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Abstract—This paper introduces a fast and accurate method
to investigate the broadband inductive and resistive behavior of
conductors with a non-rectangular cross-section. The presented
Iterative Combined Waveguide Modes (ICWM) algorithm leads
to an expansion of the longitudinal electric field inside a triangle,
using a combination of parallel-plate waveguide modes in three
directions, each perpendicular to one of the triangle sides. This
expansion is used to calculate the triangle’s Dirichlet to Neumann
boundary operator. Subsequently, any polygonal conductor can
be modeled as a combination of triangles. The method is
especially useful to investigate current crowding effects near
sharp conductor corners. In a number of numerical examples,
the accuracy of the ICWM algorithm is investigated, and the
method is applied to some polygonal conductor configurations.

Index Terms—Dirichlet to Neumann operator, iterative com-
bined waveguide modes algorithm, triangle, polygonal conductor,
skin effect, quasi-TM approximations.

I. INTRODUCTION

TO adequately address broadband signal integrity for

board and package level interconnections, fully fledged

RLGC transmission models are required. For the highest clock

rates this is now also the case for on-chip interconnections

as argued in [1]. The influence of the finite conductivity of

the conductors and the associated frequency dependent skin

effect losses and internal inductance (the so-called current

crowding phenomenon) has received considerable attention

in literature, see e.g. [2] and [3] and the many references

in these papers. In [4] a single lossy line in the presence

of a semiconducting substrate is analysed in the quasi-TM

limit. The conductor losses can even become dominant for

narrow strip configurations [5]. In [6] this quasi-TM analysis

is extended to multiconductor lines in the presence of a

semiconducting substrate.

To this end we introduced the Dirichlet to Neumann (DtN)

operator [7] to capture the current crowding phenomenon

inside a good conductor. The frequency ranges from DC to

tens of GHz, at which point the skin-effect is fully developed

and can be described by the familiar scalar surface impedance

Zs

Zs =
1 + j

σδ
(1)

with σ the conductivity, and δ the skin depth. The DtN operator

is used to obtain a surface admittance relationship Y(r, r′)
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between the longitudinal electric field ez(r
′) and the differen-

tial surface current js(r), with r
′ and r on the circumference

of the conductor’s cross-section. To determine the per unit

length inductance and resistance of a particular transmission

line configuration, it now suffices to replace the conductors

by their equivalent differential surface currents placed in the

background medium. These differential, or so-called ‘equiva-

lent’ surface currents are determined such, that they exactly

give rise to the original fields outside the conductor when

this conductor is made transparent by replacing its material

properties by those of the background medium. Combining this

with an integral equation solution for the fields generated by

these currents, directly leads to the desired L and R matrices. In

the quasi-TM approximation this approach can be extended to

the determination of the capacitance and conductance matrices

C and G by again invoking the DtN operator but now to obtain

a relationship between the potential φ on the circumference of

each dielectric and semiconductor, and its normal derivative

∂φ/∂n. Invoking an integral equation for the potential as a

function of the equivalent surface charges in combination with

this relationship between φ and ∂φ/∂n, and by exciting the

conductors’ boundaries with a constant potential, allows for a

determination of C and G as demonstrated in [6] for coupled

lines in the presence of semiconducting media.

Although the DtN operator theory can in principle be ap-

plied to conductors with an arbitrary cross-section, its practical

application remained restricted to a rectangular cross-section.

This is due to the fact that the analytical determination of

the DtN operator was based on its expansion in terms of

the Dirichlet eigenfunctions. These functions are only known

for the rectangle and the circle and because at least a few

thousands of them are needed for a correct broadband analysis,

their numerical determination for other shapes is excluded.

However, more complex conductor shapes, provided they are

formed by combining rectangles, can be handled as demon-

strated in [8] and [9], e.g., to examine the effect of layered

on-chip conductors.

Effects such as underetching or electrolytical growth in the

integrated circuit manufacturing process, lead to conductors

that are trapezoidal rather than rectangular. In [10], such lines

are investigated using a combination of the Finite Element

Method (FEM) and the Method of Lines (MoL). To investigate

trapezoidal conductors, or more generally, the influence of

sharp or obtuse conductor corners on the current crowding,

by means of the fast boundary integral equation method

presented in [6], the knowledge of the DtN operator for a
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triangular cross-section is of paramount importance. Combin-

ing triangular cross-sections with rectangular ones, as in [9]

for rectangular cross-sections, then allows one to approximate

almost any cross-sectional shape.

In section II and III the DtN operator for the triangle is

determined by a new method not depending on the Dirichlet

eigenfunctions. As argued and demonstrated in [6] and [7], for

piecewise homogeneous media, the use of the DtN operator

allows to reformulate the complete problem in terms of a

set of coupled boundary integral equations only requiring

the discretization of the unknowns on the boundaries of the

different subdomains. The use of the proper Green’s functions

for each subdomain, leads to the additional advantage that the

skin-effect can be captured in a very accurate way.

First, the ez field on the circumference of the triangle is

discretized, e.g., by using piecewise constant or linear basis

functions. Inside the triangle ez satisfies the diffusion equation.

Next, we choose to expand ez inside the triangle in terms of

three sets of parallel-plate waveguide modes, each set with

one of the triangle’s sides as the waveguide’s height. In theory

using only a single complete set of parallel-plate waveguide

modes would suffice, but the extra waveguide modes are

introduced to avoid numerical inaccuracies as will be carefully

substantiated at the end of Section II-A. This in turn leads to a

numerically very stable determination of the normal derivative

of ez on the circumference, as a function of its original

discretized representation.

In section IV, some numerical examples demonstrate the

accuracy of the method and the convergence properties of the

iterative process to determine the DtN operator. Furthermore,

the resistance of a single conductor composed of triangles is

determined for different conductor shapes. For a rectangle,

results are compared with data available in literature. Next,

the resistive and inductive properties of a multiconductor line

with trapezoidal conductors are investigated and compared to

the rectangular conductor case. Finally, a coplanar waveguide

above a non-planar substrate is simulated and its characteristic

impedance is compared with reference data.

II. DETERMINATION OF THE DTN OPERATOR

IN A TRIANGLE

As introduced in [7] and further elaborated in [6], the

required relationship between ez on a triangle’s boundary c
and the differential surface current js is given by

js(r) =
1

jωµ0

(∂ez(r)

∂n
− ∂ez,0(r)

∂n

)

, r ∈ c (2)

=
1

jωµ0

∮

c

(

D(r, r′) −D0(r, r
′)

)

ez(r
′) dc(r′) (3)

with (D−D0) the differential DtN operator. The actual electric

field ez and the fictitious field ez,0 have the same boundary

value on c, but inside triangle T , ez satisfies the diffusion

equation, whereas ez,0 satisfies Laplace’s equation

∇2
t ez(r) = jωµ0σ ez(r), r ∈ T (4)

∇2
t ez,0(r) = 0, r ∈ T (5)

as dictated by the quasi-TM approximations [6]. For a rect-

angular area, (3) was discretized by means of the Dirichlet

expansion of (ez − ez,0), which is zero on the boundary c.

