
University of Arkansas, Fayetteville University of Arkansas, Fayetteville

ScholarWorks@UARK ScholarWorks@UARK

Graduate Theses and Dissertations

10-2023

Machine Tool Communication (MTComm) Method and Its Machine Tool Communication (MTComm) Method and Its

Applications in a Cyber-Physical Manufacturing Cloud Applications in a Cyber-Physical Manufacturing Cloud

S M Nahian Al Sunny
University of Arkansas-Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

 Part of the Computer Engineering Commons

Citation Citation
Sunny, S. (2023). Machine Tool Communication (MTComm) Method and Its Applications in a Cyber-
Physical Manufacturing Cloud. Graduate Theses and Dissertations Retrieved from
https://scholarworks.uark.edu/etd/4820

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for
inclusion in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more
information, please contact scholar@uark.edu.

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F4820&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarworks.uark.edu%2Fetd%2F4820&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/4820?utm_source=scholarworks.uark.edu%2Fetd%2F4820&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu

Machine Tool Communication (MTComm) Method

and Its Applications in a Cyber-Physical Manufacturing Cloud

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy in Engineering

with a concentration in Computer Engineering

by

 S M Nahian Al Sunny

Bangladesh University of Engineering and Technology

Bachelor of Science in Electrical and Electronic Engineering, 2014

July 2020

University of Arkansas

This dissertation is approved for recommendation to the Graduate Council.

Xiaoqing “Frank” Liu, Ph.D.

Dissertation Director

_______________________________ _____________________________

Miaoqing Huang, Ph.D. Qinghua Li, Ph.D.

Committee Member Committee Member

_______________________________ _____________________________

Alexander H. Nelson, Ph.D. Wenchao Zhou, Ph.D.

Committee Member Committee Member

ABSTRACT

The integration of cyber-physical systems and cloud manufacturing has the potential to

revolutionize existing manufacturing systems by enabling better accessibility, agility, and

efficiency. To achieve this, it is necessary to establish a communication method of

manufacturing services over the Internet to access and manage physical machines from cloud

applications. Most of the existing industrial automation protocols utilize Ethernet based Local

Area Network (LAN) and are not designed specifically for Internet enabled data transmission.

Recently MTConnect has been gaining popularity as a standard for monitoring status of machine

tools through RESTful web services and an XML based messaging structure, but it is only

designed for data collection and interpretation and lacks remote operation capability.

This dissertation presents the design, development, optimization, and applications of a

service-oriented Internet-scale communication method named Machine Tool Communication

(MTComm) for exchanging manufacturing services in a Cyber-Physical Manufacturing Cloud

(CPMC) to enable manufacturing with heterogeneous physically connected machine tools from

geographically distributed locations over the Internet. MTComm uses an agent-adapter based

architecture and a semantic ontology to provide both remote monitoring and operation

capabilities through RESTful services and XML messages. MTComm was successfully used to

develop and implement multi-purpose applications in in a CPMC including remote and

collaborative manufacturing, active testing-based and edge-based fault diagnosis and

maintenance of machine tools, cross-domain interoperability between Internet-of-things (IoT)

devices and supply chain robots etc. To improve MTComm’s overall performance, efficiency,

and acceptability in cyber manufacturing, the concept of MTComm’s edge-based middleware

was introduced and three optimization strategies for data catching, transmission, and operation

execution were developed and adopted at the edge. Finally, a hardware prototype of the

middleware was implemented on a System-On-Chip based FPGA device to reduce

computational and transmission latency. At every stage of its development, MTComm’s

performance and feasibility were evaluated with experiments in a CPMC testbed with three

different types of manufacturing machine tools. Experimental results demonstrated MTComm’s

excellent feasibility for scalable cyber-physical manufacturing and superior performance over

other existing approaches.

© 2020 by S M Nahian Al Sunny

All Rights Reserved

ACKNOWLEDGMEMTS

 First of all, I would like to say is all praises and thanks are due to the Almighty Allah, for

blessing me with this opportunity and providing me the strength, perseverance, and knowledge to

pursue this arduous journey and see it through to the end successfully.

 I would like to express my humblest and sincere gratitude to my advisor and mentor, Dr.

Xiaoqing “Frank” Liu, for introducing me to the emerging and fascinating world of cyber

manufacturing and also for his continuous guidance, endless patience, and meticulous

supervision throughout my doctoral journey. His constructive advice and invaluable critiques

enabled me to progress my research in a timely manner. I would also like to thank other

members of my dissertation committee, Dr. Miaoqing Huang, Dr. Qinghua Li, Dr. Alexander H.

Nelson, and Dr. Wenchao Zhou, for providing me valuable feedback during my dissertation

proposal presentation that assisted me to identify key areas of my research requiring

improvement and advance in the right direction.

 This research was supported by National Science Foundation Grant CMMI 1551448

entitled "EAGER/Cybermanufacturing: Architecture and Protocols for Scalable Cyber-Physical

Manufacturing Systems". I am very thankful for this award of funding and financial support.

 I would like to acknowledge my fellow lab mate and research colleague, Md Rakib

Shahriar, for his cooperation in my research and for always being there to share my

accomplishments and frustrations. His contributions in designing and developing our cloud

system and conducting experiments as well as his critical insights, inspiration, and suggestions

helped me immensely to complete my research. I am also very grateful to Asa Thacker, our

undergraduate lab member from the Department of Mechanical Engineering, who provided

valuable support and knowledge during the initial phase of our testbed development. A special

thanks to my friend and fellow graduate peer, Md Jubaer Hossain Pantho, for assisting me with

his knowledge and perceptions in developing and evaluating the SoC FPGA hardware prototype.

 Also, I welcome this opportunity to express my profound gratitude to my beloved

parents, sister, and my caring wife for their love, sacrifice, and prayers. I wish to express the

gratefulness beyond accountability to them whose continuous inspiration and moral boosting

during every phase of this long and strenuous program kept me strong and determined. Whatever

I am today, I entirely owe it to them.

 Finally, I would like to thank the members of the Swiss folk metal band called “Eluvetie”

for their extraordinary music which helped me immensely to maintain focus amidst the chaos of

my surroundings, specially during the long hours of programming and preparing manuscripts.

DEDICATION

To my beloved parents, sister, and brother-in-law,

None of this would have been possible

without your prayers, encouragements, and strong belief in me.

The thought of your proud and smiling faces was the only thing that kept me going.

To my loving wife, Shady Afrin Jeesan,

For your love, patience, constant support, and most importantly,

for keeping me steady through the storms, over the hills, and across the valleys.

TABLE OF CONTENTS

CHAPTER 1 ...1

INTRODUCTION ..1

1.1 Background ...1

1.2 Limitations of existing systems..6

1.3 Objectives ...9

1.4 Methodology ... 10

1.5 Organization of this dissertation .. 10

1.6 References ... 11

CHAPTER 2 ... 16

LITERATURE REVIEW .. 16

2.1 Industrial Communication Methods and Standards .. 16

2.1.1 Fieldbus and Ethernet based communication .. 16

2.1.2 Open Platform Communication (OPC) ... 19

2.1.3 Machine Tool Connect (MTConnect) ... 22

2.1.4 Others... 23

2.2 Recent Advancements in Manufacturing Domain .. 25

2.2.1 Cloud Manufacturing (CMfg) ... 25

2.2.2 Cyber-Physical System (CPS) .. 27

2.2.3 Edge and Fog Computing in Manufacturing ... 29

2.3 References ... 33

CHAPTER 3 ... 44

MACHINE TOOL COMMUNICATION (MTCOMM) METHOD FOR CYBER

MANUFACTURING .. 44

3.1 Architecture of MTComm ... 45

3.1.1 MTComm Adapter ... 46

3.1.2 MTComm Agent .. 49

3.2 MTComm Semantic Ontology ... 51

3.3 MTComm Services ... 56

3.3.1 Probe ... 56

3.3.2 Current ... 57

3.3.3 Sample ... 59

3.3.4 Operate ... 60

3.3.5 Error ... 63

3.3.6 Notification ... 63

3.4 Security measures in MTComm .. 64

3.5 References ... 66

CHAPTER 4 ... 67

REMOTE AND COLLABORATIVE MANUFACTURING IN CYBER-PHYSICAL

MANUFACTURING CLOUD ... 67

4.1 Cyber-Physical Manufacturing Cloud (CPMC) .. 67

4.1.1 Remote monitoring and operation of machine tools using MTComm 69

4.1.2 Implementation of a CPMC testbed using MTComm .. 72

4.2 Collaborative manufacturing using MTComm ... 74

4.2.1 Process of collaborative manufacturing in CPMC ... 76

4.2.2 Experiments in CPMC testbed and evaluation .. 80

4.3 References ... 82

CHAPTER 5 ... 83

DESIGN AND DEVELOPMEMT OF MTCOMM EDGE MIDDLEWARE 83

5.1 Architecture of an MTComm Edge Middleware .. 85

5.2 Optimization of MTComm for MEM .. 87

5.2.1 Data caching optimization .. 88

5.2.2 Data transmission optimization ... 90

5.2.3 Optimization of operation execution ... 94

5.3 Development and Implementation of a SoC FPGA based MEM .. 97

5.4 Results and Analysis ... 100

5.4.1 Evaluation of optimization strategies .. 100

5.4.2 Evaluation of SoC MEM prototype... 106

5.5 References ... 109

CHAPTER 6 ... 111

FAULT DIAGNOSIS USING MTCOMM IN THE CLOUD AND AT THE EDGE 111

6.1 Fault Diagnosis in the Cloud ... 112

6.1.1 Diagnosis Center in CPMC ... 112

6.1.2 Fault/anomaly detection using MTComm ... 113

6.1.3 Online Active Testing using MTComm .. 117

6.2 Fault diagnosis at the edge ... 119

6.3 Experiments in CPMC testbed and evaluation ... 126

6.3.1 Experiments of fault diagnosis in the cloud ... 126

6.3.2 Experiments of fault diagnosis at the edge .. 130

6.4 References ... 132

CHAPTER 7 ... 133

IOT ENABLED ON-DEMAND GROCERY SHOPPING AND DELIVERY CLOUD USING

MTCOMM AT THE EDGE .. 133

7.1 Architecture and components of IGSDC .. 135

7.2 Utilization of MTComm in edge computing .. 136

7.2.1 MTComm Edge Hub (MEH) .. 136

7.2.2 Adopting MTComm for IoT resources .. 138

7.3 Service execution processes in IGSDC using MTComm services 142

7.4 Implementation of IGSDC prototype and evaluation ... 145

7.5 References ... 148

CHAPTER 8 ... 149

CONCLUSIONS... 149

8.1 Summary ... 149

8.2 Contributions... 150

8.3 Comparison with existing works .. 153

8.4 References ... 155

APPENDICES .. 157

A. Example of response XML message of a Probe request from a 3D printer’s MTComm agent

 ... 157

B. Example of response XML message of a Current request from a 3D printer’s MTComm

agent during a printing JOB... 163

C. Example of XML message of a Operate request for starting a 3D printing JOB 167

D. Example of XML message of a Operate request for starting multiple ACTIONs 168

E. Example of XML message of a Operate request for starting a collaborative manufacturing

Job involving three machines – Ultimaker 2, Uarm, and X-carve .. 169

LIST OF FIGURES

Figure 1. Architecture and methodology of MTConnect 9

Figure 2. 5C architecture for implementation of industrial CPS 12

Figure 3. Architecture of MTComm method 30

Figure 4. Example of key-value pair based data dictionary created by MTComm Adapter 33

Figure 5. State transition diagram of MTComm Adapter 33

Figure 6. State transition diagram of MTComm Agent 35

Figure 7. MTComm semantic ontology 36

Figure 8. Hierarchical representation of ‘Ultimaker 2’ using MTComm ontology 40

Figure 9. Example of Probe service response message 42

Figure 10. Example of Current service response message 43

Figure 11. Examples of operate request message 46

Figure 12. Sequence diagram of an operate service execution 47

Figure 13. Conceptual framework of CPMC 53

Figure 14. Example response of a monitoring request in CPMC client application 55

Figure 15. Operation procedure in CPMC using MTComm 56

Figure 16. The implemented CPMC testbed 58

Figure 17. Communication between two machine tools using MTComm 60

Figure 18. Collaborative manufacturing process using MTComm in a CPMC 61

Figure 19. Process flow chart of an MTComm agent for collaboration 62

Figure 20. Example of status data during a collaborative manufacturing experiment in

the CMPC

66

Figure 21. Architecture of MTComm Edge Middleware (MEM) 70

Figure 22. Data caching strategy in MEM 74

Figure 23. Data transmission algorithm used in MEM 76

Figure 24. Process flow of data transmission strategy in MEM 77

Figure 25. Block diagram of Zynq SoC based MEM prototype 84

Figure 26. Experimental setup for MEM experimentations 86

Figure 27. Comparison of average response time for legacy MTCagent and MEM 88

Figure 28. Experimental setup for evaluation of MEM prototype 91

Figure 29. Comparison of average RT at different stages of MTComm 93

Figure 30: Conceptual framework for fault diagnosis center in CPMC 98

Figure 31. Information provided by probe service of a 3D printer in both modes 100

Figure 32. Example of user interface for RAT module of a diagnosis center in CPMC 104

Figure 33. Graphs showing example time series data machine tools. Sudden spikes are

due to intentional faults. Green and red lines are thresholds calculated by three-sigma and

Tukey’s method respectively

114

Figure 34. Conceptual framework of IGSDC 120

Figure 35. Components of MTComm Edge Hub (MEH) 122

Figure 36. Example of an MTComm device hierarchy for IoT 124

Figure 37. Different processes in IGSDC using MTComm 128

Figure 38. IGSDC prototype system 131

LIST OF TABLES

TABLE I. Sample case of assigning five consecutive collaborative operations (a, b, c,

d, e) during five time cycles in the CPMC

64

TABLE II. Average response time (RT) in milliseconds (ms) 87

TABLE III: Comparison of total size of local database and transferred messages

and total number of messages

89

TABLE IV. Average size of response message in bytes 90

TABLE V. Average response time (RT) at different stages of MTComm 92

TABLE VI: Comparison of average operation initiation time 94

TABLE VII. Dataitems, faults, and available testing Operations in CPMC testbed 112

TABLE VIII. F-score (%) in different scenarios 115

TABLE IX. Overall F-score (%) with different training datasets and average

detection delay (ms) for different FD methods

116

TABLE X. Comparison of delta-time and packet size 132

TABLE XI. Comparison of presented method with existing literature 139

LIST OF PUBLISHED PAPERS

Chapter 2, 3, & 4: Sunny, S. M. N. A., Liu, X. F., & Shahriar, M. R. (2018). Communication

method for manufacturing services in a cyber–physical manufacturing

cloud. International Journal of Computer Integrated Manufacturing, 31(7), 636-652.

Chapter 3 & 4: Sunny, S. M. N. A., Liu, X. F., & Shahriar, M. R. (2017, June). Mtcomm: A

semantic ontology based internet scale communication method of manufacturing services

in a cyber-physical manufacturing cloud. In 2017 IEEE International Congress on

Internet of Things (ICIOT) (pp. 121-128). IEEE.

Chapter 5: Sunny, S. M. N. A., Liu, X. F., & Shahriar, M. R. (2020, April). Development and

optimization of an MTConnect based edge computing node for remote monitoring in

cyber manufacturing systems. In 2020 IEEE International Conference on Fog Computing

(ICFC) (pp. 38-43). IEEE.

Chapter 6: Sunny, S. M. N. A., Liu, X., & Shahriar, M. R. (2018, July). Remote Monitoring and

Online Testing of Machine Tools for Fault Diagnosis and Maintenance Using MTComm

in a Cyber-Physical Manufacturing Cloud. In 2018 IEEE 11th International Conference

on Cloud Computing (CLOUD) (pp. 532-539). IEEE.

Chapter 7: Sunny, S. M. N. A., Liu, X., & Shahriar, M. R. (2019, July). An Integrated IoT

Enabled On-Demand Grocery Shopping and Delivery Cloud System Using MTComm at

the Edge. In 2019 IEEE International Conference on Edge Computing (EDGE) (pp. 51-

55). IEEE.

1

CHAPTER 1

INTRODUCTION

1.1 Background

For last few decades, the physical world has become more and more integrated with the

cyber world as a consequence of tremendous advancements in digitization and information

technologies. The rapid growth of the Internet has significant impacts on almost every aspect of

human life. Manufacturing is such a domain that is being reshaped and revolutionized by

emergence of several Internet based disruptive technologies. Historically, manufacturing systems

have been considered to be rather rigid, as changes usually result in increased expenses and

hence are mostly limited to organization and operation of physical resources directly related to

production (Lu & Ju, 2017). The ISA951 model classifies manufacturing systems into five

logically separated layers – lower level systems (level 0-2) consist of hardware and software for

monitoring and controlling physical resources, while higher level functions (level 3 and 4) are

responsible for process management, enterprise resource planning, information processing etc.

As applications for lower and higher level systems are typically managed by different

organizations, their integration is rather difficult. This results in a rigid architecture that is slow

in responding to market or technological changes. Any alteration of such manufacturing systems,

such as replacing old assets with new ones, generally leads to significant increase in costs and

engineering efforts. However, this trend has been changing since the emergence of digital

manufacturing which transforms manufacturing systems into agile and efficient eco-systems by

integration of state-of-the-art information and communication technologies to enable rapid

1 https://isa-95.com/

2

response to constantly changing demands and conditions in manufacturing lifecycle

(Kulvatunyou, 2016; Lu & Ju 2017). Manufacturing is now becoming more and more digital

because of the convergence of disruptive technologies such as industrial automation, cyber-

physical systems (CPS), Internet-of-Things (IoT), Internet-of-Services (IoS), cloud computing,

cybersecurity, big data analysis, artificial intelligence etc. (Liu & Xu, 2017; Alcácer & Cruz-

Machado, 2019).

In 2011, the German government introduced an initiative for developing and promoting

next-generation manufacturing systems called Industrie 4.0 (or Industry 4.0), which is current

considered as the fourth industrial revolution (Weyer et al., 2015; Baena et al., 2017; Lu, 2017;

Wagner, Herrmann & Thiede, 2017). The term “Industrial revolution” refers to the emergence of

technological breakthroughs that have revolutionized industrialization in general. Previous

industrial revolutions were triggered by the invention of mechanical manufacturing facilities

(end of 18th century), the introduction of electrically-powered mass production (start of 20th

century), and the intensive utilization of electronics and Information Technology (IT) (start of

1970s), respectively (Kagermann et al., 2016). The primary objective of Industry 4.0 is to

enhance industrial productivity, flexibility, and efficiency by connecting physical resources to

the virtual world of computation through a higher level of automation, digitization, and effective

communication between human, equipment, and products (Rojko, 2017; Alcácer & Cruz-

Machado, 2019). From the production approach, Leyh, Martin & Schäffer (2017) defined

Industry 4.0 as the transition from centralized production towards a flexible, self-controlled, and

digitized environment where all components are highly interconnected to share information both

vertically and horizontally. Some researchers predicted that Industry 4.0 factory has the promise

to reduce production and logistic costs by 10-30 percent and quality management costs by 10-20

3

percent, while providing several key advantages such as shorter time-to-market, improved

customer interactions, more flexible working environments, customizable mass production,

better use of natural resources and energy etc. (Rojko, 2017). With a view to assisting

implementation of Industry 4.0 technologies, the Reference Architecture Model Industrie 4.0

(RAMI4.0) was introduced as a guideline for developing a shared language and a structured

framework that describes the fundamental bases of Industry 4.0 and the connection between

different components through a three-dimensional space (Hankel & Rexroth, 2015). Another

framework called “Industry 4.0 component” was also proposed to complement RAMI 4.0 in

integrating humans, products, equipment, and processes (Grangel-González et al., 2016).

Industry 4.0 component consists of physical objects and virtual representations of these objects

and their functionalities. The integration of RAMI 4.0 and Industry 4.0 component bridges the

gap between exiting standards, enables identifying the loopholes, and also defines key

technological elements of Industry 4.0. Recognizing the importance of this transition for the

position of a country in a global market, several government-supported initiatives were

introduced all around the world in subsequent years. Industrial Internet was proposed in North

America by General Electric company in late 2012 which covered a broader application area

including power generation and distribution, healthcare, manufacturing, transportation, public

sector etc. (Lin et al., 2015). Other notable initiatives were ‘Industrie du futur’ in France2, ‘Made

in China 2025’ by the China Ministry of Industry and Information Technology3, Japan’s ‘Robot

Strategy’4, and ‘Manufacturing Innovation 3.0’ (Yim, 2016) in South Korea. Despite their

2 http://www.gov.cn/zhengce/content/2015-05/19/content_9784.htm
3 http://www.pref.aichi.jp/uploaded/attachment/51182.pdf
4 http://www.economie.gouv.fr/files/files/PDF/industrie-du-futur_dp.pdf

4

different names, the common goal of these national strategies is similar to Industry 4.0 – to

achieve “intelligent” or “smart” manufacturing through integration of new technologies.

 The vision and necessity of fusing the cyber world with the physical world led to the

formulation of a new paradigm – cyber-physical system (CPS) (Lee 2006 Lee, Bagheri & Kao,

2015). CPS offers the ability to connect physical devices to web-based applications via the

Internet by integrating cybernetics, mechatronics, design, and process science (Hancu et al.,

2007; NSF 2011; Khaitan & McCalley 2015). It also enables high degree of automation,

reconfigurable dynamics, and multi-level networking at multiple scales (Miclea & Sanislav,

2011). CPS includes complex combination and coordination between physical and computational

elements (Rad et al., 2015). Because of its transformative potential, CPS has drawn enormous

attention from academia, industry, and governments, and has already found applications in a

wide range of domains including power, healthcare, manufacturing, aerospace, city management,

environmental control, infrastructure, defense, robotics etc. (Tham & Luo, 2013; Herterich,

Uebernickel & Brenner, 2015; Wang, Törngren & Onori, 2015; Liu et al., 2017). CPS

deployment is centered on using distributed intelligence (e.g. realized by multi-agent systems),

enabling distribution of a complex problem into a network of modular, intelligent, adaptive, and

pluggable components (Leitão, Colombo & Karnouskos, 2016). According to several

researchers, CPS is the core enabling technology of Industry 4.0 (Kagermann et al., 2016; Leyh,

Martin & Schäffer, 2017; Wagner, Herrmann & Thiede, 2017; Alcácer & Cruz-Machado, 2019).

According to Zhang et al. (2017), CPS provides a theoretical framework for mapping everything

related to manufacturing processes to the computing space and thus enables easier and more

efficient modeling of manufacturing systems. Monostori (2014) coined the term of cyber-

physical production system (CPPS) which consisted of multiple interconnected manufacturing

5

CPSs and discussed the major challenges to realizing CPPS, including context-adaptive and

autonomous systems, cooperative production systems, identification, and prediction of

dynamical systems, communication etc. Although numerous manufacturing machines are

network compatible nowadays, very few of them are operated in a networked CPS environment

due to lack of scalability and interoperability of physical resources. Cloud Manufacturing

(CMfg), another emerging manufacturing paradigm, can address this issue by providing

manufacturing services over cyber space based on integration of service-oriented manufacturing

with cloud computing (Li et al., 2010; Tao et al., 2011; Xu, 2012). CMfg addresses issues of

virtualization and perception of physical manufacturing resources and providing manufacturing

cloud services over the Internet. It also enables sharing of manufacturing machines from multiple

facilities and multiple manufacturers for fulfilling collaborative manufacturing demands (Liu, Li

& Wang, 2011; Tao et al., 2014). In recent years, several researchers proposed different

architectures, methodologies, and frameworks to amalgamate CPS and CMfg capabilities with a

view to developing complex industrial systems with both vertical and horizontal integration

(Colombo et al., 2014; Majstorovic et al., 2016; Alam & Saddik, 2017; Wang, 2017; Mourtzis &

Vlachou, 2018; Wang & Wang, 2018; Qi et al., 2019). This fusion can not only improve

production rate, optimization and efficiency of manufacturing processes and reduce production

cost, but also connect consumers directly with manufacturers and their resources.

In our previous studies, we introduced the development of a new paradigm called cyber-

physical manufacturing cloud (CPMC) by combining CPS and CMfg technologies for remote

monitoring and direct operation of heterogeneous machine tools (Liu et al., 2016, 2017). CPMC

is a scalable service-oriented framework for offering and managing manufacturing services from

cloud by directly operating and sharing machine tools from many locations and monitoring

6

manufacturing processes over the Internet. Unlike most existing cloud-based manufacturing

platforms, CPMC allows direct operations of heterogeneous connected manufacturing machine

tools from the cloud. As mentioned above, one of the key barriers of constructing such a system

is the lack of a communication method that enables both monitoring and operation of

heterogeneous machine tools remotely by cloud applications over the Internet; as existing

industrial communication protocols do not provide such capabilities. However, there are several

research challenges to fully realize an integrated scalable CMfg and CPS manufacturing

platform. Most manufacturing machine tools operate using their own proprietary languages and

protocols; hence their usages are limited to manufacturer-specific applications. Recent burst of

IoT devices and sensors, which use their own sets of communication protocols and data formats,

increases this issue multi-fold (Sunny, Liu & Shahriar, 2019). Therefore, one of the major

challenges of connecting machine tools physically over the Internet to create CPMC is lack of

standardized communication protocols allowing direct operation of heterogeneous manufacturing

resources remotely alongside continuous and rapid data transmission in a service-oriented

approach. To address this, the research presented in this dissertation aimed at developing an

Internet-scale communication mechanism to support aforementioned capabilities for different

machine tools in a cloud-based cyber-physical manufacturing system.

1.2 Limitations of existing systems

Since the digitation of manufacturing started, a myriad of communication protocols and

mechanisms was developed and implemented. At the beginning, the primary focus was at the

low-level, e.g. transferring machining data and command in bits over bus-based networks

(Zurawski, 2014). In the last decade or so, the focus has shifted towards application level

protocol development, specially for easy integration with Internet-based services for seamless

7

data transmission. This is particularly important for CPS and CMfg systems, as those rely

heavily on web-based applications and services. Although there exists a number of publications

which broadly discussed various CMfg and manufacturing CPS architectures and enabling

technologies at conceptual level (Li et al., 2010; Tao et al., 2011; Xu, 2012, Liu et al., 2017),

very few of those focused on establishing a scalable communication mechanism for enabling

service-oriented exchange of manufacturing services, even fewer that conducted experiments in

an actual testbed to test and optimize such a communication method specifically for

manufacturing CPSs. In fact, we found no research that presented successful implementation of

an integrated cloud based cyber-physical manufacturing system with both monitoring and direct

operation capabilities of heterogeneous machine tools provided over the Internet.

In recent years, MTConnect has emerged as potential communication standard for cyber

manufacturing and is being a widely accepted communication standard for collecting monitoring

data from machine tools (Vijayaraghavan et al., 2008). MTConnect is designed as an open

protocol for improving interoperability of heterogeneous manufacturing machines by providing a

uniform XML (eXtensible Markup Laguage) based data reporting structure via RESTful

(Representational State Transfer) services. Figure 1 shows the architecture and methodology of

MTConnect. The data flow between machines and MTConnect components is uni-directional –

from machine to MTConnect adapter/agent. It collects data from physical resources in their own

language and then converts the data into a common XML format following a uniform ontology.

Several researchers adopted MTConnect as a viable communication mechanism for CMfg and

manufacturing CPSs (Sunny, Liu & Shahriar, 2018). But MTConnect only offers monitoring

capabilities; it cannot be used to operate machines remotely, which is very crucial for a CPS.

Some researchers adopted low-level transmission mechanisms like UDP (User Datagram

8

Figure 1. Architecture and methodology of MTConnect (Vijayaraghavan et al., 2008)

Protocol) or TCP (Transmission Control Protocol) for transmitting raw control commands

(Wang, Gao & Ragai, 2014; Liu et al., 2017), while some used mechanisms that only works with

a specific type of physical resources (Lin, Lin & Chiu, 2015; Parto, 2017; Okwudire et al., 2018).

None of these works can be utilized for developing a CPMC system of aforementioned

capabilities.

 Another significant limitation of existing works is the lack of optimization of

communication methods. Nowadays manufacturing machine tools generate tremendous amount of

data every second which are required to be transmitted at high-speed. The rapid increase in the

9

number of devices and quantity of data generated, fueled by heterogeneity of data types, often

results in complex scenarios where continuous data storing and processing become inefficient and

expensive (McKee et al., 2018). This may also lead to network traffic bottleneck and scalability

issues, specially for large-scale CPMSs managing thousands of machines at the same time.

Moreover, rapid data transmission is often required in manufacturing CPSs, specially for

applications like fault diagnosis and mitigation, collaborative manufacturing etc. Since the amount

of the real-time data is enormous, the data transmission rate from the MTConnect agent to the

application in the current prototype is limited to 100 milliseconds (Liu et al., 2018). This can be

improved by optimizing the communication mechanism and application programs. However, we

found no literature focused on developing such optimization techniques for cyber manufacturing.

1.3 Objectives

The primary objective of the research presented in this dissertation was to design, develop,

and evaluate an Internet-scale communication method that could facilitate manufacturing services

offering both remote monitoring and direct operation of heterogeneous machine tools in a scalable

CPMC environment.

The secondary objective was to find unique applications of the developed communication

method in the cyber manufacturing domain that were not available in other existing researches.

The final objective of this research was to identify possible areas for improvements of the

developed method through experimentations and devise appropriate alteration strategies to

improve its overall performance, efficiency, and feasibility.

10

1.4 Methodology

 To facilitate aforementioned capabilities in a CPMC environment, an Internet-scale

application level communication method named Machine Tool Communication (MTComm) was

designed and developed using a semantic ontology, RESTful services, and XML based messaging

structures. MTComm provides a common methodology to support both remote monitoring and

direct operations of heterogeneous machine tools over the Internet. It was used to implement a

CPMC testbed and develop several manufacturing applications including data acquisition from

physical resources, performing manufacturing operations remotely, collaborative manufacturing,

remote active testing based fault diagnosis etc. We also developed novel optimization strategies to

improve MTComm’s robustness, performance, and efficiency. Later, MTComm was used to

introduce edge computing capabilities in the CPMC for enabling rapid localized data processing

and enhancing overall system scalability and a System-on-Chip (SoC) based middleware prototype

was developed. Lastly, to evaluate its feasibility to achieve cross-domain interoperability,

MTComm was extended to support IoT devices located in consumer’s home and an on-demand

grocery shopping and delivery cloud system was proposed and developed. At every stage of its

development, the performance of MTComm was evaluated through practical implementation and

experimentations and finally compared with other existing cyber manufacturing communication

methodologies.

1.5 Organization of this dissertation

Chapter 2 discusses key concepts related to this research including existing industrial

communication methods, CPS, CMfg, and edge/fog computing in manufacturing, as well as a

literature review of relevant works.

11

Chapter 3 describes the MTComm method including its architecture, semantic ontology,

different services, and methodology.

Chapter 4 presents the development, implementation, and evaluation of remote and

collaborative manufacturing in a CPMC testbed using MTComm.

Chapter 5 explains the design and development of optimization strategies for improving

MTComm’s performance. It also elaborates development of an edge based MTComm middleware,

as well as the implementation and evaluation of a hardware prototype.

Chapter 6 describes the application of MTComm for facilitating active testing-based fault

diagnosis and maintenance both in the cloud and at the edge.

Chapter 7 presents an IoT enabled cloud-based grocery shopping and delivery system as

an example of MTComm’s feasibility to be applied in other domains and achieve cross-domain

interoperability.

