
Int J Parallel Prog
DOI 10.1007/s10766-016-0455-0

Benchmarking Performance of a Hybrid Intel
Xeon/Xeon Phi System for Parallel Computation
of Similarity Measures Between Large Vectors

Paweł Czarnul1

Received: 14 February 2016 / Accepted: 22 September 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract The paper deals with parallelization of computing similarity measures
between large vectors. Such computations are important components within many
applications and consequently are of high importance. Rather than focusing on opti-
mization of the algorithm itself, assuming specific measures, the paper assumes a
general scheme for finding similarity measures for all pairs of vectors and investigates
optimizations for scalability in a hybrid Intel Xeon/Xeon Phi system. Hybrid systems
including multicore CPUs and many-core compute devices such as Intel Xeon Phi
allow parallelization of such computations using vectorization but require proper load
balancing andoptimization techniques. The proposed implementation usesC/OpenMP
with the offloadmode toXeon Phi cards. Several results are presented: execution times
for various partitioning parameters such as batch sizes of vectors being compared,
impact of dynamic adjustment of batch size, overlapping computations and commu-
nication. Execution times for comparison of all pairs of vectors are presented as well
as those for which similarity measures account for a predefined threshold. The latter
makes load balancing more difficult and is used as a benchmark for the proposed opti-
mizations. Results are presented for the native mode on an Intel Xeon Phi, CPU only
and the CPU+ offload mode for a hybrid system with 2 Intel Xeons with 20 physical
cores and 40 logical processors and 2 Intel Xeon Phis with a total of 120 physical
cores and 480 logical processors.

Keywords Many-core architectures · Hybrid parallelism · Parallelization of
computing similarity measures · Intel Xeon · Intel Xeon Phi · Optimization

B Paweł Czarnul
pczarnul@eti.pg.gda.pl

1 Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology,
ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81889898?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-016-0455-0&domain=pdf
http://orcid.org/0000-0002-4918-9196

Int J Parallel Prog

1 Introduction

In themodern high performance computing landscape, several possibilities have arisen
for multi-core and many core computing. Multi-core CPUs offer powerful cores
clocked with relatively high frequency, sophisticated instruction sets suitable for vari-
ous codes includingmultiple programmultiple data codes executed by several threads.
On the other hand, accelerators such as GPUs have enabled efficient parallelization
of massively parallel single program multiple thread type codes. Coprocessors such
as Intel Xeon Phi x100 (Knights Corner) rely on Pentium type cores with in-order
execution for efficient processing on roughly 240 threads per device.

These hardware advancements have enabled new approaches to certain prob-
lems. This is because proper optimizations may considerably affect performance. For
instance, on an Intel Xeon Phi [3], high efficiency is possible if enough parallelism is
exposed with the application and a high level of vectorization is achieved. Potential
limitationsmay include false sharing, issues with lack of data locality/inefficient cache
use etc.

In this paper, we focus on running of parallel codes on a hybrid Xeon/Xeon Phi
system using an example of computing similarity measures of large vectors in order
to find settings allowing efficient execution.

2 Related Work and Motivation

Computing similarity measures of vectors has many uses in real world applications. It
is used for assessment of similarity of words, text documents, web pages, images etc.
and can be applied in a variety of contexts [36,37]. Computing similarities between
words has applications such as clustering of documents, detection of relations, dis-
ambiguation of entities, finding meta data etc. [29]. Comparison of text documents
and web pages can be used for detecting plagiarism. Finding similarities between text
fragments is used in web searching e.g. for suggestion of related queries [34]. Simi-
larities between objects or object sets is used in medicine such as in finding clinical
data applicable to the current clinical case [18]. Furthermore, computing similarity
measures between sequences of vectors representing objects can be used in many
applications such as in biology, audio recognition or handwritten word image retrieval
as discussed in paper [31].

Many existing works [1,2,5,13,16,39] consider and optimize the problem of all
pair similarity search which is to find such pairs of vectors for which the similarity
measure exceeds a given threshold. In such a case, optimization techniques can be
used to tune the algorithm itself. Various environments for running algorithms are
considered, for example: CPUs [5,16], a multi-node cluster with multi-core CPUs
and Hadoop MapReduce [1,13]. Work [24] considers computing similarity between
terms by performing comparison between corresponding pmi context vectors with the
following measures cosine, Jaccard, and Dice. Paper [24] uses an approach similar to
sparse matrix multiplication strategy. In contrast to these works, this paper generally
focuses on a scenario in which all pairs of vectors need to be analyzed or no implicit
knowledge about similarity measure can be assumed.

123

Int J Parallel Prog

The problem of parallel computing similarity measures between vectors was also
previously considered in [11]. The paper focused on creation of a model of the algo-
rithm. It also described an environment called MERPSYS that allows simulation of
execution time of a parallel application run on a potentially large scale system, energy
consumed by the application on resources as well as reliability of the run, being impor-
tant for very large scale systems. In [11] themodelwas validated across real runswhich
allowed extrapolation of results of this application for other data and system (in terms
of the number of nodes) sizes.

