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Abstract 

 Within the past decade, there have been substantial leaps in computer architectures to 

exploit the parallelism that is inherently present in many applications.  The scientific 

community has benefited from the emergence of not only multi-core processors, but also 

other, less traditional architectures including general purpose graphical processing units 

(GPGPUs), field programmable gate arrays (FPGAs), and Intel’s many integrated cores 

(MICs) architecture (i.e. Xeon Phi).  The popularity of the GPGPU has increased rapidly 

because of their ability to perform massive amounts of parallel computation quickly and at 

low cost with an ease of programmability.  Also, with the addition of high-level programming 

interfaces for these devices, technical and non-technical individuals can interface with the 

device and rapidly obtain improved performance for many algorithms.  Many applications can 

take advantage of the parallelism present in distributed computing and multithreading to 

achieve higher levels of performance for the computationally intensive parts of the application. 

 The work presented in this thesis implements three applications for use in a 

performance study of the GPGPU architecture and multi-GPGPU systems.  The first 

application study in this research is a K-Means clustering algorithm that categorizes each data 

point into the closest cluster.  The second algorithm implemented is a spiking neural network 

algorithm that is used as a computational model for machine learning.  The third, and final, 
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study is the longest common subsequences problem, which attempts to enumerate 

comparisons between sequences (namely, DNA sequences). 

 The results for the aforementioned applications with varying problem sizes and 

architectural configurations are presented and discussed in this thesis.  The K-Means clustering 

algorithm achieved approximately 97x speedup when utilizing an architecture consisting of 32 

CPU/GPGPU pairs.  To achieve this substantial speedup, up to 750,000 data points were used 

with up 30,000 centroids (means).  The spiking neural network algorithm resulted in speedups 

of about 33x for the entire algorithm and 160x for each iteration with a two-level network 

with 1000 total neurons (800 excitatory and 200 inhibitory neurons).  The longest common 

subsequences problem achieved speedup of greater than 10x with 100 random sequences up 

to 500 characters in length.  The maximum speedup values for each application were achieved 

by utilizing the GPGPU as well as multi-core devices simultaneously.  The computations were 

scattered over multiple CPU/GPGPU pairs with the computationally intensive pieces of the 

algorithms offloaded onto the GPGPU device. 

 The research in this thesis illustrates the ability to scale a heterogeneous cluster (i.e. 

CPUs and GPUs working collaboratively) for large-scale scientific application performance 

improvements.  Each algorithm demonstrates slightly different types of computations and 

communications, which can be compared to other algorithms to predict how they would 

perform on an accelerator.  The results show that substantial speedups can be achieved for 

scientific applications when utilizing the GPGPU and multi-core architectures. 
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Chapter 1 

Introduction 

 For a significant time in the past, scientific researchers relied on the advancement of 

computer architectures, in terms of higher clock speeds and other low-level optimizations, to 

increase the performance of their applications.  However, due to hardware limitations 

including memory, clock speed, and physical processor size, parallel computing architectures 

are necessary to bridge the gap between the need for performance improvements in 

applications and the lack of significant advancements in the low-level architecture design (i.e. 

lithography limits, clock wall, power density, etc.).  The trends have moved toward parallel 

computing architectures, leading vendors to increase the number of cores per device and 

increase the number of processors per machine. 

 However, computationally intensive applications need more than just multi-core 

architectures to perform well.  Therefore, along with the advances that have emerged with 

multi-core architectures, advances in the field of heterogeneous computing have developed 

simultaneously to comply with the computational needs.  Heterogeneous computing can be 

described as the combination of a CPU host and one or more special-purpose computing 

devices or accelerators such as general-purpose graphical processing units (GPGPUs), field 

programmable gate arrays (FPGAs), and Intel’s many- integrated cores (MICs) architecture 
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(i.e. Xeon Phi [1]).  From the list of special-purpose computing devices, GPGPUs have gained 

significant leverage in the parallel computing niche due to the ability to perform massively 

parallel tasks at a relatively low cost and easy programming interface through open source 

languages such as OpenCL [2] and architecture specific languages such as NVIDIA’s Compute 

Unified Device Architecture (CUDA) [3].  With the growing need for increased performance 

in computationally intensive applications, GPGPUs provide a means for more efficient 

execution exploiting many-core resources.  The release of NVIDIA’s CUDA allowed 

researchers to explore the parallelism of GPGPUs with their applications.  With the growing 

popularity of NVIDIA’s CUDA, GPGPUs became the mainstream accelerator in high-

performance computing (HPC) and therefore forced vendors to continually evolve them to 

include advanced features and increase the number of compute cores. 

 Even with the emergence of GPGPUs in the scientific community, there are still needs 

for more, faster parallel computations.  Therefore, heterogeneity is achieved through the 

combination of the multi-core and many-core architectures.  These systems allow the 

developer to optimally parallelize code sections, while the remaining code is executed on a 

sequential processor or core.  In heterogeneous systems, the CPU host executes sequential 

computations such as the data management and file I/O, while the accelerator(s) perform the 

computationally intensive parts of the application or algorithm, thereby improving the overall 

application performance.  The CPU host and accelerators are connected via special 

interconnect technologies such as Infiniband [4] or PCI express [5]. 

 Many scientific applications use complex calculations on very large data sets.  To 

perform these calculations, CPUs serialize each computation, which can cause very long 

execution times if the algorithm is complex or the data set is large.  For this reason, it is 
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preferred to exploit the parallelism of GPGPUs.  The algorithms used in this research study 

(clustering, neural networks, and longest common subsequences) create a diverse algorithm 

set specifically selected to prove that multiple types of algorithms can utilize GPGPU 

parallelism.  The research in this thesis illustrates the efficacy of attempting to parallelize an 

application if the execution time is large or there is a large percentage of computation that can 

be parallelized. 