For the complex capacitance problem C+G/jω, the required

relationship between the equivalent surface charge ρs and

the electric potential φc on the boundary of dielectrics and

semiconductors is given by

ρs(r) = (ε− ε0 + σ/jω)
∂φ(r)

∂n
, r ∈ c (6)

= (ε− ε0 + σ/jω)

∮

c

D(r, r′)φ(r′) dc(r′) (7)

in which φ satisfies the diffusion equation in the semiconduc-

tors, and Laplace’s equation in the dielectrics. The discretiza-

tion of (7) requires the determination of the non-differential

DtN operator D. Because a Dirichlet expansion cannot be

used to represent a non-zero boundary function, an alternative

expansion was used to discretize (7) on a rectangle [11], based

on the superposition of the modal fields that exist in two

perpendicular parallel-plate waveguides. A similar approach

will be used here, but the contributions from the three parallel-

plate waveguides, each perpendicular to one of the sides of

the triangle, will interfere with one another, which was not

the case for the rectangle.

The algorithm introduced in this paper will lead to the DtN

matrix D, the discretized form of the non-differential operator

D, defined for triangle T with boundary c by

∂ψ(r)

∂n
=

∮

c

D(r, r′)ψ(r′) dc(r′), r ∈ c (8)

for ψ satisfying

∇2
tψ(r) = −k2 ψ(r), r ∈ T. (9)

A. Geometry of the Problem and Expansion of ez

Consider triangle T , shown in Fig. 1, defined by its corner

points p1(0, 0), p2(0, x0) and p3(x1, y0). Along the sides c1,

c2 and c3, we will use the normalized coordinate s ranging

from 0 to 1 in counter-clockwise direction along boundary c

of triangle T , such that

c1 ↔ {x = s x0 , y = 0} (10)

c2 ↔ {x = x0 + s (x1 − x0) , y = s y0} (11)

c3 ↔ {x = (1 − s)x1 , y = (1 − s) y0} (12)

The outward pointing normal unit vectors on each side are

needed in the sequel as well. They are given by

u1 =

[

0,−1

]

, u2 =

[

y0
l2
,
x0 − x1

l2

]

, u3 =

[

− y0
l3
,
x1

l3

]

(13)

with l1, l2 and l3 the lengths of the respective sides.

The function ψ(x, y) inside T is split up into three subfunc-

tions

ψ(x, y) = ψ(1)(x, y) + ψ(2)(x, y) + ψ(3)(x, y) (14)
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Fig. 1. Triangle T , with corners {pi} and sides {ci} (i = 1, 2, 3), placed
in a cartesian coordinate system with origin O and axes (x, y), and with a

schematic indication of the way ψ on T is split up into ψ(1) , ψ(2) , and ψ(3) ,
according to parallel-plate waveguide modes in three directions.

with

ψ(1)(x, y) =

N1
∑

n=1

Ac1,n fc1,n(x, y) (15)

ψ(2)(x, y) =

N2
∑

n=1

Ac2,n fc2,n(x, y) (16)

ψ(3)(x, y) =

N3
∑

n=1

Ac3,n fc3,n(x, y) (17)

The functions fc1,n(x, y) are given by

fc1,n(x, y) =
(

ejβny − e−jβn(y−2y0)
)

sin
nπx

x0
(18)

with β2
n = k2− (nπ/x0)

2 and its square root βn chosen such,

that Re(jβn) < 0. The upper limit N1 in (15) is the number

of sine functions used to expand the x-dependence of ψ(1).

The function ψ(1) can, with (15) and (18), be seen as an

expansion of a longitudinal electric field into the eigenmodes

of a parallel-plate waveguide, filled with the medium with

wave number k and directed vertically with the plates through

corners p1 and p2 of triangle T . The y-dependence in (18) is

the exact solution to (9) for each term in the sine expansion

along x, and is chosen such, that its contribution at y = y0
(and hence at p3) becomes zero.

The functions fc2,n(x, y) and fc3,n(x, y) can be written in a

similar way, but it is unnecessary to explicitly write them down

in the same coordinate system used for fc1,n(x, y). Instead, a

different set of axes is associated with each side ci of the

triangle. It has corner pi as its origin, and side ci as its x-axis.

The same triangle in three different orientations and for each

of these coordinate systems, is shown in Fig. 2.

By this judicious choice of the axes, we only need (18)

to express the contributions of the parallel-plate waveguides

associated wich sides c2 and c3, in the sense that

fc2,n(x, y) = f ′
c1,n(x′, y′) (19)

fc3,n(x, y) = f ′′
c1,n(x′′, y′′) (20)

(a)

(b) (c)

O

O′ O′′

x1

x′

1 x′′

1

c1

c′

1 c′′

1

c2

c′

2

c′′

2

c3

c′

3

c′′

3

x0

x′

0 x′′

0

x

x′ x′′

y

y′

y′′

y0

y′

0

y′′

0

p1 p2

p3

p2 p3

p1

p3 p1

p2

T T

T

Fig. 2. Three different axes sets, each associated with a different orientation
of triangle T . (a) unprimed, with c1 underneath, (b) primed, with c2
underneath (c′1 = c2, c′2 = c3, c′3 = c1), (c) double primed, with c3
underneath (c′′1 = c3, c′′2 = c1, c′′3 = c2).

This means that, e.g., for fc2,n(x, y), the same form as (18)

is used, but with x, y, x0, x1, y0 replaced by x′, y′, x′0, x′1,

y′0, and with N ′
1 = N2 terms in the expansion of ψ(2).

The sine expansion {sin (nπx/x0)} in (18) for ψ(1) forms

(theoretically, for N1 → ∞) a complete set on c1, except for

the corner points where all sine functions are zero. This prob-

lem and some related issues will be addressed in Section III.