Chapter 8 summarizes the overall methodology and contributions, and concludes with a

comparison of MTComm’s capabilities with state-of-the-art.

1.6 References

Aazam, M., Zeadally, S., & Harras, K. A. (2018). Deploying fog computing in industrial internet

of things and industry 4.0. IEEE Transactions on Industrial Informatics, 14(10), 4674-

4682.

Alam, K. M., & El Saddik, A. (2017). C2PS: A digital twin architecture reference model for the

cloud-based cyber-physical systems. IEEE access, 5, 2050-2062.

Alcácer, V., & Cruz-Machado, V. (2019). Scanning the industry 4.0: A literature review on

technologies for manufacturing systems. Engineering Science and Technology, an

International Journal.

Baena, F., Guarin, A., Mora, J., Sauza, J., & Retat, S. (2017). Learning factory: The path to

industry 4.0. Procedia Manufacturing, 9, 73-80.

12

Colombo, A. W., Bangemann, T., Karnouskos, S., Delsing, J., Stluka, P., Harrison, R., ... &

Lastra, J. L. (2014). Industrial cloud-based cyber-physical systems. The Imc-aesop

Approach, 22, 4-5.

Grangel-González, I., Halilaj, L., Coskun, G., Auer, S., Collarana, D., & Hoffmeister, M. (2016,

February). Towards a semantic administrative shell for industry 4.0 components. In 2016

IEEE Tenth International Conference on Semantic Computing (ICSC) (pp. 230-237).

IEEE.

Hancu, O., Maties, V., Balan, R., & Stan, S. (2007). Mechatronic approach for design and

control of a hydraulic 3-dof parallel robot. Annals of DAAAM & Proceedings, 321-323.

Hankel, M., & Rexroth, B. (2015). Industrie 4.0: The reference architectural model industrie 4.0

(rami 4.0). ZVEI: Die Elektroindustrie.

Herterich, M. M., Uebernickel, F., & Brenner, W. (2015). The impact of cyber-physical systems

on industrial services in manufacturing. Procedia Cirp, 30, 323-328.

Ivezic, N., & Srinivasan, V. (2016). On architecting and composing engineering information

services to enable smart manufacturing. Journal of computing and information science in

engineering, 16(3).

Kagermann, H., Anderl, R., Gausemeier, J., Schuh, G., & Wahlster, W. (Eds.). (2016). Industrie

4.0 in a Global Context: strategies for cooperating with international partners. Herbert

Utz Verlag.

Khaitan, S. K., & McCalley, J. D. (2014). Design techniques and applications of cyberphysical

systems: A survey. IEEE Systems Journal, 9(2), 350-365.

Lee, E. A. (2006, October). Cyber-physical systems-are computing foundations adequate.

In Position paper for NSF workshop on cyber-physical systems: research motivation,

techniques and roadmap (Vol. 2, pp. 1-9). Citeseer.

Lee, J., Bagheri, B., & Kao, H. A. (2015). A cyber-physical systems architecture for industry

4.0-based manufacturing systems. Manufacturing letters, 3, 18-23.

Leitão, P., Colombo, A. W., & Karnouskos, S. (2016). Industrial automation based on cyber-

physical systems technologies: Prototype implementations and challenges. Computers in

Industry, 81, 11-25.

Leyh, C., Martin, S., & Schäffer, T. (2017, September). Industry 4.0 and Lean Production—A

matching relationship? An analysis of selected Industry 4.0 models. In 2017 Federated

Conference on Computer Science and Information Systems (FedCSIS) (pp. 989-993).

IEEE.

Li, B. H., Zhang, L., Wang, S. L., Tao, F., Cao, J. W., Jiang, X. D., ... & Chai, X. D. (2010).

Cloud manufacturing: a new service-oriented networked manufacturing model. Computer

integrated manufacturing systems, 16(1), 1-7.

13

Lin, S. W., Miller, B., Durand, J., Joshi, R., Didier, P., Chigani, A., ... & King, A. (2015).

Industrial internet reference architecture. Industrial Internet Consortium (IIC), Tech. Rep.

Lin, Y. L., Lin, C. C., & Chiu, H. S. (2015, March). The development of intelligent service

system for machine tool industry. In 2015 1st International Conference on Industrial

Networks and Intelligent Systems (Iniscom) (pp. 100-106). IEEE.

Liu, C., & Xu, X. (2017). Cyber-physical machine tool-the era of machine tool 4.0. Procedia

Cirp, 63, 70-75.

Liu, C., Vengayil, H., Zhong, R. Y., & Xu, X. (2018). A systematic development method for

cyber-physical machine tools. Journal of manufacturing systems, 48, 13-24.

Liu, N., Li, X., & Wang, Q. (2011, October). A resource & capability virtualization method for

cloud manufacturing systems. In 2011 IEEE International Conference on Systems, Man,

and Cybernetics (pp. 1003-1008). IEEE.

Liu, Y., Peng, Y., Wang, B., Yao, S., & Liu, Z. (2017). Review on cyber-physical systems.

IEEE/CAA Journal of Automatica Sinica, 4(1), 27-40.

Lu, Y. (2017). Industry 4.0: A survey on technologies, applications and open research issues.

Journal of Industrial Information Integration, 6, 1-10.

Lu, Y., & Ju, F. (2017). Smart manufacturing systems based on cyber-physical manufacturing

services (CPMS). IFAC-PapersOnLine, 50(1), 15883-15889.

Majstorovic, V. D., Durakbasa, N. M., Mourtzis, D., & Vlachou, E. (2016). Cloud-based cyber-

physical systems and quality of services. The TQM Journal.

McKee, D. W., Clement, S. J., Almutairi, J., & Xu, J. (2018). Survey of advances and challenges

in intelligent autonomy for distributed cyber-physical systems. CAAI Transactions on

Intelligence Technology, 3(2), 75-82.

Miclea, L., & Sanislav, T. (2011, September). About dependability in cyber-physical systems.

In 2011 9th East-West Design & Test Symposium (EWDTS) (pp. 17-21). IEEE.

Monostori, L. (2014). Cyber-physical production systems: Roots, expectations and R&D

challenges. Procedia Cirp, 17, 9-13.

Mourtzis, D., & Vlachou, E. (2018). A cloud-based cyber-physical system for adaptive shop-

floor scheduling and condition-based maintenance. Journal of manufacturing systems, 47,

179-198.

NSF (US National Science Foundation). (2011, July). Cyber-Physical Systems (CPS). Online.

Accessed April 22, 2020. https://www.nsf.gov/pubs/2011/nsf11516/nsf11516.pdf

14

Okwudire, C. E., Huggi, S., Supe, S., Huang, C., & Zeng, B. (2018). Low-level control of 3d

printers from the cloud: A step toward 3d printer control as a service. Inventions, 3(3),

56.

Parto Dezfouli, M. (2017). A secure MTConnect compatible IoT platform for machine

monitoring through integration of fog computing, cloud computing, and communication

protocols (Doctoral dissertation, Georgia Institute of Technology).

Qi, L., Chen, Y., Yuan, Y., Fu, S., Zhang, X., & Xu, X. (2019). A QoS-aware virtual machine

scheduling method for energy conservation in cloud-based cyber-physical systems. World

Wide Web, 1-23.

Rad, C. R., Hancu, O., Takacs, I. A., & Olteanu, G. (2015). Smart monitoring of potato crop: a

cyber-physical system architecture model in the field of precision agriculture. Agriculture

and Agricultural Science Procedia, 6, 73-79.

Sunny, S. M. N. A., Liu, X. F., & Shahriar, M. R. (2018). Communication method for

manufacturing services in a cyber–physical manufacturing cloud. International Journal of

Computer Integrated Manufacturing, 31(7), 636-652.

Sunny, S. M. N. A., Liu, X., & Shahriar, M. R. (2019, July). An Integrated IoT Enabled On-

Demand Grocery Shopping and Delivery Cloud System Using MTComm at the Edge. In

2019 IEEE International Conference on Edge Computing (EDGE) (pp. 51-55). IEEE.

Tao, F., Zhang, L., Venkatesh, V. C., Luo, Y., & Cheng, Y. (2011). Cloud manufacturing: a

computing and service-oriented manufacturing model. Proceedings of the Institution of

Mechanical Engineers, Part B: Journal of Engineering Manufacture, 225(10), 1969-

1976.

Tao, F., Cheng, Y., Da Xu, L., Zhang, L., & Li, B. H. (2014). CCIoT-CMfg: cloud computing

and internet of things-based cloud manufacturing service system. IEEE Transactions on

Industrial Informatics, 10(2), 1435-1442.

Tham, C. K., & Luo, T. (2013). Sensing-driven energy purchasing in smart grid cyber-physical

system. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 43(4), 773-784.

Wagner, T., Herrmann, C., & Thiede, S. (2017). Industry 4.0 impacts on lean production

systems. Procedia Cirp, 63, 125-131.

Wang, L. (2017). An overview of internet-enabled cloud-based cyber manufacturing.

Transactions of the Institute of Measurement and Control, 39(4), 388-397.

Wang, L., Törngren, M., & Onori, M. (2015). Current status and advancement of cyber-physical

systems in manufacturing. Journal of Manufacturing Systems, 37, 517-527.

Wang, L., Gao, R., & Ragai, I. (2014, June). An integrated cyber-physical system for cloud

manufacturing. In ASME 2014 International Manufacturing Science and Engineering

Conference collocated with the JSME 2014 International Conference on Materials and

15

Processing and the 42nd North American Manufacturing Research Conference.

American Society of Mechanical Engineers Digital Collection.

Wang, L., & Wang, X. V. (2018). Cloud-Based Cyber-Physical Systems in Manufacturing (pp.

163-192). Cham: Springer International Publishing.

Weyer, S., Schmitt, M., Ohmer, M., Gorecky, D., Weyer, S., Schmitt, M., ... & Gorecky, D.

(2015). Standardization as as the the crucial crucial challenge challenge Towards

Standardization as the crucial challenge for highly production systems for highly

modular, multi-vendor production systems for highly modular, multi-vendor

productio. IFAC-PapersOnLine, 48, 579-584.

Vijayaraghavan, A., Sobel, W., Fox, A., Dornfeld, D., & Warndorf, P. (2008). Improving

machine tool interoperability using standardized interface protocols: MT connect.

Xu, X. (2012). From cloud computing to cloud manufacturing. Robotics and computer-

integrated manufacturing, 28(1), 75-86.

Yim, M. S. (2016). The convergence between manufacturing and ict: The exploring strategies for

manufacturing version 3.0 in korea. Journal of Digital Convergence, 14(3), 219-226.

Zhang, Y., Qian, C., Lv, J., & Liu, Y. (2016). Agent and cyber-physical system based self-

organizing and self-adaptive intelligent shopfloor. IEEE Transactions on Industrial

Informatics, 13(2), 737-747.

Zurawski, R. (2014). Industrial communication technology handbook. CRC Press.

16

CHAPTER 2

LITERATURE REVIEW

2.1 Industrial Communication Methods and Standards

2.1.1 Fieldbus and Ethernet based communication

Interoperability and automation of machine tools have always been a big concern for

manufacturers. In the early 20th centuries, the mechanical technology and analog devices were

the primary components of the process control systems and manufacturing systems. In 1970s,

Programmable Logic Controller (PLC) with limited control functions was introduced which

replaced the conventional relay based control systems (Erickson, 1996). With the development of

digital computers, the scenario changed radically. Numerically Controlled (NC) machines came

into play and labyrinths of mechanical linkages were substituted by point-to-point wiring. But

this created a new difficulty. Optimized communication networking among different machines in

the factory floor became a necessity. In 1985, Fieldbus systems emerged to reduce the

complexity of conventional point-to-point wiring systems by connecting digital and analog

devices to central controllers (Thomesse, 2005; Zurawski, 2014). Because of being an open

protocol, many Fieldbus systems were developed in parallel and today there exist a number of

variations. Over the past two decades, Fieldbus systems have gone through a lot of modifications

and become standardized, although not unified. PROFIBUS is considered to be the most

successful fieldbus technology and is widely used in industrial automation systems including

factory and process automation (Zurawski, 2014) . PROFIBUS & PROFINET International (PI)

group indicates on its website that PROFINET offers digital communication for data processing

and transmission with speeds up to 12 Mbps and supports up to 126 addresses. Control Area

Network (CAN) bus is a high-integrity serial bus system which was fundamentally designed to

17

be an automotive vehicle bus (Tindell, Hansson, & Wellings, 1994). CANopen and DeviceNet

are higher level protocols standardized on top of CAN bus to allow interoperability with devices

on the same industrial network (McFarlane, 1997). Modbus is a simple, robust and openly

published, royalty free serial bus protocol that connects up to 247 nodes (Modbus Organization,

2006). Modbus is easy to implement and operate on RS-232 or RS-485 physical links with

speeds up to 115K baud. CC-Link was originally developed by Mitsubishi and is a popular open-

architecture, industrial network protocol in Japan and Asia (Wikipedia, 2019).

Although the Local Area Networks (LAN) based on Ethernet, as part of the TCP/IP and

User Datagram Protocol (UDP) stack, rapidly gained much popularity for home and office use, it

initially did not gain much acceptance in the industrial automation domain. However, advances

in Ethernet technology made the LANs more suitable to industrial use. The increased data rates

of newer Ethernet standards (for example 802.3u Fast Ethernet) made it easier to create real-time

Ethernet protocols (Decotignie, 2009). The implementation of full-duplex Ethernet lines allows

data transmission and reception to occur simultaneously, simplifying bus arbitration difficulties.

Introduction of switched networks allowed Ethernet to be more acceptable for industrial use as

opposed to the older hub-based networks. The introduction of Ethernet into the field of industrial

networking also presented some new challenges (Zurawski, 2014). The existing Ethernet

standards needed to be extended or modified to meet the rigorous requirements of industrial

networks. This was achieved at various levels of the IP stack, and using various approaches.

Backwards compatibility with existing fieldbus protocols was also an issue. Many of the newer

Ethernet-based fieldbus protocols are extensions of existing protocols and various compatibility

philosophies have been implemented. These are classified into four categories by Sauter (Sauter,

2010). The first is full compatibility at higher layer protocols, such as exists with High-Speed

18

Ethernet (HSE): Emerson, Foundation Fieldbus (Fieldbus Foundation, 2001); Modbus/TCP:

Schneider (Swales, 1999), and Ethernet/IP: Rockwell (Brooks, 2001). This approach is

especially prevalent in building automation fieldbuses. HSE is implemented on top of the TCP/IP

stack, with additional use of standard IP interfaces such as dynamic host configuration protocol

and simple network management protocol (Vincent, 2001). Modbus is an application layer

messaging protocol for Client/Server based communication between devices connected via

different types of buses or networks. The Application Layer Protocol Data Unit (APDU) of

Modbus (Function Code and Data) has been encapsulated into an Ethernet frame. Ethernet/IP

uses Common Industrial Protocol (CIP) which represents a common application layer for all

physical networks of Ethernet/IP, ControlNet and DeviceNet (ControlNet International and Open

DeviceNet Vendor association, 2001). Ethernet/IP uses the standard Ethernet and switches; thus

it can have an unlimited number of nodes in a system. Another approach is compatibility of data

objects and models, such as is the case with PROFINET: Siemens, PNO. This method uses proxy

hardware to allow communication between the fieldbus media. PROFINET has three different

classes - PROFINET Class A, PROFINET Class B, also referred as PROFINET Real-Time

(PROFINET RT), and PROFINET Class C or PROFINET IRT (Isochronous and Real-Time). A

lesser amount of compatibility is offered through the use of application layer profiles from

existing protocols, as is implemented in Ethernet Powerlink: Bernecker & Rainer (IEC, 2004c;

Zurawski, 2014) [IEC 2004f; Zurawski 2014], EtherCAT: Beckhoff, and SERCOS III (IEC,

2004b; IEC, 2004d; Neumann, 2007). Ethernet POWERLINK is implemented on top of IEEE

802.3 and, therefore, permits a free selection of network topology, cross connect, and hot plug. It

utilizes a polling and time slicing mechanism for real-time data exchange. Such a system is

appropriate for all kinds of automation systems ranging from PLC-to-PLC communication down

19

to motion and I/O control. EtherCAT is a protocol that is optimized for data processing using

standard IEEE 802.3 Ethernet Frames. Each slave node processes its datagram and inserts the

new data into the frame while each frame is passing through. EtherCAT is the MAC layer

protocol and is transparent to any higher level Ethernet protocols such as TCP/IP, UDP, Web

server etc. SERCOS III is the third generation of Serial Real-time Communication System

(SERCOS). It accumulates on-the-fly packet processing for delivering real-time Ethernet and

standard TCP/IP communication to deliver low latency industrial Ethernet. Lastly, completely

new protocols have been developed for Ethernet that have no relationship with any existing

protocols and have forgone any compatibility. Examples of such protocols are Ethernet for Plant

Automation and Time-Critical Control Network (TCNet) (IEC, 2004a). Modbus/TCP (Swales,

1999), PROFINET IO (IEC, 2004e), and Ethernet/IP with Time synchronization (IEC, 2004f) are

also noteworthy Ethernet based Fieldbus protocols.

2.1.2 Open Platform Communication (OPC)

Open Platform Communication (OPC) is a significant of many manufacturing networks

at higher levels by offering a standardized interface for communication of industrial data.

Maintained by the OPC Foundation, The OPC Specification has combined OLE (Object Linking

and Embedding), COM (Component Object Model), and DCOM (Distributed Component Object

Model) technologies developed by Microsoft (Leitner & Mahnke, 2006). The OPC specification

outlined a standard set of objects, interfaces, and methods for use in process control and

manufacturing automation applications to facilitate interoperability. OPC Classic is based on

Microsoft’s Component Object Model (COM) and Distributed Component Object Model

(DCOM) technology and has three major specifications for data integration between process

level and the management level (Mahnke, Leitner, & Damm, 2009). These specifications are

20

Data Access (DA), Alarm and Events (A&E) and Historical Data Access (HDA). OPC Data

Access (OPC DA) is the most commonly used OPC specification, which is used to read and

write real-time data. It allows real-time communication of process values over Ethernet with a

client-server model. Several other variants of OPC have also been developed, including OPC

Historical Data Access which permits for acquiring stored values, OPC Data Exchange for two-

way communication using a server-server model and OPC XML Data Access which uses XML

for communication. These specifications were mainly used in Human-Machine Interfaces (HMI)

and Supervisory Control and Data Acquisition (SCADA) systems. OPC Foundation states that

OPC Classic does not meet today’s industry requirements because of the Windows platform

dependent COM and the networking issues of DCOM, which effectively prevent Internet

communication (Mahnke et al., 2009). OPC Classic also has no information security or

scalability. OPC XML Data Access (DA) tried to make OPC platform-independent by replacing

COM and DCOM with HTTP, Simple Object Access Protocol (SOAP) and Web Service

technologies, but eventually failed due to inferior performance (Hirvonen, 2017).

Later in 2006, the OPC Unified Architecture (OPC UA) was specified and was being

tested and implemented through its Early Adopters program (IEC, 2012). OPC UA combines the

functionality of the existing OPC interfaces with new technologies such as XML and Web

Services to deliver higher level Manufacturing Execution System (MES) and Enterprise

Resource Planning (ERP) support. The primary goal of OPC UA is to replace previously defined

COM-based specifications without degrading performance (Hirvonen, 2017) . OPC UA is based

on common technologies such as TCP/IP, HTTP, Ethernet, and XML. It allows both client-

server and publish-subscribe architectures. OPC UA provided the opportunity of accessing

machine tool not only from factory floor but also from outside the factory. The OPC Foundation

21

aims to establish a common framework for industries with the platform independent, secure, and

extensible OPC UA and its support for object-oriented information modelling capabilities

(Mahnke et al., 2009).

Over the years, OPC UA has been implemented in various types of process monitoring

and control systems in different industries such as Smart Grid (Claassen, Rohjans, & Member,

2011), Oil and Gas production (El Zawawi & El-Sayed, 2012), and Public transportation systems

(Maka, Cupek, & Rosner, 2011). In recent years, many researchers considered OPC UA as the

key to Industry 4.0 (Hannelius, Salmenpera, & Kuikka, 2008; Hoefling et al., 2015; Hoffmann et

al., 2016; Iatrou & Urbas, 2016a; 2016b; Kožár & Kadera, 2016; Lindström, 2015; Liu et al.

2019; Luo et al., 2017; Palm et al., 2015; Rentschler, Trsek, & Dürkop, 2016; Seilonen et al.

2016; Wu et al., 2017). Schlechtendahl et al. (2015) proposed to use OPC UA as a critical

enabler for discovering resources, enabling data communication through cloud-based gateways,

and eventually transforming current production systems to cyber-physical production systems

(CPPS) for Industry 4.0. Pauker et al. (2015) presented a service orchestration method for

flexible manufacturing systems using sequential functional charts and OPC UA to enhance

flexibility. They (2016) also proposed a systematic approach using OPC UA to develop an

information model to represent a manufacturing system. Garcia et al. (2016) proposed to use

OPC UA based information model to access factory floor data in a low-cost CPPS. Müller,

Wings, and Bergmann (2017) developed open-source cyber-physical systems for service-

oriented architectures using OPC UA. Luo et al. (2017) proposed a three-layered architecture

based smart manufacturing process using OPC to integrate different industrial resources with

factory energy management systems. Ayatollahi et al. (2018) developed a prototype OPC UA

server enabling remote control of machine tools. Liu et al. (2019) proposed an OPC-UA based

22

cyber-physical machine tools platform for CNC machines using a generic OPC UA information

model.

2.1.3 Machine Tool Connect (MTConnect)

In recent years, Machine Tool Connect (MTConnect) has acquired much acknowledge-

ments after the release of its version 1.0 in 2008 (Vijayaraghavan et al., 2008). MTConnect is

designed to enhance interoperability of manufacturing machines by providing a uniform XML-

based data reporting structure. It is fundamentally a read-only framework, i.e., its principal focus

is data monitoring and analysis. MTConnect enables manufacturing machines to be monitored

over the Internet. The primary objective of MTConnect is to create a universal machine language

that is understandable to all machines and also to the users. MTConnect provides a

RESTful interface – there is no need of establishing any session or logon/logoff sequence to

acquire data. As MTConnect is not designed for any specific type of machines, it has been used

with different types of manufacturing resources such as CNC machine, industrial robot, milling

machine, 3D printer (Liu et al., 2016) etc. In 2010, The OPC Foundation and the MTConnect

Institute declared a cooperation to ensure interoperability and consistency between the two

standards (ThomasNet, 2010).

Several projects and applications have emerged where MTConnect based data are

collected from manufacturing machines and used for data analytics. Xu (2012) presented the

potential of MTConnect for cloud based manufacturing systems. A collaborative research group

including Boeing, NIST, and other members of the Open Modular Architecture Controllers User

Group recognized MTConnect as a viable communication method by evaluating its performance

on a distributed “Dual Ethernet” factory testbed (Michaloski et al., 2009) . Edrington et al.

(2014) presented a web-based machine monitoring system that enabled data collection, analysis,

23

and machine event notification for any MTConnect compatible machines. Wang et al. (2014)

used Transmission Control Protocol (TCP) alongside MTConnect to control and monitor

machine tools respectively. Lin, Lin, and Chiu (2015) adopted the principles of MTConnect to

develop standards for intelligent service system, named Taiwanese Machine Tool Connect

(TMTC), and “ServBox”, a device containing multiple adapters for CNC machines from

different manufacturers. The authors claimed to achieve faster and lower traffic on multi-trip

data transmission than MTConnect. System Insights and ROS-Industrial used MTConnect in a

peer-to-peer communication architecture for connecting CNC machines and robotic arms (Liu et

al., 2017) . STEP Tools Inc. and UI-LABS collaborated to develop a web environment enabling

the orchestration of machining and measurement processes using mobile computing devices, and

MTConnect was recommended as the communication standard to achieve that (UI Labs, 2017).

Lei et al. (2017) extended MTConnect data models to implement a web-based monitoring

system. Wu et al. (2017a) developed a fog computing-based framework for process monitoring

and prognosis in cyber-manufacturing by integrating OPC UA and MTConnect with milling

machines. Liu et al. (Liu et al., 2017) proposed an MTConnect-based cyber-physical machine

tool platform. Mazak Cooperation showcased a scalable, end-to-end Industrial Internet of Things

platform called Mazak SmartBox which connects manufacturing equipment to a factory’s

network and management systems via MTConnect (Mazak Corporation, 2017).

2.1.4 Others

Universal Plug and Play (UPnP) is a high-level protocol led by the Open Connectivity

Foundation that aims to expand the simplicity and autoconfiguration of device Plug and Play to

entire networks of intelligent appliances, wireless devices and PCs of all sizes (Miller et al.,

2001) . Using common internet components such as standard internet protocol (IP), hypertext

24

transfer protocol (HTTP) and XML, TCP and UDP, it allows a device to join a network, obtain

an IP address, and communicate with other devices without any need for device drivers

STEP-NC Application Protocol (AP) 238 is an alternative CNC programming language

to G-codes which is developed on the base of a STEP data format under ISO 14649 standard

(ISO, 2002). STEP-NC provides significantly richer information to both CNC controller and its

operators, enabling better understanding of the product being manufactured. Wosnik et al. (2006)

proposed a STEP-NC enabled feedback loop for manufacturing processes in which a

mathematical observer calculated the cutting forces from motor current data acquired using

STEP-NC. Zhao et al. (2008) proposed a closed-loop machining mechanism for on-line

inspection process using STEP-NC data. Ridwan, Xu, and Liu (2012) developed a machining

parameter optimization framework using the STEP-NC data obtained during machining process.

Danjou et al. (2016) used STEP-NC in a manufacturing knowledge management system to assist

product designers to optimize machining conditions during design. STEP Tools Inc used STEP-

NC with MTConnect to develop a digital thread solution which keeps the design, manufacturing,

and inspection data of a product connected around a digital twin (Liu et al., 2019) .

oneM2M was originally designed to standardize a common M2M (machine-to-machine)

service layer platform for globally applicable and access-independent M2M services (Swetina et

al, 2014). Seven standards development organizations (SDOs) joined forces to combine existing

M2M protocols and discarded redundant and overlapping M2M service layer operations.

oneM2M makes use of existing protocols such as Message Queue Telemetry Transport (MQTT),

Hyper Text Transfer Protocol (HTTP), Constrained Application Protocol (CoAP) etc. and

standards such as Broadband Forum (BBF) and Open Mobile Alliance (OMA) as much as

possible. This standard has been widely adopted in different IoT based large-scale systems (Datta

25

et al., 2015; 2016; Kim, 2017; Park et al., 2016; Wu et al., 2017; Yun et al., 2016). Wilner et al.

(2017) proposed to use oneM2M to establish semantic interoperability among components of

smart factories. An industrial device monitoring and control system was developed using

oneM2M at the edge (Um, Lee, & Jeong, 2018) . Yun et al. (2019) presented a reference

framework for CMfg and industrial CPSs based on oneM2M and argued that oneM2M would be

advantageous for large network-based systems for its high scalability and ontology service.

AutomationML (Automation Markup Language) is another promising upcoming open

standard series (IEC 62714) for the description of production plants and plant components (Drath

et al., 2008). AutomationML describes the contents – what is exchanged between the parties and

systems involved. It helps to model plants and plant components with their skills, topology,

interfaces, and relations to others, geometry, kinematics, and even logic and behavior. A joint

working group of the AutomationML e.V. and the OPC Foundation deals with the creation of a

companion specification ‘AutomationML in OPC UA’ (Henßen & Schleipen, 2014) . Schroeder

et al. (Schroeder et al., 2016) used AutomationML to develop digital twin of a manufacturing

device represent its physical components as well as some attributes.

Apart from abovementioned attempts, ROY-G-BIV published a patent for controlling

machine tools over a network and developed a machine communication platform called XMC

(Brown & Clark, 2003).

2.2 Recent Advancements in Manufacturing Domain

2.2.1 Cloud Manufacturing (CMfg)

Cloud Manufacturing (CMfg) is an emerging manufacturing technology which makes

manufacturing resources and services available over the internet by integrating cloud computing,

26

big data analysis, IoT, and manufacturing (Li, B. et al., 2010; Tao, Zhang, Venkatesh, Luo, &

Cheng, 2011; Xu, 2012b). Several architectures of CMfg have been proposed by applying cloud

computing to manufacturing (Holtewert et al., 2013; Luo et al., 2011; Tao et al., 2011; Xu,

2012). Wu et al. (2013) reviewed a few cloud manufacturing architectures in their paper. The

architectures that were discussed focus on virtualization of manufacturing resources and services

and offer them as online services to consumers. Tao et al. (2011) proposed a CMfg architecture

consisting of ten layers. Rauschecker et al. (2011) proposed a uniform representation of

manufacturing resource and services across multiple service providers in cloud manufacturing.

Li, Liu, and Xu (2012) discussed heterogeneous systems and integration access method in cloud

manufacturing and proposed a solution for the adaptation of manufacturing equipment based on

fiber grating sensing technology. Wu et al. (2012; 2015) proposed a method of cloud-based

design and manufacturing which enables sharing of manufacturing resources as cloud services,

similar to infrastructure as a service (IaaS) or software as a service (SaaS). Xiang and Hu (2012)

and Tao et al. (2014) discussed an intelligent approach for perceiving and accessing

manufacturing resources in cloud manufacturing using IoT-based technology. Wang (2013)

proposed a tiered architecture to service oriented manufacturing and connected it to a shop-floor

environment to enable real time availability and monitoring. He also discussed machine

availability monitoring and machining process planning towards cloud manufacturing and

mentioned that closed-loop information flow makes process planning and monitoring feasible

services for the CMfg. Mai et al. (2016) proposed a framework for 3D printing service platform

for cloud manufacturing. Balta et al. (2018) presented a Production as a Service (PaaS)

framework to connect both consumers and manufacturers by abstracting manufacturing steps of a

product as individual service requests. Saez et al. (2018) developed an IoT enabled data

27

Figure 2. 5C architecture for implementation of industrial CPS (Lee, Bagheri, & Kao, 2015)

processing cloud infrastructure to monitor machine health, detect anomalies, and evaluate

throughput of manufacturing systems.

2.2.2 Cyber-Physical System (CPS)

Cyber-Physical Systems (CPSs) are systems of collaborating computational entities

which are in intensive connection with the surrounding physical world and its on-going

processes, providing and using, at the same time, data-accessing and data-processing services

available on the Internet (Geisberger & Broy, 2012; Hellinger & Seeger, 2011; Monostori, 2014;

Monostori et al., 2016). In most CPSs, various embedded devices are networked to sense,

monitor and actuate physical elements in the real world. CPS is being applied in a wide range of

domains including advanced manufacturing. Although there exist numerous physical

28

manufacturing machines which are network-ready, very few of them are operated in a networked

environment. Lee, Bagheri, and Kao (2015) proposed a unified five-level architecture (5C

architecture) as a guideline for implementation of industrial CPS. Figure 2 illustrates the five

levels in a bottom-up fashion – Connection, Conversion, Cyber, Cognition, and Configure.

