the targets
from the noise and clutter in the background. Observation windows are established and
the magnitude of individual spectral components within each window is obtained by
taking the fast Fourier Transform. The immediate frequency is estimated by means of the
normalization technique. Figure 3.12 shows a plot of the immediate frequency of the
return ccho at various time frames during a sweep. The landclutter has distinct
characteristics of low variation in frequency and low frequency components. The target
has a constant slope in tts falling and rising edges and a lower frequency. To determine the
threshold for the frequency and width of the detection algorithms, the immediate
frequency function for a frequency for a swecp with only random noise is used for
comparison and this is shown in fig. 3.13. To compromise in allowing for weak tz-lrgets
against time spent processing data, and thus provide efficient detection, upper and lower

thresholds are set.

3.6 Conclusion
The characteristics of radar signals and methods for the extraction of features in the ime
domain have been discussed in this chapter. During a full rotation of the radar antenna, a

variely of return characteristics may be observed. For example, when operating in coastal
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regions, very low clutter may be seen in the seaward sector and significant clutters due to
the land sea interface and reflections may be received in other sectors. Targets and clutters
have unique features in their statistical characterization over a finite window. These can be
extracted for discrimination purposes. Radar return signals, which have been reflected by
different objects,- possess unique features when correlated with other waveforms. When
the received signal is correlated with a square pules of similar pulse width, the signal to
noise ratio is much improved. Radar pulses are transmitted at fixed time intervals and
correlation of the targets between different sweeps reduces the ampiitude of random noise.
This is easily removed by the sweep to sweep correlation process. The use of high order
correlation, which performs the correlation between correlated results of two consecutive
sweeps, further suppresses the partially correlated clutters. The time frequency
characteristics can also be used to achieve effective target detection. To study such
characterstics, the instant frequency value of the signal at any specific time of the sweep

is estimated using a normalization technique.

The statistical characterization, correlation, and time-frequency characteristics can be
extracted from radar waveforms to determine if a target is present. In a very complicated
environment, e.g. boundaries between the sea and land, the sea clutter may have certain
similar characteristics when compared with the targets. However, it is unlikely to have
similarities in all these parameters, i.e. in a multi-dimensional space. These parameters
themselves are extracted from moving windows along the radar return and can be fed into
an information fusion process for making the final decision. Thus, the detection process is

not based solely on the magnitude of the radar echoes and will provide a more reliable

technique for discrimination in target identification and tracking-algorithms.
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CHAPTER FOUR

DATA FUSION TECHNIQUES IN RADAR SIGNAL PROCESSING

4.1 Introduction

Methods for the extraction of useful information from the radar signal were developed and
discussed in the last chapter. The next step is to identify methods which can relate the extracted
information to a final decision on whether a target is present. Data fusion has been a new strategic
research field which deals with the incomplete and sometimes incoherent information derived
from different sources. This is the case of many important application areas such as target
acquisition (Luperman, 1994}, image processing (Zhou, 1994), feature extraction (Abdulghafour,
Chandra and Abidi, 1993), computer vision (Taham and Keller, 1990), and defense systems
(Maloney, 1989). Processing extracled data requires a technique capable of addressing a very
demanding issue, i.c. making decisions in uncertain conditions. Since the individual information
extracted from the radar signals can be distorted, noisy and vague, adequate data fusion
techniques must be developed in order extract the essential information which is not recognisable
in any of the single sets of data. Hall {1992) provides an extensive overview and a description of
classical data fusion techniques. These focus on the identity fusion algorithms based on feature
extraction and identity declaration. One method of dealing with such task requires ideas from the
advanced research in machine intelligence. Knowledge-based approaches are able to perform data
fusion in intelligent multisensor instrumentation. However, imprecision represents a very critical
issue for such knowledge-based systems as they are generally inadequate for dealing with the
intrinsic vagueness of input sensor data and very poorly suited to directly process input sensor

data (Russo, 1994). On the other hand, fuzzy systems and neural networks offer the best solutions
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to this type of applications (Kosko, 1992). Both fuzzy and neural network approaches, which
numerically process knowledge, are particularly well suited to manage uncertainty and are
becoming powerful technologies with a growing range of applications. This chapter describes
how these two techniques are used in the data fusion of the extracted features from the radar

signal and their comparison is also discussed.

4.2 Fuzzy Approach to Data Fusion

The concept of fuzzy sets addresses problems in which imprecision is an inherent aspect of a
reasoning process. Fuzzy reasoning allows the processing of problems to be expressed in the form
of rules which resemble the mechanism of human decision making. Indeed, one of the key
features of fuzzy logic is its ability to deal with the typical uncertainty which characterizes any
physical system (Zadeh, 1965). This is a very critical task because the information acquired from
different sources can be incomplete and even conflicling. Fuzzy networks are usually structured in
the form of rules that permit a clear understanding of their operation. Russo (1994) has reported
the fuzzy techniques represent a comprehensive framework for intelligent instrumentation that
deals with multisensory input data. One-of this author’s papers describes the development of fuzzy

algorithms for a microprocessor based servomotor controller (Li and Lau, 1989).

4.2.1 Fuzzy Set Theory
A fuzzy set A with an element X has a membership function of pa(x) and is in the interval
between 0 and 1. If pa(x) is 1, then the element is a member of the set. Alternatively, if pa(x) s 0,

then it is not. Consider a fuzzy set A with five elements, which have the membership function of

0.7, 0.9.1, 0.9.0.7. The element with a membership lunction of 1 is a full member of A, whereas
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the other are only part members. The membership function determines the degree to which the
element belongs to the subset. If a fuzzy set A is defined as “around 10 volts™ on a scale from 9 to
12, it can then be described by the following:-

A =(0.7/8.0.9/9, 1/10,0.9/11, 0.7/12)

Where 0.7,0.9 and 1 are the membership functions and §, 9, 10, 11 and 12 are the universe of

discourse. The following three definitions form the basis of the fuzzy algorithms.

1. The union of two sets, A v B, corresponds to the OR function and is defined by
#(A OR B) = max(ua(x). no(x))

2. The intersection of two sets, A n B, corresponds to the AND function and is defined by
LA AND B) = min(pa(x), pp(x))

3. The complement of a set A corresponds to the NOT function and is defined by

HNOT A) = 1 - ia(x)

To establish the fuzzy algorithms, it is necessary to interpret rules that are based on experience so
as 1o give the output values that corresponding to situations of interest. A fuzzy rule consists of
situation and action pairs. and they are expressed in [IF and THEN statements. For example, if the
signal has a high amplitude and its pulse width is wide, then it is likely to be a target. Such a rule
has to be converted into a more general statement for application to fuzzy algorithms. First, the
qualitative statements must be quantized into linguistic sets such as, large, medium, small and
zero. The statement can then be converted into, ‘If the signal amplitude is large and the pulse

width is large. then the possibility that this is a targel is high’.
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Having formulated the rule in fuzzy terms, the next step is to define the membership functions of
the linguistic sets. The shape of the fuzzy set is quite arbitrary and depends on the user’s
preference. Trapezoidal and triangular shapes are usually used because of simplicity. The
membership functions representing the decisions are weighted according to the corresponding
input statements. A pair of input parameters may fire more than one rule. To determine the value
of the final decision from these contributions, the centre of the summed area, which is contributed

by individual rules, is evaluated. This can be expressed in mathematical terms as follows:-

n

0= Z(y” xU”)/ipn
| |

where s the membership function, U the universe of discowrse, n the number of contributions

and O the output.

4.2.2. Fuzzy Algorithms for Data Fusion in Radar Signal Processing

A radar signal at specific time frames can be identified as a member of a class of signals on the
basis of M different features of the waveform. Suppose that all the available information is
acquired from N sweeps of the same scan. A [uzzy statement is formulated, which yields the

degree of membership m of the input data.

m ={(F,Yor(F,)or....... (Fo AND{(F))or(Fy)or...... (F) Y AND{CE or (Fyydor.. (F oy, )

Where Fij(1 <1< N, 1 <j<M)is the jth feature extracted from the signal from the ith sweep. The
fuzzy connective logic OR is used to combine all the available information about the same feature.

It maximises all the information about the same feature coming from different sweeps. On the
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The quantized levels for v and w are from 0 to 0.4 volts and 0'to 4 microseconds.

Nine fuzzy rules are formulated for this application.

1.

2.

Rule 1 implies the ideal condition where a signal with both large amplitude and large pulse width is
received. The signal is likely to be the target. Rule 7 shows a condition where sighal amplitude -and
pulse width are both small. There is high possibility that the signal is noise. These rules are
developed based on the experience of observing the waveforms from detected targets. Suppose a
radar signal with a mean amplitude of 0.34 and a mean pulse width of 3.4 is applied to the fuzzy

network. According to the range specified, only rules 1, 2, 4 and 5 will be fired, and the output

If vis large and w is large then the possibility of signal being the target is large.

If vislarge and w is medium then the possibility of signal being the target is medium.
If vis large and w is small then the possibility of signal being the target is small.

If v is medium and w is large then the possibility of signal being the target is medium.

If v is medium and w is medium then the possibility of signal being the target is small.

If v is medium and w is small then the possibility of signal being the target is zero.

Il v is small and w is small then the possibility of signal being the target is zero.

If v is small and w is medium then the possibility of signal being the target is small.

If v is small and w is large then the possibility of signal being the target is medium.

would be contributed by these four rules as follows:-

O_0.5x7+0.75x5+0.5x5+O.75x3_

4.8

0.5+0.75+05+0.75
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can be combined to give a more reliable output. The fusion of various information can reduce
overall uncertainty and thus increase the accuracy with which the features are perceived by the
system. The information provided by different sources can also serve to increase reliability in
the case of error or failure of one information source. The complementary information from

multiple sources allows different features in the system to be perceived (Luc and Kay, 1989).

An artificial neural network can be defined by a set of processing elements called neurons, a
specific topology of weighted interconnections between these elements, and a learning law
which updates the connection weights. Neurons provide non-linear input/output transfer
functions. Data fusion techniques that adopt neural networks have-a number of advantages. The
first is adaptive fusion inference in which neural networks can infer the relationship between
the desired fusion output and the multi-source inpui. The second is generalisation from an
incomplete set of information. This is useful when the information from an individual source is
noisy or distorted. The third is non-linear filtering of noise. Neural networks are nonlinear so
they can perform more complex functions than linear filters. The fourth is parallel computing,
since the neurons in neural network function in parallel and they can process information from

multiple sources simultaneously.

4.3.1 Neural Network Theory

A neural network is an information processing system that operates in an intensely parallei
mode. It consists of highly interconnected neurodes that are connected by a large number of
weighted links, over which signal passes. A neurode receives input stimuli along its input

connections and translates those stimuli into an output response, which is transmitted along the
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neurode's output connection (Caudill, 1992). The output signal transmits over the neurode’s
outgoing connection and splits into a very large number of smaller connections, each of which
terminates at a different destination. Most of these outgoing branches terminate at the incoming
connection of some other neurode in the network, others may terminate outside the network
and generate control or response patterns. The mathematical expression that describes the
translation of the input patiern of signals at specific time frame to the output response signal
consists of a three-step process. First, the neurode computes the net weighted input that it

receives along its input connections. It computes the value of I;as shown below:
"

1" = Z w!'f x_;
=1

In this expression, l; is the net weighted input received by neurode i from a total of n neurodes
in the network. The incoming signal from the jth neurode is designated by x;, and the weight on
the connection directed from neurode j to neurode i is designated by wj; (Caudill, 1992). Once
the input signal pattern | is computed, all information about the amplitude of the input signal
will be lost. Depending on the values of the weights, a strong input signal arriving over a
weakly weighted connection may have less effect than a weaker signal arnving over a strongly
weighted connection. A negative weight will reduce the overall stimulation of the receiving

neurode.
The translation represented by the neurode’s transfer function consists of converting the input

signal pattern to an activation level for the neurode. The activation level of the neurode is

equivalent to the level of excitement of a biological neuron. In most cases, the activation
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funciion is a sigmoid function, i.e. the activation is expressed by an S-shape curve. The

commonly used sigmoid function is:

Fy=——

l+e

With a derivative of :

dff)

T=.f(1)F1—,/"(1))

The exact form of the sigmoid function is not particularly important, however, the function
should be monotonically increasing and bounded with both lower and upper limits. In the case
of (1), the minimum value of f(I) as | approaches negative infinity is 0, and the maximum

value of f(1) as I approaches positive infinity is 1.

The final step accomplished by the transfer function is to convert the neurode’s activation level
to an ouiput signal. Most commonly. this is achieved by setting the output signal to the
following expression:

UORNIVOEIR

0. otherwise

¥y, =1

T is a threshold value. The neurode’s output is its activation level as long as that activation

value exceeds a given threshold.

