
ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2017) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of
existing products for an assembly oriented product family identification

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach.
© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

Keywords: Assembly; Design method; Family identification

1. Introduction

Due to the fast development in the domain of
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global
competition with competitors all over the world. This trend,
which is inducing the development from macro to micro
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1].
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find.

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical).

Classical methodologies considering mainly single products
or solitary, already existing product families analyze the
product structure on a physical level (components level) which
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this

Procedia CIRP 104 (2021) 1771–1776

2212-8271 © 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 54th CIRP Conference on Manufacturing System
10.1016/j.procir.2021.11.298

© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 54th CIRP Conference on Manufacturing System

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2021) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 54th CIRP Conference on Manufacturing System

54th CIRP Conference on Manufacturing Systems

Design and implementation of a holistic framework for data integration in
industrial machine and sensor networks

 Jonas Hillenbranda,*, Philipp Gönnheimera, Eduard Gerlitza, Jürgen Fleischera
awbk Institute of Production Science, Gotthard-Franz-Strasse 5, 76131 Karlsruhe, Germany

* Corresponding author. Tel.: +49 1523 950 2582; fax: +49 721 608-45005. E-mail address: jonas.hillenbrand@kit.edu

Abstract

Digitalization and connectivity trends in industrial plants and production equipment create vast and heterogeneous networks of data sources, data
sinks and various communication protocols. Data fusion and evaluation of these resources result in high costs for data integration and
maintenance. Therefore, we propose a new framework, called MyGateway, enabling effortless integration of heterogeneous data sources, their
fusion within the framework and publication to data sinks as needed. For easy integration, deployment, and expansion of the framework we
provide an implementation in JAVA using open-source adapters for common industrial protocols and a simple API for usage in user specified
setups.

© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 54th CIRP Conference on Manufacturing System

 Keywords: system architecture; monitoring; network

1. Introduction

Industry 4.0 and network enabled sensors gave rise to
highly digitized production environments with an abundance
of data sources, communication technologies with need for
storage and processing possibilities. Growing interest also
exists in making production internet ready with the Industrial
Internet of Things (IIoT) or a postulated Internet of
Production [1].

Production relevant data sources and data sinks are
heterogeneous and manifold. An excerpt of sources and sinks
is shown in Table 1.

For companies whose core competency does not reside
within communication technologies, it can be tedious to
manage the growing number of IT and OT infrastructure
required for the application of industry 4.0 solutions.

Smart devices and sensors, digitalization solution,
platforms and protocols grow faster than standardized
industrial communication is created. In order to cope with the
abundance of different systems application-specific

middleware is needed for protocol translation, consolidation
of data sources and their administration in data sinks.

Beyond that, the integration of legacy devices or systems
is just as important. A key enabler for IIoT or cloud
manufacturing is interoperability. This issue has been
addressed in [2] with a proposal for a cloud-based CAD-
CAM framework for manufacturing with CNC machines.
Other drivers are usage of communication stacks, that are
interoperable by design, such as Open Platform
Communications - Unified Architecture (OPC-UA). [3]
propose a multiscale digital twin for modeling machine
shops, including components, processes, and entire
machines. A hierarchical semantic of the system is
represented within the OPC-UA node tree. This enables a
central allocation of data associated with a machine and its
corresponding machine shop, that can be accessed
independent of vendors.

Still, recent automation protocols and interfaces can only
be considered, while developing new devices and machines,
but usually brownfield environments are found,

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2021) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 54th CIRP Conference on Manufacturing System

54th CIRP Conference on Manufacturing Systems

Design and implementation of a holistic framework for data integration in
industrial machine and sensor networks

 Jonas Hillenbranda,*, Philipp Gönnheimera, Eduard Gerlitza, Jürgen Fleischera
awbk Institute of Production Science, Gotthard-Franz-Strasse 5, 76131 Karlsruhe, Germany

* Corresponding author. Tel.: +49 1523 950 2582; fax: +49 721 608-45005. E-mail address: jonas.hillenbrand@kit.edu

Abstract

Digitalization and connectivity trends in industrial plants and production equipment create vast and heterogeneous networks of data sources, data
sinks and various communication protocols. Data fusion and evaluation of these resources result in high costs for data integration and
maintenance. Therefore, we propose a new framework, called MyGateway, enabling effortless integration of heterogeneous data sources, their
fusion within the framework and publication to data sinks as needed. For easy integration, deployment, and expansion of the framework we
provide an implementation in JAVA using open-source adapters for common industrial protocols and a simple API for usage in user specified
setups.

© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 54th CIRP Conference on Manufacturing System

 Keywords: system architecture; monitoring; network

1. Introduction

Industry 4.0 and network enabled sensors gave rise to
highly digitized production environments with an abundance
of data sources, communication technologies with need for
storage and processing possibilities. Growing interest also
exists in making production internet ready with the Industrial
Internet of Things (IIoT) or a postulated Internet of
Production [1].

Production relevant data sources and data sinks are
heterogeneous and manifold. An excerpt of sources and sinks
is shown in Table 1.

For companies whose core competency does not reside
within communication technologies, it can be tedious to
manage the growing number of IT and OT infrastructure
required for the application of industry 4.0 solutions.

Smart devices and sensors, digitalization solution,
platforms and protocols grow faster than standardized
industrial communication is created. In order to cope with the
abundance of different systems application-specific

middleware is needed for protocol translation, consolidation
of data sources and their administration in data sinks.

