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Abstract
Time series analysis is an important research topic and a key step in monitoring 
and predicting events in many fields. Recently, the Matrix Profile method, and 
particularly two of its Euclidean-distance-based implementations—SCRIMP and 
SCAMP—have become the state-of-the-art approaches in this field. Those algo-
rithms bring the possibility of obtaining exact motifs and discords from a time 
series, which can be used to infer events, predict outcomes, detect anomalies and 
more. While matrix profile is embarrassingly parallelizable, we find that auto-vec-
torization techniques fail to fully exploit the SIMD capabilities of modern CPU 
architectures. In this paper, we develop custom-vectorized SCRIMP and SCAMP 
implementations based on AVX2 and AVX-512 extensions, which we combine with 
multithreading techniques aimed at exploiting the potential of the underneath archi-
tectures. Our experimental evaluation, conducted using real data, shows a perfor-
mance improvement of more than 4 × with respect to the auto-vectorization.
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1 Introduction

A time series is a chronologically ordered set of samples of a real-valued vari-
able that can contain millions of observations. Time series analysis (TSA) seeks 
extracting models in a large variety of domains [1] such as epidemiology, DNA 
analysis, economics, medicine, geophysics, and speech recognition. Particularly, 
motif [2] (similarity) and discord [3] (anomaly) discovery has become one of the 
most frequently used primitives in time series data mining [4–9]. TSA poses the 
problem of solving the all-pairs-similarity-search (also known as similarity join). 
Specifically, given a time series sliced in subsequences, retrieve the nearest motif 
and the furthest discord neighbor for every subsequence with respect to the rest 
ones.

The state-of-the-art method for motif and discord discovery is Matrix Profile 
[10] (MP). MP solves the similarity join problem and allows time-manageable 
computation of very large time series datasets. In this work, we focus on this 
technique, which provides full joins without the need to specify a similarity 
threshold, which is a very challenging task in this domain. When analyzing a time 
series, the matrix profile is another time series representing the minimum dis-
tance subsequence for each subsequence (motifs). Maximum values of the profile 
highlight the most dissimilar subsequences (discords). Figure  1 depicts a naive 
example of anomaly detection using matrix profile, where the sinusoidal signal 
has an anomaly between values 250 and 270. The matrix profile output of this 
time series shows low values for the periodic subsequences of it as they are very 
similar to the other subsequences, and higher values for the anomalies and their 
neighboring subsequences.

The two state-of-the-art implementations of matrix profile are SCRIMP [11] 
and SCAMP [12]. While being embarrassingly parallel, we find that auto-vectori-
zation approaches (e.g., using OpenMP [13]) fail to fully exploit the SIMD capa-
bilities of modern CPU architectures. Thus, this work is focused on how much 
benefit those matrix profile implementations can take from custom vectorizations 
based on AVX2 and AVX-512 extensions.

This work makes the following contributions:

Fig. 1  A time series with an anomaly and its matrix profile. The anomaly appears as high values of 
Euclidean distance, which means low similarity with respect to the other subsequences of the series
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• We analyze auto-vectorized implementations of the matrix profile, and find that 
this approach is not able to fully exploit the underneath SIMD capabilities of 
Intel CPUs.

• We develop SCRIMPvect and SCAMPvect, two custom-vectorized versions 
of SCRIMP and SCAMP, exploiting AVX2 and AVX-512 vector extensions.

• We detect a problem with masking vectorization instructions on AVX2, and pro-
pose a solution to tackle it by using AVX-512 instructions with 256-bit registers.

• We perform a thread affinity and load balance exploration.
• We analyze the roofline of the algorithms before and after vectorization.
• We perform an analysis of SCRIMPvect and SCAMPvect in terms of perfor-

mance and find that our approach shows an improvement of more than 4 × with 
respect to the auto-vectorization.

The paper is organized as follows. Section 2 outlines the motivation. In Sect. 3, we 
present some background related to the problem. Section 4 explains how the algo-
rithms have been implemented to extract maximum performance from the platforms. 
In Sect. 5, we present the experimental evaluation and discuss the results. Section 6 
provides some related work. Finally, Sect. 7 draws the conclusions.

2  Motivation

We evaluate the CPU/memory roofline for SCRIMP and SCAMP to determine the 
main limiting factors of the algorithms. Intel’s Advisor [14] analyzes and provides 
these kind of roofline reports, showing the arithmetic intensity and memory traf-
fic demands of the main loops in the application. Figure 2 shows these data for the 
most time consuming loops (the blue and green dots) in SCRIMP and SCAMP. The 
results show that both algorithms are bound by compute and memory roofs. The 
arithmetic intensity, that is, the number of arithmetic operations per byte, is not so 
high for SCAMP than for SCRIMP. Locality is not so prominent in general for both 
algorithms.

These results motivate the use of custom-vectorization approaches like those pro-
posed in this paper, as the computation is performed with vectors of contiguous data. 
Consequently, caches will be better harnessed than in the scalar version of the algo-
rithms. These approaches will make the dots in Fig. 2 go higher on the y-axes and, 
hopefully on the x-axes as well, with the outcome of a performance improvement.

