503 research outputs found

    Wide-Area Time-Synchronized Closed-Loop Control of Power Systems And Decentralized Active Distribution Networks

    Get PDF
    The rapidly expanding power system grid infrastructure and the need to reduce the occurrence of major blackouts and prevention or hardening of systems against cyber-attacks, have led to increased interest in the improved resilience of the electrical grid. Distributed and decentralized control have been widely applied to computer science research. However, for power system applications, the real-time application of decentralized and distributed control algorithms introduce several challenges. In this dissertation, new algorithms and methods for decentralized control, protection and energy management of Wide Area Monitoring, Protection and Control (WAMPAC) and the Active Distribution Network (ADN) are developed to improve the resiliency of the power system. To evaluate the findings of this dissertation, a laboratory-scale integrated Wide WAMPAC and ADN control platform was designed and implemented. The developed platform consists of phasor measurement units (PMU), intelligent electronic devices (IED) and programmable logic controllers (PLC). On top of the designed hardware control platform, a multi-agent cyber-physical interoperability viii framework was developed for real-time verification of the developed decentralized and distributed algorithms using local wireless and Internet-based cloud communication. A novel real-time multiagent system interoperability testbed was developed to enable utility independent private microgrids standardized interoperability framework and define behavioral models for expandability and plug-and-play operation. The state-of-theart power system multiagent framework is improved by providing specific attributes and a deliberative behavior modeling capability. The proposed multi-agent framework is validated in a laboratory based testbed involving developed intelligent electronic device prototypes and actual microgrid setups. Experimental results are demonstrated for both decentralized and distributed control approaches. A new adaptive real-time protection and remedial action scheme (RAS) method using agent-based distributed communication was developed for autonomous hybrid AC/DC microgrids to increase resiliency and continuous operability after fault conditions. Unlike the conventional consecutive time delay-based overcurrent protection schemes, the developed technique defines a selectivity mechanism considering the RAS of the microgrid after fault instant based on feeder characteristics and the location of the IEDs. The experimental results showed a significant improvement in terms of resiliency of microgrids through protection using agent-based distributed communication

    Design and implementation of a holistic framework for data integration in industrial machine and sensor networks

    Get PDF
    Digitalization and connectivity trends in industrial plants and production equipment create vast and heterogeneous networks of data sources, data sinks and various communication protocols. Data fusion and evaluation of these resources result in high costs for data integration and maintenance. Therefore, we propose a new framework, called MyGateway, enabling effortless integration of heterogeneous data sources, their fusion within the framework and publication to data sinks as needed. For easy integration, deployment, and expansion of the framework we provide an implementation in JAVA using open-source adapters for common industrial protocols and a simple API for usage in user specified setups

    Common Educational Teleoperation Platform for Robotics Utilizing Digital Twins

    Get PDF
    The erratic modern world introduces challenges to all sectors of societies and potentially introduces additional inequality. One possibility to decrease the educational inequality is to provide remote access to facilities that enable learning and training. A similar approach of remote resource usage can be utilized in resource-poor situations where the required equipment is available at other premises. The concept of Industry 5.0 (i5.0) focuses on a human-centric approach, enabling technologies to concentrate on human–machine interaction and emphasizing the importance of societal values. This paper introduces a novel robotics teleoperation platform supported by the i5.0. The platform reduces inequality and allows usage and learning of robotics remotely independently of time and location. The platform is based on digital twins with bi-directional data transmission between the physical and digital counterparts. The proposed system allows teleoperation, remote programming, and near real-time monitoring of controlled robots, robot time scheduling, and social interaction between users. The system design and implementation are described in detail, followed by experimental results

    Machine Tool Communication (MTComm) Method and Its Applications in a Cyber-Physical Manufacturing Cloud

