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Abstract: As Digital Twins gain more traction and their adoption in industry increases, there
is a need to integrate such technology with machine learning features to enhance functionality
and enable decision making tasks. This has lead to the emergence of a concept known as Digital
Triplet; an enhancement of Digital Twin technology through the addition of an ’intelligent activity
layer’. This is a relatively new technology in Industrie 4.0 and research efforts are geared towards
exploring its applicability, development and testing of means for implementation and quick adoption.
This paper presents the design and implementation of a Digital Triplet for a three-floor elevator
system. It demonstrates the integration of a machine learning (ML) object detection model and the
system Digital Twin. This was done to introduce an additional security feature that enabled the system
to make a decision, based on objects detected and take preliminary security measures. The virtual
model was designed in Siemens NX and programmed via Total Integrated Automation (TIA) portal
software. The corresponding physical model was fabricated and controlled using a Programmable
Logic Controller (PLC) S7 1200. A control program was developed to mimic the general operations
of a typical elevator system used in a commercial building setting. Communication, between the
physical and virtual models, was enabled using the OPC-Unified Architecture (OPC-UA) protocol.
Object recognition using “You only look once” (YOLOV3) based machine learning algorithm was
incorporated. The Digital Triplet’s functionality was tested, ensuring the virtual system duplicated
actual operations of the physical counterpart through the use of sensor data. Performance testing was
done to determine the impact of the ML module on the real-time functionality aspect of the system.
Experiment results showed the object recognition contributed an average of 1.083 s to an overall
signal travel time of 1.338 s.

Keywords: Digital Triplet; Digital Twin; OPC-UA; object recognition; cyber-physical system;
elevator systems; PLC

1. Introduction

As automation technology heads towards the new industrial revolution, i.e., Industrie 4.0, cyber
physical systems are becoming the norm in modern industries [1]. The key feature of such systems
being the integration of the physical set-up with their digital counterpart to realize what is known
as a Digital Twin [2]. This digitisation concept is an enhancement of the traditional Production
Life-cycle Management (PLM) method used to effectively administer the creation of products from
design to market supply. The adoption of cyber-physical systems is seen in applications ranging
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from product life-cycle simulation, predictive maintenance, plant layout planning and process design
optimisation [3,4].

In addition, current research efforts in industrial automation are aimed at using artificial
intelligence and machine learning to enhance system performance. A survey conducted by Diez et al. [5]
showed how data fusion and machine learning were gradually gaining attention in different industrial
sectors. The application of artificial intelligence techniques to enhance the performance of Digital Twin
systems results in what can be termed as ‘Digital Triplet’ [6].

This research aimed at creating a Digital Triplet control system for a three-floor elevator model
as a proof of concept. The Digital Triplet enabled remote monitoring and control of the elevator as
well as the inclusion of improved decision making through the use of object recognition, facilitated by
a machine learning model. A Digital Twin of the three-storey elevator system was done using Siemens
NX software. After design, the physical system was fabricated and programmed to achieve typical
elevator functionality. Communication between the virtual and physical models was then established
using the OPC-UA protocol. In addition to achieving typical elevator operation, object recognition
was implemented through a camera to enhance the security features within the system. Testing was
later done to determine the system performance characteristics.

2. Literature Review

2.1. From Digital Twin to Digital Triplet

2.1.1. Development of Digital Twin Technology

The Digital Twin concept arose from the natural evolution of early forms of physical and digital
object interfacing known as digital models and digital shadows. A digital model is defined as a virtual
representation of a physical system without automatic data exchange between the two objects [4].
A digital shadow is an enhancement of the digital model since it introduces the integration of a one
way communication channel between the physical system and its virtual counterpart. In such a system,
the physical model can send data caused by a change in state to the virtual object, but the reverse is
not possible [4,7].

A Digital Twin is distinct from the above mentioned, due to its full integration of information
communication between the physical and virtual objects. A change in state in the physical object is
registered in the virtual system and any applied change in state to the virtual system can affect the
physical object [3,8]. Figure 1 shows the key elements contained in digital models, digital shadows
and Digital Twins, highlighting the type of information flow involved in each.

Figure 1. Illustration of the evolution from Digital Model and Digital Shadow to Digital Twin [4].
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Several key technologies are driving the increased adoption of Digital Twins in industry.
These include but are not limited to, continuous and discrete simulation methods, communication
protocols (OPC-UA and MQTT), Internet of things, Cloud computing, Big data and data fusion [4].
When integrated in CPS most Digital Twin applications include but are not limited to, layout planning,
preventive maintenance and production planning and control [7,9,10].