Cyber-physical production systems (CPPS) were proposed that consisted of autonomous and

cooperative elements and subsystems that are connected based on the context within and across

all levels of production, from processes through machines up to production and logistics

networks (Monostori, 2014; Monostori et al., 2016). CPPS, relying on the latest and foreseeable

further developments of computer science (CS), information and communication technologies

(ICT), and manufacturing science and technology (MST) may lead to the 4th industrial

revolution, frequently noted as Industrie 4.0 (Kagermann et al., 2013). Within global supply

networks, machinery, warehousing systems and production facilities will incorporate in the

shape of CPPS. These systems will autonomously exchange information, triggering actions and

controlling each other independently within a smart factory (Zuehlke, 2010). Ridwan and Xu

(2013) presented an intelligent machine monitoring system that allows parameter optimization

based on MTConnect data before, during, and after machining in order to reduce process time

and increase quality. Leitão, Colombo & Karnouskos (2016) described four prototype

implementations (SOCRADES, GRACE, IMC-AESOP, and ARUM) for industrial automation

based on CPSs technologies. They also identified key challenges of implementing CPS

prototypes and divided them into six major areas - (i) CPS Capabilities, (ii) CPS Management,

(iii) CPS Engineering, (iv) CPS Ecosystems, (v) CPS Infrastructures and (vi) CPS Information

Systems. Zhang et al. (2016) proposed a data-driven CPS architecture for CNC machine tools

and discussed three key issues – node configuration, interconnection technology of

29

heterogeneous nodes, and data-driven adaptive configuration. Lu and Ju (2017) introduced

cyber-physical manufacturing services (CPMS) for service-oriented smart manufacturing system

using standardized functional taxonomies and a reference ontology to separate service requests

and service consumptions. Morgan and O’Donnell (2018) proposed a reconfigurable, flexible,

and extensible CPS monitoring system for machine tools. Recently, a research group presented

several approaches to develop cyber-physical machine tools (CPMT) platform using different

industrial communication methods including MTConnect, STEP-NC, and OPC-UA (Deng et al.,

2018; Kubota et al., 2018; Liu, Chao & Xu, 2017; Liu et al., 2018a; 2019c) . They implemented

a cloud-based control algorithm for industrial CPS systems using Windows Communication

Foundation (WCF) services and Microsoft Azure IoT Hub (Papcun et al., 2018). They also

presented a systematic development method for CPMT using a cyber twin of machine tool in a

cloud environment (Liu et al., 2018b).

2.2.3 Edge and Fog Computing in Manufacturing

 For last couple of decades, computation and storage are being shifted from stationary

desktop computers to remote cloud servers. Cloud computing provides better efficiency,

availability, and scalability for large-scale systems. However, since cloud computing is

centralized and there exist multiple hops between data being produced (in end devices) and data

being processed (in cloud servers), it is now always capable of meeting all requirements of a

distributed system, such as real-time response, localized security, resilience etc. This issue has

become significant since the rapid growth of IoT devices generating terabytes of data every

minute. The total number of interconnected physical devices is estimated to reach 50 billion by

the end of 2020 (Al-Doghman et al., 2016). Transferring this huge amount of data from

thousands of end devices to a central cloud server and processing them often leads to network

30

bottleneck increasing latency further. To overcome this, the concepts of edge and fog computing

were introduced to move cloud capabilities to network edges in order to process data closer to

end devices.

 The first formal definition of fog computing was stated in 2012 by Bonomi et al. (2012)

from CISCO as: “Fog computing is a highly virtualized platform that provides compute, storage

and networking services between end devices and traditional cloud computing data centers,

typically, but not exclusively located at the edge of the network.” Varghese et al. (2017) defined

fog computing as “a model to complement the cloud for decentralizing the concentration of

computing resources (for example, servers, storage, applications and services) in data centers

towards users for improving the quality of service and their experience.” It aims to minimize the

request-response latency between applications and to enable local computing resources for the

end-devices and network connectivity to centralized services (Iorga et al., 2018) . The elements

of fog computing are typically network devices such as routers, switches, base station, servers

etc. and are located in the network layer, between physical resources and cloud servers.

 The term edge computing was first coined around 2002 and was mainly associated with

the deployment of applications over Content Delivery Networks (CDN) (Garcia et al., 2015) .

The main objective of this approach was to benefit from the proximity and resources of CDN

edge servers to achieve massive scalability. Placing data and data-intensive applications at the

edge reduced the amount of data transmission and also distance that data must travel (Escamilla-

Ambrosio et al., 2018). Eventually, this concept became broader and more popular, specially for

IoT domain. Nowadays edge computing refers to the control and management of a small number

of standalone interconnected end-point devices at the edge of an environment (Nebbiolo

Technologies Inc., 2019). With the availability of smaller and cheaper but yet powerful compute

31

devices, such as Raspberry Pi, Arduino, SoC FPGAs, the edge computing paradigm brings the

processing back closer to end devices (McKee et al., 2018). Edge computing devices are

primarily embedded controllers situated at the edge of the physical resource layer. However, in

recent years, edge computing domain has extended to network devices too, and thus often

considered as a sub-set of fog computing domain (Nebbiolo Technologies Inc., 2019).

 Although often used interchangeably, edge computing and fog computing are

fundamentally different (Escamilla-Ambrosio et al., 2018; Iorga et al., 2018; Nebbiolo

Technologies Inc., 2019). Fog computing typically aids the cloud, whereas edge computing is

defined by the exclusion of cloud. Fog computing is multilayer and hierarchical, where edge

tends to be limited to three or four layers. Fog computing runs applications in a multi-layer

hierarchical architecture allowing for dynamic reconfigurations for different applications while

performing intelligent computing and transmission services. Edge computing runs specific

applications for a small number of physical resources in a fixed logic location and provides a

direct transmission service. Moreover, in addition to computation, and networking, fog

computing also addresses storage, control and data-processing acceleration.

 In recent years, several researchers focused on utilizing edge and fog computing solutions

to address several issues in the advanced manufacturing domain. A fog-based adaptive

operations platform was presented to interface equipment manufacturers and operational

administrators of SCADA infrastructures (Gazis et al., 2015). Peralta et al. (2017) proposed a

fog-based architecture for Industry 4.0 applications by placing MQTT broker in an intermediary

fog layer between IoT devices and cloud applications to minimize energy requirements of IoT

nodes. Aazam, Zeadally, and Harras (2018) discussed several prospects and research challenges

of deploying fog computing middleware nodes in Industrial IoT systems. De Brito et al. (2018)

32

proposed to deploy fog computing nodes with the capability of internode peer-to-peer

communication and programmability via a centralized service orchestration in smart factories

and CPSs. Wan et al. (2018) developed a multiagent based fog computing system for smart

factories to optimize load balancing and scheduling and reduce transmission delay. Yin, Luo, and

Luo (2018) developed a container-based task scheduling and resource allocation model for

delay-sensitive and high-concurrency functions of fog computing in smart manufacturing. Zhou

et al. (2018) presented a fog computing-based cyber-physical machine tool system to improve

performances and intelligence of CNC machine tools. Chen et al. (2018) introduced a reference

architecture for IoT-based manufacturing and discussed the impact of edge computing from four

aspects – edge-specific equipment, network communication, information fusion, and cooperative

mechanism with cloud computing. They also presented a case study to implement active

maintenance of manufacturing equipment using a prototype platform. Derhamy et al. (2018)

proposed edge-based automation services to provide functionalities required to plan, sequence,

and interconnect manufacturing CPSs. Govindaraj and Artemenko (2018) designed a novel

redundancy live migration scheme for container-based edge computing in latency critical

industrial applications and were able to reduce downtime by a factor of 1.8. Qi et al. (2018)

proposed to utilize edge, fog, and cloud computing to deploy COS and digital twins of physical

machines in different levels of smart manufacturing. Um, Lee, and Jeong (2018) presented an

industrial device monitoring and control system based on oneM2M standard for an edge-based

smart factory environment. Li et al. (2019) proposed a two-phase scheduling strategy on the edge

computing layer for allocating computing resources to meet low-latency requirements of

different AI tasks.

33

2.3 References

Aazam, M., Zeadally, S., & Harras, K. A. (2018). Deploying fog computing in industrial internet

of things and industry 4.0. IEEE Transactions on Industrial Informatics, 14(10), 4674-

4682.

Al-Doghman, F., Chaczko, Z., Ajayan, A. R., & Klempous, R. (2016). A review on fog

computing technology. In 2016 IEEE International Conference on Systems, Man, and

Cybernetics (SMC), 1525.

Ayatollahi, I., Brier, J., Mörzinger, B., Heger, M., & Bleicher, F. (2018). SOA on smart

manufacturing utilities for identification, data access and control. Procedia CIRP, 67,

162-166.

Balta, E. C., Lin, Y., Barton, K., Tilbury, D. M., & Mao, Z. M. (2018). Production as a service:

A digital manufacturing framework for optimizing utilization. IEEE Transactions on

Automation Science and Engineering, 15(4), 1483-1493.

Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012). Fog computing and its role in the internet

of things. In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud

Computing, 13-16.

Brooks, P. (2001). Ethernet/IP-industrial protocol. In ETFA 2001. 8th International Conference

on Emerging Technologies and Factory Automation. Proceedings (Cat. no.

01TH8597), 2, 505-514.

Brown, D. W., & Clark, J. S. (2003). Distribution of motion control commands over a network.

U.S. Patent 6,513,058.

Chen, B., Wan, J., Celesti, A., Li, D., Abbas, H., & Zhang, Q. (2018). Edge computing in IoT-

based manufacturing. IEEE Communications Magazine, 56(9), 103-109.

Claassen, A., Rohjans, S., & Member, S. L. (2011). Application of the OPC UA for the smart

grid. In 2011 2nd IEEE PES International Conference and Exhibition on Innovative

Smart Grid Technologies, 1-8.

ControlNet International and Open DeviceNet Vendor association. (2001). Ethernet/IP

adaptation of CIP specification, release 1.0. Accessed March 25, 2020. Retrieved

from http://read.pudn.com/downloads166/ebook/763212/EIP-CIP-V2-1.0.pdf

Danjou, C., Le Duigou, J., & Eynard, B. (2016). Closed-loop manufacturing, a STEP-NC

process for data feedback: A case study. Procedia CIRP, 41, 852-857.

Datta, S. K., Da Costa, Rui Pedro Ferreira, Bonnet, C., & Härri, J. (2016). oneM2M architecture

based IoT framework for mobile crowd sensing in smart cities. In 2016 European

Conference on Networks and Communications (EuCNC), 168-173.

34

Datta, S. K., Gyrard, A., Bonnet, C., & Boudaoud, K. (2015). oneM2M architecture based user

centric IoT application development. In 2015 3rd International Conference on Future

Internet of Things and Cloud, 100-107.

de Brito, M. S., Hoque, S., Steinke, R., Willner, A., & Magedanz, T. (2018). Application of the

fog computing paradigm to smart factories and cyber-physical systems. Transactions on

Emerging Telecommunications Technologies, 29(4), e3184.

Decotignie, J. (2009). The many faces of industrial ethernet [past and present]. IEEE Industrial

Electronics Magazine, 3(1), 8-19.

Deng, C., Guo, R., Zheng, P., Liu, C., Xu, X., & Zhong, R. Y. (2018). From open CNC systems

to cyber-physical machine tools: A case study. Procedia CIRP, 72, 1270-1276.

Derhamy, H., Andersson, M., Eliasson, J., & Delsing, J. (2018). Workflow management for edge

driven manufacturing systems. In 2018 IEEE Industrial Cyber-Physical Systems

(ICPS), 774-779.

Drath, R., Luder, A., Peschke, J., & Hundt, L. (2008). AutomationML-the glue for seamless

automation engineering. In 2008 IEEE International Conference on Emerging

Technologies and Factory Automation, 616-623.

Edrington, B., Zhao, B., Hansel, A., Mori, M., & Fujishima, M. (2014). Machine monitoring

system based on MTConnect technology. Procedia Cirp, 22, 92-97.

El Zawawi, A., & El-Sayed, A. (2012). Integration of DCS and ESD through an OPC application

for upstream oil and gas. In 2012 IEEE Power and Energy Society General Meeting, 1-5.

Erickson, K. T. (1996). Programmable logic controllers. IEEE Potentials, 15(1), 14-17.

Escamilla-Ambrosio, P. J., Rodríguez-Mota, A., Aguirre-Anaya, E., Acosta-Bermejo, R., &

Salinas-Rosales, M. (2018). Distributing computing in the internet of things: Cloud, fog

and edge computing overview. Neo 2016 (pp. 87-115) Springer.

Fieldbus Foundation. (2001). High speed ethernet specification documents FF-801, 803, 586,

588,589, 593, 941. Accessed March 25, 2020. Retrieved from http://www.fieldbus.org

Garcia Lopez, P., Montresor, A., Epema, D., Datta, A., Higashino, T., Iamnitchi, A., . . . Riviere,

E. (2015). Edge-centric computing: Vision and challenges ACM New York, NY, USA.

Garcia, M. V., Irisarri, E., Perez, F., Estevez, E., & Marcos, M. (2016). OPC-UA

communications integration using a CPPS architecture. In 2016 IEEE Ecuador Technical

Chapters Meeting (ETCM), 1-6.

Gazis, V., Leonardi, A., Mathioudakis, K., Sasloglou, K., Kikiras, P., & Sudhaakar, R. (2015).

Components of fog computing in an industrial internet of things context. In 2015 12th

Annual IEEE International Conference on Sensing, Communication, and Networking-

Workshops (SECON Workshops), 1-6.

35

Geisberger, E., & Broy, M. (2012). Agenda CPS-integrierte forschungsagenda cyber-physical

systems. acatech STUDIE, 1--297

Govindaraj, K., & Artemenko, A. (2018). Container live migration for latency critical industrial

applications on edge computing. In 2018 IEEE 23rd International Conference on

Emerging Technologies and Factory Automation (ETFA), 1, 83-90.

Hannelius, T., Salmenpera, M., & Kuikka, S. (2008). Roadmap to adopting OPC UA. In 2008

6th IEEE International Conference on Industrial Informatics, 756-761.

Hellinger, A., & Seeger, H. (2011). Cyber-physical systems. driving force for innovation in

mobility, health, energy and production. Acatech Position Paper, National Academy of

Science and Engineering, 1(2)

Henßen, R., & Schleipen, M. (2014). Interoperability between OPC UA and

AutomationML. Procedia Cirp, 25, 297-304.

Hirvonen, M. S. (2017). Streamlining manufacturing data integration. Master’s Thesis. Tampere

University of Technology.

Hoefling, M., Heimgaertner, F., Fuchs, D., Menth, M., Romano, P., Tesfay, T., . . . Gronas, V.

(2015). Integration of IEEE C37. 118 and publish/subscribe communication. In 2015

IEEE International Conference on Communications (ICC), 764-769.

Hoffmann, M., Thomas, P., Schütz, D., Vogel-Heuser, B., Meisen, T., & Jeschke, S. (2016).

Semantic integration of multi-agent systems using an OPC UA information modeling

approach. In 2016 IEEE 14th International Conference on Industrial Informatics

(INDIN), 744-747.

Holtewert, P., Wutzke, R., Seidelmann, J., & Bauernhansl, T. (2013). Virtual fort knox

federative, secure and cloud-based platform for manufacturing. Procedia CIRP, 7, 527-

532.

Iatrou, C. P., & Urbas, L. (2016a). Efficient opc ua binary encoding considerations for embedded

devices. In 2016 IEEE 14th International Conference on Industrial Informatics

(INDIN), 1148-1153.

Iatrou, C. P., & Urbas, L. (2016b). OPC UA hardware offloading engine as dedicated peripheral

IP core. In 2016 IEEE World Conference on Factory Communication Systems

(WFCS), 1-4.

IEC. (2004a). IEC 65C/353/NP. real-time ethernet: TCnet (time-critical control

network). International Electrotechnical Commission (IEC).

IEC. (2004b). IEC 65C/355/NP. real-time ethernet: ETHERCAT. International Electrotechnical

Commission (IEC).

36

IEC. (2004c). IEC 65C/356/NP. real-time ethernet: POWERLINK. International Electrotechnical

Commission (IEC).

IEC. (2004d). IEC 65C/358/NP. real-time ethernet: SERCOS III. International Electrotechnical

Commission (IEC).

IEC. (2004e). IEC 65C/359/NP. real-time ethernet: PROFINET IO. application layer service

definition & application layer protocol specification. International Electrotechnical

Commission (IEC).

IEC. (2004f). IEC 65C/361/NP. real-time ethernet: EtherNet/IP with time

synchronization. International Electrotechnical Commission (IEC).

IEC. (2012). IEC 62541 - OPC unified architecture International Electrotechnical Commission.

Iorga, M., Feldman, L., Barton, R., Martin, M. J., Goren, N., & Mahmoudi, C. (2018). Fog

computing conceptual model, recommendations of the national institute of standards and

technology. NIST Special Publication, 500-325.

ISO. (2002). ISO 14649-1 - data model for computerized numerical controllers: Part 1

overview and fundamental principles.

Kagermann, H., Helbig, J., Hellinger, A., & Wahlster, W. (2013). Recommendations for

implementing the strategic initiative INDUSTRIE 4.0: Securing the future of german

manufacturing industry; final report of the industrie 4.0 working group Forschungsunion.

Kožár, S., & Kadera, P. (2016). Integration of IEC 61499 with OPC UA. In 2016 IEEE 21st

International Conference on Emerging Technologies and Factory Automation (ETFA), 1-

7.

Kubota, T., Liu, C., Mubarok, K., & Xu, X. (2018). A cyber-physical machine tool framework

based on STEP-NC. In Proceedings of the 48th International Conference on Computers

and Industrial Engineering (CIE 48).

Lee, J., Bagheri, B., & Kao, H. (2015). A cyber-physical systems architecture for industry 4.0-

based manufacturing systems. Manufacturing Letters, 3, 18-23.

Lei, P., Zheng, L., Wang, L., Wang, Y., Li, C., & Li, X. (2017). MTConnect compliant

monitoring for finishing assembly interfaces of large-scale components: A vertical tail

section application. Journal of Manufacturing Systems, 45, 121-134.

Leitão, P., Colombo, A. W., & Karnouskos, S. (2016). Industrial automation based on cyber-

physical systems technologies: Prototype implementations and challenges. Computers in

Industry, 81, 11-25.

37

Leitner, S., & Mahnke, W. (2006). OPC UA–service-oriented architecture for industrial

applications. ABB Corporate Research Center, 48, 61-66.

Li, B., Zhang, L., Wang, S., Tao, F., Cao, J. W., Jiang, X. D., . . . Chai, X. D. (2010). Cloud

manufacturing: A new service-oriented networked manufacturing model. Computer

Integrated Manufacturing Systems, 16(1), 1-7.

Li, R., Liu, Q., & Xu, W. (2012). Perception and access adaptation of equipment resources in

cloud manufacturing. Computer Integrated Manufacturing Systems, 18(7), 1547-1553.

Li, X., Wan, J., Dai, H., Imran, M., Xia, M., & Celesti, A. (2019). A hybrid computing solution

and resource scheduling strategy for edge computing in smart manufacturing. IEEE

Transactions on Industrial Informatics, 15(7), 4225-4234.

Lin, Y., Lin, C., & Chiu, H. (2015). The development of intelligent service system for machine

tool industry. In 2015 1st International Conference on Industrial Networks and

Intelligent Systems (Iniscom), 100-106.

Lindström, O. M. (2015). Standardized collection of production data in factory environment

Liu, C., Hong, X., Zhu, Z., & Xu, X. (2018). Machine tool digital twin: Modelling methodology

and applications.

Liu, C., Vengayil, H., Lu, Y., & Xu, X. (2019a). A cyber-physical machine tools platform using

OPC UA and MTConnect. Journal of Manufacturing Systems, 51, 61-74.

Liu, C., Vengayil, H., Lu, Y., & Xu, X. (2019b). A cyber-physical machine tools platform using

OPC UA and MTConnect. Journal of Manufacturing Systems, 51, 61-74.

Liu, C., Vengayil, H., Lu, Y., & Xu, X. (2019c). A cyber-physical machine tools platform using

OPC UA and MTConnect. Journal of Manufacturing Systems, 51, 61-74.

Liu, C., Vengayil, H., Zhong, R. Y., & Xu, X. (2018). A systematic development method for

cyber-physical machine tools. Journal of Manufacturing Systems, 48, 13-24.

Liu, C., & Xu, X. (2017). Cyber-physical machine tool-the era of machine tool 4.0. Procedia

Cirp, 63, 70-75.

Liu, C., Xu, X., Peng, Q., & Zhou, Z. (2018). MTConnect-based cyber-physical machine tool: A

case study. Procedia Cirp, 72, 492-497.

Liu, X. F., Shahriar, M. R., Al Sunny, S. N., Leu, M. C., & Hu, L. (2017). Cyber-physical

manufacturing cloud: Architecture, virtualization, communication, and testbed. Journal

of Manufacturing Systems, 43, 352-364.

Liu, X. F., Sunny, S. M., Shahriar, M. R., Leu, M. C., Cheng, M., & Hu, L. (2016).

Implementation of MTConnect for open source 3D printers in cyber physical

38

manufacturing cloud. In ASME 2016 International Design Engineering Technical

Conferences and Computers and Information in Engineering Conference,

Lu, Y., & Ju, F. (2017). Smart manufacturing systems based on cyber-physical manufacturing

services (CPMS). IFAC-PapersOnLine, 50(1), 15883-15889.

Luo, Y. L., Zhang, L., He, D. J., Ren, L., & Tao, F. (2011). Study on multi-view model for cloud

manufacturing. In Advanced Materials Research, , 201 685-688.

Luo, Z., Hong, S., Lu, R., Li, Y., Zhang, X., Kim, J., . . . Liang, W. (2017). OPC UA-based smart

manufacturing: System architecture, implementation, and execution. In 2017 5th

International Conference on Enterprise Systems (ES), 281-286.

Mahnke, W., Leitner, S., & Damm, M. (2009). OPC unified architecture. Springer Science &

Business Media.

Mai, J., Zhang, L., Tao, F., & Ren, L. (2016). Customized production based on distributed 3D

printing services in cloud manufacturing. The International Journal of Advanced

Manufacturing Technology, 84(1-4), 71-83.

Maka, A., Cupek, R., & Rosner, J. (2011). OPC UA object oriented model for public

transportation system. In 2011 UKSim 5th European Symposium on Computer Modeling

and Simulation, 311-316.

Mazak Corporation. (2017). Mazak SmartBox. Accessed March 25, 2020. Retrieved

from https://www.mazakusa.com/machines/technology/digital-solutions/mazak-

smartbox/

McFarlane, A. (1997). Fieldbus review. Sensor Review.

McKee, D. W., Clement, S. J., Almutairi, J., & Xu, J. (2018). Survey of advances and challenges

in intelligent autonomy for distributed cyber-physical systems. CAAI Transactions on

Intelligence Technology, 3(2), 75-82.

Michaloski, J., Lee, B., Proctor, F., Venkatesh, S., & Ly, S. (2009). Quantifying the performance

of MT-connect in a distributed manufacturing environment. In ASME 2009 International

Design Engineering Technical Conferences and Computers and Information in

Engineering Conference, 533-539.

Miller, B. A., Nixon, T., Tai, C., & Wood, M. D. (2001). Home networking with universal plug

and play. IEEE Communications Magazine, 39(12), 104-109.

Modbus Organization. (2006). Modbus application protocol specification. Accessed March 25,

2020. Retrieved

from http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf

Monostori, L. (2014). Cyber-physical production systems: Roots, expectations and R\&D

challenges. Procedia Cirp, 17, 9-13.

39

Monostori, L., Kádár, B., Bauernhansl, T., Kondoh, S., Kumara, S., Reinhart, G., . . . Ueda, K.

(2016). Cyber-physical systems in manufacturing. Cirp Annals, 65(2), 621-641.

Morgan, J., & O'Donnell, G. E. (2018). Cyber physical process monitoring systems. Journal of

Intelligent Manufacturing, 29(6), 1317-1328.

Müller, M., Wings, E., & Bergmann, L. (2017). Developing open source cyber-physical systems

for service-oriented architectures using OPC UA. In 2017 IEEE 15th International

Conference on Industrial Informatics (INDIN), 83-88.

Myung, S., & Kim, S. (2017). The design of open IoT platform based on oneM2M standard

protocol. Journal of the Korea Institute of Information and Communication

Engineering, 21(10), 1943-1949.

Nebbiolo Technologies Inc. (2019). Fog vs edge computing. Accessed March 26, 2020.

Retrieved from https://www.nebbiolo.tech/wp-content/uploads/2019/11/whitepaper_fog-

vs-edge-v1.1.01_WEB.pdf

Neumann, P. (2007). Communication in industrial automation—What is going on? Control

Engineering Practice, 15(11), 1332-1347.

Palm, F., Grüner, S., Pfrommer, J., Graube, M., & Urbas, L. (2015). Open source as enabler for

OPC UA in industrial automation. In 2015 IEEE 20th Conference on Emerging

Technologies & Factory Automation (ETFA), 1-6.

Papcun, P., Kajáti, E., Liu, C., & Zhong, R. Y. (2018). Cloud-based control of industrial cyber-

physical systems.

Park, H., Kim, H., Joo, H., & Song, J. (2016). Recent advancements in the internet-of-things

related standards: A oneM2M perspective. Ict Express, 2(3), 126-129.

Pauker, F., Ayatollahi, I., & Kittl, B. (2015). Service orchestration for flexible manufacturing

systems using sequential functional charts and opc ua. Dubrovnik, 9, 11-09.

Pauker, F., Frühwirth, T., Kittl, B., & Kastner, W. (2016). A systematic approach to OPC UA

information model design. Procedia CIRP, 57, 321-326.

Peralta, G., Iglesias-Urkia, M., Barcelo, M., Gomez, R., Moran, A., & Bilbao, J. (2017). Fog

computing based efficient IoT scheme for the industry 4.0. In 2017 IEEE International

Workshop of Electronics, Control, Measurement, Signals and their Application to

Mechatronics (ECMSM), 1-6.

Qi, Q., Zhao, D., Liao, T. W., & Tao, F. (2018). Modeling of cyber-physical systems and digital

twin based on edge computing, fog computing and cloud computing towards smart

manufacturing. In ASME 2018 13th International Manufacturing Science and

Engineering Conference,

40

Rauschecker, U., Meier, M., Muckenhirn, R., Yip, A. L. K., Jagadeesan, A. P., & Corney, J.

(2011). Cloud-based manufacturing-as-a-service environment for customized products.

Rentschler, M., Trsek, H., & Dürkop, L. (2016). OPC UA extension for IP auto-configuration in

cyber-physical systems. In 2016 IEEE 14th International Conference on Industrial

Informatics (INDIN), 26-31.

Ridwan, F., & Xu, X. (2013). Advanced CNC system with in-process feed-rate

optimisation. Robotics and Computer-Integrated Manufacturing, 29(3), 12-20.

Ridwan, F., Xu, X., & Liu, G. (2012). A framework for machining optimisation based on STEP-

NC. Journal of Intelligent Manufacturing, 23(3), 423-441.

Saez, M., Lengieza, S., Maturana, F., Barton, K., & Tilbury, D. (2018). A data transformation

adapter for smart manufacturing systems with edge and cloud computing capabilities.

In 2018 IEEE International Conference on Electro/Information Technology (EIT), 519.

Sauter, T. (2010). The three generations of field-level networks—Evolution and compatibility

issues. IEEE Transactions on Industrial Electronics, 57(11), 3585-3595.

Schlechtendahl, J., Keinert, M., Kretschmer, F., Lechler, A., & Verl, A. (2015). Making existing

production systems industry 4.0-ready. Production Engineering, 9(1), 143-148.

Schroeder, G. N., Steinmetz, C., Pereira, C. E., & Espindola, D. B. (2016). Digital twin data

modeling with automationml and a communication methodology for data

exchange. IFAC-PapersOnLine, 49(30), 12-17.

Seilonen, I., Tuovinen, T., Elovaara, J., Tuomi, I., & Oksanen, T. (2016). Aggregating OPC UA

servers for monitoring manufacturing systems and mobile work machines. In 2016 IEEE

21st International Conference on Emerging Technologies and Factory Automation

(ETFA), 1-4.

Swales, A. (1999). Open modbus/tcp specification. Schneider Electric, 29

Swetina, J., Lu, G., Jacobs, P., Ennesser, F., & Song, J. (2014). Toward a standardized common

M2M service layer platform: Introduction to oneM2M. IEEE Wireless

Communications, 21(3), 20-26.

Tao, F., Zhang, L., Venkatesh, V. C., Luo, Y., & Cheng, Y. (2011). Cloud manufacturing: A

computing and service-oriented manufacturing model. Proceedings of the Institution of

Mechanical Engineers, Part B: Journal of Engineering Manufacture, 225(10), 1969-

1976.

Tao, F., Zuo, Y., Da Xu, L., & Zhang, L. (2014). IoT-based intelligent perception and access of

manufacturing resource toward cloud manufacturing. IEEE Transactions on Industrial

Informatics, 10(2), 1547-1557.

41

ThomasNet. (2010). OPC foundation and MTConnect institute announce a memorandum of

understanding. Accessed March 25, 2020. Retrieved

from http://news.thomasnet.com/companystory/memorandum-of-understanding-

announced-between-opc-mtconnect-584167

Thomesse, J. (2005). Fieldbus technology in industrial automation. Proceedings of the

IEEE, 93(6), 1073-1101.

Tindell, K., Hansson, H., & Wellings, A. J. (1994). Analyzing real-time communications.

In Real-Time Systems Symposium, San Juan, Puerto Rico,

UI Labs. (2017). O3 – operate, orchestrate, and originate. Accessed March 25, 2020. Retrieved

from http://www.uilabs.org/project/o3-operate-orchestrate-and-originate-14-06-05/

Um, C., Lee, J., & Jeong, J. (2018). Industrial device monitoring and control system based on

oneM2M for edge computing. In 2018 IEEE Symposium Series on Computational

Intelligence (SSCI), 1528-1533.

Varghese, B., Wang, N., Nikolopoulos, D. S., & Buyya, R. (2017). Feasibility of fog

computing. arXiv Preprint arXiv:1701.05451,

Vijayaraghavan, A., Sobel, W., Fox, A., Dornfeld, D., & Warndorf, P. (2008). Improving

machine tool interoperability using standardized interface protocols: MT connect.

Vincent, S. J. (2001). FOUNDATION fieldbus high speed ethernet control system. Fieldbus Inc,

Wan, J., Chen, B., Wang, S., Xia, M., Li, D., & Liu, C. (2018). Fog computing for energy-aware

load balancing and scheduling in smart factory. IEEE Transactions on Industrial

Informatics, 14(10), 4548-4556.

Wang, L. (2013). Machine availability monitoring and machining process planning towards

cloud manufacturing. CIRP Journal of Manufacturing Science and Technology, 6(4),

263-273.

Wang, L., Gao, R., & Ragai, I. (2014). An integrated cyber-physical system for cloud

manufacturing. In ASME 2014 International Manufacturing Science and Engineering

Conference Collocated with the JSME 2014 International Conference on Materials and

Processing and the 42nd North American Manufacturing Research Conference,

Wikipedia. (2019). CC-link industrial networks. Accessed March 25, 2020. Retrieved

from https://en.wikipedia.org/wiki/CC-Link_Industrial_Networks

Willner, A., Diedrich, C., Younes, R. '. B., Hohmann, S., & Kraft, A. (2017). Semantic

communication between components for smart factories based on oneM2M. In 2017

22nd IEEE International Conference on Emerging Technologies and Factory Automation

(ETFA), 1-8.

42

Wosnik, M., Kramer, C., Selig, A., & Klemm, P. (2006). Enabling feedback of process data by

use of STEP-NC. International Journal of Computer Integrated Manufacturing, 19(6),

559-569.

