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Abstract The paper deals with parallelization of computing similarity measures
between large vectors. Such computations are important components within many
applications and consequently are of high importance. Rather than focusing on opti-
mization of the algorithm itself, assuming specific measures, the paper assumes a
general scheme for finding similarity measures for all pairs of vectors and investigates
optimizations for scalability in a hybrid Intel Xeon/Xeon Phi system. Hybrid systems
including multicore CPUs and many-core compute devices such as Intel Xeon Phi
allow parallelization of such computations using vectorization but require proper load
balancing andoptimization techniques. The proposed implementation usesC/OpenMP
with the offloadmode toXeon Phi cards. Several results are presented: execution times
for various partitioning parameters such as batch sizes of vectors being compared,
impact of dynamic adjustment of batch size, overlapping computations and commu-
nication. Execution times for comparison of all pairs of vectors are presented as well
as those for which similarity measures account for a predefined threshold. The latter
makes load balancing more difficult and is used as a benchmark for the proposed opti-
mizations. Results are presented for the native mode on an Intel Xeon Phi, CPU only
and the CPU+ offload mode for a hybrid system with 2 Intel Xeons with 20 physical
cores and 40 logical processors and 2 Intel Xeon Phis with a total of 120 physical
cores and 480 logical processors.

Keywords Many-core architectures · Hybrid parallelism · Parallelization of
computing similarity measures · Intel Xeon · Intel Xeon Phi · Optimization

B Paweł Czarnul
pczarnul@eti.pg.gda.pl

1 Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology,
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1 Introduction

In themodern high performance computing landscape, several possibilities have arisen
for multi-core and many core computing. Multi-core CPUs offer powerful cores
clocked with relatively high frequency, sophisticated instruction sets suitable for vari-
ous codes includingmultiple programmultiple data codes executed by several threads.
On the other hand, accelerators such as GPUs have enabled efficient parallelization
of massively parallel single program multiple thread type codes. Coprocessors such
as Intel Xeon Phi x100 (Knights Corner) rely on Pentium type cores with in-order
execution for efficient processing on roughly 240 threads per device.

These hardware advancements have enabled new approaches to certain prob-
lems. This is because proper optimizations may considerably affect performance. For
instance, on an Intel Xeon Phi [3], high efficiency is possible if enough parallelism is
exposed with the application and a high level of vectorization is achieved. Potential
limitationsmay include false sharing, issues with lack of data locality/inefficient cache
use etc.

In this paper, we focus on running of parallel codes on a hybrid Xeon/Xeon Phi
system using an example of computing similarity measures of large vectors in order
to find settings allowing efficient execution.

2 Related Work and Motivation

Computing similarity measures of vectors has many uses in real world applications. It
is used for assessment of similarity of words, text documents, web pages, images etc.
and can be applied in a variety of contexts [36,37]. Computing similarities between
words has applications such as clustering of documents, detection of relations, dis-
ambiguation of entities, finding meta data etc. [29]. Comparison of text documents
and web pages can be used for detecting plagiarism. Finding similarities between text
fragments is used in web searching e.g. for suggestion of related queries [34]. Simi-
larities between objects or object sets is used in medicine such as in finding clinical
data applicable to the current clinical case [18]. Furthermore, computing similarity
measures between sequences of vectors representing objects can be used in many
applications such as in biology, audio recognition or handwritten word image retrieval
as discussed in paper [31].

Many existing works [1,2,5,13,16,39] consider and optimize the problem of all
pair similarity search which is to find such pairs of vectors for which the similarity
measure exceeds a given threshold. In such a case, optimization techniques can be
used to tune the algorithm itself. Various environments for running algorithms are
considered, for example: CPUs [5,16], a multi-node cluster with multi-core CPUs
and Hadoop MapReduce [1,13]. Work [24] considers computing similarity between
terms by performing comparison between corresponding pmi context vectors with the
following measures cosine, Jaccard, and Dice. Paper [24] uses an approach similar to
sparse matrix multiplication strategy. In contrast to these works, this paper generally
focuses on a scenario in which all pairs of vectors need to be analyzed or no implicit
knowledge about similarity measure can be assumed.
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The problem of parallel computing similarity measures between vectors was also
previously considered in [11]. The paper focused on creation of a model of the algo-
rithm. It also described an environment called MERPSYS that allows simulation of
execution time of a parallel application run on a potentially large scale system, energy
consumed by the application on resources as well as reliability of the run, being impor-
tant for very large scale systems. In [11] themodelwas validated across real runswhich
allowed extrapolation of results of this application for other data and system (in terms
of the number of nodes) sizes.