2.1.2. Digital Triplet

The Digital Triplet concept was developed by Umeda et al. [6] in order to tackle two key problems
in the Japanese manufacturing industry;

i. The adoption of digitisation in Japanese manufacturing industries might not fit the prevailing
Japanese engineering philosophy and might extinguish its strengths.

ii. Engineers/technicians found it difficult to adopt digitisation due to the need to apply their
knowledge and experience to effect changes not only to the physical system but also to their
virtual counterparts.

The key observation was that traditionally, system improvements were applied directly to the
physical manufacturing systems but there was a need to execute such activities by utilising both virtual
and physical worlds. The solution involved the integration of physical, virtual and intelligent activity
worlds resulting in the development of the Digital Triplet concept. As illustrated in Figure 2, the
Digital Triplet has an additional intelligent activity layer on top of the typical Digital Twin design.
This additional layer represents the analysis, decision making and improvement execution done by
engineers/technicians, guided by years of acquired knowledge and experience [6].

Figure 2. Original Digital Triplet concept [6].

Digital Triplet was developed as a concept and provides a rich area of exploration through research
into possible implementation methods and their applications. An example of such an implementation
strategy involves the use of machine learning modules in the intelligent activity layer and uses machine
to machine communication to form the necessary interconnection between the layers. Machine learning
is a key contributor to the achievement of Industrie 4.0 agenda and has a growing body of research
with a wide variety of applications in industry [6].



Designs 2020, 4, 9 4 of 14

2.2. OPC-UA in Industrie 4.0

Open Platform Communication (OPC) is a communication protocol that enables secure
and reliable exchange of data between industrial hardware devices. It contains a series of specifications
that define the interface of Clients and Servers, as well as between Servers [11]. OPC Data Access was
the first OPC Classic specification released in August 1996 with the first revision occurring in 1997.
The standard quickly received support from commercial products leading to it being adopted as the
industrial standard [12,13].

During its early adoption phase, the OPC protocol encountered several challenges which included:

i. Restricted use to only Windows operating system;
ii. Difficulty in handling and integrating different OPC services, i.e.OPC-AE, OPC-DA, OPC-HDA;
iii. Incompatibilities with internet firewalls protocols;
iv. Emergent security issues since initially access and data security was not a concern.

To address these limitations, the OPC Foundation reworked the standard specifications in order
to future proof the protocol and unify different address spaces. This resulted in the development
of Open Platform Communication-Unified Architecture (OPC-UA). This new protocol allows access
to other specifications and ensures secure data exchange between server–server and client–server
communications links. It provides a layer of interoperability, which enables communication regardless
of the native operating system [13,14]. Figure 3 highlights the key areas of limitation addressed by the
OPC-UA protocol.

An OPC-UA server also has the capability of running local functions that can be written to
perform tasks such as data processing. With this capability, it was possible to embed machine learning
modules within the UA server to aid in analysis and decision-making tasks thus achieving intelligent
world activities [13].

Figure 3. Key features and benefits of the Open Platform Communication-Unified Architecture
(OPC-UA) protocol [11].
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2.3. Integration of Machine learning in Digital Twins and OPC-UA

Generally, artificial intelligence (AI) and machine learning (ML) techniques have been used to
perform various tasks in line with Industrie 4.0, including, but not limited to, predictive maintenance,
health monitoring, fault diagnosis, adaptive control and operation process optimisation. Integration of
such features into the Digital Twin technology has been explored in various manufacturing scenarios,
as demonstrated by [15–18]. The integration of both AI and ML with Digital Twin technology is
beneficial in enhancing the interaction between the virtual and physical entity so that processes and
operations can be analysed, predicted and optimised. This is achievable since Digital Twin technology
not only emphasises the importance of simulation in virtual space but also allows the interaction and
execution of intelligent activities between physical and virtual spaces during system operation [17,18].

Artificial intelligence and machine learning requires standardised access to data sources, which it
analyses to gain insight into systems. OPC-UA technology comes in handy in addressing this need
as it enables a platform-independent interoperability standard for moving data between systems
and devices in operation. Intelligent services can utilise data to optimise operations or perform
predictive maintenance only if the right levels and standards of connectivity are met [19].

3. Design of the Digital Triplet for the Three-Floor Model Elevator System

This research aimed at offering a holistic monitoring method that can be applied to most if not all
elevator systems modelled using the block diagram shown in Figure 4. It began by creating a virtual
duplicate of a model elevator system, which was linked to its physical counterpart and provided
real-time status information of the system. By utilising the advanced features of OPC-UA protocol,
communication and data exchange between the UA clients was achieved. In addition, an object
detection module was embedded within the server to analyse image data received from a camera.
Through this module, harmful objects were detected and action was taken to halt elevator motion.
The incorporated of the camera-based system and machine learning module improves the functionality
of the Digital Twin and converted it into a Digital Triplet.