 With the emergence of heterogeneous systems, researchers are concerned about how 

well these computing systems fit in their research paradigm and improve performance of their 

applications.  This research study conducts a performance analysis of a variety of scientific 

applications using heterogeneous systems including GPGPUs to understand how well 

different types of applications scale with the system.  There are two programming models used 

in this study including CUDA and MPI.  The use of these models allows for a comparison 

between multi-core and heterogeneous systems as well as an analysis of the algorithms that 

later will be described in Chapter 3. 

 The first algorithm discussed as part of this research study in Chapter 3 is the K-Means 

clustering algorithm [6] where n observations are clustered into k clusters.  K-Means is an 

iterative process where each of the n observations is moved into a group (one of the k clusters) 

such that each observation is clustered to the closest cluster centroid.  An implementation of 

this algorithm utilizing a heterogeneous GPGPU architecture is developed and is described in 

Chapter 5. 

 The second algorithm discussed as part of this research study in Chapter 3 is the 

Izhikevich Spiking Neural Network algorithm [7], which is a computational model used for 

machine learning algorithms such as speech or facial recognition and computer vision.  The 



 

4 

 

Izhikevich algorithm is highly biologically accurate and computationally efficient allowing for 

more computation in a given time period compared to other neural network algorithms.  An 

implementation of this algorithm is developed utilizing a heterogeneous GPGPU architecture 

and will be described in Chapter 5. 

 The final algorithm discussed as part of this research study in Chapter 3 is the Longest 

Common Subsequences (LCS) [8] problem that finds the longest common subsequence in a 

given set of sequences.  The solution to the LCS problem uses dynamic programming (i.e. 

breaking the problem into smaller sub-problems) to obtain the optimal longest common 

subsequence for the given set of sequences.  Not only can the LCS problem be applied to 

simple problems such as comparing two text files, but can also be used for more complex 

tasks such as DNA sequence matching [9].  An implementation of this algorithm is developed 

utilizing a heterogeneous GPGPU architecture and is described in Chapter 5. 

 Each of the algorithms described above are implemented using the CUDA and MPI 

models which are discussed in Chapter 4.  The implementations that will be discussed include 

a CPU-only implementation, an MPI (multi-core) implementation, a CUDA (single CPU-

GPGPU pair) implementation, and a CUDA-MPI (multiple CPU-GPU pair) implementation.  

Chapter 6 presents a comparative study of the algorithm implementations using the 

aforementioned programming paradigms. 

 The completion of this thesis is structured as follows.  Chapter 2 reviews the work that 

has been completed on the clustering, bioinformatics, and neural network algorithms 

mentioned above.  Chapter 3 provides background on the scientific algorithms used in this 

research study.  Chapter 4 explores the GPGPU architecture and provides an overview of the 

programming paradigms used in this research study.  Chapter 5 provides an overview of the 
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details of the experimental setup and implementation for each of the algorithm studies.  This 

chapter also includes optimization strategies explored in this research study.  Chapter 6 

presents the results and analysis for each of the algorithms.  Chapter 7 provides conclusions 

and discusses suggestions for future work. 



 

6 

 

 

 

 

Chapter 2 

Related Work 

 This chapter introduces the work that motivates and supports this research.  Each 

section gives an overview of the work that has been completed for each of the applications 

discussed in this work as well as the results that were achieved.  Section 2.1 discusses 

implementations of the K-Means algorithm including other multi-core and single-GPU 

implementations, section 2.2 discusses previous implementations completed using a Spiking 

Neural Network, and section 2.3 gives an overview of the work that has been done with the 

Longest Common Subsequences problem in the past. 

2.1  K-Means 

In [10], Farivar et al. present a GPU-based parallel implementation of the K-Means 

clustering algorithm on an NVIDIA G80 (the NVIDIA 8600GT).  When compared to a 3 

GHz Intel Pentium(R) processor running the same algorithm, the CUDA implementation is 

shown to improve 13x over the single processor implementation.  The proposed 

implementation randomly generates the data points as well as the original k clusters and then 

in each step re-computes the new cluster centers.  The CUDA implementation for this 

algorithm includes having each thread process single data points, computing the distance 
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between the point and each centroid.  An important aspect of this implementation is the use 

of constant memory for the centroids.  The use of constant memory allows for a faster access 

through the cacheable part of the device memory.  Farivar et al. also make a prediction of a 

68x performance increase using the NVIDIA GeForce 8800GT with the same algorithm, but 

the hardware was not available at the time of publication to verify the assumptions. 

In [11], Zechner and Granitzer present an optimized CUDA implementation of the 

K-Means algorithm on NVIDIA’s G80 GPU.  To observe how the algorithm performs with 

differing number of data points, data sets of 500, 5,000, 50,000, and 500,000 were generated 

with 2, 20, and 200 dimensions.  The CPU takes the role of the master thread in this 

implementation and prepares all of the data points to send to the GPU.  The data points are 

uploaded to the GPU once and then each iteration of the algorithm labels each point as 

belonging to a specific centroid.  Each iteration, the GPU performs the labeling of each point 

with the nearest centroid and then the results are sent back to the CPU to calculate the new 

centroid for each cluster.  For the GPU-based implementation performance values range from 

23 GB/s to 44 GB/s computational performance based on the cluster count and 

dimensionality. 

Hong-tao et al. demonstrate a GPU-based k-means implementation on the NVIDIA 

G80 architecture, which performs as high as 40x better than the CPU-base k-means 

implementation in [12].  This paper presents a novel approach to the algorithm (compared to 

previous implementation), where both the data objects assignment and the centroid 

recalculation are done on the GPU.  Li, Zhao, Chu, and Liu in [13] also present a novel 

approach for parallelizing k-means on GPUs with two different strategies: one for low-

dimensional data sets and one for high-dimensional data sets to achieve best performance.  
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For low-dimensional data sets, on-chip registers are used on the GPU to decrease latency to 

access data.  For high-dimensional data sets, on-chip shared memory is used to gain a better 

compute-to-data-access ratio.  The algorithm presented is shown to be three to eight times 

faster than the other GPU-based implementations it was compared to. 