Intel Xeon Phi seems to be an interesting candidate for this type of problem and
computations due to the large number of cores available and efficient vectorization
that itself allows speeding up the code up to 8 (double precision) or 16 (single preci-
sion) times [30,38]. Implementation challenges [6,19], however, include maximizing
locality for cache use, elimination of false sharing, maximizing memory bandwidth,
using proper thread affinity, dealing with potential memory limitations. Intel Xeon Phi
has enabled parallelization of many real problems. In [17] large scale feature matching
using a linear algorithm is presented. Paper [21] presents an algorithm for large-scale
DNA analysis for various numbers of cores and thread affinities. Paper [23] presents
acceleration of the subsequence similarity search based on DTW distance. In work
[10] performing a divide-and-conquer application on an Intel Xeon Phi is optimized
using a lightweight framework inOpenMP. Inwork [22] programmingmodels and best
practices are presented that enable making the most of the Xeon Phi coprocessor. Per-
formance of sparse matrix vector (SpMV) and sparse matrix multiplication (SpMM)
is analyzed for various compute devices in paper [35]. For instance, for SpMV Sandy
CPUs were approximately twice as fast than Westmere with a performance between
4.5 and 7.6GFlop/s, NVIDIA K20 obtains between 4.9 and 13.2 GFlop/s while Xeon
Phi reaches and exceeds 15GFlop/s. The authors of [14] have benchmarked Xeon Phi
for leukocyte tracking. They argue that for this particular application vectorization
requires intervention from the programmer. Furthermore, they compared performance
of an implementation on Xeon Phi to that on NVIDIA K20 with the latter offering
better performance due to efficient reduction performed in shared memory. Paper [20]
presents that 1TFlop/s performance can be reached for Intel Xeon Phi when using 240
threads on a 60 core model for large data sizes for processing of astronomical data.
In [32], the author benchmarked a multi phase Lattice Boltzmann code run on Intel
Xeon Phi. It is shown how various thread affinities such as compact, scatter, balanced
impact performance. The code achieved the performance of 2.5x dual Intel Xeon E5-
2680 socket nodes. Overheads of typical OpenMP constructs was in turn benchmarked
in work [7]. Even more challenging is execution in a hybrid environment with vari-
ous performances of cores, communication between compute devices and potentially
specific optimization for the latter. Nodes that contain Xeon Phi coprocessors can be
integrated into clusters for even higher performance, especially with Infiniband. In
[26–28], the authors tune the MVAPICH2 MPI library and demonstrate considerable
improvements in performance of intra-MIC, intranode and internode communication
over the standard implementation. Furthermore, services installed on HPC clusters or
servers that incorporate multicore CPUs and many core systems can be integrated into
computationally oriented workflow systems [8,9].

123

Int J Parallel Prog

Generally, the problem considered in this paper can be stated as optimization
of parallel computations of a given similarity measure between every pair out of
vector_count vectors on a hybrid Xeon/Xeon Phi architecture. Each vector has
dim_size elements in it. For the test purposes, the similarity measure used in
experiments was a square root of the sum of differences of values on correspond-
ing dimensions power 2. Additionally, for the sake of testing load balancing in the
case computations of various pairs of vectors take various amounts of time, finding
pairs for which similarity exceeds a threshold is also considered. Successive vector
elements are assigned values in the [1, 2] range.

3 Testbed Implementation, Optimization and Testing

3.1 Initial Implementation, Optimization and Tests on Intel Xeon Phi

For the initial approach we started with the idea proposed in [11] which was tested
there in a cluster environment usingMPI. The application itself consists of a few steps:
allocation and initialization of vectors, computations of similarity values between
every pair of vectors and storing results inmemory, computing theminimumdifference
between two vectors across all pairs.

In this paper, we started with this basic implementation, which was ported to
C+OpenMP. It follows these steps:

1. allocation and initialization of input data,
2. entering a #pragma omp parallel block in which each thread:

– fetches its id,
– goes through a loop iterating throughfirst_vector—index of a first vector
other vectors from a batch would be compared to,

– goes through a loop iterating through batches of vectors; each batch has a
predefined size (that in case of one version decreases in time); each thread
selects its own batch based on the thread id,

– each thread compares the current first_vector to each of the vectors in
the batch and stores similarity measures for each pair,

3. the largest similarity measure is found as it enforces dependence on all pair vector
comparisons.

For performance testing of the code, several versions were run and compared on an
Intel Xeon Phi Coprocessor 5000 series with 8GBs of memory, clocked at 1.053GHz
with 60 cores (240 threads):

– m1—the presented basic version following the concept presented in [11]. Separate,
dynamically allocated arrays with alignment are used for reading input vectors and
storage of results.

– m2—in this version of the code an additional array is used so that each iteration of
the loop through vectors in a second batch are independent and results are stored
in temporary space for each vector being compared to.

– m21—this is the m2 version modified in such a way that initialization of the
temporary result space are performed first for each vector of the second batch,

123

Int J Parallel Prog

Table 1 Execution times (s) for
various versions of the code,
10,000 vectors,
dim_size = 10,000,
balanced affinity,
batch_size = 2500

Version of code Execution time (s)

m1 32.59

m2 32.08

m21 31.31

m21-vbs 31.12

 0

 20

 40

 60

 80

 100

 120

 0 1000 2000 3000 4000 5000 6000 7000 8000

E
xe

cu
tio

n
tim

e
[s

]

batch_size

10000 vectors dim_size=10000
15000 vectors dim_size=10000

Fig. 1 Execution time versus batch size

then computations of similarities are performed for each vector of the second
batch and finally copying of whole results for a batch is performed.

– m21-vbs—the m21 version with a decreasing batch size. The algorithm is as
follows:

threshold_step=vector_count/2;
threshold=vector_count/2;

(...)
// in the main loop iterating through first_vector
if ((first_vector>threshold) && (batch_size>batch_size_threshold)) {

batch_size/=2;
threshold_step/=2;
threshold+=threshold_step;

}
(...)

