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A New Distributed Constant
False Alarm Rate Detector

HAMID AMIRMEHRABI

R. VISWANATHAN
Southern Illinois University at Carbondale

A new constant false alarm rate (CFAR) test termed

signal-plus-order statistic CFAR (S+OS) using distributed

sensors is developed. The sensor modeling assumes that the

returns of the test cells of different sensors are all independent

and identically distributed. In the S+OS scheme, each sensor

transmits its test sample and a designated order statistic of

its surrounding observations to the fusion center. At the fusion

center, the sum of the samples of the test cells is compared

with a constant multiplied by a function of the order statistics.

For a two-sensor network, the functions considered are the

minimum of the order statistics (mOS) and the maximum of

the order statistics (MOS). For detecting a Rayleigh fluctuating

target in Gaussian noise, closed-form expressions for the false

alarm and detection probabilities are obtained. The numerical

results indicate that the performance of the MOS detector is

very close to that of a centralized OS-CFAR, and it performs

considerably better than the OS-CFAR detector with the AND

or the OR fusion rule. Extension to an N-sensor network is also

considered, and general equations for the false alarm probabilities

under homogeneous and nonhomogeneous background noise are

presented.
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I. INTRODUCTION

For the past several years a considerable amount of
work [1—10] on single sensor constant false alarm rate
(CFAR) signal detection has been done. The detection
of signals becomes complex when radar returns are
from nonstationary background noise (or noise plus
clutter). The probability of false alarm increases
intolerably when a detection scheme employing a
fixed threshold is used. Therefore, adaptive threshold
techniques are required in order to maintain a nearly
constant false alarm rate. Because of the diversity of
the radar search environment (multiple target, abrupt
changes in clutter, etc.) there exists no universal CFAR
scheme. Typically the adaptive threshold of a CFAR
scheme is the product of two terms, one is a fixed
scaling factor to adjust the probability of false alarm,
and the other is an estimate of the total unknown
noise power of the test cell. The sample in the test
cell is compared with this threshold in order to decide
the presence or the absence of a target. A variety
of CFAR techniques are developed according to the
logic used to estimate the unknown noise power level.
Some examples are, cell averaging CFAR (CA-CFAR),
order statistics CFAR (OS-CFAR), greatest of CFAR,
smallest of CFAR [3], and selection and estimation
test [4].
Attraction toward multiple sensor systems

with data fusion began to grow in the early 1980s
[11]. Distributed signal detection (DSD) schemes
are needed when system performance factors
such as speed, reliability, and constraint over the
communication bandwidth are taken into account. In
DSD techniques, each sensor sends either a binary
decision or a condensed form of information (statistics)
about the observations available at the sensor to
the fusion center, where a final decision about the
presence of a target is made. DSD with data fusion
has been applied to CA-CFAR, adaptive CA-CFAR,
and OS-CFAR. Barkat and Varshney [12] considered
CA-CFAR detection using multiple sensors and data
fusion. In their approach, each CA-CFAR detector
transmits a binary decision to the fusion center where
a final decision based on the AND or the OR counting
rule is obtained. They have also addressed the adaptive
CA-CFAR detector problem for parallel and tandem
distributed networks [13]. Distributed OS-CFAR
detectors with the AND or the OR fusion rule is
considered by Uner and Varshney [14]. The problem
of distributed CA-CFAR detection of dependent
signal returns is studied by Blum and Kassam [15].
The common ground between all of these distributed
CFAR detection schemes is that the final decision
based on individual decisions of each sensor emerges
from a counting rule such as AND or OR.
We propose a new distributed CFAR detection

scheme called signal-plus-order statistic CFAR
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(S+OS). Instead of a binary decision, each sensor
transmits the sample from the test cell and a
designated order statistic from the available set of
reference observations surrounding the test cell to the
fusion center. The selected order statistics among the
sensors could have the same or different ranks, and
the number of samples in the reference observations
for each sensor need not be the same. At the fusion
center, the sum of the test samples is compared with
an adaptive threshold obtained by the product of a
fixed scaling factor and a function of the received
order statistics, to decide the presence/absence of
a target. The estimate of the noise power level of
the test cells is provided by this function. Some
examples of this function are: minimum of, maximum
of, linear combination of, or in the case of a large
number of sensors, an order statistics of the variables.
We call the S+OS test that uses the maximum
(minimum) order statistic the MOS (mOS) detector.
Our problem formulation therefore assumes that
the test cells of different sensors all have statistically
identical noise (clutter), and that if a target is present
in the surveillance regions, all the test cells have
statistically identical target returns. What happens if
this assumption is violated? The performance of the
proposed CFAR test could degrade depending on the
statistical dissimilarities between the returns in the test
cells of different sensors. In such a case a distributed
CFAR test with decisions combining at the fusion
center (like the AND or the OR rule) may provide a
more robust performance.
The performance of a central order statistic

detector (COS-CFAR), whose decision is based on
the comparison of the sum of samples of the test
cells with an order statistic of the samples from the
adjacent cells of all the sensors, is also evaluated.
Although the MOS detector requires a little more
computation as compared with the existing distributed
CFAR techniques, it shows considerable improvements
in performance over the AND and the OR schemes.
Moreover, its performance is close to that of the
COS-CFAR detector, which has all the test and noise
data available.
In Section II, for a two-sensor network, we define

the problem for detecting a Rayleigh fluctuating target
in Gaussian noise. Also, closed-form expressions
for the probabilities of false alarm and detection
for the MOS and the mOS detectors are derived.
Generalization of the S+OS scheme to an N-sensor
network is also developed in this section. Section
III contains performance comparisons of various
schemes based on the numerical study involving a
two-sensor network. A summary and the conclusions
derived from this study are presented in Section IV.
Appendix A provides the performance equations for
the COS-CFAR detector and the OS-CFAR detector
with the AND and the OR fusion rules.