An analogous argumentation is valid for ψ(2) and ψ(3). Due to

the specific form of (15) and (18), with a single multiplicative

degree of freedom for each basis function fc1,n (its coefficient

Ac1,n), ψ(1) is fully determined over the complete triangle,

once its boundary value on c1 is fixed, and so are ψ(2) for

side c2 and ψ(3) for c3. It would, alternatively, be possible

to determine the coefficients Ãc1,n and B̃c1,n of only one

complete set of waveguide modes, written as

ψ̃(x, y) =

N1
∑

n=1

(

Ãc1,ne
jβny − B̃c1,ne

−jβny
)

sin
nπx

x0
(21)

and such that ψ̃, taking the place of ψ in (14), satisfies

prescribed boundary values on c1, c2 and c3 (in principle

this is only true for N1 → ∞). However, our method uses

the combination of three sets of expansion functions, which

are, on their own, only sufficient to represent a prescribed

boundary value on one of the sides, but altogether on the

three sides. Although the introduction of two extra sets of

waveguide modes is at first glance unnecessary, our method

has the advantage that we can enforce ψ(1) to be zero at p3,

in this way avoiding the exponential terms in (18) to become

large (and analogously for ψ(2) and ψ(3)). If, instead, (21)

would be used, the exponential behavior of the parallel-plate
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waveguide modes in the direction perpendicular to c1 would

lead to ill-conditioning and completely inaccurate results.

As for each boundary excitation there exists a unique

solution for the expansion coefficients Aci,n, it should be

possible to construct a set of equations that can be solved

directly for these coefficients. This procedure needs to be

repeated as many times as there are discretization segments,

and would lead to very long calculations. Therefore, the

authors have opted for an iterative approach to determine the

unknown entries of the DtN matrix. This method has two

major advantages. First of all, it is possible to construct a

very good initial guess to start the iteration (assuming at first

there is no interaction between the sides), and furthermore, the

iterative method has an exponential convergence behavior (as

explained in the sequel), which leads to an accurate solution

within a very limited number of iteration steps.

B. Discretization of ψc and Iterative Procedure

The following paragraphs describe the iterative prodedure

to determine the expansion coefficients Aci,n of (14-17),

which in the sequel will be called the Iterative Combined

Waveguide Modes (ICWM) algorithm. Before giving some

more mathematical details, we start with a brief physical

description of the method. On each side, the unknown function

ψ is first expanded in a set of non-uniform basis functions,

typically pulses or hat functions. The complex amplitudes of

these functions are collected in a column vector Ψc. Next, this

representation is recast in the form (15-18) necessitating the

introduction of a mapping matrix W between Ψc and the A-

coeffcients in (15-17) collected in the column vector A. To

be able to determine W, three additional matrix operations

are needed, i.e. Q, D and P. D and Q transform the original

basis expansion on each side into Fourier series expansions.

Then P matrices are defined that project the Fourier series

coefficients from one side of the triangle onto another side.

These matrices account for the “overlap”, i.e. for the way

in which the three sets of parallel-plate waveguide modes

influence each other. For a better readibility of this text, the

explicit form of several of these matrices is not given, but can

be found in the Appendix.

The proposed method is based on improving an initial guess

for the expansion coefficients, by cycling through the sides

untill the required accuracy is reached. Suppose we start from

side c1. The expansion of ψc1
in sine functions yields a first

approximation ψ(1),〈1〉 for ψ(1). The notation 〈n〉 will be used

to denote a certain value after iteration cycle n. Subtracting

the contribution of ψ(1),〈1〉 on c2 from the actual boundary

value ψc2
, and expanding this result in sines, i.e., calculating

the coefficients {A〈1〉
c2

}, yields ψ(2),〈1〉. For the third side, the

contributions of both ψ(1),〈1〉 and ψ(2),〈1〉 are subtracted from

ψc3
, before expanding it into sines, yielding ψ(3),〈1〉. This is

the end of the first iteration cycle. From now on, both previous

contributions from the expansions on two of the sides to the

third side are subtracted from the actual boundary value, and

the remainder is expanded into sines. In each iteration cycle,

the contribution of the three ψ(i),〈n〉 on each of the sides

constitute a continually better approximation of the actual

boundary value ψci
. In Section IV, the convergence properties

of the method are numerically illustrated. We now first go into

some of the mathematical details.

In order to discretize the function ψ on side c1, the side is

divided into segments, using a number of discretization points

xm, (m = 1, . . . ,M1 + 1), with x1 and xM1+1 the corner

points. A uniform distribution of these points along the sides

is not required. They can be chosen at will, so as to assure

an optimal representation of the continuous function ψc1
. The

normalized discretization points sm on side c1 are defined by

xm = sml1, and analogously on the other sides. With these,

we get for side ci (with i = 1, 2, 3)

ψci
(s) '

Mi
∑

m=1

Ψci,m tci,m(s), 0 ≤ s ≤ 1. (22)

The functions tci,m(s), with m = 1, . . . ,Mi, can be a constant

pulse on the interval [sm, sm+1] (corresponding, e.g on c1,

to x ∈ [xm, xm+1]), a piecewise linear ‘hat’ function on

[sm−1, sm+1], or any other basis function.

The coefficients Ψci,m are taken together into one column

vector Ψc as

Ψc =







Ψc1

Ψc2

Ψc3






(23)

in which [Ψci
]m = Ψci,m. The expansion coefficients Aci,n

from (15-17) are taken together into column vectors Aci
. The

purpose of the ICWM algorithm is the determination of the

Ni ×M matrices Wci
(with M = M1 + M2 + M3), defined

by

Aci
= Wci

Ψc. (24)

Once these matrices are known, the expansion (14-17) is fully

determined for any boundary function ψc, and ∂ψ/∂n can be

determined from the normal derivative of the functions fc1,n,

fc2,n, and fc3,n.

In order to calculate the matrices Wci
, two different types of

interactions have to be worked out. On the one hand, we need

to transform the coefficients of a discretized function on ci into

its sine expansion. On the other hand, we need to determine the

expansion coefficients that result from expanding subfunction

ψ(j), but evaluated on side ci (i 6= j), into sines on side ci.
In order to simplify the notations used in the sequel, some

auxiliary functions are defined here, related to the evaluation

of fc1
(x, y) and its derivatives on sides c2 and c3.

γ−n (s)
def
=

(

ejβny0(1−s) − ejβny0(1+s)
)

(25)

γ+
n (s)

def

=
(

ejβny0(1−s) + ejβny0(1+s)
)

(26)

ζ2,n(s)
def
=

nπ

x0

(

x0 + s (x1 − x0)
)

(27)

ζ3,n(s)
def
=

nπ

x0

(

(1 − s)x1

)

(28)

These functions will be used frequently in the sequel, without

each time referring to (25-28), though. For example, ψ(1)

evaluated on c3 can now be compactly written as

ψ(1)
c3

(s) =

N1
∑

n=1

Ac1,n γ
−
n (s) sin ζ3,n(s). (29)
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First, the transformation matrices Qi and the scaling matri-

ces Di are defined. They transform the coefficients Ψ
(i)
ci,m, with

the superscript (i) indicating the contribution of ψ(i) only, into

its sine expansion coefficients Aci
. The expansion of ψ(1) on

side c1,

ψ(1)
c1

(s) '
M1
∑

m=1

Ψ(1)
c1,m tc1,m(s) (30)

'
N1
∑

n=1

Ac1,n γ
−
n (1) sinnπs, (31)

is weighted with the set {2 sinnπs, n = 1, . . . , N1}. Taking

the coefficients together in the vectors Ψ
(1)
c1

and Ac1
, leads to

Q1 Ψ(1)
c1

= D1
−1

Ac1
(32)

with the explicit form of the N1 × M1 matrix Q1 and the

N1 ×N1 diagonal matrix D1 given in the Appendix.