Wu, C., Lin, F. J., Wang, C., & Chang, N. (2017). OneM2M-based IoT protocol integration.

In 2017 IEEE Conference on Standards for Communications and Networking

(CSCN), 252-257.

Wu, D., Greer, M. J., Rosen, D. W., & Schaefer, D. (2013). Cloud manufacturing: Strategic

vision and state-of-the-art. Journal of Manufacturing Systems, 32(4), 564-579.

Wu, D., Liu, S., Zhang, L., Terpenny, J., Gao, R. X., Kurfess, T., & Guzzo, J. A. (2017). A fog

computing-based framework for process monitoring and prognosis in cyber-

manufacturing. Journal of Manufacturing Systems, 43, 25-34.

Wu, D., Rosen, D. W., Wang, L., & Schaefer, D. (2015). Cloud-based design and manufacturing:

A new paradigm in digital manufacturing and design innovation. Computer-Aided

Design, 59, 1-14.

Wu, D., Thames, J. L., Rosen, D. W., & Schaefer, D. (2012). Towards a cloud-based design and

manufacturing paradigm: Looking backward, looking forward. In ASME 2012

International Design Engineering Technical Conferences and Computers and

Information in Engineering Conference, 315-328.

Xiang, F., & Hu, Y. F. (2012). Cloud manufacturing resource access system based on internet of

things. In Applied Mechanics and Materials, 121, 2421-2425.

Xu, X. (2012). From cloud computing to cloud manufacturing. Robotics and Computer-

Integrated Manufacturing, 28(1), 75-86.

Yin, L., Luo, J., & Luo, H. (2018). Tasks scheduling and resource allocation in fog computing

based on containers for smart manufacturing. IEEE Transactions on Industrial

Informatics, 14(10), 4712-4721.

Yun, J., Teja, R. C., Chen, N., Sung, N., & Kim, J. (2016). Interworking of oneM2M-based IoT

systems and legacy systems for consumer products. In 2016 International Conference on

Information and Communication Technology Convergence (ICTC), 423-428.

Yun, S., Kim, H., Shin, H., Chin, H. S., & Kim, W. (2019). A novel reference model for cloud

manufacturing CPS platform based on oneM2M standard. KIPS Transactions on

Computer and Communication Systems, 8(2), 41-56.

Zhang, C., Jiang, P., Cheng, K., Xu, X. W., & Ma, Y. (2016). Configuration design of the add-on

cyber-physical system with CNC machine tools and its application

perspectives. Procedia Cirp, 56, 360-365.

Zhao, F., Xu, X., & Xie, S. (2008). STEP-NC enabled on-line inspection in support of closed-

loop machining. Robotics and Computer-Integrated Manufacturing, 24(2), 200-216.

43

Zhou, Z., Hu, J., Liu, Q., Lou, P., Yan, J., & Li, W. (2018). Fog computing-based cyber-physical

machine tool system. IEEE Access, 6, 44580-44590.

Zuehlke, D. (2010). SmartFactory - towards a factory-of-things. Annual Reviews in

Control, 34(1), 129-138.

Zurawski, R. (2014). Industrial communication technology handbook. CRC Press.

44

CHAPTER 3

MACHINE TOOL COMMUNICATION (MTCOMM) METHOD FOR CYBER

MANUFACTURING

To address the heterogeneity issue of machine tools for developing cyber-physical

manufacturing cloud systems, we developed the first Internet scale service-oriented

communication method named Machine Tool Communication (MTComm) which enables both

monitoring and operating of many heterogeneous types of machine tools over the Internet.

MTComm allows machine tools to exchange manufacturing services and status data in XML

format with other machine tools and with web and cloud applications through RESTful web

services across the Internet. It is an application level communication method that uses a semantic

ontology for representation of manufacturing machine configuration, status, and operational

information at both machine and component level. MTComm is a significant improvement over

the MTConnect, as it offers remote direct operation capabilities alongside status monitoring.

MTComm has an agent-adapter based architecture that interacts with different machine tools

using their own languages and exchanges manufacturing service information with client

applications over the Internet. It not only facilitates communication between the Internet based

applications and heterogeneous machine tools, but also supports interoperability between

multiple types of machines located in different locations. MTComm is an application level

communication method and is fundamentally based on HTTP. The messages in between are

constructed in XML formats. This chapter describes the basics of MTComm method, its

architecture, semantic ontology, services, and basic security measures.

45

Figure 3. Architecture of MTComm method

3.1 Architecture of MTComm

 MTComm interacts with different machine tools using their own languages and

exchanges manufacturing service information with client applications over the Internet in a

common XML message format (Sunny et al., 2017; Liu, Sunny & Shahriar, 2018). To achieve

this, MTComm uses an agent-adapter based architecture, as shown in Figure 3. There are two

components required to establish MTComm services – an adapter which communicates with the

machine tool, and an agent which communicates with Internet-based client applications. The

responsibilities of the agent and the adapter are mutually exclusive. Both the agent and the

adapter provide a lot of flexibility for designers as the method only specify the way of

46

communication, not the way the agent and the adapter should be implemented. Therefore,

MTComm is robust, scalable, and easy to be made compatible with various kinds of machines.

3.1.1 MTComm Adapter

 The adapter is directly connected to the manufacturing resources. It works as a controller

of the machine. Every bit of data flowing inward and outward of the machine goes through the

adapter. The role of the adapter is very important as it not only controls and collects data from

the machine, but also prevents from direct access to the machine from outside as it only accepts

specific sets of commands. Each machine requires its own adapter as different machines’

operation principles and mechanisms are different. Adapters are custom written because the

meaning, units and values of data usually differ from machine tool to machine tool and device to

device. The adapter can be implemented as a software application, or as a combination of

software and hardware if the associated machine requires special hardware for data collection or

operation. The interface between adapter and machine can be over TCP/IP, RS-232, RS-485,

serial I/O etc. The adapter requires access to the machine’s core system in such a way through

which it can collect data from the machine and also operate the machine.

 As shown in Figure 3, an MTComm adapter has four major modules. The ‘data collector’

module acquires raw status data from the associated sensors and machine tool in their own

specific languages and formats by performing periodic queries. After receiving the data, the ‘data

collector’ module converts the available data from its own format to a key-value pair-based text

dictionary. The key refers to the name or type of the data and the value is the data itself. The

‘machine operator’ module is responsible for performing machine tool operation. It receives

operation requests and associated parameters in a key-value pair-based text dictionary from the

agent. Then it either sends a command to the machine tool in its own language to perform the

47

requested operation or executes a program, which may contain many operation commands, to

complete the requested operation. For instance, if the operation is to move the X axis of a CNC

machine to 15mm from its current position, a ‘G0 X15’ command is sent to the machine. On the

other hand, if the operation is to drill into a wooden block following a specific tool path, a G-

code file with many lines of G-code commands are executed and sent to the machine tool. For

file-based operations, associated files are stored in a ‘storage’ module. Other temporary files can

also be stored if necessary. Size of the storage varies depending on type, size, and number of

operational files. An ‘agent communicator’ module handles communication between the adapter

and the agent. It sends the status data dictionary to the agent and also collects operational

instruction dictionary from the agent. The communication interface between agent and adapter is

implementation dependent and can be Ethernet, Bluetooth, Wi-Fi, USB etc.

For reporting the status of the machine, the adapter collects raw monitoring data directly

from a machine toll in its own specific language. The numbers and types of data vary depending

on what data the machine can provide and what data the manufacturer wants. Some common

data types are machine’s availability, the position of the axes, temperatures, progress rate,

estimated time of the ongoing process etc. The data collection process is also dependent of

machine type. For example, most 3D printers and CNC machines understand G-code, therefore

their adapters send G-code based query and collect the responses. A typical 3-axis CNC machine

adapter sends specific G-code based query ‘M114’ to collect the current status of the machine

axes. Upon successful acquisition, the data is converted into a simple key-value pair-based text

dictionary (Figure 4). The importance of this conversion is twofold. Firstly, it guarantees that

different types of data from different machines become consistent and are presented to the agent

in one common structure. This facilitates the possibility of using one generic agent for all

48

machines. Secondly, the dictionary makes it easier for the agent to convert the available data into

XML format. Once the dictionary is created, it is stored and forwarded to the agent for additional

processing. The process of operating machine tools using the adapter is done in a reverse order.

The adapter receives details of requested operations from the agent. To perform an operation, the

adapter either sends corresponding commands to the machine or executes a program. For file

Figure 4. Example of key-value pair-based data dictionary created by MTComm Adapter

Figure 5. State transition diagram of MTComm Adapter

49

based operation, the adapter gets the model file from the agent. The data acquisition and

operation of machines are performed in parallel. Data acquisition and operation cycles of an

adapter are shown in Figure 5.

3.1.2 MTComm Agent

 The agent is primarily a software program that bridges manufacturing machine tools and

Internet-based client applications. It works as a translator on an http server. It consists of six

major modules, as shown in Figure 3. Each agent hosts a RESTful ‘HTTP server’ that handles all

the incoming and outgoing requests. The agent uses RESTful protocol – meaning it is stateless

on the server side. Functionalities of agents are provided as RESTful web services. The server

receives monitoring service requests from client applications over the Internet through HTTP

GET method and sends corresponding XML responses. Operation requests are received through

HTTP POST method. An ‘adapter communicator’ module handles communication with the

adapter. It receives the status data dictionary from the adapter and sends the operational

instruction dictionary to the adapter. An ‘XML generator’ module receives the status data

dictionary and converts it into XML format using MTComm XML schemas. These schemas are

based on the semantic ontology of MTComm, which is described in next section. Data in XML

format is stored in a ‘storage’ module with a sequentially increasing number. If the storage

becomes overfilled, the newest data replaces the oldest data. When a monitoring service request

is received, the server collects corresponding XML message from storage and sends it as

response to the client. For operation services, server module receives an XML message

containing necessary information and parameters. A ‘validator’ module examines incoming

operation requests to ensure that the request is in right format and the requested operation is

compatible with the associated machine tool. This is to prevent the machine tool from damage

50

due to erroneous and malicious operation requests. The verification process can either be simple

XML verification or very complex, depending on the developer’s intent. Security measures to

detect malicious requests and intrusion attacks can also be added to the validator module. If the

incoming request is appropriate, it is validated and forwarded to an ‘XML parser’ module which

uses MTComm schemas to parse the operation request and creates a key-value pair based text

dictionary containing associated information and parameters, if any, about the requested

operation. The ‘adapter communicator’ module sends this text dictionary to the adapter for

further processing. The agent also sends back acknowledgments and error messages to the client

application. As all MTComm agent operate in exactly the same way, one agent can be connected

to multiple MTComm adapters. Additional functionality modules can be added in the agent if

necessary. Both data acquisition and operation cycles of an agent are shown in Figure 6.

Figure 6. State transition diagram of MTComm Agent

51

Figure 7. MTComm semantic ontology

3.2 MTComm Semantic Ontology

 MTComm uses a semantic ontology to represent a manufacturing machine tool, its parts,

connected equipment such as sensors, actuators, controllers etc., and all associated information.

The monitoring data of a machine tool may include but not limited to configuration data,

structural or organizational information, diagnostics, manufacturing service data, and

manufacturing process data. Operational data include operation instructions and parameters.

MTComm ontology represents structure of machine tools and their components and contains

detailed information of their data and operations in a top-down hierarchical fashion. This

ontology is regarded as an upper ontology. Upper ontology is a lightweight ontology limited to

concepts that are abstract and generic enough to address a broad range of objects in the domain

of interest (Ameri & Dutta, 2008). Therefore, while providing some level of standardization, an

52

upper ontology has sufficient flexibility and extendibility necessary for the conceptualization of

highly heterogeneous and dynamic domains. The MTComm ontology defines the semantics

meanings of machine components and of all the data that will be communicated from and to

manufacturing machines. The semantic ontology is illustrated in Figure 7. As the figure shows,

this ontology provides information about machine tool’s status and operations not only at

machine tool level, but also at its component and sub-component levels. It provides a foundation

for translation of data sent from/to machine tools. The ontology enables hierarchical

representation of machine tool information and thus makes the transformation of data to XML

format easier.

In MTComm ontology, each machine tool is represented as a device. A device has

attributes that provides general identifying information of the machine tool such as device name,

device identifier number, device type, model, manufacturer name etc. A device is composed of

one or more components. Parts of a machine tool and other connected equipment such as sensors,

actuators, controllers etc. are represented by components. Each component can have components

of its own, if required. devices and components contain dataitems and operations.

A dataitem refers to a piece of status information that can be collected from a machine tool or its

components. It provides a detailed description for each piece of data that is collected from a

device - the type of data being collected, an array of optional attributes that further defines that

data, and the value of the data. In most cases, manufacturing data is of two forms – a value

(numeric or alphabetic) and a health status. So dataitems are divided into three categories,

described below –

1) SAMPLE – A SAMPLE is the reading of the numerical value of a continuously

variable or analog data value that can be measured at any point-in-time and will

53

always produce a result. The data provided for a SAMPLE category dataitem is

always a floating-point number or integer with an infinite number of possible values.

Examples of such data values are position of a linear X axis, temperature of a

machine tool part etc.

2) EVENT – An EVENT is a data value representing a discrete piece of information

with limited number of possible values. This category does not have intermediate

values that vary over time, as does SAMPLE. An EVENT is information that, when

provided at any specific point in time, represents the current state of a machine tool or

its parts. There are two types of EVENT – those representing state, with two or more

discrete values; and those representing messages that contain plain text data. An

example of a state type EVENT is the value of the data item DOOR_STATE which

can be OPEN, UNLATCHED, or CLOSED. An example of a message type EVENT

is the value for a dataitem PROGRAM which can be any valid string of characters.

3) CONDITION – A CONDITION is a data value that communicates information about

the health of a device and its ability to function. A valid value for a data item in the

category CONDITION can be one of UNAVAILABLE, NORMAL, WARNING, or

FAULT. A dataitem of category CONDITION may report multiple values at one

time, unlike SAMPLE or EVENT.

An operation represents a manufacturing activity or process that can be performed by a

machine tool or its components. Similar to dataitem, it includes an array of optional attributes

that provides detailed description of the associated manufacturing task. Most manufacturing

processes require input arguments, e.g. material type to be used, required temperature etc., and

often have specific constraints and conditions, e.g. minimum and maximum limit of extruder

54

temperature of a 3D printer, maximum spindle speed of a CNC machine etc. Therefore,

an operation can have multiple parameters that contains operational arguments, constraints, or

input values. operations are divided into two categories based on their level of association –

1) ACTION – An ACTION refers to a manufacturing task that is associated with or

performed by a specific component of a machine tool. Examples of this category of

operation are moving a linear X axis to a specific co-ordinate, change the temperature

of a machine tool part, make a robotic hand to grab or release etc.

2) JOB – A JOB is a manufacturing process that is done by a machine tool as a whole,

or in other words, involves multiple machine tool parts or systems. This category of

operation is usually associated with the device itself, instead of its components. A

JOB may involve running a batch of process commands, executing a machine specific

program, or performing multiple ACTIONs sequentially. Often it involves use of a

machine language program files like G-code files, .CSV files with motion path co-

ordinates etc., or CAD model files. Example of such tasks are printing a 3D object in

a 3D printer, drilling process in a CNC milling machine, autonomous navigation of a

mobile robot etc.

Dataitems and operations are grouped based on their logical organization, instead of their

physical organization. All components, dataitems, operations, and parameters have their own

attributes. All attribute values are strings. The number of elements of each type depends on a

machine tool’s structure, configuration, and capabilities. MTComm ontology is simple yet

generic and robust enough to be applied to heterogeneous machine tools and manufacturing

systems. Such hierarchical representation of a machine tool with MTComm eases the

virtualization process of a machine tool and its capabilities in a cloud environment.

55

F
ig

u
re

 8
.
H

ie
ra

rc
h
ic

al
 r

ep
re

se
n
ta

ti
o
n
 o

f
‘

U
lt

im
ak

er
 2

’
 u

si
n
g
 M

T
C

o
m

m
 o

n
to

lo
g
y

56

Figure 8 illustrates an example of hierarchical representation of a 3D printer - ‘Ultimaker

2’ using MTComm semantic ontology. Here the printer has three device level dataitems and two

device level operations, one of which requires multiple parameters. It has four components –

controller, axes, extruder, and heatbed. The axes component is composed of three

additional components. Each component has its own dataitems and operations.

3.3 MTComm Services

 MTComm enables manufacturing machine tools to exchange information for both data

acquisition and operation through RESTful web services over the Internet. As of now, MTComm

provides six services – probe, current, sample, operate, error, and notification.

This section includes details of these MTComm services and how these can be used for cyber

manufacturing. All services are provided as RESTful web services by MTComm agents via

HTTP servers. URLs of these services are created by adding the service name after the address

of an MTComm agent, e.g. “https://10.5.1.7:1080/probe”. Each service has its own

message in XML format. The structure, headers, and elements of these XML messages differ

from one service to another. Details about these services are discussed below.

3.3.1 Probe

 Probe service provides structural and configuration information of a machine tool

including its components and all available dataitems and operations. It depicts a device’s detailed

organization in a hierarchical representation using MTComm ontology, as described is Section

3.2. Client application requests probe service via HTTP GET method. The response XML

message is divided into two sections – ‘Header’ and ‘Device’. ‘Header’ contains protocol related

information like creation time, version, sender etc. and ‘Device’ provides the descriptive

57

Figure 9. Example of a partial probe service response message

information of each machine tool served by the agent. As a machine’s physical composition and

capabilities do not change frequently, the response of probe for a particular machine tool

remains static mostly. Figure 9 presents a portion of an example probe response message of a

3D printer. A complete response message from a 3D printer’s agent in given in Appendix A.1.

3.3.2 Current

 MTComm current service provides the most recent values of dataitems at the time

when the service is requested via HTTP GET method. It basically provides a snapshot of a

machine tool’s status at a certain time. The response message consists of two sections – ‘Header’

and ‘Streams’. The data values are given as CDATA of corresponding XML elements. Sequence

58

number is a significant attribute each element in ‘Streams’ section, as it helps to differentiate

between machine data captured at different instances and times. It is also used to fetch status of

Figure 10. Example of Current service response message

59

the machine at a particular moment. MTComm also allows the use of attributes as path

parameters in the service URL to perform element specific queries and actions. This feature

enables to acquire data or perform operation of a particular component. For instance, the service

URL to collect only the value of the extruder temperature of a 3D printer is as below –

http://10.5.55.7:10090/current?path=//Sensor//Dataitem[@id=”extr

uderTemp”]

This feature allows to create service URLs using the ontology dynamically based on user

requests, instead of storing every service URL in database. It is also possible to collect data of a

specific moment using timestamp or sequence number. For example –

http://10.5.55.7:10090/current?path=//Axes//Dataitem[@type=”POSI

TION” and @subtype=”ACTUAL”]&at=54573

This service request collects positions of the axes with sequence number 54573. Figure

10 contains a portion of an example current request response message of a 3D printer during

a printing JOB. The complete example is available in Appendix A.2.

3.3.3 Sample

 Sample service gives a list of values of dataitems for a certain time interval. The

response message is similar to current service, following the same structure. The only

difference is that sample provides multiple continuous values of Dataitems instead of just one.

Sequence number can be used to retrieve data of a particular time range, specifically useful to

collect, store, and analyze historical. If no parameter is specified in the service request, sample

responds with values of a default time interval.

60

3.3.4 Operate

 Operate service enables performing machine tool operations remotely over the

Internet. A machine tool operation is requested from the client application by sending an

operate request in XML format to the machine’s agent via HTTP POST method. An

operate request message includes details of the requested operation and associated

parameters, if any. The primary XML elements describing the operation is termed based on its

category and type, as defined in its probe message. Figure 11(a) depicts an example of

operate request of a 3D printing JOB. An operate request may contain information for

multiple operations where each operation element has a sequence number attribute referring to

the order of execution. Figure 11(b) shows an example of such operate request.

When an MTComm agent receives an incoming operate request, its ‘validator’ module

conducts a two-step verification process - checks if the XML message is a valid one, and then

determines whether the requested operation is meant for and supported by the machine tool. This

second step is very crucial as it prevents the machine from performing potentially harmful

operations and damaging itself. The agent uses the probe service to verify the operational

information. A parameter element may include constraints (as shown in Figure 9 and Appendix

A.1) that defines limitations and range of accepted values. If the operation or any of the

parameters does not match with probe information, the request is rejected. For example, if a

machine’s X axis can move to a maximum position of 200 mm and its current position is 120

mm, an operation request for moving the x axis 100 mm more will be rejected by the agent’s

‘validator’ module. Once the request is validated and verified, the agent parses the message and

sends the operation information to the adapter. The adapter than initiates and completes the

operation by sending appropriate commands to the machine tool. Figure 12 illustrates the

61

(a) Single operation

(b) Multiple operations

Figure 11. Examples of operate request message

62

Figure 12. Sequence diagram of an operate service execution

execution of an operate service in a sequence diagram. As illustrated, the adapter can send

commands to a machine and also collect monitoring data at the same time. The diagram

considers a normal operation only, meaning no failure occurs during the execution. In case of

multiple operations, the agent uses sequence numbers attribute to send operational details to the

agent in the order requested by the client application.

63

3.3.5 Error

MTComm error service is used to send error reports when the agent cannot recognize

or handle the incoming request. This service is generated automatically by an MTComm agent’s

HTTP server upon failure and cannot be requested externally. If the request is malformed or the

agent cannot return any XML response for some internal error, error service generates a

response message stating the type and details of the error for the client application. The response

XML message contains one Error element for every error that has occurred. An Error element

has an error code as an attribute and the CDATA of the element is the details of the error in plain

text. For example, if a current request is made with wrong path and invalid sequence number,

its error service response message will contain two Error elements – one for

invalid_path and one for out_of_range error.

For an incoming operate service request, if an agent’s ‘validator’ module fails to

validate the request or find invalid parameters that may result in machine failure, an ack

message with appropriate error code and description is generated.

3.3.6 Notification

 MTComm notification service is used to send operational acknowledgments and

notifications to the client applications. Using this service, an MTComm agent notifies a client

application about all messages associated with an MTComm operation including

acknowledgements, error messages, periodic status updates etc. For an incoming operate

service request, if an agent’s ‘validator’ module fails to validate the request or find invalid

parameters that may result in machine failure, an ack message with appropriate error code and

description is generated and sent to the client application. Similar to error service,

64

notification service is also auto generated and cannot be requested by client applications.

Their response message structure is also alike – a Notification element with a notification code as

an attribute and the CDATA with details of the notification in plain text such as ‘request

received’, ‘operation completed’, ‘material not found’ etc. However, error and

notification each serves separate purpose. For example, if an operation is requested via

an invalid XML message, error message is generated and sent to the client application. If the

requested operation is halted due to overheating of a machine component, this fault is reported

via a notification message.

3.4 Security measures in MTComm

 A major concern of implementing cyber manufacturing systems is the assurance that

proprietary information about the intellectual property owned by the organization or information

about the company’s operations is available only to authorized individuals. It is also important to

avoid security disasters for machine tools at factory floor level. Performing malicious operations

or operations with erroneous parameters can damage, even destroy machine tools. Monitoring

and operating machine tool over the Internet involve sharing information in the form of detailed

run-time operations and critical hardware controls. For general acceptance of MTComm, the

secrecy of the proprietary information must be properly maintained. MTComm can be

implemented in a vast variety of manufacturing environments and therefore security has to be

tailored for corresponding situation. The focus of this research is general security specifications,

which should serve as guidelines that cover most of the basic security requirements. As all

MTComm services except operate are read-only and thus in no way can harm machine tools,

the security mechanisms are primarily related to the operate service.

65

Client application uses username-password based authentication to make sure only

authorized users can use the application. Because of the agent-adapter architecture of MTComm,

a client application only gets indirect access to a machine through its agent, without violating

factory floor security. The adapter operates a connected machine tool and the agent makes sure

that only valid operational commands and parameters are sent to the adapter. All

communications between client application and a machine go through the agent’s HTTP server.

To strengthen security, an agent can include HTTPS server, instead of HTTP, as the former

encrypts all messages with SSL (Secure Socket Layer) encryption. Connection between a client

application and the agent’s server is established by exchanging SSL certificate and private key.

Therefore, only the client application and the agent server know how to decrypt the messages

and access the data. This reduces the possibility of interception-based attacks like eavesdropping

and man-in-the-middle attack. As described in Section 3.3.4, an MTComm agent performs a

two-step verification with every incoming request to make sure that the request is valid, and the

requested operation is supported by the associated machine tool. Once the agent is convinced

that all operational information is correct and the machine can perform this operation, only then

the request is forwarded to the adapter. Also, the agent does not have direct access to the

machine, only the adapter can send commands directly to the machine. The adapter only accepts

a very specific list of operational instructions, set by the developer, from the agent. Therefore,

even if the agent’s server is compromised somehow, the adapter would not execute any

command it does not recognize.

More security measures can be added if required. For example, a centralized local server

can be added as a gateway for factories with many machine tools. All communication between

agents and client applications will go through this local server. It may include security components

66

like session handling, token-based authentication, anti-malware software etc. It physically

separates the machine tools in factory floor by using segmented networks and includes protective

measures against different types of attacks.

3.5 References

Ameri, F., & Dutta, D. (2008). A matchmaking methodology for supply chain deployment in

distributed manufacturing environments. Journal of Computing and Information Science

in Engineering, 8(1).

Liu, X., Sunny, S. M. N. A., & Shahriar, M.R., (2018). Semantic Ontology-Based Internet Scale

Communication Method of Machine Tools for Providing Remote Operational Services.

U.S. Patent Application 16/020,795.

Sunny, S. M. N. A., Liu, X. F., & Shahriar, M. R. (2017, June). Mtcomm: A semantic ontology

based internet scale communication method of manufacturing services in a cyber-

physical manufacturing cloud. In 2017 IEEE International Congress on Internet of

Things (ICIOT) (pp. 121-128). IEEE.

67

CHAPTER 4

REMOTE AND COLLABORATIVE MANUFACTURING IN CYBER-PHYSICAL

MANUFACTURING CLOUD

As mentioned in Chapter 1, the primary objective of developing MTComm was to

facilitate remote monitoring and operation services in a scalable service-oriented cloud-based

cyber-physical manufacturing system managing different types of physical resources. Therefore,

the first application of MTComm was to design and develop these capabilities for such a system

as well as implementing a testbed for experimentations and evaluation. During development, it

was also noticed that these functionalities could be used to establish intercommunication

between manufacturing machine tools and enable collaborative manufacturing processes where

multiple machines can work together towards a common objective. This chapter describes the

methodologies for achieving both remote and collaborative manufacturing using MTcomm in a

cyber-physical manufacturing cloud. It also discusses experimental outcomes to evaluate

MTComm’s performance and feasibility for cyber manufacturing.

4.1 Cyber-Physical Manufacturing Cloud (CPMC)

 MTComm was designed and developed primarily to enable exchange manufacturing

monitoring and operation services remotely over the Internet in a paradigm named cyber-

physical manufacturing cloud (CPMC) that integrates the concepts of cyber-physical system and

cloud manufacturing (Sunny et al., 2017). Figure 13 illustrates a conceptual framework of CPMC

(Liu et al., 2016, 2017). Users interact with CPMC to request manufacturing services using

multiplatform applications from desktops or mobile devices via HTTP. Cloud manufacturing

services and applications are hosted in cloud servers. Communication between cloud services

and manufacturing machine tools are done using MTComm via controllers and local servers. A

68

controller component consists of MTComm adapter and agent programs. Local servers work as

gateways between the cloud servers and the machine networks and are optional. Manufacturing

resources inside the factory floor can have any type of network and infrastructure, as the cloud

does not communicate with machine tools directly. The controller translates in-between

messages (XML to machine language and vice versa) using MTComm. Based on MTComm

probe service data, a virtual copy or digital twin of each machine tool is generated in the cloud.

Cloud applications interact with these digital twins instead of directly connecting to machine

tools. Users can thus monitor and control machines remotely in CPMC. CPMC has a four

layered architecture – Application layer, Core cloud layer, Virtualization layer, and Resource

layer. MTComm is the core technology of virtualization layer and bridges cloud layer with

resource layer.

Figure 13. Conceptual framework of CPMC (Liu et al. 2017)

69

4.1.1 Remote monitoring and operation of machine tools using MTComm

In a cyber-physical cloud environment, virtualization of resources is very crucial. In the

CPMC, each machine tool is represented virtually by publishing its characteristics and

capabilities through MTComm’s probe service. A probe response XML message provides all

available information about the machine tool including machine configuration data,

characteristics data, details (name, identifier, type, units etc.) of every dataitem and operation

associated with the machine, operational parameters etc. Also, the semantic ontology of

MTComm provides a hierarchical representation of a machine tool and its component in a top-

down fashion. The virtualization service of CPMC acquires these data from a machine’s agent

through probe and creates and stores an interactive virtual copy or digital twin of the machine

in the cloud. Status information of a machine tool are periodically collected via current

service and synchronized with corresponding digital twin in real-time. This virtualization process

is usually done when a machine tool is registered and added to the cloud for the first time.

MTComm service URLs of a machine tool is also stored in the cloud database at this stage and

linked to corresponding elements of the digital twin. Whenever a service of a manufacturing

machine tool is required, cloud applications in CPMC interact with its digital twin which then

communicates with the machine’s agent and responds accordingly.

 Each machine tool in the CPMC is connected to a controller where its MTComm agent

and adapter programs are deployed. A controller can be any small-scale computing device or

system, such as Arduino, raspberry pi, FPGA development board etc., with sufficient processing

power and storage. The adapter program continuously acquires status data from the machine

tool, updates the values in a key-value pair based text dictionary, and forwards it to the agent.

The agent converts incoming data in dictionary to XML messages and stores them sequentially

70

in its buffer storage. It also publishes MTComm RESTful services via its HTTP server. When a

cloud application in CPMC receives a monitoring request from a user, it queries the digital twin

of corresponding machine tool. The digital twin sends a current (or sample, depending on

type of request) service request to the agent via HTTP GET method. The agent responds with the

most recent XML message, which is forwarded to the cloud application. The XML message is

then parsed, and data values are extracted from it and presented to the user in tabular format.

Figure 14 shows an example response of a monitoring request to observe a 3D printer from users

in CPMC client application.

To perform an operation of a machine tool upon user request in CPMC, a cloud

application generates an operate request XML message based on its probe response message

Figure 14. Example response of a monitoring request in CPMC client application

71

Figure 15. Operation procedure in CPMC using MTComm

and user inputs (parameters, arguments, constraints etc. of requested operation given by the

user), which is then forwarded to the digital twin to call corresponding operate service. The

XML message is sent to the machine tool’s agent via HTTP POST method. The agent stores the

message, verifies and validates it, extract necessary information upon success, and forwards

instructions to the adapter in a text dictionary. The adapter takes parameter values and initiate the

operation by sending appropriate commands to the machine tool. The agent sends a

notification message with acknowledgment of starting the operation or with error

description in case of a failure. As described above, some manufacturing processes require

model or program files. How these files are made available to MTComm adapters is determined

by manufacturers; MTComm does not specify any particular mechanism for this. Files can be

manually stored inside controllers and users are only allowed to choose from already existing

files. Although it limits flexibility of available manufacturing operation choices, this method

strengthens security and privacy. Another way to do this is to store the files in local servers or in

the cloud and have the controllers download them as necessary by providing the download URL

72

as a parameter in operate request. In this case, however, manufacturers are responsible to

establish secured and encrypted communication channel between local server or cloud and

controllers for downloading the required file. Figure 15 shows the operation procedure in CPMC

using MTComm.