II. SIGNAL-PLUS-ORDER STATISTIC DISTRIBUTED
CFAR

In this section, the S+OS distributed CFAR
test for a network of two sensors is defined and
appropriate parameters are developed. Extension
of the S+OS test to the case of N sensors is also
presented. For a two-sensor network, the equations for
the probabilities of false alarm and detection for the
MOS and the mOS detectors for both homogeneous
and nonhomogeneous background noise are derived.
General guidelines on how to obtain the false alarm
probabilities for a network of N sensors are also
provided in this section.

A. S+OS Distributed CFAR for Two Sensors

Consider a two-sensor distributed network
as shown in Fig. 1. Here, Yij is the observation
(excluding the test sample), where i= 1,2 indicates
the numbering of the sensors, and j = 1,2, : : : , (mi¡ 1)
represents the sample number in the range cells
available to the ith sensor. In general m1 need not
be equal to m2. It is assumed that both the sensors
scan the same search environment. The sample in the
test cell for the ith sensor is denoted by X0i, and the
rank-ordered adjacent cell observations are denoted
by Yi(1),Yi(2), : : : ,Yi(mi¡1) where Yi(r) denotes the rth
largest order statistic of fYi1, : : : ,Yimi¡1g. A statistic
Zi from the ith sensor is sent to the fusion center.
In our setup, Z1 = Y1(k) and Z2 = Y2(l), where k and
l are appropriate integers. At the fusion center, two
quantities, X = X01+X02, and a function g(Z1,Z2), are
computed. The MOS detector assumes g(Z1,Z2) =
max(Z1,Z2) = R, whereas for the mOS scheme,
g(Z1,Z2) = min(Z1,Z2) =W, where max(¢) and min(¢)
are the maximum and the minimum of Z1 and Z2,
respectively. Fusion center decides the presence or
the absence of a target in the test cell by comparing
X with Tg(¢), where T is an appropriate scaling
factor.
It is assumed that Yi1,Yi2, : : : ,Yimi¡1 are independent

identically distributed (IID) random variables (rv)
that follow an exponential distribution. In the case
of homogeneous noise, E[Yij] = ¸0, where ¸0 is
the noise power and we denote the corresponding
density and cumulative distribution functions as
f(y) and F(y), respectively. Let CNR represent
the clutter-to-noise power ratio. In the case of
nonhomogeneous background, the expected value
of Yij is ¸0 or ¸0(1+CNR), depending on whether
the sample Yij is from noise-only region or from
clutter, respectively. Assuming a Rayleigh fluctuating
target, the test sample, X0i, also has an exponential
distribution with mean ¸ ([6, pp. 208—209]). The
mean ¸ is unknown and depends on the target
presence/absence, the clutter level, and the target
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Fig. 1. Two-sensor S+OS distributed CFAR detector.

strength:

¸=
½
¸0 or ¸0(1+CNR), under H0
¸1 = ¸0(1+SNR), under H1

(1)

where hypothesis H1 represents the presence of
a target and hypothesis H0 means no target, and
¸1 = ¸0(1+SNR) represents the signal-plus-noise
power, where SNR is the ratio of signal power to noise
power. Under H0, with clutter background, ¸ equals
¸0(1+CNR).
At the fusion center, applying a likelihood ratio test

(LRT) to the hypotheses of (1) yields

LR =

Q2
i=1fX0i(x0i jH1)Q2
i=1fX0i(x0i jH0)

H1
><
H0

TL (2)

where TL is an appropriate threshold. Simplifying (2)
yields

X =
2X
i=1

X0i

H1
><
H0

ln
μ
TL
¸1
¸0

¶
μ
1
¸0
¡ 1
¸1

¶ : (3)

The above LRT cannot be realized since ¸1 and ¸0 are
unknown. However, a CFAR test can be constructed
if X is compared against a constant times g(Z1,Z2),
provided that g(¢) is chosen in such a way that ¸0 is
the scale parameter of the density of g(¢). That is,
the density of the random variable g(Z1,Z2)=¸0 is
independent of ¸0. The proposed CFAR test is based
on

X =
2X
i=1

X0i

H1
><
H0

Tg(Z1,Z2) (4)

where T is a scaling parameter that is adjusted to
yield a desired false alarm rate under homogeneous
background noise. Since the left-hand side of (4)
represents a sufficient statistic of the LRT, the
proposed test combines X01 and X02 in an optimum
manner. Because X0i has an exponential distribution,
X is a random variable with a gamma distribution
whose parameters are 2 and (1=¸). The general form
of a gamma probability density function (pdf) with
parameters ® and ¯ is

f(x) =
1

¡ (®)
¯®x®¡1e¡¯x, x¸ 0, ® > 0, ¯ > 0

(5)

where ¡ (®) is the gamma function. From (4) we can
describe the probability of false alarm Pf as

Pf = E(Z1,Z2)[P(X ¸ Tg(Z1,Z2) jH0] (6)

where E(Z1,Z2)[¢] represents the expectation with respect
to Z1,Z2. Hence,

Pf =
Z 1

0
(P(X ¸ Tg jH0,g(Z1,Z2) = g))fGjH0(g)dg

=
Z 1

0

μZ 1

Tg

1
¸20
xe¡(1=¸0)x dx

¶
fG(g)dg (7)

where we have used the fact that X and g(Z1,Z2) are
statistically independent and that fGjH0(g) = fG(g).