Beyond that, the integration of legacy devices or systems
is just as important. A key enabler for IIoT or cloud
manufacturing is interoperability. This issue has been
addressed in [2] with a proposal for a cloud-based CAD-
CAM framework for manufacturing with CNC machines.
Other drivers are usage of communication stacks, that are
interoperable by design, such as Open Platform
Communications - Unified Architecture (OPC-UA). [3]
propose a multiscale digital twin for modeling machine
shops, including components, processes, and entire
machines. A hierarchical semantic of the system is
represented within the OPC-UA node tree. This enables a
central allocation of data associated with a machine and its
corresponding machine shop, that can be accessed
independent of vendors.

Still, recent automation protocols and interfaces can only
be considered, while developing new devices and machines,
but usually brownfield environments are found,

1772 Jonas Hillenbrand et al. / Procedia CIRP 104 (2021) 1771–1776
2 Jonas Hillenbrand, et al. / Procedia CIRP 00 (2021) 000–000

Table 1. List of protocols for data sources and sinks

where existing machinery must be integrated into new
reconfigurable production systems. To target brownfield
applications, usually additional hardware is required to
access the legacy communication protocols at the device
level. Here, [4] introduced a modular smart controller for
industry 4.0 functionalities in machine tools. It is well-suited
for applications, where real-time and best-effort applications
meet. So far, only Controller Area Network (CAN) was
implemented as communication protocol, but the modular
design allows for integration of other protocols and
periphery.

With MyGateway we address the problem of
interoperability by introducing a universal, protocol and
platform independent framework to integrate any digital data
sources in industrial plants. In the following, the structure of
the paper is introduced.

In Related Works state of the art and research is described
and used to define the novelty of features in MyGateway.

In chapter 3 the framework is introduced, and its elements
and functionalities are described. It is followed by chapter
Experimental Results, with a demonstration of the
application’s accuracy and an example use case. Finally, the
results are discussed, and we close with a Conclusion and
further future work.

2. Related Work

There is a huge market for industry 4.0 and digitalization
solutions. A lot of vendors and data pipeline providers focus
on bringing their customers’ data to the cloud or centralized
storage facilities, while providing drivers and bridges for
sensors and devices. Usually, they promote these
functionalities within the setup of their own system,
requiring customers to change or install new architectures.

An example is the centralized measurement management
center from Delphin Technology [5].

Less intrusive are vendors that provide their own
gateways as middleware as mobile or stationary application.
The Sick AG offers an open end-to-end IIoT architecture for
integration of bus and network protocols, but also offers
wireless interfaces for communication [6]. Another solution
in the IIoT sector is ThingOs representing an edge-
technology platform for smart devices, sensors, and actuators
[7]. Core concept is a technology-neutral abstraction layer
(TNL) enabling their users to focus on the business logic
instead of protocol handling. Their target market are smart
home and smart factory appliances.

The mentioned solutions stand exemplary for a collection
of highly integrated and customizable frameworks.
However, as those applications are not open source, users are
restricted to their application programming interface (API)
and usually have to use the companies’ products within their
installations.

Here, open-source software or communication
frameworks provide tools to cope with the various industrial
protocols and an open system architecture to develop own
applications or integrate existing infrastructure.

In form of Apache Kafka an event streaming platform was
introduced for a variety of use cases, including capturing, and
analyzing sensor data from IIoT device or other equipment
[8]. It is a distributed network of servers and clients, scaling
from on premise to cloud environments. Apache Kafka
targets already smart or network connected devices. Another
project from The Apache Software Foundation is PLC4X, it
consists of a set of libraries for communication with
programmable logic controllers (PLC) using different
protocols but a shared API [9].

Kuhn et al. introduce the concept of a virtual automation
bus (VAB), a peer-to-peer communication solution for
industrial assets managed within asset administration shells
according to VDI/VDE [10,11]. They enable inter-network
communication with existing infrastructures, using a
common language and HTTP/REST for communication
within the bus. Protocol specific gateways are used to map
heterogeneous protocols into the VAB.

Other works address the problem by defining domain-
specific languages for sensor integration. Bodenbenner et. al
proposes the SensOr Interfacing Language (SOIL) to
decouple sensor data and properties from the underlying
protocol [12]. It targets sensor equipment with network
access and an open API. Applying SOIL users can create a
code-free meta model of their sensor, which is then translated
into executable python code. In order to be used with SOIL,
the equipment must implement an HTTP interface.

Common ground of above frameworks and works are
technology neutral layers, that allow reducing the
programming effort and help reuse code. Another core
functionality is the use of bridges and adapters to solve the
issue of incompatible protocols or communication schemes.