    Get PDF
    The integration of cyber-physical systems and cloud manufacturing has the potential to revolutionize existing manufacturing systems by enabling better accessibility, agility, and efficiency. To achieve this, it is necessary to establish a communication method of manufacturing services over the Internet to access and manage physical machines from cloud applications. Most of the existing industrial automation protocols utilize Ethernet based Local Area Network (LAN) and are not designed specifically for Internet enabled data transmission. Recently MTConnect has been gaining popularity as a standard for monitoring status of machine tools through RESTful web services and an XML based messaging structure, but it is only designed for data collection and interpretation and lacks remote operation capability. This dissertation presents the design, development, optimization, and applications of a service-oriented Internet-scale communication method named Machine Tool Communication (MTComm) for exchanging manufacturing services in a Cyber-Physical Manufacturing Cloud (CPMC) to enable manufacturing with heterogeneous physically connected machine tools from geographically distributed locations over the Internet. MTComm uses an agent-adapter based architecture and a semantic ontology to provide both remote monitoring and operation capabilities through RESTful services and XML messages. MTComm was successfully used to develop and implement multi-purpose applications in in a CPMC including remote and collaborative manufacturing, active testing-based and edge-based fault diagnosis and maintenance of machine tools, cross-domain interoperability between Internet-of-things (IoT) devices and supply chain robots etc. To improve MTComm’s overall performance, efficiency, and acceptability in cyber manufacturing, the concept of MTComm’s edge-based middleware was introduced and three optimization strategies for data catching, transmission, and operation execution were developed and adopted at the edge. Finally, a hardware prototype of the middleware was implemented on a System-On-Chip based FPGA device to reduce computational and transmission latency. At every stage of its development, MTComm’s performance and feasibility were evaluated with experiments in a CPMC testbed with three different types of manufacturing machine tools. Experimental results demonstrated MTComm’s excellent feasibility for scalable cyber-physical manufacturing and superior performance over other existing approaches

    Machine Tool Communication (MTComm) Method and Its Applications in a Cyber-Physical Manufacturing Cloud

    Get PDF
    The integration of cyber-physical systems and cloud manufacturing has the potential to revolutionize existing manufacturing systems by enabling better accessibility, agility, and efficiency. To achieve this, it is necessary to establish a communication method of manufacturing services over the Internet to access and manage physical machines from cloud applications. Most of the existing industrial automation protocols utilize Ethernet based Local Area Network (LAN) and are not designed specifically for Internet enabled data transmission. Recently MTConnect has been gaining popularity as a standard for monitoring status of machine tools through RESTful web services and an XML based messaging structure, but it is only designed for data collection and interpretation and lacks remote operation capability. This dissertation presents the design, development, optimization, and applications of a service-oriented Internet-scale communication method named Machine Tool Communication (MTComm) for exchanging manufacturing services in a Cyber-Physical Manufacturing Cloud (CPMC) to enable manufacturing with heterogeneous physically connected machine tools from geographically distributed locations over the Internet. MTComm uses an agent-adapter based architecture and a semantic ontology to provide both remote monitoring and operation capabilities through RESTful services and XML messages. MTComm was successfully used to develop and implement multi-purpose applications in in a CPMC including remote and collaborative manufacturing, active testing-based and edge-based fault diagnosis and maintenance of machine tools, cross-domain interoperability between Internet-of-things (IoT) devices and supply chain robots etc. To improve MTComm’s overall performance, efficiency, and acceptability in cyber manufacturing, the concept of MTComm’s edge-based middleware was introduced and three optimization strategies for data catching, transmission, and operation execution were developed and adopted at the edge. Finally, a hardware prototype of the middleware was implemented on a System-On-Chip based FPGA device to reduce computational and transmission latency. At every stage of its development, MTComm’s performance and feasibility were evaluated with experiments in a CPMC testbed with three different types of manufacturing machine tools. Experimental results demonstrated MTComm’s excellent feasibility for scalable cyber-physical manufacturing and superior performance over other existing approaches

    Digital Triplet Approach for Real-Time Monitoring and Control of an Elevator Security System