B. Two Sensors and Homogeneous Background Noise

We denote the probability of false alarm in the case
of homogeneous background noise for MOS by PfMH ,
and by PfmH for mOS.
1) MOS Detector Performance: For the MOS

detector, g(Z1,Z2) = R is the estimate of the noise
power of the test cells. We use (7) to derive an
expression which indicates the relationship between
PfMH and T. The pdf of R can be expressed as ([16,
pp. 139—140])

fR(r) = fZ1(r)FZ2 (r) +fZ2(r)FZ1(r) (8)

where ([17, pp. 10—12])

fZi (r) = ki

μ
mi¡ 1
ki

¶
[F(r)]ki¡1[1¡F(r)](mi¡1)¡kif(r)

(9)

FZi (r) =
mi¡1X
q=ki

μ
mi¡1
q

¶
[F(r)]q[1¡F(r)](mi¡1)¡q
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k1 = k and k2 = l. With the assumed exponential
densities for the Yijs, we can write (9) as

fZi (r) = ki

μ
mi¡ 1
ki

¶·
1¡ exp

μ
¡ r

¸0

¶¸ki¡1

£
·
exp
μ
¡ r

¸0

¶¸(mi¡1)¡ki 1
¸0
exp
μ
¡ r

¸0

¶

FZi (r) =
mi¡1X
q=ki

μ
mi¡ 1
q

¶·
1¡ exp

μ
¡ 1
¸0
r

¶¸q

£
·
exp
μ
¡ 1
¸0
r

¶¸(mi¡1)¡q

(10)

where exp(¢) represents the exponential function e(¢).
Using (8) through (10) yields

fR(r) =
1
¸0
k

μ
m1¡1
k

¶m2¡1X
s=l

μ
m2¡ 1
s

¶

£
·
1¡ exp

μ
¡ r

¸0

¶ (̧k+s¡1)

£
·
exp
μ
¡ r

¸0

¶¸[M¡(k+s)+1]

+
1
¸0
l

μ
m2¡ 1
l

¶m1¡1X
q=k

μ
m1¡ 1
q

¶

£
·
1¡ exp

μ
¡ r

¸0

¶ (̧l+q¡1)

£
·
exp
μ
¡ r

¸0

¶¸[M¡(l+q)+1]
(11)

where M = [(m1¡ 1)+ (m2¡ 1)]. In order to find PfMH
we evaluate the inner integral of (7) and write

PfMH =
Z 1

0
exp
μ
¡ T
¸0
r

¶
fR(r)dr

+
T

¸0

Z 1

0
rexp

μ
¡ T
¸0
r

¶
fR(r)dr: (12)

Upon denoting the first and the second terms in (12)
by © and ¤, we have

PfMH = ©+¤: (13)

After performing the appropriate integration and
straightforward simplifications, we obtain

©= k
μ
m1¡ 1
k

¶
S1 + l

μ
m2¡ 1
l

¶
S2 (14)

where

S1 =
m2¡1X
s=l

μ
m2¡1
s

¶
¡ (k+ s)

¡ [T+M ¡ (k+ s) +1]
¡ (T+M +1)

(15)

S2 =
m1¡1X
q=k

μ
m1¡ 1
q

¶
¡ (l+ q)

¡ [T+M ¡ (l+ q) +1]
¡ (T+M +1)

:

While evaluating S1 and S2 numerically, the individual
gamma functions in (15) may assume large values.
Hence, for numerical purposes, (15) needs to be
rewritten using the identities:

μ
m2¡1
s

¶
¡ (k+ s) =

Ã
s¡1Y
i=0

[(m2¡ 1)¡ i]
!

£
0@k¡2Y
j=0

[s+(k¡ 1)¡ j]
1A
(16)

¡ [T+M ¡ (k+ s)+1]
¡ (T+M +1)

=
(k+s)¡1Y
r=0

1
(T+M ¡ r) (17)

as

S1 =
m2¡1X
s=l

Ã
s¡1Y
i=0

[(m2¡ 1)¡ i]
(T+M ¡ i)

!Ã
k¡2Y
j=0

[s+(k¡ 1)¡ j]
[T+M ¡ (j+ s)]

!

£
μ

1
[T+M ¡ (k+ s¡ 1)]

¶
(18)

S2 =
m1¡1X
q=k

Ã
q¡1Y
i=0

[(m1¡ 1)¡ i]
(T+M ¡ i)

!Ã
l¡2Y
j=0

[q+(l¡ 1)¡ j]
[T+M ¡ (j+ q)]

!

£
μ

1
[T+M ¡ (l+ q¡ 1)]

¶
:

To evaluate the second term of (13) we use (16)
and (17) and the identities

(x¡ y)n =
nX
i=0

(¡1)i
μ
n

i

¶
xn¡iyi (19)

Z 1

0

μ
x

¯

¶®¡1
exp
μ
¡ 1
¯
x

¶μ
1
¯

¶
dx= ¡ (®) (20)

to obtain

¤= T
½
k

μ
m1¡ 1
k

¶
S3 + l

μ
m2¡ 1
l

¶
S4

¾
(21)
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where

S3 =
m2¡1X
s=l

(k+s)¡1X
d=0

Ã
s¡1Y
h=0

[(m2¡ 1)¡ h]
s¡ h

!

£
Ã
d¡1Y
a=0

[(k+ s)¡ 1]¡ a
d¡ a

!

£
μ

(¡1)d
[T+M ¡ (k+ s) + d+1]2

¶

S4 =
m1¡1X
q=k

(l+q)¡1X
c=0

Ã
q¡1Y
u=0

[(m1¡ 1)¡ u]
q¡ u

!

£
Ã
c¡1Y
º=0

[(l+ q)¡ 1]¡ º
c¡ º

!

