2,198 research outputs found

    Through-Silicon Vias in SiGe BiCMOS and Interposer Technologies for Sub-THz Applications

    Get PDF
    Im Rahmen der vorliegenden Dissertation zum Thema „Through-Silicon Vias in SiGe BiCMOS and Interposer Technologies for Sub-THz Applications“ wurde auf Basis einer 130 nm SiGe BiCMOS Technologie ein Through-Silicon Via (TSV) Technologiemodul zur Herstellung elektrischer Durchkontaktierungen für die Anwendung im Millimeterwellen und Sub-THz Frequenzbereich entwickelt. TSVs wurden mittels elektromagnetischer Simulationen modelliert und in Bezug auf ihre elektrischen Eigenschaften bis in den sub-THz Bereich bis zu 300 GHz optimiert. Es wurden die Wechselwirkungen zwischen Modellierung, Fertigungstechnologie und den elektrischen Eigenschaften untersucht. Besonderes Augenmerk wurde auf die technologischen Einflussfaktoren gelegt. Daraus schlussfolgernd wurde das TSV Technologiemodul entwickelt und in eine SiGe BiCMOS Technologie integriert. Hierzu wurde eine Via-Middle Integration gewählt, welche eine Freilegung der TSVs von der Wafer Rückseite erfordert. Durch die geringe Waferdicke von ca. 75 μm wird einen Carrier Wafer Handling Prozess verwendet. Dieser Prozess wurde unter der Randbedingung entwickelt, dass eine nachfolgende Bearbeitung der Wafer innerhalb der BiCMOS Pilotlinie erfolgen kann. Die Rückseitenbearbeitung zielt darauf ab, einen Redistribution Layer auf der Rückseite der BiCMOS Wafer zu realisieren. Hierzu wurde ein Prozess entwickelt, um gleichzeitig verschiedene TSV Strukturen mit variablen Geometrien zu realisieren und damit eine hohe TSV Design Flexibilität zu gewährleisten. Die TSV Strukturen wurden von DC bis über 300 GHz charakterisiert und die elektrischen Eigenschaften extrahiert. Dabei wurde gezeigt, dass TSV Verbindungen mit sehr geringer Dämpfung <1 dB bis 300 GHz realisierbar sind und somit ausgezeichnete Hochfrequenzeigenschaften aufweisen. Zuletzt wurden vielfältige Anwendungen wie das Grounding von Hochfrequenzschaltkreisen, Interposer mit Waveguides und 300 GHz Antennen dargestellt. Das Potential für Millimeterwellen Packaging und 3D Integration wurde evaluiert. TSV Technologien sind heutzutage in vielen Anwendungen z.B. im Bereich der Systemintegration von Digitalschaltkreisen und der Spannungsversorgung von integrierten Schaltkreisen etabliert. Im Rahmen dieser Arbeit wurde der Einsatz von TSVs für Millimeterwellen und dem sub-THz Frequenzbereich untersucht und die Anwendung für den sub-THz Bereich bis 300 GHz demonstriert. Dadurch werden neue Möglichkeiten der Systemintegration und des Packaging von Höchstfrequenzsystemen geschaffen.:Bibliographische Beschreibung List of symbols and abbreviations Acknowledgement 1. Introduction 2. FEM Modeling of BiCMOS & Interposer Through-Silicon Vias 3. Fabrication of BiCMOS & Silicon Interposer with TSVs 4. Characterization of BiCMOS Embedded Through-Silicon Vias 5. Applications 6. Conclusion and Future Work 7. Appendix 8. Publications & Patents 9. Bibliography 10. List of Figures and Table