4.1.2 Implementation of a CPMC testbed using MTComm

To evaluate the performance and effectiveness of CPMC and MTComm, a fully

operational CPMC testbed was developed, as shown in Figure 16. The CPMC testbed consists of

three separate testing sites. Two sites are located at the University of Arkansas (Uark) and

another is located at the Missouri University of Science & Technology (MST). One Uark site has

three manufacturing machines – an X-Carve CNC machine from Inventables, a small robotic arm

named uArm from UFactory, and a RepRap (Jones et al., 2011; Bowyer, 2014) 3D printer named

Ultimaker 2, while the other Uark site is consisted of two machine tools – a RepRap 3D printer

named Bukito from Bukobot and another uArm. The site in MST has a uArm robotic arm and

Bukito 3D printer. All machines used are open-source. Each machine tool is connected to a

Raspberry Pi (RPi) 3 which works as an MTComm controller of that machine tool. MTComm

agent and adapter programs, developed in python, of a machine tool are deployed in the

associated RPi. RPis have network access via Ethernet and Wi-fi. Connection types between the

RPis and the machines are varied, e.g. via USB, Bluetooth, or wireless network card. Using a

RPi as a controller offers several advantages. One advantage is its low cost, small size and low

power consumption rate. The newest RPis contain enough memory space to provide adequate

buffer storage needed by the agent to hold data. It has enough computation power to run multiple

agent and adapter programs for several machines simultaneously. For simplicity, one RPi is used

for one machine tool in the testbed. Besides it provides a unique scalable and plug-n-play feature

73

Figure 16. The implemented CPMC testbed

to the system. A new machine can be added to the CPMC system just by connecting it to a RPi

where the adapter and agent for that machine is deployed. The RPi also supports various types of

standard communication interfaces. Each testing site has its own local server where the

virtualized manufacturing web services are hosted. Each machine tool is connected to its own

controller (RPi). There are two cloud servers deployed in virtual machines in Uark network for

hosting manufacturing cloud services and cloud applications. Data are stored in the cloud using

HBase, which is a NoSQL database. A web application named “Application Center” is hosted in

the cloud which contains all published manufacturing applications and works as a marketplace

for both customers and service providers. A user (customer or manufacturer) can create a profile

by providing his/her information and setting a username and password. After logging in, he/she

74

can view available manufacturing services and subscribe to the desired ones. Once subscribed to

manufacturing services, corresponding access links are showed in a dashboard, using which

users can access their desired manufacturing services and monitor or operate associated machine

tools. While placing an order, the users can choose from available options and parameters. For

instance, users can select the color and material type of a 3D printed object. Cloud applications

make HTTP calls to the monitoring web services to acquire data in XML format. Both file

sharing methods described in 3.1.2 (locally and in the cloud), has been implemented and tested.

Multiple iterations of manufacturing monitoring and operation processes in different scenarios

were conducted using the testbed.

4.2 Collaborative manufacturing using MTComm

As monitoring data of a machine is available in XML format over the Internet,

manufacturing machine tools using can monitor the status of other machines using MTComm. In

addition to that, machines can also initiate operations of other machines via MTComm

operate service. All communications are actually carried out by the agents of the associated

machine tools. Thus, MTComm facilitates machine-to-machine communication not only inside a

factory floor, but also across multiple manufacturing plants situated in geographically different

locations over the Internet. If a machine tool (M1) requires service of another machine tool (M2),

its agent inspects the current status of M2 from its data in XML format using current service

over the Internet (assuming M1 knows the service URL of M2’s agent). If available, M1’s agent

generates an operate request message and sends it to M2’s agent. M2’s agent then processes

the request and completes the operation. If M2 is not available, M1’s agent has the option of either

waiting until M2 becomes available or communicating with another machine which is available

75

Figure 17. Communication between two machine tools using MTComm

and can provide the service M1 is looking for. Figure 17 illustrates the communication process

between two machines using MTComm over the Internet.

The procedure of such machine-to-machine communication is very useful in different

manufacturing scenarios. It allows manufacturers to achieve factory floor automation, respond to

production process failures, perform collaborative manufacturing, improve production

scheduling etc. For instance, let there be two identical machines in a factory floor. One machine

is assigned a job by the CPMC. During the manufacturing procedure, a failure occurs, and the

machine becomes incapable of completing the job. At this point, instead of pausing the

production process, the agent of machine can forward job to another identical machine in the

factory (assuming there is one). Thus, MTComm enables machine tools to participate in

collaborative manufacturing actively. They can carry out parts of a single manufacturing job or

perform multiple iterations of the same job. This unique capability also allows a CPMC to create

76

Figure 18. Collaborative manufacturing process using MTComm in a CPMC

collaborative manufacturing processes that involve participation of different types of machine

tools over the Internet.

4.2.1 Process of collaborative manufacturing in CPMC

Figure 18 demonstrates the workflow of a collaborative manufacturing process with n

machine tools. The machine itself, its adapter and agent are collectively shown as a machine

entity. Like other manufacturing operations discussed above, a collaborative manufacturing

operation is initiated from a client application in the CPMC. Manufacturers or machine tool

owners has the flexibility to design specialized collaborative operations by pre-selecting which

machines should be used for a particular operation, or to let the cloud application choose from

available machine tools. When there is a request for collaborative process, a cloud application,

designed specifically for performing collaborative operations, collects operate service URLs

from database, generate a single operate request XML message containing opeartion

77

Figure 20. Process flow chart of an MTComm agent for collaboration

information of all associated machine tools. A collaborative operate request is slightly

different than the one showed in Figure 11(b) – instead of ComponentOperation, it has multiple

DeviceOperation elements with an additional Parameter providing the operate service URL

of the next machine tool (except the last one); and the header contains an additional attribute

named ‘finalSequence’ which is the number of machine tools involved in the requested

operation. Once generated, the operate request message is sent to the agent of the first

machine tool (M1) via HTTP POST method. The agent stores the XML message, validates its

78

format, finds its own operation using deviceId, and verifies the operation. It also checks if its

own operation’s ‘sequence’ attribute is less than or equal to the ‘finalSequence’ value. If latter, it

identifies itself as the last machine tool of the chain and terminates after finishing its operation.

If an error is encountered, it sends a notification message with description of the error, and

the process is terminated. Otherwise, it sends a notification message to the cloud

application, acknowledging that it has received and started the operation. Then operational

information is forwarded to the adapter, which carries out the operation. Once completed, the

agent sends another notification message confirming successful completion. Then it

identifies the next machine (M2) using the ‘sequence’ number (if it is not the last machine),

collects the service URL of M2’s agent (either provided in the operate message by the cloud

application or pre-loaded in the local storage), and requests current service of M2 to check its

availability. If M2 is available, it forwards the operate XML message to the M2’s agent. If

unavailable, M1 may wait until available, or notify the cloud application which will wait for M2

instead, making M1 available, depending on user’s intent. Figure 19 shows the flow chart of steps

for an MTComm agent to participate in collaborative manufacturing.

The rest of the procedure is similar. M2 completes its own operation, identifies next

machine, checks its status, and forwards the operate message to M3. The process continues

until the message reaches Mn machine (considering n machine tools are required to complete the

collaborative manufacturing process). When Mn completes its own operation, it compares its own

‘sequence’ with ‘finalSequence’ value and finds them to be equal, meaning there are no more

machines. So, like a normal operation, it sends a notification message to the cloud

application which marks the collaborative manufacturing operation as completed.

79

TABLE I. Sample case of assigning five consecutive collaborative operations (a, b, c,

d, e) during five time cycles in the CPMC

M1 M2 M3 M4 M5

a b c d e

e a b c d

d e a b c

c d e a b

b c d e a

Let a CPMC system be consists of n identical machines of which each one can complete

a certain task w in time period t. Also let a collaborative operation require all machines to

complete task w once. Here it is assumed that the time between transferring operation from one

machine tool to another is negligible, i.e., one machine tool immediately starts its part as soon as

the former machine completes its task. For CPMC, the total time for one such collaborative

operation is nt.

Now let another scenario be considered where m collaborative operations are assigned at

the same time. For the CPMC, all the operations can be initiated at once assuming the initial

setup time required for the cloud application to request operate service is negligible, and all

machines are available to work. As all machines are similar and conduct the same task, each can

be assigned to a new operation. After the first t cycle, each machine becomes available and can

start the next parts of all the jobs. The situation is shown in Table I for n=5 and m=5. So, the

total time required to complete all jobs is nt (Sunny, Liu & Shahriar, 2018).

80

4.2.2 Experiments in CPMC testbed and evaluation

Several collaborative manufacturing scenarios were simulated in the CPMC testbed. In

the Uark testing cells, two types of collaborative manufacturing were implemented. The first one

required participation of a 3D printer, a robotic arm, and a CNC machine. In this scenario, the

3D printer produced an object upon receiving an operate request from the cloud application.

When it finished the production, it forwarded the XML message to a robotic arm sitting next to it

which then extended its arm to the 3D printer’s heatbed, picked up the produced object, and

carried it to a CNC machine nearby. The next part of the collaboration required the CNC

machine to do a drilling job onto the 3D printed object. When the CNC machine finished its part,

the collaborative job is concluded. If any of the machine tools was busy, then the former machine

kept observing its status and when it became available, proceeded with the operation. The

described collaborative operation was carried out in two different scenarios – when all machines

were available throughout the whole process i.e. not doing some other individual or collaborative

task, and when the CNC machine was doing its own individual job. In the latter scenario, when

the CNC machine was able to complete its own task before the 3D printer finished its printing,

there was no waiting. Figure 20 demonstrates example of status monitoring during different

stages of a collaborative manufacturing in the CPMC.

In the second collaborative manufacturing test case, two 3D printers worked together.

When a printing process was assigned to one 3D printer and it could not complete the operation,

because of a failure, then it forwarded the operation to the other 3D printer. In the experiments of

this type of collaborative process, some intentional failure scenarios were orchestrated, e.g., too

much high temperature of the extruder, unavailability of printing material etc. In each

experiment, the second 3D printer successfully completed the assigned job.

81

(a) 3D printer (Ultimaker2) working

(b) CNC machine (X-Carve) working

Figure 20. Example of status data during a collaborative manufacturing experiment in the CMPC

82

One of the key advantages of using the presented communication method between

machine tools is the fact that it enables interoperability not only among machines in a single

factory floor, but also among machines situated in different locations. At present, in most cases

the communication between machine tools is limited to machines that are situated in close

proximity or in a certain factory which are connected with each other through a Local Area

Network (LAN). But using MTComm, they are able to connect to other machines from other

factories, from other cities, even from other countries. To protect from unauthorized access, only

machine tools which were registered and connected to the cloud could access other machine

tools in the CPMC.

4.3 References

Bowyer, A. (2014). 3D printing and humanity's first imperfect replicator. 3D printing and

additive manufacturing, 1(1), 4-5.

Jones, R., Haufe, P., Sells, E., Iravani, P., Olliver, V., Palmer, C., & Bowyer, A. (2011).

RepRap–the replicating rapid prototyper. Robotica, 29(1), 177-191.

Liu, X. F., Shahriar, M. R., Sunny, S. M., Leu, M. C., Cheng, M., & Hu, L. (2016, January).

Design and implementation of cyber-physical manufacturing cloud using MTConnect.

In ASME 2016 International Design Engineering Technical Conferences and Computers

and Information in Engineering Conference. American Society of Mechanical Engineers

Digital Collection.

Liu, X. F., Shahriar, M. R., Sunny, S. M. N. A., Leu, M. C., & Hu, L. (2017). Cyber-physical

manufacturing cloud: Architecture, virtualization, communication, and testbed. Journal

of Manufacturing Systems, 43, 352-364.

Sunny, S. M. N. A., Liu, X. F., & Shahriar, M. R. (2017, June). Mtcomm: A semantic ontology

based internet scale communication method of manufacturing services in a cyber-

physical manufacturing cloud. In 2017 IEEE International Congress on Internet of

Things (ICIOT) (pp. 121-128). IEEE.

Sunny, S. M. N. A., Liu, X. F., & Shahriar, M. R. (2018). Communication method for

manufacturing services in a cyber–physical manufacturing cloud. International Journal

of Computer Integrated Manufacturing, 31(7), 636-652.

83

CHAPTER 5

DESIGN AND DEVELOPMEMT OF MTCOMM EDGE MIDDLEWARE

One of the primary objectives of Industry 4.0 is to enable seamless integration of

web/cloud based client applications and heterogeneous physical machine tools for real-time data

acquisition and analysis. Nowadays manufacturing machine tools generate tremendous amount

of data every second which are required to be transmitted at high-speed. The rapid increase in the

number of devices and quantity of data generated, fueled by heterogeneity of data types, often

results in complex scenarios where continuous data storing and processing become inefficient

and expensive (McKee et al., 2018). This may also lead to network traffic bottleneck and

scalability issues, specially for large-scale CMSs managing thousands of machines at the same

time. Edge computing (Shi et al., 2016) can aid in this regard by storing and processing data

locally before transmission. In most existing CMSs, data analysis is typically performed in cloud

servers, as most analysis algorithms require extensive computational power. But this adds a

considerable delay between data generation and event detection, which may lead to hazardous

situation. Recently some researchers proposed to conduct data analysis in local/private cloud

servers (Brito et al., 2018). However, deploying edge-clouds with sufficient computational

performance is expensive and can also suffer from aforementioned issues, specially for large-

scale CMSs.

To overcome such issues, we propose to extend MTComm’s functionalities to offload

repetitive and computationally inexpensive data processing and analysis tasks to low-cost

constrained edge nodes, each responsible for only a few physical machines. Such edge nodes will

assist cloud based applications through data caching, optimization, and preliminary fault

detection and mitigation, and thus lessen the workload of both central and edge cloud servers and

84

improve overall system efficiency. But MTComm is not specifically designed to be readily used

for edge computing, as it does not offer specifications for localized data caching or processing in

order to minimize cost and maximize efficiency, specially for resource constrained edge

platforms. Therefore, we designed and developed a novel scalable MTComm Edge Middleware

(MEM) for CMSs by extending existing MTComm agent's capabilities beyond data

transformation. Alongside transforming collected data and incoming operation requests, an

MEM also optimizes data before transmission and performs preliminary data analysis for in-situ

fault diagnosis. To enhance its efficiency and reduce communication latency while minimizing

cost, we focused on two approaches – 1) developing optimization strategies and 2) using

hardware acceleration through high performance embedded devices. For this purpose, we first

adopted unique optimization strategies for localized data caching and transmission using a hold-

until-changed approach. MEMs aim to minimize data storage requirements and cost while

enabling high-speed transmission and processing, low bandwidth usage, and rapid fault detection

without increasing information loss. Also, MTComm’s remote operation mechanism was

revisited and modified to enable overall faster initiation of manufacturing tasks. The

performance of the optimization strategies was evaluated in the CPMC testbed and compared to

the existing MTComm agent’s performance in terms of average response time, bandwidth used

or average message size, and required storage size. After that, we designed MTComm programs

and hardware architecture for a System-on-Chip (SoC) Field Programmable Gate Array (FPGA)

device as MEM to speed-up data processing and transmission. This chapter discusses the

development, implementation, experimentation, and evaluation of the optimization strategies and

the SoC FPGA based MEM as a low-cost edge computing solution for next generation cyber

manufacturing systems.

85

Figure 21. Architecture of MTComm Edge Middleware (MEM)

5.1 Architecture of an MTComm Edge Middleware

To enable edge computing using MTComm in a CMS, we revisited the existing

MTComm architecture to extend the agent’s capabilities beyond data transformation and service

hosting and convert it to an MEM. Figure 21 illustrates the architecture of our proposed MEM.

In addition to the modules of a typical MTComm agent (MTCagent) and adapter program, MEM

also includes a local data storage, a data optimization (DO) module, and a fault diagnosis (FD)

module. The cross-shaped arrow refers to the interconnect bus which is used by all MEM

components to communicate with each other. Like an MTCagent, one MEM can acquire data

from multiple machine tools and communicate with multiple clients over the Internet using

HTTP. In a CMS, an MEM connects to core cloud servers either directly or via edge/fog servers,

if available. It is designed as a standalone software program that is easily deployable in low-cost

constrained embedded platforms. It can even be embedded into a machine's controller unit. The

storage and processing power of an MEM depend on associated hardware platform.

Functionalities of different MEM components are discussed below.

86

1) MTComm agent and adapter

The MTComm agent (MTCagent) and adapter modules function similarly as described in

3.1 – adapter is responsible for collecting data from physical resources and sending operational

commands to machine tools, while the agent primarily works as a translator on an HTTP server

and agent hosts all five MTComm RESTful services. However, there is slight difference in the

data acquisition methodology. Also, the internal components of both modules have been

simplified. Previously, data collected by adapter was directly forwarded to the agent and stored

in its storage. In MEM, an adapter performs periodic data acquisition cycle via its data collector

and the acquired data is processed by an optimization module before being stored. The agent’s

data manager gets data from storage when it receives a service request. It also works with the

optimization module for keeping track of its clients and associated service requests. Details of

these process are discussed in the next section. For executing requested operations, the

interaction between adapter and agent is same as before, although the agent’s request manager

utilizes an optimization strategy to enable faster execution. An MTCagent may include a security

manager for imposing security countermeasures.

2) Data storage

A local data storage is used by the MEM to temporarily store collected data before

transmission. It is functionally different from the original buffer storage of an MTCagent, as

acquired data are stored in it using a data caching strategy discussed in next section. It basically

consists of two relational databases – one used by DO module and one used by FD module. The

FD database is typically larger than the DO database, as more data are required to perform

anomaly detection procedures.

87

3) Data optimization (DO) module

Responsibilities of the DO module are two-fold. Firstly, it processes data collected from

machine tools to determine which data to be stored locally. Secondly, it also analyzes incoming

service requests from client applications to determine which data to be transmitted to whom. Its

primary focus is to reduce data transmission latency and bandwidth usage without increasing

information loss and also to enhance overall system scalability by storing and processing data at

the edge.

4) Fault diagnosis (FD) module

The FD module is responsible for monitoring and analyzing incoming machine tool data

to detect possible failure events during a manufacturing operation. Based on previous operational

data, it performs lightweight fault detection algorithms to determine if a new data is an anomaly

or not. In case of a fault, it alerts the user using error messages and initiates any pre-defined

mitigation tasks, such as raising alarms, immediately stopping ongoing processes etc., if

available. Details of the FD module is discussed in chapter 6.

5.2 Optimization of MTComm for MEM

As MEMs are primarily designed for constrained edge devices, it is necessary to adopt

optimization strategies for MTComm in order to reduce storage, latency, and processing power

requirements. In this section, we present three optimization strategies of MTComm for proposed

MEM -- data caching strategy, data transmission strategy, and operation optimization strategy.

The primary objective of these strategies is to reduce data transmission and processing latency,

bandwidth usage, and storage requirement of an MEM as much as possible without increasing

information loss by performing iterative tasks at the edge level.

88

5.2.1 Data caching optimization

An MTConnect agent, thus MTCagent usually contains a circular buffer storage to

temporarily store acquired data, where data are stored sequentially, and most recent data entry

overwrites the oldest one. As a machine tool usually generates significant amount of data at high

frequency and MTCagent stores every data collected from it, the buffer storage can fill up very

fast. Therefore, the buffer storage should be large enough to allow for adequate space required to

minimize information loss. Typically, MTConnect agents are deployed in desktop computers or

servers, which contain enough storage to fulfill this requirement. However, for a constrained

edge computing device, this can become a significant issue as large storage requirement leads to

increased cost. So, it is necessary to optimize data caching in an MEM to minimize storage size

and cost.

Therefore, MEM adopts a “hold-until-changed” approach where only unique dataitem

values are stored in the OD database along with associated timestamp and sequence number

while discarding repeating or redundant values. Algorithm 1 in Figure 22 illustrates our data

caching procedure. For simplicity, let us assume one MEM is connected to one machine tool. At

the beginning, MEM uses the probe document of associated device and creates an object for

each dataitem with related attributes, such as id, name, type etc., and value. When MEM collects

machine tool data for the first time, it stores all dataitem values in the database with id,

timestamp, and sequence number (which is 1 at this point). When next batch of data arrives,

unlike MTCagent which just stores these new data without any processing, the OD module

checks whether the new value of a dataitem is different from its previously stored value or not. If

same, the new value is discarded. Otherwise, a new entry is created in the database with this new

dataitem value, latest timestamp, and incremented sequence number. If no dataitem has new

89

Figure 22. Data caching strategy in MEM

value, then whole batch is ignored, and current sequence number remains the same. This way the

OD database only contains unique data for all dataitems. Sequence numbers and timestamps are

used to retrieve dataitem values at a certain time. The time interval between two consecutive

sequences indicate that the dataitem had the same value for that particular time period. Using this

method, information loss is minimized as all unique values are stored and timestamped, yet the

amount of data stored for a given time and thus size of local storage required are considerably

smaller than those of a conventional MTCagent. To minimize database size further, a user can

90

specify a maximum memory limit. If the OD database reach that limit, next data entry will

overwrite the oldest one.

5.2.2 Data transmission optimization

Usually when an MTCagent receives a current request, it immediately responds with

most recent dataitem values. It also allows client applications to perform queries with specific

parameters, such as dataitem id, sequence number, timestamp etc. Also using sample service, a

client application can request for data of a certain time interval, e.g. from sequence 20 to

sequence 85. Therefore, it is up to client applications to determine how to send requests to an

MTCagent. If a client wants to ensure that it receives all available data, it has to keep track of

what data sequences it previously received and also determine which sequences are to be

requested and how often. For a large-scale CPMS, this may lead to significant scalability issue.

Also, this may result in considerable data loss for simple client applications. In one experiment,

we developed a simple remote monitoring web application which was only capable of sending

consecutive current requests to an MTCagent and displaying data extracted from response

messages. The results showed considerable gaps between sequence numbers of consecutive

responses, ranging from tens to thousands, as data acquisition and conversion rate of the agent is

typically much faster than transmission rate over the Internet.

To overcome such issues, our proposed MEM keeps track of its clients and determines

which and how much data should be sent to a client upon current request. Figure 23 and 24

demonstrates the procedure used for preparing responses for a client. Alongside its database,

MEM maintains a key-value pair-based dictionary which contains ip addresses or URLs of all

client applications it has communicated with and sequence numbers of the most recent messages

91

Figure 23. Data transmission algorithm used in MEM

92

Figure 24. Process flow of data transmission strategy in MEM

transmitted to them. When MEM receives an incoming current request, the OD module uses

the client's address to check if this client has any entry in its client dictionary. If no pair is found,

then it identifies this client as a new one. Then an XML response message is created with most

recent values of all dataitems. As all dataitem objects holds their most recent values, this

particular step does not require fetching data from local OD database. The XML message is

timestamped and sequenced with corresponding values at that point. It also contains additional

93

information such as header elements, attributes of dataitems etc., which are acquired from the

probe document at the beginning. Then MEM sends an HTTP 200 response with the generated

XML message and adds an entry to its client dictionary with client's address as key and latest

sequence number used to create the response as value. When MEM receives a new request from

the same client, it finds its entry in the client dictionary and retrieves associated sequence

number. Then it searches for dataitems in the OD database associated with the next sequence

number. If no entry is found for this new sequence, it means the machine has not generated any

new data since the client's last query. So, MEM sends an HTTP 204 response with no content. In

case where MEM finds relevant database entries, it fetches those dataitem entries and create an

XML element for each entry using id and stored value of the dataitem, most recent timestamp

and sequence number, and other associated information. As mentioned in the previous section,

the OD database only stores dataitems with changed values, so the response XML only contains

dataitems with new data that were not previously transmitted to the client. After XML generation

is completed, MEM sends an HTTP 200 response with it and updates this client's entry in the

client dictionary with new sequence number. The client dictionary has a time-out functionality

that removes a client entry when its last sequence is no longer available in the OD database,

indicating that client has not communicated in a long time.

Using this strategy, MEM reduces bandwidth usage by preventing transmission of

repeating or redundant dataitem values. It enables faster data transmission and processing as

HTTP 204 responses has no message body and thus can be processed more quickly. Also, not all

dataitems change values in every data acquisition cycle, specially in idle states, so the HTTP

200 responses of proposed method contains fewer elements and thus requires less bandwidth in

94

average than a typical MTCagent. Furthermore, MEM keeps tracks of its clients and thus

enhance scalability of CPMSs.

5.2.3 Optimization of operation execution

 In MTComm experiments, the average operation initiation time (OIT) referring to the

time between a client application sending an operate request and the associated MTComm

adapter initiating the requested operation was found to be about 1 second. This rather large delay

can become an issue in specific manufacturing scenarios, specially for processes requiring real-

time or near real-time execution, such as emergency stopping of a machine tool in case of a

failure. Therefore, it is necessary to reduce this latency for the proposed MEM. In an operate

service, two processes are responsible for majority of this delay – receiving the POST request

containing the XML message and the two-step verification process. Both processes are

necessary, as the former one acquires operational information from the client application and the

later ensures associated machine’s security by verifying whether the requested operation and

provided information are safe to be executed. However, from our survey of different

manufacturing processes we noticed that in many regular manufacturing scenarios, one machine

tool typically performs similar operations iteratively with little to no change in parameters. For

example, many 3D printers only support one material type and thus the temperatures (extruder

and heatbed) are usually same for all printing jobs. Only information required for executing these

printing operations is the 3D model source. To stop an ongoing operation, no parameter is

required. For component operations, this phenomenon is more common. To move an axis of a

machine tool, the only parameter required is the destination coordinate value. For these types of

operations, sending an operate request with XML message is not necessary. Rather requesting

95

operations without sending an XML message can potentially lead to significant reduction in

execution time as both receiving and verifying an incoming request would be much faster.

 Therefore, we revisited our initial design of MTComm’s operate service and

introduced two execution modes – custom and default. The custom mode follows our initial

design of using HTTP POST method and XML messages and can be used for both single and

multiple operations. In default mode, an operate service for a single operation is requested

via HTTP GET method, similar to the current service. An MTComm agent contains default

configurations for most, if not all, associated operations. To initiate an operation, a client

application sends an HTTP GET request with unique id of the operation in the path of the

service URL as below –

http://10.5.55.7:10090/cnc_01/operate?path=//Operation[@id=”stop

Drilling”]

 Here, cnc_01 is the device name and the first path element refers to the probe XML

element associated with the requested operation (Device in the above example, as stopping a

drilling process is a device-level operation). Parameters can be added at the end of the request

URL by using the ‘&’ operator. Unique id of a parameter and its target value are combined using

the ‘=’ operator. Here are two examples of parameterized operate GET request –

http://10.5.55.7:10090/3dp_01/operate?path=//Operation[@id=”star

tPrinting”]&material=ABS&model=Box

http://10.5.55.7:10090/3dp_01/operate?path=//Actuators//Operatio

n[@id=”changeExtruderTemp”]&value=210

96

 When an MTComm agent receives an operate GET request, it extracts the operation

id and parameters (if any) from the request URL. The extraction process is almost instantaneous

compared to that of the custom mode, as it does not require to parse an XML message. Even if

an operation has hundreds of parameters (which is rather unlikely) and the service URL becomes

very large, the extraction will still be faster. If there is no parameter given, it loads the default

configuration for the requested operation and forwards instructions. No verification is needed

here, as the configuration is pre-defined by the user and thus is trusted. If the request URL

contains parameter values, those are verified against associated constraints to make sure they are

within acceptable range. This verification process is much faster than that of the custom mode, as

it does not include validating and parsing an XML message. Once verified, the agent sends these

parameters with the operation instructions to the adapter for initiating the requested operation.

 As an example, let us consider a 3D printer which uses two types of materials (PLA and

ABS) to print five different objects (ring, ball, box, triangle, and logo). The target extruder

temperatures for PLA and ABS are 200 and 230 degree Celsius respectively. The default object

and material type are set to be ring and PLA respectively. When the printer’s agent receives an

operate request via GET method without any parameter specified, default configurations are

loaded, and the printer starts printing a PLA ring at 200 degree Celsius. The client can choose to

print an ABS box by adding respective parameters and values in the service URL, as shown in

the URL example above. If a service request states extruder temperature to be 230 degree

Celsius, but does not specify ABS as material type, the verification process will identify the

request to be hazardous as the requested parameter value exceeds accepted temperature for

default material (PLA) and therefor will reject the operation. Thus, even with this simplified

default mode, all features of MTComm operations are retained.

97

 This does not eliminate the need for custom mode, however, as not all manufacturing

processes can be done in this manner, specially those that require interactions between multiple

machine tools or components. An example of such manufacturing scenario is performing a series

of testing operations of different machine components for fault diagnosis or regular maintenance.

Adopting both execution modes for MTComm operate service not only reduces the overall

average OIT, but also improves its robustness and provides users with the flexibility to choose

between them based on their requirements and preference.

5.3 Development and Implementation of a SoC FPGA based MEM

To fully realize its feasibility and potential, implementation of an MEM prototype was

necessary. In our earlier experiments, we used Raspberry Pi (RPi) devices running a Linux based

Raspbian operating system to deploy agent and adapter programs and established the proof-of-

concept. RPis were found to be capable enough to function as an MEM. However, in a real

manufacturing plant, RPis will not be a suitable and efficient choice for MTComm deployment.

Firstly, a RPi is small scale computer with its own operating system designed for generic uses.

Running MTComm programs in a RPi suffers from time delays caused by system functions and

procedures. Therefore, it may not support high-speed data exchange using MTComm, which is

often crucial for manufacturing processes. Secondly, RPis have limited I/O connectivity and may

not be enough for large scale manufacturing machine tools, which often contain complex bus based

communication interfaces. Last, but not the least, RPis do not promote plug-n-play feature, which

is crucial for developing a robust cyber-physical cloud framework. Using a dedicated device will

also provide better security and reduced latency. Therefore, we explored different high-

performance off-the-shelves embedded devices to implement a dedicated MEM prototype.

Considering the software and hardware flexibility that the proposed MEM architecture should

98

have, we found high-performance and reconfigurable SOC FPGA devices to be the best candidates

for prototype implementation.

We chose a Xilinx Zynq SoC FPGA as our development platform because of its wide

acceptability and high performance. Zynq devices integrates a 667 megahertz ARM Cortex-A9

dual-core processor (PS) with powerful silicon peripherals, a high performance low-power

consuming Programmable Logic (PL) of 28 nm, and 1GB DDR3L memory in a single embedded

device. SoC PS is capable of running lightweight Linux operating system (OS). Figure 25

illustrates the block diagram of the architecture of proposed MEM prototype. Components of

MEM are distributed between PS and PL based on their functionalities. AS PL is capable of faster

computation, computationally extensive tasks should be performed in PL as much as possible.

MTComm adapter is divided into two parts -- one for PS and one for PL. This is because in Zynq

devices some peripherals are only available to PS. Therefore, depending on the type of

communication interface a machine tool has, it can be only be connected to PS or PL. For example,

Zynq-7000 devices only have USB ports with PS, so machine tools with USB connectivity need

to be connected to PS. Analog sensors and actuators which can communicate via General Purpose

I/O (GPIO) pins can connect to PL. So, to support a wide range of machine tools, it's better to

deploy adapter programs for both PL and PS and leverage them appropriately. Additional data

acquisition modules like analog-to-digital converters (ADCs), data samplers etc. are also a part of

PL. Optimization module which requires to perform comparisons frequently is deployed in PL.