3  Background

3.1  Time series analysis. The matrix profile

A given time series T is a sequence of n data values ti , 1 ≤ i ≤ n , collected over the 
course of time. We define Ti,m as a subsequence of T, where i is the index of its first 
data value, Ti , and m is the number of data points in the subsequence with 1 ≤ i , and 
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Fig. 2  SCRIMP and SCAMP rooflines (INT+FLOAT) for the Power time series with 180,000 samples, 
1325 window size, and 128 threads. Green dots correspond to the loop computing the dot product in case 
of SCRIMP (line 6 in Fig. 6) and the covariance in case of SCAMP. Blue dots correspond to the loop 
computing the rest of the diagonal (line 13 in Fig. 6). See Sect. 3 to gain more insight into the algorithms

Fig. 3  Example of two subsequences, Ti,m and Tj,m , of a given time series. When computing the matrix 
profile P, subsequences starting in the exclusion zone of Ti,m are ignored for their high similarity
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m ≤ n . In the literature, we also find Ti,m defined as a window of length m. Figure 3 
presents an example of a time series with two subsequences highlighted, Ti,m and Tj,m.

We find several ways to measure the similarity between two time series subse-
quences, Ti,m and Tj,m . One possible approach is the use of the z-normalized Euclid-
ean distance [11], di,j , which is calculated as follows:

where Qi,j is the dot product of subsequences Ti,m and Tj,m . �x and �x are the mean 
and the standard deviation of the data points in Tx,m , respectively.

One of the state-of-the-art matrix profile’s implementations, SCRIMP [11], 
exploits the fact that the dot product can be updated incrementally for subsequences 
in the diagonal of the distance matrix D (see Fig. 4) to minimize the computation. 
Consequently, the dot product can be expressed as follows:

Matrix profile algorithms can compute diagonals either in-order or in random order. 
If a partial solution is sufficient for the target application, using a random order for 
the diagonals allows stopping the execution of the algorithm before it finishes. In 
contrast, if the application needs the oracle (exact) matrix profile, we can use the in-
order implementation which leads to a lower execution time thanks to data locality. 
These algorithms are designed to store only the matrix profile and the matrix profile 
index arrays, computing the minimum distances di,j on the fly. Note that the neigh-
boring subsequences of Ti,m are highly similar to it (i.e., di,i+1 ≈ 0 ) due to the over-
laps. Thus, we can exclude these subsequences from computing D to find similar 
subsequences other than the neighboring ones. This is done by defining an exclusion 
zone (diagonal stripped zone in Fig. 3) for each subsequence. In general, the exclu-
sion zone for a subsequence Ti,m of length m is m

4
 [11].

We can use the distance measure to find the most similar subsequences out of all 
subsequences of a time series T. There are three steps to this procedure: (i) building a 
symmetric (n − m + 1) × (n − m + 1) matrix D, called distance matrix, with a window 

(1)di,j =

√
2m

(
1 −

Qi,j − m�i�j

m�i�j

)

(2)Qi,j = Qi−1,j−1 − Ti−1Tj−1 + Ti+m−1Tj+m−1

Fig. 4  Computation of the matrix profile P and the profile index I from the distance matrix D. Pi is the 
minimum distance of each row (or column) Di . Ii is the index of the subsequence providing such mini-
mum



 R. Quislant et al.

1 3

size m and a time series of length n. Each D cell, di,j , stores the distance between two 
subsequences, Ti,m and Tj,m . Thus, each row (or column) of D stores the distances 
between a subsequence of T and every subsequence of T; (ii) finding the two subse-
quences whose distance is minimum (i.e., most similar sequences) in each row (or col-
umn) of D. This can be computed by building the matrix profile, P, which is a vector 
of size n − m + 1 . Each cell Pi in P stores the minimum value found in the ith row (or 
column) of D; (iii) finding the indices of the most similar subsequences of the matrix 
profile. This requires building another vector I –called matrix profile index– of the same 
size as that of P, where Ii = j if di,j = Pi . In this way, P contains the minimum distances 
between subsequences of T, while I is the vector of “pointers” to the location of these 
subsequences. Figure 4 depicts an example of the distance matrix (D), the matrix pro-
file (P), and the matrix profile index (I) for the time series in Fig. 3.

SCAMP [12] follows a similar computation scheme than SCRIMP, but instead 
replaces the sliding dot product with a mean-centered-sum-of-products with the goal of 
reducing the number of operations required and the floating-point rounding errors. The 
following equations can be precomputed in O(n − m + 1) time, having the length of the 
profile vector defined as n − m + 1 = l:

Equations  (3) and (4) are terms used in the covariance update of Eq.  (7), and the 
standard deviation (L2-norm of subsequence Ti,m − �i ) calculated in Eqs. (5) and (6) 
is used for the Pearson correlation coefficient depicted by Eq. (8). Note the exclusion 
zone in the limits of Eq. (7) given by m

4
.

(3)dfi =
Ti+m−1 − Ti−1

2
, 0 < i < l

(4)dgi = Ti+m−1 − 𝜇i + Ti−1 − 𝜇i−1, 0 < i < l

(5)ssqi =

⎧⎪⎨⎪⎩

∑m−1

k=0

�
Tk − 𝜇0

�2
, i = 0

ssqi−1 +
�
Ti+m−1 − 𝜇i + Ti−1 − 𝜇i−1

�
�
Ti+m−1 − Ti−1

�
, 0 < i < l

(6)𝜎i =
√
ssqi, 0 ≤ i < l

(7)𝜎i,j =

�∑m−1

k=0

�
Tk − 𝜇0

��
Tk+j − 𝜇j

�
, i = 0,

m

4
< j < l

𝜎i−1,j−1 + dfidgj + dfjdgi, i > 0,
m+4

4
< j < l

(8)Pi,j =

�i,j

�i�j

(9)Di,j =

√
2m

(
1 − Pi,j

)
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The matrix profile can be derived incrementally for each diagonal of the distance 
matrix, Eq. (7), from the calculation of the covariance of two subsequences of the 
first row (first piece in Eq.  (7)). The Pearson correlation coefficient in Eq.  (8) can 
be computed in fewer operations and it is more robust than the Euclidean Distance 
used by SCRIMP. Equation (9) calculates the distance from the Pearson coefficient 
in O(1).