£
μ

(¡1)c
[T+M ¡ (l+ q)+ c+1]2

¶
:

(22)

Therefore,

PfMH = k
μ
m1¡ 1
k

¶
(S1 +TS3)

+ l
μ
m2¡1
l

¶
(S2 +TS4): (23)

Using (23), T can be adjusted by a numerical search
to achieve a desired PfMH . Using (4)—(6) and the
definition of the detection probability, it can be seen
that the probability of detection, PdMH , is obtained
from PfMH by replacing T with (T=1+SNR).
2) mOS Detector Performance: The pdf of W is

given by ([16, pp. 139—140])

fW(w) = fZ1(w)+fZ2 (w)

¡ [fZ1(w)FZ2 (w) +fZ2 (w)FZ1(w)]: (24)

The expression within the brackets is the pdf of the
max(Z1,Z2) = R. Therefore

fW(w) = fZ1(w) +fZ2(w)¡fR(w): (25)

From (7) we can write

PfmH =
Z 1

0

·Z 1

Tw

1
¸20
xexp[¡(1=¸0)x]dx

¸
fW(w)dw:

(26)
Using (25), (26), and (12)

PfmH =
Z 1

0

·Z 1

Tw

1
¸20
xexp[¡(1=¸0)x]dx

¸
£ (fZ1(w)+fZ1(w))dw¡PfMH: (27)

Upon evaluation of the inner integral in (27),

PfmH =
Z 1

0

·μ
1+

Tw

¸0

¶
exp
μ
¡Tw
¸0

¶¸
£ (fZ1(w) +fZ2 (w))dw¡PfMH: (28)

The computational steps involved in finding PfmH
from (28) are very much similar to the ones stated
earlier for PfMH . We simply state the final expression
for PfmH as

PfmH = T
½
k

μ
m1¡ 1
k

¶
S5 + l

μ
m2¡ 1
l

¶
S6

¾

+
k¡1Y
i=0

((m1¡ 1)¡ i)
(T+(m1¡ 1)¡ i)

+
l¡1Y
j=0

((m2¡ 1)¡ j)
(T+(m2¡ 1)¡ j)

¡PfMH (29)

where

S5 =
k¡1X
i=0

i¡1Y
c=0

(¡1)i [(k¡ 1)¡ c]
(i¡ c)[T+(m1¡ 1)¡ k+ i+1]2

(30)

S6 =
l¡1X
j=0

j¡1Y
h=0

(¡1)j [(l¡1)¡ h]
(j¡ h)[T+(m2¡ 1)¡ l+ j+1]2

and PfMH is given by (23). To compute the probability
of detection, T is replaced with (T=1+SNR) in (29)
and (30), and PfMH by PdMH in (29).

C. Two Sensors and Nonhomogeneous Background
Noise

Samples in the reference window of a search
radar are considered to be from a nonhomogeneous
background noise when signal returns are either from
a multiple-target environment, or from a region with
nonuniform clutter within the range cells. The effect of
this nonhomogeneity on signal detection appears either
as an increase in the probability of false alarm, or as
target masking.
In this section we analyze the false alarm and the

detection performances of the MOS and the mOS
detectors in a multiple-target situation or regions
of clutter transitions. We assume a clutter model
with a step-type behavior. That is, at a sensor, all the
reference cells to the left of the point of discontinuity
of the step have a common mean noise (clutter) power
and all the cells to the right have another common
mean noise (clutter) power. We did not consider the
situation when signal returns are from clutter plus
multiple targets region. We use the symbols PfM and
PdM to denote the probabilities of false alarm and
detection of the MOS detector, and use the symbols
Pfm and Pdm to denote the corresponding quantities for
the mOS detector.
1) MOS Detector Performance: First consider

the multiple targets environment with test samples
from the noise-only region. We use INR as the ratio
of interfering target power to noise power. The pdf
and the CDF of R are now different from those in
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the homogeneous background noise case. To compute
PfM , we use an equivalent form of (7)

PfM =
Z 1

0

μ
T

¸0

¶2
rexp

μ
¡ T
¸0
r

¶
FR(r)dr: (31)

Clearly,
FR(r) = FZ1(r)FZ2 (r): (32)

To write expressions for Fzi(r), i= 1,2, let bi be the
number of samples from interfering targets with
cumulative distribution function (cdf) F1(¢) for the ith
sensor. Then, [(mi¡ 1)¡ bi] of the observations are
due only to noise and have cdf F(¢). F1(¢) is given by

F1(r) = 1¡ exp
μ
¡ 1
¸0(1+ INR)

r

¶
: (33)

It can be shown that for the ith sensor [18]

FZi (r) =
(mi¡1)X
h=ki

min[h,((mi¡1)¡bi)]X
j=max(0,h¡bi)

μ
(mi¡ 1)¡ bi

j

¶
£ [F(r)]j[1¡F(r)][(mi¡1)¡bi¡j]

£
μ
bi

h¡ j

¶
[F1(r)]

(h¡j)[1¡F1(r)][bi¡(h¡j)]

(34)

where, k1 = k, k2 = l. Hence

FR(r) =
X
i,j,s,º

μ
(m1¡ 1)¡ b1

j

¶μ
(m2¡ 1)¡ b2

º

¶μ
b1

i¡ j

¶

£
μ
b2

s¡ º

¶·
exp

μ
¡ 1
¸0
r

¶¸[M¡(b1+b2)¡(j+º)]
£
·
exp

μ
¡ r

¸0(1+ INR)

¶¸[(b1+b2)+(j+º)¡(i+s)]
£
·
1¡ exp

μ
¡ r

¸0

¶ (̧j+º)

£
·
1¡ exp

μ
¡ r

¸0(1+ INR)

¶ [̧i+s¡(j+º)]
(35)

where

k · i · (m1¡ 1), max(0, i¡ b1)· j ·min(i, [(m1¡ 1)¡ b1])
(36)

l · s · (m2¡ 1), max(0,s¡ b2)· º ·min(s, [(m2¡ 1)¡ b2]):

Substituting (35) in (31), and after some mathematical
simplifications,

PfM =
X

i,j,s,º,p,n

8>>><>>>:
(¡1)p+nPRD·

[M ¡ (b1 + b2)¡ (j+ º)]+p
T

+1+
[(b1 +b2)¡ (i+ s) + (j+ º)] + n

T(1+ INR)

¸2
9>>>=>>>; (37)

where i, j, s, and º are given by (36), 0· p· (j+ º),
and 0· n· [(i+ s)¡ (j+ º)]. Also in (37), the symbol
PRD is given by

PRD =

Ã
j¡1Y
a=0

[((m1¡ 1)¡ b1)¡ a]
a+1

!