Intel Xeon Phi seems to be an interesting candidate for this type of problem and
computations due to the large number of cores available and efficient vectorization
that itself allows speeding up the code up to 8 (double precision) or 16 (single preci-
sion) times [30,38]. Implementation challenges [6,19], however, include maximizing
locality for cache use, elimination of false sharing, maximizing memory bandwidth,
using proper thread affinity, dealing with potential memory limitations. Intel Xeon Phi
has enabled parallelization of many real problems. In [17] large scale feature matching
using a linear algorithm is presented. Paper [21] presents an algorithm for large-scale
DNA analysis for various numbers of cores and thread affinities. Paper [23] presents
acceleration of the subsequence similarity search based on DTW distance. In work
[10] performing a divide-and-conquer application on an Intel Xeon Phi is optimized
using a lightweight framework inOpenMP. Inwork [22] programmingmodels and best
practices are presented that enable making the most of the Xeon Phi coprocessor. Per-
formance of sparse matrix vector (SpMV) and sparse matrix multiplication (SpMM)
is analyzed for various compute devices in paper [35]. For instance, for SpMV Sandy
CPUs were approximately twice as fast than Westmere with a performance between
4.5 and 7.6GFlop/s, NVIDIA K20 obtains between 4.9 and 13.2 GFlop/s while Xeon
Phi reaches and exceeds 15GFlop/s. The authors of [14] have benchmarked Xeon Phi
for leukocyte tracking. They argue that for this particular application vectorization
requires intervention from the programmer. Furthermore, they compared performance
of an implementation on Xeon Phi to that on NVIDIA K20 with the latter offering
better performance due to efficient reduction performed in shared memory. Paper [20]
presents that 1TFlop/s performance can be reached for Intel Xeon Phi when using 240
threads on a 60 core model for large data sizes for processing of astronomical data.
In [32], the author benchmarked a multi phase Lattice Boltzmann code run on Intel
Xeon Phi. It is shown how various thread affinities such as compact, scatter, balanced
impact performance. The code achieved the performance of 2.5x dual Intel Xeon E5-
2680 socket nodes. Overheads of typical OpenMP constructs was in turn benchmarked
in work [7]. Even more challenging is execution in a hybrid environment with vari-
ous performances of cores, communication between compute devices and potentially
specific optimization for the latter. Nodes that contain Xeon Phi coprocessors can be
integrated into clusters for even higher performance, especially with Infiniband. In
[26–28], the authors tune the MVAPICH2 MPI library and demonstrate considerable
improvements in performance of intra-MIC, intranode and internode communication
over the standard implementation. Furthermore, services installed on HPC clusters or
servers that incorporate multicore CPUs and many core systems can be integrated into
computationally oriented workflow systems [8,9].
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Generally, the problem considered in this paper can be stated as optimization
of parallel computations of a given similarity measure between every pair out of
vector_count vectors on a hybrid Xeon/Xeon Phi architecture. Each vector has
dim_size elements in it. For the test purposes, the similarity measure used in
experiments was a square root of the sum of differences of values on correspond-
ing dimensions power 2. Additionally, for the sake of testing load balancing in the
case computations of various pairs of vectors take various amounts of time, finding
pairs for which similarity exceeds a threshold is also considered. Successive vector
elements are assigned values in the [1, 2] range.

3 Testbed Implementation, Optimization and Testing

3.1 Initial Implementation, Optimization and Tests on Intel Xeon Phi

For the initial approach we started with the idea proposed in [11] which was tested
there in a cluster environment usingMPI. The application itself consists of a few steps:
allocation and initialization of vectors, computations of similarity values between
every pair of vectors and storing results inmemory, computing theminimumdifference
between two vectors across all pairs.

In this paper, we started with this basic implementation, which was ported to
C+OpenMP. It follows these steps:

1. allocation and initialization of input data,
2. entering a #pragma omp parallel block in which each thread:

– fetches its id,
– goes through a loop iterating throughfirst_vector—index of a first vector
other vectors from a batch would be compared to,

– goes through a loop iterating through batches of vectors; each batch has a
predefined size (that in case of one version decreases in time); each thread
selects its own batch based on the thread id,

– each thread compares the current first_vector to each of the vectors in
the batch and stores similarity measures for each pair,

3. the largest similarity measure is found as it enforces dependence on all pair vector
comparisons.

For performance testing of the code, several versions were run and compared on an
Intel Xeon Phi Coprocessor 5000 series with 8GBs of memory, clocked at 1.053GHz
with 60 cores (240 threads):

– m1—the presented basic version following the concept presented in [11]. Separate,
dynamically allocated arrays with alignment are used for reading input vectors and
storage of results.