The motivation for this thesis can be seen by the results of this literary review.  All of 

the work done previously has shown that the k-means algorithm is a great candidate for 

accelerations using the GPU.  All of the work has been done on a single-GPU; therefore, the 

research in this thesis continues utilizing the GPU and extends the k-means algorithm to utilize 

multiple CPU/GPU pairs.  The implementation presented in this thesis also utilizes constant 

memory as well as device functions to further optimize the algorithm. 

2.2  Izhikevich SNN 

In his well-known paper [14], Izhikevich described the “biological plausibility and 

computational efficiency” of spiking and bursting neurons and provides models that mimc 

these properties.  Some of these spiking models include “Integrate & Fire” (I&F), I&F with 

Adaptation, Integrate-and-Fire-or-Burst, Resonate-and-Fire, Spiking Model by Izhikevich, 

Morris-Lecar [15], Wilson [16], and Hodgkin-Huxley [17].  The rest of the works detailed in 

this section use one of the aforementioned models to perform neural network simulations. 

In [18], Fidjeland and Shanahan make use of the Izhikevich neuron model to perform 

real-time large-scale simulations of biological brain structures.  The GPU implementation in 

[18] can deliver up to 550 million spikes per second with a single device, which is 

approximately 55,000 neurons with 1000 synapses per neuron while portraying biologically 
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accurate conditions in the simulation.  Through the use of a GPU kernel a throughput of up 

to 22 times the original was achieved. 

Gupta and Long in [19] use a slightly different approach than previous papers.  Instead 

of using the neural network to perform biological simulations, the spiking neural network 

model in their research is used to identify characters in a character set.  The GPU is not used 

in their research, however, it is a great example of how SNNs can be used to solve real-world 

problems.  Similar to the research done in this thesis, both excitatory and inhibitory 

connections are made within the network to train using a known data set. 

Han and Taha also present a similar pattern recognition software based on both 

Izhikevich and Hodgkin-Huxley models in [20].  Three GPU platforms are examined including 

the GeForce 9800 GX2, the Tesla C1060, and the Tesla S1070.  The research presented 

attempts to prove the efficacy of using the GPU to accelerate a SNN based character 

recognition networks for large scale systems.  The results show accelerations of up to 5.6x (for 

Izhikevich) and 84.4x (for Hodgkin-Huxley) over the fastest tested CPU (a quadcore 2.67 GHz 

Xeon processor). 

 Bhuiyan, Pallipuram, and Smith in [21] investigate optimization techniques as well as 

performance improvements for SNNs utilizing GPUs and compare the results to a 2.66 GHz 

Intel Core 2 Quad for the Izhikevich and Hodgkin-Huxley models.  These two models are 

chosen for their study because of the significant differences in computational intensity: the 

Hodgkin-Huxley model is very computationally intensive whereas the Izhikevich model is 

much more compute efficient.  It is shown that for a small flops/bytes ratio, it is not desirable 

to offload the computation to the accelerator, however, benefits can be seen when the 

application has a larger flops/bytes ratio.  The Izhikevich model results in about 0.65 
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flops/byte while the Hodgkin-Huxley model stand at 6.02 flops/byte.  Speedups of 

approximately 9x are achieved by the Izhikevich model where speedups of about 115x are 

achieved using the Hodgkin Huxley model.  The conclusions show that the best speedup over 

all test cases for the Izhikevich model is the optimized Intel Xeon implementation while the 

GPU implementation with coalesced global memory accesses and texture lookup proved 

better for the Hodgkin-Huxley model.  Pallipuram, Bhuiyan, and Smith also present a 

performance analysis comparing NVIDIA’s Fermi architecture with AMD’s Radeon 5870 

using OpenCL in [22].  The four SNN models used for the performance analysis include [15], 

[16], [17], and [18] with optimization techniques for each algorithm.  Speedups of 857x and 

658x were achieved on the Fermi and Radeon respectively for the Hodgkin Huxley model 

with 9.72 million neurons. 

 All previous work done with SNNs has led to the research completed in this thesis.  

The research in this thesis provides a simulation of spiking neural networks performed on 

GPUs with one caveat, the neural network can polychronize.  A network that can polychronize 

“exhibits reproducible time-locked but not synchronous firing patterns with millisecond 

precision” [23].  The neural network simulation presented in this thesis has this property and 

is therefore slightly different than previously completed research.  It provides a 

computationally efficient method for simulation as well as reproducibility of biological 

characteristics found in realistic simulations. 
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2.3  Longest Common Subequences (LCS) 

 In [24], Khajeh-Saeed et al. explore the problem of sequences alignment by developing 

a GPU implementation of the Smith-Waterman algorithm.  As mentioned in this research, 

sequence matching (or sequence alignment) is well-known for its use in testing DNA and 

protein sequences with large databases.  The implementation presented demonstrates the used 

of up to four GPUs executing the Smith-Waterman algorithm in parallel.  The results show 

that for large enough problems the single-GPU can accelerate the CPU version up to 45x and 

the speedup linearly scales as the number of GPUs increases (up to 4 GPUs). 

 McGuiness et al. present a performance study for four very different applications in 

[25] including the STREAM Benchmark, Smith-Waterman, Graph Analysis, and the 

Unbalanced Tree Search.  Each of these applications is evaluated using single and multiple 

GPUs and have much different memory needs illustrating the types of scientific applications 

that could make use of the GPU architecture and its parallelism.  For the Smith-Waterman 

algorithm (a.k.a. the LCS problem), when compared to a single core CPU the speedup is 100x 

for a single GPU while speedups of 5,335x are achieved when utilizing 120 GPUs. 