MTComm agent is deployed in the Linux OS of PS, as it requires protocol stacks and library

packages to host an HTTP server and process XML messages and also because Ethernet ports are

connected to PS only. Resource manager and security manager are also parts of PS as they may

require running sophisticated algorithms. PL, PS, and the memory are connected through a high-

99

Figure 25. Block diagram of Zynq SoC based MEM prototype

speed Advanced eXtensible Interface (AXI) interconnect bus. As the memory is shared, both PL

and PS modules can it via direct memory access modules.

For our implementation, we chose the Xilinx Zybo Z7 (Zynq-7010) FPGA development

board as it comes with different communication interfaces (GPIOs, UART, USB, JTAG, SPI, I2C,

and Gigabit Ethernet) and is only $200 (off-the-selves MTConnect adapters cost atleast $1000). A

lightweight Linux OS called Petalinux was installed in the PS. All peripherals except GPIOs were

connected to PS, so machine tools were connected to PS via USB/SPI/I2C and external analog

sensors like pressure sensor, vibration sensor etc., were connected to PL via GPIOs. Analog data

were converted using ADC and data sampler and sent to PL adapter, while PS adapter collected

100

data from machine controllers. These data were checked against previously stored data by the

optimization module before being stored into the memory. Agent, resource manager, and resource

manager programs along with all necessary packages were deployed in Petalinux OS. To reduce

processing time, only necessary packages such as peripheral drivers, HTTP and XML libraries,

encryption packages etc., were installed on a bare-minimum Petalinux distribution. Remote

operation was performed in similar fashion, but in reverse order.

The software tools and programming languages used for the implementation are listed below:

• Vivado 2018.3: It is Xilinx's official programming tool and was used for hardware design,

developing PL modules in VHDL language, and interconnecting the interfaces of PS and

PL.

• Software Development Kit (SDK): This tool is also provided by Xilinx and was used to

define and create the device tree, the FSBL (First Stage Boot Loader), and the Zynq boot

image required to run the Petalinux OS on the SoC. It was also used to load these to the

FPGA board.

• Python: This scripting language was used to program, compile, and execute programs for

PS modules (agent, PS adapter, resource manager, and security manager) in the Petalinux

OS. This was chosen particularly because all previous MTComm development were done

using Python, hence, the transition was easier than choosing a new language.

5.4 Results and Analysis

5.4.1 Evaluation of optimization strategies

To evaluate the performance of aforementioned optimization strategies, experiments were

conducted in a CPMC testbed with three machine tools, as shown in Figure 26. Ultimaker 2 and

101

Figure 26. Experimental setup for MEM experimentations

Bukito are 3D printers, and X-Carve is a CNC machine. Each machine tool was connected to a

Raspberry Pi (RPi) 3, which contained both MEM and legacy MTCagent programs developed in

Python. SQLite3 databases were used as local storages. Although one RPi had sufficient storage

and processing capacity to support all three machines, individual RPis were used to simulate a

manufacturing environment with multiple MTCagents. Ultimaker 2, Bukito, and X-Carve had

18, 14, and 10 dataitems respectively. A client application was developed and deployed in a

virtual machine (cloud server). Also, another web-based client application was developed for

Android smartphones, which communicated with MEMs directly. Both applications were

designed to continuously send current requests to RPis via HTTP GET, store and analyze

response messages, display extracted data values, and calculate response time and message size.

102

The performance of the implemented MEMs was compared with previously developed or

“legacy” MTCagents. Data were collected using both legacy and new methods from all machine

tools in different manufacturing scenarios. At first, only one machine was kept active at a time

and clients sent continuous requests to its RPi in both idle and busy (running an operation) states.

Duration of operations done by Ultimaker 2, Bukito, and X-Carve were about 5, 13, and 2

minutes respectively. Then data were collected in a 'Combined' state, where all three machines

were in busy state and clients queried machines sequentially (one-at-a-time), e.g. Ultimaker 2 →

X-Carve → Bukito → Ultimaker 2 and so on.

Performance of MEM was evaluated in three categories -- response time (RT) depicting

the time between client sending a current request and getting response back, minimum size of

local storage, and bandwidth usage or size of response messages. Table II and Figure 27 present

the comparison of average RT for each machine in both states calculated from 10000 consecutive

TABLE II. Average response time (RT) in milliseconds (ms)

Machine

name

Machine state Avg. RT for legacy

method (ms)

Avg. RT for

MEM (ms)

RT reduction

(%)

X-Carve

Idle State 7.365 ± 1.2 3.813 ± 0.9 48.228

Busy State 7.756 ± 1.3 4.002 ± 1.1 48.401

Ultimaker 2

Idle State 13.053 ± 2.7 6.438 ± 2.4 50.678

Busy State 16.057 ± 2.9 7.237 ± 2.6 54.929

Bukito

Idle State 12.931 ± 1.3 5.706 ± 1.7 55.874

Busy State 14.608 ± 2.9 6.255 ± 2.5 57.181

103

requests. In each case, MEM provided about 50-55 percent reduction in RT compared to legacy

method, 52.5 percent in average. In one study (Lynn et al., 2017), average time to complete an

MTConnect HTTP GET request using conventional method was 4.2 ms in a setup where

MTCagent and its client were close and part of the same local area network (LAN). In our setup,

all RPIs were given global static IP addresses and client applications communicated with

MTCagents and MEMs over Internet. Still average RT of MEMs was very close (5.6 ms).

As HTTP 204 responses contain no message body, clients can process such responses

quicker than HTTP 200 responses. Also, this reduces amount of data transferred or bandwidth

used, which is supported by Table III showing total local storage size required and total number

and size of messages transferred during an operation. For combined state, data were collected

from all machines, but results were calculated only for Ultimaker 2, to understand how collecting

data sequentially from additional machines affects performance of an agent. As MEM only stores

Figure 27. Comparison of average response time for legacy MTCagent and MEM

104

unique dataitem values, required size of local storage to store all available data during an

operation was more than 90 percent less in all cases (96.24 percent in average), compared to a

legacy MTCagent which stores all incoming data. This also shows that the minimum storage size

required to ensure minimal information loss is significantly smaller for proposed MEM, which is

very crucial for constrained edge devices. Table III also shows significant decrease in amount of

data (bytes) being transmitted by MEMs during an operation – 85.32 percent in average. number

of messages were also reduced in proposed method, except in combined state which showed a

19.32 percent increase. However, this increase actually indicates performance improvement, as it

shows that proposed method was able to extract more information in combined state than

conventional method. Legacy MTCagent has to process full-size responses from all three

TABLE III: Comparison of total size of local database and transferred messages

and total number of messages

 X-carve Bukito Ultimaker 2 Combined

Total size of

database

(bytes)

Legacy 3147732 13085696 2787263 1171046

MEM 8616 368640 102672 96635

Reduction 99.726 96.316 97.183 91.748

Total bytes

sent

Legacy 47739494 198461787 16489780 6928051

MEM 111439 47679347 2854141 2686327

Reduction 99.767 97.598 82.691 61.225

Total no. of

messages

Legacy 17449 50728 4201 1765

MEM 115 4699 2381 2106

Reduction 99.341 90.737 43.323 -19.32

105

TABLE IV. Average size of response message in bytes

Machine

name

Machine

state

Avg. size for legacy

method (bytes)

Avg. size for

MEM (bytes)

Size reduction

(%)

X-Carve

Idle State 2721 1.7 99.938

Busy State 2725.677 4.047 99.852

Ultimaker 2

Idle State 3896 6.847 99.824

Busy State 3923.496 64.616 98.353

Bukito

Idle State 3918 5.646 99.856

Busy State 3906.316 33.212 99.149

machines before querying the first machine again. This time delay is much smaller for MEM, as

its responses are shorter and, in some cases, empty. Therefore, in a given time, MEM allows

clients to query one machine in a multi-machine factory floor more frequently and thus receive

more messages leading to better information gain.

As depicted in Table IV, the average size of response messages also showed a significant

reduction in proposed method – 99.5 percent in average. This is expected though, as MEM only

sends changed values and thus generates smaller messages less frequently than a legacy

MTCagent, specially in idle states. For instance, 3D printers have temperature sensors for

extruders and heatbeds, which change values with room temperature. All other dataitem values

remain unchanged in idle states. Even in busy state, not all dataitems generate new values in

every clock cycle. For example, the "AVAILABILITY" dataitem of a machine only changes its

value at the start and end of an operation, so is only required to be transmitted twice during a

106

manufacturing process. Legacy MTCagent still reports all values to client and thus wastes

bandwidth.

5.4.2 Evaluation of SoC MEM prototype

To evaluate the performance of our SoC FPGA based MEM prototype, it was used with

machine tools of two Uark cells of the CPMC testbed described in Chapter 4, as shown in Figure

28. The prototype replaced the previously used RPis and experiments were conducted to measure

latency between client’s requests and agent’s responses for current and operate services.

Figure 28. Experimental setup for evaluation of MEM prototype

107

The results at different stages of MTComm development were compared for evaluation. The

stages are – stage I with initial design as described in Chapter 3 and 4, stage II after adopting

optimization strategies discussed above, and finally stage III with our MEM prototype.

The first evaluation criterion was the average response time (RT) for monitoring using

current service, which refers to the time between a client application sending a current

request and getting a response back from an MTComm agent. Average RT was calculated for

each machine type in CPMC testbed by sending 10000 consecutive requests ten times (total

100000 samples) in both idle and busy (while machine was executing an operation) states. Table

V and Figure 29 show resultant average RTs in tabular and graphical formats respectively. RTs

of the 3D printers were considerably higher than other machines as they had more dataitems and

thus had larger XML response message. At each development stage, average RT was

significantly reduced for all machines. Adopting the data caching and transmission optimization

TABLE V. Average response time (RT) at different stages of MTComm

Stages Data type X-Carve Ultimaker2 Buktio Uarm

I Avg. RT (ms) 8.8106 14.5565 13.7675 7.5605

II

Avg. RT (ms) 4.1075 6.8374 5.9805 3.8149

Decrease (%) 53.38 53.0285 56.5607 49.5417

III

Avg. RT (ms) 1.2184 2.534 2.0363 1.0792

Decrease (%) 86.1712 82.592 85.2094 85.7281

108

Figure 29. Comparison of average RT at different stages of MTComm

strategies resulted in an average reduction of about 53.13 percent. The reduction was even larger

for our FPGA MEM prototype compared to the initial design, about 84.93 percent in average. As

mentioned before, in a study by Lynn et al. (2017), average RT of an MTConnect agent in a

LAN was found to be 4.2 ms In our setup, all RPIs were given global static ip addresses and

cloud applications communicated with MTComm agents over Internet. Still average RT in stage

II was very close (5.19 ms), while stage III RT was better (1.72 ms).

These experimental results depict that our design choices can not only enable faster data

acquisition in MTComm, but also be applied to MTConnect systems and improve performance,

as monitoring services are similar for both methods (Sunny, Liu & Shahriar, 2020).

Next, we measured the average operation initiation time (OIT) referring to the delay

between client sending operate request and MTComm adapter initiating the requested

operation. Like before, we conducted experiments in three stages. As our primary goal is to

109

TABLE VI: Comparison of average operation initiation time

Stage Data type Request with

no parameter

Request with

one parameter

Request with

three parameters

Request with

five parameters

I Avg. OIT (ms) 988.3203 997.8515 1016.3986 1056.7108

II Avg. OIT (ms) 5.0172 5.5094 6.1969 7.4606

Reduction (%) 99.4924 99.4479 99.3903 99.2940

III Avg. OIT (ms) 3.0063 3.2652 3.8735 4.8178

Reduction (%) 99.6958 99.6728 99.6189 99.5441

compare between original (custom/POST) method with the optimized (default/GET) method,

only default mode was used for stage II and III experiments. Four scenarios were simulated in

each stage – operate request with 0, 1, 3, and 5 parameters respectively. Average OIT was

calculated from 100 operate requests for each machine type in each scenario (total 400

samples). As shown in Table VI, our optimization led to remarkable reduction in OIT. Average

reduction of OIT was about 99.41 percent at stage II and 99.63 percent at stage III. Average OIT

for custom mode was similar in stage II with slight reduction (about 15%) in stage III. These

results prove our design choices’ efficiency and thus enhance MTComm's feasibility and

performance.

5.5 References

de Brito, M. S., Hoque, S., Steinke, R., Willner, A., & Magedanz, T. (2018). Application of the

fog computing paradigm to smart factories and cyber‐physical systems. Transactions on

Emerging Telecommunications Technologies, 29(4), e3184.

Lynn, R., Louhichi, W., Parto, M., Wescoat, E., & Kurfess, T. (2017, June). Rapidly deployable

MTConnect-based machine tool monitoring systems. In ASME 2017 12th International

Manufacturing Science and Engineering Conference collocated with the JSME/ASME

110

2017 6th International Conference on Materials and Processing. American Society of

Mechanical Engineers Digital Collection.

McKee, D. W., Clement, S. J., Almutairi, J., & Xu, J. (2018). Survey of advances and challenges

in intelligent autonomy for distributed cyber-physical systems. CAAI Transactions on

Intelligence Technology, 3(2), 75-82.

Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and

challenges. IEEE internet of things journal, 3(5), 637-646.

Sunny, S. M. N. A., Liu, X. F., & Shahriar, M. R. (2017, June). Mtcomm: A semantic ontology

based internet scale communication method of manufacturing services in a cyber-

physical manufacturing cloud. In 2017 IEEE International Congress on Internet of

Things (ICIOT) (pp. 121-128). IEEE.

Sunny, S. M. N. A., Liu, X. F., & Shahriar, M. R. (2020). Development and optimization of an

MTConnect based edge computing node for remote monitoring in cyber manufacturing

systems. In 2020 IEEE International Conference on Fog Computing (ICFC). IEEE. In

Press.

111

CHAPTER 6

FAULT DIAGNOSIS USING MTCOMM IN THE CLOUD AND AT THE EDGE

 Fault diagnosis of machine tools is a crucial aspect of manufacturing as accurate and

timely detection of failures and effective maintenance action can significantly reduce unplanned

downtime and improve productivity (Saez et al., 2017). However, due to noise caused by

components and part interactions during a manufacturing process, implementation of accurate

diagnosis has not been completely feasible (Isermann, 2011). Also, health states of machine tools

are typically measured and diagnosed by both visual inspection and manual maintenance which

mainly relied on professional experience and knowledge of individual experts. Whenever a fault

is detected, or a maintenance action is required, one or more personnel needs to physically go to

the factory floor and test the machine tool in question manually. In cases of false positive

detection, it often leads to waste of time, money, labor, and productivity. No research was found

to offer remote online testing of manufacturing machine tools directly from cloud applications,

mostly due to lack of feasible communication method and heterogeneity of machine tools.

To address this issue, we developed a fault diagnosis mechanism in CPMC that allows

users to perform diagnosis and maintenance of manufacturing machine tools through both remote

monitoring and online active testing using MTComm (Sunny et al., 2017; Sunny, Liu &

Shahriar, 2018). With its remote operation capability, MTComm provides manufacturers with

options for performing available testing operations of machine tools and associated equipment

over the Internet for regular maintenance and fault diagnosis at both device and component level.

Thus, manufacturers can both monitor and perform online testing and maintenance operations of

different machine tools situated in geographically different locations form cloud applications

without being physically present in the factory floor. MTComm allows user to confirm a

112

machine’s condition through remote testing before sending someone to factory floor and saves

time, labor, and cost. It also enhances production automation and efficiency through a cloud

platform. Experiments were conducted in CPMC testbed to evaluate its performance to diagnose

faults and test machines tools during various manufacturing scenarios. The results demonstrated

excellent feasibility to detect anomaly during manufacturing operations and perform active

testing operations remotely from cloud applications using MTComm.

6.1 Fault Diagnosis in the Cloud

6.1.1 Diagnosis Center in CPMC

 Diagnosis center is a cloud application in CPMC that monitors machine tools, detects

fault/anomaly if any, identifies probable component(s) causing fault/anomaly, and provides

remote testing options. Depending on the number and complexity of connected machine tools,

the cloud can contain multiple instances of the diagnosis center, each responsible for one or more

machine tool(s). It is divided into three modules based on functionality as below (Figure 30) –

• Data monitoring (DM) module – This module constantly monitors streaming data of

associated machine(s).

• Fault/anomaly detection (FAD) module – This module uses statistical techniques or

machine learning algorithms to detect anomaly in the acquired data.

• Remote active testing (RAT) module – Using MTComm ontology, this module

determines which component(s) is the most probable candidate for causing fault/anomaly

and provides dynamic options for performing online active testing of that component(s)

over the Internet.

113

Figure 30: Conceptual framework for fault diagnosis center in CPMC

6.1.2 Fault/anomaly detection using MTComm

 For efficient fault/anomaly detection using MTComm, we extended existing MTComm

mechanism by adding two operational modes to MTComm probe, current, and sample

services - NORMAL and DIAGNOSIS. In NORMAL mode, MTComm shows only machine

tool and its components’ selective data elements and operations. In DIAGNOSIS mode,

however, MTComm provides all available information of factory floor including

interconnections, software (agent and adapter), machine tool and its components. It also offers

more operations than NORMAL mode, operations that are to be used for testing and

maintenance. The reason behind having two different mode is two-fold. Firstly, to perform usual

machine operations and monitor machine health, not all available data are necessary. For

example, to print objects with a 3D printer, information about specific component operations like

114

axes movement are not required. Secondly, it gives manufacturers the flexibility to choose which

data to be transmitted and how frequently. For diagnosis purpose, it may require acquiring data

at a higher frequency than during a normal operation. Therefore, streaming the primary data not

only reduces the time required for data acquisition, conversion (to XML), and transmission, but

also optimizes bandwidth use and factory floor network traffic. However, having two modes is

not a must; it is up to a manufacturer to select how many modes there would be, and which

information would be transmitted when. Thus, MTComm provides scalability and flexibility to

manufacturers. Figure 31 illustrates what type of information is provided by probe service of a

3D printer for both modes.

In MTComm, the type of an EVENT or SAMPLE dataitems is either ACTUAL or

INSTRUCTIONAL (INST). ACTUAL type dataitems are data representing actual value

collected by from sensors. INST type dataitems show values given by a machine’s controller

unit. Most manufacturing machine tools require a set of machine commands to perform an

operation. When queried, the machine’s controller reports certain data, like axes positions, based

on the command being executed. These data are INST values. In normal conditions, the

difference between ACTUAL and INST value of a dataitem should be within an acceptable

threshold. This feature is used to identify anomaly with EVENT and SAMPLE dataitems. As

EVENT category dataitems can only have a few pre-defined string values, anomaly is detected

when INST and ACTUAL values do not match. Anomaly with SAMPLE dataitems, on the other

hand, is more complex to detect and requires anomaly detection techniques.

Let a machine tool has n components. The machine itself and each component has m

unique dataitems. For simplicity, let all unique dataitems have both ACTUAL value (Da1, Da2,

…, Dam) and INST value (Di1, Di2, …, Dim). ACTUAL values can be represented as

115

(a) NORMAL mode

(b) DIAGNOSIS mode

Figure 31. Information provided by probe service of a 3D printer in both modes

116

𝐷𝑎𝑘
𝑡 = 𝐷𝑖𝑘

𝑡 ± 𝑇ℎ𝑘 (1)

where 𝐷𝑎𝑘
𝑡 and 𝐷𝑖𝑘

𝑡 are ACTUAL and INSTRUCTIONAL value of k-th dataitem at time t, and

Thk is the threshold value for k-th dataitem. For each dataitem, deviation between two values at

time t is calculated –

𝑑𝑘
𝑡 = 𝐷𝑎𝑘

𝑡 −𝐷𝑖𝑘
𝑡 (2)

An anomaly flag (a) is calculated for each dataitem –

𝑎𝑘
𝑡 = {

1, 𝑖𝑓 𝑑𝑘
𝑡 < 𝐿𝑇ℎ𝑘 𝑜𝑟 𝑑𝑘

𝑡 > 𝑈𝑇ℎ𝑘
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3)

where 0 indicates no anomaly was detected and 1 means an anomaly was flagged, 𝑈𝑇ℎ𝑘 and

𝐿𝑇ℎ𝑘 refer to upper and lower threshold values respectively. Determining these threshold values

is very crucial, as it is used as the ultimate decider to identify a data as anomaly. Having a pre-

determined threshold value can cause erroneous calculation. Therefore, the threshold values are

determined by statistical techniques or machine learning algorithms for anomaly detection. The

proposed system does not specify which detection technique to be used.

For data that can only be acquired from sensors, not from machine controller (e.g. motor

vibration, acceleration, material weight etc.), outliers are detected by three-sigma rule using only

ACTUAL values. In practice, instead of calculating anomaly flag for a single time instant, the

calculation is done over a small time window to reduce occurrence of false positive incidents.

For a time window of length tw, the overall anomaly flag (A) –

𝐴𝑘
𝑡 = {

1, 𝑖𝑓 ∑ 𝑎𝑘
𝑡

𝑡

𝑡=𝑡−𝑡𝑤

 > 𝐴𝑇ℎ𝑘

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4)

117

Here, 𝐴𝑇ℎ𝑘 refers to anomaly threshold which is the acceptable number of anomalies for

a certain time window. Anomaly scores are calculated for ‘Event’ dataitem s as well.

A machine’s total anomaly score is calculated by summing anomaly flags of all dataitem

s for a given time. However, some dataitems are more sensitive than others. For example, slight

variation of axis position of a CNC machine is acceptable during an operation, but if the

vibration of the drill motor is off the chart, the operation needs to be terminated immediately. For

this reason, each dataitem is assigned a certain weight (w) which is multiplied to the anomaly

flag of that dataitem. The value of w increases with the priority and sensitivity of the dataitem.

Therefore, a machine’s anomaly score (MAS) at time t is given by –

𝑀𝐴𝑆 = ∑∑𝑤𝑗𝑘
𝑡 . 𝐴𝑗𝑘

𝑡

𝑚

𝑘=1

𝑛

𝑗=1

(5)

If the FAD module detects a high MAS, an alarm is raised, and an emergency stop

command is sent to the machine’s agent. If MAS value is in medium range, FAD issues a

warning, but the operation continues. In either case, FAD initiates DIAGNOSIS mode after an

anomaly is detected and the operation is stopped or finished.

6.1.3 Online Active Testing using MTComm

 Using MTComm’s remote operation capability, the remote active testing (RAT) module

in the diagnosis center enables testing of machine tools and associated components over the

Internet. When a machine is connected to the CPMC for the first time, its corresponding RAT

module collects its ontological representation and all available information including its

organization, available dataitems and operations via MTComm probe service in DIAGNOSIS

mode. RAT uses these information to create a virtual copy of the machine and associated

118

components using its MTComm ontology. The hierarchical representation clearly defines a

factory floor’s organization and allows RAT module to easily pinpoint components related to an

anomalous dataitem and provide model driven dynamic online testing options. RAT can be used

to perform testing of a machine tool regardless of occurrence of a fault. In normal conditions, it

offers user to perform any available testing operation remotely. In case of a fault, RAT provides

dynamic testing options – it tries to identify the most probable component(s) responsible for the

fault and shows specific related operations available to test the component(s). This is done using

weighted anomaly scores calculated by FAD. Components with high anomaly scores are most

likely to be causing faults.

Online active testing operations are divided into three categories – software testing,

interconnection testing, and machine testing. All testing operations are performed via RESTful

web services hosted by the agent. Software testing operations involve running pre-defined scripts

to test various functionalities of the MTComm agent and adapter programs. The agent testing is

performed from the cloud application, while the adapter testing is conducted by the agent, as

there is no direct link between the cloud and the adapter. There are three primary

interconnections in a CPMC setup – between cloud application and agent, between agent and

adapter, and between adapter and machine. Each of them has its own interconnection testing

operation. Machine testing operations include testing of a machine as-a-whole and its

components. A machine tool as-a-whole is tested either by running a set of pre-defined

commands or by performing a certain machine level operation. Component testing operations

involve performing operations with a specific component. Operations are performed using

MTComm’s operate service. It involves sending description and parameters of an operation in

119

Figure 32. Example of user interface for RAT module of a diagnosis center in CPMC

MTComm XML format to the machine’s agent. Specific testing services can be added if

necessary.

Figure 32 illustrates an example user interface of a RAT module for a 3D printer. It

represents a state when Y axis motor was disconnected, and extruder temperature was slightly

drifting from its normal values. When performing testing operations over the Internet, the data

monitoring and FAD module respectively acquires and analyzes data in DIAGNOSIS mode. The

collected data and analysis results are shown to the user to help remotely identifying which

component is behaving erratically and is causing fault(s).

6.2 Fault diagnosis at the edge

 Data-driven fault diagnosis and prognosis is typically performed in central cloud servers

120

or local servers (private/edge cloud), as data analysis algorithms with better accuracy require

extensive computational power. However, despite radical improvement in data transmission

speed and hardware processing time, there still exists considerable delay between fault

occurrence in factory floor and fault detection in servers. To improve current scenario, we

propose to include lightweight in-situ fault diagnosis mechanisms in MEMs to provide faster

fault detection and response. It should be noted that, MEMs are not a replacement of existing FD

systems. Rather an MEM aims to assist cloud-based data analysis programs by performing small-

scale repetitive data processing tasks close to physical machines. Thus in a CPMC, MEMs

perform preliminary fault detection, while FD system in cloud servers conduct more advanced

analysis. The responsibilities of an MEM FD module is three-fold - data cleaning, fault

detection, and mitigation.

A. Data cleaning/filtering

Not all changes in sensor data are significant for fault diagnosis. For example, a typical

temperature sensor can measure the temperature of a 3D printer’s extruder up to 45 decimal

places. Changes after 2 decimal places can often be disregarded, specially in idle states. So,

instead of sending all changed data to cloud servers, an MEM performs data cleaning or filtering

before transmission by discarding unnecessary data values. This filtering can be based on manual

specifications or statistical computation. In the former method, a user specifies criteria for data

cleaning (e.g. sending temperature values with 2 decimal places only). An MEM can also

perform simple statistical data analysis to calculate threshold values and identify certain

anomalous data points that are within acceptable range and can be ignored. Thus MEMs can not

only reduce bandwidth usage, but also improve overall data processing efficiency of FD in a

CPMC.

121

B. Fault detection

The FD module monitors streaming time series sensor data to identify possible

anomalous data points. Training with data from previously normal operations can be done in two

ways - user can provide old data files at the beginning, or MEM can collect data from several

operations and use those as training dataset (assuming normal operations). Once training is

complete, FD module uses the trained model to analyze new data values and identify possible

anomalies. Each incoming data value is given one of three anomaly scores based on a threshold

upper and lower limit - normal (0), warning (0.5), fault (1). If warning thresholds are not

available, then a data point is either normal or fault. Threshold values (th) for each category are

computed using pre-selected anomaly detection algorithm. To improve accuracy, anomaly scores

(A) are calculated by adding scores over a small time window (tw) (6). Using MTConnect’s

semantic ontology, an MEM calculates individual anomaly scores for different dataitems of a

device and finally compute an overall machine anomaly score (MAS) to determine if the

machine is normal or faulty. In most manufacturing processes, dataitems have different levels of

priority and sensitivity. So each dataitem is assigned a certain weight (w) which is multiplied

with its anomaly score to compute MAS (5). Thus even if multiple sensors have “warning”

values, the MAS can be either faulty or normal depending on their weights.

 𝐴𝑘
𝑡 = {

1, if ∑ 𝑎𝑘
𝑡 ≥ 𝑓𝑇ℎ𝑘

𝑡
𝑡−𝑡𝑤

0.5, if 𝑤𝑇ℎ𝑘 ≤ ∑ 𝑎𝑘
𝑡 ≤ 𝑓𝑇ℎ𝑘

𝑡
𝑡−𝑡𝑤

0, otherwise

 (6)

As MEMs are designed for constrained embedded platforms, it is necessary to determine

which FD algorithms are best suited for them. The most efficient FD method for MEMs is the

one that can autonomously detect anomalies with best accuracy with least amount of training

data (storage) and lowest delay. As most sensors generate univariate one-dimensional time series

122

data, simple statistical methods can be used to identify point anomalies. Instead of limiting to

develop and fine-tune a single algorithm, we explored different commonly used approaches

described below as proof-of-concept.

1) Three-sigma (3σ) rule: The concept of three-sigma rule of thumb is that nearly all values

of a distribution lie within three standard deviations (σ) of the mean (µ) (Pukelsheim, 1994). Any

value beyond this 3σ limit is considered as an outlier. For normal distributions, 99.73% values lie

within 3σ limit and 95.45% within 2σ limit. From previous experiments with our testbed, we

found that most of the sensor data are normally distributed, thus were suitable to be used with the

three-sigma rule. In MEM, we identified 2σ limit as warning threshold and 3σ limit as fault

threshold, as shown in (9).

𝜇 =
1

𝑛
∑𝑥𝑖

𝑛

𝑖=1

(7)

𝜎2 =
1

𝑛
∑(𝑥𝑖 − 𝜇)

2

𝑛

𝑖=1

(8)

𝑎𝑘
𝑡 =

{

1, if 𝑣𝑎𝑙𝑢𝑒𝑡 < 𝜇 − 3𝜎 or 𝑣𝑎𝑙𝑢𝑒𝑡 > 𝜇 − 3𝜎

0.5, if 𝜇 − 3𝜎 ≤ 𝑣𝑎𝑙𝑢𝑒𝑡 ≤ 𝜇 − 2𝜎

 or 𝜇 + 2𝜎 ≤ 𝑣𝑎𝑙𝑢𝑒𝑡 ≤ 𝜇 + 2𝜎
0, otherwise

 (9)

2) Interquartile range (IQR): Interquartile range (IQR) refers to the difference between 75th

and 25th percentiles, or between upper (Q3) and lower (Q1) quartiles of a distribution (Upton &

Cook, 1996). IQR is often used to find mild and extreme outliers in data with median as center.

In MEM, IQR is used as below –

𝑎𝑘
𝑡 =

{

1, if 𝑣𝑡 < 𝑄1 − 3𝐼𝑄𝑅 or 𝑣𝑡 > 𝑄3+ 3𝐼𝑄𝑅

0.5, if 𝑄1 − 3𝐼𝑄𝑅 ≤ 𝑣𝑡 ≤ 𝑄1− 1.5𝐼𝑄𝑅

 or 𝑄3 + 1.5𝐼𝑄𝑅 ≤ 𝑣𝑡 ≤ 𝑄3+ 3𝐼𝑄𝑅
0, otherwise

 (10)

123

3) Moving Average Filter (MAF) and Moving Median Filter (MMF): Moving average filter

is widely used for anomaly detection and eliminating white noise in sensor data. When a new

data arrives, average and standard deviation (σ) is calculated of last W data values, where W is a

sliding window of fixed size (Upton & Cook, 1996), as shown in Equation (7) and (8). If new

data differs too much from moving average (more than σ), it is registered as outlier. A hyper-

parameter (between 0 and 1) is used to regulate sensitivity to anomalies, and thus identify mild

and extreme outliers.

The Moving Median Filter is similar, but uses median instead of average, as median is

more robust against anomalies (Hochenbaum, Vallis & Kejariwal, 2017). One advantage of

using MAF or MMF in MEM is that we can add new normal data points to existing window and

calculate new moving average and (σ) keeping the size of window, and thus storage, fixed.