– m2—in this version of the code an additional array is used so that each iteration of
the loop through vectors in a second batch are independent and results are stored
in temporary space for each vector being compared to.

– m21—this is the m2 version modified in such a way that initialization of the
temporary result space are performed first for each vector of the second batch,

123



Int J Parallel Prog

Table 1 Execution times (s) for
various versions of the code,
10,000 vectors,
dim_size = 10,000,
balanced affinity,
batch_size = 2500

Version of code Execution time (s)

m1 32.59

m2 32.08

m21 31.31

m21-vbs 31.12
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Fig. 1 Execution time versus batch size

then computations of similarities are performed for each vector of the second
batch and finally copying of whole results for a batch is performed.

– m21-vbs—the m21 version with a decreasing batch size. The algorithm is as
follows:

threshold_step=vector_count/2;
threshold=vector_count/2;

(...)
// in the main loop iterating through first_vector
if ((first_vector>threshold) && (batch_size>batch_size_threshold)) {

batch_size/=2;
threshold_step/=2;
threshold+=threshold_step;

}
(...)

Successive versions brought small improvements in execution time tested for 10,000
vectors, dim_size = 10,000, balanced affinity, batch_size = 2500 as shown
in Table 1. For m21-vbs 78 was used as batch_size_threshold.

Figure 1 presents results of version m21-vbs for various sizes of a batch for the
number of vectors equal to 10,000 and the dimension size equal to 10,000. It can be
seen that the best results are obtained for the batch size equal to 2500.
Additionally, tests for various values of batch_size_threshold were per-
formed. Figure 2 shows execution times for the best batch size 2500 and various
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Fig. 2 Execution time versus batch_size_threshold

lowest batch size limits. It can be seen that execution times are the lowest for middle
values of the batch size limit. The value of 78 was then used in subsequent tests as it
gives smallest execution times.

However, the proposed code has several limitations and can be optimized even
further, especially for a hybrid environment including Intel Xeon Phi. Potential opti-
mizations include:

1. increasing computations to communication/synchronization ratio even further as
comparison of a single first vector to a batch of vectors may not be optimal,

2. dynamic load balancing among compute cores of various performance,
3. optimizing the best number of cores used per device,
4. applying optimization techniques such as loop tiling etc.

3.2 Implementation, Optimization and Tests on a Hybrid Intel Xeon/Xeon Phi
System

Based on the aforementioned code and results, a newversion of the codewas developed
thatwould be suitable for efficient execution in a hybridCPU-accelerator environment.
Specifically, the target API was C+OpenMP for execution in the CPU+ offload mode.

For the following tests, a server with 128GBs of RAMand the following processors
was used:

1. 2x Intel Xeon CPU E5-2680 v2 @ 2.80GHz CPUs,
2. 2x Intel Xeon Phi Coprocessor 5000 series each with 8GBs of memory, clocked

at 1.053 GHz with 60 cores (240 threads).

In this environment, several matters may impact performance of the code:

1. potential imbalance due to various total performance of host Xeon and Xeon Phi
cores,
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2. parallelization potential of the code assuming 40 logical processors of the CPUs
(with HT) and 2x240 threads of two Xeon Phi coprocessors,

3. communication and synchronization overhead between the host and the Xeon Phis
(PCI-E) as well as within the host and coprocessors.

In order to mitigate these issues, the code optimizations from the m21-vbs version
were improved with the following modifications:
– In order to increase computation/communication ratio of processing a batch,
batches for the “first vector” are considered to which vectors of the previously
mentioned batch is compared (this is now called second vector batch). Specifi-
cally, the following pseudocode illustrates which vectors are compared to which
ones in this case:

for(cc=first_vector;cc<first_vector_batch_size;cc++) {
if (second_vector_batch_start<=cc) second_vector_batch_start=cc+1;
for(i=second_vector_batch_start;i<min(vector_count,
second_vector_batch_start+second_vector_batch_size);i++)

compare(vectors[cc],vectors[i]);
}

It should be noted that while vectors of the “first vector” batch are not compared,
the code generates second vector batches (equivalent to batches in the first version
considered in Sect. 3.1) starting from after the first vector of the first vector batch
so that all pairs of vectors are finally compared.