3.1.1  Parallelization

Matrix profile’s diagonal independence scheme allows easy parallelization without 
need for synchronization. The goal is to avoid the use of mutual exclusion methods, 
looking for performance boosting. This is achieved by expanding [15] the matrix 
profile, creating a replica (row) per thread as depicted in Fig. 5.

This is computationally safe as long as the performed operation per iteration is 
commutative and associative, i.e., it is a reduction loop [16]. Although shared, each 
replica can be seen as a private storage during the calculation of the matrix profile, 
in such a way that each thread computes its private matrix profile, storing the com-
puted partial results in it. The only imperative synchronization is a barrier to wait for 
all threads to finish its private computation. Once all threads have calculated their 
private matrix profiles, a final reduction operation (per column) is carried out to 
compute the final results. No synchronization is necessary in this stage because each 
thread is in charge of a different column, so it can be done fully in parallel. Note that 
an analogous approach is applicable to the matrix profile index, as shown in Fig. 5.

The baseline auto-vectorized implementation for our SCRIMP algorithm, (Fig. 6), is 
a vectorized-parallel version presented in [17]. It first precomputes the mean and stand-
ard deviation of each time series subsequence (line 1), and initializes the matrix profile 
array (line 3). Then, the distances between pairs of subsequences are calculated follow-
ing the diagonals of the distance matrix (lines 4–26). The for loop is fully parallelized, 

Fig. 5  Expanded structure for matrix profile distances (top) and indexes (bottom). Each thread computes 
a subset of diagonals of D using its private structures. A final reduction is needed
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with each thread computing a random subset of diagonals provided by their indices in 
the diag array in line 5. For the first element of the diagonal, we need to compute the 
dot product of the first pair of subsequences (line 6) in parallel. The rest are updated 
following Eq. (2). For the proper vectorization of the dot product update, the algorithm 
separates the calculation of the diagonal in several steps: (i) the products in Eq. (2) are 
calculated in parallel for vectFact elements of the diagonal (lines 14–15); (ii) the pre-
vious dot product, q, is added to the element calculated in step (i) (line 16); (iii) the 
subsequent dot products are updated sequentially using the previous ones (lines 17–18) 
saving the last one in q for the next iteration of the diagonal (line 19); (iv) distances 
are calculated in parallel (lines 20–21); and (v) the profile is updated in parallel as well 
(lines 22–25). The vectorization factor, vectFact, is given by the datatype width with 
respect to that of double precision (line 2).

3.2  Vectorization extensions

During the last decades, we have witnessed great advances with respect to the 
SIMD capabilities of commodity processors. Going back to 1997, Intel introduced 

Fig. 6  Parallel and auto-vectorized SCRIMP algorithm
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the MMX [18] instructions in the first Pentium generation. In 1998, AMD intro-
duced 3DNow! [19] in the AMD K6-2 processor. In 1999, Intel introduced SSE 
[20] (Streaming SIMD Extensions) in the second Pentium generation, consisting of 
four incrementally improved subgenerations (SSE, SSE2, SSE3 and SSE4). More 
recently, Intel proposed Advanced Vector Extensions (AVX) [21] in 2008. These 
AVX have been increasingly upgraded to support new features and larger vectors, 
being AVX, AVX2 and AVX-512 introduced in chronological order. In this work, 
we focus our attention in the state-of-the-art SIMD extensions of modern processors 
(i.e., AVX and its successive subgenerations).

3.2.1  AVX

AVX (2011) is the first generation of Advanced Vector Extensions, introduced in 
Sandy Bridge by Intel and in Bulldozer by AMD. These extensions use sixteen 256-
bit YMM registers to perform single arithmetic instructions (floating point) on mul-
tiple data. This way, each register is capable of handling at the same time either 
eight single-precision values or four double-precision values.

3.2.2  AVX2

AVX2 (2013) is the second generation of Advanced Vector Extensions, introduced 
in Haswell by Intel. The main improvements were the capability of using integers, 
instead of floating point numbers only, and the introduction of new instructions (e.g. 
vpmaskmov for conditional SIMD integer packed loads and stores [22]).

3.2.3  AVX‑512

AVX-512 (2016) is the third generation of Advanced Vector Extensions, introduced 
in Knights Landing by Intel. AVX-512 increases the register width from 256-bit to 
512-bit and introduces multiple subsets of extensions aimed to different purposes 
(e.g., byte manipulation, prefetching instructions, neural network instructions,...). 
CPUs do not necessarily implement every extension subset introduced in AVX-512.

4  SCRIMPvect and SCAMPvect

In this section, we present our proposed vectorization implementations of SCRIMP 
and SCAMP, discussing the changes and techniques added to them.