For the other sides c2 and c3, the primed and double primed

quantities can be used, as indicated in (19) and (20). We

schematically write this as

Q2 = Q′
1, D2 = D′

1, (33)

Q3 = Q′′
1 , D3 = D′′

1 . (34)

The expansion matrices Pij are used to calculate the coeffi-

cients C
(j)
ci,n in the sine expansion on ci of subfunction ψ(j),

defined by its coefficients Acj ,n. Evaluating ψ(1) on c2 and

on c3 and expanding it into sines on these sides, yields, with

(11), (12), (15) and (18),

ψ(1)
c2

(s) '
N2
∑

n2=1

C(1)
c2,n2

sinn2πs (35)

'
N1
∑

n1=1

Ac1,n1
γ−n1

(1 − s) sin ζ2,n1
(s) (36)

ψ(1)
c3

(s) '
N3
∑

n3=1

C(1)
c3,n3

sinn3πs (37)

'
N1
∑

n1=1

Ac1,n1
γ−n1

(s) sin ζ3,n1
(s). (38)

Weighting (35) and (36) with the set {2 sinn2πs}, and (37)

and (38) with the set {2 sinn3πs}, yields

C
(1)
c2

= P21 Ac1
(39)

C(1)
c3

= P31 Ac1
(40)

with the N2 × N1 matrix P21 and the N3 × N1 matrix P31

specified in the Appendix.

Performing the same operations for the rotated geometries

shown in Fig. 2 (b) and (c), leads to the other required matrices

P12 = P′
31, P32 = P′

21 (41)

P13 = P
′′
21, P23 = P

′′
31. (42)

The ICWM procedure as outlined above is an iterative

procedure to determine the Wci
matrices. Initially, all three

matrices are supposed zero. We now describe cycle n of the

iteration. Suppose after n − 1 iteration cycles, we want to

determine the coefficients A
〈n〉
c1

from A
〈n−1〉
c2

and A
〈n−1〉
c3

.

Evaluation of (14) with the LHS discretized using (22),

evaluated on c1 with (10), and with the insertion of expansion

(15) and (18), gives

M1
∑

m=1

Ψc1,m tc1,m(s) −
(

ψ(2),〈n−1〉
c1

+ ψ(3),〈n−1〉
c1

)

=

N1
∑

n=1

A〈n〉
c1,n γ

−
n (1) sinnπs. (43)

Weighting (43) with the set {2 sinnπs} yields

Q1 Ψc1
−

(

C(2),〈n−1〉
c1

+ C(3),〈n−1〉
c1

)

= D1
−1

A〈n〉
c1
. (44)

The analogous relationships as (39), but involving P12 and

P13, allow to write (44) as

A〈n〉
c1

= D1

(

Q1 Ψc1
− P12 A〈n−1〉

c2
− P13 A〈n−1〉

c3

)

. (45)

Define the matrix

Q̃1 =
[

Q1 , 0N1×M2
, 0N1×M3

]

, (46)

using the notation 0Ni×Mj
for a Ni×Mj zero matrix. Inserting

the relationships (24) leads from (45) to

W〈n〉
c1

= D1

(

Q̃1 − P12 W〈n−1〉
c2

− P13 W〈n−1〉
c3

)

. (47)

Analogous calculations show that

W〈n〉
c2

= D2

(

Q̃2 − P21 W〈n〉
c1

− P23 W〈n−1〉
c3

)

(48)

W〈n〉
c3

= D3

(

Q̃3 − P31 W〈n〉
c1

− P32 W〈n〉
c2

)

(49)

with

D2 = D
′
1, Q̃2 =

[

0N2×M1
, Q2 , 0N2×M3

]

(50)

D3 = D′′
1 , Q̃3 =

[

0N3×M1
, 0N3×M2

, Q3

]

. (51)

The update equations (47), (48) and (49) form the core of the

n’th iteration cycle of the ICWM procedure.

C. Normal Derivative Calculation

The outward pointing normal derivative ∂ψc/∂n is dis-

cretized on side i as

∂ψci
(s)

∂n
'

Mi
∑

m=1

Γci,m tci,m(s). (52)

The purpose is to determine the Γci,m coefficients, taken

together per side i into the vector Γci
, such that

Γci
=

3
∑

j=1

Γ(j)
ci

=

3
∑

j=1

Tij Acj
(53)

in which Γ
(j)
ci contains the coefficients Γ

(j)
ci in the contribution

from ψ(j) to the total normal derivative on ci. Hence, with

(24) and by grouping the vectors Γci
into Γc, we find

Γc = D Ψc (54)

with

D =







T11 Wc1
+ T12 Wc2

+ T13 Wc3

T21 Wc1
+ T22 Wc2

+ T23 Wc3

T31 Wc1
+ T32 Wc2

+ T33 Wc3






(55)
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which is the discretized form of (8), i.e., the matrix-

representation of the DtN operator, mapping ψc onto ∂ψc/∂n.

The matrices Tij are determined by calculating the outward

normal derivative of ψ(j) on side ci, and weighting the result

with the basis functions tci
(s) along that side.

On c1, ∂ψ(1)/∂n is written as

∂ψ
(1)
c1

(s)

∂n
'

M1
∑

m=1

Γ(1)
c1,m tc1,m(s) (56)

' −
N1
∑

n=1

Ac1,n jβn γ
+
n (1) sinnπs (57)

and leads to

Γ(1)
c1

= T11 Ac1
. (58)

On c2, the normal derivative of ψ(1) becomes, with (13),

∂ψ
(1)
c2

(s)

∂n
= u2 ·

[

∇ψ(1)
]

c2

(59)

'
M2
∑

m=1

Γ(1)
c2,m tc2,m(s) (60)

'
N1
∑

n=1

Ac1,n

(

y0
l2
γ−n (1 − s)

nπ

x0
cos ζ2,n(s)

+
x0 − x1

l2
jβn γ

+
n (1 − s) sin ζ2,n(s)

)

. (61)

Weighting (60) and (61) with the basis functions tc2,m(s) on c2
leads to

Γ(1)
c2

= T21 Ac1
. (62)

Analogously, ∂ψ
(1)
c3
/∂n becomes

∂ψ
(1)
c3

(s)

∂n
= u3 ·

[

∇ψ(1)
]

c3

(63)

'
M3
∑

m=1

Γ(1)
c3,m tc3,m(s) (64)

'
N1
∑

n=1

Ac1,n

(

− y0
l3
γ−n (s)

nπ

x0
cos ζ3,n(s)

+
x1

l3
jβn γ

+
n (s) sin ζ3,n(s)

)

(65)

and leads to

Γ(1)
c3

= T31 Ac1
. (66)

The Mi × N1 matrices Ti1 are defined in the Appendix. For

the remaining Tij matrices, we can immediately write

T12 = T′
31, T22 = T′

11, T32 = T′
21 (67)

T13 = T′′
21, T23 = T′′

31, T33 = T′′
11. (68)

III. ELIMINATION OF THE GIBBS EFFECT

For the non-differential DtN operator as defined by (8), the

Gibbs phenomena at the corners of the triangle are consider-

able, due to the expansion functions fci,n which are zero in

the corner points, and hence not apt to represent a non-zero

corner value.