    Get PDF
    As Digital Twins gain more traction and their adoption in industry increases, there is a need to integrate such technology with machine learning features to enhance functionality and enable decision making tasks. This has lead to the emergence of a concept known as Digital Triplet; an enhancement of Digital Twin technology through the addition of an ’intelligent activity layer’. This is a relatively new technology in Industrie 4.0 and research efforts are geared towards exploring its applicability, development and testing of means for implementation and quick adoption. This paper presents the design and implementation of a Digital Triplet for a three-floor elevator system. It demonstrates the integration of a machine learning (ML) object detection model and the system Digital Twin. This was done to introduce an additional security feature that enabled the system to make a decision, based on objects detected and take preliminary security measures. The virtual model was designed in Siemens NX and programmed via Total Integrated Automation (TIA) portal software. The corresponding physical model was fabricated and controlled using a Programmable Logic Controller (PLC) S7 1200. A control program was developed to mimic the general operations of a typical elevator system used in a commercial building setting. Communication, between the physical and virtual models, was enabled using the OPC-Unified Architecture (OPC-UA) protocol. Object recognition using “You only look once” (YOLOV3) based machine learning algorithm was incorporated. The Digital Triplet’s functionality was tested, ensuring the virtual system duplicated actual operations of the physical counterpart through the use of sensor data. Performance testing was done to determine the impact of the ML module on the real-time functionality aspect of the system. Experiment results showed the object recognition contributed an average of 1.083s to an overall signal travel time of 1.338 s

    Protection of Active Distribution Networks and Their Cyber Physical Infrastructure

    Get PDF
    Today’s Smart Grid constitutes several smaller interconnected microgrids. However, the integration of converter-interfaced distributed generation (DG) in microgrids has raised several issues such as the fact that fault currents in these systems in islanded mode are way less than those in grid connected microgrids. Therefore, microgrid protection schemes require a fast, reliable and robust communication system, with backup, to automatically adjust relay settings for the appropriate current levels according to the microgrid’s operation mode. However, risks of communication link failures, cyber security threats and the high cost involved to avoid them are major challenges for the implementation of an economic adaptive protection scheme. This dissertation proposes an adaptive protection scheme for AC microgrids which is capable of surviving communication failures. The contribution is the use of an energy storage system as the main contributor to fault currents in the microgrid’s islanded mode when the communication link fails to detect the shift to the islanded mode. The design of an autonomous control algorithm for the energy storage’s AC/DC converter capable of operating when the microgrid is in both grid-connected and islanded mode. Utilizing a single mode of operation for the converter will eliminate the reliance on communicated control command signals to shift the controller between different modes. Also, the ability of the overall system to keep stable voltage and frequency levels during extreme cases such as the occurrence of a fault during a peak pulse load period. The results of the proposed protection scheme showed that the energy storage -inverter system is able to contribute enough fault current for a sufficient duration to cause the system protection devices to clear the fault in the event of communication loss. The proposed method was investigated under different fault types and showed excellent results of the proposed protection scheme. In addition, it was demonstrated in a case study that, whenever possible, the temporary disconnection of the pulse load during the fault period will allow the utilization of smaller energy storage device capacity to feed fault currents and thus reduce the overall expenditures. Also, in this dissertation we proposed a hybrid hardware-software co-simulation platform capable of modeling the relation between the cyber and physical parts to provide a protection scheme for the microgrid. The microgrid was simulated on MATLAB/Simulink SimPowerSystems to model the physical system dynamics, whereas all control logic was implemented on embedded microcontrollers communicating over a real network. This work suggested a protection methodology utilizing contemporary communication technologies between multi-agents to protect the microgrid