Our proposal of MyGateway also incorporates the idea of
an abstract layer for translation between different protocols.
Where applicable we make use of existing solutions, such as

Category Protocols
ethernet based
protocols

TCP/IP, UDP/IP, HTTP(S), MQTT

object oriented
automation standards /
stacks

OPC DA, OPC-UA, Beckhoff ADS,
MTConnect

bus systems PROFI-BUS, PROFI-NET, EtherCat
Can-Bus, ModBus/TCP
Serial,
IO-Link,
I2C, SPI,
AS-Interface,
EIB, KNX

wireless networks /
protocols

Bluetooth, Bluetooth Low Energy,
ZigBee

flat files (MIME
types)

video files (WMA, WMV, MPEG, AVI…),
image files (JPG, PNG, GIF, TIF…),
audio files (MP3, WAV, OGG ...),
text based files (CSV, XML, JSON, …),
binary files (HDF5, MAT, *.bin, …)

audio and video
stream protocols

Real-Time Messaging Protocol (RTMP),
Real-Time Streaming Protocol (RTSP),
Dynamic Adaptive Streaming over HTTP,
Microsoft Smooth Streaming (MSS),
HTTP Dynamic Streaming (HDS),
HTTP Live Streaming (HLS)

database
implementations

SQL, MySQL, SQLLite, PostgreSQL,
InfluxDB,
MongoDB,
NoSQL,

 Jonas Hillenbrand, et al. / Procedia CIRP 00 (2021) 000–000 3

PLC4X, if PLC communication is required. Instead of
defining a new language or network architecture for
industrial communication, MyGateway must be understood
as framework of wrappers for protocols and a technology
neutral layer within which sensor data streams can be
processed.

MyGateway specifically addresses data logging
applications and condition monitoring scenarios, where
legacy equipment must be incorporated, and high-speed data
streams must be processed.

It operates as gateway, similar to installations like the
VAB or an Apache Kafka Connect instance [8,11]. It
therefore helps in retrofitting projects where usually a lot of
programming expenses go into programming of adapters and
protocol translation.

We realize aggregation of data sources as close to the
hardware as possible, so that data fusion and later on context-
based feature extraction can be done as close to the source as
possible. Also, high configurability and effortless expansion
are ensured using code templates and encapsulation
wherever it is possible. Once a protocol or device was
implemented, it can be automatically configured, and
executable code can be exported to run the application on any
target machine with a Java Runtime Environment (JRE).

Fig. 2. MyGateway interfaces and the DataChannel definition

3. MyGateway Framework

The proposed framework MyGateway targets brownfield
shopfloors and machinery, which are not up to date in terms
of modern communication architectures, or due to historic
growth an abundance of different systems can be found, with
varying communication standards and no common ground
for interconnection. For those environments MyGateway
poses an opportunity to translate and consolidate,
respectively synchronize, data sources of any kind, while
staying highly configurable and expandable for new or
changing sources. In terms of the automation pyramid
MyGateway is located between field and control level and
the planning or management level. Besides vertical
integration of data sources, it also enables horizontal
integration and communication between devices and
machines with different communication standards through
mapping. In the current version MyGateway is conceived for
protocol translation, data fusion and data logging of digital
sources and streaming or storing them in data sinks, e.g.
databases or webservers for visualization.

The architecture of MyGateway consists of three main
layers, namely MyDataSource, DataSampler and
MyDataSink. The data flow direction within this framework
goes from MyDataSource into DataSampler and leaves the
framework through MyDataSink. Fig. 1 displays these layers
and also shows the dependency of the framework on other
libraries or software development kits (SDK). The goal in
this setup is to reduce the protocol and vendor specific code
for processing industrial data streams. The blue elements in
Fig. 1 represent core MyGateway components, that are
automatically created based on required connections and use
case specific architecture. Red highlighted elements require
a one-time effort of programming to cope with vendor
specific or protocol specific implementations. Once they are

Fig. 1. MyGateway architecture

 Jonas Hillenbrand et al. / Procedia CIRP 104 (2021) 1771–1776 1773
2 Jonas Hillenbrand, et al. / Procedia CIRP 00 (2021) 000–000

Table 1. List of protocols for data sources and sinks

where existing machinery must be integrated into new
reconfigurable production systems. To target brownfield
applications, usually additional hardware is required to
access the legacy communication protocols at the device
level. Here, [4] introduced a modular smart controller for
industry 4.0 functionalities in machine tools. It is well-suited
for applications, where real-time and best-effort applications
meet. So far, only Controller Area Network (CAN) was
implemented as communication protocol, but the modular
design allows for integration of other protocols and
periphery.

With MyGateway we address the problem of
interoperability by introducing a universal, protocol and
platform independent framework to integrate any digital data
sources in industrial plants. In the following, the structure of
the paper is introduced.

In Related Works state of the art and research is described
and used to define the novelty of features in MyGateway.

In chapter 3 the framework is introduced, and its elements
and functionalities are described. It is followed by chapter
Experimental Results, with a demonstration of the
application’s accuracy and an example use case. Finally, the
results are discussed, and we close with a Conclusion and
further future work.

2. Related Work

There is a huge market for industry 4.0 and digitalization
solutions. A lot of vendors and data pipeline providers focus
on bringing their customers’ data to the cloud or centralized
storage facilities, while providing drivers and bridges for
sensors and devices. Usually, they promote these
functionalities within the setup of their own system,
requiring customers to change or install new architectures.

An example is the centralized measurement management
center from Delphin Technology [5].

Less intrusive are vendors that provide their own
gateways as middleware as mobile or stationary application.
The Sick AG offers an open end-to-end IIoT architecture for
integration of bus and network protocols, but also offers
wireless interfaces for communication [6]. Another solution
in the IIoT sector is ThingOs representing an edge-
technology platform for smart devices, sensors, and actuators
[7]. Core concept is a technology-neutral abstraction layer
(TNL) enabling their users to focus on the business logic
instead of protocol handling. Their target market are smart
home and smart factory appliances.