4.1  Vectorization approach

We already find an OpenMP auto-vectorization-based implementation in the litera-
ture [17]. Using such approach, the authors unroll the inner loops of SCRIMP (line 
13 in Fig.  6) in a way that OpenMP SIMD pragma realizes where to enable and 
exploit the vectorization, thus improving performance. Figure  7 presents to what 
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extent that approach compares with the custom-vectorization scheme proposed in 
this work. The OpenMP approach vectorizes within one diagonal of the distance 
matrix (D), which imposes certain difficulties related to the fact that each element of 
the diagonal depends on the immediately previous element. This is partially solved 
by the aforementioned inner loop unrolling. Our custom vectorization, though, packs 
the elements of contiguous diagonals (a meta-diagonal) in the same vector, thus get-
ting rid of such dependencies.

4.2  Implementations

While having similar implementations, SCRIMP and SCAMP differences mainly 
relies on the computation of the distance between two time series subsequences. 
With this in mind, we propose a very similar vectorization scheme for both algo-
rithms. Whenever possible, we use FMA (Fused Multiply Add) instructions with the 
goal of speeding up the execution of the calculations.

We also notice that the intrinsics of AVX2 and AVX-512 are very similar and 
there is a clear bijection between them. In addition, we create wrappers for each 
intrinsic that allow us to use the same set of macros for AVX2 (Fig. 8) and AVX-512 
(Fig. 9). In this way, we can specify whether we are going to use one instruction set 
extension or the other at compile time by specifying -DAVX2 or -DAVX-512. The 
types used for the matrix profile (DTYPE) and the profile index (ITYPE) are double 
and long long int, respectively, which are 64-bit types. This facilitates the vectoriza-
tion as both P and I can be packed with the same number of elements. Furthermore, 
64-bit integers allow for series longer than 4 billion elements.

First, in the outermost loop (line 4 in Fig.  6), each thread take iterations in 
VPACK sets (see Fig. 10), being VPACK the width of the vector (4 in case of AVX2 
and 8 for AVX-512). Notice that the diagonals in the exclusion zone are elided 
( exclusionzone + 1).

Then, we compute the dot product (the covariance in the case of SCAMP) of 
the two subsequences involved in the first element of the diagonal so that we can 

Fig. 7  OpenMP auto-vectorization (left) versus custom vectorization (right) with 2 threads. Vector width 
(VPACK) set to 4 distance values
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obtain the distance afterwards (lines 6 and 7 in Fig. 6). For the OpenMP auto-vec-
torization, the dot product is easily auto-vectorized by the simd pragma, as only 
two subsequences are involved. However, the custom approach has to compute 
dot products of the first subsequence in the time series with other VPACK sub-
sequences at a time. VPACK subsequences makes up a meta-diagonal, as shown 
in Fig. 7. As shown below (the code is from STAMPvect), we have to load una-
ligned (LOADU_PD) packs of elements from the time series and the precomputed 
statistics arrays, belonging to the VPACK subsequences that we want to compare 
with the first subsequence in terms of distance. The time series values of the first 
subsequence have to be replicated in the vector (SET1_PD) to do so:

Thus, in the case of SCAMP, we obtain the covariances packed in a vector, 
for each of the diagonals we have taken. From this data, we obtain the correla-
tion and then we substitute the data of the matrix profile (P) if the correlation is 
higher than the previously calculated, as we illustrate in Fig. 12. Notice that the 
comparison (CMP_PD) of the obtained correlations with those already present in 
P are done in parallel when updating P vertically (see Fig.  7). However, when 
updating P horizontally we should compute the horizontal maximum of the vec-
tor containing the correlations (correlation_v) and then update the P value 

Fig. 8  Wrappers for the AVX2 version of the algorithms
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if applicable. Conversely, we opted for doing this sequentially (see Sect. 4.3 for 
more information).

In the case of SCRIMP, instead of using the criterion of maximizing the correla-
tion, we look for the pair of subsequences with the smallest Euclidean distance, as 
we explained in Sect. 3. To do so, we change the flag CMPT_GT_OQ to CMPT_LT_
OQ in the comparison instruction CMP_PD.

Next, we iterate and compare with all remaining subsequences by incrementing j 
in the innermost loop (as in line 13 of Fig. 6). Once all iterations are computed, we 
combine the work of the threads, which have been working with a private profile, in 
a final reduction (not shown in Fig. 6 but actually performed, as the privatization is 
the key for the algorithm to be embarrassingly parallel). The code in Fig. 13 is our 
vectorization for the final reduction in SCAMPvect. That code snippet goes through 

Fig. 9  Wrappers for the AVX-512 version of the algorithms

Fig. 10  Loop partitioning in meta-diagonals of VPACK diagonals
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all the values of each thread’s private profile and takes the pair of subsequences 
whose correlation is higher in the case of SCAMP, and those of smaller Euclidean 
distance in the case of SCRIMP. This way, it composes the final result for the matrix 
profile of the time series.

4.3  Challenges

In this subsection, we discuss some challenges we found while developing our 
implementations. Specifically, the fact that taking the data in groups of VPACK may 
lead to obtain inaccurate results, particularly in the case of SCRIMP.

When we allocate memory for the time series and its statistics (mean and devia-
tion) the arrays are initialized to 0, and also the extra VPACK elements allocated at 
the end of them. If these elements are used by a thread computing on the edge of 
the distance matrix (D), it could read data beyond the end of the time series. These 
0 elements distort the distance calculation (e.g., the SCRIMPS’s Euclidean distance 
= 2 ∗ (windowSize − (dotProd − windowSize ∗ means[j] ∗ means[i])∕(devs[j] ∗ devs[i])) , 
if the means and deviations are 0 then the distance is minus infinite). SCRIMP is an 
algorithm that searches for the minimum distance among subsequences. Therefore, 
that minus infinity distance will be a minimum that will be stored into the matrix 
profile, when this should not be the case.