When a neural network is presented with a signal pattern, each neurode in the input tayer of the

network receives a small picce of the pattern. Each of the middle-layer neurodes thus receives
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the entire input pattern, but the pattern is modified by its passage through the weighted
connections teading to the middle layer. Since the weights on the connections are typically
different for each middle-layer neurode, each of these neurodes sees a somewhat different
version of the input pattern than its neighbours do, i.e. it sees a projection. This results in a
variety of output reponses from the middle-layer neurodes, ranging from no output at all to
one, possibly with an extremely strong output. Figure 4.3a illustrates the physical connections

of a typical neural network.

Learning of the neural network is achieved not by modifying the neurodes in the network but
by modifying the weights on the interconnections in the network. The output of each neurode
is determined by a function of the incoming signals and the weights on the inpul connections to
the neurode. Learning consists of making systemalic changes to the weights in order to
improve the network’s response performance to acceplable levels. The network is provided
with an input stimulus pattern along with the corresponding desired output patiern. The
common learning law typically computes an error, i.e. how far from the desired output the
network’s actual output really is. This error is then used to modify the weights on the

interconnections between the neurodes (Demuth and Beale, 1993).

4.3.2 Necural Networks for Data Fusion of Radar Signal

Neural network consists of parallel distributed processing clements that are interconnected by
links. By defining the associated weights for each of the interconnections, it is possible to
process data in a very rapid manner. This technique provides the potential to process radar

information in real time. The difficulty of choosing an appropriate neural network architecture
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for data fusion of radar signal processing is one of matching the problem domain with the
network features. This includes the problem size (i.e. number of input features and processing
elements, number of outputs), the form of data {continuous, time-varying, uncertain), and

incomplete knowledge about the system parameters.

The simplest format which can be applied to information fusion is a single layer network
(figure 4.3b) whose weights and biases could be trained to produce a correct target vector when
presented with the corresponding input vector. The perceptron has a hard limit transfer
function (Caudill, 1992). Each external input is weighted with an appropriate W, and the sum
of the weighted inputs is sent to the hard limit transfer function, which also has a bias input.
The transfer function classifies the input veclors by dividing the input space into two regions.
Output vectors will be either 0 or 1. The learning rule is applied to each neuron in order to
calculate the new row of the weight matrix and a new neuron bias. The learning rule will
converge 1o a solution in finite time if a solution exists. Vectors from a training setl are
presented to the network one afler the other. If the network’s output is correct no change is
made. Otherwise the weights and biases are updated using the learning rule. When an entire
pass of the training set has occurred without error, training is complete. At this time any inpul
training vector may be presented to the network and it will respond with the correct output
target vector. If a vector is not in the training set and is presented to the network, the network
will tend to exhibit generalisation by responding with an output similar to target vectors for

mput vectors close to the previously unseen input vector.
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The network first presents the matrix of input vectors and calculates the network’s matrix of
output vectors. Then it will check 1o see if each output vector is equal to the target vector
associated with each input vector. The training process will stop if -all input vectors have
generated the correct output vectors for a specific set of weights and biases, or after a
maximum number of epochs. If not, it will adjust the weights and biases and then return to the
presentation phase. The mathematical model can be expressed as:
Wiew = Wog +Byx
where [ = 0if the perceptron’s answer is correct

B = -1 if the perceptron’s answer is wrong

y = the perceptron’s answer

Consider a simple information fusion problem of 24 radar signals that arc recorded by the
author using the radar at the University of Plymouth. The objective is to classify these signals
into targets and noise. To achieve this, both the amplitude mean and maximum pulse width
have already been extracted from the radar signals and these are served as input vectors to the
network. In the training process. a | is assigned to targets and 0 to noise. The input vectors for
the problem are plotted in fig. 4.4. The targets are marked with an “o” and the noise is marked
with a “+’. A network with two inputs, i.e. amplitude and pulse width, and one neuron is
trained to distinguish belween targels and noise. The initial conditions for the weights and bias
arc generated from a random numbers. The result of the training is shown in fig. 4.4 where the
network adjusts its weights and bias to classify the input space into targets and noise. A
boundary line separates the two regions. The final values of weights and bias were obtained

after waining for 1700 epochs ( W =[219.5580 7.5843); B=[-51.0778]).
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Perceptrons are only good for solving real world problems when data is linearly separable.
However, it is seldom the case. The development of the backpropagation training algorithm in
the 1970s and early 1980s demonstrated that training procedure was possible for a network of
three or more layers. A backpropagation network operates in a two-step sequence during
training. First, an input pattern is presented to the network's input layer. The resulting activity
flows through the network from layer to layer until the network's response is generated at the
output layer. Then, the network's output is compared to the desired output for that particular
input pattern. If it is not correct, an error is generated, which is propagated backward through
the network to the input layer. The weights on the interlayer connections are modified as the
error passes backward based on the learning rules. Changes in cach weight and bias are
proportional to the pattern of the network’s sum squared error. When the network is well
trained. a new input will lead to an output similar to the correct output for input vectors used in
the training. Such characteristic facilitates the training of a network on a representative set of
input/target pairs as well as obtaining good results for new inputs, without training the network

on all possible input/output pairs (Fincher, 1990).

Backpropagation networks often use the sigmoid transfer function, which generates outputs
between 0 and | as the neuron’s net input goes from negative to positive infinity. The use of
the bias tends to increase the chances that the network can find an acceptable solution and also
tends to decrease the number of training epochs required. It is quite usual that the
backpropagation networks have one or more hidden layers of sigmoid neurons followed by an
output layer of linear neurons. Multiple layers of neurons with nonhlinear transfer functions

allow the network to learn nonlinear and linear relationships between input and output vectors.
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Derivatives of error are calculated for the network’s output layer and then backpropagated
through the network until the errors are available for each hidden layer. The change to be made
in a layer’s weights and bias are calculated using the layer’s error vectors and the layer’s input
vector according to the backpropagation rule. Before starting the training process, all the
weights and bias must be initialised to small random numbers to ensures that the network is not
saturated by large values. Training the backpropagation network requires the selection of the
training parameter and application of input vector to the network input. Then both the output of
the network and the error are calculated. The weights of the network are adjusted to minimise

the error. The generalised rule specifies the change in a given connection weight as:

W= E (1)

E is the error for this neurode, 3 is the learning constant (between zero and one), and (1} is the
input to the neurode. The process is then repeated until the error or the convergence of the

entire network is Lo an acceptable level as specified.

Consider the same fusion problem in which a group of 6 radar signals (4 targets and 2 noise
signals) are input to the network for target detection. The backpropagation network is designed
and trained to discriminate the target from clutters. The network consists of one input layer
with 2 elements, one hidden layer with 2 neurons and one output layer as shown in figure 4.5.
Both the mean amplitude and mean pulse width are extracted from these 6 radar signals and
used in training the network. It will then be required to identify the target by responding a 1-

element output vector. The network should output a 1 if there is target presented in the signal
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and output a 0 otherwise. The maximum error of 0.05 is used as the limit for the training. The
network completes the training after 1220 iterations. Once the network is trained, a testing set
is used to evailuate the performance of the network. The set consists of mean amplitudes and
mean periods extracted from 6 radar signals (4 targets and 2 noise signals) which are not used
in the training. Table 4.3 and table 4.4 show the training data and the testing result
respectively. From the table, it can be observed that the normalised outputs of the network are
0.9702 to 0.9788 for target, and 0.0154 to 0.0378 for noise signals respectively. As such, a
significant discrimination is achieved and the network is able to detect the targets from the

radar returns effectively in this example.
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44  Conclusion

Data fusion techniques in radar signal processing using both fuzzy logic and a neural network
have been discussed in this chapter. The performance of these methods is verified by applying
signals from live radar videos to the network and observing the results. Fuzzy and neural
systems do not require mathematical models to estimate functions from sample data. Neural
network theory includes the mathematical fields of dynamical systems, adaptive control as well

as statistics. Fuzzy theory adds probability, logic and knowledge base into these fields.

The architectures of neural networks are parallel and consist of many simple nonlinear
summing junctions connected together by weights of varying strength. It has been shown in
this chapter that even a simple network can perform interesting and useful computations in dala
fusion of radar signals for target detection. Perceptrons can classify linearly scparable input
vectors very well. However, the output values of a perceptron can take on only one of two
values due to the hard limit transfer function. If the vectors are not linearly separable, learning
will never reach a point where all vectors are classified properly. Backpropagation is slow
because of small learning rates and there are a large number of variables in multi-layered
networks. Yet, the multi-layer perceptron can perform linear or nonlinear computations. In the
example, a three layered backpropagation network can successfully identify the targets from

clutters as shown in table 4.4.
Fuzzy systems generally offer the advantage of a clear understanding of the operation as they

can structure the knowledge in a way that resembles human thinking. The objective of the

example is to recognise the presence of targets in radar signal. The pattern is composed of two

87



Data Fusion Techniques in Radar Signal Processing

features (mean amplitude and mean pulse width for each radar signal) whose relative strengths
are characterized by the corresponding membership function. The strength of each feature in
the signals is obtained to calculate the overall degree of membership of the available
information to the defined class of target. From these numerical values, the presence of the

pattern of targets is more clearly defined.

There are significant differences, as well as similarities, between neural networks and fuzzy
systems. Neural networks learn from the training data to recognise future patterns or fuse
future data to arrive at decisions based on knowledge or solve future computational problems.
Fuzzy systems start from highly formalised insights about the behaviour of the systems and
they learn from the associative rules to estimate functions or formulate control strategies.
Learning from examples requires the formulation of a knowledge base with a collection of
input-output pairs. In neural networks, a multilayer network is used as an approximation
framework and both weights and bias are modified in according to the selected algorithms. As
for fuzzy systems, fuzzy if-then rules are used to relate the linguistic or fuzzy variable, which

allows an approximated match between the input and the antecedents of the rules.

Fuzzy systems are suitable to be applied to areas where we can use people’s experience or
knowledge to develop the fuzzy if-then rules. Since there is no mature guidance in fuzzy set
theory for the determination of the best shapes for fuzzy sets, different shapes for dilferent set
points need to be studied (o obtain an optimum solution for various input vectors. The amount
of overlap with the fuzzy sets affects the efficiency of the fuzzy controller. In the case of too

much overlap, many rules will be applied for a single set of input vectors, and the situation will
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not be represented accurately. If there is too little overlap, it will be difficult to derive the fuzzy
decisions. In addition, it is extremely difficult to formulate universal rules for a complex radar
target detection problem as the complexity changes at different periods. Therefore, neural
networks are more commonly used in this type of problem where a large amount of sample

data from simulated/live signals can be obtained and used as training sets for the network.
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CHAPTER FIVE

THE RADAR SYSTEM AND DATA ACQUISITION

5.1 Introduction

The radar system selected for the implementation is.a Racal-Decca ‘Series 70’ installed at
the roof of Fitzroy Building (University of Plymouth). The radar is located about 3.7 km
from the sea front and is ‘looking at’ the Harbour of Plymouth. It picks up targets of
ocean going vessels, as well as pleasure crafts. Both sea clutter and rain clutter are
detected by the radar under adverse weather conditions: The data acquisition system was
set up to record the raw radar video for analysis purposes. The recorded videos are then
imported into the computer where processing takes place. This chapter describes the radar
system and the effect of its characteristics in signal processing, as well as the
development of the data acquisition system to match the characteristics of the radar

waveforms.

5.2 The Radar Equipment

As stated in the service manual of the radar equipment, it includes an X-band transmitter
(9380-9440 MHz) with a nominal power output of 10 KW. The top unit is fitted with 4 feet
end-fed slotted waveguide aerial and the rotational speed is 25 rpm. The horizontal
beamwidth and vertical beamwidth are 2 degrees and 23 degrees respectively. The sidelobes
within 10 degrees of the main beam are better than -23 dB. The aerial gain is approximately
28 dB with horizontal polarization. The pulse repetition frequency and pulse widths are

2400Hz at 0.08 microsecond (short pulse), 1200 Hz at 0.3 microseconds (medium pulse)
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and 600 Hz at 1.0 microseconds (long pulse). The receiver is equipped with a low noise
front end with a noise factor of better than 7 dB. The intermediate frequency is centred on
60 MHz with L.F'. bandwidths of 25 MHz (short pulse) and 4 MHz (medium and long pulse).
The viewing unit uses a raster scan format with 625 line/60 field per second and 2:1
interlaced. There are 4 planes ol 512 x 512 pixels for the radar picture mémory and | plane
of 768 x 576 pixels for the synthetic data memory [Racal-Decca ‘Series 70’ service

manual].