The mentioned solutions stand exemplary for a collection
of highly integrated and customizable frameworks.
However, as those applications are not open source, users are
restricted to their application programming interface (API)
and usually have to use the companies’ products within their
installations.

Here, open-source software or communication
frameworks provide tools to cope with the various industrial
protocols and an open system architecture to develop own
applications or integrate existing infrastructure.

In form of Apache Kafka an event streaming platform was
introduced for a variety of use cases, including capturing, and
analyzing sensor data from IIoT device or other equipment
[8]. It is a distributed network of servers and clients, scaling
from on premise to cloud environments. Apache Kafka
targets already smart or network connected devices. Another
project from The Apache Software Foundation is PLC4X, it
consists of a set of libraries for communication with
programmable logic controllers (PLC) using different
protocols but a shared API [9].

Kuhn et al. introduce the concept of a virtual automation
bus (VAB), a peer-to-peer communication solution for
industrial assets managed within asset administration shells
according to VDI/VDE [10,11]. They enable inter-network
communication with existing infrastructures, using a
common language and HTTP/REST for communication
within the bus. Protocol specific gateways are used to map
heterogeneous protocols into the VAB.

Other works address the problem by defining domain-
specific languages for sensor integration. Bodenbenner et. al
proposes the SensOr Interfacing Language (SOIL) to
decouple sensor data and properties from the underlying
protocol [12]. It targets sensor equipment with network
access and an open API. Applying SOIL users can create a
code-free meta model of their sensor, which is then translated
into executable python code. In order to be used with SOIL,
the equipment must implement an HTTP interface.

Common ground of above frameworks and works are
technology neutral layers, that allow reducing the
programming effort and help reuse code. Another core
functionality is the use of bridges and adapters to solve the
issue of incompatible protocols or communication schemes.

Our proposal of MyGateway also incorporates the idea of
an abstract layer for translation between different protocols.
Where applicable we make use of existing solutions, such as

Category Protocols
ethernet based
protocols

TCP/IP, UDP/IP, HTTP(S), MQTT

object oriented
automation standards /
stacks

OPC DA, OPC-UA, Beckhoff ADS,
MTConnect

bus systems PROFI-BUS, PROFI-NET, EtherCat
Can-Bus, ModBus/TCP
Serial,
IO-Link,
I2C, SPI,
AS-Interface,
EIB, KNX

wireless networks /
protocols

Bluetooth, Bluetooth Low Energy,
ZigBee

flat files (MIME
types)

video files (WMA, WMV, MPEG, AVI…),
image files (JPG, PNG, GIF, TIF…),
audio files (MP3, WAV, OGG ...),
text based files (CSV, XML, JSON, …),
binary files (HDF5, MAT, *.bin, …)

audio and video
stream protocols

Real-Time Messaging Protocol (RTMP),
Real-Time Streaming Protocol (RTSP),
Dynamic Adaptive Streaming over HTTP,
Microsoft Smooth Streaming (MSS),
HTTP Dynamic Streaming (HDS),
HTTP Live Streaming (HLS)

database
implementations

SQL, MySQL, SQLLite, PostgreSQL,
InfluxDB,
MongoDB,
NoSQL,

 Jonas Hillenbrand, et al. / Procedia CIRP 00 (2021) 000–000 3

PLC4X, if PLC communication is required. Instead of
defining a new language or network architecture for
industrial communication, MyGateway must be understood
as framework of wrappers for protocols and a technology
neutral layer within which sensor data streams can be
processed.

MyGateway specifically addresses data logging
applications and condition monitoring scenarios, where
legacy equipment must be incorporated, and high-speed data
streams must be processed.

It operates as gateway, similar to installations like the
VAB or an Apache Kafka Connect instance [8,11]. It
therefore helps in retrofitting projects where usually a lot of
programming expenses go into programming of adapters and
protocol translation.

We realize aggregation of data sources as close to the
hardware as possible, so that data fusion and later on context-
based feature extraction can be done as close to the source as
possible. Also, high configurability and effortless expansion
are ensured using code templates and encapsulation
wherever it is possible. Once a protocol or device was
implemented, it can be automatically configured, and
executable code can be exported to run the application on any
target machine with a Java Runtime Environment (JRE).

Fig. 2. MyGateway interfaces and the DataChannel definition

3. MyGateway Framework

The proposed framework MyGateway targets brownfield
shopfloors and machinery, which are not up to date in terms
of modern communication architectures, or due to historic
growth an abundance of different systems can be found, with
varying communication standards and no common ground
for interconnection. For those environments MyGateway
poses an opportunity to translate and consolidate,
respectively synchronize, data sources of any kind, while
staying highly configurable and expandable for new or
changing sources. In terms of the automation pyramid
MyGateway is located between field and control level and
the planning or management level. Besides vertical
integration of data sources, it also enables horizontal
integration and communication between devices and
machines with different communication standards through
mapping. In the current version MyGateway is conceived for
protocol translation, data fusion and data logging of digital
sources and streaming or storing them in data sinks, e.g.
databases or webservers for visualization.