To solve this problem, we initialize all VPACK values to Not-a-Number, so that 
the result of operating with them will be NaN as well. This way, any comparison 
with a NaN value will be false and will not be taken into account. To this end, we 
used the flag _CMP_LT_OQ for the comparisons. O, for Ordered, causes false to be 
returned if either element in the comparison is NaN. And Q, for Quiet, causes no 
signal to be thrown if there is a division by 0 or any error in the comparison.

Another challenge we faced is that of the horizontal maximum mentioned 
in Sect.  4.2. To update the matrix profile horizontally, as depicted in Fig.  7, we 
have to implement the vector horizontal maximum of the correlation vector 
(correlation_v in Fig. 12). Whereas this problem can be solved by means of 
maxing the vector with a shuffled version of itself until we obtain the maximum 
value replicated throughout the whole vector, the problem is that we have to obtain 
the index of the subsequence giving such a maximum. That is not a trivial task, so 
we decided to do it sequentially.

5  Experimental evaluation

5.1  Experimental setup and methodology

We conduct our experiments using a server which is equipped with four Intel Xeon 
Gold 5218 processors [23], featuring AVX2 and AVX-512 vectorization extensions. 
This system has 755GB of RAM, and we will refer to it as xeongold from now on. 
The setup of xeongold is arranged in four sockets with 16 cores in each processor. 
Each core implements hyperthreading so that 2 threads can execute simultaneously 
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in a core. Consequently, the total number of hardware threads available amounts to 
128. Each core owns 32KB of L1I and 32KB of L1D caches, along with a private 
1KB L2 cache. The L3 cache is shared among cores and its size is 22MB. The TLB 
is split in its first level with up to 128 entries for instructions and 64 entries for data, 
for 4KB pages. There is a second TLB level shared among cores with 1536 entries 
[24].

The codes are compiled using the GNU g++ compiler, version 7.5.0, with -O2 
optimization flag, so that auto-vectorization is not enabled for the scalar code. For 
the AVX2 and AVX-512 codes we use -mavx2 and -mav512f flags, respectively, 
and -mfma to enable fused-multiply-add instructions. Furthermore, we have experi-
mented with AVX-512 instructions using 256-bit YMM registers, for which we use 
the -mav512vl flag. All experiments are executed 10 times and the time results 
are averaged. Thread affinity is left in charge of the operating system unless other-
wise mentioned. The operating system is Ubuntu with Linux kernel 4.15. A study on 
the effect of thread affinity can be found in Sect. 5.4.

We use a comprehensive set of series for the experimental evaluation, whose 
parameters are detailed in Table 1. We show the window size (subsequence length, 
m) and the number of samples (n) of the time series, as well as the maximum and 
minimum values. The name of each series is descriptive of the type of content they 
contain. Note that all time series used in this work come from real data [25]. Table 2 
shows the series we use to evaluate the proposals with large data sets.

5.2  Results

We present the results for the SIMD optimizations in SCRIMP and SCAMP in 
Figs.  14 and 15, respectively. We show how the speedup curves change with the 
number of threads, from 1 to 128, with respect to the scalar with one OpenMP 
thread for the various implementations: (i) scalar (No-vect), (ii) AVX2 vectoriza-
tion (AVX2), (iii) AVX-512 instructions using 256-bit registers (AVX-512vl), (iv) 
AVX-512 vectorization (AVX-512) and (v) OpenMP auto-vectorization (OMP-
Vect) (SCRIMP only).

In general, we observe that the version of the algorithm using AVX-512 is far 
superior to the rest in almost all cases, but AVX2 is not always clearly better than the 
non-vectorized one.

We observe a particularly noticeable improvement obtained by 512-bit vectori-
zation and a high number of threads in the ECG, Power, Seismology and Penguin 
series. These are series with much more samples than those of Audio and Human, 
so there is more work to be done by every thread. Notice that AVX-512 divides 
the distance matrix in meta-diagonals of 8 diagonals each (see Fig.  7), and these 
meta-diagonals are the work unit for each thread. In Audio and, more noticeably in 
Human, which only has about 7000 samples (see Table 1), this fact leaves less than 
1000 meta-diagonals for the threads to work with, which makes load balancing diffi-
cult to manage, see Sect. 5.5 to gain insight into the load imbalance problem. On top 
of that, those meta-diagonals are very different in size and, consequently, in number 
of computations. The meta-diagonals near the main diagonal are much larger than 
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those towards the end of the distance matrix. The 64 and 128 thread configurations 
are specially harmful for Audio and Human because of this imbalance.

We can notice a slowdown of AVX2 over the No-Vect implementation for ECG, 
Power, and Penguin up to 16 threads. The other implementations do not go below 
the scalar version, but do not show much of a speedup up to 8 threads either. This 
behavior coincides with the series having a large window size, from 500 to 1325 
samples. A large window makes the loop in Fig. 11 perform many unaligned loads 
that hinders the vectorization improvement. Moreover, the L1D cache is stressed by 
the larger window, and the data TLB is stressed even more, as shown in Table 3. 
The table gathers results of the data TLB store misses for a series with large win-
dow size, Power, and a series with small window size, Seismology, and the same 
length. This problem vanishes with 32 threads (see speedups in Figs. 14 and 15). 
The amount of aggregated TLBs and the smallest work to be done by each thread 
seems to be enough to tackle the TLB problem. With larger series, the problem can 
persist even with 32 threads and two sockets (see Sect. 5.6).