5.3 Parameters Affecting the Radar Signal and Maximum Range
The radar transmits a train of narrow pulses modulating a high frequency sine wave carrier
and detects the nature of the reflected signal when hitting an object. The parameters which

alfect the reflected signal and the maximum range is discussed as follows:-

5.3.1 Beam Width

The vertical beam width indicates the height of the beam effect within the vertical plane.
This parameter determines the minimum range which the target is ‘seen’ by the radar. The
horizontal beam width is measured in degrees and indicates the width of the radar beam in
the horizontal direction. In this case, the horizontal beam width is 2 degrees measured at the
half power point. This is not a particularly fine beam as beam width can go down to 0.5
degree for some sophisticated radar equipment. The horizontal beam width of the radar
signal transmitted from the antenna has a decisive meaning in the bearing accuracy.
Incorrect information will be indicated in cases where the distance between the two objects

is smaller than the width of the beam at that range. The targets would be seen by the radar as
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5.3.2. Pulse Repetition Frequency

The pulse repetition frequency (PRF) is the number of pulses transmitted from the radar per
second and it will limit the maximum detectable range. Figures 5.2 and 5.3 show the PRF
for short pulse and long pulse. In the short pulse, the PRF is 2400 Hz (416.67 microsecond)
which corresponds to a range of 62.5 km. For the long pulse, the PRF is 600 Hz (1667
microsecond) which corresponds to a range of 250 km. The pulse width will affect the range
resolution of the radar. It is the time that the magnetron is active. In the radar used within
this work, the pulse width for short pulse is 0.08 microsecond, which corresponds to a
distance of 12 meters, and the pulse width for long pulse is 1 microsecond which
corresponds to a distance of 150 meters. The pulse width affects the radar range; longer
pulse width tends to achieve a greater range due to the average power being higher.
However. it will have less range resolution, that is, it is unable to discriminate targets which
are less than 150 meters apart. For the same reason, the shorter pulse width can achieve
better range resolution. Thus, short pulse is usually used for close ranges and long pulse for
larger distance. Digitized radar video returns for both short pulse and long pulse are shown

in figures 5.4 and §.5.

5.3.3 Transmission Power
During transmission, the peak power of the radar 1s 10 KW and the transmitter is idle after
this pulse period. The-average power of the radar pulse in watts is given by:

(Peak power (in KW) x Pulse Repetition Frequency x Pulse Width)/1000
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detection range. If the power of an omni-directional radar transmitter is denoted by P, the
power density at a distance R from the radar is equal to the transmitter power divided by the
spherical surface area of an imaginary sphere of radius R, 1.e. P/4nR?. The gain G of an
anlenna i1s a measure of the increased power radiated in the direction of the target as
compared with the power that would have been radiated from an isotropic source. The
power density at the target from an antenna with a transmitting gain G would then be,
PG/4nR? . The target intércepts a portion of the radiated power and re-radiates it in the
direction or the radar and the re-radiated power is PGo/4nR* where ¢ is the radar cross
sectional area of the target. The power density of the echo at the radar receiving antenna is
then, PGo/(4nR*)’. The radar antenna captures a portion of the echo power. If the effective
capture area of the receiving antenna is A, the echo power received at the radar is,
PGAc/(4nR?)’ . Antenna theory gives the ralationship between antenna gain and effective
area as, G = 4nA/A2. If the minimum signal that can be detected by a radar is:

PGP0’
Y min (4”_)3 (Rm“ ).|

then the maximum range for detection is

_PGAo?

(Rllm\) - (477_)15,

min

The above equation shows that if longer ranges are desired, the transmitted power must be
increased. This can be achieved by concentrating the radiated energy into a narrow beam
(high transmitting antenna gain), the received echo energy must be collected with a large

antenna aperture, and the receiver must be sensitive to weak signal (small Sy value).
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However, the minimum detectable signal and the target cross section area are both statistical
in nature and should therefore be expressed in slatistical terms. Other statistical factors are
the meteorological conditions (rain, fog, sea clutter) along the propagation path. The
statistical nature of these several parameters does not allow the maximum radar range to be
described by a single number and a statement of probability that the radar will detect certain

type of target at a particular range must be specilied.

5.3.4 Recciver Noise

Noise may originate within the receiver itself, or it may enter via the receiving antenna along
with the desired signal. If the radar is operating in a perfectly noise-free environment so that
no external sources of noise accompanies the desired signal, and if the receiver itself were so
perfect that it did not generate any excess noise, then there would still exist an unavoidable
component of noise generated by the thermal motion of the electrons in the receiver input
stages. The available thermal-noise power generated by a receiver of bandwidth B, at a
temperature T (degrees Kelvin) is equal to, KTB,, where K=Boltzmann’s constant = 1.38 x
10 joule/degree. Kingsley and Quegan (1992) and Barton (1988) state that the total noise
at the output of the receiver is equal to the thermal noise power obtained from an receiver

multiplied by a factor called the noise figure. The noise figure F of a receiver is given by:

noise oul of practical receiver

N

P o —

K*T *B, *G

‘" noise out of ideal receiver std temp T,
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where N, is the noise generated from receiver and G, is the available gain. B, is the
bandwidth of the IF amplifier in the receiver. The available gain G, is the ratio of the output
signal to the input signal of the receiver and Kt,B,, is the input noise level N; in an ideal
receiver. Since the minimum detectable signal Sy, is the value of §; corresponding to the

mininum signal to noise ratio (So/No)min Necessary for detection, and

S = KTO Bn F(Su / I\In)

min min

Then F becomes:

|
SN,
S, /N,

Practical systems are designed such that the radar pulse width t is approximately equal to
the reciprocal of the receiver bandwidth B,. By considering the total loss L, which
include the loss occurred throughout the system, the radar equation becomes:

R - PG Aot
™ (4x)Y KTF(S/N)

i

This shows that the maximum detectable range of a radar depends on the peak power, the
antenna gain, the wavelength, the target cross sectional area, the pulse width, the thermal
noise power, the noise figure, the total loss and the minimum signal to noise ratio

(Hovanessian, 1972).

5.4 Data Acquisition System
To develop a suitable algorithm for the detection of target return signals that exist within

the noise. 1t 1s necessary that these signals can be imported into the computer for analysis.
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This requires a data acquisition system which can record the radar video with minimum
distortion, as well as identify the bearing of each sweep so the both sweep to sweep and
scan to scan correlation can be performed. To cope with the wide band width of the

signals, a system with fast analogue to digital conversion rate is needed.

5.4.1 Sampling Rate

This parameter specifies how frequently conversions take place. A faster sampling rate
can acquire more points in a given time, thus providing a better representation of the
original signal. If the signal is changing faster than the sampling rate, errors will be
introduced into the measured data. When the data sampling rate is too slow, the signal
may appecar to be at a completely different frequency due to aliasing. According to
Nyquist theorem, the sample frequency must be at least twice the rate of the maximum
frequency components. The frequency at one-half the sampling frequency is referred to
as the Nyquist frequency. Theoretically, it is possible to recover information about
signals with frequencies at or below the Nyquist frequency (Kuc, 1982). To sample the
radar signals when operaling in short pulse (which has a bandwidth of 12.5 MHz). a
sampling frequency of 25 MHz is needed. Video cassette recorders have been used to
record the raw radar videos. However, due (o the limited bandwidth available (only
around 3 MHz), the video signal has to be compressed before being recorded. As such, a

lot of detailed information will be lost in the compression.

99




The radar system and dala acquisition

5.4.2 Resolution and Range

Resolution is the number of bits that the analogue to digital converter uses to represent
the analog signal. The higher the resolution, the higher the number of divisions the
voltage range is broken into, and therefore the smaller the detectable voltage change. For
example, if a 3 bit converter is used, it will divide the analog range into 2°, or 8 divisions.
Each division is represented by a binary code between 000 and 111. [t is obvious that the
digital representation is not a good representation of the original analog signal because
information has been lost in the conversion. If the number of bits is increased to 16 bits,
the codes for the converter will be increased from 8 to 65,536 which can represent the
analogue signal very accurately. However, this will also require a larger space in the
random access memory of a digital system for storage. Taking the sampling rate as
25MHz, i.e. the interval i1s 0.04 microsecond per sample, then in short pulse, the period
for 1 sweep is 1/PRF, i.e. 417 microsecond. As such, there are 417/0.04=10,417 samples
in one sweep and this would require 10,417x16=166,666 bits. The antenna rolates at 25
rpm, i.e. 2.4 seconds in one revolution. There are 5759 sweeps in one revolution and this
would require 960 M bits or120 M Bytes of storage media. As such, the radar recording
system needs a large memory size as well as a fast data transfer rate to digitize the

waveform data into the computer for analysis.

5.5 Conclusion
The radar equipment that is available for use in this research is a general purpose marine
radar used in small commercial vessels. Selective sampling allows various weather

conditions including Plymouth rain clutters and sea clutters to be observed and recorded.
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The reflections from extraneous targets, such as those from nearby buildings, are detected
by the radar in addition to those from vessels. It is the returns from vessels however, that
form the database for the analysis and implementing the feature extraction techniques. It
has been shown that the system requires a very special data logging system for recording
the waveforms, i.e. a high sampling rate and a large storage media. Also, the
instrumentation must be able to identify the bearing of each sweep so that analysis on
sweep to sweep and scan to scan correlation can be performed. One methed is to divide
one revolution of the radar antenna into 4096 steps and encode each sweep with a sync
word at the zero range. A market survey has been undertaken by the author done and no
data acquisition system, which is suitable for this application, is available from
manufacturers. One company, Transas, has been developing a similar system using signal
processing chips from Texas Instrument. The equipment is still under development and
much of the processing will be undertaken by dedicated hardware. To overcome this
problem, a Tektronix TDS410 digitize oscilloscope is used as a data recording system.
The scope has a bandwidth of 100MHz and is able to provide the sampling rate as
required by the radar signal. The internal memory in the scope is limited so only a few
sweeps can be recorded in one time. The number of sweeps will depend on the sampling
rate used. The recorded waveform is then input to a IBM PC via a GPIB interface.
Software from Tektronix, called the *‘Wavestar’ is used to acquire the data for further

analysis. The details of the complete system are discussed in the next section.
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CHAPTER SIX

THE INTEGRATED RADAR DETECTION SYSTEM

6.1  Introduction

The radar system described in Chapter Five provides the raw radar videos from the environment
in the vicinity of the antenna. A data acquisition system is then implemented to record the video
signal for analysis purposes. In order to identity the targets and clutters, the recording is done at
a specific bearing only. This is to ensure that the data can be compared with the visual scene and
the observation on the radar display. Windows of signals containing targets and clutter would be
extracted for feature identification. The features include amplitude mean and deviation, period
mean and deviation, as well as the maximum pulse width. The criteria for selecting these
features are also discussed in this chapter. Results presented in tables 4.3 and 4.4 indicated that
neural networks may be suitable for target detection and this work is now expanded. The

training procedure and the detection algorithms are discussed in detail in this chapter.

6.2 System Hardware

To record the waveforms of radar signals, the raw video, trigger signal and the heading marker
from the radar transceiver are input to the Tektronix TDS410 digitised oscilloscope, which has a
maximum sampling rate of 100 MHz. The recording length is 50 points per division with a
maximum of 15000 points. For example, at the 2 microsecond per division range the time
interval for each sample will be 0.04 microsecond. Therefore, the total recorded length is 0.04 x
15000 = 600 microseconds. This corresponds to around 1.3 sweeps of raw video in short pulse,
0.3 sweep in long pulse. To increase the number of recorded sweeps in 15000 points, the
sampling rate must be reduced. For example, at the 20 microsecond per division range, the time

interval for each sample will be 0.4 microseconds. Therefore, the total recorded length will be

102






The Integrated Radar Detection System

author designed and added a time delay circuit at the output of the transceiver. The objective is
to introduce a variable time delay to the arrival of the heading marker signal. Since the antenna
rolates at 25 rpm, one revolution will take 2.4 seconds. An RC time delay circuit with a resistor
of 1k ohm and a capacitor of 1000 microfarad is used. This contributes a delay of 1second and it
corresponds to a bearing of 360 x 1/2.4 = 150 degrees. By adjusting the 100k ohm resistor, a
delay of 0 to 150 degrees on the heading marker can be achieved. The arrangement is shown in
fig. 6.2. Adjustment of the resistor allows digitisation of targets that can be seen visually and

observed on the radar display.