    Analysis of the high frequency substrate noise effects on LC-VCOs

    Get PDF
    La integració de transceptors per comunicacions de radiofreqüència en CMOS pot quedar seriosament limitada per la interacció entre els seus blocs, arribant a desaconsellar la utilització de un únic dau de silici. El soroll d’alta freqüència generat per certs blocs, com l’amplificador de potencia, pot viatjar pel substrat i amenaçar el correcte funcionament de l’oscil·lador local. Trobem tres raons importants que mostren aquest risc d’interacció entre blocs i que justifiquen la necessitat d’un estudi profund per minimitzar-lo. Les característiques del substrat fan que el soroll d’alta freqüència es propagui m’és fàcilment que el de baixa freqüència. Per altra banda, les estructures de protecció perden eficiència a mesura que la freqüència augmenta. Finalment, el soroll d’alta freqüència que arriba a l’oscil·lador degrada al seu correcte comportament. El propòsit d’aquesta tesis és analitzar en profunditat la interacció entre el soroll d’alta freqüència que es propaga pel substrat i l’oscil·lador amb l’objectiu de poder predir, mitjançant un model, l’efecte que aquest soroll pot tenir sobre el correcte funcionament de l’oscil·lador. Es volen proporcionar diverses guies i normes a seguir que permeti als dissenyadors augmentar la robustesa dels oscil·ladors al soroll d’alta freqüència que viatja pel substrat. La investigació de l’efecte del soroll de substrat en oscil·ladors s’ha iniciat des d’un punt de vista empíric, per una banda, analitzant la propagació de senyals a través del substrat i avaluant l’eficiència d’estructures per bloquejar aquesta propagació, i per altra, determinant l’efecte d’un to present en el substrat en un oscil·lador. Aquesta investigació ha mostrat que la injecció d’un to d’alta freqüència en el substrat es pot propagar fins arribar a l’oscil·lador i que, a causa del ’pulling’ de freqüència, pot modular en freqüència la sortida de l’oscil·lador. A partir dels resultats de l’anàlisi empíric s’ha aportat un model matemàtic que permet predir l’efecte del soroll en l’oscil·lador. Aquest model té el principal avantatge en el fet de que està basat en paràmetres físics de l’oscil·lador o del soroll, permetent determinar les mesures que un dissenyador pot prendre per augmentar la robustesa de l’oscil·lador així com les conseqüències que aquestes mesures tenen sobre el seu funcionament global (trade-offs). El model ha estat comparat tant amb simulacions com amb mesures reals demostrant ser molt precís a l’hora de predir l’efecte del soroll de substrat. La utilitat del model com a eina de disseny s’ha demostrat en dos estudis. Primerament, les conclusions del model han estat aplicades en el procés de disseny d’un oscil·lador d’ultra baix consum a 2.5GHz, aconseguint un oscil·lador robust al soroll de substrat d’alta freqüència i amb característiques totalment compatibles amb els principals estàndards de comunicació en aquesta banda. Finalment, el model s’ha utilitzat com a eina d’anàlisi per avaluar la causa de les diferències, en termes de robustesa a soroll de substrat, mesurades en dos oscil·ladors a 60GHz amb dues diferents estratègies d’apantallament de l’inductor del tanc de ressonant, flotant en un cas i connectat a terra en l’altre. El model ha mostrat que les diferències en robustesa són causades per la millora en el factor de qualitat i en l’amplitud d’oscil·lació i no per un augment en l’aïllament entre tanc i substrat. Per altra banda, el model ha demostrat ser vàlid i molt precís inclús en aquest rang de freqüència tan extrem. el principal avantatge en el fet de que està basat en paràmetres físics de l’oscil·lador o del soroll, permetent determinar les mesures que un dissenyador pot prendre per augmentar la robustesa de l’oscil·lador així com les conseqüències que aquestes mesures tenen sobre el seu funcionament global (trade-offs). El model ha estat comparat tant amb simulacions com amb mesures reals demostrant ser molt precís a l’hora de predir l’efecte del soroll de substrat. La utilitat del model com a eina de disseny s’ha demostrat en dos estudis. Primerament, les conclusions del model han estat aplicades en el procés de disseny d’un oscil·lador d’ultra baix consum a 2.5GHz, aconseguint un oscil·lador robust al soroll de substrat d’alta freqüència i amb característiques totalment compatibles amb els principals estàndards de comunicació en aquesta banda. Finalment, el model s’ha utilitzat com a eina d’anàlisi per avaluar la causa de les diferències, en termes de robustesa a soroll de substrat, mesurades en dos oscil·ladors a 60GHz amb dues diferents estratègies d’apantallament de l’inductor del tanc de ressonant, flotant en un cas i connectat a terra en l’altre. El model ha mostrat que les diferències en robustesa són causades per la millora en el factor de qualitat i en l’amplitud d’oscil·lació i no per un augment en l’aïllament entre tanc i substrat. Per altra banda, el model ha demostrat ser vàlid i molt precís inclús en aquest rang de freqüència tan extrem.The integration of transceivers for RF communication in CMOS can be seriously limited by the interaction between their blocks, even advising against using a single silicon die. The high frequency noise generated by some of the blocks, like the power amplifier, can travel through the substrate, reaching the local oscillator and threatening its correct performance. Three important reasons can be stated that show the risk of the single die integration. Noise propagation is easier the higher the frequency. Moreover, the protection structures lose efficiency as the noise frequency increases. Finally, the high frequency noise that reaches the local oscillator degrades its performance. The purpose of this thesis is to deeply analyze the interaction between the high frequency substrate noise and the oscillator with the objective of being able to predict, thanks to a model, the effect that this noise may have over the correct behavior of the oscillator. We want to provide some guidelines to the designers to allow them to increase the robustness of the oscillator to high frequency substrate noise. The investigation of the effect of the high frequency substrate noise on oscillators has started from an empirical point of view, on one hand, analyzing the noise propagation through the substrate and evaluating the efficiency of some structures to block this propagation, and on the other hand, determining the effect on an oscillator of a high frequency noise tone present in the substrate. This investigation has shown that the injection of a high frequency tone in the substrate can reach the oscillator and, due to a frequency pulling effect, it can modulate in frequency the output of the oscillator. Based on the results obtained during the empirical analysis, a mathematical model to predict the effect of the substrate noise on the oscillator has been provided. The main advantage of this model is the fact that it is based on physical parameters of the oscillator and of the noise, allowing to determine the measures that a designer can take to increase the robustness of the oscillator as well as the consequences (trade-offs) that these measures have over its global performance. This model has been compared against both, simulations and real measurements, showing a very high accuracy to predict the effect of the high frequency substrate noise. The usefulness of the presented model as a design tool has been demonstrated in two case studies. Firstly, the conclusions obtained from the model have been applied in the design of an ultra low power consumption 2.5 GHz oscillator robust to the high frequency substrate noise with characteristics which make it compatible with the main communication standards in this frequency band. Finally, the model has been used as an analysis tool to evaluate the cause of the differences, in terms of performance degradation due to substrate noise, measured in two 60 GHz oscillators with two different tank inductor shielding strategies, floating and grounded. The model has determined that the robustness differences are caused by the improvement in the tank quality factor and in the oscillation amplitude and no by an increased isolation between the tank and the substrate. The model has shown to be valid and very accurate even in these extreme frequency range.Postprint (published version