– The code was designed to make the most of all cores of Xeon and Xeon Phis
with some cores used by managing and other cores by computing threads. At the
highest level the number of threads equal to the number of (1+number of Xeon
Phis used) is launched which fetch successive batches (dynamic assignment of
batches to idle threads managing CPUs or Xeon Phis) and manage computations
in lower level parallel regions (nested parallelism enabled): using a #pragma
omp parallel block for the host CPUs and #pragma offload and next
#pragma omp parallel for Xeon Phi cards. It should be noted that out
clauses in the offloads for two Xeon Phis copy results to distinct arrays. Apart
from the managing host threads, the #pragma omp parallel constructs use
num_threads(x) clauses to specify the number of computing threads used for
CPUs or a Xeon Phi. On the host the best number of computing threads launched
turned out to occupy (<the number of physical cores>−<the number of Xeon
Phi cards used>) physical cores. For each physical core 2 computing threads were
launched. On theXeon Phi in the offloadmode the best number of threads launched
turned out to be 236. In the hybrid CPU + Xeon Phi tests, the following numbers
of computing threads were used:

– CPUs + 1 Xeon Phi − 38 threads for CPUs, 236 threads for Xeon Phi,
– CPUs + 2 Xeon Phis − 36 threads for CPUs, 236 threads for each Xeon Phi.

For CPU only scalability tests, up to 40 computing threads were used. Within
the blocks for #pragma omp parallel constructs the same paralleliza-
tion strategy was used for CPUs and Xeon Phis i.e. #pragma omp for
schedule(dynamic) for loop parallelizationwith dynamic assignment of iter-
ations to threads.

– Various values of the first vector batch and the second vector batch influence load
balance but also synchronization overheads thus proper configurations need to be
obtained for best execution times.
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Fig. 3 host+1x mic—execution time (s) versus first vector batch size and second vector batch size, 10,000
vectors, dim_size = 10,000, dynamic batch adjustment, batch_size_threshold = 78

– Loop tiling when comparing a given first vector to a second vector. In this case, the
loop going through dimensions of the second vector was partitioned into batches
of 1024 iterations.

– Optimization using overlapping communication and computations in a hybrid
environment [12].

– Setting proper parameters specific to a device such as MIC_USE_2MB_BUFF
ERS [12] as well as proper thread affinity [4,15].

The following tests clearly demonstrate impact of these optimizations and configu-
ration settings on performance of the application. Firstly, the application with all these
improvements was tested for various values of the first vector batch size and second
vector batch sizes. For 10,000 vectors each 10,000 dimension in size Fig. 3 presents
execution times in a hybrid environment with 2 host CPUs and 1 Xeon Phi (mic) card
while Fig. 4 presents execution times in a hybrid environment with 2 host CPUs and
2 Xeon Phi cards. For 10,000 vectors each 40,000 dimension in size Fig. 5 presents
execution times in a hybrid environment with 2 host CPUs and 1 Xeon Phi card while
Fig. 6 presents execution times in a hybrid environment with 2 host CPUs and 2 Xeon
Phi cards. The following settings were used: export MIC_ENV_PREFIX = PHI,
export PHI_KMP_AFFINITY = granularity = fine,compact, export
MIC_USE_ 2MB_BUFFERS = 64k. It can be seen very clearly that there is an area
of best settings with the second vector batch size around 100 and the first vector batch
size is around 1000–2000 for best execution times. Either smaller or larger settings
result in higher overall execution times. This is because smaller values result in larger
overhead to the number of packets that need to be handled while larger sizes do not
allow good balancing. Tests have revealed that these settings are also appropriate for
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Fig. 4 host+2x mic—execution time (s) versus first vector batch size and second vector batch size, 10,000
vectors, dim_size = 10,000, dynamic batch adjustment, batch_size_threshold = 78
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Fig. 5 host+1x mic—execution time (s) versus first vector batch size and second vector batch size, 10,000
vectors, dim_size = 40,000, dynamic batch adjustment, batch_size_threshold = 78

several other combinations of the total number of vectors and dimension sizes tested
next. These are different values than those obtained for the initial version discussed in
Sect. 3.1 due to consideration of first vector batches in the improved version. However,
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Fig. 6 host+2x mic—execution time (s) versus first vector batch size and second vector batch size, 10,000
vectors, dim_size = 40,000, dynamic batch adjustment, batch_size_threshold = 78

tests have revealed that the value batch_size_threshold = 78 is still suitable
for the improved version as evidenced by results shown in Fig. 8. Various settings of
batch_size_threshold gave marginally different execution times though.

Various values of thread affinities set on Intel Xeon Phi cards aswell as the impact of
MIC_USE_2MB_BUFFERS = 64k are shown in Figure 7. It can be seen clearly that,
while affinity settings do not impact performancemuch (note that 236 threads perXeon
Phi are used here), settingMIC_USE_2MB_BUFFERS = 64k brings a noticeable gain
in performance.