As will become clear in Section IV from the numerical

data, this Gibbs phenomenon corrupts the solution along the

complete boundary. An accurate elimination of the Gibbs

effect is therefore required for an arbitrary value of k2. The

solution for the Gibbs effect presented in [11] for a rectangular

cross-section, only deals with k2 = 0. Below, a generalization

is presented. This generalization is only valid provided the

boundary value of ψc is continuous, but this is indeed the case,

both for the scalar electric potential and for the longitudinal

electric field.

The DtN operator (55) is only correct provided all corner

values are zero. A function satisfying this requirement is

obtained by subtracting from ψ three analytically known

functions ψ̂pi , that satisfy (9), have a non-zero corner value

at pi, and are zero on the other corners. We start at corner p1.

The proposed function ψ̂p1 is defined by

ψ̂p1(x, y) = α̂p1 cos
πx

2x0

(

ejβ̂y − ejβ̂(2y0−y)
)

, (69)

with β̂2 = k2 − (π/2x0)
2. It reaches its maximal amplitude

at p1, and is, as required, zero at p2 and p3. Analogous

functions are defined, associated with p2 and p3. We now

have to determine a matrix D̂p1 , which transforms Ψc into

the normal derivative of ψ̂p1 , with a correctly determined

coefficient α̂p1 . Secondly, a matrix R̂p1 is needed, to reduce

the original boundary coefficients Ψc to those without the

contribution of ψ̂p1 . The same argumentation can be followed

to treat corners p2 and p3, with the introduction of analogous

matrices. This results in

Γc = Dtot Ψc (70)

with

Dtot =
(

D R̂
p3 R̂

p2 R̂
p1 + D̂

p3 R̂
p2 R̂

p1 + D̂
p2 R̂

p1 + D̂
p1

)

(71)

Compared to the original discretized form D (55) of the DtN

operator, Dtot is its modified form which does no longer suffer

from the Gibbs phenomenon. The expressions for D̂pi and R̂pi

(i = 1, 2, 3) can be found in the Appendix.

IV. NUMERICAL RESULTS

A few numerical simulations are presented, to investi-

gate the convergence and accuracy properties of the method,

including an illustration of the effectiveness of the Gibbs

phenomenon elimination as described in Section III. In a

few further examples, the inductive and resistive behavior of

trapezoidal conductors is investigated. All simulations were

done with a uniform, piecewise constant approximation of the

longitudinal electric field on the triangles, except for the last

one, where we used a piecewise linear discretization on the

boundaries.

A. Numerical Accuracy and Convergence Properties of the

Method

In order to illustrate the effectiveness of the method de-

scribed in Section III to eliminate the Gibbs effect at the

triangles’ corners, we compare the normal derivative ∂ψ/∂n of



7

a function ψ(x, y), along the boundary of a triangle T1 without

and with the use of the correction formula (71) instead of (55).

Triangle T1 is shown in the inset of Fig. 3 (a), and has

side lengths of, respectively, c1 = 4 mm and c2 = c3 = 2.5
mm. The boundary value ψc is chosen to be continuous along

its boundary, and linear on each side, with corner values

ψp1
= 0, ψp2

= −1, and ψp3
= 1. For a high resolution

of the displayed results along the boundary, the number of

discretization intervals is chosen to be 300 along c1, and 188
along c2 and c3. Obviously, for most applications the results

will be accurate enough with a coarser discretization. The

number of sine functions used along each side amounts to

400 along c1, and 250 along c2 and c3.

Fig. 3 (a) displays the results for the dielectric case (ne-

glecting the displacement currents in the quasi-TM case), with

ψ satisfying Laplace’s equation in T1. Without the Gibbs

effect compensation, i.e., using only (55), the oscillations are

huge and not even restricted to the corner areas. Note that

corner p1 does not introduce any Gibbs effect, because ψc is

exactly zero at p1. With (71), the numerical result is almost

indistinguishable from the exact ∂ψ/∂n, namely −1000 on c1,

650 on c2 and 950 on c3. An analogous comparison is made

in Fig. 3 (b), for the same boundary value ψc, but with ψ
satisfying the diffusion equation (4) in T1, for a conductivity

σ = 57.2 MS/m and at 100 kHz. The Gibbs effect is especially

strong near the corners now, but again totally eliminated by

using (71).

A peculiarity of the results in Fig. 3 (b) is the behavior near

the corners. This is worth some additional comments, given

its general validity and importance for the high-frequency

current distribution near an edge. At 100 kHz, the skin depth

δ ≈ 0.21 mm. Based on a local plane wave approximation,

ψ will be exponentially damped, proportional to e−n/δ, with

n the coordinate in the normal direction n from a boundary

point p towards the inside of the triangle. This approximation

does not hold, if the distance along n to the opposite side is

smaller than a few times the skin depth. If, e.g., p lays on c1
at a distance δ/2 from the corner point p2, then the distance

from p to the adjacent side c2 (in the normal direction with

respect to c1) is 3 δ/8 (for a corner of 36.9◦). If p starts to

approach p2 even closer, the diffusion term no longer plays a

role, and we should therefore get the same result as in Fig. 3

(a). The boundary interval of length δ centered around p2 is

indicated by the dashed vertical lines in Fig. 3 (b). The normal

derivative ∂ψ/∂n in this interval is indeed very similar to

the corresponding solution of Fig. 3 (a), indicated in dash-dot

lines. This phenomenon is clearly visible for the sharp corners

p1 and p2. For the obtuse corner p3 however, this is not the

case. The reason for that is, that for any boundary point p
close to p3, the diffusion term still plays a role, because in the

normal direction, the adjacent side is not reached, let alone

that this distance becomes � δ near the corner.

In a second numerical experiment, the convergence of the

iterative method is investigated. As explained in Section II-C,

the normal derivative ∂ψ/∂n is determined analytically from

the expansion of ψ itself. The correctness of ∂ψ/∂n is

hence limited by the accuracy of the expansion of ψ in T1

and more specifically on its boundary, as each term in the

no Gibbs elimin.
Gibbs elimin.