6.3 Selection of Features to be Extracted from Radar Signals

In Chapter 3, the characteristics of radar signal have been discussed and features can be
extracted from the signals for detection purpose. However, it is impossible 1o extract all these
features for detection due to the computational time involved in the process. As such, it is
necessary lo identify the features that are just sufficient for discriminating targets from clutters
with the minimum computational time required. Discrete Fourier transform (DFT) or fast
Fourier transform (FFT) technique 1s commonly used to assess the relative contributions of the
frequency components in a radar waveform and convert them into the frequency domain. The
waveform can then be characterised according to the relative amplitude of the- components.
While this method is effective and accurate, it is also computationally intense. Consider a
waveform that consists of a fixed frequency component and a variable frequency component.
The objective is to identify when one of the possible combinations of frequencies occurs in a

particular sample. The mathematical representation is as follows:

A,y = A sin[(2mf )+ @, 1+ A, sin[(2atf )+ @, ]

where A, = peak amplitude of the fixed-frequency component,
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A; = peak amplitude of the variable-frequency component

o = frequency of the fixed frequency component

fo = frequency of the variable frequency component

¢ = initial phase of the fixed frequency component

¢» = initial phase of the variable frequency component

t =elapsed time
The Fourier Transform can be used to identify the frequency components of the samples.
Despite the fact that both Discrete Fourier Transform and Fast Fourier Transform can solve the
problem, the FFT takes advantage of powers of 2 relationships to achieve a transform with
reduced computational complexity, compared to DFT. In either case, the number of basic
mathematical computational operations (add, subtract, multiply and divide) is a direct function

of the number of samples. Hirsch (1991) stated this relationship as:

N =N (for the DFT) N, =5N_log(N.) (for the FFT)

where N, is the number of operations required and N; is the number of samples.

In view of the computational complexity of Fourier Transform, it is necessary lo. find an
alternative means to characterise the frequency domain similarities and differences of
waveforms without actually performing the transform. The process must use simple
computational methods to extract the frequency domain significance of the waveform without
actually transforming the signals into the frequency domain.  The statistical signal
characterisation method characterises the radar waveform not only as a function of the frequency
components but also as a function of the relative phases of its frequency components. The
charactertsation method is used to associate waveforms to-different types in a high signal density

and real time environment. The characteristics of radar waveforms can be manipulated with
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simple statistical mathematics to produce a set of numerical parameters for a given waveform. It
involves the division of a waveform into segments which are bounded by the extremes of the
waveform. As shown in chapter 3, the absolute differences in amplitude between these extremes
are then accumulated and their mean and mean deviation are calculated. Similarly, the mean and
mean deviation of the times between the extremes are also calculated. The five waveform
parameters, amplitude mean, amplitude deviation, period mean and period deviation are the
primary measures which are used for characterisation purpose. In order to extract the special
features of individual targets, the maximum period between extremes is also evaluated. The
parameters on periods are numerically very close to the reciprocal of the frequencies of the
components presented in the waveform. Therefore, the characterisation technique can determine
the frequency indirectly, which is significantly simpler than a Fourier Transform.
Computationally, this technique offers a considerable reduction in the number of operations as
compared to the more classical methods such as Fourier Transform and Correlation. 1t simply
sums consecutive time segments and is divided by the number of segments. Hirsch (1992)

worked out the number-of operations required as follows:

N; subtractions + N; additions + 1 division to calculate the. amplitude mecan
+ | subtraction + 1 division to calculate the period mean
+ N; subtractions + N additions + 1 division to calculate the amplitude mean deviation

+ N; subtractions + N additions + 1 division to calculate the period mean deviation

which gives a total of approximately 6 N; +5 operations. When continuous sampling is required,
another N; operations would be needed to accomplish the detection of maximum and minimum.
The technique requires fewer computational operations in comparison to Fourier Transform or

correlation (both auto correlation.and cross correlation).
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6.4 Methods of Extracting Statistical Signal Characteristics

The statistical signal characteristics are extracted from the radar signal at each time slot. A
moving window of a fixed number of range cells is shifted through the entire sweep. As such,
the size of the moving window has (o be determined. If the window size is made 100 large, then
the extracted characteristics will be comprised of a large number of samples and the accuracy of
the detection algorithms will be reduced. However, too small a window will involve extra
computational time as well as not truly representing the situation due to the limited amount of
samples available. The window size used for the initial testing is 50 samples. Taking the
sampling rate of 25M samples per second, the window corresponds to a time slot of 2
microsecond and a distance of 300 meters. The slot approximates the size of nominal targets.
Figure 6.3 shows the waveform of a target that is contained in a window of 50 samples. The
maximuim extreme is declared when the magnitudes of the previous and subsequent samples are
both less than the present sample, i.e. A(n-1) < A(n) > A(n+1), where A is the amplitude and n
1S the sample number. Consideration is also given to conditions where the amplitude maximum
extreme may be constant for a number of samples. Similarly, the minimum extreme is

determined when, A(n-1)>A(n)<A(n+1)

From the figure, it can be observed that the maximum extremes occur at 5 points. These are 0.08
volt at 0.2 microsecond, 0.2 volt at 0.32 microsecond, 0.12 volt at 0.56 microsecond, 1.24 volt at
1 microsecond and 0.28 volt at .18 microsecond. Similarly, the minimum extremes occur at 4
points. These are 0.04 volt at 0.24 microsecond, -0.04 at 0.48 microsecond, 0.04 at 0.64
microseconds and 0.12 at 1.64 microsecond, The statistical characteristics are then calculated

out as follows:
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Amplitude Mean = (0.08 + 0.2 +0.12 + 1.24 +0.28)/5 = 0.384 volts
Amplitude Deviation = (/0.08-0.384| +|0.2-0.384] + (0.12-0.384] + |1.24-0.384| + |0.28-

0.384))/5 = 0.3424 volts

Period Mean = (0.6 + 0.4 + 1)/3 = 0.667 microseconds
Period Deviation =(]0.667-0.6| + [0.667-0.4| + |0.667-1])/3 = 0.222 microseconds
Maximum Period = | microsecond

Similarly, the statistical characteristics of eight sets of waveforms for targets (figures 6.4a to
6.4h) and eight sets of waveform for noise (figures 6.5a to 6.5h) are shown in tables 6.1 and 6.2
respectively. The targets are returns from vessels in the vicinity of the radar and the noise
consists of both rain and sea clutters. The figures on the table show that each set of waveform
parameters 1s unique to a particular type of radar signals. Although there are similarities spread
across more than one parameter, the similarities seldom spread across all five parameters. From

these figures, different types of targets and noise can be extracted.

6.5  Neural Target Detection

The neural network’s ability 1o learn, the fast on line processing ability and robustness of the
system indicates that it is appropriate to be applied in radar target detection. The method chosen
for the implementation of target detection is supervised learning using the backpropagation
learning rules. This particular-methodology is chosen because they are simple 1o implement and
allow great flexibility in the structure of the system. The number of network inputs and the
number of neurons in the output layer are constrained by the information available and
requirements of the application. The number of neurons in the hidden layer(s) depend on the

designer. The more neurons, the more likely solution will be found. However, more neurons
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Table 6.1. Statistical Characteristics of Targets

Targets A B C D E F G H mean

Mean Amplitude 0.8743 0.3022 0.3467 0.3314 0.4145 0.2850 0.2800 0.3418 0.3970
Amp. Deviation  0.6694 0.2607 0.2104 0.3135 0.2003 0.1475 0.1600 0.3881 0.2925
Period Mean 0.2150 0.1382 0.1911 0.2057 0.1309 0.1956 0.1640 0.1354 0.1720
Period Deviation 0.1481 0.0939 0.0953 0.1388 0.0655 0:0988 0.1084 0.0847 0.1042

Maximum Pertod 0:5600 0.5600 0.3600 0.7200 0.2800 0.4000 0.4400 0.4800 0.4750

Table 6.2. Statistical Characteristics of Noise

Noise A B C D

eyl
-
)

H Mean

Mean Amplitude 0.1343 0.0360 0.1167 0.2520 0.3267 0.0360 0.2800 0.0920 0.1592
Amp. Deviation  0.1333 0.0735 0.0600 0.0706 0.1448 (.0533 0.0600 0.1000 0.0869
Period Mcan 0.1143 0.1400 0.1229 0.1520 0.1233 0.1400 0.1354 0.1600 0.1360
Period Deviation 0.0539 0.0783 0.0459 0.1016 0.0542 0.0783 0.0577 0.0800 0.0687

Maximum Period 0.2800 0.3600 0.3200 0.4400 0.2800 0.3600 0.3200 0.3600 0.3400
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means longer training times with larger weight matrices and bias vectors in the solution.
Initially, the test network consists of one input layer with 5 elements, one middle layer with two
neurons and one output layer. The five inputs are the amplitude mean, amplitude deviation,
period mean, period deviation and maximum period. These parameters for targets and clutter are
extracted from different radar returns for training purpose. In the initial training process, targets

are labelled as 1 while clutter and noises are labelled as 0.

To train a network, the five inputs are presented to the input layer of the network and the error
vectors are calculated. The maximum acceptable error is set within 5 percent of the desire value,
i.e. 0.05. If the sum squared error for all the training vectors is less than the error goal then
training stops and the corresponding veclors will be presented to the output layer. If the error
goal is not reached then the error vectors are calculated and back-propagated through the

network. Finally the weights are updated using the back-propagation learning rule, i.e.

AW, j) = PEWDIC) & AB(i} = PE(D)

where AW is the weight change, I is the input vector E is the error vector and 3 is the learning

rate.

The learning rate specifics the size of changes that are made in the weights and biases at each
training sequence. Small leaning rates result in long training times but guarantee that the
leaming process will not jump over valleys in the error surface. If a set of vectors from a radar
waveform, which is not in the set of input training vectors, is presented to a well trained
network. the network will try to exhibit generalisation in identifying whether the input vectors
belong to a target or clutter. To prevent the network from getting stuck in shallow minimum, a

term of “‘momentum’ is added into the network parameters. It allows the network to respond not
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only to the local gradient but also to recent trends in the error-surface. The effect of momentum
is achieved by making weight changes equal to the sum of a fraction of the last weight change

and the new change as given by the back-propagation rule. The mathematical term is:

AW, y=mAW * (i, )+ (1L —m)BI(f)

where W* s the last weight and m is the momentum constant. The effect of the last weight
change is allowed to be mediated by a momentum constant. When the- momentum constant is 0,
the present weight change is based only on the gradient. When the momentum constant is 1, the
new weight change is equal to the last weight change and the gradient is stmply ignored.
Typically the momentum constant is set to 0.95 which will be used initially for this

implementation (Demuth and Beale, 1993).

In order to detect any targets that may be constrained within each sweep, the 50 sample window
needs to be shifted along the complete sweep and analysis performed at each window. During
the shift, there are samples being overlapped. Excess overlap across samples will increase the
number of windows to be processed and the measure processing time. Insufficient overlap could
cause a target to me spread across different windows and reduce the chance of detection. If 25
overlapping samples are chosen, assuming that short pulse is used, the period for each sweep is
416.67 microsecond and the sampling rate is 25 MHz. This means that approximately 20,800
windows have to be analysed in each sweep. The number of overlapping samples is determined

by trial and this is discussed in the next chapter.

6.6 Conclusion
A general purpose marine radar is used in the implementation. The objective of the detection
system is trying to identify targets from the radar returns that are received from such radar

equipment. As a complete sct of data acquisition system is not available, a continucus recording
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of radar videos cannol be performed. By using the storage oscilloscope, a number of sweeps can
be recorded at one time. The number of recorded sweeps depend on the pulse width used, the
sampling rate and the record length selected. In order to compare the recorded sweep with the
image shown on the display, the heading marker signal is used as threshold for initiating the data
acquisition by the oscilloscope. A time delay circuit is added to delay the heading marker signal
so that the data recorded is in the region of interest. A neural network, that has been trained
using back-propagation, then provides the essential part of the detection system. A simple three
layer network is adopted for the initial implementation. The criteria for determining the initial
setting, e.g. window size, overlapping samples, initial condition, learning rate and momentum
constant are discussed. To prepare the training samples, hundreds of sweeps of radar returns are
recorded at different times under different environment e.g. rainy or stormy weather. Also,
different types of targets such as fishing boat, sailing yacht, cargo vessel and passenger liners are
recorded. Hundreds of representative windows are extracted from these sweeps and various
statistical characteristics of these windows are calculated. These values provide the training data
for the neural network. The training, testing and verification of the detection system will be

discussed in the next chapter.
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CHAPTER SEVEN

TRAINING, TESTING AND VERIFICATION OF THE RADAR
DETECTION SYSTEM

7.1  Introduction

Over two hundred sweeps of radar data were recorded using the data acquisition system as
described in the previous chapter. Windows containing targets and clutters were extracted from
these signals for training purposes. Initially, the mean amplitude, mean amplitude deviation,
mean period, mean period deviation and maximum period are evaluated from the windows. The
distribution of these parameters for both target and noise are discussed. Then the neural
detection system was formulated using the backpropagation techniques. The training algorithm
calculated and minimized the cost function or error value. The anticipated performance of the
system can be considered to be improved if the error function has a reduced value. The error is
compuled in each training cycle of the data set and is summed at the end of each pass through
the patterns in the training set. When the detection system has been trained, new sweeps of data
are used to ascertain whether the network can detect a target with the unseen data. The author
used Matlab together with the neural network tool box (from Math Works Inc.) to develop the

software for the implementation.