Furthermore, we tested impact of dynamic adjustment of the second vector batch
size as well as overlapping computations and communication. Best results of 10 runs
for each configuration are reported in Fig. 8. These do have measurable impact albeit
relatively small in the hybrid environment.

Then, the optimized code was tested firstly for host only and mic (Xeon Phi) only
configurations in order to verify scalability and speed-ups. In these cases the number
of computing threads was varied as shown in the X axis of the plots and set using
the num_threads(x) clause to occupy the given number of logical processors on
Xeons or a Xeon Phi. Figures 9 and 10 present execution times and speed-ups for these
configurations for 10,000 vectorswith the dimension size of 10,000. It can be noted that
in work [25] parallel execution of the BiCGSTAB solver gave very similar speed-ups
of up to around 90 for larger data sizes. In our case performance of the host CPU and
the Xeon Phi were very similar. Peak double precision performance of Intel Xeon Phi
5000 series is given at just over 1TFlop/s and is higher than theoretical performance
of the CPUs used. However, real results may be different and may depend on how
efficiently resources may be used by a given implementation of a specific problem.
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Especially in the case of Xeon Phi, speed-up limitations and memory bottlenecks may
affect performance. For instance, Fig. 10 shows that for the application tested parallel
efficiency obtained for the host CPUs (speed-up of almost 26 for a total of 40 logical
processors) compared to that for the Xeon Phi (speed-up of 95 for a total of 240 logical
processors) contributes to similar execution times for the two. Power requirements for
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Fig. 9 Host only and mic only—execution time (s) versus number of computing threads, 10,000 vectors,
dim_size = 10,000, dynamic batch adjustment, batch_size_threshold = 78

the CPUs are 2 · 115W which is slightly higher than given for Intel Xeon Phi 5110P
at 225W which might be a relative benefit for the latter.

Interestingly, the improvements resulted in around 3 times faster code than the
initial approach for 10,000 vectors and the dimension size of 10,000 shown in Sect. 3.1.
This is supported by the results shown in Figs. 3 and 4 in which execution times for
very small first vector data size are considerably larger. Then the other optimizations
contributed to additional gains.

Finally, the optimized code was tested for various configurations on the host (2
CPUs), Xeon Phi in the native mode (without copying from/to the host) as well as
in hybrid environments using 2 host CPUs and 1 or 2 Xeon Phi cards. In the latter
configuration 20+20 logical processors on the host and 480 logical processors on the
Xeon Phi cards are available. From the results shown in Fig. 11 it can be seen that for
various combinations of the number of vectors and dimension sizes, codes scale well
with a very visible improvement in execution times between configurations.

Furthermore, we performed scalability tests across configurations for a modified
code which finds pairs of vectors for which similarity exceeds a certain threshold of
0.86 of the maximum similarity for the previous runs. Specifically, after the tiled loop
that for a given first vector goes through a second vector, there is a conditional cutting
off further computations after the threshold has been achieved. Such version is more
difficult to balance as various vectors may require various computational times. As
shown in Fig. 12, compared to previous results, this version still scales well through
the configurations up to the host and 2 Xeon Phi cards. Results for various affinities
on the Xeon Phi are shown in Fig. 7.
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Fig. 10 host only and mic only—speed-up versus number of computing threads, 10,000 vectors,
dim_size = 10,000, dynamic batch adjustment, batch_size_threshold = 78
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Fig. 12 Execution times for all pairs and all pairs exceeding threshold, dynamic batch size
batch_size_threshold = 78, second vector batch size= 100, first vector batch size= 2000

4 Summary and Future Work

In the paper, parallelization of computing similarity measures between large vectors
with OpenMP was benchmarked and optimized in a hybrid Intel Xeon/Xeon Phi sys-
tem. Various optimizations were tested for performance in a real hybrid environment
with multicore CPUs and Intel Xeon Phi coprocessors. Specifically, these included
partitioning vectors into batches of size variable in time, testing for various thread
affinities on Xeon Phi, overlapping computations and communication and Xeon Phi
specific settings. Optimizations were presented for load balancing, loop tiling etc.
Scalability of the code was demonstrated from Intel Xeon Phi only or host only envi-
ronments to hybrid host + 1x Xeon Phi and host + 2x Xeon Phi cards. Future work
includes tackling more advanced versions of the all pair search algorithms for which
similarity values exceed a given threshold on the hybrid system. Additionally, we are
going to incorporate and test Intel Xeon Phi coprocessors in KernelHive [33]—a sys-
tem for parallelization of computations among heterogeneous clusters with CPUs and
GPUs.
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