Moreover, there is an additional problem to AVX2 related with the MASK-
STORE and BLEND instructions (see Figs. 12 and 13) which introduce high over-
head, in contrast to AVX-512 where the performance is improved via opmask predi-
cated instructions (see Sect.  5.3). From 16 threads upwards, different sockets are 
being used, so the cache and TLB capacity increases, which seems to hide the slow-
down of the aforementioned overhead. Short-window time series, though, benefit 
greatly from vectorization approaches, as the overhead caused by these problems is 
not so predominant.

In the case of SCRIMP (Fig. 14), we also include an implementation of the algo-
rithm that uses the automatic vectorization by means of the OpenMP library [17]. 
The results of this version are presented as OMP-Vect in the plots. In general, we 
find that OMP-Vect is clearly worse for all series than AVX-512, and also worse 

Table 1  Time series workloads Time series n m Max Min

Audio 20.234 200 (2 s) 6.69 −56.48
ECG 180.000 500 (2 s) 2.6 0.325
Power 180.000 1.325 (8 h) 140 0
Seismology 180.000 50 (2.5 s) 696.1 −185.7
Human Act 6.997 120 (12 s) 2.51 −2.9
Peng. Behav 109.842 800 0.52 −0.21

Table 2  Large time series Time series n m Max Min

ECG 1.800.000 500 (2 s) 3.39 −1635
Power 1.859.587 1.325 (8 h) 140 0
Seismology 1.728.000 50 (2.5 s) 2329.3 −2334.6
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than AVX2 except for those series with large window size and few threads. Actually, 
the OMP-Vect implementation barely outperforms the No-Vect one, except for the 
Human series.

5.3  Masking overhead

Seeking the reason behind the dramatic lack of performance of AVX2 we break 
down the time of the covariance computation (code snippet in Fig.  11) and the 
conditional profile update (code snippet in Fig.  12) to find that MASKSTOREU 
is a source of high overhead. We use _mm256_maskstore instrinsics for the 
AVX2 implementation (see Fig. 8) and _mm256_mask_storeu intrinsics for 
the AVX-512 (see Fig.  9), which in turn compile to vmaskmov/vpmaskmov 
and vmovup mask instructions, respectively.

Intel AVX-512 introduces opmask registers and predicate instructions which 
encode an operand from the set of opmask registers, so that the user has per-
element control on the computational operation and memory update depend-
ing on the mask [26]. Conversely, AVX2 provides differentiated instructions for 
masking and blending (e.g., vmaskmov and vblendv) which can degrade the 
performance in certain cases. The Intel 64 and IA-32 Architectures Optimization 
Reference Manual [26] recommends using vmaskmov only in cases where vmo-
vup cannot be used. Furthermore, it states the following: “32-byte AVX store 
instructions that span two pages require an assist that costs roughly 150 cycles”. 
Assists are microcode invoked by hardware to help handle certain events. We 
use perf to retrieve the number of these assists triggered by our implementa-
tions to get the data in Table  4. We use other_assists.any which gets 
the “Number of times a microcode assist is invoked by hardware other than FP-
assist. Examples include AD (page Access Dirty) and AVX* related assists”, as 
stated by perf list. We can see that the data is highly correlated with that in 
Table 3. Although the assists are not broken down, we might say by the figures 
in the table that AVX2’s vmaskmov implementation might trigger assists even 
with 0-masked addresses, which may set A and D bits and might update the TLB. 
The Intel’s ISA Reference Manual [22] states for vmaskmov that, in cases where 

Fig. 11  SCAMPvect’s covariance computation of the first subsequences in a meta-diagonal. The rest are 
computed incrementally from these values
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mask bits indicate data should not be loaded or stored, paging A and D bits will 
be set in an implementation dependent way.

To gain more insight into the masking problem we take advantage of the possi-
bility of using the AVX-512 instruction set with 256-bit registers, with the option 
AVX-512vl. The only differences between our AVX2 and AVX-512vl implemen-
tations are the replacement of vmaskmov and vblend by vmov mask instruc-
tions. The performance improvement is noticeable by the numbers in Tables  3 
and 4, and the performance gains over the AVX2 implementation in Figs. 14 and 
15, especially for large window series up to 16 threads.

5.4  Thread affinity exploration

Results shown so far leaves thread affinity in charge of the operating system, 
which, as we will see here, is the best solution. In this section we study the effect 
of pinning threads to cores using the thread affinity features offered by OpenMP.

Figures  16 and 17 show the speedup results for SCRIMP (SCAMP yields 
similar results which are omitted in this section) for AVX-512 and AVX2, 
respectively, such that no thread affinity (nobind), close thread affinity (close) 
and spread thread affinity (spread) are enforced. For the close and spread 
thread affinity policies, we set the following environmental variable: OMP_
PLACES=“0,1:64:2”, so that 64 places are defined with 2 threads each. This 
way, each place corresponds to a physical core with 2 hyperthreads.

The close processor binding assigns the threads to places beginning from the 
first place and following next places in increasing order, with a final wrap-around 
when we run out of places. So we can assume that, from 1 to 16 threads, only one 
socket is used and no hyperthreading. With 32 threads, 2 sockets are used and no 
hyperthreading. with 64 threads, 4 sockets are used and no hyperthreading. And 
finally, with 128 threads, hyperthreading is used. The spread processor bind-
ing assign threads to places far away, thus using different sockets from 2 threads 
onward.