∂
ψ
/
∂
n

R
e(
∂
ψ
/
∂
n
)

p1

p1

p2

p2

p3

p3

p1

p1
(a)

(b)

0

0

δ

−103

103

−5·103

5·103

p1 p2

p3

c1

c2c3 T1

Fig. 3. Normal derivative ∂ψ/∂n along the boundary of triangle T1 (see inset
of (a), c1 = 4 mm, c2 = c3 = 2.5 mm) both without and with elimination
of the Gibbs effect, for ψ linear along the sides of T1, and with ψp1

= 0,
ψp2

= −1, ψp3
= 1. The simulations were performed at 100 kHz, for (a)

T1 as a dielectric, and (b) T1 as a conductor with σ = 57.2 MS/m, with only
Re(∂ψ/∂n) shown.

expansion exactly satisfies the governing equation (9) inside

T1. Therefore, it is investigated how the boundary value ψ
(n)
c

of the expansion after n iteration steps becomes a better

approximation of the exact ψc for increasing n. Again consider

the function ψ(x, y) over triangle T1, but now with a constant

boundary value ψc = ψ0. Fig. 4 displays the relative error

of ψ
〈n〉
c with respect to ψ0, for (a) ψ satisfying Laplace’s

equation, and (b) the diffusion equation, as in Fig. 3. As for

∂ψ/∂n, the Gibbs effect in the calculation of ψc is taken care

of by subtracting an analytical part with the same corner values

as ψc, and then using the matrices W
〈n〉
c1

, W
〈n〉
c2

, and W
〈n〉
c3

to

calculate the expansion coefficients for the sine expansions on

each side of the remaining part of ψ, which now has zero

corner values.

It is clearly visible in both Fig. 4 (a) and (b) that the

error rapidly decreases with each iteration step. After a certain

number of iteration steps (about 8 in this case, and earlier

on side c2 and c3), the relative error will no longer further

decrease (but is already much smaller than 1/1000). This is

not due to the limited accuracy of the expansion coefficients,

as will be shown in a further numerical experiment. It is caused

by the limited accuracy in the estimation of the corner values

of ψ, that are further processed for Gibbs effect elimination.

The convergence behavior of the iterative procedure to find

the expansion of ψ depends much stronger on the triangle’s

shape than on the diffusion coefficient k2 in (9). It is expected

that the scheme converges slower, the sharper a corner of the

triangle becomes, due to the increased interaction between

the corresponding adjacent sides. Consider the triangular con-

ductor T2 (shown in the inset of Fig. 5), with conductivity

σ = 57.2 MS/m., and at 100 kHz. The area of the isosceles

triangle T2 is kept to 1 mm2, whereas the top angle is
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n = 1
n = 2
n = 4
n = 8

p1

p1

p2

p2

p3

p3

p1

p1
(a)

(b)

10−8

10−8

10−4

10−4

100

100
|(ψ

〈n〉
c − ψ0)/ψ0|

|(ψ
〈n〉
c − ψ0)/ψ0|

Fig. 4. Relative error after n iterations, in the estimation ψ
〈n〉
c of a constant

boundary value ψc = ψ0, for triangle T1 (see Fig. 3 (a)). The simulations
were performed at 100 kHz, for (a) T1 as a dielectric, and (b) T1 as a
conductor with σ = 57.2 MS/m.

varied from 60◦ to 3.75◦. The convergence of matrix W
〈n〉
c2

is presented in Fig. 5 by means of the normalized Frobenius

norm of the difference between two consecutive matrices

W
〈n−1〉
c2

and W
〈n〉
c2

, i.e., by

∥

∥

∥
W

〈n〉
c2

− W
〈n−1〉
c2

∥

∥

∥

∥

∥

∥
W

〈n〉
c2

∥

∥

∥

=

√

∑

i,j

∣

∣

∣

[

W
〈n〉
c2

]

i,j
−

[

W
〈n−1〉
c2

]

i,j

∣

∣

∣

2

√

∑

i,j

∣

∣

∣

[

W
〈n〉
c2

]

i,j

∣

∣

∣

2

(72)

For α = 60◦, the accuracy is only limited by the floating

point precision within less than 20 iteration steps. The smaller

α becomes, the slower the iterative procedure converges, but

even for α = 3.75◦ the difference between steps n− 1 and n
decreases exponentially. In this example we used 228 parallel-

plate waveguide modes per side.

After these convincing examples of the convergence behav-

ior of the ICWM algorithm, the authors would like to add a few

comments to indicate that the scheme will always converge.

This is indeed the case, at least within the validity range of

the quasi-TM analysis. The reason is, that Re(jβn), with βn

defined as for (18), is strictly negative. The function fc1,n will

consequently only have a small contribution to sides c2 and

c3, compared to its function value on c1. Generally speaking,

a correction of the coefficients Aci,n of the functions fci,n

of side ci will result in a smaller required correction of the

coefficients Acj ,n on the other sides cj (j 6= i), due to the

fact, mentioned above, that fci,n has only an exponentially

small contribution on the other sides cj (j 6= i). As this is

true for all sides i = 1, 2, 3, the iterative procedure can be

expected to converge exponentially and this is what is indeed

observed numerically. This explains why, even within the first

iteration cycle n = 1 on Fig. 4, the approximation of ψ on

the boundary will be better on side c3 than on side c2, which

100

10−20

10−10

iteration step n

∥

∥

∥
W

〈n〉
c2

− W
〈n−1〉
c2

∥

∥

∥
/

∥

∥

∥
W

〈n〉
c2

∥

∥

∥

1 10 20 30 40 50

α = 60◦

α = 30◦

α = 15◦

α = 7.5◦

α = 3.75◦

T2

p1 p2

p3

c1

c2c3
α

Fig. 5. Convergence behavior of matrix W
〈n〉
c2

as a function of the number

of iteration steps n for the isosceles triangle T2 with surface 1 mm2 (see
inset). Simulations were performed at 100 kHz and with σ = 57.2 MS/m.

in turn is better than on c1.

A more rigorous convergence analysis could be carried

out by investigating the behavior of the matrices Pij, or by

considering the contribution of one expansion function fc1,n

on sides c2 and c3, for the case of the highest possible coupling

with side c1 (in other words, for the slowest exponential

decrease of fc1,n). This ‘worst case scenario’ is found for the

first order mode fc1,1, for a dielectric material (with k2 = 0
within the quasi-TM approximation), and for sharp corners

adjacent to c1. Even if the exponential decline is slow and

can be approximated by a linear function, the contribution of

fc1,1 to c2 and c3 will still remain small enough to ensure a

good convergence, because its function value is forced to zero

on p3.

