21 research outputs found

    The Use of MPI and OpenMP Technologies for Subsequence Similarity Search in Very Large Time Series on Computer Cluster System with Nodes Based on the Intel Xeon Phi Knights Landing Many-core Processor

    Full text link
    Nowadays, subsequence similarity search is required in a wide range of time series mining applications: climate modeling, financial forecasts, medical research, etc. In most of these applications, the Dynamic TimeWarping (DTW) similarity measure is used since DTW is empirically confirmed as one of the best similarity measure for most subject domains. Since the DTW measure has a quadratic computational complexity w.r.t. the length of query subsequence, a number of parallel algorithms for various many-core architectures have been developed, namely FPGA, GPU, and Intel MIC. In this article, we propose a new parallel algorithm for subsequence similarity search in very large time series on computer cluster systems with nodes based on Intel Xeon Phi Knights Landing (KNL) many-core processors. Computations are parallelized on two levels as follows: through MPI at the level of all cluster nodes, and through OpenMP within one cluster node. The algorithm involves additional data structures and redundant computations, which make it possible to effectively use the capabilities of vector computations on Phi KNL. Experimental evaluation of the algorithm on real-world and synthetic datasets shows that it is highly scalable.Comment: Accepted for publication in the "Numerical Methods and Programming" journal (http://num-meth.srcc.msu.ru/english/, in Russian "Vychislitelnye Metody i Programmirovanie"), in Russia

    Analyzing large-scale DNA Sequences on Multi-core Architectures

    Full text link
    Rapid analysis of DNA sequences is important in preventing the evolution of different viruses and bacteria during an early phase, early diagnosis of genetic predispositions to certain diseases (cancer, cardiovascular diseases), and in DNA forensics. However, real-world DNA sequences may comprise several Gigabytes and the process of DNA analysis demands adequate computational resources to be completed within a reasonable time. In this paper we present a scalable approach for parallel DNA analysis that is based on Finite Automata, and which is suitable for analyzing very large DNA segments. We evaluate our approach for real-world DNA segments of mouse (2.7GB), cat (2.4GB), dog (2.4GB), chicken (1GB), human (3.2GB) and turkey (0.2GB). Experimental results on a dual-socket shared-memory system with 24 physical cores show speed-ups of up to 17.6x. Our approach is up to 3x faster than a pattern-based parallel approach that uses the RE2 library.Comment: The 18th IEEE International Conference on Computational Science and Engineering (CSE 2015), Porto, Portugal, 20 - 23 October 201

    Time series analysis acceleration with advanced vectorization extensions

    Get PDF
    Time series analysis is an important research topic and a key step in monitoring and predicting events in many felds. Recently, the Matrix Profle method, and particularly two of its Euclidean-distance-based implementations—SCRIMP and SCAMP—have become the state-of-the-art approaches in this feld. Those algorithms bring the possibility of obtaining exact motifs and discords from a time series, which can be used to infer events, predict outcomes, detect anomalies and more. While matrix profle is embarrassingly parallelizable, we fnd that auto-vectorization techniques fail to fully exploit the SIMD capabilities of modern CPU architectures. In this paper, we develop custom-vectorized SCRIMP and SCAMP implementations based on AVX2 and AVX-512 extensions, which we combine with multithreading techniques aimed at exploiting the potential of the underneath architectures. Our experimental evaluation, conducted using real data, shows a performance improvement of more than 4× with respect to the auto-vectorization.Funding for open access publishing: Universidad Málaga/CBU

    Time series analysis acceleration with advanced vectorization extensions

    Get PDF
    Time series analysis is an important research topic and a key step in monitoring and predicting events in many fields. Recently, the Matrix Profile method, and particularly two of its Euclidean-distance-based implementations—SCRIMP and SCAMP—have become the state-of-the-art approaches in this field. Those algorithms bring the possibility of obtaining exact motifs and discords from a time series, which can be used to infer events, predict outcomes, detect anomalies and more. While matrix profile is embarrassingly parallelizable, we find that auto-vectorization techniques fail to fully exploit the SIMD capabilities of modern CPU architectures. In this paper, we develop custom-vectorized SCRIMP and SCAMP implementations based on AVX2 and AVX-512 extensions, which we combine with multithreading techniques aimed at exploiting the potential of the underneath architectures. Our experimental evaluation, conducted using real data, shows a performance improvement of more than 4× with respect to the auto-vectorization.This work has been supported by the Government of Spain under project PID2019-105396RB-I00, and Junta de Andalucía under projects P18-FR-3433, and UMA18-FEDERJA-197.Peer ReviewedPostprint (published version