    Construction of the dirichlet to neumann boundary operator for triangles and applications in the analysis of polygonal conductors

    Get PDF
    This paper introduces a fast and accurate method to investigate the broadband inductive and resistive behavior of conductors with a nonrectangular cross section. The presented iterative combined waveguide mode (ICWM) algorithm leads to an expansion of the longitudinal electric field inside a triangle using a combination of parallel-plate waveguide modes in three directions, each perpendicular to one of the triangle sides. This expansion is used to calculate the triangle's Dirichlet to Neumann boundary operator. Subsequently, any polygonal conductor can be modeled as a combination of triangles. The method is especially useful to investigate current crowding effects near sharp conductor corners. In a number of numerical examples, the accuracy of the ICWM algorithm is investigated, and the method is applied to some polygonal conductor configurations

    Organic ferroelectric diodes

    Get PDF

    When Compactness Meets Flexibility: Basic Coaxial SIW Filter Topology for Device Miniaturization, Design Flexibility, Advanced Filtering Responses, and Implementation of Tunable Filters

    Full text link
    [EN] Substrate integrated waveguide (SIW) technology [1], [2] is a well established and successful approach for implementing planar microwave filters with very stringent requirements in terms of quality (Q) factor and also with the ability to integrate into a system. Optimized SIW filters can reach a Q factor of 200-800 using low-loss substrates and standard fabrication procedures [3]. Furthermore, packaging and electromagnetic (EM) shielding, power-handling capabilities, and low-cost batch manufacturing are other broadly recognized strengths of this approach. However, SIW filters are still larger than most of their planar counterparts; in addition, advanced topologies are not always easy to accommodate, and filter reconfigurability usually leads to very complex implementation [4]-[6]Martínez Pérez, JD.; Sirci, S.; Boria Esbert, VE.; Sánchez-Soriano, MÁ. (2020). When Compactness Meets Flexibility: Basic Coaxial SIW Filter Topology for Device Miniaturization, Design Flexibility, Advanced Filtering Responses, and Implementation of Tunable Filters. IEEE Microwave Magazine. 21(6):58-78. https://doi.org/10.1109/MMM.2020.2979155S587821