7.2 Feature Extraction from Radar Sweeps

To formulate the detection system, the first step is lo obtain samples of targets, noise and clutter
in a 2 microsecond window, which consists of 50 samples at a sampling {requency of 25 MHz.
Targets close to the heading marker were first identified on the radar display. When the target
Just passed the marker, the digital scope would be triggered to acquire the sweep and the range

of the target from the radar transmitter was measured. The target would then be identified from
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the data recorded and the window extracted as one of the samples. Noise was also present in all
the retums and this was extracted from the same sweep when targets were recorded. Rain.clutter
was recorded when heavy rain was observed in the region of the heading marker. There were a
number of occasions which gale force winds were encountered in the Plymouth area during the
data recording periods. Sea clutters were observed in closed ranges of the radar and the scope
was triggered to acquire such signals in the vicinity of the heading marker. To ensure that no
targets existed in the recording of noise and clutter by chance, the gain, sea clutter and rain
clutter control of the radar display unit were adjusted to see if targets were presented in the
vicinity from the radar screen. Also, the record was carefully checked for any targets that were
embedded: in the noise. Initially, 100 samples for targets, 50 samples for noise, 50 samples for
rain clutter and 50 samples for sea clutter were recorded, 1.e. a total of 250 samples. A Matlab
program was writlen to calculate the five parameters from these samples. These include mean
amplitude, mean amplitude deviation, mean period, mean period deviation and maximum
period. The distribution of these parameters for targets, noise and clutter (rain and sea) is plotted

(figures 7.1 10 7.5).

Traditional radar detection system has been using amplitude as a discrimination feature. From
the distribution on mean amplitude (Fig.7.1), a large overlap between target, noise and clutter is
observed. There were instances where the clutter had a very large amplitude, especially during
the rain clutter environment. If a threshold is determined based on this amplitude distribution,
large false alarm rate and low detection probability would result. Distribution of amplitude
deviation (fig 7.2) shows a better discrimination feature. The majority of the noise and clutter
had a very low amplitude deviation from the mean and is independent of the type of clutter. This
is due to the fact that the amplitude of noise and clutter tend to be more evenly spread in the

window, whereas, for targets, a sharp rise in amplitude usually occurs. A variation of the
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window size would have an impact on the value of the amplitude deviation. The selection of the

window size will be discussed in section 7.3.

Figures 7.3 to 7.5 show the parameters related to the period of retumn signals. The noise signals
are mainly spikes with a very fast rise and fall time. They consist of large high frequency
components that cause the width of the pulse to be much narrower than those of the targets. The
system detects the period between the consecutive negative extremes as an indication of the
width of the pulse. The mean period of each window was evaluated and shown in fig. 7.3. The
use of negative exiremes (described in section 6.4 of Chapter 6) as detection criteria is a very
effective way of determining the pulse width of individual pulses in a radar return. An ideal
target would be one which has only two negative extremes, i.e. at the beginning and the ending
of the pulse. However, not all targets belong to this category. The width of the pulse would be
reduced if the number of detected negative extremes is increased. As such, some overlap still
exists in the distribution of the mean period, the period deviation and the maximum period. The
majority of the noise and clutters have a narrow pulse width and their deviation from the mean is
small, as shown in fig. 7.4. The maximum period signifies the width of a specific pulse which
has a maximum value in a window. This is useful in the identification and classiﬁca;i011 of a

possible target in the window.

Form the graphs provided, it is observed that it would be a difficult task to discriminate the
target from noise and clutter based on any one of the statistical characteristics. However, it is
important o note that redundancies may spread across more than one parameter but such
redundancies will seldom spread across all the five parameters to a degree that may be
inseparable by computational techniques. The spread of these five parameters for three targets

and three noise samples is shown in fig. 7.6. Examination of these distributions and spreads
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7.4.3 Testing the Trained Network

When the training process was terminated, it was necessary 1o assess the performance of the
trained network with the final values of the weights. Figures 7.14a and 7.14b show the plot of
errors against the number of epochs. The rate of change of error reduces as the number of
training cycles increase. Figure 7.15 shows the final result after the training exercises. The
majority of the targets have a value of one while majority of the noise has a value of zero. There

is no overlap between these two values and discrimination can thus be achieved.

A testing process is necessary to verify that the neural network is able to identify targets from
data that was not used in the training exercise. The process was undertaken by using 40 further
samples of data with different signal to noise ratio and noise background. Each data set consisted
of a window of 50 samples and the five statistical characterization parameters were extracted
from these data and input to the trained network. The value at the output determined when the
data is a target or noise. Figures 7.16a to 7.16d show targets with signal to noise ratio of 3.7dB,
12.6 dB, 6.6dB and 10dB respectively. Figures 7.17a to 7.17d shows part of the sampled noise
used for the testing. The testing results are shown in fig. 7.18, where it can be seen that all the
noise samples have an output value of 0 while the targets have an output value ranging from
0.76 to 1. No overlap of the output for targets and noise occurs. Fig. 19 shows the distribution of

signal to noise ratio for targets used in the testing, which ranges from 1.45dB to 24.5dB
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7.6 Investigation of parameters required for target classification

Radar systems transform complex information from the targets into a one-dimensional
waveform, which only presents the amplitude information of the target at different times. The
earlier sections show how the five statistical parameters (extracted from these waveforms) may
be used in the detection of marine targets. To develop the study further, it would be necessary to
see if the extracted features can also be used in the target classification process. In general cases,
radar observers would first classify the targets into two types, i.e. large and small vessels. Large
vessels refer to bulk carriers, warships, tankers, general cargo ships and so on. Small vessels
include pleasure crafi, tugboats, fishing boats.... etc. After this preliminary classification, a
follow up detailed classification could be carried out for further pattern recognition to identify
specific types/groups of targets. In order to reach the second stage, it is critical that the
preliminary classification is efficient and accurate. The objective was to develop the technology
further and investigate the potential for a system that can classify the targets into the two primary
groups. The accuracy of a target recognition system depends on the certainty of their extracted
features. The extracted feature should have the characleristics of the targets only and should not
be affected by other external parameters such as range and the clutter environment. These

features or their regular changing patterns can be observed at different time intervals.

Two groups of vessels. large and small were extracted from the radar traces. These are
distinguished by visual observation of the vessels as well as by manual inspection of the return
signals. Most of the aspects of viewing were from the broad side however, on some occasions

echoes from the front side of the vessels were recorded.

To determine the features required in the targel classification process, it is necessary to look at

the discrimination properties of the five parameters for these two classes of vessels. The results
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are shown in figures 7.24a to 7.24e. It can be seen that there is less discrimination in the period
parameters than the amplitude parameters and there is noticeable discrimination in the amplitude
deviation. Despite the fact that period parameter will give some indications about frequency
components of the return wave, the simplified method that has been adopted to date, in order to
reduce the computation time, might not be able to provide the necessary details of the frequency
distribution. As such, the immediate frequency method as described in Chapter 5 can be adopted
in analyzing the target waveform in the frequency domain. The immediate frequency of each
target was calculated. The discrimination in the immediate frequency between these two types of
target is plotted in fig. 7.24f and shows that effective discrimination may be achieved with
inclusion of this parameter. Therefore, these two parameters, i.e. the amplitude deviation and the

instant frequency were used to set up the target classification system.

The one-dimensional return from the same target would vary from sweep to sweep as well as
[rom scan to scan. It is difficult to specify a definite value about the parameter describing the
class of targets, instead it is really a fuzzy pattern classification process. Figure 7.25a and 7.25b
show the variation of the amplitude parameters and the period parameters between the two types
of targets for 5 consecutive scans. The immediate frequencies and the amplitude deviation of

these two targel types vary from scan to scan and their variations are shown in table 7.2.
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Table 7.2 Variation of Immediate Frequency and Amplitude Deviation between 5 scans

Scan 1 2 3 4 5

Imme. Freq. (large vessel) 2.6370 2.6762 2.8950 2.7366 2.5336
Amp. Dev. (large vessel ) 0.3375 0.2539 0.2519 0.3224 0.3127
Imme. Freq. (small vessel) 2.0327 1.8309 2.4602 1.8631 1.9675
Amp. Dev. (small vessel) 0.2900 0.6104 0.3517 0.4200 0.1772

In view of the variations of the two parameters between scans, a fuzzy approach would be
required to deal with the input data to the classification system. To maintain the performance of
the neural network in the detection system, a neuro-fuzzy technique was used to classify these
two types of targets. This approach has the benefit of handling the two parameters in fuzzy terms
as well as training a suitable network to achieve the task of classification. The block diagram of

the neuro-fuzzy approach is shown in fig. 7.26.

The input parameters were first fuzzified by means of the membership functions in fig 7.27. The
functions were derived from the statistical distributions of the 100 samples, i.e. 50 samples of
large vessel and 50 samples of small vessel. The fuzzified data was then used as input for

training the network with four input layers, two hidden layers and one output layer.

A similar neural nelwork approach to that adopted in the detection was used o recognise
specific targets from the radar returns. The network was trained using 100 samples to classify
targets into large vessels (0) and small vessels (1). The output from the neural network system

for the 20 test targets is shown in table 7.3.
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7.7 Conclusion

The neural network has been developed and optimised for use with the target detection system
and enhanced to cater for a basic classification capability. Initially, studies were made to define
the network topology as well as formulating the network parameters. The system was trained on
250 waveforms that were extracted from live radar recordings on a system that is located at the
University of Plymouth. The waveforms consisted of different targets, noise background, sea
clutter and rain clutter. After the training process was completed, the developed system was
tested to assess performance. The performance of the detection system was compared with the
TM-CFAR system and the result showed that the neural network based system has a much better
capability for detecting targets amongst the variation in noise backgrounds presented. It can
detect the targets correctly and retain the waveform of the retum signals after the detection

process.

The testing wavetorms have included a variety of situations which have not been met by the
system during the training process. Out of the 20 radar traces used in the training, two extreme
cases with strong rain clutters and sea clutters were shown. The results of the testing process
showed that the network had learnt to identify targets from clutters under all test situations

presented to it.

There were difficulties in obtaining sufficient samples to build up the database for both training
and testing. As such, a lot of time has been spent in recording the return signals from vessels
passing the harbour, and waiting for opportunity to record these under the varying backgrounds
including sea clutters and rain clutters. Despite the fact that there were errors in the network
output afler the training. there were still enough discriminating space between the target and the

clutters for the detection process o give the appropriate response. The same philosophy, with the
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addition of a fuzzier to match the uncertainties, was used in performing target classification. It
proved that the system could classify the targets presented into large and small vessels
effectively. To further recognise the vessels to specific types, e.g. destroyer, cruiser, cargo ship
...ete, more samples would be required to traiii the neuro-fuzzy identifier. A comprehensive
simulation environment with different models would be desirable to provide the wide variety of

samples that are required for training.

The results from the trials have proved to be encouraging. Simple processing techniques were
able to provide valuable information from the radar signal and further computer methods were
then able to detect the targets based on this information. The feature extraction process involved

only simple mathematics. The objective was to avoid the use of complicated algorithms that

require significant computation time. This would limit the application of the system in real time

environment where speed of the process is essential. The speed could further be improved if all

or part of the tasks were 10 be performed under parallel hardware implementation.

The developed system is designed for radar target detection and classification purposes.

However, the same design concept can also be applied to other signal detection process, such as

medical imaging and pattern recognition.
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CHAPTER 8

CONCLUSIONS AND FURTHER WORK

8.1 Introduction

The aim of this study was to adopt an artificial intelligence approach to the processing
of radar return signals for target detection. The programme of work has involved the
evaluation of artificial intelligence and the use of neural networks in this application.

The research work was divided into a subset of major tasks:

a. Survey of existing detection algorithms;

b. Investigating the feature extraction techniques;

C. Studying the possibilities of employing neural networks in target detection ;

d. Developing software and hardware for acquiring radar signals for use in the
research;

€. Formulating the neural network based detection system;

f Considering the extension of these methods for the classification of targets.

Recent research into radar target detection has concentrated on the improvement of
the existing CFAR algorithms. This study has used a new approach in which detection

is based on features extracted from the raw radar data.

This chapter summaries the key findings, draws conclusions from the results of this

investigation and considers the possibilities for future developments.
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8.2 Approach to the solution of problems in target detection
In the design and evaluation of an intelligent target detection system, the following

related problems have been considered.