Figure 4. Block diagram of the key components and interactions of a typical Digital Triplet system.
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The implementation of a Digital Triplet for a physical system involves the representation of
a physical system in cyberspace using a virtual Model for simulation, monitoring and control with the
application of artificial intelligence for increased system functionality. Figure 5 shows the component
and interaction layout followed during the implementation of the project. The key elements of the
system include:

i. Physical System—Consisted of the three-floor elevator model controlled by a Siemens S7 1200
PLC, an ultrasonic distance sensor and an HMI;

ii. Virtual Model—A digital model of the elevator system was generated using Siemens NX 12.0.2
modelling and simulation software. It receives sensor data from the Raspberry Pi and updates
the position of the model in line with the position of the elevator cage;

iii. Raspberry Pi—This served as an OPC-UA client and acted as an intermediary between the PLC
and OPC server since PLC S7-1200 cannot function independently as an OPC-UA Client;

iv. OPC Communication Server—An information server that enabled communication between
the physical system and the web access platform. It also contained a trained object recognition
module able to detect objects from a camera feed;

v. Web Access Platform—An internet enabled means of controlling and monitoring the elevator
model remotely;

vi. Camera—A security feature, akin to common surveillance systems in elevators with a connection
to the OPC server. Image frames from the camera are captured and sent to the object recognition
algorithm housed in the OPC server.

Figure 5. Block diagram of Digital Triplet system design.

3.1. Virtual and Physical Model Implementation

The initial step to the implementation process was designing all the required model elevator
subsystems, for example; metal frame, drive pulley mechanism, counter weight and rails, in CAD
software, i.e., Siemens NX 12.0.2, as shown in Figure 6a. Apart from CAD functionality, Siemens NX
has the Mechatronic Concept Designer (MCD) feature that enables the definition of system physical
properties. Once the physical design was complete, fabrication was done with the results, as shown in
Figure 6b. The physical system was controlled using a Siemens PLC S7 1200 with the primary actuator
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being a 12 V DC motor that ran the movement of the passenger cage between floors. The system was
then programmed using Siemens TIA portal to operate as a typical three-floor lift operable from a
Siemens HMI or from a web-based access system.

(a) Virtual Model (b) Physical Model
Figure 6. Implementation of virtual and physical models.

Siemens PLC S7 1200 can not be used as an OPC-UA client and thus an intermediary device,
in this case a Raspberry Pi, was used to act as the OPC-UA client, communication with the Server
and relay this information to the PLC. In addition, the Raspberry Pi also read the ultrasonic sensor
data and wrote this value directly to the Server and relayed it also to the virtual model.

3.1.1. OPC Server and Object Recognition Module

The OPC Server facilitated communication between the various elements of the system and acted
as a central data source for all the UA client devices. It also could call functions that act on the collected
data and process it to useful information. In this research, the object recognition model was defined as
a series of functions that run within the OPC Server. The model was based on the YOLOV3 framework
and was trained using the Common Objects in Context (COCO) image-set.

The system camera was configured as an OPC client and was able to forward captured image
frames to the OPC Server. Once received, an image was pre-processed and fed through the object
detection model for object detection and classification. Based on the results from this process, two key
variables, i.e., detected objects (array) and system disable (boolean), were updated and stored on the
UA server. These variables along with others within the server were queried by UA clients and the
information read from the Server.

The YOLOV3 model was trained and three image categories, i.e., knife, fork and spoon,
were selected to represent harmful materials that should not be allowed into the elevator system.
When any of the three were detected, an alert event was triggered and sent from the OPC-UA server to
the PLC and web access platform.

3.1.2. Web Access Platform (WAP)

A web access platform (WAP) was created using Python programming language to enable remote
access and control of the elevator. MongoDB was used to implement the data storage system. The web
interface was configured as a UA client and hence able to read data variables directly from the server
and updates the user dashboards. The WAP features a login section to ensure secure access control to
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unauthorised users, as shown in Figure 7a. Once login credentials have been authenticated, the user is
presented with the control dashboard, as shown in Figure 7b.

(a) Login landing page (b) Control and monitoring page
Figure 7. Web access platform.

The dashboard gives the user relevant information concerning the status of the elevator,
i.e., its current location, speed and direction. The user also has access to the direct camera feed
and can monitor the ongoings in the elevator. The user can perform floor calls, which commands the
elevator to move to a desired floor, and precision floor control can be performed by specifying an exact
amount of distance for the elevator cage to move. Additionally, there are emergency and lift disable
options that can be used in the event of an emergency. The system also keeps a log, based on objects
detected by the object detection system; thus, a user can see any banned items that have been detected
by the system with their relevant time stamp, as shown in Figure 8.