    On-chip Spiral Inductor/transformer Design And Modeling For Rf Applications

    Get PDF
    Passive components are indispensable in the design and development of microchips for high-frequency applications. Inductors in particular are used frequently in radio frequency (RF) IC\u27s such as low-noise amplifiers and oscillators. High performance inductor has become one of the critical components for voltage controlled oscillator (VCO) design, for its quality factor (Q) value directly affects the VCO phase noise. The optimization of inductor layout can improve its performance, but the improvement is limited by selected technology. Inductor performance is bounded by the thin routing metal and small distance from lossy substrate. On the other hand, the in-accurate inductor modeling further limits the optimization process. The on-chip inductor has been an important research topic since it was first proposed in early 1990\u27s. Significant amount of study has been accomplished and reported in literature; whereas some methods have been used in industry, but not released to public. It is of no doubt that a comprehensive solution is not exist yet. A comprehensive study of previous will be first address. Later author will point out the in-adequacy of skin effect and proximity effect as cause of current crowding in the inductor metal. A model method embedded with new explanation of current crowding is proposed and its applicability in differential inductor and balun is validated. This study leads to a robust optimization routine to improve inductor performance without any addition technology cost and development

    Modelling up to 45 GHz of coupling between microvias and PCB cavities considering several boundary conditions

    Get PDF
    International audienceModeling up to 45 GHz of coupling between microvias and PCB cavities considering several boundary conditions thierry le gouguec 1 , najib mahdi 1 , ste ' phane cadiou 1 , ce ' dric quendo 1 , erich schlaffer 2 , walter pessl 2 and alain lefevre 3 The recent developments in electronic cards such as the network equipment are characterized by the miniaturization of the board size and the increasing complexity of the layout. Because of these requirements, multi-layered printed circuit boards are commonly used and vias connecting signal lines on different layers, or integrated circuit devices to power and ground planes, are frequently used and often essential. However, a via is not an ideal transmission line. Besides, it creates discontinuities at high frequencies leading to high insertion loss degradation of signal which limits the performances of integrated circuit and systems. In this paper, the impacts of coupling between via and parallel-plates cavity on the response of microwave integrated devices are highlighted in the first part. Then, to describe the intrinsic interaction between the via transition and parallel-plate modes, the notion of parallel-plates matrix impedances is presented and new boundary conditions like open or plated through holes shielded boundaries of the cavities are introduced. Then, using this physics-based model, an intuitive equivalent circuit has been developed. Finally, the proposed approach and the equivalent circuits were validated by using comparisons with electromagnetic simulations and measurements in different scenarios. Three-dimensional (3D) multi-layer technologies such as low temperature co-fired ceramics (LTCC) [1] or high-density multi-layers printed circuit board (HD-PCB) [2] are currently being strongly developed because they offer considerable size reduction as well as the embedded function possibilities. For microwave applications such as filters, couplers, diplexers, etc. [3, 4], these 3D structures offer new design possibilities for frequencies up to 100 GHz. HD-PCB structures consist of several metal layers separated by dielectric substrates. The vias and microvias used in multilayer PCBs allow connecting lines of different metallic levels together or connecting devices to the power and ground plane [5]. The different metal planes can also be connected together with metallic plated through holes (PTHs). With the rise of working frequencies, the stacked multilayer PCB structures are subjected to electromagnetic phenomena like standing waves in cavities or like coupling and interaction between neighboring components. As example of HD-PCB technology, the AT&S TM (PCB manufacturer) technology used during MIDIMU-HD project funded by the Euripides council is presented in Fig. 1. This HD multilayer consists of eight metallic layers (30 mm thickness) separated by Megtron6 (Panasonic TM) sub-strate of 95 mm thickness (depending on the metal densities of each level) and with a relative permittivity 1 r ¼ 3.3 and loss tangent tan(d) ¼ 0.0065 at 40 GHz. A single microvia hole consists of a central cylinder with a diameter of 140 mm, a conductor pad with a diameter of 240 mm, and when this via passes through a metallic plane it will also have a clearance hole called anti-pad of diameter of 350 mm. AT&S is able to stack more than three microvias and to realize buried via with diameter of 200 mm. The PTHs connecting the metal level M1 to the metal level M8 are 200 mm of diameter. Obviously, these multilayer structures which involve parallel planes, dielectric layers, pads, and anti-pads are not ideal transmission components at high frequencies. The electrical behavior of a microvia can be modeled by serial inductance and resistance like is done for a metallic wire [6, 7]. The vias and microvias may cause mismatch [7], crosstalk, reflections, some additional signal delays, and consequently the degradation of signal performance. On the other hand, the coupling between vias, microvias, and parallel plates also plays an important role in the electrical performances of the via transition [8, 9]. The excitation of the parallel plate modes results in conversion of energy between propagation on line and propagation on guided plated structures which imply some transmission zeros
    corecore