Figures show the same behavior for the close and nobind policies up to 32 
threads spawned. However, the spread policy yields worse results in most cases 
due to the use of several sockets, which reduces locality harnessing and hinders 
thread synchronization (barrier at the end of #pragma omp for loops). This 
effect is more noticeable with shorter series (Audio and Human). For 64 threads, 
the nobind policy is able to yield slightly better results than the close policy, as 
the operating system have the ability to migrate threads to idle cores, just in case 
there is a load from system processes. For 128 threads the results are obviously 
the same whatever the policy.

The AVX2 results in Fig. 17 give the same results for large window size series 
up to 32 threads, no matter the policy, which hints thread affinity is not the culprit 
of the AVX2 slowdown with respect to No-Vect.
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5.5  Load balance exploration

The main loop of the algorithms computes the diagonals of the distance matrix. 
The thread’s work unit is the computation of a diagonal or a meta-diagonal (a 
group of VPACK diagonals), and the assignment of these (meta)-diagonals to 
threads is done dynamically by means of the schedule(dynamic) OpenMP 
clause.

As diagonals are of different lengths (shorter as they get the right end of the 
distance matrix), load balancing these algorithms can be a problem. Furthermore, 
the computation of the dot product (SCRIMP) or covariance (SCAMP) of the 
first element in the diagonal (see Fig.  11) is heavier than that of the remaining 
elements, which are computed incrementally from the value of the first element. 
This first element computation problem exacerbates as window size increase, and 
with vectorization due to unaligned accesses.

Figure  18 shows the SCAMP results (SCRIMP figures are very similar and 
we omit them for the sake of conciseness) of the various implementations when 
executed with schedule(static) compared with the executions with 
schedule(dynamic). Lower is worse for the static versions. We can observe 
that a static partition of (meta-)diagonals is not a good idea for these algorithms. 
The worst outcome is yielded by the vectorized algorithms, as expected. No-Vect 
gets affected as well, but to a lower extent overall. This is because thread’s work 
unit is a diagonal, which is finer grain than a meta-diagonal.

Note the deviation from 100% for Audio and Human with one thread. These are 
the shortest series of the set, which yields execution times under 1 s for one thread 
thus showing high variability even when averaging the 10 runs per experiment (see 
Sect. 5.1).

As mentioned in Sect. 5.2, AVX2 gets poor results when the window size is large, 
due to instruction set and TLB problems. We can see in Fig. 18 how static AVX2 
yields the worse results due to the addition of load imbalance, specially with 32 
threads, where 2 sockets are used.

Table 3  SCAMP data TLB store misses for the given implementations and series

Impl. Series n (K) m # dTLB store misses

#th = 2 #th = 16 #th = 32

AVX2 9.320.502.463 5.209.871.973 24.371.203
AVX-512vl Power 180 1.325 3.903.164.142 1.949.028.376 9.241.465
AVX-512 1.874.597.618 744.614.596 1.868.692
AVX2 144.912.286 60.832.193 13.134.275
AVX-512vl Seismo 180 50 57.375.614 44.190.128 6.439.342
AVX-512 40.623.017 31.620.232 2.220.071
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5.6  Large series results

In this section, we explore the behavior of the different implementations of the algo-
rithms when stressed over large series inputs. The series tested are those in Table 2, 
which are close to 2 million elements (n).

Figure 19 shows the results obtained for SCRIMP (on the left) and SCAMP (on 
the right). Thread affinity is left to the operating system, and iterations are dynami-
cally scheduled by the OpenMP runtime. We can see that the larger series stress the 
caches and TLB even when adding more sockets and threads to the computation. The 
performance gains for large window size series (Power and ECG) are not so acute 
with 32 threads than those of smaller series. AVX2 yields poor results even with 64 
and 128 threads. However, as more sockets and threads are used, the AVX-512 and 

Fig. 12  Comparison of obtained correlations with the already present in P, and update if applicable

Fig. 13  Final reduction vectorization
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Fig. 14  SCRIMP results. 128 threads implies hyperthreading

Table 4  SCAMP other assists for the given implementations and series

Impl. Series n (K) m # Other assists

#th = 2 #th = 16 #th = 32

AVX2 2.284.759.397 2.299.158.617 10.163.170
AVX-512vl Power 180 1.325 2.065.544.112 1.835.219.679 7.677.854
AVX-512 1.059.781.425 638.604.656 25.799
AVX2 54.138.705 31.766.931 2.284.644
AVX-512vl Seismo 180 50 35.562.400 33.353.984 2.127.670
AVX-512 21.002.933 26.417.715 25.973
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Fig. 15  SCAMP results. 128 threads implies hyperthreading

AVX-512vl implementations (which lacks the masking problem) scale very good, 
with speedups peaking up to 100× the serial. The problem of load imbalance seems 
to disappear with larger series as there are many more (meta)-diagonals for threads 
to work with, so the OpenMP on-demand dynamic scheduler makes a good job bal-
ancing the load.

It is worth to be noted the speedup increase of SCAMP over SCRIMP, as the lat-
ter gets less improvement by vectorization on the dot product loop (see next section). 
Also, SCRIMP needs for the division instruction, which poses a strain on the com-
putation with a latency of 23 cycles, over 4 cycles for the multiplication on Skylake.
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5.7  Roofline after vectorization

In Sect. 2, we show the roofline for the scalar versions of SCRIMP and SCAMP as a 
motivation to this work. In this section, we want to check the roofline after vectori-
zation. For that purpose, Fig. 20 shows the results of the AVX-512 implementations 
of the algorithms. The green dots correspond to the loop which computes the dot 
product in SCRIMP (line 6 in Fig. 6) and the covariance in SCAMP (Fig. 11), and 
the blue dots correspond to the loop computing the rest of the diagonal (line 13 in 
Fig. 6).