Successive versions brought small improvements in execution time tested for 10,000
vectors, dim_size = 10,000, balanced affinity, batch_size = 2500 as shown
in Table 1. For m21-vbs 78 was used as batch_size_threshold.

Figure 1 presents results of version m21-vbs for various sizes of a batch for the
number of vectors equal to 10,000 and the dimension size equal to 10,000. It can be
seen that the best results are obtained for the batch size equal to 2500.
Additionally, tests for various values of batch_size_threshold were per-
formed. Figure 2 shows execution times for the best batch size 2500 and various

123

Int J Parallel Prog

 28

 29

 30

 31

 32

 33

78 1 10 100 1000 10000

E
xe

cu
tio

n
tim

e
[s

]

batch_size_threshold

Fig. 2 Execution time versus batch_size_threshold

lowest batch size limits. It can be seen that execution times are the lowest for middle
values of the batch size limit. The value of 78 was then used in subsequent tests as it
gives smallest execution times.

However, the proposed code has several limitations and can be optimized even
further, especially for a hybrid environment including Intel Xeon Phi. Potential opti-
mizations include:

1. increasing computations to communication/synchronization ratio even further as
comparison of a single first vector to a batch of vectors may not be optimal,

2. dynamic load balancing among compute cores of various performance,
3. optimizing the best number of cores used per device,
4. applying optimization techniques such as loop tiling etc.

3.2 Implementation, Optimization and Tests on a Hybrid Intel Xeon/Xeon Phi
System

Based on the aforementioned code and results, a newversion of the codewas developed
thatwould be suitable for efficient execution in a hybridCPU-accelerator environment.
Specifically, the target API was C+OpenMP for execution in the CPU+ offload mode.

For the following tests, a server with 128GBs of RAMand the following processors
was used:

1. 2x Intel Xeon CPU E5-2680 v2 @ 2.80GHz CPUs,
2. 2x Intel Xeon Phi Coprocessor 5000 series each with 8GBs of memory, clocked

at 1.053 GHz with 60 cores (240 threads).

In this environment, several matters may impact performance of the code:

1. potential imbalance due to various total performance of host Xeon and Xeon Phi
cores,

123

Int J Parallel Prog

2. parallelization potential of the code assuming 40 logical processors of the CPUs
(with HT) and 2x240 threads of two Xeon Phi coprocessors,

3. communication and synchronization overhead between the host and the Xeon Phis
(PCI-E) as well as within the host and coprocessors.

In order to mitigate these issues, the code optimizations from the m21-vbs version
were improved with the following modifications:
– In order to increase computation/communication ratio of processing a batch,
batches for the “first vector” are considered to which vectors of the previously
mentioned batch is compared (this is now called second vector batch). Specifi-
cally, the following pseudocode illustrates which vectors are compared to which
ones in this case:

for(cc=first_vector;cc<first_vector_batch_size;cc++) {
if (second_vector_batch_start<=cc) second_vector_batch_start=cc+1;
for(i=second_vector_batch_start;i<min(vector_count,
second_vector_batch_start+second_vector_batch_size);i++)

compare(vectors[cc],vectors[i]);
}

It should be noted that while vectors of the “first vector” batch are not compared,
the code generates second vector batches (equivalent to batches in the first version
considered in Sect. 3.1) starting from after the first vector of the first vector batch
so that all pairs of vectors are finally compared.

– The code was designed to make the most of all cores of Xeon and Xeon Phis
with some cores used by managing and other cores by computing threads. At the
highest level the number of threads equal to the number of (1+number of Xeon
Phis used) is launched which fetch successive batches (dynamic assignment of
batches to idle threads managing CPUs or Xeon Phis) and manage computations
in lower level parallel regions (nested parallelism enabled): using a #pragma
omp parallel block for the host CPUs and #pragma offload and next
#pragma omp parallel for Xeon Phi cards. It should be noted that out
clauses in the offloads for two Xeon Phis copy results to distinct arrays. Apart
from the managing host threads, the #pragma omp parallel constructs use
num_threads(x) clauses to specify the number of computing threads used for
CPUs or a Xeon Phi. On the host the best number of computing threads launched
turned out to occupy (<the number of physical cores>−<the number of Xeon
Phi cards used>) physical cores. For each physical core 2 computing threads were
launched. On theXeon Phi in the offloadmode the best number of threads launched
turned out to be 236. In the hybrid CPU + Xeon Phi tests, the following numbers
of computing threads were used:

– CPUs + 1 Xeon Phi − 38 threads for CPUs, 236 threads for Xeon Phi,
– CPUs + 2 Xeon Phis − 36 threads for CPUs, 236 threads for each Xeon Phi.

For CPU only scalability tests, up to 40 computing threads were used. Within
the blocks for #pragma omp parallel constructs the same paralleliza-
tion strategy was used for CPUs and Xeon Phis i.e. #pragma omp for
schedule(dynamic) for loop parallelizationwith dynamic assignment of iter-
ations to threads.

– Various values of the first vector batch and the second vector batch influence load
balance but also synchronization overheads thus proper configurations need to be
obtained for best execution times.

123

Int J Parallel Prog

 0
 1000

 2000
 3000

 4000
 5000

 6000
 7000

 8000
 9000

 10000

first vector batch size
 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000second vector batch size

 5

 10

 15

 20

 25

Execution time [s]

 5

 10

 15

 20

 25

Fig. 3 host+1x mic—execution time (s) versus first vector batch size and second vector batch size, 10,000
vectors, dim_size = 10,000, dynamic batch adjustment, batch_size_threshold = 78

– Loop tiling when comparing a given first vector to a second vector. In this case, the
loop going through dimensions of the second vector was partitioned into batches
of 1024 iterations.