£
Ã
º¡1Y
c=0

[((m2¡ 1)¡ b2)¡ c]
c+1

!

£
Ã
(i¡j)¡1Y
h=0

(b1¡ h)
h+1

!Ã
(s¡º)¡1Y
d=0

(b2¡ d)
d+1

!

£
Ã
p¡1Y
q=0

(j+ º)¡ q
q+1

!Ã
n¡1Y
r=0

[(i+ s)¡ (j+ º)¡ r]
r+1

!
:

(38)

For calculating PdM we replace T with (T=1+SNR) in
(37).
The false alarm performance in the region of

clutter power transitions can be analyzed using
(37). In this situation bi is the number of clutter
cells in the reference window for the ith sensor.
For step-type clutter, there exists a single transition
from a noise-only region to a region with higher
clutter-plus-noise power. Since the reference samples
are rank-ordered at each sensor, then if bi is less than
(mi¡ 1)=2, the test cell is in the clutter-free region.
Otherwise, it is in the clutter. When test samples
are from the clutter-free region, PfM is obtained by
replacing INR with CNR. In the case when the test
samples are from the clutter region, PfM is obtained by
changing INR to CNR and T to (T=1+CNR) in (37).
2) mOS Detector Performance: In this case

FW(w) = FZ1(w) +FZ2(w)¡FZ1(w)FZ2(w)

= FZ1(w) +FZ2(w)¡FR(w): (39)

Using (39) and (31), with FW(¢) replacing FR(¢),

Pfm =
Z 1

0

μ
T

¸0

¶2
rexp

μ
¡ T
¸0
r

¶
£ [FZ1(w)+FZ2 (w)]dw¡PfM: (40)

First, we consider Pfm for the multiple-target
environment. We use (33) and (34) to obtain FZi (w),
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i= 1,2, and substitute the result in (40). Then

Pfm =
X
i,j,p,n

8>>><>>>:
(¡1)p+n

μ
(m1¡ 1)¡ b1

j

¶μ
b1

i¡ j

¶μ
j

p

¶μ
i¡ j
n

¶
·
(m1¡ 1)¡ b1]¡ j+p

T
+1+

[b1¡ (i¡ j)]+ n
T(1+ INR)

¸2
9>>>=>>>;

+
X
s,º,j1,j2

8>>><>>>:
(¡1)j1+j2

μ
(m2¡ 1)¡ b2

º

¶μ
b2

s¡ º

¶μ
º

j1

¶μ
s¡ º
j2

¶
·
[(m2¡1)¡ b2]¡ º+ j1

T
+1+

[b2¡ (s¡ º)]+ j2
T(1+ INR)

¸2
9>>>=>>>;¡PfM (41)

where i, j, s, and º are given by (36), 0· p· j,
0· n· (i¡ j), 0· j1 · º, and 0· j2 · (s¡ º). The
detection performance analysis for the multiple targets
case, and the false alarm analysis for the clutter power
transition situation can both be done by adjusting the
appropriate parameters in (41), as discussed in Section
IIC1.

D. Extension to an N-Sensor Network

We generalize the proposed distributed CFAR
detector of Section IIA to the case of N distributed
sensors. We follow the notation developed in Section
IIA, except that the numbering of the sensors is
extended to N, so i= 1,2, : : : ,N. Each sensor transmits
the statistic Zi = Yi(ki) and the test sample X0i to the
fusion center.
At the fusion center, let the noise power estimate

g(Z1, : : : ,ZN) be the kth OS of the fZi, i= 1, : : : ,Ng.
For notational convenience let g(Z1,Z2, : : : ,ZN) =
Z(k) = V. The fusion center test is given by

X =
NX
i=1

X0i

H1
><
H0

TV (42)

where T is an appropriate scaling constant. The
probability of false alarm, PfNH , of the test (42) is
written as

PfNH =
Z 1

0
(P(X ¸ Tº jH0))fVjH0(º)dº

=
Z 1

0
(1¡FXjH0(Tº))f(º)dº (43)

where

FXjH0(Tº) = 1¡
"
N¡1X
i=0

(Tº)i

¸i0i!

#
e¡(1=¸0)Tº: (44)

To compute (43), we need to determine the pdf of the
random variable V. An expression for the density of V
can be obtained using the permanent (defined like the

determinant of a square matrix except that all signs are
positive) of the square N-by-N matrix V [19]:

V=

26666666666666664

FZ1(º) ¢ ¢ ¢ FZN (º)

...
...

FZ1(º) ¢ ¢ ¢ FZN (º)

fZ1(º) ¢ ¢ ¢ fZN (º)

1¡FZ1(º) ¢ ¢ ¢ 1¡FZN (º)
...

...

1¡FZ1(º) ¢ ¢ ¢ 1¡FZN (º)

37777777777777775

9>=>;(k¡ 1) rows

9>=>;(N ¡ k) rows
:

(45)

Thus

fV(º) =
1

(N ¡ k)!(k¡1)!
+
j V

+
j (46)

where FZi (º) and fZi (º) are given by (10) and
+
j V

+
j denotes the permanent of the matrix V. For

multiple-target environment, FZi (º) is evaluated as
in (34), assuming there are bi number of interfering
targets within the resolution cells of the ith sensor.