    LCCC Workshop on Process Control

    Get PDF

    Remote machine condition monitoring based on power supply measurements

    Get PDF
    The most widely used rotating machines in the industry are three phase alternative current (AC) induction machines. With the advances in variable speed drive (VSD) technology, they have become even more reliable than their direct current (DC) counterpart. However, inevitably these motors soon begin to fail with time due to mechanical, electrical or thermal stress hence the need for condition monitoring (CM). Condition monitoring systems help keep machines running productively by detecting potential equipment failures before it actually fails. Many condition monitoring methods exist on the market including vibration monitoring; acoustic emission monitoring, thermal monitoring, chemical monitoring, current monitoring but most of these methods require additional sensors and expensive data acquisition system on top of a specialise software tool. This all increases the cost of ownership and maintenance. For more efficient monitoring of induction motor drive systems, this research investigates an innovative remote monitoring system using existing data available in AC drives based on AC motor operating process. This research uses standard automation components already present in most automated control systems. A remote data communication platform is developed, allowing access to the control data remotely over a wireless network and internet using PLC and SCADA system. Remote machine condition monitoring is not a new idea but its application to machine monitoring based on power supply parameters indirectly measured by an inverter is new. To evaluate the basic performance of the platform, the monitoring of shaft misalignment, a typical fault in mechanical system is investigated using an in-house gearbox test rig. It has resulted in a model based detection method based on different speed and load settings against the motor current feedback read by the inverter. The results have demonstrated that the platform is reliable and effective. In addition the monitoring method can be employed to detect and diagnose different degrees of misalignment in real time. This dissertation has major contributions to knowledge which includes: Understanding of real life machine condition monitoring problems for this application, including use of wireless sensor, communication over Industrial Ethernet and network security. The use of standard automation components (PLC and SCADA) in machine condition monitoring. MSc Research (Engineering) Thesis x An improved gearbox test rig platform which has the capability of remote control, acquiring and transferring data for monitoring induction machine drive system. The presented work shows that any machine using automated components such as PLC and SCADA and incorporating motor drive systems and other actuators has the potential to use the automated components for control, condition monitoring and reporting but this will require more tests to be done using the proposed platform

    Innovative Surveillance and Process Control in Water Resource Recovery Facilities