Figure 8. Detected objects log page.

3.2. Elevator Control Sequence

The operation of the elevator system started by powering the PLC control system and ensuring
connectivity with the OPC-UA server. The elevator was controlled on-site through the HMI or remotely
via the WAP. If a floor call was activated, the elevator moves to the required floor while updating the
the UA server. During operation, the camera sent image frames to the server for object recognition.
The detection module updated variables within the UA server, which the UA client could query. If a
banned item was detected, an alert was sent to the WAP and PLC for the lift to halt.
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4. Performance Testing: Preliminary Accuracy and Speed Testing of Object Detection Models

Before selecting the type of object recognition model to implement, the speed and accuracy of two
candidate models were tested. These models were a YOLOV3 model trained on the full COCO data set
and a custom model based on the YOLO-Tiny and only trained on two object categories. The objective
of the experiment was to determine the extent to which a reduction in model size would impact the
model speed and accuracy.

4.1. Model Accuracy and Speed Experiment

To determine the accuracy and speed of the two candidate models; YOLOV3 and YOLO-Tiny,
an experiment set-up was done, as shown in Figure 9. A camera was connected to the host computer
and was positioned in view of the test object. Thirty experiment runs were performed where the
image in front of the camera changed between a bottle and a knife. This image was then captured and
sent to the two candidate models for recognition. The model confidence levels and processing time
were recorded.

Figure 9. YOLOV3 and YOLO-Tiny accuracy-speed experiment set-up.

The results of the accuracy-speed experiment are shown in Table 1. Figure 10 shows the plot of
the average confidence level achieved by YOLOV3 and YOLO-Tiny models. YOLOV3 had an average
confidence level of 83.34% (bottle) and 75.13% (knife) while YOLO-Tiny had an average of 34% (bottle)
and 61.56% (knife). From the experiment data, YOLOV3 demonstrated a high confidence level in
its detections and thus is more accurate as compared to the YOLO-Tiny model.

Table 1. Model accuracy and speed comparison experiment results.

Pretrained Model-
YOLOV3 (COCO Dataset)

Trained Model-YOLO Tiny
(Custom Dataset)

No. Bottle Knife Time Bottle Knife Time

1 0.563078 1.436954 0.538134 0.293176
2 0.518505 1.097018 0.26874 0.115766
3 0.712644 1.147794 0.238605 0.122837
4 0.604001 1.115672 0.35785 0.11534
5 0.617293 1.095899 0.236708 0.11451
6 0.768312 1.098382 0.20796 0.118993
7 0.847213 1.087484 0.299728 0.115685
8 0.83869 1.101691 0.246914 0.117492
9 0.461898 1.085279 0.202363 0.114799

10 0.878751 1.086199 0.222235 0.114908
11 0.855653 1.085588 0.38596 0.115583
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Table 1. Cont.

Pretrained Model-
YOLOV3 (COCO Dataset)

Trained Model-YOLO Tiny
(Custom Dataset)

No. Bottle Knife Time Bottle Knife Time

12 0.67897 1.089047 0.267305 0.120144
13 0.431009 1.236007 0.352158 0.12096
14 0.62166 1.235347 0.394833 0.121908
15 0.977759 1.227963 0.923965 0.115066
16 0.982802 1.251054 0.717396 0.122392
17 0.943187 1.232909 0.877083 0.115504
18 0.888342 1.236449 0.757118 0.117676
19 0.945846 1.489872 0.974552 0.113529
20 0.679464 1.338581 0.728801 0.124169
21 0.932162 1.26507 0.411357 0.120918
22 0.950707 1.278451 0.239319 0.11672
23 0.988292 1.322283 0.208433 0.11777
24 0.995962 1.21862 0.523656 0.119485
25 0.999116 1.222793 0.365052 0.122549
26 0.999661 1.216217 0.834931 0.115162
27 0.996282 1.222553 0.654359 0.119391
28 0.457893 1.217895 0.342688 0.150091
29 0.984947 1.576505 0.24305 0.115937
30 0.978729 1.203016 0.208724 0.128472

AVG 0.833396 0.7513 1.217286 0.339926 0.615581 0.125231

From the experiment results, YOLOV3 had an average processing time of 1.2173 s, while
YOLO-Tiny had an average processing time of 0.1252 s. From these results, the YOLO-Tiny model had
a lower processing time than YOLOV3. This high speed was achieved with the sacrifice of accuracy.
Based on the focus of the end application, high accuracy or fast speed, the appropriate model can be
selected. Due to the focus on security enhancement, which relies on high accuracy, a key motivation in
this research, the final implementation was done using the YOLOV3 model.