– Optimization using overlapping communication and computations in a hybrid
environment [12].

– Setting proper parameters specific to a device such as MIC_USE_2MB_BUFF
ERS [12] as well as proper thread affinity [4,15].

The following tests clearly demonstrate impact of these optimizations and configu-
ration settings on performance of the application. Firstly, the application with all these
improvements was tested for various values of the first vector batch size and second
vector batch sizes. For 10,000 vectors each 10,000 dimension in size Fig. 3 presents
execution times in a hybrid environment with 2 host CPUs and 1 Xeon Phi (mic) card
while Fig. 4 presents execution times in a hybrid environment with 2 host CPUs and
2 Xeon Phi cards. For 10,000 vectors each 40,000 dimension in size Fig. 5 presents
execution times in a hybrid environment with 2 host CPUs and 1 Xeon Phi card while
Fig. 6 presents execution times in a hybrid environment with 2 host CPUs and 2 Xeon
Phi cards. The following settings were used: export MIC_ENV_PREFIX = PHI,
export PHI_KMP_AFFINITY = granularity = fine,compact, export
MIC_USE_ 2MB_BUFFERS = 64k. It can be seen very clearly that there is an area
of best settings with the second vector batch size around 100 and the first vector batch
size is around 1000–2000 for best execution times. Either smaller or larger settings
result in higher overall execution times. This is because smaller values result in larger
overhead to the number of packets that need to be handled while larger sizes do not
allow good balancing. Tests have revealed that these settings are also appropriate for

123

Int J Parallel Prog

 0
 1000

 2000
 3000

 4000
 5000

 6000
 7000

 8000
 9000

 10000

first vector batch size
 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000second vector batch size

 5

 10

 15

 20

 25

Execution time [s]

 5

 10

 15

 20

 25

Fig. 4 host+2x mic—execution time (s) versus first vector batch size and second vector batch size, 10,000
vectors, dim_size = 10,000, dynamic batch adjustment, batch_size_threshold = 78

 0
 1000

 2000
 3000

 4000
 5000

 6000
 7000

 8000
 9000

 10000

first vector batch size
 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000second vector batch size

 30
 40
 50
 60
 70
 80
 90

 100

Execution time [s]

 30
 40
 50
 60
 70
 80
 90
 100

Fig. 5 host+1x mic—execution time (s) versus first vector batch size and second vector batch size, 10,000
vectors, dim_size = 40,000, dynamic batch adjustment, batch_size_threshold = 78

several other combinations of the total number of vectors and dimension sizes tested
next. These are different values than those obtained for the initial version discussed in
Sect. 3.1 due to consideration of first vector batches in the improved version. However,

123

Int J Parallel Prog

 0
 1000

 2000
 3000

 4000
 5000

 6000
 7000

 8000
 9000

 10000

first vector batch size
 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000second vector batch size

 30
 40
 50
 60
 70
 80
 90

 100

Execution time [s]

 30
 40
 50
 60
 70
 80
 90
 100

Fig. 6 host+2x mic—execution time (s) versus first vector batch size and second vector batch size, 10,000
vectors, dim_size = 40,000, dynamic batch adjustment, batch_size_threshold = 78

tests have revealed that the value batch_size_threshold = 78 is still suitable
for the improved version as evidenced by results shown in Fig. 8. Various settings of
batch_size_threshold gave marginally different execution times though.

Various values of thread affinities set on Intel Xeon Phi cards aswell as the impact of
MIC_USE_2MB_BUFFERS = 64k are shown in Figure 7. It can be seen clearly that,
while affinity settings do not impact performancemuch (note that 236 threads perXeon
Phi are used here), settingMIC_USE_2MB_BUFFERS = 64k brings a noticeable gain
in performance.

Furthermore, we tested impact of dynamic adjustment of the second vector batch
size as well as overlapping computations and communication. Best results of 10 runs
for each configuration are reported in Fig. 8. These do have measurable impact albeit
relatively small in the hybrid environment.

Then, the optimized code was tested firstly for host only and mic (Xeon Phi) only
configurations in order to verify scalability and speed-ups. In these cases the number
of computing threads was varied as shown in the X axis of the plots and set using
the num_threads(x) clause to occupy the given number of logical processors on
Xeons or a Xeon Phi. Figures 9 and 10 present execution times and speed-ups for these
configurations for 10,000 vectorswith the dimension size of 10,000. It can be noted that
in work [25] parallel execution of the BiCGSTAB solver gave very similar speed-ups
of up to around 90 for larger data sizes. In our case performance of the host CPU and
the Xeon Phi were very similar. Peak double precision performance of Intel Xeon Phi
5000 series is given at just over 1TFlop/s and is higher than theoretical performance
of the CPUs used. However, real results may be different and may depend on how
efficiently resources may be used by a given implementation of a specific problem.