    Get PDF
    Water Resource Recovery Facilities (WRRF), previously known as Wastewater Treatment Plants (WWTP), are getting increasingly complex, with the incorporation of sludge processing and resource recovery technologies. Along with maintaining a stringent effluent water quality standard, the focus is gradually shifting towards energy-efficient operations and recovery of resources. The new objectives of the WRRF demand an economically optimal operation of processes that are subjected to extreme variations in flowrate and composition at the influent. The application of online monitoring, process control, and automation in WRRF has already shown a steady increase in the past decade. However, the advanced model-based optimal control strategies, implemented in most process industries, are less common in WRRF. The complex nature of biological processes, the unavailability of simplified process models, and a lack of cost-effective surveillance infrastructure have often hindered the implementation of advanced control strategies in WRRF. The ambition of this research is to implement and validate cost-efficient monitoring alternatives and advanced control strategies for WRRF by fully utilizing the powerful Internet of Things (IoT) and data science tools. The first step towards implementing an advanced control strategy is to ensure the availability of surveillance infrastructure for monitoring nutrient compositions in WRRF processes. In Paper A, a soft sensor, based on Extended Kalman Filter, is developed for estimating water-quality parameters in a Sequential Batch MBBR process using reliable and inexpensive online sensors. The model used in the soft sensor combines the mechanistic understanding of the nutrient removal process with a statistical correlation between nutrient composition and easy-to-measure parameters. Paper B demonstrates the universality of the soft sensor through validation tests conducted in a Continuous Multistage MBBR pilot plant. The drift in soft-sensor estimation caused by a mismatch between the mathematical model and process behavior is studied in Paper B. The robustness of the soft sensor is assessed by observing estimated nutrient composition values for a period of three months. A systematic method to calibrate the measurement model and update model parameters using data from periodic lab measurements are discussed in Paper B. The term SCADA has been ubiquitous while mentioning online monitoring and control strategy deployment in WRRFs. The present digital world of affordable communication hardware, compact single board processors, and high computational power presents several options for remote monitoring and deployment of soft sensors. In Paper C, a cost-effective IoT strategy is developed by using an open-source programming language and inexpensive hardware. The functionalities of the IoT infrastructure are demonstrated by using it to deploy a soft sensor script in the ContinuousMultistage MBBR pilot plant. A cost-comparison between the commercially available alternatives presented in Paper A and the open-source IoT strategy in Paper B and Paper C highlights the benefits of the new monitoring infrastructure. Lack of reliable control models have often been the cause for the poor performance of advanced control strategies, such as Model Predictive Controls (MPC) when implemented to complex biological nutrient removal processes. Paper D attempts to overcome the inadequacies of the linear prediction model by combining a recursive model parameter estimator with the linear MPC. The new MPC variant, called the adaptive MPC (AMPC), reduces the dependency of MPC on the accuracy of its prediction model. The performance of the AMPC is compared with that of a linear MPC, nonlinear MPC, and the traditional proportional-integral cascade control through simulator-based evaluations conducted on the Benchmark Simulator platform(BSM2). The advantages of AMPC compared to its counterparts, in terms of reducing the aeration energy, curtailing the number of effluent ammonia violations, and the use of computational resources, are highlighted in Paper D. The complex interdependencies between different processes in a WRRF pose a significant challenge in defining constant reference points for WRRFs operations. A strategy that decides control outputs based on economic parameters rather than maintaining a fixed reference set-point is introduced in Paper E. The model-based control strategy presented in Paper D is further improved by including economic parameters in the MPC’s objective function. The control strategy known as Economic MPC (EMPC) is implemented for optimal dosage of magnesium hydroxide in a struvite recovery unit installed in a WRRF. A comparative study performed on the BSM2 platform demonstrates a significant improvement in overall profitability for the EMPC when compared to a constant or a feed-forward flow proportional control strategy. The resilience of the EMPC strategy to variations in the market price of struvite is also presented in Paper E. A combination of cost-effective monitoring infrastructure and advanced control strategies using advanced IoTs and data science tools have been documented to overcome some of the critical problems encountered in WRRFs. The overall improvement in process efficiency, reduction in operating costs, an increase in resource recovery, and a substantial reduction in the price of online monitoring infrastructure contribute to the overall aim of transitioning WRRFs to a self-sustaining facility capable of generating value-added products.Water Resource Recovery Facilities (WRRF), tidligere