III. NUMERICAL RESULTS

In this section we discuss the numerical results
obtained from an evaluation of the performance
equations of the MOS and the mOS detectors (Section
II), the central order statistic detector (Appendix A),
the distributed CFAR and the AND (Appendix B),
and the OR (Appendix C) detectors. We mention
below various ranges of parameters over which the
comparisons are made. Section IIIA provides detector
comparisons under homogeneous background noise
and Section IIIB provides the same under interfering
target or nonhomogeneous background situation.
For a two-sensor network, our numerical analysis

is carried out for the following specific values of the
various parameters. The number of cells (noise plus
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TABLE I
Calculated Values for Constant Multiplier T for Pf = 10

¡6

test) at sensor 1 is m1 = 12, and at sensor 2, m2 = 14.
Thus, the total number of reference cells is

M = (m1¡ 1)+ (m2¡ 1) = 24:
The noise estimate at sensor 1 is the kth order statistic
where k = 8, and at sensor 2, the l(= 9)th order
statistic is used. The pth order statistic is used for the
COS-CFAR where p= k+ l = 17.
We solved (23) and (29) for T through a numerical

search such that PfMH = PfmH = 10
¡6, for the MOS and

the mOS detectors (see Table I). For COS-CFAR, (50)
was used to determine TC .
In the case of the AND fusion rule, (54) was solved

numerically to fix T1 and T2 at values corresponding
to Pf1 = Pf2 = 10

¡3, so that the overall designed false
alarm rate, PfAH , is set at 10

¡6 (Table I). We chose
Pf1 = Pf2 , since the sensors have no a priori knowledge
about the number of interferers, and any asymmetric
design values of Pf1 and Pf2 (for example 10

¡4, 10¡2)
will not be optimum for all situations. Furthermore, as
Fig. 10 indicates, in the case of 6 and 7 clutter cells at
sensors 1 and 2, when Pf1 = 10

¡4 and Pf2 = 10
¡2, there

is no significant false alarm performance improvement
over the case when Pf1 = Pf2 = 10

¡3. The marginal
gain in the false alarm rate observed is at the expense
of degradation in detection performance. Similarly,
we solved (58) to fix the values for T1 and T2 in the
case of the OR fusion rule (Table I). To obtain an
overall false alarm rate of 10¡6, we set Pf1 = Pf2 =
5:0£ 10¡7.

A. Detector Comparisons. Homogeneous
Background Noise

The detection performances of all the CFAR
detectors, in the case of homogeneous background
noise, are shown in Fig. 2. The better performance of
the MOS detector followed by the mOS, particularly
for SNR in the range of 10—20 dB, over the OS-CFAR
with the AND and the OR fusion rules, can be
observed. Fig. 2 also indicates that the performances of
the COS-CFAR and the MOS detector are very close
to each other.

Fig. 2. Probability of detection versus SNR when background
noise is homogeneous.

Fig. 3. Probability of detection versus SNR (number of interfering
targets at each sensor is b1 = b2 = 2, and INR = SNR).

B. Detector Comparison. Effect of Interfering Targets

For the order statistic based schemes, the maximum
number of tolerable interfering targets depends on the
selected rank. For example, if there are N reference
samples and the selected rank is k, then (N ¡ k)
interfering targets can be tolerated by an order statistic
based processor. Figs. 3 and 4 show Pd as a function of
SNR when the number of interfering targets at sensors
1 and 2, (b1,b2), are (2 2), and (3 4), respectively. For
the COS-CFAR, the number of interfering targets b is
assumed to be b1 + b2 throughout this numerical study.
Fig. 3 shows that the MOS detector has a marginally
lower Pd as compared with the COS-CFAR, but has
a much better performance than the other schemes.
Fig. 4 shows that the performance of the MOS scheme
is competitive with that of the COS-CFAR. Notice that
in Fig. 4, (b1 b2) = (3 4), so that b = 7. These are the
maximum tolerable number of interfering targets in
order not to have a significant degradation in detection
performance. Whereas, in Fig. 3, the number of
interfering targets are less than the maximum tolerable
value.
To study the effect of an increase in the number of

interfering targets on the detection performance, let us
consider Figs. 5—8. In Fig. 5, the number of interfering
targets at sensor 1 is b1 = 2, the number of interfering

92 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 33, NO. 1 JANUARY 1997

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on May 30, 2009 at 15:37 from IEEE Xplore.  Restrictions apply.



Fig. 4. Probability of detection versus SNR (with maximum
number of tolerable interfering targets, that is, at sensor 1 b1 = 3,

and at sensor 2 b2 = 4 INR = SNR).

targets in sensor 2 (b2) ranges from 0 to 5, and for
the COS-CFAR, b = 2+b2. For b2 from 0 through 4,
the MOS detector has a considerably better detection
performance than the mOS detector. It also performs
much better than the OS-CFAR with the AND and the
OR fusion rules. Notice that this corresponds to the
case

b1 = 2 < (m1¡1)¡ k and b2 · (m2¡1)¡ l = 4
i.e., b1 and b2 are within the tolerable ranges.
At b2 = 5, we observe a sharp drop in Pd
for the MOS scheme. Also, for 4· b = 2+
b2 · 6, the performance of the MOS detector
is close to that of the COS-CFAR. Fig. 6
shows Pd as a function of b2 for b1 = 2 < [(m1¡ 1)¡ k]
and b1 = 4> [(m1¡1)¡ k]. There is a significant
drop in Pd for the MOS scheme when b1 = 4. The
same is true for the mOS detector when b2 = 5>
[(m2¡1)¡ l] = 4 and b1 = 4. In Fig. 7, b1 = 3 =
[(m1¡1)¡ k], and in Fig. 8, b1 = 4> [(m1¡ 1)¡ k].
We observe that in Fig. 7, the sharp drop in Pd for the
MOS detector occurs when b2 = 5> [(m2¡ 1)¡ l]. It
also shows that the performance of the MOS scheme
is very close to that of the COS-CFAR. Also, notice
that the Pd drop for the mOS detector is not as drastic
as for the MOS scheme. But, in Fig. 8 for b1 = 4>
[(m1¡1)¡ k], a significant degradation in Pd also
occurs for the mOS test. It is interesting to notice the
similarity of the performance characteristics between
the mOS scheme and the OR rule and also between
the MOS detector and the AND rule. In fact, a
counting rule can be considered as a discrete analog of
an order statistic based rule [20]. The correspondence
becomes an equivalence if the rules are based on fixed
thresholds and a nonequivalence if the rules are based
on adaptive thresholds, as in the present problem.
The performances of the detectors in multiple

targets environment that are presented in Figs. 3—8
show the typical behavior of the order statistic based
schemes. That is, their performances depend on the
selected rank. For all combinations satisfying:

b1 · (m1¡ 1)¡ k and b2 · (m2¡ 1)¡ l

Fig. 5. Probability of detection versus number b2 of interfering
targets at sensor 2 (number of interfering targets at sensor 1 is

b1 = 2, and INR = SNR= 15 dB).