8.2.1 Drawback of commonly used detection algorithms

Various current methods for target detection in radar have been discussed in chapter
one. In a marine radar environment, both ground clutter and sea clutter can cause
difficulties in detecting target vessels. These clutters often have sufficient magnitude
to mask targets in a region. Clutter changes dramatically as the radar antenna turns. In
one location of a single scan, clutter returns from a calm sea may be observed which
behave as Rayleigh distributed random variable. In other locations, clutter returns
from coastal waters, where land sea interface is situated, are observed. This clutter
often behaves as a K-distributed random variable and the detection process in the
clutter edge is very unpredictable. Under such a variety of circumstances, a simple
detection method employing threshold techniques alone cannot meet the challenge
and excessive false alarms or failed detections will be encountered. A comprehensive
range of variations on the CFAR detection algorithm has been discussed. Each these
aims to tackle a specific problem in detection, e.g. GO CFAR is appropriate for
improving performance near clutter edges, SO CFAR was developed to detect closely
spaced targets, OS CFAR is considered as a processor to deal with interfering targets.
It is concluded in chapter 1 that no single CFAR algorithm, where the decision is
made only from the amplitude information of the return echoes, is adequate to solve

problems in a complex detection environment.
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Research into alternative methods of target detection was reviewed. Papers reporting
the success of application of fuzzy logic in signal detection has instigated the
application of artificial intelligence in the area of target detectton in radar. Fuzzy logic
has a distinct advantage over other algorithms in handling information that has a high
degree of uncertainty. The membership functions are assigned to the prior
probabilities, the cost function and the received signal amplitude. Based on a
particular situation and the corresponding statistics of the noise under each
hypothesis, the processing mechanism works with this fuzzy information to determine
the desired threshold. However, the final threshold depends on the shape of
membership functions of the input parameters. It is necessary to ensure that the
assignment of the membership is appropriate to the operating environment of the
radar system. Also, the selection of rules plays an important role in the performance
of the final system. The rules should be formulated to cover all the aspects that the
radar will encounter. As such, it is dilficult to achieve the optimum state when a fuzzy

approach is adopted.

8.2.2. Extraction of features from radar signals

The primary limitation of traditional information processing techniques is their static
processing methods which employs only the magnitude of the signals. With recent
development in the processing speed of computers, more information can be handled
in real time. Important information from radar returns, such as spatial components,
amplitude deviations and so on, can be extracled to assist in deciding if a target is
present. Theoretical analysis and experimental results provided in chapter 3 on one
dimensional space of the radar waveforms show thal characteristics of radar targets

and clutters are different within a certain degree. Such differences were observed on
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signals recorded from a general purpose marine radar and compared with expected
values from knowledge/dala bases to make a decision regarding the presence of a
target. Flowever, it is necessary o identify the amount of information required to
make decision process in target detection efficient, bearing in mind the requirement to
solve the problem in a computer in real time. For the purposes of this investigation, a
number of characteristics of the return signal were identified. Conventional waveform
analysis techniques such as Fourier transform and correlation were evaluated. These
involve complex computational sequences, which did not prove to be practical for real
time processing. Statistical signal characterization involves the division of the
waveform into segments, which are bound by positive and negative extreme
conditions. Eventually, five waveform parameters namely; amplitude mean, amplitude
deviation, period mean, period deviation and maximum period were identified as the
primary measures appropriate to this application. The use of these measures can
achieve similar objectives to spectral analysis and correlation, but they need
significantly fewer computer operations. Each set of waveform parameters is unique
to a particular waveform. In very complex situations (e.g. heavy clutter), a
redundancy may spread across more than one parameter between larget and noise, but
it does not spread across all the five parameters to a degree which is beyond the

computational capabilities in discriminating the features.

8.2.3. Data acquisition of radar signals

The radar equipment used within this investigation is a general purpose marine radar,
which looks out across Plymouth harbour. Ideally, the research required a data
acquisition system that is able to record the radar signal continuously for a number of

scans and incorporate bearing identification in each sweep. Such a recording system
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was not available on the market during the research period, however it was at the
development stage. This demonstrates the industrial drive towards further digital
methods in the processing of radar return signals and the imminent possibility of
implementation of this research. In order to progress with the original objectives, it
was decided that a simple system should be designed to acquire the radar signals and
transfer the data into a computer for analysis. The system consisted of a digitized
oscilloscope with a maximum sampling frequency of 100MHz which was able to
record the signal {or a number of sweeps, depending on the sampling rate used. The
heading marker was employed as a trigger signal to initiate the recording and any
targets passing the heading marker region could be recorded. As the existing heading
marker of the radar at the University of Plymouth was in a radar blinding scctor, a
simple hardware circuit with variable delay was designed and built. This enabled the
heading to be shifted by around 10 degrees and facilitated the acquisition of returns
from targets over a sector that looked across Plymouth Sound and beyond. The
recording system proved to be satisfactory and was used to record over 300 sweeps
from the radar transceiver to form a database of digital radar return signals. This
included a variety of targets, sea clutter, rain clutter, land clutter and noise. A
substantial amount of time was spent recording these returns, and it was also essential
to maintain visual observation to verify and catalogue targets that were observed

passing the heading marker region.

8.3  The application of ncural networks to radar detection
The information fusion techniques using neural network have been discussed in
chapter four. The strategies were based on a multi-layer perceptron network with

backpropagation learning algorithms. The research concentrated on the application of
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neural networks to improve the target detection and did not intend to develop new
neural theories or revolutionary learning. Research into applications is a relevant
subject of interest. The topology, structure, training requirements and input
parameters are application dependent and the theory has not yet been developed to
provide a rule base for design. By studying the performance of various topologies, a 3
layer network with 5 inputs and | output was formulated to investigate the use of
neural networks in solving complex detection problems. The five statistical
characteristics were extracted fror-n 250 samples of radar signals. The 250 samples
were chosen to represent a wide variety of signals that would encompass the range of
conditions that a radar system is likely to encounter in a complex port environment.
Test runs were performed 1o determine the optimum parameters for use in the learning

process, such as learning rates, momentum values and network siructures.

The integrated system and the results have been described in Chapter 6 and Chapter 7
respectively. The resulting neural detection system was able to identify targets from
samples of radar signals even at low signal to noise ratios. The performance of the
network was found 1o be similar under both training and testing conditions and the
maximum error of 0.05, chosen in the training process, allowed sufficient margin for
the discrimination between targets and noise. In applying the detection system to the
real time sitwation, a moving window was shifted along the complete sweep. The
effect on the number of overlapping samples in the window was studied to obtain the
optimum setting. Sweeps containing strong rain clutters and sea clutlers were used in
testing the system and the results showed that the network is able to discriminate

targets that are embedded in the clutter edge. For the purpose of comparison, a TM-
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CFAR algorithm was tested with the same sweeps of radar signals and was- unable to

perform satisfactorily under such adverse conditions.

The neural detection system was further extended to include a fuzzifier to investigate
the potential for classification of targets. The inclusion of fuzzy logic, and with
immediate frequency as an additional input, the process was able to handle the
uncertainties of the parameters between scans/sweeps. The combined neural-fuzzy
system was able 1o classify the targets into large and small vessels by using only two
parameters, i.e. amplitude deviation and immediate [requency, with satisfactory

results.

8.4  Contribution of this study to radar detection system

The result of this study is considered to be a break through in the existing technology
of radar detection. The developed technique does not use the conventional CFAR
algorithms to determine the thresholding level of the amplitudes. Instead, important
features from the raw radar videos are extracted to determine the presence of a target.
The features are not limited to the amplitude parameter, information such as
amplitude/period deviation from the mean, mean period and maximum period are also
used in the task of detection. The study introduced the concepl of adopting data fusion
in the detection stage of the radar signal processing to combine the extracted features.
Live video was used in training the neural network to facilitate the developed system
to handle the real radar data. The result showed that the system is efficient and is able
to detect targets even when the amplitude 1s lower than that of clutters and
background noise. The existing detection algorithms only accept the part of waveform:

that is above the threshold amplitude. As such, some valuable information in the
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waveform will be lost. With the neural detection system, a large section of the target
wavelorm was retained after the detection process and this information is available for
use in subsequent processing such as target identification, as well as the tracking
stage. This can further be used to improve the tracking reliability of present radar
systems. The introduction of a neural-fuzzy system has demonstrated that the system
was able to handle fuzzy data and classify the targets into small and large vessels.
This neural-fuzzy approach can form a framework for any future sophisticated radar

target identification processes.

8.5  Future developments

The work produced by this research has established an intelligent target detection
system that can be used as a basis for the development of future detection methods in
radar or other areas, such as recognition of patterns from medical instrumentation. To
implement the developed system in pattern recognition, similar parameters can be
extracled from incoming signals. Provided that redundancies do not appear in all the
five parameters, then an individual database for different types of signals can be

formulated to meet the requirements of the specific application.

To further develop the system, it is suggested that the following improvements and
future rescarch are necessary.

- Additional outputs and inputs to the system

- The use of more sophisticated data recording system

- Using high speed parallel processor

- The investigation ol alternative intelligent algorithms

- The use of additional features in the classification of radar targets
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8.5.1 Additional inputs and outputs to the system

The system has five inputs to the neural networks and these are mean amplitude, mean
amplitude deviation, mean period, mean period deviation and maximum period. The
neural network has only one output that is the weight to determine if a target is
present in the window. The system could be enhanced if the environmental condition
could be used as further inputs. The information on the sea-state or wind speed will
provide the system with information regarding the amount of sea clutter that the radar
is likely to receive. The database can then contain sea clutter signals at different sea
states and this will assist the system to discriminate targets from heavy sea clutters.
Similarly, the precipitation condition will provide important information about the

expected magnitude of the rain clutters.

The system could also be improved by producing outputs that are able to classify the
input waveform into different categories. To achieve this requirement, the system
would require a comprehensive database of different signals, which would in turn
require a sophisticated data recording system. Also, the measurement of simulated
targets in a controlled environment with different models of targets, such as could be
provided in an anechoic chamber, may be necessary. This classification would enable
the radar tracking system to process interesting signal/targets only. This would greatly

reduce the processing time needed by the computer.

8.5.2 The use of sophisticated data recording system
The present recording system employed a digital oscilloscope which is limited to the
size of memory in the equipment and hence can only record a few sweeps of radar

signals at one time. As such, it is necessary (o transfer the data between the
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oscilloscope and the computer after each recording. This procedure caused difficulty
in building up a long history of radar returns from specific targets. The ideal system
should integrate the digitizer with a computer so that data can be transferred
automatically when the buffer memory is full. The recording system should also be
able to identify the bearing of each sweep uniquely so the targets at specific sectors
can be searched quickly, however they would still need to be identified and
catalogued visually. With this type of system, the radar returns from different types of
targets could be recorded at various ranges and an extensive database constructed.
Further training of the neural network with more extensive data would improve the
probability of detecting and identifying individual types of targets. It is understood
that a company based in Russia is designing a digital acquisilion system to work with
its radar systems. Unfortunately, there is no indication as to when such recording
system will be available in the market, or of the facilities that will be available to
extract digital data {rom their dedicated hardware. This is a requirement for the
purposes of further research into methods for integrating this detection system with

the radar tracking processes to-enhance the capability of the tracker.

8.5.3 Using high speed parallel processor

The detection system has to extract the features from windows of radar signal
sequentially, then the features have to input to the neural network to decide the output
value. This will take up considerable amount of computational time and induce delays
in the detection system. For practical implementation, the delay can be improved by
employing parallel high speed signal processing chips, e.g. TMS 320 family, to
perform [eature extraction of the radar returns. The duty of inference can then be

performed by a fast speed PC, e.g. with a P3 family CPU. This arrangement will
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enable better efficiency in the real time implementation of the target detection and

recognition process.

8.5.4 The implementation of alternative artificial intelligence methods

The detection algorithms that have been studied are CFAR, fuzzy logic and neural
network. The CFAR algorithms could not achieve the detection capability in adverse
conditions due to their decision being based on amplitude information only. The fuzzy
approach has many successful applications in engineering fields, but it requires the
definition of a reliable rule base. In the area of target detection, the application of
fuzzy algorithms alone will be difficult due to the requirement for the compilation of a
comprehensive rule base that covers the different environments that are likely to be
encountered by the radar. The neural network based detection system has the ability to
learn, and the learning can be performed off-line. However, it requires the collection
of training data, and the definition of suilable topology and various training
parameters. More importantly. for the purposes of real time operation, a consideration
is that neural work approach is relatively slow when operated in software. With the
development of the neural network chips in the market, it is feasible that the system
can be implemented in hardware Lo -achieve the speed required in radar signal

processing.