The architecture of MyGateway consists of three main
layers, namely MyDataSource, DataSampler and
MyDataSink. The data flow direction within this framework
goes from MyDataSource into DataSampler and leaves the
framework through MyDataSink. Fig. 1 displays these layers
and also shows the dependency of the framework on other
libraries or software development kits (SDK). The goal in
this setup is to reduce the protocol and vendor specific code
for processing industrial data streams. The blue elements in
Fig. 1 represent core MyGateway components, that are
automatically created based on required connections and use
case specific architecture. Red highlighted elements require
a one-time effort of programming to cope with vendor
specific or protocol specific implementations. Once they are

Fig. 1. MyGateway architecture

1774 Jonas Hillenbrand et al. / Procedia CIRP 104 (2021) 1771–1776
4 Jonas Hillenbrand, et al. / Procedia CIRP 00 (2021) 000–000

created for a project, they can be reused in new applications.
In the following subsections the core components are further
explained in detail.

3.1. Data sources

The component MyDataSource is an abstract class
describing any data source that can be connected to the
framework. The term data source in the context of this work
refers to any kind of network participant, that produces a data
stream other entities can connect to. MyGateway is hosted in
such a network. Examples are OPC DA and UA Servers,
TCP and UDP sockets or flat files with comma-separated
values (CSV). In MyDataSourceInterface we define basic
workflow and minimum methods each class of
MyDataSource should adhere to. A simple workflow
consists of connecting to the source, checking if it is
connected, then subscriptions are added in form of
DataChannels and then those subscriptions can be started
and stopped and if no longer required, the connection can be
disconnected (see Fig. 2).

Data within MyGateway is stored in DataChannel objects,
containing an id and name property, fields for describing the
data and a numeric property (value) that is updated via an
observer pattern (also see Fig. 2). These values are received
using the underlying adapters of the corresponding
MyDataSource object. An exemplary implementation of this
relation for OPC UA is the setup in schematic in Fig. 3. As
adapter for the communication with an OPC UA server we
use the Eclipse Milo, an open source implementation of the
OPC UA stack [13]. We use the SDK to build our own
MyOpcUaClient that is able to connect, read and write server
nodes. If one of those nodes shall be subscribed, the
MyOpcUaClientDataSource maps those nodes into a
DataChannel object, where they can be accessed from the
rest of the MyGateway elements.

3.2. Data Sampling

The next layer in MyGateway is represented by
DataSamplers. The DataSampler inherits its functionality
from MyDataSource and implements the same interface. As
mentioned before, one task of our system is consolidation of
different data sources, this is solved by additional methods
inside DataSampler, who subscribes to all MyDataSources

Fig. 3. Setup of OPC UA data source

Fig. 4. Graphical interface for XML configuration in eclipse

that need to be fusioned. A second task of this element is the
provision of data buffers for high-speed data streams. As
MyGateway runs on non-real-time operating systems (Non-
RTOS), continuous sampling of data sources cannot be
guaranteed without a buffer. But, if the underlying data
source (device or sensor system) already provides an
interface for buffering data, those buffers can be read and
transferred to MyGateway while preserving the continuously
sampled data.

3.3. Data Sinks

When the data sources are consolidated within
MyGateway, we use data sinks to transfer the data acquired
to its target destination. Example data sinks are OPC UA
servers, MQTT publishers, database servers like InfluxDB,
web servers, plain text or binary files for offline storage
purposes. Adapters for those targets are used for the
implementation of MyDataSinks. The interface and
definition of MyDataSink resembles the one from
MyDataSource, as shown in Fig. 2, but instead of incoming
data, it describes the handling of outgoing data. By
transitioning all three layers of MyGateway, we reach
protocol translation, synchronize data sources under a
common timestamp and establish a highly flexible setup for
the aggregation and distribution of data streams.

3.4. Graphical user interface for MyGateway Configuration

Our current version of MyGateway supports building
applications within any integrated JAVA development
environment (IDE) or being configured by specifying an
extensible markup language (XML) configuration file. We
provide XML templates for all MyDataSources,
DataSamplers and MyDataSinks supported so far. Possible
configuration options are based on an XML scheme.

 Jonas Hillenbrand, et al. / Procedia CIRP 00 (2021) 000–000 5

Fig. 5. Sampling accuracy tests with different CPU's

This scheme ensures that the user is guided through the
configuration and no invalid values are submitted. Any XML
editor with validation routines can be used to configure
MyGateway. We use the XML editor provided in eclipse, as
it is also the IDE used for development (see Fig. 4).

4. Deployment Studies

In the following chapter, we present results from sampling
accuracy tests with different CPUs and an implementation
use case on testbenches at our institute.

4.1. Sampling accuracy tests on non-RTOS systems

As the framework operates on non-RTOS systems, the
sampling is controlled from the CPU of its system, a fixed
sampling rate can only be ensured for low sampling rates. In
Fig. 5 we outline the usability of MyGateway for sampling
tasks of a few milliseconds.

The plot shows the results for two different CPU and the
same MyGateway configuration, consisting of an OPC UA
client that publishes its subscribed server nodes into CSV
files. CPU1 is an Intel Core i7-8565U CPU at 1.80GHz and

Fig. 6. Schematic of implementation example (icons taken from [14])

4 cores, representing an office grade laptop, CPU2 is a quad
core Cortex-A72 at 1.5GHz on a Raspberry Pi 4B+. On both
machines MyGateway configurations with different
sampling periods (between 250 and 1ms) for the subscribed
data were run. The resulting time differences in milliseconds
are gained by computing the difference in CPU system time
from one sample to the next. The system time is stored in an
additional DataChannel, that is also published into the CSV
file.