B. Characterization of a Single Conductor

As a verification of the surface admittance matrix for

triangles, the p.u.l. resistance of a square copper conductor

composed of two triangles is simulated, and compared to data

available in literature [7]. The conductor is placed in free

space, and has a side length of 4.62 mm and a conductivity

σ = 57.2 MS/m. The result is shown in Fig. 6. Exactly

the same resistance is obtained with the square conductor

composed of two triangles, as the result from [7], determined

with the surface admittance matrix of the square. To investigate

the influence of the conductor’s shape, the resistance of a

trapezoid (composed of two triangles, shown in the legend

of Fig. 6) and a triangular conductor are shown in Fig. 6 as

well. All conductors have the same area, and hence exactly the

same low-frequency resistance. At 10 kHz, the skin depth δ in

copper is about 0.665 mm, and the major part of the current

flows within a layer with thickness δ underneath the surface.

One would therefore expect a resistance, roughly inversely

proportional to the circumference, but this is not yet the

case within the investigated frequency range. The trapzoid’s

circumference L = (2 +
√

5)s is higher than the square’s



9

Resistance (mΩ/m)

1

1.5

2

102 103 104

:

: data from [7]

:

:

frequency (Hz)

s

s

s

s

s

s/2

3s/2

s

2s

Fig. 6. Resistance (mΩ/m) for a square copper conductor (s = 4.62 mm,
σ = 57.2 MS/m) formed by two triangles (solid line) vs. the result from
[7] (in x-markers), and compared to a trapezoid (dashed line) and a triangle
(dash-dot line) with the same area.

1 2
3 4

B b

Bb
D dd

PEC

∆

h

H

Fig. 7. Structure with 4 trapezoidal copper conductors (σ = 57.2 MS/m)
above a PEC ground plane (shown on scale). Dimensions are B = 1.5,
b = 0.9, h = 0.3, ∆ = 0.3, d = 2.4, D = 4, and H = 1.5, all in
millimetres.

(L = 4s), yet the latter one has the lowest high-frequency

resistance. A similar effect is noticeable for the triangular

conductor, with L = (2 +
√

8)s and a still higher resistance.

The reason is that the effective length of the skin layer where

the current flows, is shortened due to the corner effect at the

sharp corners. It is expected that at still higher frequencies,

the corner effect becomes less pronounced. A fully detailed

investigation of the field behavior at the corners is outside the

scope of this paper.

C. Multiconductor Line with Trapezoidal Conductors

In a next numerical example, the inductive and resistive

characteristics of a multiconductor line are investigated. The

purpose is to get a better understanding of the (coupling)

behavior of trapezoidal conductors, rather than to simulate a

more realistic structure, with a substrate. The structure under

investigation is shown in Fig. 7 and consists of two line pairs

(1− 2 and 3− 4), with an opposite orientation with respect to

the nearby perfect electric conducting (PEC) ground plane. All

conductors have the conductivity of copper, σ = 57.2 MS/m,

and the dimensions are indicated in Fig. 7.

The resistance matrix R and the inductance matrix L of the

structure are determined over a frequency range from 1 kHz

(at with the skin depth δ ≈ 2 mm), up to 100 MHz (where

Inductance (nH/m)

Inductance (nH/m)

Resistance (Ω/m)

Resistance (Ω/m)

trap. cond.

trap. cond.

rect. cond.

rect. cond.

420

440

460

110

120

f (Hz)

f (Hz)

(a)

(b)

10−2

100

−10−6

−10−4

104

104

108

108

1010

1010

R44

R11

R̂11 =R̂44

L̂11 = L̂44

L11

L44

R34

R12

R̂12 = R̂34

L̂12 = L̂34

L12

L34

L̂PEC

11

LPEC

11
LPEC

44

LPEC

12

L̂PEC

12

LPEC

34

Fig. 8. Elements of the resistance matrix R and inductance matrix L for the
configuration of Fig. 7. Full lines, with trapezoidal conductors; dashed lines,
with rectangular conductors. (a) self-inductance and resistance, (b) coupling
between the lines of each signal pair (1 − 2, and 3 − 4).

δ ≈ 0.0067 mm). The configuration of Fig. 7 is compared to

an analogous configuration with rectangular conductors with

the same area (with height h, width (b + B)/2, separated by

the same distances d, resp. D, and on the same height H above

the ground plane). The results for the trapezoidal conductors

are presented in Fig. 8 with full lines, whereas dashed lines

are used for the rectangular conductor case. resistance- and

inductance-values pertaining to the rectangular case will be

denoted by R̂ and L̂.

Fig. 8 (a) displays the self inductance elements L11, L̂11,

L44 and L̂44, and the resistance elements R11, R̂11, R44 and

R̂44. At the lowest frequencies, there is no difference between

the resistance elements (as all conductors have the same area),

but towards the higher frequencies, the trapezoidal conductors

display a higher resistance, in accordance with the result from

Fig. 6, except for the highest simulated frequencies, for which

the corner effect becomes negligible. The difference between

the self-inductance elements are the result of the detailed

current distribution in the conductors which are influenced
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θ

ss w

G

t

d

h

A

B σCu

εr

Fig. 9. Coplanar waveguide structure, enclosed by a PEC box (not shown
on scale). The dimensions are A = 320, B = 500, h = 300, w = 50,
s = 45, t = 1, all in micrometers. Furthermore, θ = 54.7◦, εr = 11.7, and
σCu = 57.2MS/m.

by the corner behavior which is clearly different for sharp

and obtuse corners, by the position of these corners w.r.t. the

ground plane, and by the proximity effect of the corners. The

inductance values for the respective configurations but with

perfect electric conductors, are indicated as well (with the

superscript PEC). A good convergence to this limit is observed

for the high-frequency inductance of the copper lines.

Fig. 8 (b) shows the inductive and resistive coupling be-

tween lines 1 and 2, respectively, 3 and 4, again compared

with the rectangular conductor case. The mutual resistance

elements are negative, but very small with respect to the re-

sistance elements shown in (a), such that the resistance matrix

remains positive-definite. The mutual inductance elements are

important, due to the close vicinity of the conductors.

D. Micromachined Coplanar Waveguide

The final presented example treats the coplanar waveguide

(CPW) structure shown in Fig. 9. As a result of the etching

process during the manufacturing of the CPW, the silicon

substrate material (εr = 11.7) is partly removed underneath

the separation between the signal line and the reference

conductors. The structure was taken from [10], where it was

simulated for PEC conductors. The characteristic impedance

of the line for the copper conductor case (σCu = 57.2 MS/m)

is shown Fig. 10, and at the highest frequencies approaches the

PEC limit obtained from [10]. As claimed in the Introduction,

this example shows that the DtN operator combined with

the integral equation techniques of [6] can handle non-planar

substrates including very thin conducting slabs. The dashed

lines shown on the substrate in Fig. 9 denote its division

in subregions for which the DtN operator is determined

separately, i.e., 4 rectangles and 3 triangles. Of course, it was

also necessary to determine the DtN operator for the three

rectangular copper conductors.