 In [26], Steinbrecher et al. also present a case study that includes the LCS but does not 

utilize an accelerator, only multi-core systems.  The two machines used in the research 

presented by Steinbrecher include a 12-core and a 4-core machine.  The use of techniques 

such as altering the sequential loops and skewing the loop by changing the linear schedule 

achieves speedups of approximately 42x.  Further optimization such as computing entire rows 

in one thread led to speedups of approximately 60x. 
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 The concepts described in each of these papers were taken into account when studying 

the LCS algorithm for this research.  In this research both multi-core and multi-GPU 

implementations are studied compared to the previous works that only include multi-core or 

single-GPU. 

2.4  Summary 

 In this chapter, an overview of the related work that motivates the use of these 

algorithms is given.  This chapter also provides a brief explanation of the contribution of this 

research relative to the previously completed work (mentioned at the end of Sections 2.1, 2.2, 

and 2.3.  The next chapter provides a detailed description of the algorithms that were used in 

this research along with the governing equations used to implement each of the algorithms. 
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Chapter 3 

Background 

 This chapter presents background information on the algorithms used in this research, 

specifically, k-means clustering, Izhikevich spiking neural networks, and the longest common 

subsequences problem.  The underlying equations for all three algorithms are presented and 

explained.  This chapter is concluded with a discussion of how each of these applications can 

be used in real-world circumstances. 

3.1  K-Means Clustering 

 The k-means clustering algorithm [6] is a method for analyzing clusters of data, 

typically in data mining applications.  The goal of the algorithm is to categorize each data point 

in a cluster to belong to the cluster with the closest centroid, or mean, to achieve the minimal 

sum of distances between each point and centroid.  More generally, the k-means algorithm 

attempts to make k clusters out of the n observations, or data points, where each observation 

is a member of the cluster with the nearest mean.  The initial centroids can be chosen to be 

any values within the bounds of the dataset, but there are available methods that lead to better 

performance of the algorithm.  These methods however are not the aim of this research study.  
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In this study, the initial centroids are defined by choosing pseudo-random data points in the 

data set. 

3.1.1  K-Means Algorithm 

 The k-means algorithm can be described using the following steps: 

1. Initialize the points that will be categorized as the initial means. 

2. Assign each observation (data point) in the data set to belong to the cluster with the 

closest centroid. 

3. Recalculate the positions of the new centroids based on the new clusters that have 

been created. 

4. Continue steps 2 and 3 until the centroids for each cluster are no longer changing or 

they are oscillating between a set of points with similar function values. 

The k-means algorithm categorizes data points into clusters to minimize the mean 

distance between all the points; therefore, the main computation in this algorithms involves 

the distance formula between two points.  The main goal of the algorithm can be expressed 

as an objective function,Z, utilizing the equation for Euclidean distance (Eq. 3.1): 

 𝒎𝒊𝒏 𝒁 =  ∑ ∑ ‖𝒙𝒋 − 𝒄𝒊‖
𝟐𝒏

𝒋=𝟏
𝒌
𝒊=𝟏  (3.1) 

where ‖𝑥𝑗 − 𝑐𝑖‖
2
 is the Euclidean distance between the point in question, xj, and the centroid 

of the cluster, ci, k is the number of clusters, and n is the number of data observations within 

the set. 

 The first step of the algorithm involves initializing the centroids for the first 

computation.  There are numerous ways to initialize these values, some more efficient than 

others.  Some of these methods include: 
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1. Locate the minimum and maximum data points in the set and initialize the centroids 

in a way that they are evenly spaced across the domain of the set.  This method works 

well if all data points are somewhat evenly distributed within the domain.  However, 

without doing preprocessing to determine the distribution (which uses computation 

time), there is not a reasonable method to determine if the points fit this distribution.   

2. Use completely random data points (either points inclusive in the data set or just 

random points located within the domain).  This method allows for quick initialization 

of centroids as well as semi-distributed centroids because of the random number 

generator.  However, randomization could lead to inconsistent performance caused 

by the distribution of the random values and the choice of initial means.  If every 

execution chooses different initial means, there is no guarantee the algorithm will 

execute in the same number of clock cycles as it would with a different set of means. 

3. Choose initial centroids based on the size of the data set and the number of clusters 

that are needed.  For example, the means of a given set S with size n would have initial 

means k given by the equation 𝒎𝒊 = {𝟎
𝒏

𝒌
⋯(𝒏 −

𝟐∗𝒏

𝒌
) (𝒏 −

𝒏

𝒌
)}, where each mi 

is an initial mean.  This method is used in the study because of its quick computation. 

After the initial centroids are determined the next step is to attribute each of the points 

within the set to the nearest centroid.  This is completed by using the Euclidean distance 

formula to find the distance between every point and each centroid as shown in Eq. 3.2. 

 𝒄𝒊 = {𝒙𝒄: ‖𝒙𝒄 −𝒎𝒊‖
𝟐 ≤ ‖𝒙𝒄 −𝒎𝒋‖

𝟐
∀𝒋, 𝟏 ≤ 𝒋 ≤ 𝒌} (3.2) 

 Based on Euclidean distance formulas the k-means algorithm determines which points 

belong to each cluster, also known as the “assignment step” 
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 After each point has been assigned to a cluster, new cluster means should be calculated, 

also called the “update step”.  In this step, the new members of the cluster are taken into 

account when calculating the new cluster centroid.  To calculate the new mean, mi, the 

observations in each cluster, xc, are summed together and then the total is normalized by the 

cardinality of the cluster|𝒄𝒊|, given by Eq. 3.3. 