The sampling period is controlled within the
ObserverThread and its accuracy can be set to either
milliseconds or nanoseconds. The tests show the dependency
of the accuracy on the available CPU, as results gained from
CPU1 (higher clock rate) deviate less from the target
sampling period. Also, choosing nanoseconds as resolution
for the sampling helps reducing the deviation further.
However, deviations fluctuate and can be off the target
sampling period by multiple milliseconds. Usage scenarios
where continuous sampling rates are required cannot be
addressed yet, with the unbuffered data processing.

4.2. Implementation example

To test the configuration and operation capabilities in a
real environment, we deployed a MyGateway application on
a PC that is used to control a testbench in our institute’s
component laboratory for machine tools. The purpose of this
testbench is conduction of lifetime experiments on ball
screws and hence requires long-term observation and robust
logging of sensor data. In this particular case, the system of
data sources and sinks is depicted in . It consists of three data
sources in form of an OPC UA server running on a S7-1500
PLC CPU from Siemens, an OPC DA server running on the
host PC capturing data from a measurement device of ifm
electronics and a strain gauge data logger from HBM, called
QuantumX, with a vendor API that allowed us to program a
UDP client, that sends measurements as continuous data
stream.

The data was transferred through a DataSampler and
consolidated, in order to publish the data for a web server
hosting a monitoring dashboard. This was done by using the
framework’s MyHttpsDataSink, which allows querying data
from a MyGateway instance over HTTPS requests.
Additionally, the testbench data was logged into CSV files
using MyCSVDataSink. Customization of code was only
required for the UDP client, as the vendor API did not
natively talk in any already implemented MyDataSource
protocol. Here, we programmed a C# UDP client, that uses
the vendor API and talks with a corresponding UDP server
on the framework side. Otherwise, the configuration can be
completely setup with graphical XML modeling.

4.3. Other MyGateway features

Besides the aforementioned features of MyGateway we
want to mention several other functionalities available in this
framework.

Instances of MyGateway can be run on 32- and 64-bit
platforms using different JAVA runtimes. That enables

050100150200250

SamplingPeriod [ms]

0

5

10

15

20

D
ev

ia
tio

n
fro

m
 ta

rg
et

 [m
s]

Deviation from target sampling period

CPU1 ms-Accuracy CPU1 ns-Accuracy

CPU2 ms-Accuracy CPU2 ns-Accuracy

 Jonas Hillenbrand et al. / Procedia CIRP 104 (2021) 1771–1776 1775
4 Jonas Hillenbrand, et al. / Procedia CIRP 00 (2021) 000–000

created for a project, they can be reused in new applications.
In the following subsections the core components are further
explained in detail.

3.1. Data sources

The component MyDataSource is an abstract class
describing any data source that can be connected to the
framework. The term data source in the context of this work
refers to any kind of network participant, that produces a data
stream other entities can connect to. MyGateway is hosted in
such a network. Examples are OPC DA and UA Servers,
TCP and UDP sockets or flat files with comma-separated
values (CSV). In MyDataSourceInterface we define basic
workflow and minimum methods each class of
MyDataSource should adhere to. A simple workflow
consists of connecting to the source, checking if it is
connected, then subscriptions are added in form of
DataChannels and then those subscriptions can be started
and stopped and if no longer required, the connection can be
disconnected (see Fig. 2).

Data within MyGateway is stored in DataChannel objects,
containing an id and name property, fields for describing the
data and a numeric property (value) that is updated via an
observer pattern (also see Fig. 2). These values are received
using the underlying adapters of the corresponding
MyDataSource object. An exemplary implementation of this
relation for OPC UA is the setup in schematic in Fig. 3. As
adapter for the communication with an OPC UA server we
use the Eclipse Milo, an open source implementation of the
OPC UA stack [13]. We use the SDK to build our own
MyOpcUaClient that is able to connect, read and write server
nodes. If one of those nodes shall be subscribed, the
MyOpcUaClientDataSource maps those nodes into a
DataChannel object, where they can be accessed from the
rest of the MyGateway elements.

3.2. Data Sampling

The next layer in MyGateway is represented by
DataSamplers. The DataSampler inherits its functionality
from MyDataSource and implements the same interface. As
mentioned before, one task of our system is consolidation of
different data sources, this is solved by additional methods
inside DataSampler, who subscribes to all MyDataSources

Fig. 3. Setup of OPC UA data source

Fig. 4. Graphical interface for XML configuration in eclipse

that need to be fusioned. A second task of this element is the
provision of data buffers for high-speed data streams. As
MyGateway runs on non-real-time operating systems (Non-
RTOS), continuous sampling of data sources cannot be
guaranteed without a buffer. But, if the underlying data
source (device or sensor system) already provides an
interface for buffering data, those buffers can be read and
transferred to MyGateway while preserving the continuously
sampled data.

3.3. Data Sinks

When the data sources are consolidated within
MyGateway, we use data sinks to transfer the data acquired
to its target destination. Example data sinks are OPC UA
servers, MQTT publishers, database servers like InfluxDB,
web servers, plain text or binary files for offline storage
purposes. Adapters for those targets are used for the
implementation of MyDataSinks. The interface and
definition of MyDataSink resembles the one from
MyDataSource, as shown in Fig. 2, but instead of incoming
data, it describes the handling of outgoing data. By
transitioning all three layers of MyGateway, we reach
protocol translation, synchronize data sources under a
common timestamp and establish a highly flexible setup for
the aggregation and distribution of data streams.