    Scientific Application Acceleration Utilizing Heterogeneous Architectures

    Get PDF
    Within the past decade, there have been substantial leaps in computer architectures to exploit the parallelism that is inherently present in many applications. The scientific community has benefited from the emergence of not only multi-core processors, but also other, less traditional architectures including general purpose graphical processing units (GPGPUs), field programmable gate arrays (FPGAs), and Intel\u27s many integrated cores (MICs) architecture (i.e. Xeon Phi). The popularity of the GPGPU has increased rapidly because of their ability to perform massive amounts of parallel computation quickly and at low cost with an ease of programmability. Also, with the addition of high-level programming interfaces for these devices, technical and non-technical individuals can interface with the device and rapidly obtain improved performance for many algorithms. Many applications can take advantage of the parallelism present in distributed computing and multithreading to achieve higher levels of performance for the computationally intensive parts of the application. The work presented in this thesis implements three applications for use in a performance study of the GPGPU architecture and multi-GPGPU systems. The first application study in this research is a K-Means clustering algorithm that categorizes each data point into the closest cluster. The second algorithm implemented is a spiking neural network algorithm that is used as a computational model for machine learning. The third, and final, study is the longest common subsequences problem, which attempts to enumerate comparisons between sequences (namely, DNA sequences). The results for the aforementioned applications with varying problem sizes and architectural configurations are presented and discussed in this thesis. The K-Means clustering algorithm achieved approximately 97x speedup when utilizing an architecture consisting of 32 CPU/GPGPU pairs. To achieve this substantial speedup, up to 750,000 data points were used with up 30,000 centroids (means). The spiking neural network algorithm resulted in speedups of about 33x for the entire algorithm and 160x for each iteration with a two-level network with 1000 total neurons (800 excitatory and 200 inhibitory neurons). The longest common subsequences problem achieved speedup of greater than 10x with 100 random sequences up to 500 characters in length. The maximum speedup values for each application were achieved by utilizing the GPGPU as well as multi-core devices simultaneously. The computations were scattered over multiple CPU/GPGPU pairs with the computationally intensive pieces of the algorithms offloaded onto the GPGPU device. The research in this thesis illustrates the ability to scale a heterogeneous cluster (i.e. CPUs and GPUs working collaboratively) for large-scale scientific application performance improvements. Each algorithm demonstrates slightly different types of computations and communications, which can be compared to other algorithms to predict how they would perform on an accelerator. The results show that substantial speedups can be achieved for scientific applications when utilizing the GPGPU and multi-core architectures

    Tuning the Computational Effort: An Adaptive Accuracy-aware Approach Across System Layers

    Get PDF
    This thesis introduces a novel methodology to realize accuracy-aware systems, which will help designers integrate accuracy awareness into their systems. It proposes an adaptive accuracy-aware approach across system layers that addresses current challenges in that domain, combining and tuning accuracy-aware methods on different system layers. To widen the scope of accuracy-aware computing including approximate computing for other domains, this thesis presents innovative accuracy-aware methods and techniques for different system layers. The required tuning of the accuracy-aware methods is integrated into a configuration layer that tunes the available knobs of the accuracy-aware methods integrated into a system