 𝒎𝒊
(𝒕+𝟏)

=
𝟏

|𝒄𝒊|
∑ 𝒙𝒄𝒙𝒄∈𝒄𝒊  (3.3) 

 Once the new means have been determined, the algorithm can continue.  The process 

of assigning all points to the closest mean and then recalculating each mean is repeated until 

the centroids in two adjacent iterations of the algorithm are the same.  This means that the 

algorithm has converged to a local optimum solution; however it is not guaranteed by this 

algorithm that the global optimum solution will be found. 

3.1.2  K-Means Clustering Real-world Applications 

 K-means clustering is a somewhat general algorithm; therefore, there are many uses 

where the algorithm can be utilized to solve real-world problems.  In [27], Ray and Turi 

illustrate that a major disadvantage of the k-means algorithm is that the user must specify the 

number of clusters, k, that should be used in the calculation.  In this study, segmented images 

are produced for 2 clusters up to kmax clusters, which is followed by calculations that determine 

which number of clusters finds the minimum value for the given parameter being measured.  

This concept could be used to further the research in this thesis by studying a given data set 

and determining what is the optimal number of clusters to achieve a minimum optimal value. 

 In [28], Huang derives an extension of the k-means algorithm (called k-modes) that 

allows for the use of categorical data rather than purely numerical data.  In the paper, soybean 
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disease and credit approval data sets are used to demonstrate the clustering performance of 

the k-modes algorithm, but many other types of categorical data could be used with the same 

result.  For instance, in automotive manufacturing, there have been strides to predict when 

faults or warranty claims will occur for vehicles.  Models have been constructed based on very 

large sets of data on each of the cars being produced as well as each car that was returned for 

a warranty claim.  Based on the different types of cars and car parts, categorical data can be 

constructed and then clustered to detect faulty parts or even faulty manufacturers. 

 In [29], Oyelade et al. describe a method to utilize k-means clustering to monitor 

students’ academic performance in a higher education academic environment.  Oyelade et al. 

used the created models to predict students’ academic performance in English and 

Mathematics studies.  This study provides a method for instructors and institutions to monitor 

performance of students as well as use the models to improve on future performance of the 

academic results provided by the institution. 

 There are numerous applications that can utilize clustering algorithms such as the k-

means algorithm.  Along with the three uses mentioned, there are still a broad range of 

applications that benefit from clustering algorithms. 

3.2  Spiking Neural Networks 

 Neural networks or artificial neural networks (ANNs) is a paradigm of processing 

techniques that strive to perform pattern recognition and machine learning types of 

algorithms, to model the functionality of the biological nervous system, namely the human 

brain.  Simon Haykin described neural networks as “a massively parallel distributed processor made 
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up of simple processing units, which has a natural propensity for storing experiential knowledge and making it 

available for use.  It resembles the brain in two respects: 

1. Knowledge is acquired by the network from its environment through a learning process. 

2. Interneuron connection strengths, known as synaptic weights, are used to store the acquired knowledge.” 

in his book [30]. 

Neural networks model the smallest fundamental component present in the human 

brain, the neuron.  Neurons simply use signals from other neurons to determine if they will 

“fire” or not, meaning that they are active in a given layer of the neural network.  Propagation 

of these signals through multiple layers of the network produces the output, which is how the 

human brain functions at a high level.  In order to accurately represent the human brain and 

mimic functionality, millions of neurons per network are required, which sometimes is not 

feasible.  Therefore, there are not many models that can accurately represent the human brain 

activity, but simply mimic the functionality to perform other tasks. 

Spiking Neural Networks (SNNs) are the third generation artificial neural networks 

that attempt to make the modeling more biologically accurate and have a realistic simulation 

of the human brain.  The difference in ANNs and SNNs is that the neurons in an ANN 

typically “fire” during each propagation cycle while neurons in SNNs only “spike” or “fire” at 

certain points in time.  The properties of the spike including time of the spike are determined 

solely by the input to the network, which is where information is propagated and processed.  

Because SNNs have neurons that “spike” only at certain time steps they work very well with 

applications that incorporate a time component, such as signal processing or image/video 

recognition. 



 

19 

 

There are many models that have been developed for SNNs, ranging in computation 

intensity, complexity, and efficiency.  Some of these models include the Izhikevich Model [7], 

the Wilson Model [16], the Morris-Lecar Model [15], and the Hodgkin Huxley Model [17].  

Each of these four models has different properties and complexities and, therefore, each 

perform differently when implemented.  In previous research [31], these models are evaluated 

and implemented.  However in this research, a variation of the Izhikevich model is studied.  

The overall model, described in the next section, is identical to the original Izhikevich model, 

however there is one slight difference.  The implementation studied in this research allows the 

spiking neural network to polychronize, which means that the model exhibits reproducible 

time-locked firing patterns that are not necessarily synchronous.  In the following section, the 

Izhikevich SNN Model is described and the governing equations are defined and explained. 

3.2.1  Izhikevich SNN Model 

 Eugene M. Izhikevich, in [Simple Model of Spiking Neurons], presents a model that 

is able to replicate the spiking behavior of certain types of cortical neurons.  To develop this 

model, Izhikevich “combined the biological plausibility of [the] Hodgkin-Huxley-type 

dynamic model and the computationally efficient models [such as the Morris-Lecar and Wilson 

models]”.  By reducing the complexity of the Hodgkin-Huxley model and using computations 

similar to those of the more efficient models, the computations for the Izhikevich model are 

able to be completed quicker and therefore used for real-time simulations.  The Izhikevich 

model can be described using the following ordinary equations: 
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 𝒗′ = 𝟎. 𝟎𝟒 ∗ 𝒗𝟐 + 𝟓 ∗ 𝒗 + 𝟏𝟒𝟎 − 𝒖 + 𝑰 (3.4) 

 𝒖′ = 𝒂 ∗ (𝒃 ∗ 𝒗 − 𝒖) (3.5) 