Fig. 6. Probability of detection versus number b2 of interfering
targets at sensor 2 (for two values of number b1 of interfering

targets at sensor 1, and INR = SNR= 20 dB).

Fig. 7. Probability of detection versus number b2 of interfering
targets at sensor 2 (number b1 of interfering targets at sensor 1 is

3, and INR = SNR= 20 dB).

the MOS detector followed by the mOS scheme
outperforms the OS-CFAR detectors with the AND
and the OR fusion rules. The figures also indicate
that the detection performance of the MOS detector
is close to that of the COS-CFAR. Figs. 8 and 9 show
that as long as bi · [(mi¡1)¡ ki], for either i= 1 or 2,
but not both, the mOS detector has a better detection
performance than the MOS detector. But, this is at
the expense of an increase in the false alarm rate as
discussed next.
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Fig. 8. Probability of detection versus number b2 of interfering
targets at sensor 2 (number b1 of interfering targets at sensor 1 is

4, and INR = SNR= 20 dB).

Fig. 9. Probability of detection versus SNR (number b1 of
interfering targets at sensor 1 is 2, and at sensor 2 b2 = 5.

INR = SNR.)

Fig. 10 shows the maximum increase in the false
alarm probability corresponding to the worst case
situation when there are 6 (= b1) and 7 (= b2)
clutter cells at sensors 1 and 2, respectively, and
the test samples are from the clutter region for
the different schemes. It can be seen that for CNR
between 10—12 dB, the different graphs follow each
other closely, and for CNR = 15 dB or greater, the
performances of the AND fusion rule followed by the
MOS scheme are better than the others. It should be
emphasized that although the false alarm performance
of the AND fusion rule is marginally better than that
of the MOS detector, as seen earlier, the latter has a
considerably better detection performance.

IV. SUMMARY AND CONCLUSION

In this study we have developed a new S+OS
CFAR test using distributed sensors. Our problem
formulation has assumed that the test cells of different
sensors all have statistically identical noise (clutter),
and that if a target is present in the surveillance
regions, all the test cells have statistically identical
target returns. This requirement implies that all sensors

Fig. 10. False alarm performance of each detector (both test cells
in clutter, sensor 1 has 6 clutter cells and sensor 2 has 7).

see the same test SNR. In the S+OS scheme, each
sensor transmits its test sample and a designated order
statistic of its surrounding observations to a fusion
center, where the sum of the samples of the test cells
is compared with a constant multiplied by a function
of the order statistics. For a two-sensor network, the
functions considered are the mOS and MOS. For
detecting a Rayleigh fluctuating target in Gaussian
noise, closed-form expressions for the false alarm and
the detection probabilities are obtained. Extension to
an N-sensor network is also considered, and general
equations for the false alarm probabilities under
homogeneous and nonhomogeneous background noise
are presented. Performances of these two schemes are
compared with those of the distributed CFAR with the
AND rule and the OR rule and a COS-CFAR test.
We conclude from the study of a two-sensor

network that for the homogeneous background noise,
the detection performance of the proposed MOS
scheme is very close to that of the COS-CFAR, and
is considerably better than those of the OS-CFAR
with the AND and the OR fusion rules, particularly
at SNR ranging from 10 to 20 dB. In multiple targets
situation, the results indicate the following. As long as
the number of interfering targets in the two sensors,
namely b1 and b2, are such that

b1 · (m1¡ 1)¡ k and b2 · (m2¡ 1)¡ l
where (m1¡ 1)((m2¡ 1)) is the number of reference
samples available at sensor 1 (sensor 2), the MOS
detector has a performance closer to the COS-CFAR
detector, which is much better than that of the
distributed OS-CFAR detector with the AND or the
OR fusion rule.

APPENDIX. COMPETING DETECTORS

For a two-sensor network we derive performance
equations for different competing detectors. Section
A develops the probability of error expressions for the
central OS (COS-CFAR) detector discussed in Section
I. In Sections B and C we consider the distributed
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CFAR scheme when binary decisions of the sensors
are sent to the fusion center. At the fusion center,
AND or OR rule is used to make a final decision
with regard to the presence or the absence of a
target. Here, we consider the case when each sensor
is an OS-CFAR detector. Barkat and Varshney [12]
have considered the distributed CA-CFAR detector.
Distributed OS-CFAR scheme is also investigated by
Uner and Varshney [14]. In their work, the overall
probability of detection for a given fusion rule is
maximized by optimizing the constant multiplier and
the rank order of the local detectors simultaneously,
in a homogeneous background noise. However,
the probability of detection of an OS detector in a
homogeneous environment is relatively insensitive to
the exact rank order used, except for a very small or
a very large number. Also, the rank order in an OS
detector is usually fixed depending on the expected
maximum number of targets [3]. We assume some
representative values for the rank orders k and l in
the numerical evaluation. We derive expressions for
he probabilities of false alarm and detection when
the AND or the OR rule is used at the fusion center,
assuming independent observations for both cases of
homogeneous and nonhomogeneous background noise.
The expressions for the AND and the OR rules, for
the interfering target case, are new and not available
elsewhere.