123

Int J Parallel Prog

 0

 10

 20

 30

 40

 50

 60

affinity standard,
 no other settings

affinity=compact
+use 2MB buffers

 over 64k

affinity=balanced
+use 2MB buffers

 over 64k

affinity=scatter
+use 2MB buffers

 over 64k

E
xe

cu
tio

n
tim

e
[s

]
10000 vectors, dim_size=40000
10000 vectors, dim_size=30000
5000 vectors, dim_size=100000
15000 vectors, dim_size=10000
10000 vectors, dim_size=10000

10000 vectors, dim_size=40000, all pairs with threshold of 0.86 of max similarity val

Fig. 7 Execution times for various settings including affinity on Intel Xeon Phi, host 2x CPU + 1x Xeon
Phi offload, dynamic batch size batch_size_threshold = 78, second vector batch size= 100, first
vector batch size= 2000

 0

 5

 10

 15

 20

 25

 30

no overlapping,
 no batch size
 adjustment

no overlapping,
 dynamic batch size
 adjustment, batch_
 size_threshold=78

overlapping,
 dynamic batch size
 adjustment, batch_
 size_threshold=78

E
xe

cu
tio

n
tim

e
[s

]

24.77 24.25 24.12

Fig. 8 Execution times with and without overlapping and thresholding, second vector batch size= 100,
first vector batch size= 2000

Especially in the case of Xeon Phi, speed-up limitations and memory bottlenecks may
affect performance. For instance, Fig. 10 shows that for the application tested parallel
efficiency obtained for the host CPUs (speed-up of almost 26 for a total of 40 logical
processors) compared to that for the Xeon Phi (speed-up of 95 for a total of 240 logical
processors) contributes to similar execution times for the two. Power requirements for

123

Int J Parallel Prog

 1

 10

 100

 1000

 0 50 100 150 200 250

E
xe

cu
tio

n
tim

e
[s

]

number of computing threads

host only
mic only native mode affinity compact

mic only native mode affinity scatter
mic only native mode affinity balanced

Fig. 9 Host only and mic only—execution time (s) versus number of computing threads, 10,000 vectors,
dim_size = 10,000, dynamic batch adjustment, batch_size_threshold = 78

the CPUs are 2 · 115W which is slightly higher than given for Intel Xeon Phi 5110P
at 225W which might be a relative benefit for the latter.

Interestingly, the improvements resulted in around 3 times faster code than the
initial approach for 10,000 vectors and the dimension size of 10,000 shown in Sect. 3.1.
This is supported by the results shown in Figs. 3 and 4 in which execution times for
very small first vector data size are considerably larger. Then the other optimizations
contributed to additional gains.

Finally, the optimized code was tested for various configurations on the host (2
CPUs), Xeon Phi in the native mode (without copying from/to the host) as well as
in hybrid environments using 2 host CPUs and 1 or 2 Xeon Phi cards. In the latter
configuration 20+20 logical processors on the host and 480 logical processors on the
Xeon Phi cards are available. From the results shown in Fig. 11 it can be seen that for
various combinations of the number of vectors and dimension sizes, codes scale well
with a very visible improvement in execution times between configurations.

Furthermore, we performed scalability tests across configurations for a modified
code which finds pairs of vectors for which similarity exceeds a certain threshold of
0.86 of the maximum similarity for the previous runs. Specifically, after the tiled loop
that for a given first vector goes through a second vector, there is a conditional cutting
off further computations after the threshold has been achieved. Such version is more
difficult to balance as various vectors may require various computational times. As
shown in Fig. 12, compared to previous results, this version still scales well through
the configurations up to the host and 2 Xeon Phi cards. Results for various affinities
on the Xeon Phi are shown in Fig. 7.

123

Int J Parallel Prog

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250

S
pe

ed
-u

p

number of computing threads

host only
mic only native mode affinity compact

mic only native mode affinity scatter
mic only native mode affinity balanced

Fig. 10 host only and mic only—speed-up versus number of computing threads, 10,000 vectors,
dim_size = 10,000, dynamic batch adjustment, batch_size_threshold = 78

 0

 10

 20

 30

 40

 50

 60

1 x mic native
 without copy from/to host

host - 2 x CPU host 2 x CPU
+ 1 x mic offload

host 2 x CPU
+ 2 x mic offload

E
xe

cu
tio

n
tim

e
[s

]

10000 vectors, dim_size=40000
10000 vectors, dim_size=30000
5000 vectors, dim_size=100000
15000 vectors, dim_size=10000
10000 vectors, dim_size=10000

Fig. 11 Execution times for various configurations, dynamic batch size
batch_size_threshold = 78, second vector batch size= 100, first vector batch size= 2000

123

Int J Parallel Prog

 0

 10

 20

 30

 40

 50

 60

 70

1 x mic native
 without copy from/to host

host - 2 x CPU host 2 x CPU
+ 1 x mic offload

host 2 x CPU
+ 2 x mic offload

E
xe

cu
tio

n
tim

e
[s

]
10000 vectors, dim_size=40000

10000 vectors, dim_size=40000, all pairs with threshold of 0.86 of max similarity val

Fig. 12 Execution times for all pairs and all pairs exceeding threshold, dynamic batch size
batch_size_threshold = 78, second vector batch size= 100, first vector batch size= 2000

4 Summary and Future Work

In the paper, parallelization of computing similarity measures between large vectors
with OpenMP was benchmarked and optimized in a hybrid Intel Xeon/Xeon Phi sys-
tem. Various optimizations were tested for performance in a real hybrid environment
with multicore CPUs and Intel Xeon Phi coprocessors. Specifically, these included
partitioning vectors into batches of size variable in time, testing for various thread
affinities on Xeon Phi, overlapping computations and communication and Xeon Phi
specific settings. Optimizations were presented for load balancing, loop tiling etc.
Scalability of the code was demonstrated from Intel Xeon Phi only or host only envi-
ronments to hybrid host + 1x Xeon Phi and host + 2x Xeon Phi cards. Future work
includes tackling more advanced versions of the all pair search algorithms for which
similarity values exceed a given threshold on the hybrid system. Additionally, we are
going to incorporate and test Intel Xeon Phi coprocessors in KernelHive [33]—a sys-
tem for parallelization of computations among heterogeneous clusters with CPUs and
GPUs.