 𝒊𝒇 𝒗 ≥ +𝟑𝟎 𝒎𝑽, 𝒕𝒉𝒆𝒏 {
𝒗 ← 𝒄
𝒖 ←+ 𝒅

} (3.6) 

 “The variable v represents the membrane potential of the neuron and u represents a 

membrane recovery variable, which accounts for the activation of K+ ionic currents and 

inactivation of Na+ ionic currents, and it provides negative feedback to v.  After the spike 

reaches its apex (+30 mV), the membrane voltage and the recovery variable are reset according 

to Eq. 10 [Simple Model of Spiking Neurons].”  By selecting the model variables a, b, c, and d 

the model is able to accurately mimic firing patterns for neurons as well as compute each stage 

of neurons very quickly.  The parameters of the Izhikevich models which govern its behavior 

are as follows: 

 a – describes the time scale of recovery for the variable u (if smaller values of this 

parameter, the variable u “recovers” slower) 

 b – describes the sensitivity of the recovery for the variable u  

 c – describes the reset value of the membrane potential v after a spike occurs 

 d – describes the reset value of the recovery variable u after a spike occurs 

Selecting these parameters can be described as a large research area to optimize the efficiency 

of the model, but this is not the aim of this research.  The set of parameters chosen for this 

work is based on the typical values mentioned in [Simple Model of Spiking Neurons]. 
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3.2.2  SNN Real-world Applications 

 Neural Networks have numerous applications that are used every day in the real-world.  

From speech/audio/video recognition to machine learning, neural networks can be used for 

a variety of problems.  In [32], Ghosh-Dastidar and Adeli present a model using supervised 

learning with SNNs to classify EEF readings.  There are three applications that are used and 

tested with this model including the XOR problem, the Fisher iris classification problem, and 

the epilepsy and seizure detection (EEG classification).  Using the single-spiking SNN and 

82% classification accuracy was achieved for the EEG classification problem while a 90.7%-

94.8% accuracy was achieved by the multi-spiking neural network (MuSpiNN). 

3.3  Longest Common Subsequences Problem 

 The longest common subsequences (LCS) [8] problem analyzes two sequences and 

performs comparisons between the two to compute the longest subsequence that is common 

to both of the sequences.  The idea behind this algorithm is to use dynamic programming 

methods to break the problem into smaller sub-problems to obtain the optimal solution.  A 

mathematical definition of the LCS algorithm can be given by the equation (Eq. 3.7): 

𝑳𝑪𝑺(𝑺𝒊
(𝟏), 𝑺𝒋

(𝟐)) =

{
 

 
∅

𝑳𝑪𝑺(𝑺𝒊−𝟏
(𝟏) , 𝑺𝒋−𝟏

(𝟐) ) + 𝟏

𝒎𝒂𝒙(𝑳𝑪𝑺(𝑺𝒊
(𝟏), 𝑺𝒋−𝟏

(𝟐) ), 𝑳𝑪𝑺(𝑺𝒊−𝟏
(𝟏) , 𝑺𝒋

(𝟐)))

𝒊𝒇 𝒊 = 𝟎 𝒐𝒓 𝒋 = 𝟎

𝒊𝒇 𝒔𝒊
(𝟏)
= 𝒔𝒋

(𝟐)

𝒊𝒇 𝒔𝒊
(𝟏)
≠ 𝒔𝒋

(𝟐)
}
 

 
   (3.7) 

where S(1)and S(2) are the two subsequences and can be defined as the following:  

 𝑺(𝟏|𝟐) = {𝒔𝟏
(𝟏|𝟐)

𝒔𝟐
(𝟏|𝟐)⋯𝒔(𝒎−𝟏|𝒏−𝟏)

(𝟏|𝟐)
𝒔(𝒎|𝒏)
(𝟏|𝟐)

} (3.8) 
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and 𝑳𝑪𝑺(𝑺𝒊
(𝟏), 𝑺𝒋

(𝟐)) represents the entire set of longest common subsequences which have 

prefixes 𝑺𝒊
(𝟏)

and 𝑺𝒋
(𝟐)

.  To find the longest common subsequence, the algorithm simply 

compares all of the elements 𝒔𝒊
(𝟏)

 and 𝒔𝒋
(𝟐)

.  If the two elements are equal (second line in the 

above equation) then the entire subsequence is extended by that common element.  If the two 

elements are not equal (third line in the above equation), then the longest of the two 

subsequences 𝑳𝑪𝑺(𝑺𝒊
(𝟏), 𝑺𝒋−𝟏

(𝟐) ) and 𝑳𝑪𝑺(𝑺𝒊−𝟏
(𝟏) , 𝑺𝒋

(𝟐)) is kept. 

 The longest common subsequences problem uses “traceback” matrices as its main 

form of displaying the answer.  Within these traceback matrices, the length of the longest 

subsequence can be found as well as the subsequence itself.  Without the matrix, only the 

length would be available at the end of the algorithm.  There are often very large problems 

that use this method to find the solution to a subsequencing problem, but the main drawback 

is matrices must be stored in memory, which can be costly.  Dynamic programming helps in 

this aspect of the problem.  Since the problem is already constructed in a way that it is broken 

up into subproblems, these very large systems (matrices) can be partitioned into subproblems 

and the solutions can be constructed from the combination of the results.  During the process 

of computing the LCS score for the set of sequences, additional information can be added to 

the matrix for the backtracking step of the algorithm.  The chosen method for representing 

the “traceback” elements uses directional arrows which can be determined using the equation 

(Eq. 8): 

 𝒃(𝑺𝒊
(𝟏)
, 𝑺𝒋
(𝟐)
) =

{
 
 

 
 
" ↖ "
" ↑ "
" ← "

𝒊𝒇 𝒔𝒊
(𝟏)
= 𝒔𝒋

(𝟐)