There are other techniques that may prove to be suitable for further investigation into
target detection, such as Wavelet Transforms and neurofuzzy methods. The Wavelet
Transform decomposes the radar return into signal bands that are orthogonal to one
another, reducing the redundancy and increasing the chance of revealing the useful

feature (Lu, Yu and Guo (1993), and Chan (1995)). Further studies can be performed
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on ‘the application of hybrid intelligent system, which combines two intelligent
techniques to meet specific requirements, such as the fuzzy-decision neural networks
(Taur and Kung, 1993, and Jang (1993)). Such hybrid system could be applicable to
target detection and recognition with fuzzy decision system or other intelligent

algorithms to optimize the performance of the neural network.

8.5.5 The use of additional features in the classification of radar targets

The proposed neural fuzzy network system can classify radar returns into large and
small targets. To determine the type of vessels within the same calegory with
minimum error, e.g. discrimination between a tanker and a general cargo ship, a yacht
and a small fishing boat, more distinct features have to be extracted from the signals.
A method of target recognition using image processing techniques has been described
by Nebabin (1984). The image of the target 1s formed by a number of consecutive
sweeps of the radar signal. The range width of the two dimensional image is
contributed by the length of the vessel, that may reach 400 meters for ships with
displacements of several hundred thousand tons. The azimuth width of the image
depends on the angular spread of the target. Additional features from these images,
such as the area of the target, the intensity mean, intensity variance, and centroid of
the image will further facilitate the classification process. It is necessary that a
database of different classes of targets of interest be created by observing similar
models under laboratory conditions, with measurements being taken at various aspect
angles. This database can then be searched to select an appropriate class to match with

the target to be identified.

8.6 Conclusion
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The research work has shown the possibility of using an intelligent approach to detect
targets in a clutter environment. The methodology used in developing the neural
network has proved that this technique can produce better results in target detection
when compared with conventional CFAR algorithms. However, in order to implement
such improvements a more sophisticated digital data acquisition system is initially
required. The data record will form a valuable tool to enhance the detection and

tracking capability of a radar system for vessel traffic management, or shipboard use.

This research has proved that neural networks can be used in radar target detection,
and that they can provide an improvement in performance over conventional CFAR
methods. The limitation of using a neural network 1s in the time required in both
training and processing. A further consideration might be that the neural network has
no tunable paramecters to allow controllability by the operator through the man
machine interface. It would therefore not be easy for the operator to perform any
online adjustment to the target detection system. At present CFAR algorithms are
commonly used in marine radar equipment because of their simplicity. All the CFAR
components can be constructed in hardware and as such they do not cause any delays
to the detection process. If radar manufacturers decide o take up the option of using
artificial intelligent algorithms such as neural networks within the deteclion system,
then the speed of the algorithms and the controller interface would be prime
considerations. With the advancement of technology, special chips for the application
of artificial intelligence are already available on the market, which offer the prospect
of suiting such needs. It will therefore not be long before all radar system are
equipped with artificial intelligence networks that are able to perform target detection

and recognition in an efficient manner.
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Target Detection in Radar: Current
Status and Future Possibilities

Vincent Y. F. Li
(Hong Kong University of Science and Technology)
and Keith M. Miller

{Institute of Marine Studies, University of Plvmouth)

Most of the radar systems used in operating marine vessel traffic nanagement services
experience problems, such as track loss ard track swap, which may cause confusion to the
traffic regulators and lead to potential hazards in the harbour operation. The reason is mainly
due to the limited adaptive capabilities of the algorithms used in the detection process. The
decision on whether a target is present is usually based on the amplitude information of the
returning echues. Such method has a low efficiency in discriminating between the target and
clutter, espccially when the signal-to-noise ratio is low. With modern signal processing
techniques more information can be extracted from the radar return signals and the tracking
parameters of the previous scan. The objectives of this paper are to review the methods which
are currently adopted in radar target identification, identify techniques for extracting
additional information and consider means of data analysis for deciding the presence of a target.
Instead of employing traditional two-state logic, it is suggested that the radar signal should be
allocated in terms af threshold levels into fuzzy sets with its membership functions being
related to the information extracted and the environment. Additional signal processing
techniques are also suggested 1o explore-pattern recognition aspects and discriminate features
which are associated with a return signal from. those of clutter.

. INTRODUCTION. Vessel traffic management systems extract data from the
raster of the incoming radar signal. This data is further processed to generate
target tracks which are then displayed for traffic control. In a dense harbour
situation where vessels are usually manoeuvring in very close proximity to each
other, targets may be swapped giving the controller a false impression of ships
manoeuvres and intentions. Furthermore, reflections from land based objects
such as buildings increase the level of interference to the received signals and
provide further confusion to the tracking algorithms employed. When the
weather is bad, clutter due to sea waves and fog will also affect the quality of the
signals. All these restrictions limit the detection/tracking capability of the vessel
traffic management to.a great extent. Any resulting target loss or swap which may
occur will create a burden for the safety operation of managing trafc in the
harbour. There is a need to review the radar signal processing technique with the
objective of making the processing more adaptive to dynamic changes of the
environment.

The initial step in radar signal processing can be regarded as the task of
removing all the non-useful data. The returned radar information from the

3o}
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receiver must be reduced to a few signals which represent the known and new
targets. The key operation to achieve this data reduction is the thresholding
process, where the data are compared with a reference level. Only those signals
with magnitudes exceeding the threshold level are processed further. However,
the radar signal from a target is usually embedded in both thermal noise and
clutter. The magnitude of the noise and clutter will vary in different sweeps,
ranges and scans. To achieve a low false alarm rate and a high probability of
detection, the setting of a threshold with a constant amplitude is not feasible.

The constant false alarm rate (crar) processing technique has been developed
to adjust the threshold value according to the noise power of the return signal
at specific times. The threshold of individual cells is decided based on the signal
strength of a group of reference cells nearby. In the conventional cell averaging
constant false alarm rate (ca-crar) detector,' digitized radar video is clocked
through a moving window (delay line). For each range cell, which corresponds
to a given range on some bearing, the mean video levels of the ‘N’ preceding
cells and of the ‘N’ following cells are calculated. The threshold comparator
calculates the average of these two mean levels, and the resulting threshold is
compared with the radar signal. Those which are above the threshold level, will
be processed as targets for the following stages. Otherwise, they are treated as
noise. The probability of detection of the ca-crar detector depends on the
threshold multiplier (which is a function of the probability of false alarm), the
signal to noise ratio and the number of range cells in the window.?

ca-CFAR provides optimum detection in a homogeneous environment where
the noise power in the range cells is such that the observations are independent
and identically distributed.” However, this assumption frequently fails due to the
environment in which the radar system is operating. A reference window may
contain cells with large sudden changes in the noise power due to some ather
phenomena providing a reflection which appears as clutter on the system. If the
target is embedded in the test cell, this transition will unnecessarily increase the
threshold to a high level and lower the detection probability. Yet, if the test cell
contains the clutter, the threshold value may not be high enough to reject the
clutter because cells with low noise level are also contributing to the calculation
of the mean value. As a result; an excessive false alarm rate will occur. Also,
when multiple targets are very close in range and appear in the same window,
the noise associated with these targets may cause the threshold to increase. Such
an effect will allow only the strongest target in the window to be detected.

In view of the above drawbacks of ca-crar, alternative solutions have been
proposed to improve the effect of non-homogeneous noise backgrounds to the
cFaR detector. A ‘greatest of ' logic selection (Go-CrAR) was proposed by
Hansen and Sawyers® to reduce the number of excessive false alarms at clutter
transitions. Two reference windows are formed in the leading and lagging sides
of the test cell and a target is declared if the amplitude of the test cell exceeds
the greater of the two windows. A slight reduction in detection probability may
be expected when the leading window contains signals with low noise power
while the lagging window contains clutter with large magnitude. However, the
use of greatest selection will not allow the crar detector to efficiently detect
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closely spaced targets. Also, the detection probability will be greatly affected
when interfering targets appear in the leadihg and lagging windows.”'®

[t has been shown’ that the use of ‘smallest of ' (so-cFaR) selection method is
able to resolve targets which are closely spaced in range. The smaller value of the
leading or the lagging windows will be used to estimate the noise power.” Again,
the performance of the so-crar detector will be degraded if interfering targets -
are found in the leading and lagging windows. The so-crar detector is not able
to limit the false alarm rates during the clutter transitions. For example, if there
is a clutter transition in the window, and the clear background contributes to a
low magnitude of estimated noise level, this will cause the threshold to go low
and increase the false alarm rate.

2. ADVANCED CFAR ALGORITHMS. In view of drawbacks of the simple
cFaR algorithms as described, a lot of research has been performed to provide
adaptive crar algorithms which are able to handle radar detection in a non-
homogeneous environment.

Ordered statistics (0s) CFAR has been developed to reject transient noise.? In
this algorithm, the range cells (c(1)...c(N)) in a window are first ordered
according to their magnitudes to yield the ordered samples, c(1) < c(2) <
...¢(N), where N is the window size. The noise power is then estimated by
selecting the nth largest cell to work out the thresheld. To choose the order n,
analysis has been performed by plotting the required signal-to-noise ratio as a
function of n.® The plot was based on a window (N) of 20 cells, with constant
-probability of detection (Pd) and false alarm (Fa). The broad minimum in the
required signal-to-noise ratio was found to be from n = 14 to n = 19. This agrees
with the general assumption'® that n approximately equals to 3N/4. As n
increases from a low value, Pd improves until n reaches this optimum value,
further increases in n degrade Pd. The detection performance does not depend
on the position of the interfering targets in the window. Since os cFar ranks the
full range of cells in the window, the order of an interfering target will not be
affected by its location. For optimization of the false alarm rate, os cranr has the
best performance when n = N. However, this is the highest order sample and it
cannot be used in practice as it will suppress the targets. For n less than N, os
cearR can discriminate the target from N-—n interfering targets without
degradation in detection. The performance of os crar in clutter edges is good
when the clutter returns have constant/slow varying amplitude characteristics.
However, os crar suffers serious degradation if the clutter returns are ﬂuctuating
independently.

Trimmed mean filtering has been used in signal and image restoration
processes.® The noise power of the trimmed mean crar'® is estimated by
combining the ordered samples linearly. It firstly ranks the samples according to
their magnitude and then filters T1 samples from the lower end and T2 samples
from the higher end. The remaining samples are summed to work out the
threshold. As the trimming increases, the threshold multiplier has to be
increased to maintain the false alarm rate. When T reaches n—1 and T2 reaches
N -—n, the detector becomes an os-crar. It corresponds to a CA-CFAR when there
is no trimming at all (T1 = T2 = o). Symmetric trimming that is T1 = Tz, limits
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the performance of the detector in the clutter boundaries, especially when the
leading window contains the clutter and noise, and the laggmg window has aclear
background. The symmetric trimming technique may develop a threshold w hich
will not be high enough to reduce the false alarm rate when the test cell contains
a sample with clutter in the background. For asymmetric trimming, it is
necessary to determine optimum trimming parameters T1 and T2. The value of
T2 should correspond to the number of interfering targets in the window. For
better performance in detection, T1 should be kept as small as possible. Yet, for
reducing false alarm rates in clutter boundaries, Tt should be large and T2 should
be small. Optimization of such an algorithm is then a matter of fine tuning these
parameters and is dependent on the amount of clutter and number of targets.

Another crar, which is proposed to deal with interfering targets, is the
censored mean level (i) crar.'' The outputs from the range cells are ranked
according to their magnitude and the largest n samples are censored. The
remaining N —n samples are used to estimate the noise level (¢) of the cell under
test. This estimate (c) is multiplied by a threshold multiplier (1) which is based
on the desired false alarm rate (Fa). I the magnitude of the strength of the signal
return in a cell exceeds 4ic then a target is assumed to be present. Ideally, if the
samples to be censored are equal to the number of the interfering targets in the
window, the performance of caiL will be optimal. However, it will be degraded
if the censorship does not include all the interfering targets. This may be the case
when the number of interfering targets is unknown. Thus, if an interfering target
is included in the process of noise estimation, the threshold will be unnecessarily
high and will lower the probability of detection. However, if we overestimate
the number of interfering targets, this will cause the threshold to be low and will
increase the false alarm rate.

The generalized censored mean-level (ccmL) cFaR does not require an exact
knowledge of numbers of interfering targets.'' The samples of both the leading
and the lagging windows are ordered independently. The returning signals in the
cells, which are considered as interfering targets, will be censored. To decide
whether the cell should be censored or not, the higher ordered samples are
compared with the lower ones in sequence. A scaling multiplier (1), which is
a function of the desired false alarm rate, will be introduced to the lower ordered
samples. If ¢(k) is greater than Mc(k—1), then samples c(k) (k,k+1,..., N) are
regarded as echoes from interfering targets and they will be censored. The noise
estimate is processed based on the magnitude of the remaining samples. The
performance of the GecmL CFAR is optimum when the interfering targets appear
in both the leading and lagging window. The performance will be slightly
degraded when the interfering targets fall in one of the windows only. The
number of range cells in a \\i_ndo“ will also affect the performance, the higher
the number the better the performance.