kjent som avløpsrenseanlegg (WWTP), blir stadig mer komplekse ettersom flere prosess steg tillegges anleggene i form av slambehandling og ressursgjenvinningsteknologi. Foruten hovedmålet om å imøtekomme strenge avløpsvannskvalitetskrav, har anleggenes fokus gradvis skiftet mot energieffektiv drift og gjenvinning av ressurser. Slike nye mål krever økonomisk optimal drift av prosesser som er utsatt for ekstreme variasjoner i volum og sammensetning av tilløp. Bruk av online overvåking, prosesskontroll og automatisering i WRRF har jevnt økt det siste tiåret. Likevel er avanserte modellbaserte kontrollstrategier for optimalisering ikke vanlig i WRRF, i motsetning til de fleste prosessindustrier. Komplekse forhold i biologiske prosesser, mangel på tilgang til pålitelige prosessmodeller og mangel på kostnadseffektiv overvåkingsinfrastruktur har ofte hindret implementeringen av avanserte kontrollstrategier i WRRF. Ambisjonen med denne avhandlingen er å implementere og validere kostnadseffektive overvåkingsalternativer og avanserte kontrollstrategier somutnytter kraftige Internet of Things (IoT) og datavitenskapelige verktøy i WRRF sammenheng. Det første steget mot implementering av en avansert kontrollstrategi er å sørge for tilgjengelighet av overvåkingsinfrastruktur for måling av næringsstoffer i WRRF-prosesser. Paper A demonstrerer en virtuell sensor basert på et utvidet Kalman filter, utviklet for å estimere vannkvalitetsparametere i en sekvensiell batch MBBR prosess ved hjelp av pålitelige og rimelige online sensorer. Modellen som brukes i den virtuelle sensoren kombinerer en mekanistisk forståelse av prosessen for fjerning av næringsstoffer fra avløpsvann med et statistisk sammenheng mellom næringsstoffsammensetning i avløpsvann og parametere som er enkle å måle. Paper B demonstrerer det universale bruksaspektet til den virtuelle sensoren gjennom valideringstester utført i et kontinuerlig flertrinns MBBR pilotanlegg. Feilene i sensorens estimering forårsaket av uoverensstemmelse mellom den matematiske modellen og prosesseatferden er undersøkt i Paper B. Robustheten til den virtuelle sensoren ble vurdert ved å observere estimerte næringssammensetningsverdier i en periode på tre måneder. En systematisk metode for å kalibrere målemodellen og oppdatere modellparametere ved hjelp av data fra periodiske laboratoriemålinger er diskutert i Paper B. Begrepet SCADA har alltid vært til stede når online overvåking og kontrollstrategi innen WRRF er nevnt. Den nåværende digitale verdenen med god tilgjengelighet av rimelig kommunikasjonsmaskinvare, kompakte enkeltkortprosessorer og høy beregningskraft presenterer flere muligheter for fjernovervåking og implementering av virtuelle sensorer. Paper C viser til utvikling av en kostnadseffektiv IoT-strategi ved hjelp av et programmeringsspråk med åpen kildekode og rimelig maskinvare. Funksjonalitetene i IoT-infrastruktur demonstreres gjennom implementering av et virtuelt sensorprogram i et kontinuerlig flertrinns MBBR pilotanlegg. En kostnadssammenligning mellom de kommersielt tilgjengelige alternativene som presenteres i Paper A og åpen kildekode-IoT-strategi i Paper B og Paper C fremhever fordelene med den nye overvåkingsinfrastrukturen. Mangel på pålitelige kontrollmodeller har ofte vært årsaken til svake resultater i avanserte kontrollstrategier, som for eksempel Model Predictive Control (MPC) når de implementeres i komplekse biologiske prosesser for fjerning av næringsstoffer. Paper D prøver å løse manglene i MPC ved å kombinere en rekursiv modellparameterestimator med lineær MPC. Den nye MPC-varianten, kalt Adaptiv MPC (AMPC), reduserer MPCs avhengighet av nøyaktigheten i prediksjonsmodellen. Ytelsen til AMPC sammenlignes med ytelsen til en lineær MPC, ikke-lineær MPC og tradisjonell proportionalintegral kaskadekontroll gjennom simulatorbaserte evalueringer utført på Benchmark Simulator plattformen (BSM2). Fordelene med AMPC sammenlignet med de andre kontrollstrategiene er fremhevet i Paper D og demonstreres i sammenheng redusering av energibruk ved lufting i luftebasseng, samt redusering i antall brudd på utslippskrav for ammoniakk og bruk av beregningsressurser. De komplekse avhengighetene mellom forskjellige prosesser i en WRRF utgjør en betydelig utfordring når man skal definere konstante referansepunkter for WRRF under drift. En strategi som bestemmer kontrollsignaler basert på økonomiske parametere i stedet for å opprettholde et fast referansesettpunkt introduseres i Paper E. Den modellbaserte kontrollstrategien fra PaperDforbedres ytterligere ved å inkludere økonomiske parametere iMPCs objektiv funksjon. Denne kontrollstrategien kalles Economic MPC (EMPC) og er implementert for optimal dosering av magnesiumhydroksid i en struvit utvinningsenhet installert i en WRRF. En sammenligningsstudie utført på BSM2 plattformen viste en betydelig forbedring i den totale lønnsomheten ved bruk av EMPC sammenlignet med en konstant eller en flow proportional kontrollstrategi. Robustheten til EMPC-strategien for variasjoner i markedsprisen på struvit er også demonstrert i Paper E. En kombinasjon av kostnadseffektiv overvåkingsinfrastruktur og avanserte kontrollstrategier ved hjelp av avansert IoT og datavitenskapelige verktøy er brukt for å løse flere kritiske utfordringer i WRRF. Den samlede forbedringen i prosesseffektivitet, reduksjon i operasjonskostnader, økt ressursgjenvinning og en betydelig reduksjon i pris for online overvåkningsinfrastruktur bidrar til det overordnede målet om å gå over til bærekraftige WRRF som er i stand til å generere verdiskapende produkter.DOSCON A
    • …
    corecore