𝒊𝒇 𝒔𝒊
(𝟏)
≠ 𝒔𝒋

(𝟐)
 𝒂𝒏𝒅 𝑳𝑪𝑺(𝑺𝒊−𝟏

(𝟏)
, 𝑺𝒋
(𝟐)
) ≥ 𝑳𝑪𝑺(𝑺𝒊

(𝟏)
, 𝑺𝒋−𝟏
(𝟐)

𝒊𝒇 𝒔𝒊
(𝟏)
≠ 𝒔𝒋

(𝟐) 𝒂𝒏𝒅 𝑳𝑪𝑺(𝑺𝒊−𝟏
(𝟏)
, 𝑺𝒋
(𝟐)
) < 𝑳𝑪𝑺(𝑺𝒊

(𝟏)
, 𝑺𝒋−𝟏
(𝟐)
)
}
 
 

 
 

    (3.9) 
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If the two elements 𝒔𝒊
(𝟏)

 and 𝒔𝒋
(𝟐)

 are the same, the arrow simply points to the upper left corner 

of the matrix.  If the two elements 𝒔𝒊
(𝟏)

 and 𝒔𝒋
(𝟐)

 are different, the arrow points toward the 

value either above or to the left with the higher value.  After the entire matrix has been filled 

with traceback elements, the arrows illustrate how to construct the subsequence that was 

found using the LCS algorithm. 

This method of calculation is frequently used with bio-informatics type algorithms; 

therefore, there are many examples that use “AGCT” (Adenine, Guanine, Cytosine, and 

Thymine) combinations, which appear in DNA.  The following is a simple example that 

illustrates the traceback matrix concept. 

Example: Given the two sequences GTCAG and AGCGA, use the LCS algorithm and a 

traceback matrix to compute the longest common subsequence for the two given sequences.  

For each element 𝑠𝑖
(1)

 in the sequence, compare it to the corresponding element 𝑠𝑗
(2)

 in the 

other sequence.  The following table illustrates the completed table for the LCS algorithm 

including backtracking, which gives the solution GCG as the longest common subsequence of 

GTCAG and AGCGA. 

  0 G T C A G 

0 0 0 0 0 0 0 

A 0 ↑ 0 ↑ 0 ↑ 0 ↖ 1 ← 1 

G 0 ↖ 1 ← 1 ← 1 ↑ 1 ↖ 2 

C 0 ↑ 1 ↑ 1 ↖ 2 ← 2 ↑ 2 

G 0 ↖ 1 ↑ 1 ↑ 2 ↑ 2 ↖ 3 

A 0 ↑  1 ↑ 1 ↑ 2 ↖ 3 ↑ 3 

Figure 3.1 – Example of LCS Algorithm 
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3.3.1  LCS Real-world Applications 

 The longest common subsequences problem is a general mathematical algorithm, but 

is most widely used in the field of genetics and biology because it works very well with DNA 

and RNA sequences.  In [33], Bereg et al. develop a model for RNA multiple sequence 

structural alignment, which is based on the longest common subsequences algorithm.  The 

model presents a polynomial O(n2) time algorithm as well as a Maximum Loop Chain algorithm 

with O(n5) time, which investigates many sequences simultaneously using the dynamic 

programming paradigm found in the LCS algorithm.  In [34], Iyer and Saxena investigate the 

flowshop scheduling problem, which is an algorithm that schedules jobs on an assembly line 

while minimizing the completion time of the process.  The two methods in [34] include using 

standard implementation of the flowshop scheduling problem and a problem that is tailored 

using specific information.  The LCS algorithm was used in [34] to solve the minimization 

problem used on an assembly line.   

 Aside from these, there are many other problems and algorithms that make use of the 

LCS algorithm.  Any time subsequencing is performed in the context of genetics or biological 

information, most likely the LCS algorithm will be used at some point during the process to 

compute subsequences. 

3.4  Summary 

In this chapter, an in-depth description of the three algorithms that are used in this 

research is provided.  These algorithms include k-means clustering, Izhikevich spiking neural 

networks, and the longest common subsequences problem.  Each of these algorithms 

represents a different type of computation and illustrate why the performance study using 
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heterogeneous systems is relevant.  The k-means algorithm involves computation with double 

precision values including the data points and centroids.  The spiking neural network involves 

computing the next stage spikes and firing patterns for the network.  The LCS algorithm 

involves comparisons between sequences of characters that are represented differently in 

hardware compared to double precision values.  The next chapter provides a detailed 

description of the computing architecture and programming models use in this research. 
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Chapter 4 

Computing Architectures and 

Programming Models 

 Over the past few years, multi-core and many-core architectures have become popular 

technologies used in numerous areas of computational research.  Multi-core architectures can 

be described as systems that contain more than 2 cores and are typically used for general 

purpose processing rather than parallel processing.  Many-core architecture can be described 

as systems that contain hundreds or thousands of cores and are built specifically to perform 

parallel tasks.  With the advent of multi-core and many-core architectures, programming 

models such as MPI [35] and CUDA [3] were developed to aid developers in efficiently 

utilizing the resources available. 

 This chapter reviews the two different programming models that are used in this 

research as well as introduces the GPGPU and multi-core architectures as well as mentions 

the Xeon Phi [1] coprocessor architecture.  Clemson University’s Palmetto Cluster [36] is also 

described. (The heterogeneous system used in this research.)  Although the Xeon Phi 

coprocessor was not used for results in this research, it can be used in future work to perform 

the same types of parallel tasks as the GPGPU. 
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4.1  Computing Architectures 

In this research, multi-core and many-core architectures are evaluated in the context 

of the scientific algorithms described in Chapter 3.  In this chapter, the multi-core and many-

core architectures will be described along with the corresponding programming models.  The 

Palmetto Cluster will also be detailed as the heterogeneous system used for this research. 