V. CONCLUSION

The presented Iterative Combined Waveguide Modes al-

gorithm leads to the Dirichlet to Neumann operator for an

finite conductivity σCu

PEC conductors

(data from [10])

Re(Zc)

−Im(Zc)

frequency (Hz)
106 108 1010

Characteristic Impedance Zc (Ω)

100

101

102

103

Fig. 10. The characteristic impedance Zc of the structure shown in Fig. 9.

arbitrary triangle, which can be used to calculate the multi-

conductor transmission line parameters for polygonal con-

ductor structures. The iterative method has good convergence

properties and is accurate over a broad frequency range. As an

illustration, the inductive and resistive behavior of trapezoidal

conductors is investigated in a few numerical examples.

APPENDIX

This Appendix displays the explicit forms of the relevant

expansion matrices, in the order of their introduction in

Sections II and III.

A. Submatrices Related to Expanding ψ over Triangle T

[

Q1

]

n,m
= 2

∫ 1

0

(

sinnπs
)

tc1,m(s) ds (73)

[

D1

]

n,n
=

(

γ−n (1)
)−1

(diagonal) (74)

[

P21

]

n2,n1

= − 4j
x0 − x1

x0

βn1

y0

n1π

y0

n2π

y0
(−1)n1

×
(

2 ejβn1
y0(−1)n1+n2 cos

(n1πx1

x0

)

− γ+
n1

(1)

)

×
(

( π

y0

)2 (

n2 + n1
x0 − x1

x0

)2

− β2
n1

)−1

×
(

( π

y0

)2 (

n2 − n1
x0 − x1

x0

)2

− β2
n1

)−1

(75)

[

P31

]

n3,n1

= − 4j
x1

x0

βn1

y0

n1π

y0

n3π

y0

×
(

2 ejβn1
y0 cos

(n1πx1

x0

)

− (−1)n3 γ+
n1

(1)

)

×
(

( π

y0

)2 (

n3 + n1
x1

x0

)2

− β2
n1

)−1

×
(

( π

y0

)2 (

n3 − n1
x1

x0

)2

− β2
n1

)−1

(76)
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B. Submatrices Related to ∂ψ/∂n

For the definition of T11, the auxiliary matrices B1

(M1 ×M1) and T̃11 (M1 ×N1) are defined as

[

B1

]

m̃,m
=

∫ 1

0

tc1,m̃(s) tc1,m(s) ds (77)

[

T̃11

]

m̃,n
= −jβn γ

+
n (1)

∫ 1

0

(

sinnπs
)

tc1,m̃(s) ds (78)

and with these,

T11 = B1
−1

T̃11. (79)

With B2 = B′
1 and B3 = B′′

1 we find

T21 = B2
−1

T̃21 (80)

T31 = B3
−1

T̃31, (81)

with the M2 ×N1 matrix T̃21 and the M3 ×N1 matrix T̃31

defined as

[

T̃21

]

m̃,n
=

∫ 1

0

(

y0
l2
γ−n (1 − s)

nπ

x0
cos ζ2,n(s)

+
x0 − x1

l2
jβn γ

+
n (1 − s) sin ζ2,n(s)

)

tc2,m̃(s) ds (82)

[

T̃31

]

m̃,n
=

∫ 1

0

(

− y0
l3
γ−n (s)

nπ

x0
cos ζ3,n(s)

+
x1

l3
jβn γ

+
n (s) sin ζ3,n(s)

)

tc3,m̃(s) ds (83)

C. Submatrices Related to the Gibbs Effect Elimination

The following functions are introduced

γ̂−(s)
def
=

(

ejβ̂y0(1−s) − ejβ̂y0(1+s)
)

(84)

γ̂+(s)
def
=

(

ejβ̂y0(1−s) + ejβ̂y0(1+s)
)

(85)

ζ̂2(s)
def
=

π

2x0

(

x0 + s (x1 − x0)
)

(86)

ζ̂3(s)
def
=

π

2x0

(

(1 − s)x1

)

. (87)

The M ×M matrices D̂pi are found from

D̂
pi = T̂

pi Ŵ
pi (88)

for

Ŵ
p1 =

(

γ̂−(1)
)−1

Ŵ
p1

0 (89)

Ŵp2 =
(

γ̂′−(1)
)−1

Ŵ
p2

0 (90)

Ŵp3 =
(

γ̂′′−(1)
)−1

Ŵ
p3

0 . (91)

with Ŵ
pi

0 the M -element row vector that selects from Ψc a

good approximation of the corner value of ψ at pi. Further-

more

T̂
p1 =







T̂11

T̂21

T̂31.






(92)

with

[

B1 T̂11

]

m̃,1
= −jβ̂ γ+(1)

∫ 1

0

cos
(πs

2

)

tc1,m̃(s) ds (93)

[

B2 T̂21

]

m̃,1
=

−y0
l2

π

2x0

∫ 1

0

γ̂−(1 − s) sin ζ̂2(s) tc2,m̃(s) ds

+
x0 − x1

l2
jβ̂

∫ 1

0

γ̂+(1 − s) cos ζ̂2(s) tc2,m̃(s) ds (94)

[

B3 T̂31

]

m̃,1
=

y0
l3

π

2x0

∫ 1

0

γ̂−(s) sin ζ̂3(s) tc3,m̃(s) ds

+
x1

l3
jβ̂

∫ 1

0

γ̂+(s) cos ζ̂3(s) tc3,m̃(s) ds (95)

and

T̂p2 =







T̂′
31

T̂′
11

T̂′
21






and T̂p3 =







T̂′′
21

T̂′′
31

T̂′′
11






(96)

The M ×M matrices R̂pi are written as

R̂pi = E − L̂pi Ŵpi (97)

with E the M ×M unit matrix. Matrix L̂pi is split up as

L̂
p1 =







L̂11

L̂21

L̂31.






(98)

with

[

B1 L̂11

]

m̃,1
= γ−(1)

∫ 1

0

cos
(πs

2

)

tc1,m̃(s) ds (99)

[

B2 L̂21

]

m̃,1
=

∫ 1

0

γ̂−(1 − s) cos ζ̂2(s) tc2,m̃(s) ds (100)

[

B3 L̂31

]

m̃,1
=

∫ 1

0

γ̂−(s) cos ζ̂3(s) tc3,m̃(s) ds (101)

and

L̂p2 =







L̂′
31

L̂′
11

L̂′
21






and L̂p3 =







L̂′′
21

L̂′′
31

L̂′′
11






(102)
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