3.4. Graphical user interface for MyGateway Configuration

Our current version of MyGateway supports building
applications within any integrated JAVA development
environment (IDE) or being configured by specifying an
extensible markup language (XML) configuration file. We
provide XML templates for all MyDataSources,
DataSamplers and MyDataSinks supported so far. Possible
configuration options are based on an XML scheme.

 Jonas Hillenbrand, et al. / Procedia CIRP 00 (2021) 000–000 5

Fig. 5. Sampling accuracy tests with different CPU's

This scheme ensures that the user is guided through the
configuration and no invalid values are submitted. Any XML
editor with validation routines can be used to configure
MyGateway. We use the XML editor provided in eclipse, as
it is also the IDE used for development (see Fig. 4).

4. Deployment Studies

In the following chapter, we present results from sampling
accuracy tests with different CPUs and an implementation
use case on testbenches at our institute.

4.1. Sampling accuracy tests on non-RTOS systems

As the framework operates on non-RTOS systems, the
sampling is controlled from the CPU of its system, a fixed
sampling rate can only be ensured for low sampling rates. In
Fig. 5 we outline the usability of MyGateway for sampling
tasks of a few milliseconds.

The plot shows the results for two different CPU and the
same MyGateway configuration, consisting of an OPC UA
client that publishes its subscribed server nodes into CSV
files. CPU1 is an Intel Core i7-8565U CPU at 1.80GHz and

Fig. 6. Schematic of implementation example (icons taken from [14])

4 cores, representing an office grade laptop, CPU2 is a quad
core Cortex-A72 at 1.5GHz on a Raspberry Pi 4B+. On both
machines MyGateway configurations with different
sampling periods (between 250 and 1ms) for the subscribed
data were run. The resulting time differences in milliseconds
are gained by computing the difference in CPU system time
from one sample to the next. The system time is stored in an
additional DataChannel, that is also published into the CSV
file.

The sampling period is controlled within the
ObserverThread and its accuracy can be set to either
milliseconds or nanoseconds. The tests show the dependency
of the accuracy on the available CPU, as results gained from
CPU1 (higher clock rate) deviate less from the target
sampling period. Also, choosing nanoseconds as resolution
for the sampling helps reducing the deviation further.
However, deviations fluctuate and can be off the target
sampling period by multiple milliseconds. Usage scenarios
where continuous sampling rates are required cannot be
addressed yet, with the unbuffered data processing.

4.2. Implementation example

To test the configuration and operation capabilities in a
real environment, we deployed a MyGateway application on
a PC that is used to control a testbench in our institute’s
component laboratory for machine tools. The purpose of this
testbench is conduction of lifetime experiments on ball
screws and hence requires long-term observation and robust
logging of sensor data. In this particular case, the system of
data sources and sinks is depicted in . It consists of three data
sources in form of an OPC UA server running on a S7-1500
PLC CPU from Siemens, an OPC DA server running on the
host PC capturing data from a measurement device of ifm
electronics and a strain gauge data logger from HBM, called
QuantumX, with a vendor API that allowed us to program a
UDP client, that sends measurements as continuous data
stream.

The data was transferred through a DataSampler and
consolidated, in order to publish the data for a web server
hosting a monitoring dashboard. This was done by using the
framework’s MyHttpsDataSink, which allows querying data
from a MyGateway instance over HTTPS requests.
Additionally, the testbench data was logged into CSV files
using MyCSVDataSink. Customization of code was only
required for the UDP client, as the vendor API did not
natively talk in any already implemented MyDataSource
protocol. Here, we programmed a C# UDP client, that uses
the vendor API and talks with a corresponding UDP server
on the framework side. Otherwise, the configuration can be
completely setup with graphical XML modeling.

4.3. Other MyGateway features

Besides the aforementioned features of MyGateway we
want to mention several other functionalities available in this
framework.

Instances of MyGateway can be run on 32- and 64-bit
platforms using different JAVA runtimes. That enables

050100150200250

SamplingPeriod [ms]

0

5

10

15

20

D
ev

ia
tio

n
fro

m
 ta

rg
et

 [m
s]

Deviation from target sampling period

CPU1 ms-Accuracy CPU1 ns-Accuracy

CPU2 ms-Accuracy CPU2 ns-Accuracy

1776 Jonas Hillenbrand et al. / Procedia CIRP 104 (2021) 1771–1776
6 Jonas Hillenbrand, et al. / Procedia CIRP 00 (2021) 000–000

bridging between legacy systems newer architectures by
coupling more than one MyGateway instance.

By compiling MyGateway as a JAR file (an executable
Java program), it can also be executed within MATLAB.
This way we facilitate multi-threaded data acquisition in the
background, while MATLAB’s graphical frontend can be
used to do signal processing. So far, we implemented
buffered data sources and data sinks for the network
protocols UDP and TCP, allowing for the processing of high-
speed data streams. General application of buffered sources
and sinks are still under development.