    Optimization of high-throughput real-time processes in physics reconstruction

    Get PDF
    La presente tesis se ha desarrollado en colaboración entre la Universidad de Sevilla y la Organización Europea para la Investigación Nuclear, CERN. El detector LHCb es uno de los cuatro grandes detectores situados en el Gran Colisionador de Hadrones, LHC. En LHCb, se colisionan partículas a altas energías para comprender la diferencia existente entre la materia y la antimateria. Debido a la cantidad ingente de datos generada por el detector, es necesario realizar un filtrado de datos en tiempo real, fundamentado en los conocimientos actuales recogidos en el Modelo Estándar de física de partículas. El filtrado, también conocido como High Level Trigger, deberá procesar un throughput de 40 Tb/s de datos, y realizar un filtrado de aproximadamente 1 000:1, reduciendo el throughput a unos 40 Gb/s de salida, que se almacenan para posterior análisis. El proceso del High Level Trigger se subdivide a su vez en dos etapas: High Level Trigger 1 (HLT1) y High Level Trigger 2 (HLT2). El HLT1 transcurre en tiempo real, y realiza una reducción de datos de aproximadamente 30:1. El HLT1 consiste en una serie de procesos software que reconstruyen lo que ha sucedido en la colisión de partículas. En la reconstrucción del HLT1 únicamente se analizan las trayectorias de las partículas producidas fruto de la colisión, en un problema conocido como reconstrucción de trazas, para dictaminar el interés de las colisiones. Por contra, el proceso HLT2 es más fino, requiriendo más tiempo en realizarse y reconstruyendo todos los subdetectores que componen LHCb. Hacia 2020, el detector LHCb, así como todos los componentes del sistema de adquisici´on de datos, serán actualizados acorde a los últimos desarrollos técnicos. Como parte del sistema de adquisición de datos, los servidores que procesan HLT1 y HLT2 también sufrirán una actualización. Al mismo tiempo, el acelerador LHC será también actualizado, de manera que la cantidad de datos generada en cada cruce de grupo de partículas aumentare en aproxidamente 5 veces la actual. Debido a las actualizaciones tanto del acelerador como del detector, se prevé que la cantidad de datos que deberá procesar el HLT en su totalidad sea unas 40 veces mayor a la actual. La previsión de la escalabilidad del software actual a 2020 subestim´ó los recursos necesarios para hacer frente al incremento en throughput. Esto produjo que se pusiera en marcha un estudio de todos los algoritmos tanto del HLT1 como del HLT2, así como una actualización del código a nuevos estándares, para mejorar su rendimiento y ser capaz de procesar la cantidad de datos esperada. En esta tesis, se exploran varios algoritmos de la reconstrucción de LHCb. El problema de reconstrucción de trazas se analiza en profundidad y se proponen nuevos algoritmos para su resolución. Ya que los problemas analizados exhiben un paralelismo masivo, estos algoritmos se implementan en lenguajes especializados para tarjetas gráficas modernas (GPUs), dada su arquitectura inherentemente paralela. En este trabajo se dise ˜nan dos algoritmos de reconstrucción de trazas. Además, se diseñan adicionalmente cuatro algoritmos de decodificación y un algoritmo de clustering, problemas también encontrados en el HLT1. Por otra parte, se diseña un algoritmo para el filtrado de Kalman, que puede ser utilizado en ambas etapas. Los algoritmos desarrollados cumplen con los requisitos esperados por la colaboración LHCb para el año 2020. Para poder ejecutar los algoritmos eficientemente en tarjetas gráficas, se desarrolla un framework especializado para GPUs, que permite la ejecución paralela de secuencias de reconstrucción en GPUs. Combinando los algoritmos desarrollados con el framework, se completa una secuencia de ejecución que asienta las bases para un HLT1 ejecutable en GPU. Durante la investigación llevada a cabo en esta tesis, y gracias a los desarrollos arriba mencionados y a la colaboración de un pequeño equipo de personas coordinado por el autor, se completa un HLT1 ejecutable en GPUs. El rendimiento obtenido en GPUs, producto de esta tesis, permite hacer frente al reto de ejecutar una secuencia de reconstrucción en tiempo real, bajo las condiciones actualizadas de LHCb previstas para 2020. As´ı mismo, se completa por primera vez para cualquier experimento del LHC un High Level Trigger que se ejecuta únicamente en GPUs. Finalmente, se detallan varias posibles configuraciones para incluir tarjetas gr´aficas en el sistema de adquisición de datos de LHCb.The current thesis has been developed in collaboration between Universidad de Sevilla and the European Organization for Nuclear Research, CERN. The LHCb detector is one of four big detectors placed alongside the Large Hadron Collider, LHC. In LHCb, particles are collided at high energies in order to understand the difference between matter and antimatter. Due to the massive quantity of data generated by the detector, it is necessary to filter data in real-time. The filtering, also known as High Level Trigger, processes a throughput of 40 Tb/s of data and performs a selection of approximately 1 000:1. The throughput is thus reduced to roughly 40 Gb/s of data output, which is then stored for posterior analysis. The High Level Trigger process is subdivided into two stages: High Level Trigger 1 (HLT1) and High Level Trigger 2 (HLT2). HLT1 occurs in real-time, and yields a reduction of data of approximately 30:1. HLT1 consists in a series of software processes that reconstruct particle collisions. The HLT1 reconstruction only analyzes the trajectories of particles produced at the collision, solving a problem known as track reconstruction, that determines whether the collision data is kept or discarded. In contrast, HLT2 is a finer process, which requires more time to execute and reconstructs all subdetectors composing LHCb. Towards 2020, the LHCb detector and all the components composing the data acquisition system will be upgraded. As part of the data acquisition system, the servers that process HLT1 and HLT2 will also be upgraded. In addition, the LHC accelerator will also be updated, increasing the data generated in every bunch crossing by roughly 5 times. Due to the accelerator and detector upgrades, the amount of data that the HLT will require to process is expected to increase by 40 times. The foreseen scalability of the software through 2020 underestimated the required resources to face the increase in data throughput. As a consequence, studies of all algorithms composing HLT1 and HLT2 and code modernizations were carried out, in order to obtain a better performance and increase the processing capability of the foreseen hardware resources in the upgrade. In this thesis, several algorithms of the LHCb recontruction are explored. The track reconstruction problem is analyzed in depth, and new algorithms are proposed. Since the analyzed problems are massively parallel, these algorithms are implemented in specialized languages for modern graphics cards (GPUs), due to their inherently parallel architecture. From this work stem two algorithm designs. Furthermore, four additional decoding algorithms and a clustering algorithms have been designed and implemented, which are also part of HLT1. Apart from that, an parallel Kalman filter algorithm has been designed and implemented, which can be used in both HLT stages. The developed algorithms satisfy the requirements of the LHCb collaboration for the LHCb upgrade. In order to execute the algorithms efficiently on GPUs, a software framework specialized for GPUs is developed, which allows executing GPU reconstruction sequences in parallel. Combining the developed algorithms with the framework, an execution sequence is completed as the foundations of a GPU HLT1. During the research carried out in this thesis, the aforementioned developments and a small group of collaborators coordinated by the author lead to the completion of a full GPU HLT1 sequence. The performance obtained on GPUs allows executing a reconstruction sequence in real-time, under LHCb upgrade conditions. The developed GPU HLT1 constitutes the first GPU high level trigger ever developed for an LHC experiment. Finally, various possible realizations of the GPU HLT1 to integrate in a production GPU-equipped data acquisition system are detailed
    corecore