Fig. 16  SCRIMP thread affinity results using AVX-512
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As the diagonals have been packed into meta-diagonals (the thread unit of work) 
whose data is contiguous in memory, caches are better harnessed than the scalar 
counterpart which can assign a diagonal to a thread and the next diagonal to another 
thread. Furthermore, in the scalar implementation, the dot product/covariance com-
putation (green dots) of two subsequences uses each element of the subsequences 
once. The vectorization makes that the reuse of those elements increase up to 
VPACK times, thus increasing the number of operations per second. SCAMP gets 
an improved behavior of vectorization on that loop since more arithmetic operations 
are performed over the same data: the subtraction of means[0] (see Fig.  11) is 

Fig. 17  SCRIMP thread affinity results using AVX2
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now done VPACK times, whereas SCRIMP does not need such a subtraction for the 
dot product computation.

6  Related work

We can find multiple techniques for time series data mining in the literature. Spe-
cifically, Chandola et al. wrote a survey on different techniques for anomaly detec-
tion on time series [27] up to 2009. The most recent techniques are based on deep 
learning [28], machine learning [29], neural networks [30] and motif discovery [10]. 

Fig. 18  SCAMP results with static loop partitioning with respect to dynamic
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According to most recent works, there are two major approaches for time series 
motif discovery: approximate algorithms [31] and exact algorithms [10], such as 
matrix profile. Approximate algorithms usually take less execution time than exact 
ones. However, for large time series, an approximate algorithm can provide inac-
curate results as they are based on probabilistic assumptions. As a result, the user 
has to set several (not intuitive) parameters, trying to get results accordingly to the 
expected ones, a fact which is not always possible.

Fig. 19  Long series results
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In this work, we focus our attention on the matrix profile technique and, in 
particular, the SCRIMP [11] and SCAMP [12] algorithms. Recently presented in 
literature, there are three major different implementations of the matrix profile: 
STAMP [10], STOMP [32] and SCRIMP [11]. The SCRIMP algorithm combines 
the best properties of STAMP, which computes the diagonals of the matrix in ran-
dom order, with STOMP, which is faster than STAMP but computes the diagonals 

Fig. 20  SCRIMPvect and SCAMPvect AVX-512 rooflines (INT+FLOAT) for the Power time series with 
180,000 samples, 1325 window size, and 128 threads
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in sequential order. By the time of writing this paper, SCAMP is the algorithm 
that offers better results.

In addition to the matrix profile, we can find other approaches based on time 
series motif discovery, such as a probabilistic solution [33], spatio-temporal mod-
els [4], an indexing solution [34] and a symbolic representation [35].

Not many works can be found accelerating time series processing algorithms 
using SIMD approaches. For instance, in [36] the Xeon Phi KNC [37] (Knights 
Corner - a previous version of the Xeon Phi architecture) is used to speed up the 
Dynamic Time Warping (DTW) technique to measure the similarity between time 
series. However, their approach is limited by a master-worker scheme, and this target 
architecture, being older, does not include ultra high bandwidth 3D-stacked memory 
modules. A SCRIMP version tuned for a many-core CPU (Intel Xeon Phi KNL) 
using auto-vectorization can be found in [17]. We find multiple efforts to increase 
time series analysis efficiency and performance based on commodity CPU architec-
tures, high-performance GPUs, heterogeneous systems and even Processing-Near-
Memory [38] in [12, 17, 32, 39, 40], but they overlook the use of advanced vectori-
zation extensions.

This work is an extension of [41] with the following contributions: (i) we detect a 
problem with AVX2 masking instructions and propose a solution by using AVX-512 
instructions with 256-bit registers; (ii) we perform and discuss a thread affinity and 
load balance exploration; (iii) we analyze CPU/memory rooflines for the algorithms 
before and after vectorization; and, (iv) we carry out a thorough experimental analy-
sis highlighting the results obtained for large series.

7  Conclusions and future work

In this work we take advantage of various SIMD optimization techniques for mod-
ern high performance processors, with the aim of improving the performance of 
time series analysis algorithms, specifically, the state-of-the-art matrix profile ones.

As a base, we use the OpenMP framework to use the multiple available hardware 
threads. Then, we further optimize our implementations via custom data level par-
allelism (SIMD) with various vector sizes. Specifically, we use Advanced Vector 
Extensions 2 (AVX2) and AVX-512. We also highlight the problem of masking with 
AVX2, which has been dramatically improved by predicate AVX-512 instructions 
with opmask registers. We explore thread-affinity and load balance to find that the 
OS is aware of NUMA and performs the best thread-affinity policy, and that the 
algorithms are highly imbalanced, thus taking advantage of the dynamic scheduling 
policy of OpenMP. Vectorization packs diagonals into meta-diagonals hindering the 
load balance even more. But this problem disappears with large series.

The algorithms involved get rather significant speedups out of our SIMD pro-
posals, specially when it comes to AVX-512, with up to 4× speedup over the sca-
lar implementation. The AVX2 implementation is in general as good as or bet-
ter than the code automatically vectorized by the OpenMP framework, as long as 
the window size is not large so that the TLB is not stressed. The use of AVX-512 
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instructions with 256-bit registers yields better results among AVX-512 and AVX2, 
since the masking problem is addressed.
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