The ‘greatest of order statistics estimator ' CFaR (Goose-cFar)'® takes the nth
ordered samples from both the leading and the lagging windows. It compares
these two samples and takes the larger one to estimate the threshold. Since n is
less than N/2 (the number of samples in each window), Goose-cFar can handle
interfering targets in both windows and such targets will normally appear in
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samples from a+ 1 to N/2. When a clutter boundary appears in the window, the
worst case occurs when the cell under test is in the heavv clutter. With the larger
of the two ordered samples being taken for threshold estimation, the threshold
will be high enough to prevent excessive false alarms. Go-cFar has demonstrated
its good performance in clutter boundaries when interfering targets are not
present. However, with coose-craR, targets with magnitude larger than the nth
samples in both windows will be filtered. This will prevent the masking of
multiple targets in the window and improve the detection capability in the
clutter boundary.

‘Censored greater-of' (cco) crar'’ filters n largest range cells from both
leading and the lagging windows. The remaining sarmples of each window are
summed. The larger of the two will be multiplied by a threshold multiplier to
give the required threshold. The choice of the numbers of cells to be censored
depends on the likelihood of the number of interfering targets in the windows.
When the number of interfering targets exceeds the number of samples to be
censored, the performance of cGo crar will be degraded. However, the
detection loss of cGo crar will be less than the os and Goose crar because cco
CFaR takes the mean of the magnitude of the interfering targets and the noise
samples, while os and coose crar will use the ordered magnitude alone. Both
Goosk and cGo craR have the greatest-of logic which is able to reduce the sharp
rise of false alarm rate at the clutter boundary.

MEMO cFAR'Y combines both median and morphological filtering'® to decide
the threshold level. The first median fiter transforms the input into a new series
of samples in which those samples less than the mean power of the clutter will
be replaced by this mean value. As such, it changes the smaller values of clutter
to the estimate of the mean noise power. Any samples with a magnitude greater
than a fixed multiple of the mean power will also be replaced by the mean value.
The objective is to reduce the effect caused by interfering targets. The second
median hlter will be used to smooth out the samples from the first filter and gives
an unbiased estimate of the original samples. Then the output from the second
hlter is processed by a morphological filter using an open-closing technique.'®
‘Open’ breaks small targets and smoothes boundary while ‘close " fills up narrow
gaps between targets. Memo cFaR detectors have superior performance in the
presence of interfering targets since they give a mean estimate ol noise power
with minimum bias and smaller variance. They are able to overcome problems
due to masking of targets by clutter boundaries. However, they require much
more computer execution time to process the samples than other crar detectors.

3. INTELLIGENT METHODS IN RADAR DETECTION. Fuzzy logic has the
capability of addressing the imprecise information from a physical system and is
becoming a valuable tool in practical engineering applications. It applies rule-
based algorithms to resemble the flexibility of the human decision making
process. Successful applications of fuzzy logic in various fields have been
reported.'’-!2:19-2% Recently, a fuzzy approach to signal detection has also been
addressed ?'-22.23

Radar detection uses probablhty theory to decide on the presence of a target
A two state binary logic is usually used to define the state of the signal, that is
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a threshold is applied to the signal. Signals above the threshold level will be
accepted as targets and others will be rejected. Since the target in a radar return
is not always clearly defined (for example if it is embedded in clutter or noise),
uncertainty can appear in every task of the detection stage. Any premature
decision based on limited information made at an early task of the radar
processing will have an large impact on the following stages, such as tracking and
feature extraction. Such processing techniques using binary ]ogic quantize the
input signal and cause incomplete information to be processed. With the aid of
fuzzy logic, radar detection will not be only limited to the likelihood of
detection/false alarm, it can also be expressed in degrees to which an event is
likely to happen. Instead of offering a combination on conditional probabilities,
the membership functions used in fuzzy logic theory combine inexact
information. The fuzzy associative memories function defines the degree of
likelihood of the returned signal being a target and its exact value is of no absolute
important. When the magnitude of the returned signal is increasing, it is more
likely that the signal will be detected as target and the false alarm rate will be
decreased. Such a model provides explicit features to represent uncertainty in the
radar detection process.

In binary hypothesis testing, Bayes T‘heoryqf formulates the minimization of
the expected cost, called the Bayes risk, and leads to the likelihood ratio test
(LRT}.

LR = exp (o 5[R? — (R—X)?]}

where LR is the likelihood ratio; R is the observed data; X is a positive mean of
the signal amplitude.

To model the uncertainties of the received radar signals, binary hypothesis
testing can be reformulated using fuzzy set theory.?

Hi:R=X+N
Ho:R=N

where N is the standardized Gaussian noise.

Now x is a fuzzy parameter, x = {{X, ux(X)]}, in which X is an element of set
R and ux is the membership function of X. For convenience, a triangular
membership function is adopted, this is centred about a nominal amplitude value
Xo and extending between X1 and X2, such that ux(Xo) = 1. The likelihood ratio
(LR) becomes a fuzzy set. As shown by Saade,’® the fuzzy threshold of the
likelihood ratio can be determined from prior probabilities and cost functions,
which are again fuzzy in nature. In order to compute the fuzzy decision on the
optimum threshold of the detection, it is necessary to order the fuzzy sets over
the real line and obtain the expression for the utility ranking index of LR, which
has been described in.?’ The performance of the fuzzy algorithms may be
evaluated using the probability of error technique,?® where it was shown that the
method provided a better result in treating the false alarms and misses in decision
making process for radar detection.

Cross validation of wakes against bright spots has been adopted to reject false
targets. This performs fuzzy decisions which associate a confidence level for each
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entity based with suitable fuzzification functions.?? In order to define a
membership function for a fuzzy set of radar echoes, a set of vessels features
which will not be critically affected by speckle noise, such as mean grey level and
elongation, need to be selected. Ship classes are selected according to the area
of the target, for example class 1 for areas less than 6o pixels, class 2 for areas
less than 110 pixels and so on. Each potential ship echo is compared with’
prototypes of true ships using a weighted distance method. The classifier,
referred to the weighted results, associates a high fuzzy index (approximately 1)
to a true ship and a low fuzzy index (less than o-g) to a false ship. Information
with respect to the ship/wake relation is processed to give a coupling coefficient
which is worked out based on the distance between the centroid of the ship and
its closest extreme of wake. This coefficient, between o and 1, dehnes the
position of a ship with respect to its wake in the radar image. The coefficient will
finally be multiplied by the fuzzy index from the classifier to give a global value
that measures the reliability of the detected ship-wake couple. It has been
demonstrated?” that this method provides advantages with respect to the classical
method of wake detection using Hough transforms on noisy images.

Edge detection has been used as a means cf classification for radar images.
However, the decision on whether it is the edge or not possesses ambiguity. A
fuzzy reasoning techrique, s proposed by Cho, 39 detects the transition on
intensity changes. Both the brightness and contrast measures of the pixel intensity
are processed as fuzzy input, then fuzzy rules are applied to determine the
thresheld decision, which will be in the form of a membership function. To
defuzzify the threshold decision, the centroid of the calculated membership
function is derived by summing the confidence level of the function multiplied
by the individual measurement value. Such techniques are effective in extracting
edge features because various types of objects and regions have different grey
level ranges within a single image. This same phenomena makes it difficult for a
global threshold method to identify such features.

In recent years, with the improvement of methods in signal processing, more
attention has been paid to the waveform recognition of the radar returns as a
detection technique. The amplitude information of radar videos will no longer
be the only component for processing a threshold decision. Valuable information
is contained in a radar return which can be processed for effective detection.
Such information includes symmetry/spread and width of waveform, correlation
of special features, shape and gradient of waveform and so on. To extract such
features from ship radar returns, Guo®' proposed a ship target recognition
algorithm using various transform techniques, for example:

F(X) = F3y(F2(F1 (X)),

where Fi is the Fourier transformation or maximum entropy spectral
transformation ; F2 is the Mellin transformation ; F3 is coding transformation and
selection of the events; X is a one dimensional digitized waveform. To enable the
transformation to be done effectively, a suitable width and shift for the
calculation window should be selected for sampling. The width should be slightly
larger than the radar pulse width and the shift should be smaller than half the
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radar pulse width. It was shown by Guo that spikes in the signal due to sea clutter
have narrower and sharper features than those of weak targets. A threshold in the
width will be able to remove cobvious sea spikes.

Feature extraction techniques in dynamic processing, such as radar detection,
can be regarded as an information fusion system to estimate, screen and combine
the features in a complex waveform. However, an intelligent radar detection
system should not only rely on the features themselves and the interrelationships
between them, but also ¢n the a priori information about the ships targets, such
as speed and course of a ship, wind situation, distance of the ship from the radar
centre and so on. Rules that incorporate this information are stored in a data
base. Such detection systems require high speed signal processing hardware to
cater for the needs of target detection in real time and will be able to detect weak
targets under strong sea clutter.*?

4. concruston, Various methods for the detection of targets in marine
radar have been discussed in this paper. In a vessel trafhc management system,
both ground clutter and sea clutter cause difficulties for detecting target vessels.
This clutter is often of sufficient magnitude to mask the targets in the region.
Clurtter changes dramatically as the radar antenna rotates. In one sector of a single
scan, we may observe clutter returns from a calm sea, which behave as Rayleigh
distributed random variable. In other sectors, clutter returns from coastal
waters, where the land sea interface is situated, may be observed. This clutter
often behaves as a K-distributed random variable*® and the detection process at
this clutter edge is very unpredictable. It is obvious that a simple thresholdin
detection method cannot meet such a challenge and excessive false alarms or
misses will be encountered. A comprehensive selection of crar algorithms,
including those for non-homogeneous clutter environment, has been discussed.
Each algorithm aims to tackle a specific problem in detection, for example co
CFAR is appropriate for improving performance near clutter edges, so crar was
developed to detect closely spaced targets, os crar is considered as an
appropriate processor to deal with interfering targets. It is obvious that no single
crar algorithm is adequate to solve problems” in a complex detection
environment, such as a vrs system. Another drawback on the crar a]gorithm is
that the decision is made only from the amplitude information of the return
echoes.

Research has been.undertaken using approaches-other'than the crar technique.
Papers reporting success of the application of fuzzy logic in signal detection have
enlightened the development in the area of radar detection. Fuzzy logic has 2
distinct advantage over other algorithms in terms of its ability to handle
information which has a high degree of uncertainty. It is shown by Saade?®® that,
in order to apply fuzzy logic in radar detection, it is necessary to establish the
specific regime in which the radar is to be operated. This allows the assignment
of membership functions to the prior probabilities, the cost function and the
received signal amplitude. Based on a particular situation and the corresponding
statistics of the noise under each hypothesis, the processing mechanism works
with this fuzzy information to determine the desired threshold, However, the
final threshold depends on the shape of membership functions of the input
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parameters. It is necessary to ensure that the assignment of the membership is
appropriate to the operating environment of the radar system. Also, since the
amplitude information is fuzzy, the implication is that the signal-to-noise is also
fuzzy and so is the minimum detectable signal. As such, it is difficult to predict
the range of a radar system if a fuzzy approach is adopted

Pattern recognition has already been used as an interesting tool for radar
detection. Potential ship targets and their elongated wakes are examined to
obtain a higher reliability in detection. A fuzzy ship wake coupling coefficient,
together with a fuzzy index of the ship, give a final reliability index of the result.
As edges in radar images involve abrupt changes in amplitude, extracting this
feature will enhance the accuracy of target detection. A method of using a
contrast measure and a brightness measure as input parameters in edge detection
is described. It is suggested that an edge detector could be applied to a wide class
of returns ranging from clear to vague images.

With the recent development in the processing speed of computers, more
information can be handled in real time. Important information from radar
returns, such as spatial components, correlation features and so on, can be
extracted to assist in deciding if a target is present. A vast number of algorithms
for estimating unknown signal parameters from the measured cutput of a sensor
svstem are now available to deal with signal extraction®***:*¢ which can be
applied in radar, radio/microwave communication, underwater acoustics, and
geophysics. Research has been undertaken to develop the tool of artificial
intelligence for application to the radar detection problem. The concept develops
inference machines which process data from various knowledge/data bases to
evaluate the situation and provide a final decision. Initial work undertaken in this
area has been described in this paper and the results appear to be promising. It
is clear that future technology in radar signal processing will be moving towards
artificial intelligence with required information from the returns being extracted
by modern adaptive algorithms. The next step in the development of this
technology is to identify the minimum amount of information which will be
required to optimize the efficiency of the decision process in target detection,
bearing in mind the limitation in the processing speed of the computers in real
time. Also, the identification of methods which relate the available/extracted
information to a final decision remains a challenge in the task of intelligent radar
detection.
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