Acknowledgments The author wishes to thank Intel Technology Poland for provision of Xeon/Xeon Phi
equipment and literature.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

123

http://creativecommons.org/licenses/by/4.0/

Int J Parallel Prog

References

1. Alabduljalil, M.A., Tang, X., Yang, T.: Optimizing parallel algorithms for all pairs similarity search.
In: Leonardi, S., Panconesi, A., Ferragina, P., Gionis, A. (eds.) Sixth ACM International Conference
on Web Search and Data Mining, WSDM 2013, Rome, Italy, 4–8 February 2013, pp. 203–212. ACM
(2013). doi:10.1145/2433396.2433422

2. Awekar, A., Samatova, N.F.: Fast matching for all pairs similarity search. In: IEEE/WIC/ACM Interna-
tional Conference on Web Intelligence and Intelligent Agent Technology, vol. 1, pp. 295–300 (2009).
doi:10.1109/WI-IAT.2009.52

3. Barker, J., Bowden, J.:Manycore parallelism through openmp - high-performance scientific computing
with xeon phi. In: Rendell, A.P., Chapman, B.M.,Müller, M.S. (eds.) OpenMP in the Era of Low Power
Devices and Accelerators—9th International Workshop on OpenMP, IWOMP 2013, Canberra, ACT,
Australia, 16–18 September 2013. Proceedings, Lecture Notes in Computer Science, vol. 8122, pp.
45–57. Springer (2013). doi:10.1007/978-3-642-40698-0_4

4. Barth, M., Byckling, M., Ilieva, N., Saarinen, S., Schliephake, M., Weinberg, V.: Best practice
guide intel xeon phi. Partnership for Advanced Computing in Europe. http://www.prace-ri.eu/
best-practice-guide-intel-xeon-phi-html/ (2014)

5. Bayardo, R.J., Ma, Y., Srikant, R.: Scaling up all pairs similarity search. In: Proceedings of the 16th
International Conference on World Wide Web, WWW ’07, pp. 131–140. ACM, New York, NY, USA
(2007). doi:10.1145/1242572.1242591

6. Cepeda, S.: Optimization and performance tuning for intel coprocessors, part 2: Understand-
ing and using hardware events. Intel Developer Zone. https://software.intel.com/en-us/articles/
optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding (2012)

7. Cramer, T., Schmidl, D., Klemm, M., an Mey, D.: Openmp programming on intel xeon phi coproces-
sors: an early performance comparison. In: Proceedings of the Many-Core Applications Research
Community Symposium at RWTH Aachen University, pp. 38–44 (2012)

8. Czarnul, P.: A model, design, and implementation of an efficient multithreaded workflow execution
engine with data streaming, caching, and storage constraints. J. Supercomput. 63(3), 919–945 (2012).
doi:10.1007/s11227-012-0837-z

9. Czarnul, P.: Integration of Services into Workflow Applications. Chapman & Hall/CRC Computer and
Information Science Series. Taylor & Francis. ISBN 978-1-49-870646-9. https://www.crcpress.com/
Integration-of-Services-into-Workflow-Applications/Czarnul/p/book/9781498706469. (2015)

10. Czarnul, P.: Parallelization of divide-and-conquer applications on intel xeon phi with an openmp
based framework. In: Swiatek, J., Borzemski, L., Grzech, A., Wilimowska, Z. (eds.) Information
Systems Architecture and Technology: Proceedings of 36th International Conference on Information
Systems Architecture and Technology—ISAT 2015—Part III, Karpacz, Poland, 20–22 September
2015, Advances in Intelligent Systems and Computing, vol. 431, pp. 99–111. Springer (2015). doi:10.
1007/978-3-319-28564-1_9

11. Czarnul, P., Rosciszewski, P.,Matuszek,M.R., Szymanski, J.: Simulation of parallel similaritymeasure
computations for large data sets. In: 2nd IEEE International Conference on Cybernetics, CYBCONF
2015, Gdynia, Poland, 24–26 June 2015, pp. 472–477. IEEE (2015). doi:10.1109/CYBConf.2015.
7175980

12. Davis, K.: Effective use of the intel compiler’s offload features. Intel Developer Zone. https://software.
intel.com/en-us/articles/effective-use-of-the-intel-compilers-offload-features. (2013)

13. De Francisci, G., Lucchese, C., Baraglia, R.: Scaling out all pairs similarity search with mapreduce.
In: Large-Scale Distributed Systems for Information Retrieval, p. 27 (2010)

14. Fang, J., Sips, H., Zhang, L., Xu, C., Che, Y., Varbanescu, A.L.: Test-driving intel xeon phi. In:
Proceedings of the 5th ACM/SPEC International Conference on Performance Engineering, ICPE ’14,
pp. 137–148. ACM, New York, NY, USA (2014). doi:10.1145/2568088.2576799

15. Green, R.W.: Openmp* thread affinity control. Intel Developer Zone. https://software.intel.com/en-us/
articles/openmp-thread-affinity-control (2012)

16. Lam,H.T., Dung,D.V., Perego, R., Silvestri, F.: An incremental prefix filtering approach for the all pairs
similarity search problem. In: Han, W., Srivastava, D., Yu, G., Yu, H., Huang, Z.H. (eds.) Advances in
Web Technologies and Applications, Proceedings of the 12th Asia-Pacific Web Conference, APWeb
2010, Busan, Korea, 6–8 April 2010, pp. 188–194. IEEE Computer Society (2010). doi:10.1109/
APWeb.2010.30