A. Central OS-CFAR

In a centralized procedure, each sensor transmits
all of its observations to a fusion center where a
decision is made. A central scheme in general has a
better performance in comparison with a decentralized
one, since more information is sent to the fusion
center. We consider the performance of a COS-CFAR
detector in order to assess how good the MOS and the
mOS detectors are.
In the COS-CFAR considered here, each sensor

of the two sensor network in Fig. 1 sends all the
reference samples and the test sample to the fusion
center. Hence, the number of the reference samples
at the fusion center is M = (m1¡ 1)+ (m2¡ 1). Let
Y1,Y2, : : : ,YM denote the reference observations at
the fusion center, and Y(1),Y(2), : : : ,Y(M) represent the
rank-ordered samples. Let Z = Y(p), p= k+ l, where
k and l are defined below (9). The COS-CFAR test is
similar to the one in (4):

X =
2X
i=1

X0i

H1
><
H0

TcZ (47)

where Tc is an appropriate multiplying constant.
From (47), the probability of false alarm, PfCH , for

a homogeneous background noise can be expressed as

PfCH =
Z 1

0
(1¡FXjH0(TCz))fZ(z)dz (48)

where from (10), fZ(z) can be written by changing ki
to p, (mi¡ 1) to M. Also, since X is distributed as a
gamma random variable with parameters 2 and 1=¸,

FXjH0(TCz) = 1¡
"

1X
i=0

(TCz)
i

¸i0i!

#
exp
μ
¡
μ
1
¸0

¶
TCz

¶
: (49)

Using (49) in (48) and upon evaluating the integral,

PfCH = p
μ
M

p

¶( 1X
i=0

p¡1X
j=0

(¡1)j
μ
p¡ 1
j

¶

£
μ

TiC
[TC +M ¡p+ j+1]i+1

¶)
:

(50)

In a multiple targets environment, (48) and (49)
can be used to write the probability of false alarm PfC
as

PfC =
Z 1

0

μ
TC
¸0

¶2
z exp

μ
¡TC
¸0
z

¶
FZ(z)dz (51)

where, FZ(z) is the cdf of Z when there are a total
of b number of interfering targets appearing in the
resolution cells of all the sensors. We use (34) to write
an expression for FZ(z). Simplification of (51) then
yields

PfC =
X
i,j,h,d

8>>><>>>:
(¡1)h+dPRC·

(M ¡ b)¡ j+ h
TC

+1+
b¡ (i¡ j) + d
TC(1+ INR)

¸2
9>>>=>>>;
(52)

where 0· h· j, 0· d · (i¡ j), p· i·M,
max(0, i¡ b)· j ·min(i, (M ¡ b)), and the symbol
PRC is given by

PRC =

0@j¡1Y
q=0

(M ¡ b)¡ q
q+1

1A0@(i¡j)¡1Y
r=0

b¡ r
r+1

1A
£
Ã
h¡1Y
s=0

j¡ s
s+1

!Ã
d¡1Y
º=0

(i¡ j)¡ º
º+1

!
: (53)

B. Distributed OS-CFAR Detector with AND Fusion
Rule

Let PFAH be the overall false alarm probability
when the test samples are from homogeneous
background noise. Then [1, 3, 12]

PFAH =
2Y
i=1

Pfi (54)
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where

Pf1 =

Ã
k¡1Y
n=0

[(m1¡ 1)¡ n]
[T1 + (m1¡ 1)¡ n]

!
(55)

Pf2 =

0@ l¡1Y
j=0

[(m2¡1)¡ j]
[T2 + (m2¡ 1)¡ j]

1A (56)

and T1,T2 are the threshold used by the OS tests at
sensor 1 and sensor 2, respectively. To compute PDAH ,
the overall probability of detection, we replace Ti with
(Ti=1+SNR) in (54).
When signal returns are from multiple-target

environment, the reference window for the ith sensor
contains bi interference-plus-noise samples and
[(mi¡1)¡ bi] noise-only observations. Considering
the case that the test samples are due only to noise,
the overall false alarm probability for a multiple-target
case is obtained as

PFA =

X
i,j,i1,i2

8>><>>:
(¡1)i1+i2

μ
(m1¡ 1)¡ b1

j

¶μ
b1

i¡ j

¶μ
j

i1

¶μ
i¡ j
i2

¶
·
[(m1¡ 1)¡ b1]¡ j+ i1

T1
+ 1+

[b1¡ (i¡ j)] + i2
T1(1+ INR)

¸
9>>=>>;

£
X
s,º,j1,j2

8>><>>:
(¡1)j1+j2

μ
(m2¡ 1)¡ b2

º

¶μ
b2

s¡ º

¶μ
º

j1

¶μ
s¡ º
j2

¶
·
[(m2¡ 1)¡ b2]¡ º + j1

T2
+1+

[b2¡ (s¡ º)] + j2
T2(1+ INR)

¸
9>>=>>;
(57)

where 0· i1 · j, 0· i2 · (i¡ j), 0· j1 · º, 0· j2 ·
(s¡ º) and i, j, s, and º are given by (36). The overall
detectionprobability PDA is obtained when Ti is replaced
with (Ti=1+SNR) in (57).

C. Distributed OS-CFAR Detector with OR Fusion
Rule

Let PFR be the false alarm probability when the OR
rule is used at the fusion center. Then

PFR =
2X
i=1

Pfi ¡
2Y
i=1

Pfi : (58)

In the case of homogeneous background noise, PFRH
is obtained by using (54)—(56) and (58). From PFRH
we compute PDRH , the probability of detection, by
replacing Ti with (Ti=1+SNR).
For multiple-target situation, the false alarm

probability PFR is obtained using (58) with

Pf1 =
X
i,j,i1,i2

[¢], Pf2 =
X
s,º,j1,j2

[¢]

where
P
i,j,i1,i2[¢] and

P
s,º,j1,j2[¢] are as stated in (57).
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