4) Seasonal Hybrid ESD (SH-ESD): This algorithm was developed by Twitter as an

extension of the Extreme Studentized Deviate (ESD) test (Rosner, 1975) for finding outliers in

univariate time series data (Hochenbaum, Vallis & Kejariwal, 2017). It uses an upper bound on

the number of anomalies. In the worst case, the number of anomalies can be at most 49.9% of the

total number of data points in the given time series. In practice, our observation, based on

production data, was that the number of anomalies was typically less than 1% in the context of

application metrics and less than 5% in the context of system metrics.

ESD test is defined for the hypothesis:

H0: There are no outliers in the data set

H1: There are up to k outliers in the data set

A test statistic is computed for a given time series data set which is defined as follows –

124

𝐶𝑘 =
𝑚𝑎𝑥𝑘 |𝑥𝑘 − 𝑥̅|

𝑠
 (11)

Where,

 𝑥̅ = mean of the time series

 𝑠 = standard deviation of the time series

The test statistic is then compared with a critical value, computed using Equation (12), to

determine whether a value is anomalous (Rosner, 1983). The number of anomalies is determined

by finding the largest k such than 𝐶𝑘 > 𝜆𝑘 .

𝜆𝑘 =
(𝑛 − 𝑘)𝑡𝑝,𝑛−𝑘−1

√(𝑛 − 𝑘 + 1 + 𝑡𝑝,𝑛−𝑘−1
2)(𝑛 − 𝑘 + 1)

(12)

𝑝 = 1 −
𝛼

2(𝑛 − 𝑘 + 1)
 (13)

Where,

 n = total number of data points

 tp,n-k-1 = the 100p percentage point from the t distribution with n-k-1 degrees of freedom

 α = significance level

SH-ESD first decomposes a time series using Seasonal-Trend Decomposition (STL)

(Cleveland et al., 1990) to extract seasonality (S). Then the residual (R), which is the distance

between observed data and the best-fit curve calculated by STL, is calculated using Equation

(14), where X is the raw time series and 𝑋̃ is the median of the raw time series.

𝑅 = 𝑋 − 𝑆 − 𝑋̃ (14)

The residual has a normal distribution and thus is compliant with anomaly detection

techniques like ESD. However, mean and standard deviation are sensitive to anomalous data.

Therefore, the better choice here is to use median and median absolute deviation (MAD), as

these metrics are more robust against anomalies. For a univariate data set X1, X2, ..., Xn, MAD is

125

defined as the median of the absolute deviations from the sample median, as shown below –

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛𝑖(|𝑋𝑖 −𝑚𝑒𝑑𝑖𝑎𝑛𝑗(𝑋𝑗)|) (15)

So, the test statistics of ESD becomes

𝐶𝑘 =
𝑚𝑎𝑥𝑘 |𝑥𝑘 − 𝑥̃|

𝑀𝐴𝐷
 (16)

To identify point anomaly in MEM, a new data point is added to testing dataset and then

SH-ESD is used to find two anomaly points in the new dataset. If the new data is found among

anomalies, it is considered as an anomaly.

5) Univariate Gaussian Predictor (UGP): The Univariate Gaussian Predictor creates a

historical model of time series data and then predict and compare new values (Hayes & Capretz,

2014). It calculates mean (µ) and variance (σ2) from training data and then classifies each new

value (xt) based on its probability in the distribution, p(xt) which is defined by Equation (17). A

threshold value is set to decide which probabilities are lower than the threshold value to be

considered as anomalies.

𝑝(𝑥𝑡) =
1

√2𝜋𝜎
exp−

(𝑥𝑡 − 𝜇)2

2𝜎2

(17)

C. Mitigation

When a fault is detected, an MEM automatically initiates pre-defined emergency

mitigation tasks such as immediately pause/stop the current operation, power off faulty machines

or tools, sounding an alarm etc. MEM also adopts active testing mechanism described in Section

6.1.3 in small-scale. The FD module uses MTComm ontology and anomaly scores to pin-point

faulty component(s) and reports to client. If testing routines for specific components are

available, MEM can also perform autonomous testing of fault component(s). As an MEM is in

126

close proximity of a machine, it can complete such actions much faster than a cloud-based FD

system, and thus prevent possible hazardous situations.

6.3 Experiments in CPMC testbed and evaluation

6.3.1 Experiments of fault diagnosis in the cloud

 A cloud application for diagnosis center was developed and deployed in the CPMC

testbed for each machine tool in Uark sites. Each diagnosis center was trained with data acquired

from five normal operations of the associated machine. Table VII lists Dataitems, faults, and

available testing operations of the machines in the testbed. Alongside MTComm’s six primary

services, two more services were added to each agent – ping, which tested interconnections,

and log, which kept a historical log of events. Faults were created intentionally, both before and

during operations. MTComm allows machine tools to communicate with each other

autonomously, which facilitates to perform collaborative manufacturing operations involving

multiple machines. The bottom row of Table VII refers to collaborative operation scenarios.

Experiments conducted with the prototype system used two statistical anomaly detection method

– three sigma rule (Pukelsheim 1994) and Tukey’s method (Tukey 1949). The concept of three-

sigma rule of thumb is that nearly all values (99.7%) lie within three standard deviations (σ) of

the mean (μ). Any value beyond this 3σ limit is considered as an outlier. For this method,

anomaly scores are calculated with following equation –

𝑎𝑘
𝑡 = {

1, 𝑖𝑓 𝐷𝑎𝑘
𝑡 < 𝜇𝑘 − 3𝜎𝑘 𝑜𝑟 𝐷𝑎𝑘

𝑡 > 𝜇𝑘 + 3𝜎𝑘
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (18)

Tukey’s method uses the inter-quartile range (|Q3-Q1|, where Q1 and Q3 are first and third

quartile respectively) to determine upper and lower threshold value. Using this method, equation

(19) becomes –

127

TABLE VII. Dataitems, faults, and available testing Operations in CPMC testbed

Machine

tool

Primary Dataitems Faults Testing Operations

3D printers

(Ultimaker

2, Core

XZ,

Bukito)

Machine availability,

Axes positions,

Material weight,

Motor vibration,

Progress rate,

Extruder temperature,

Heatbed temperature

(not for Bukito)

Broken connection

(between adapter and

machine, between agent

and adapter)

Use ping service to test

interconnections

No material loaded No test available

X, Y or Z axis motor

disconnected

Move corresponding axis

Very High/low extruder

or heatbed temperature

Change extruder or

heatbed temperature

CNC

Machine

(X-carve)

Machine availability,

Axes positions, Axes

Motor vibration, Drill

motor vibration,

Progress rate

Broken connection

(between adapter and

machine, between agent

and adapter)

Use ping service to test

interconnections

Drill motor has no

power

Run drill motor

X, Y or Z axis motor

disconnected

Move corresponding axis

Robotic

Arms (U-

arm)

Machine availability,

Axes positions, Axes

Motor vibration,

Progress rate

Broken connection

(between adapter and

machine, between agent

and adapter)

Use ping service to test

interconnections

X, Y or Z axis motor

disconnected (before

and during operation)

Move corresponding axis

Collaborat-

ive

operation

All dataitems of

associated three

machines (Ultimaker

2, X-Carve, one U-

arm)

Broken connection

(between Ultimaker 2

and U-arm, between U-

arm and X-carve)

Test connection with the

faulty agent

128

𝑎𝑘
𝑡 = {

1, 𝑖𝑓 𝐷𝑎𝑘
𝑡 < 𝑄1 − 3|𝑄3 −𝑄1| 𝑜𝑟 𝐷𝑎𝑘

𝑡 > 𝑄3 + 3|𝑄3 −𝑄1|
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (19)

Figure 33 illustrates examples of anomaly detection with time series data for two

dataitems (Extruder temperature of Ultimaker 3D printer and Y axis position of CNC machine).

The response time to detect an anomaly/fault by the diagnosis center was found to be around

200-500 milliseconds. The average time to initiate an operation was about 1 second. This higher

value was expected as verification of incoming operation request by agent added some delay.

Experiments were also conducted to determine effectiveness of fault detection with

INSTRUCTIONAL value and remote testing capabilities using MTComm over the Internet. 40

operations were conducted with four target dataitems (10 operations each, 5 with fault and 5

without fault) of two machines – x axis position and extruder temperature of a 3D printer, and y

axis position and drill motor vibration of a CNC machine. Both anomaly detection techniques

were used in each case. To evaluate the efficiency, F-scores were calculated by using following

set of equations (Hochenbaum, Vallis & Kejariwal, 2017) –

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑡𝑖𝑣𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

(20)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑡𝑖𝑣𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑡𝑖𝑣𝑒𝑠

(21)

𝐹 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(22)

Table VIII summarizes the outcomes. Analysis with only ACTUAL values was unable to

determine faults with axes positions. The results indicate that using INSTRUCTIONAL value

increases overall accuracy for both anomaly detection methods. When remote testing capability

was used to confirm faults, accuracy was even higher. It was also observed that while remote

testing significantly reduced number of false positive cases, it was not useful in false negative

129

cases as no error was detected. To reduce occurrence of false negatives, anomaly detection

method with higher accuracy is required.

(a) Data of Y axis position of ‘X-Carve’ CNC machine

(b) Data of extruder temperature of ‘Ultimaker 2’ 3D printer

Figure 33. Graphs showing example time series data machine tools. Sudden spikes are due to

intentional faults. Green and red lines are thresholds calculated by three-sigma and Tukey’s

method respectively

130

TABLE VIII. F-score (%) in different scenarios

Anomaly

detection

methods used

without INSTRUCTIONAL values with INSTRUCTIONAL values

before remote

testing

after remote

testing

before remote

testing

after remote

testing

three-sigma 54.55 57.14 91.89 97.44

Tukey’s 57.14 59.65 96.10 97.47

6.3.2 Experiments of fault diagnosis at the edge

 Experiments of fault diagnosis in MEM were conducted with the same CPMC testbed

described in Section 4.4.1. Fault diagnosis experiments were conducted with two 3D printers.

For simplicity, we focused on two dataitems - vibration of x axis motor and temperature of the

extruder, and categorized data points as either normal or fault. Both sensor values were found to

be normally distributed. Three training datasets with data from one(tr-1), five(tr-5), and ten(tr-

10) normal operations respectively were provided a-priori. Two types of faults were manually

induced during a 3D printing operation - hitting the motor (sudden change in vibration) and

changing extruder temperature (both sudden and gradual change). Once training was done, same

operation was run five times and two faults, one of each type, were induced each time. Overall F-

score and average detection delay (time between faulty data arrival and detection) for different

FD methods are shown in Table IX.

 All FD methods were able to detect induced faults in almost all cases, as faulty data had

significant gap with normal data, but numbers of false positive detection were widely varied. In

case of 3σ, IQR, and UGP, parameters like mean, variance etc. were calculated before an

operation started, so anomaly detection was almost instantaneous (delay in UGP was higher as

131

TABLE IX. Overall F-score (%) with different training datasets and average detection delay (ms)

for different FD methods

Method

name

F-score (%)

with tr-1

F-score (%)

with tr-5

F-score (%)

with tr-10

Average

delay(ms)

3σ 38.461 54.054 68.966 << 0.001

IQR 43.478 52.941 71.429 << 0.001

MAF 51.428 54.545 58.824 0.045

MMF 54.054 58.065 64.516 0.105

SH-ESD 78.261 83.333 90.909 269

UGP 58.064 66.667 74.074 1.795

its calculation was more complex). But their accuracy increases with large training data, meaning

they require more storage size. For MAF and MMF, storage size is fixed as both use a pre-

defined window size. Thus increasing training dataset had little effect on accuracy. Their delay

was rather small, due to their simple statistical computation. SH-ESD showed best result

accuracy in all cases, but also had the worst average delay, which became even larger with

increased training data. So, the results clearly indicate that performing lightweight statistical FD

methods in MEMs can achieve acceptable accuracy; however, there is a trade-off between

accuracy and required storage and computational delay. So, it is up to manufacturer’s discretion

to choose between accuracy and cost of implementation.

132

6.4 References

Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. (1990). STL: A seasonal-

trend decomposition. Journal of official statistics, 6(1), 3-73.

Hayes, M. A., & Capretz, M. A. (2014, June). Contextual anomaly detection in big sensor data.

In 2014 IEEE International Congress on Big Data (pp. 64-71). IEEE.

Hochenbaum, J., Vallis, O. S., & Kejariwal, A. (2017). Automatic anomaly detection in the

cloud via statistical learning. arXiv preprint arXiv:1704.07706.

Isermann, R. (2011). Fault-diagnosis applications: model-based condition monitoring:

actuators, drives, machinery, plants, sensors, and fault-tolerant systems. Springer

Science & Business Media.

Pukelsheim, F. (1994). The three sigma rule. The American Statistician, 48(2), 88-91.

Rosner, B. (1975). On the detection of many outliers. Technometrics, 17(2), 221-227.

Rosner, B. (1983). Percentage points for a generalized ESD many-outlier procedure.

Technometrics, 25(2), 165-172.

Saez, M., Maturana, F., Barton, K., & Tilbury, D. (2017, August). Anomaly detection and

productivity analysis for cyber-physical systems in manufacturing. In 2017 13th IEEE

Conference on Automation Science and Engineering (CASE) (pp. 23-29). IEEE.

Sunny, S. M. N. A., Liu, X. F., & Shahriar, M. R. (2017, June). Mtcomm: A semantic ontology

based internet scale communication method of manufacturing services in a cyber-

physical manufacturing cloud. In 2017 IEEE International Congress on Internet of

Things (ICIOT) (pp. 121-128). IEEE.

Sunny, S. M. N. A., Liu, X., & Shahriar, M. R. (2018, July). Remote Monitoring and Online

Testing of Machine Tools for Fault Diagnosis and Maintenance Using MTComm in a

Cyber-Physical Manufacturing Cloud. In 2018 IEEE 11th International Conference on

Cloud Computing (CLOUD) (pp. 532-539). IEEE.

Tukey, J. W. (1949). Comparing individual means in the analysis of variance. Biometrics, 99-

114.

Upton, G., & Cook, I. (1996). Understanding statistics. Oxford University Press.

133

CHAPTER 7

IOT ENABLED ON-DEMAND GROCERY SHOPPING AND DELIVERY CLOUD

USING MTCOMM AT THE EDGE

 MTComm enables interoperability of heterogeneous machine tools and associated

equipment over the Internet. To expand its capabilities to other domains, we investigated its

feasibility to establish cross-domain collaboration between IoT devices and machine tools. As a

result, we designed and developed an integrated IoT enabled on-demand grocery shopping and

delivery cloud (IGSDC) using MTComm at the edge (Sunny, Liu & Shahriar, 2019). A study in

2015 found that 25 percent of U.S. consumers ordered groceries online, and 55 percent were

willing to do so. Internet-of-Things (IoT) is making significant contributions to improve the

current trends of online grocery services (Fagerstrøm, Eriksson & Sigurðsson, 2017). As grocery

purchases are usually done on needbasis, IoT is aiding online grocery services by allowing

consumers to keep track of grocery items, set reminders for expiration, and even order directly

from built-in interfaces (Desai et al., 2017). Moreover, suppliers and retailers are using IoT

technologies to improve management and distribution of products and promote better shopping

experience. The Internet-of-Shopping is considered as the future of supermarkets where no

human intervention is required to manage it. Innovations in robotics, artificial intelligence, and

computer vision made product delivery by self-driving robots a reality (Cho et al., 2014).

Integrating in-home and in-warehouse IoT devices and robots through cloud services has the

promise of creating a robust and efficient on-demand grocery shopping and delivery platform

that connects consumers and suppliers based on their needs and offered services respectively and

allows them to monitor, manage, and even operate their physical resources over the Internet.

Heterogeneity of communication protocols used by such resources is a major challenge to

134

develop such a system. IoT devices use various communication protocols, such as MQTT,

CoAP, Z-wave, Zigbee etc., data formats, definitions, and system architectures (Sill, 2017).

Moreover, industrial resources use their own communication protocols, e.g. Ethernet/IP,

Modbus, PROFINET, EtherCAT etc., and standards (Sunny, Liu & Shahriar, 2018). Edge

computing can aid by transforming data near end devices to a common format and provide cloud

applications a uniform interface to interact with them (Shi et al., 2016).

In IGSDC, we developed an MTComm based edge computing hub (MEH) for IoT home

appliances and devices, as well as industrial machine tools to enable service-oriented cloud based

on-demand grocery product tracking and ordering capabilities. An MEH communicates with

different types of IoT devices and robot systems using their own languages and protocols. The

collected data is converted to a common MTComm XML format and sent to cloud services.

Based on IoT data, the cloud notifies consumers when they are running low on grocery products

and offers available ordering options from different suppliers through mobile app. On the other

hand, suppliers connect their warehouse IoT devices and delivery robots using MEH to the cloud

by publishing their monitoring and operation capabilities as RESTful web services and perform

product delivery remotely upon receiving an order. As both in-home and in-warehouse resources

communicate with the cloud through MEH using MTComm XML messages over the Internet,

the IGSDC system does not require to deploy separate cloud services and applications for

consumers and suppliers, hence provides better scalability and efficiency. As many robot

systems used in manufacturing and warehouse environments share similar operation principles,

MTComm can be easily applied to in-warehouse robot systems. However, in-home IoT devices

are not readily compliant with MTComm. Therefore, we developed a mechanism to adopt

MTComm for IoT resources. Experiments with a prototype IGSDC system demonstrated

135

Figure 34. Conceptual framework of IGSDC

excellent feasibility and effectiveness of MTComm based edge computing to integrate

heterogeneous resources from different environments with cloud services in order to facilitate

cross-domain collaboration and provide unique on-demand grocery product shopping and

delivery services for both consumers and suppliers.

7.1 Architecture and components of IGSDC

 Figure 34 illustrates a conceptual framework of the IGSDC system. IGSDC is designed in

such a way that both consumers and suppliers interact with the system in similar fashion to

enhance scalability and robustness of the system. Users (consumer and supplier) interact with the

cloud via mobile or web browser applications using HTTP. All physical resources, including in-

home IoT appliances devices and in-warehouse machines, are connected with cloud services

using MTComm edge hubs. An MEH is an embedded system, like Raspberry Pi, ASIC, FPGA

etc., with sufficient computational and network capabilities to establish bi-way communication

136

between different types of physical resources and cloud services using MTComm method. MEHs

communicate with the cloud using HTTP via gateways. Users can also interact with an MEH

locally (shown by red dotted lines in Figure 34) via a smartphone app or on-board display

interface (if available). All communications to and from an MEH are encrypted. The presented

system follows a four-layered architecture. The resource layer at the bottom contains different

types of physical end devices, such as sensors, actuators, IoT devices, smart home appliances,

robotic arms, mobile delivery robots, computing resources, conveyors etc. Communication layer

establishes communication between resource layer and central cloud layer using MTComm.

Central cloud layer refers to the cloud infrastructure that hosts necessary cloud services to

connect consumers with suppliers and manage web services of their subscribed physical

resources. It includes subscription services (SS) for managing user and MEH subscriptions,

virtualization service manager which use MTComm probe service to acquire structural and

configuration data of MEHs and create virtual copies, security manager for ensuring security and

privacy, monitoring center (MC) which uses MTComm current service to acquire most recent

status of resources, remote operation center (ROC) for executing operations of resources

remotely through MTComm operate service, service broker for running recommendation

algorithms to match potential customers and service providers, service repository, and data

storage. At the top resides application layer that manages multiplatform applications for users to

interact with the IGSDC cloud.

7.2 Utilization of MTComm in edge computing

7.2.1 MTComm Edge Hub (MEH)

MTComm Edge Hub is an embedded device positioned at the edge of an environment

that uses MTComm method to integrate web and cloud services with physical resources. This

137

Figure 35. Components of MTComm Edge Hub (MEH)

MEH is slightly different than the MEM described in Chapter 5, as MEM is primarily build for

industrial machining tools, while MEH is rather generalized to be used in different domains. As

depicted in Figure 35, an MEH primarily consists of MTComm Adapter and MTComm Agent.

An adapter module in MEH has five components – ‘Data Collector’ that acquires data from

resources periodically, ‘Operation Driver’ performing requested operations by sending

commands or executing a program, ‘Resource Manager’ responsible for administering connected

resources, ‘Dictionary Handler’ which handles both incoming (operational information) and

outgoing (collected data) key-value pair based dictionary, and ‘Communicator’ that establishes

communication with resources and the Agent module’s ‘Communicator’. The Agent module

contains an ‘XML Handler’ to generate, translate, and parse XML messages. ‘Data processor’ is

used to perform computation and analysis with received information (both monitoring and

operational) including identifying critical events, generating alerts, verifying incoming operation

requests etc. The type of information processing depends largely on hardware constraints and

capabilities as well as developer’s intent. The Agent module hosts an ‘HTTP Server’ for

communication over the Internet with a ‘Service Manager’ that manages MTComm RESTful

web services and maps them with corresponding physical resources. An MEH also contains a

‘Security Manager’ module for authentication and encryption, a ‘Configuration module’ through

138

which users can add, remove, and configure their resources, and a ‘Storage’ unit that is shared by

all other components. An MEH includes multiple interface modules, such as USB and Serial

ports, Ethernet, Bluetooth, Wi-Fi etc., and support for different communication protocols to

connect with heterogeneous physical resources. As these protocols vary from one environment to

another, MEHs are required to be custom-made for different environments. However, majority of

such modifications are adapter-related, as working mechanisms of the Agent is same for all

MEHs.

7.2.2 Adopting MTComm for IoT resources

The primary goal of MTComm ontology was to represent heterogeneous machine tools

and associated data in a generic model easily understandable by cloud and web services. This is

also highly desirable in IoT domain. Therefore, we developed a mechanism to incorporate this

ontology with IoT resources. Manufacturing machine tools usually have complex organizations

with multiple components generating large amount of data. But typical IoT devices used in a

home environment have simpler data structure with fewer or even no components. Many IoT

sensors generate only a single type of data values. So, presenting a single IoT device using

MTComm ontology is not very efficient. Therefore, we considered multiple IoT resources

together as an MTComm device based on their functionality, location, or user choice. Each

individual IoT resource is a component of the high-level device entity. If an IoT device consists

of multiple elements, those are considered as lower level components. Dataitems refer to sensor

values and operations refer to actuation activities or tasks. Characteristic information or

metadata are described by attributes. A home may have one or more device. After a user

confirms the organization of a device, the agent creates a probe document accordingly. Any

IoT resource can be added to or removed from an existing device as a component. A current

139

message includes most recent values of all dataitems of a device. Data streams are timestamped

and sequenced. MTComm allows to query individual dataitems. To explain the mechanism

more, let us consider a user whose home has one IoT enabled smart refrigerator (Rf), one IoT

light bulb (Lb), and one IoT humidity sensor (Hmd). Rf consists of two parts – freezer and

refrigerator, each with a temperature sensor and a temperature changing activity. Rf also shows

overall operation mode. Lb provides current status and performs switching action upon user

input. Hmd gives current humidity level of the room. The user can create a single MTComm

device for his entire home, as shown in Figure 36. As MTComm was not designed for IoT

resources, modifications to its XML schemas is necessary to incorporate IoT data information.

However, structure or composition of the schemas are not changed, more data types and related

information are added to existing MTComm schemas.

 The number of physical resources in the bottom layer and their associated web services

Figure 36. Example of an MTComm device hierarchy for IoT

140

can be very large. Therefore, the naming scheme in edge computing is very important for proper

addressing, resource identification, scalability, service management, and communication. MEH

employs a two-step naming scheme to address this issue. ‘Resource Manager’ in MEH Adapter

assigns unique (locally) identifier and network address for all connected resources. These

information alongside other resource metadata (if any) are stored in a relational table in the MEH

storage. The ‘Service Manager’ of MEH agent assigns user and service friendly unique (locally)

name based on the MTComm onotlogy using dot convention and maps them with corresponding

RESTful services. For instance, considering the aforementioned example of IoT home, the

dataitem of Lb is addressed as “my_home.light_bulb.status”. This naming mechanism

makes service and resource management easier for both users and cloud services. Each MEH is

given a unique (globally) identifier by the cloud after registration, so each name assigned by an

MEH becomes unique globally as well (e.g. “meh01b_my_home.light_bulb.status”).

Naming of the RESTful web services with MTComm is also efficient. The format of the

web service URLs is simple – ‘address_of_MEH/device_id/service_name’. For

example, ‘http://10.0.5.5:7777/my_home/probe’ is the probe service URL of the

example home Device. MTComm also allows use of attributes as path parameters in service

URL to enable acquiring data or perform operation of a particular Component. For instance, the

service URL to collect the value of Hmd only is –

http://10.0.5.5:7777/my_home/current?path=//humidity_sensor

Timestamp or sequence is used to collect data of a specific moment or time interval –

http://10.0.5.5:7777/my_home/sample?path=//smart_refrigerator//f

reezer//Dataitem[@id=”freezer_temp”]&from=50&count=100

141

This service request collects freezer temperature with sequence number 50 to 150.

Similarly, service URL to toggle the light bulb is –

http://10.0.5.5:7777/my_home/operate?path=//bulb//Operation[@id=

”toggle”]

Any attributes of an XML element can be used as path parameters. This feature allows to

create service URLs using the ontology based on user requests. Therefore, the cloud only

requires storing MEH identifier and web address information in the SR and can dynamically

generate necessary service URLs, instead of storing individual service URLs for all available

services.

Adopting MTComm method and its ontology for in-home IoT resources has several

advantages. Firstly, this represents heterogeneous IoT devices in a common hierarchical structure

using XML messages. It facilitates exchange of information between disparate pieces of IoT

resources using different languages or data formats and cloud services over the Internet. Using

probe, cloud services can easily recognize data outputs, configuration, and capabilities of IoT

devices in a home environment. As all MEH communicates with the cloud in same manner using

XML, there is no need to modify cloud services and applications each time a resource is added or

removed. Therefore, MTComm enhances scalability and efficiency for IoT enabled clouds. XML

is a rich data format with the flexibility to add multiple metadata as attributes if necessary.

MTComm XML messages enables efficient data query, extraction, and ingestion process. Lastly,

being an industry compliant communication method, MTComm also supports the possibility to

integrate home IoT services with other industry based value-added cloud services.

142

7.3 Service execution processes in IGSDC using MTComm services

 The method of providing IoT data driven grocery shopping and autonomous home

delivery in IGSDC system consists of four primary processes – subscription and publication,

monitoring, service matching, and operation execution. This section describes these processes

briefly.

The first step for both consumers and suppliers of IGSDC is to subscribe as a user and

create a user profile. Once done, a user connects his/her physical resources and configure

corresponding MTComm device(s). The MEH creates the probe XML document with detailed

organization data. Then the user subscribes his MEH to the cloud providing its web address.

Then the SM assigns a unique id for MEH, requests its probe service, parses the response

XML, creates a virtual copy of the MEH and its resources using extracted data, and stores it in

data storage. It also stores MEH’s service information as a tuple in SR. For consumers, this tuple

only contains user id, MEH’s unique id, and its web address, while for suppliers it contains

additional information like what type of product they are selling, how much products are

available, in which areas they can deliver etc. Figure 37(a) shows the flow of service

subscription and publication.

The monitoring process (Figure 37(b)) involves two type of interactions – resource-MEH-

cloud interaction and user-cloud interaction. An MEH collects status data from its connected

resources and stores them in MTComm XML format at regular intervals. The MC in the cloud

sends periodic current or sample requests to MEH, receives XML responses, extracts data,

and stores them in data storage. When a user requests to view the status of his resources, the MC

responds with the most recent data available in storage. If a user sets any alert for a specific event,

e.g. low supply of grocery, completion of an operation etc., the MC notifies user when conditions

143

(a) Subscription and Publication

(b) Monitoring

(c) Operation execution

Figure 37. Different processes in IGSDC using MTComm

144

of the alert are fulfilled.

The service matching process only involves service broker and service repository

modules in the central cloud layer and is responsible for finding suitable delivery services for

client’s needs. When low supply is identified, the broker searches for potential supplier services

using recommendation algorithms and provides consumer with resulting service options. Criteria

like type, amount, service location, supplier’s reputation etc. are used to match consumers with

best possible suppliers.

For executing an operation of a physical resource, related instructions and parameters are

collected from its user by the ROC. Using these information, the ROC generates an operation

request based on the probe data. Then the ROC collects corresponding MEH’s address, creates

specific operate service URL, and sends the request to the MEH. After verification and

validation, MEH extracts the instructions and parameters from the message and sends necessary

commands to the physical resource to execute the operation. The process is illustrated in Figure

37(c).

Apart from the service matching, other three processes are identical for both consumers

and suppliers. The amount of data may vary, but these processes are irrespective of user type,

physical resource type, and operation type. Adding or removing a user or resource is simple and

require little to no modification of cloud services. All services are capable of handling

heterogeneous users, requests, and physical resources. This way IGSDC ascertains better

scalability, efficiency, performance, and user experience.

145

7.4 Implementation of IGSDC prototype and evaluation

As a proof-of-concept, we implemented a fully functional prototype of the IGSDC

system which is shown in Figure 38. We developed a user application for an android smartphone

to interact with the cloud. This demo app had the capability to view current status of MTComm

devices, view available product ordering options, and place orders. Raspberry Pi (RPi) devices

were used as MEHs. We created two zones in our lab – home zone and warehouse zone, fifteen

meters apart. Each zone had one RPi as an MEH running MTComm adapter and agent programs

developed in Python. In home zone, we had a GE Profile Series smart refrigerator (Serial –

PYE22PMKES) and two Arduino boards, of which one was connected to a weight scale built

using a square force-sensitive resistor (FSR) and published its data via MQTT, and the other was

connected to a BMP180 barometric pressure sensor and transferred data to its RPi via USB. The

refrigerator was not open-sourced and only displayed its sensor values through “GE Kitchen”

smartphone app. However, a portion of the refrigerator data was available through IFTTT APIs.

Therefore, we used IFTTT webhooks to collect data from the refrigerator. The warehouse zone

consisted of two robots – one Uarm robotic arm and one Interbotix Turtlebot 2i mobile robot

running Robot Operating System (ROS). The Turtlebot was capable of autonomous navigation,

obstacle avoidance, path planning, and object manipulation with a Pincher MK3 robotic arm.

The warehouse RPi was connected with Uarm using USB connection and with Turtlebot over

Wi-Fi. The cloud services were deployed and hosted in a virtual machine on the university

network.

Experiments were conducted emulating a hypothetical grocery shopping scenario using

this prototype system. The refrigerator and two sensors were considered as components of a

single MTComm device. The available dataitems were refrigerator operation mode, refrigerator

146

Figure 38. IGSDC prototype system

and freezer door status (open or close), temperature of refrigerator and freezer, barometric

pressure, and value of the weight sensor. The home RPi collected data from these sources at 10

Hz and created corresponding XML messages. A full half-gallon milk carton was placed on the

weight scale at the beginning. The logic was set so that when the weight was less than 25 percent

of its initial weight, it would be considered as low supply. Then the carton was nearly emptied

and placed on scale again. The cloud detected this incident and notified the user through android

app. User could view available delivery services in the “Place order” page of the app. Once an

order was placed, the cloud generated an operate request containing instructions for both

robots to their RPi. First, the Uarm executed a pre-programmed co-ordinate file in .csv format to

move from idle position to product location, grab the product, and then carry it to the Turtlebot.