123

http://dx.doi.org/10.1145/2433396.2433422
http://dx.doi.org/10.1109/WI-IAT.2009.52
http://dx.doi.org/10.1007/978-3-642-40698-0_4
http://www.prace-ri.eu/best-practice-guide-intel-xeon-phi-html/
http://www.prace-ri.eu/best-practice-guide-intel-xeon-phi-html/
http://dx.doi.org/10.1145/1242572.1242591
https://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding
https://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-understanding
http://dx.doi.org/10.1007/s11227-012-0837-z
https://www.crcpress.com/Integration-of-Services-into-Workflow-Applications/Czarnul/p/book/9781498706469
https://www.crcpress.com/Integration-of-Services-into-Workflow-Applications/Czarnul/p/book/9781498706469
http://dx.doi.org/10.1007/978-3-319-28564-1_9
http://dx.doi.org/10.1007/978-3-319-28564-1_9
http://dx.doi.org/10.1109/CYBConf.2015.7175980
http://dx.doi.org/10.1109/CYBConf.2015.7175980
https://software.intel.com/en-us/articles/effective-use-of-the-intel-compilers-offload-features
https://software.intel.com/en-us/articles/effective-use-of-the-intel-compilers-offload-features
http://dx.doi.org/10.1145/2568088.2576799
https://software.intel.com/en-us/articles/openmp-thread-affinity-control
https://software.intel.com/en-us/articles/openmp-thread-affinity-control
http://dx.doi.org/10.1109/APWeb.2010.30
http://dx.doi.org/10.1109/APWeb.2010.30

Int J Parallel Prog

17. Leung, K.C., Eyers, D., Tang, X., Mills, S., Huang, Z.: Investigating large-scale feature matching using
the intel xeon phi coprocessor. In: 2013 28th International Conference of Image and Vision Computing
New Zealand (IVCNZ), pp. 148–153 (2013). doi:10.1109/IVCNZ.2013.6727007

18. Mabotuwana, T., Lee, M.C., Cohen-Solal, E.V.: An ontology-based similarity measure for biomedical
data application to radiology reports. J. Biomed. Inform. 46(5), 857–868 (2013). doi:10.1016/j.jbi.
2013.06.013. http://www.sciencedirect.com/science/article/pii/S1532046413000889

19. Mackay, D.: Optimization and performance tuning for intel coprocessors - part 1:
Optimization essentials. Intel Developer Zone. https://software.intel.com/en-us/articles/
optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-1-optimization (2012)

20. Masci, F.: Benchmarking the intel xeon phi coprocessor. http://web.ipac.caltech.edu/staff/fmasci/
home/miscscience/MIC_benchmarking_2013.pdf (2013)

21. Memeti, S., Pllana, S.: Accelerating DNA sequence analysis using intel xeon phi. CoRR
abs/1506.08612, arxiv:1506.08612 (2015)

22. Michaela, M., Byckling, M., Ilieva, N., Saarinen, S., Schliephake, M., Weinberg, V.: Best
practice guide intel xeon phi v1.1. PRACE, 7 Capacities. http://www.prace-project.eu/IMG/pdf/
Best-Practice-Guide-Intel-Xeon-Phi.pdf (2014)

23. Movchan, A., Zymbler, M.: Time series subsequence similarity search under dynamic time warping
distance on the intel many-core accelerators. In: Amato, G., Connor, R., Falchi, F., Gennaro, C. (eds.)
Similarity Search and Applications, Lecture Notes in Computer Science, vol. 9371, pp. 295–306.
Springer International Publishing (2015). doi:10.1007/978-3-319-25087-8_28

24. Pantel, P., Crestan, E., Borkovsky, A., Popescu, A.M., Vyas, V.: Web-scale distributional similarity
and entity set expansion. In: Proceedings of the 2009 Conference on Empirical Methods in Natural
Language Processing, EMNLP ’09, vol. 2, pp. 938–947. Association for Computational Linguistics,
Stroudsburg, PA, USA. http://dl.acm.org/citation.cfm?id=1699571.1699635 (2009)

25. Petkova, P., Grancharov, D., Markov, S., Georgiev, G., Lilkova, E., Ilieva, N., Litov, L.: Massively
parallel poisson equation solver for hybrid intel xeon xeon phi hpc systems. PRACE, white paper.
http://www.prace-ri.eu/IMG/pdf/wp143.pdf

26. Potluri, S., Hamidouche, K., Bureddy, D., Panda, D.: Mvapich2-mic: A high performance mpi library
for xeon phi clusters with infiniband. In: Extreme ScalingWorkshop (XSW), pp. 25–32 (2013). doi:10.
1109/XSW.2013.8

27. Potluri, S., Tomko, K., Bureddy, D., Panda, D.K.: Intra-micmpi communication usingmvapich2: Early
experience. In: TACC-Intel Highly Parallel Computing Symposium. Austin, TX, USA. https://www.
tacc.utexas.edu/documents/13601/7f745047-5b63-44ac-aa7b-fb32cf0c4c05 (2012)

28. Potluri, S., Venkatesh, A., Bureddy, D., Kandalla, K.C., Panda, D.K.: Efficient intra-node commu-
nication on intel-mic clusters. In: 13th IEEE/ACM International Symposium on Cluster, Cloud, and
Grid Computing, CCGrid 2013, Delft, Netherlands, 13–16 May 2013, pp. 128–135. IEEE Computer
Society (2013). doi:10.1109/CCGrid.2013.86