5. Discussion

In chapter three we show the MyGateway architecture and
its capabilities to solve data logging problems for
heterogeneous data sources and data sinks. The framework is
able to bridge between different commonly used industrial
protocols, such as OPC UA and OPC DA. Additionally, in
different use cases we used the PLC4X libraries to
communicate with PLC controllers without OPC interfaces.
Vendor specific API can be used to integrate devices into the
network using TCP / UDP clients or server on the
MyGateway side. We showed test results for data sampling
task in the framework for different CPU’s. Calculated
accuracies show differences between target sampling period
and actually received timestamps. As MyGateway is run on
non-RTOS systems this must be taken into account,
considering possible transformations after data acquisition,
e.g. fast Fourier transformation, that requires data with
constant sample rate. This issue is already being addressed
with the extension of MyGateway by buffered data sources
and sinks. Currently, the largest effort is building adapters
and wrappers for state-of-the-art protocols. We want to
further automate the process by defining a wrapper or adapter
template, so that code for MyDataSource and MyDataSink
elements can be generated automatically. To ensure easy
configuration and interaction while creating MyGateway
applications, we make use of graphical XML modeling. To
increase the usability, the modeling of MyGateway can be
ported to a web-based configuration tool.

6. Conclusion and Outlook

We have presented our framework MyGateway for the
purpose of integrating heterogeneous data sources and their
consolidation into data sinks for industrial applications.
MyGateway specifically targets legacy devices or retrofit
applications, where currently no gateway solution or
integration into higher level data pipelines (manufacturing
execution (MES), enterprise resource planning systems
(ERP) or cloud environments) exists. By using open-source
libraries and frameworks, we created a technology neutral
layer, that translates protocols and consolidates data streams
for data logging purposes.

In future works, we concentrate on three new
functionalities: Automatic identification of sources within
the MyGateway environment (network) related to the works
in [15]. We analyze the network the framework is connected

to for participants that publish data or listen to ports. This
enables less user defined configuration and automates the
data integration process.

Running on architectures like the Raspberry Pi allows
interfacing with devices that do not operate on Ethernet
based protocols, like Bluetooth or WiFi, but also enables
communication on embedded level using I2C or SPI
communication.

Finally, we will extend MyGateway by data processing
capabilities for condition monitoring, such as the inclusion
of feature extraction functions and use of machine learning
models within the framework.

References

[1] J. Pennekamp, et al., Towards an Infrastructure Enabling the Internet of
Production, in: 2019 IEEE International Conference on Industrial Cyber
Physical Systems (ICPS 2019): Howards Plaza Hotel Taipei, Taiwan,
06-09 May, 2019, Taipei, Taiwan, IEEE, Piscataway, NJ, 2019, p. 31–
37.

[2] M. Mourad, A. Nassehi, D. Schaefer, Interoperability as a Key Enabler
for Manufacturing in the Cloud, Procedia CIRP 52.
https://doi.org/10.1016/j.procir.2016.07.051, 2016, p. 30–34.

[3] D. Mourtzis, N. Milas, N. Athinaios, Towards Machine Shop 4.0: A
General Machine Model for CNC machine-tools through OPC-UA,
Procedia CIRP 78. https://doi.org/10.1016/j.procir.2018.09.045, 2018,
p. 301–306.

[4] D. Barton, P. Gönnheimer, F. Schade, C. Ehrmann, J. Becker, J.
Fleischer, Modular Smart Controller for Industry 4.0 Function in
machine tools // Modular smart controller for Industry 4.0 functions in
machine tools, 2019.

[5] Delphin Technology AG, Delphin Data Center: Zentrales
Messdatenmanagement.
https://www.delphin.de/produkte/software/delphin-data-center.html.

[6] Sick AG, Gateway-System TDC-E: Multi-Sensor-Vernetzung mit
Mobilfunk-Kommunikation. https://www.sick.com/de/de/gateway-
system-tdc-e-multi-sensor-vernetzung-mit-mobilfunk-kommunikation-
daten-sammeln-auswerten-speichern-und-uebertragen-in-mobilen-und-
stationaeren-anwendungen/w/press-2018-SMM-TDC-E/, 2018.

[7] ThingOS, ThingOS – The Smart Things Integrator. https://thingos.io/,
2018.

[8] The Apache Software Foundation, Apache Kafka: A Distributed
Streaming Platform. https://kafka.apache.org/intro, 2017.

[9] The Apache Software Foundation, PLC4X: The universal protocol
adapter for Industrial IoT. https://plc4x.apache.org/, 2017.

[10] T. Kuhn, P.O. Antonino, M. Damm, A. Morgenstern, D. Schulz, C.
Ziesche, T. Müller, Industrie 4.0 virtual automation bus, in: Proceedings
of the 40th International Conference on Software Engineering:
Companion Proceeedings, Gothenburg Sweden, ACM, New York, NY,
USA, 05272018, p. 121–122.

[11] T. Kuhn, P.O. Antonino, F. Schnicke, Industrie 4.0 Virtual
Automation Bus Architecture, Software Architecture, Springer
International Publishing, [S.l.], 2020, p. 477–489.

[12] M. Bodenbenner, M.P. Sanders, B. Montavon, R.H. Schmitt,
Domain-Specific Language for Sensors in the Internet of Production,
Proceedings of the 10th Congress of the German Academic Association
for Production Technology (WGP), Springer Berlin, 2020, p. 448–456.

[13] Eclipse Foundation, https://github.com/eclipse/milo.
https://github.com/eclipse/milo.

[14] Icons 8 LLC, icons8.de. https://icons8.de/icons, 2020.
[15] P. Gönnheimer, A. Puchta, J. Fleischer, Automated Identification of

Parameters in Control Systems of Machine Tools, Proceedings of the
10th Congress of the German Academic Association for Production
Technology (WGP), Springer Berlin, 2020, p. 568–577.