Figure 10. Comparison plot of average confidence level for object detection models.
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4.2. System Interstitial Time Experiments

4.2.1. Time Response between WAP and PLC Experiment

The main aim of this experiment was to establish the signal travel time between the web
access platform and the PLC. The experiment results gave information about the general real-time
performance of the system and provided a based-line time value from which further comparisons
and optimisation of the system could be done.The experiment set-up was as shown in Figure 11,
and a total of seventy experiment runts were performed. A single signal passes through the system
consisting of four main sub-processes;

i. Sending of user command from WAP to OPC-UA server;
ii. Update of relevant variables within the OPC-UA server;
iii. Query and update of server variable by UA client (Raspberry Pi);
iv. Relay of variable from UA client to PLC.

Figure 11. Web Access Platform (WAP) to Programmable Logic Controller (PLC) signal travel time
experiment set-up.

The results from this experiment showed an average response time of 0.246 s. This was in line
with similar timing experiment conducted from previous research [20], although it should be noted
that the system design and component configuration from Osinde et al., was considerably different
from that used in this paper and thus direct time value comparisons are not valid.

4.2.2. Time Response between Camera, ML Model and PLC Experiment

The time taken from camera frame capture to PLC actuation, i.e., total signal travel time is
an important measure of system performance. By minimising this period, the system can get as close
to real time operation as possible. To perform the optimisation, the time contribution by the different
sub-processes involved need to be determined. This was done through experimentation and the
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experiment set-up was as shown in Figure 12. A single signal pass through the system consists of six
main sub-processes;

i. Sending of camera frame;
ii. Pre-processing of frame to be fed into the YOLOV3 model;
iii. Classification of object within frame;
iv. Update of relevant variables within the OPC-UA server;
v. Query and update of server variable by UA client (Raspberry Pi);
vi. Relay of variable from UA client to PLC.

Figure 12. Camera to PLC through machine learning (ML) module signal travel time experiment set-up.

During the experiment, different objects were placed in front of the camera as shown. A picture
frame was sent to the OPC-UA server for recognition by the object detection model. Once detection was
complete, the necessary server variables were updated. The UA client then queried these variables and
relayed the changes to the PLC for actuation. This was repeated for fifty experiment runs. The average
from the experiment runs are shown in Table 2. The average overall signal travel time was observed as
1.338 s. From the result shown in Table 2, it can be observed that the major contribution to the total
signal time was the model classification time with an average of 1.026 s. The system performed as
expected as this result is similar to that obtained by the YOLOV3 model in the previous experiment.

Table 2. Table of average signal travel time experiment results.

Camera
Frame
Send Time

Frame Pre-
Processing
Time

Model
Classification
time

Variable
Update
Time

Raspberry Pi
Response
Time

Raspberry
Pi to PLC
Write Time

Total
Signal
Travel time

Average
time
in Sec

0.025 0.003 1.026 0.050 0.202 0.033 1.338099
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5. Conclusions

As Digital Twin technology and the OPC-UA communication protocol gain increased adoption
into mainstream manufacturing industries, their integration with artificial intelligence and machine
learning techniques has led to the development of the Digital Triplet. In this paper, a real time
monitoring and control system for a model three-floor elevator system was demonstrated using the
Digital Triplet method. The physical system was fabricated and linked to its virtual model via OPC-UA
communication protocol. An object detection algorithm was implemented, capable of detecting
harmful objects while the elevator was under operation. A web access platform was also designed,
which allowed remote monitoring and control. The performance of two candidate object detection
model designs YOLOV3 and YOLO-Tiny was investigated by looking at the accuracy and speed of both
models when subject to the same data set. On average, YOLOV3 was slower than YOLO-Tiny, taking
around 1.217 s compared to 0.125 s, when performing object classification tasks. However, this was
achieved with an average drop in accuracy, with YOLOV3 having an average of a 79.21% confidence
level versus YOLO-Tiny with a 47.75% confidence level. YOLOV3 was selected based on its high
accuracy and implemented in the Digital Triplet. A second experiment was conducted to determine the
total signal travel time from camera frame capture to PLC actuation. The aim of this experiment was to
investigate the time contribution of the various sub-processes involved. The machine learning module
had the highest contribution with an average of 1.026 s out of a total signal travel time of 1.338 s.
Future research is geared to improving the object detection processing time without significantly
affecting the detection confidence level to enable the system to run as close as possible to real-time
with high accuracy.
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