29. Pushpa, C., Girish, S., Nitin, S., Thriveni, J., Venugopal, K., Patnaik, L.: Computing semantic similarity
measure between words using web search engine. In: Wyld, D.C., Nagamalai, D., Meghanathan, N.
(eds.) Third International Conference on Computer Science, Engineering and Applications (ICCSEA
2013), pp. 135–142. Delhi, India (2013). ISBN: 978-1-921987-13-7. doi:10.5121/csit.2013.3514

30. Reinders, J.: An overview of programming for intel xeon processors and intel
xeon phi coprocessors. Intel Developer Zone. https://software.intel.com/en-us/articles/
an-overview-of-programming-for-intel-xeon-processors-and-intel-xeon-phi-coprocessors (2012)

31. Rodriguez-Serrano, J.A., Perronnin, F., Llados, J., Sanchez, G.: A similarity measure between vector
sequences with application to handwritten word image retrieval. In: IEEE Conference on Computer
Vision and Pattern Recognition, 2009. CVPR 2009, pp. 1722–1729 (2009). doi:10.1109/CVPR.2009.
5206783

32. Rosales, C.: Porting to the intel xeon phi: opportunities and challenges. In: Extreme ScalingWorkshop
(XSCALE13) (2013)

33. Rosciszewski, P., Czarnul, P., Lewandowski, R., Schally-Kacprzak, M.: Kernelhive: a new workflow-
based framework for multilevel high performance computing using clusters and workstations with
CPUs and GPUs. Concurr. Comput. Pract. Exp. 28(9), 2586–2607 (2016). doi:10.1002/cpe.3719

34. Sahami, M., Heilman, T.D.: A web-based kernel function for measuring the similarity of short text
snippets. In: Proceedings of the 15th International Conference on World Wide Web, WWW ’06, pp.
377–386. ACM, New York, NY, USA (2006). doi:10.1145/1135777.1135834

123

http://dx.doi.org/10.1109/IVCNZ.2013.6727007
http://dx.doi.org/10.1016/j.jbi.2013.06.013
http://dx.doi.org/10.1016/j.jbi.2013.06.013
http://www.sciencedirect.com/science/article/pii/S1532046413000889
https://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-1-optimization
https://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-1-optimization
http://web.ipac.caltech.edu/staff/fmasci/home/miscscience/MIC_benchmarking_2013.pdf
http://web.ipac.caltech.edu/staff/fmasci/home/miscscience/MIC_benchmarking_2013.pdf
http://arxiv.org/abs/1506.08612
http://www.prace-project.eu/IMG/pdf/Best-Practice-Guide-Intel-Xeon-Phi.pdf
http://www.prace-project.eu/IMG/pdf/Best-Practice-Guide-Intel-Xeon-Phi.pdf
http://dx.doi.org/10.1007/978-3-319-25087-8_28
http://dl.acm.org/citation.cfm?id=1699571.1699635
http://www.prace-ri.eu/IMG/pdf/wp143.pdf
http://dx.doi.org/10.1109/XSW.2013.8
http://dx.doi.org/10.1109/XSW.2013.8
https://www.tacc.utexas.edu/documents/13601/7f745047-5b63-44ac-aa7b-fb32cf0c4c05
https://www.tacc.utexas.edu/documents/13601/7f745047-5b63-44ac-aa7b-fb32cf0c4c05
http://dx.doi.org/10.1109/CCGrid.2013.86
http://dx.doi.org/10.5121/csit.2013.3514
https://software.intel.com/en-us/articles/an-overview-of-programming-for-intel-xeon-processors-and-intel-xeon-phi-coprocessors
https://software.intel.com/en-us/articles/an-overview-of-programming-for-intel-xeon-processors-and-intel-xeon-phi-coprocessors
http://dx.doi.org/10.1109/CVPR.2009.5206783
http://dx.doi.org/10.1109/CVPR.2009.5206783
http://dx.doi.org/10.1002/cpe.3719
http://dx.doi.org/10.1145/1135777.1135834

Int J Parallel Prog

35. Saule, E., Kaya, K., Çatalyürek, Ü.V.: Performance evaluation of sparse matrix multiplication kernels
on intel xeon phi. CoRR abs/1302.1078, arxiv:1302.1078 (2013)

36. Szymanski, J.: Mining relations between wikipedia categories. In: Networked Digital Technologies—
Second International Conference, NDT 2010, Prague, Czech Republic, July 7–9, 2010. Proceedings,
Part II, pp. 248–255 (2010)

37. Szymanski, J.: Comparative analysis of text representation methods using classification. Cybern. Syst.
45(2), 180–199 (2014)

38. Vladimirov, A., Asai, R., Karpusenko, V.: Parallel Programming and Optimization with Intel Xeon Phi
Coprocessors. Colfax International (2015). ISBN 978-0-9885234-0-1

39. Zadeh, R.B., Goel, A.: Dimension independent similarity computation. J. Mach. Learn. Res. 14(1),
1605–1626 (2013). http://dl.acm.org/citation.cfm?id=2567715

123

http://arxiv.org/abs/1302.1078
http://dl.acm.org/citation.cfm?id=2567715

	Benchmarking Performance of a Hybrid Intel Xeon/Xeon Phi System for Parallel Computation of Similarity Measures Between Large Vectors
	Abstract
	1 Introduction
	2 Related Work and Motivation
	3 Testbed Implementation, Optimization and Testing
	3.1 Initial Implementation, Optimization and Tests on Intel Xeon Phi
	3.2 Implementation, Optimization and Tests on a Hybrid Intel Xeon/Xeon Phi System

	4 Summary and Future Work
	Acknowledgments
	References