Once done, it forwarded the operate request to Turtlebot’s agent which extracted destination

co-ordinates (position of the refrigerator) from the message and sent them with necessary

147

commands to the robot. The Turtlebot was pre-trained to map the whole room. Based on the

destination co-ordinate, it then travelled from the warehouse zone to the home zone navigating

autonomously. The cloud was constantly collecting status of the robot. When it reached the

refrigerator, the cloud detected the event through co-ordinate matching and sent a notification to

user app. Using its robotic arm, the Turtlebot dropped the product in front of the refrigerator and

then travelled back to its original position in the warehouse zone. Several test runs were

performed and the whole process was successfully completed each time. Other than the

interactions with the android app, no human intervention was needed at any time during tests.

To evaluate the effectiveness of MEH, WireShark software was used to monitor the data

streams between MEHs and the cloud services. The performance was measured based on delta-

time – the time interval between cloud sending a request and receiving resource data, and packet

size – the total size of data packets received by the cloud. For comparison purpose, a separate

setup was prepared where the cloud collected data from the home zone devices by querying them

individually without using MEH. Table X shows the comparison between total average (of ten

datasets) delta-time and packet size of both systems respectively. In the setup using direct

communication, each resource sent its data separately while MTComm aggregated all Dataitems

in a single data stream. Therefore, total delta-time and packet size were much smaller for

MTComm based IGSDC system. As the number of IoT devices increases, the second setup had

TABLE X. Comparison of delta-time and packet size

Criteria System using direct

communication
System using MTComm

Reduction (%)

Average Delta-

time (ms)
27.1817 9.9863

63.2609

Average packet

size (byte)
4387.2 1952.6

55.4933

148

greater delay and bigger packet size, while MTComm based system experienced much smaller

increase rate; hence improving overall latency, bandwidth usage, and system performance.

7.5 References

Cho, S., Lee, D., Jung, Y., Lee, U., & Shim, D. H. (2014). Development of a cooperative

heterogeneous unmanned system for delivery services. Journal of Institute of Control,

Robotics and Systems, 20(12), 1181-1188.

Desai, H., Guruvayurappan, D., Merchant, M., Somaiya, S., & Mundra, H. (2017, February). IoT

based grocery monitoring system. In 2017 Fourteenth International Conference on

Wireless and Optical Communications Networks (WOCN) (pp. 1-4). IEEE.

Fagerstrøm, A., Eriksson, N., & Sigurðsson, V. (2017). What’s the “Thing” in Internet of Things

in Grocery Shopping? A Customer Approach. Procedia computer science, 121, 384-388.

Sill, A. (2017). Standards at the edge of the cloud. IEEE Cloud Computing, 4(2), 63-67.

Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and

challenges. IEEE internet of things journal, 3(5), 637-646.

Sunny, S. M. N. A., Liu, X. F., & Shahriar, M. R. (2018). Communication method for

manufacturing services in a cyber–physical manufacturing cloud. International Journal

of Computer Integrated Manufacturing, 31(7), 636-652.

Sunny, S. M. N. A., Liu, X., & Shahriar, M. R. (2019, July). An Integrated IoT Enabled On-

Demand Grocery Shopping and Delivery Cloud System Using MTComm at the Edge.

In 2019 IEEE International Conference on Edge Computing (EDGE) (pp. 51-55). IEEE.

149

CHAPTER 8

CONCLUSIONS

8.1 Summary

The historically conservative world of manufacturing is changing rapidly due to the

emergence of disruptive technologies like CPS, CMfg, IoT etc. These technologies are often

intertwined to improve overall efficiency and reduce production cost by streamlining factory

floor data and automating manufacturing processes. The integration of two emerging

manufacturing paradigms - cyber-physical systems and cloud manufacturing has the promise of

transforming existing manufacturing systems. Existing communication methods do not support

direct operations of manufacturing machine tools over the Internet, which is a major hindrance

for realization of cloud-based manufacturing CPSs. MTComm, the Internet-scale communication

method presented in this dissertation, can play a key role in addressing this issue with its scalable

service-oriented remote monitoring and direct operation capabilities of heterogeneous machine

tools over the Internet. It allows manufacturers to acquire status data and perform machining

operations of different types of machines situated in geographically different locations across the

world remotely from web and cloud based manufacturing applications through RESTful web

services. Because of its agent-adapter based architecture and flexible interfacing options,

MTComm can be used with modern network enabled machine tools as well as legacy

manufacturing machines without existing network functionality. Heterogeneous manu facturing

resources can communicate with each other and participate in collaborative manufacturing

through MTComm services. Although designed and developed to be used for integrating CPS

and CMfg systems, MTComm can also be used with connect any manufacturing resources to the

Internet, transforming a legacy system into an Internet-enabled CPS. As MTComm is a service-

150

oriented method, additional services can be easily added if required. Adopting optimization

strategies has greatly boosted MTComm's performance and efficiency. Thus, MTComm boosts

machine interoperability and factory floor automation, and reduces human involvement in

production processes. The edge middleware can become a potential game-changing platform for

future manufacturing by offloading iterative computational tasks to network edges and reducing

burdens of central cloud servers, hence can enable plug-n-play capability and enhance overall

system scalability. Through its diverse applications in a CPMC testbed including remote and

collaborating manufacturing and active testing based fault-diagnosis, MTComm has exhibited its

potential and feasibility to be used in manufacturing CPSs and CMfg Utilization of MTComm to

develop an IoT-enable grocery shopping and delivery cloud has proved its promise to deliver

cross-domain interoperability. Successful experiments with the testbed further supported

MTComm's potential for improving scalability, robustness, productivity, and efficiency of

today's manufacturing systems.

8.2 Contributions

 The above summary presents an overview of the research described in this dissertation.

This particular section specifies the scientific contributions that are direct results of my efforts.

• I designed and developed MTComm method including its agent-adapter architecture,

specifications, sematic ontology, RESTful services and methodology (Sunny, Liu &

Shahriar, 2017). Initially I laid the groundwork by investigating the requirements of a

cyber-physical manufacturing systems and existing communication mechanisms,

specially MTConnect, which led to my initial adaptation of MTConnect for open-source

3D printers (Liu et al., 2016) and utilization of TCP commands alongside MTConnect to

achieve both monitoring and operational capabilities of heterogeneous machine tools over

151

the Internet (Liu et al., 2017; Sunny, Liu & Shahriar, 2018). This naïve approach helped

me realizing the shortcomings of the-then developed CPMC, as well as gaining enough

insights to expand and modify MTConnect in order to incorporate direct operation of

machine tools. To achieve this, I designed the agent-adapter architecture of MTComm in

a way that it is compatible with MTConnect (made adapter a compulsory component,

also redefined agent and adapter’s internal organization), extended MTConnect semantic

ontology by adding operation and parameter elements, added two new RESTful services

named operate and notification for execution of manufacturing processes, created two

new XML schemas – MTCommOperations for operate service and

MTCommNotifications for notification service, and modified existing MTConnect

schemas for MTConnectDevices (used for probe) and MTConnectStreams (used for

current and sample) XML documents.

• I actively participated in designing the architecture of the CPMC and implementing the

CMPC testbed described in Chapter 4 using MTComm. Particularly I was responsible for

establishing the bi-directional communication between physical machine tools and the

cloud. I solely developed MTComm adapters and agent programs for RepRap 3D

printers, X-carve CNC drilling machine, and Uarm robotic arms in Python. I deployed

these programs in Raspberry Pis and configured them appropriately so that they were

able to interact with corresponding machine tools. I also conducted rigorous experiments

with the testbed to evaluate and finetune MTComm method. Lastly, I developed and

implemented a peer-to-peer collaborative manufacturing process using MTComm and

tested its feasibility and performance with existing CPMC testbed.

152

• Investigating the results from previous experiments with MTComm and CPMC, I

identified several scopes of improving MTComm’s performance including

communication latency and storage requirements. To achieve that, I infused edge

computing methodologies with MTComm and created the concept of MTComm edge

middleware. I designed three optimization strategies for MTComm, two of which (data

caching and transmission optimization) can be adopted for MTConnect based systems as

well. I also developed an SoC FPGA based hardware prototype using a Xilinx Zybo-Z7

development board with dual Cortex A9 ARM processors to reduce computation time

even further. The experimental results showed considerable decrease in communication

latency, local storage size, and bandwidth usage.

• To develop additional applications in CPMC, I explored several different features of

existing manufacturing CPSs and identified fault diagnosis as a promising paradigm.

Utilizing the remote operation capability of MTComm, I introduced the concept of active

testing-based fault diagnosis and maintenance of manufacturing machine tools. I

designed and implemented a fault diagnosis center in the CPMC. To improve the

efficiency of the fault detection process, I revisited MTComm design and defined two

running modes – NORMAL and DIAGNOSIS, the later specifically designed for fault

diagnosis purposes. I also designed an anomaly detection process using MTcomm and

INSTRUCTION type data. After developing the MEM and optimization strategies, I

investigated several light-weight anomaly detection algorithms and evaluated their

performance for edge-based fault diagnosis. I conducted several experiments in the

CPMC testbed by injecting manual faults and the results were promising enough to

suggest MTComm’s strong feasibility for fault diagnosis in cyber manufacturing systems.

153

• To realize MTComm’s potential for achieving cross-domain interoperability, I designed,

developed, and implemented a novel IoT enabled cloud system for on-demand grocery

shopping and autonomous delivery. Firstly, I modified exiting MTComm methodologies

and schemas and implemented MTComm adapter programs to support acquiring data

from heterogeneous IoT devices used in consumer homes. Secondly, I developed

mechanisms to connect mobile robots running Robot Operating System (ROS) with cloud

services using MTComm. This is a significant development as ROS is widely used in

today’s industries. Lastly, I designed the cloud architecture, created an Android

application capable of interacting with machine tools using MTComm and cloud services,

and implemented a testbed system to conduct experiments and provide proof-of-concept.

8.3 Comparison with existing works

To highlight the differences between the work described in this dissertation and other

communication approaches adopted by manufacturing researchers in recent years, a high-level

comparison is given in Table XI. There has been a significant number of research and

development works in both academia and industry regarding CPS and CMfg in recent years. The

comparison here focuses on works with similar features as MTComm, specifically those which

adopted specific communication approaches, included remote operational capabilities, offered

moderate to high scalability, performed computation at the edge layer, and provided

measurements of communication latency (as improving latency was a major focus of my work

discussed in Chapter 5). It is evident from the table that none of these works provided all features

supported by MTComm for heterogeneous machine tools in a scalable cloud-based

manufacturing CPS environment. Moreover, the communication latency of the presented method

154

clearly outperforms the other approaches, making MTComm a suitable choice for manufacturing

processes with real-time communication constraints.

TABLE XI. Comparison of presented method with existing literature (shortened words: Comm.

= Communication, MTC = MTConnect, Hetero. = Heterogeneous, Mod. = Moderate)

Features Presented

method

Wang,

Gao &

Ragai

(2014)

Lin,

Lin &

Chiu

(2015)

Liu et

al.

(2017)

Parto

(2017)

José

Álvares

et al.

(2018)

Liu et

al.

(2018)

Okwudire

et al.

(2018)

Comm.

method

used

MTComm TCP TMTC MTC

+ TCP

MTC

+

MQTT

MTC /

OPC

MTC Low level

Monitoring Yes Yes Yes Yes Yes Yes Yes No

Operation Yes Yes Yes Yes No Yes No Yes

Supported

machine

types

Hetero. CNC,

Robots

CNC Hetero

.

Hetero

.

CNC

lathe

CNC 3D

printers

Optimized

for edge

Yes No Yes No Yes No No Yes

Latency

(ms)

5-10 30 120 100-

200

4000 500 100 100-250

Scalability High Mod. High High Mod. Mod. High Mod.

155

8.4 References

Hu, L., Nguyen, N. T., Tao, W., Leu, M. C., Liu, X. F., Shahriar, M. R., & Sunny, S. M. N. A.

(2018). Modeling of cloud-based digital twins for smart manufacturing with MT

connect. Procedia manufacturing, 26, 1193-1203.

José Álvares, A., Oliveira, L. E. S. D., & Ferreira, J. C. E. (2018). Development of a Cyber-

Physical framework for monitoring and teleoperation of a CNC lathe based on

MTconnect and OPC protocols. International Journal of Computer Integrated

Manufacturing, 31(11), 1049-1066.

Lin, Y. L., Lin, C. C., & Chiu, H. S. (2015, March). The development of intelligent service

system for machine tool industry. In 2015 1st International Conference on Industrial

Networks and Intelligent Systems (Iniscom) (pp. 100-106). IEEE.

Liu, C., Vengayil, H., Zhong, R. Y., & Xu, X. (2018). A systematic development method for

cyber-physical machine tools. Journal of manufacturing systems, 48, 13-24.

Liu, X. F., Shahriar, M. R., Al Sunny, S. N., Leu, M. C., & Hu, L. (2017). Cyber-physical

manufacturing cloud: Architecture, virtualization, communication, and testbed. Journal

of Manufacturing Systems, 43, 352-364.

Liu, X. F., Sunny, S. M. N. A., Shahriar, M. R., Leu, M. C., Cheng, M., & Hu, L. (2016,

January). Implementation of MTConnect for open source 3D printers in cyber physical

manufacturing cloud. In ASME 2016 International Design Engineering Technical

Conferences and Computers and Information in Engineering Conference. American

Society of Mechanical Engineers Digital Collection.

Okwudire, C. E., Huggi, S., Supe, S., Huang, C., & Zeng, B. (2018). Low-level control of 3d

printers from the cloud: A step toward 3d printer control as a service. Inventions, 3(3),

56.

Parto Dezfouli, M. (2017). A secure MTConnect compatible IoT platform for machine

monitoring through integration of fog computing, cloud computing, and communication

protocols (Doctoral dissertation, Georgia Institute of Technology).

Shahriar, M. R., Sunny, S. M. N. A., Liu, X., Leu, M. C., Hu, L., & Nguyen, N. T. (2018, June).

MTComm based virtualization and integration of physical machine operations with

digital-twins in cyber-physical manufacturing cloud. In 2018 5th IEEE International

Conference on Cyber Security and Cloud Computing (CSCloud)/2018 4th IEEE

International Conference on Edge Computing and Scalable Cloud (EdgeCom) (pp. 46-

51). IEEE.

Sunny, S. M. N. A., Liu, X. F., & Shahriar, M. R. (2017, June). Mtcomm: A semantic ontology

based internet scale communication method of manufacturing services in a cyber-

physical manufacturing cloud. In 2017 IEEE International Congress on Internet of

Things (ICIOT) (pp. 121-128). IEEE.

156

Sunny, S. M. N. A., Liu, X. F., & Shahriar, M. R. (2018). Communication method for

manufacturing services in a cyber–physical manufacturing cloud. International Journal

of Computer Integrated Manufacturing, 31(7), 636-652.

Wang, L., Gao, R., & Ragai, I. (2014, June). An integrated cyber-physical system for cloud

manufacturing. In ASME 2014 International Manufacturing Science and Engineering

Conference collocated with the JSME 2014 International Conference on Materials and

Processing and the 42nd North American Manufacturing Research Conference.

American Society of Mechanical Engineers Digital Collection.

157

APPENDICES

A. Example of response XML message of a Probe request from a 3D printer’s

MTComm agent

<?xml version="1.0" encoding="UTF-8"?>

<MTCommDevices xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

xsi:noNamespaceSchemaLocation="../Schemas/MTCommDevices_0.2.xsd"

>

 <Header bufferSize="10" instanceId="1" creationTime="2016-

06-14T12:00:00" sender="Ultimaker2" version="1.2"

 assetCount="0" assetBufferSize="10"/>

 <Devices>

 <Device id="Ultimaker2" uuid="P2673" name="Ultimaker2 3D

Printer" type="3D printer" buildType="Square">

 <DataItems>

 <DataItem category="EVENT" id="avail"

name="availablility" type="AVAILABILITY"/>

 </DataItems>

 <Operations>

 <Operation id="startPrintingJob" category="JOB"

name="Start new job" type="PRINT">

 <Parameters>

 <Parameter id="material" name="Material

type" supportedMaterial="PLA" type="MATERIAL"/>

 <Parameter id="targetExtTemp"

name="Target Extruder Temp" units="CELSIUS" type="TEMPERATURE">

 <Constraints>

 <Minimum>0</Minimum>

 <Maximum>215</Maximum>

 </Constraints>

 </Parameter>

158

 <Parameter id="targetBedTemp"

name="Target Bed Temp" units="CELSIUS" type="TEMPERATURE">

 <Constraints>

 <Minimum>0</Minimum>

 <Maximum>65</Maximum>

 </Constraints>

 </Parameter>

 <Parameter id="objectName"

name="Printing object name"/>

 </Parameters>

 </Operation>

 <Operation id="stopJob" category="JOB"

name="Stop current job" type="PRINT" />

 </Operations>

 <Components>

 <Axes id="axes" name="Axes">

 <Components>

 <Linear id="x" name="X">

 <DataItems>

 <DataItem category="SAMPLE"

coordinateSystem="MACHINE" id="xPos" name="Actual X Position"

subType="ACTUAL" type="POSITION"/>

 </DataItems>

 <Operations>

 <Operation id="moveX"

category="ACTION" coordinateSystem="MACHINE" name="Move X Axis"

type="POSITION">

 <Parameters>

 <Parameter

id="targetPosition" name="Target Axis position"

units="MILLIMETER">

 <Constraints>

159

 <Minimum>0</Minimum>

 <Maximum>200</Maximum>

 </Constraints>

 </Parameter>

 </Parameters>

 </Operation>

 </Operations>

 </Linear>

 <Linear id="y" name="Y">

 <DataItems>

 <DataItem category="SAMPLE"

coordinateSystem="MACHINE" id="yPos" name="Actual Y Position"

subType="ACTUAL" type="POSITION"/>

 </DataItems>

 <Operations>

 <Operation id="moveY"

category="ACTION" coordinateSystem="MACHINE" name="Move Y Axis"

type="POSITION">

 <Parameters>

 <Parameter

id="targetPosition" name="Target Axis position"

units="MILLIMETER">

 <Constraints>

 <Minimum>0</Minimum>

 <Maximum>200</Maximum>

 </Constraints>

 </Parameter>

 </Parameters>

160

 </Operation>

 </Operations>

 </Linear>

 <Linear id="z" name="Z">

 <DataItems>

 <DataItem category="SAMPLE"

coordinateSystem="MACHINE" id="zPos" name="Actual Z Position"

subType="ACTUAL" type="POSITION"/>

 </DataItems>

 <Operations>

 <Operation id="moveZ"

category="ACTION" coordinateSystem="MACHINE" name="Move Z Axis"

type="POSITION">

 <Parameters>

 <Parameter

id="targetPosition" name="Target Axis position"

units="MILLIMETER">

 <Constraints>

 <Minimum>-220</Minimum>

 <Maximum>0</Maximum>

 </Constraints>

 </Parameter>

 </Parameters>

 </Operation>

 </Operations>

 </Linear>

 </Components>

 </Axes>

 <Sensor id="extruder" name="Extruder">

 <DataItems>

161

 <DataItem category="SAMPLE"

id="extruderTemp" name="Extruder Temp Sensor"

type="TEMPERATURE"/>

 <DataItem category="EVENT"

id="extruderReady" name="Extruder Ready State"

type="EXECUTION"/>

 </DataItems>

 <Operations>

 <Operation id="changeExtruderTemp"

category="ACTION" name="Change Extruder Temperature"

type="TEMPERATURE">

 <Parameters>

 <Parameter

id="targetExtTemp" name="Target Extruder Temp" units="CELSIUS"

type="TEMPERATURE">

 <Constraints>

 <Minimum>0</Minimum>

 <Maximum>215</Maximum>

 </Constraints>

 </Parameter>

 </Parameters>

 </Operation>

 </Operations>

 </Sensor>

 <Sensor id="bed" name="Bed">

 <DataItems>

 <DataItem category="SAMPLE" id="bedTemp"

name="Bed Temp Sensor" type="TEMPERATURE"/>

 <DataItem category="EVENT" id="bedReady"

name="Bed Ready State" type="EXECUTION"/>

 </DataItems>

 <Operations>

162

 <Operation id="changeBedTemp"

category="ACTION" name="Change Bed Temperature"

type="TEMPERATURE">

 <Parameters>

 <Parameter

id="targetBedTemp" name="Target Bed Temp" units="CELSIUS"

type="TEMPERATURE">

 <Constraints>

 <Minimum>0</Minimum>

 <Maximum>65</Maximum>

 </Constraints>

 </Parameter>

 </Parameters>

 </Operation>

 </Operations>

 </Sensor>

 <Controller id="controller" name="Controller">

 <DataItems>

 <DataItem

type="EXECUTION" id="buildProgress" category="EVENT" name="Build

Progress State"/>

 <DataItem

category="EVENT" id="turnOffStatus" name="Turn machine off

Status" type="POWER"/>

 </DataItems>

 <Operations>

 <Operation id="turnOff"

category="ACTION" name="Turn machine off" type="POWER" />

 </Operations>

 </Controller>

 <Systems id="systems" name="systems">

 <Components>

163

 <Electric id="el" name="electric">

 <DataItems>

 <DataItem

category="EVENT" id="p2" name="power" type="POWER_STATE"/>

 </DataItems>

 </Electric>

 </Components>

 </Systems>

 </Components>

 </Device>

 </Devices>

</MTCommDevices>

B. Example of response XML message of a Current request from a 3D printer’s

MTComm agent during a printing JOB

<MTCommStreams xmlns="urn:MTComm.org:MTCommStreams:1.2"

xmlns:m="urn:MTComm.org:MTCommStreams:1.2"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="urn:MTComm.org:MTCommStreams:1.2

http://www.MTComm.org/schemas/MTCommStreams_1.2.xsd">

 <Header bufferSize="10" creationTime="2017-02-09T01:21:46"

firstSequence="57" instanceId="1" lastSequence="66"

nextSequence="67" sender="Ultimaker2" version="1.2"/>

 <Streams>

 <DeviceStream name="Ultimaker2" uuid="P2673">

 <ComponentStream component="Device"

componentId="Ultimaker" name="Ultimaker2">

 <Events>

 <Availability dataItemId="availability"

name="availablility" sequence="66" timestamp="2017-02-

09T01:21:46">BUSY</Availability>

 </Events>

 <Actions>

164

 <Printing operationId="startJobStatus"

name="Start new job Status" sequence="66" timestamp="2017-02-

09T01:21:46">ONGOING</Printing>

 <Printing operationId="stopJobStatus" name="Stop

current job Status" sequence="66" timestamp="2017-02-

09T01:21:46">AVAILABLE</Printing>

 </Actions>

 </ComponentStream>

 <ComponentStream component="Linear" componentId="x"

name="X">

 <Samples>

 <Position dataItemId="xPos" name="Actual X

Position" sequence="66" subType="ACTUAL" timestamp="2017-02-

09T01:21:46">105.3</Position>

 </Samples>

 <Actions>

 <Position operationId="moveXStatus" name="Move X

Axis Status" sequence="66" timestamp="2017-02-

09T01:21:46">UNAVAILABLE</Position>

 </Actions>

 </ComponentStream>

 <ComponentStream component="Linear" componentId="y"

name="Y">

 <Samples>

 <Position dataItemId="yPos" name="Actual Y

Position" sequence="66" subType="ACTUAL" timestamp="2017-02-

09T01:21:46">-95.6</Position>

 </Samples>

 <Actions>

 <Position operationId="moveYStatus" name="Move Y

Axis Status" sequence="66" timestamp="2017-02-

09T01:21:46">UNAVAILABLE</Position>

 </Actions>

 </ComponentStream>

165

 <ComponentStream component="Linear" componentId="z"

name="Z">

 <Samples>

 <Position dataItemId="zPos" name="Actual Z

Position" sequence="66" subType="ACTUAL" timestamp="2017-02-

09T01:21:46">-216.9</Position>

 </Samples>

 <Actions>

 <Position operationId="moveZStatus" name="Move Z

Axis Status" sequence="66" timestamp="2017-02-

09T01:21:46">UNAVAILABLE</Position>

 </Actions>

 </ComponentStream>

 <ComponentStream component="Sensor"

componentId="extruder" name="Extruder">

 <Samples>

 <Temperature dataItemId="extruderTemp"

name="Extruder Temp Sensor" sequence="66" timestamp="2017-02-

09T01:21:46">209.7</Temperature>

 </Samples>

 <Events>

 <Execution dataItemId="extruderReady"

name="Extruder Ready State" sequence="66" timestamp="2017-02-

09T01:21:46">BUSY</Execution>

 </Events>

 <Actions>

 <Temperature

operationId="changeExtruderTempStatus" name="Change Extruder

Temperature Status" sequence="66" timestamp="2017-02-

09T01:21:46">UNAVAILABLE</Temperature>

 </Actions>

 </ComponentStream>

 <ComponentStream component="Sensor" componentId="bed"

name="Bed">

 <Samples>

166

 <Temperature dataItemId="bedTemp" name="Bed Temp

Sensor" sequence="66" timestamp="2017-02-

09T01:21:46">62.4</Temperature>

 </Samples>

 <Events>

 <Execution dataItemId="bedReady" name="Bed Ready

State" sequence="66" timestamp="2017-02-

09T01:21:46">BUSY</Execution>

 </Events>

 <Actions>

 <Temperature operationId="changeBedTempStatus"

name="Change Bed Temperature Status" sequence="66"

timestamp="2017-02-09T01:21:46">UNAVAILABLE</Temperature>

 </Actions>

 </ComponentStream>

 <ComponentStream component="Path"

componentId="motherboardPath" name="Motherboard Path">

 <Samples>

 <Execution dataItemId="buildProgress" name="Build

Progress State" sequence="66" timestamp="2017-02-

09T01:21:46">23.3%</Execution>

 </Samples>

 <Actions>

 <Power operationId="turnOffStatus" name="Turn

Machine Off Status" sequence="66" timestamp="2017-02-

09T01:21:46">AVAILABLE</Power>

 </Actions>

 </ComponentStream>

 </DeviceStream>

 </Streams>

</MTCommStreams>

167

C. Example of XML message of a Operate request for starting a 3D printing JOB

<?xml version="1.0" encoding="UTF-8"?>

<MTCommOperations xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

xsi:noNamespaceSchemaLocation="../Schemas/MTCommOperations_0.3.x

sd">

 <Header bufferSize="10" instanceId="1" creationTime="2017-

01-18T12:00:00" sender="Ultimaker2" version="0.1"

firstSequence="9" lastSequence="9"

 nextSequence="10"/>

 <Operations>

 <Device uuid="cxz" name="CoreXZ 3D Printer">

 <DeviceOperation id="cxz" name="CoreXZ 3D Printer">

 <Jobs>

 <Collaboration operationId="startJob"

name="Start new job" sequence="9" timestamp="2017-01-

18T05:45:40">

 <Parameters>

 <Material id="material"

name="Material Type" timestamp="2017-01-

18T05:45:40">PLA</Material>

 <Quantity id="quantity"

name="Number of objects" timestamp="2017-01-

18T05:45:40">1</Quantity>

 <Object id="objName" name="Object

Name" timestamp="2017-01-18T05:45:40">Box</Object>

 </Parameters>

 </Collaboration>

 </Jobs>

 </DeviceOperation>

168

 </Device>

 </Operations>

</MTCommOperations>

D. Example of XML message of a Operate request for starting multiple ACTIONs

<?xml version="1.0" encoding="UTF-8"?>

<MTCommOperations xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

xsi:noNamespaceSchemaLocation="../Schemas/MTCommOperations_0.2.x

sd">

 <Header bufferSize="10" instanceId="1" creationTime="2017-

01-18T12:00:00"

 sender="Ultimaker2" version="0.1"/>

 <Operations>

 <Device uuid="cxz" name="Utlimaker 3D Printer">

 <ComponentOperation component="Linear" componentId="x"

name="X">

 <Actions>

 <Position operationId="moveX"

name="Move X Axis" sequence="2"

 units="MILLIMETER"

timestamp="2017-01-18T06:16:39">-50.0</Position>

 </Actions>

 </ComponentOperation>

 <ComponentOperation component="Linear"

componentId="y" name="Y">

 <Actions>

 <Position operationId="moveY"

name="Move Y Axis" sequence="3"

 units="MILLIMETER"

timestamp="2017-01-18T06:16:39">-50.0</Position>

 </Actions>

 </ComponentOperation>

169

 <ComponentOperation component="Sensor"

componentId="extruder" name="Extruder">

 <Actions>

 <Temperature

operationId="changeExtTemp" name="Change Extruder Temperature"

 sequence="1" units="CELSIUS"

timestamp="2017-01-18T06:16:39">110.0</Temperature>

 </Actions>

 </ComponentOperation>

 </Device>

 </Operations>

</MTCommOperations>

E. Example of XML message of a Operate request for starting a collaborative

manufacturing Job involving three machines – Ultimaker 2, Uarm, and X-carve

<?xml version="1.0" encoding="UTF-8"?>

<MTCommOperations xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

xsi:noNamespaceSchemaLocation="../Schemas/MTCommOperations_0.3.x

sd">

 <Header bufferSize="10" instanceId="1" creationTime="2017-

01-18T12:00:00" sender="Ultimaker2" version="0.1"

firstSequence="9" lastSequence="9"

 nextSequence="10"/>

 <Operations>

 <Queue id="1">

 <DeviceOperation uuid="P2673" name="Ultimaker2 3D

Printer">

 <Jobs>

170

 <Collaboration operationId="startJob"

name="Start new job" sequence="9" timestamp="2017-01-

18T05:45:40">

 <Parameters>

 <Material id="material"

name="Material Type" timestamp="2017-01-

18T05:45:40">PLA</Material>

 <Quantity id="quantity"

name="Number of objects" timestamp="2017-01-

18T05:45:40">1</Quantity>

 <Object id="objName"

name="Object Name" timestamp="2017-01-18T05:45:40">Clip</Object>

 <Temperature

id="changeExtruderTemp" name="Change Extruder temperature"

timestamp="2017-01-18T05:45:40">210</Temperature>

 <Temperature

id="changeHeatbedTemp" name="Change Heatbed temperature"

timestamp="2017-01-18T05:45:40">60</Temperature>

 </Parameters>

 </Collaboration>

 </Jobs>

 </DeviceOperation>

 <Queue>

 <Queue id = "2">

 <DeviceOperation uuid="ra01" name="U-arm">

 <Jobs>

 <Collaboration operationId="startJob"

name="Start new job" sequence="9" timestamp="2017-01-

18T05:45:40">

 <Parameters>

 <Name id="opName"

name="Operation Name" timestamp="2017-01-

171

18T05:45:40">Remove</Name>

 </Parameters>

 </Collaboration>

 </Jobs>

 </DeviceOperation>

 <Queue>

 <Queue id="3">

 <DeviceOperation uuid="xc01" name="X-carve">

 <Jobs>

 <Collaboration operationId="startJob"

name="Start new job" sequence="9" timestamp="2017-01-

18T05:45:40">

 <Parameters>

 <Material id="material"

name="Material Type" timestamp="2017-01-

18T05:45:40">PLA</Material>

 <Quantity id="quantity"

name="Number of objects" timestamp="2017-01-

18T05:45:40">1</Quantity>

 <File id="fileName"

name="File Name" timestamp="2017-01-18T05:45:40">Route1</Object>

 </Parameters>

 </Collaboration>

 </Jobs>

 </DeviceOperation>

 <Queue>

 </Operations>

</MTCommOperations>

	Machine Tool Communication (MTComm) Method and Its Applications in a Cyber-Physical Manufacturing Cloud
	Citation

	tmp.1697748229.pdf._bULG