4.1.1  Multi-Core Architecture 

 Processors have been around for several decades, but not until the early 2000s did the 

major processor vendors (Intel, AMD, etc.) begin to realize the need for multi-core processors.  

Multi-core architectures began with simple two-core (dual-core) designs present in the AMD 

Phenom II X2 [37] and the Intel Core Duo [38] and have evolved today to incorporate up to 

ten or more cores.  Multi-core processors provide multiprocessing capabilities that allow the 

user to parallelize applications while only utilizing a single device.  Not every application can 

benefit from the multi-core architectures, however.  If the application can be run in parallel 

(i.e. simultaneously, not sequentially), then the application has a good chance to perform well 

on these architectures.  Today’s CPUs comprise numerous advancements over their 

predecessors that allow for performance improvements including caching, pipelining, wider 

data paths, superscalar execution, increased transistor density, and increased transistor 

performance. 

 In this study, Intel’s Xeon E5-2665 [39] will be used as the primary CPU device when 

performing serial computations and as well as utilizing pairs of them for highly parallel 

computations without accelerators.  This CPU is one of the primary CPUs present in the 
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Palmetto Cluster, which is used for most of the results.  The following section discusses the 

architecture details of the Xeon E5-2665. 

4.1.1.1 Intel Xeon E5-2665 

 The Xeon E5 [39] series architecture (codenamed Romley) is a 32nm octo-core device 

with each core based on Intel’s Sandy Bridge-E architecture and runs at 2.4 GHz with a max 

turbo frequency of 3.1 GHz with overclocking.  Each Romley core includes two 32KB, 8-way 

L1 caches (one for instructions and one for data), a 256KB, 8-way L2 cache, and a 20MB L3 

cache.  Each socket (LGA2011) allows for up to 2 processors for multiprocessing capabilities.  

Table 4.1 gives a more concise overview of the important properties of the Xeon E5-2665 

architecture.  In this study, the Palmetto Cluster [36] will be used with the Intel Xeon E5-2665 

in a dual socket configuration creating 16 cores per node with 32 threads. 

Table 4.1: Intel Xeon E5-2665 (“Romley”) Statistics 

  Intel Xeon 

Processor Name E5-2665 

Clock Speed 2.4 GHz 

Max Turbo Frequency 3.1 GHz 

# of Cores 8 

# of Threads 16 

Max CPU Configuration 2 

L3 Cache 20 MB 

Instruction Set 64-bit 

Lithography 32 nm 

Max Memory Size 384 GB 

Memory Types DDR3-800/1066/1333/1600 

# of Memory Channels 4 
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4.1.2  GPGPU Architecture 

 The advent of fully programmable graphical devices has changed the face of parallel 

programming.  The previous generation of parallel programming involved multi-core 

processors only, which are capable of parallel computations but lack the inherent parallel 

nature of today’s General Purpose Graphical Processing Units (GPGPUs).  Software 

applications are growing ever larger and more complex; hence there is a need to utilize 

concurrency (such as that present on a GPGPU) to achieve dramatically increased speed and 

execution efficiency. 

 The past decades have seen impressive leaps in GPGPU technology beginning with 

devices specifically designed for graphical processing to current devices with thousands of 

cores designed for parallel computations, not limited to graphical processing and image 

rendering [40].  At its inception, the GPU was used for graphics rendering on personal 

computers, gaming consoles, and mobile devices.  The highly parallel nature of the GPGPU 

has allowed for a paradigm shift, making the devices much more useful for developing 

complex software and applications by utilizing the quantity of processor cores compared to a 

typical CPU. 

 In 2006, NVIDIA introduced the GeForce 8 series revolutionizing the GPU market 

bringing to light the massively parallel nature of the GPU and exposing the device as a 

frontrunner in general-purpose computing.  NVIDIA’s G80 [41] based GeForce 8800 GTX 

GPGPU (2006) shown in Figure 4.1 was the first GPGPU architecture to introduce a unified 

pipeline, which replaced all vertex and pixel pipelines present in older model GPUs.  This 
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generation of GPUs was also the first to utilize Streaming Processors (SPs), simple compute 

units grouped together within a small area on the device.   

 
Figure 4.1: NVIDIA GeForce 8800 GTX Architecture [41] 

Each SP can produce a result that can either be utilized by other SPs or stored in local 

memory for later calculations.  The advantage of an SP is that similar simultaneous 

computations can be performed on different SPs on different elements in a data set utilizing 

the high-speed decode and execute logic present on each SP.  A group of SPs is used in the 

device to execute single instruction multiple data (SIMD) type instructions providing 

tremendous parallel processing capabilities.  Also introduced in the G80 series GPU was the 

concept of shared memory.  Located inside each SP, this fast on-chip memory allows for 

barrier synchronization and cache-like storage of data for fast retrieval for threads active on a 

given SP. 

 Many GPGPUs used in HPC clusters today are still modeled after many of the same 

features as the G80 (GeForce 8800 GTX) architecture.  After the G80 architecture, the next 
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substantial development for NVIDIA was in 2009 with the introduction of the Fermi [42] 

architecture shown in Figure 4.2. 

 
Figure 4.2: NVIDIA Fermi Architecture [42] 

The Fermi architecture was an extension of the G80 architecture that included the advent of 

steaming multiprocessors (SMPs), which incorporates a group of SPs, a double-precision 

compute unit, and shared memory within the SMP.  With the introduction of the Fermi 

architecture, new terms were coined to explain the GPGPU and how it functioned at a low 

level.  A thread is the basic unit of execution in a GPGPU and is executed on a SP within a 

SMP.  Within a SMP, groups of threads, thread blocks, are executed on the multiprocessors.  

The thread blocks are further divided into SIMD groups of 32 threads called warps, which can 

also be divided into groups of 16 threads called half-warps. 

 The first Fermi based GPU contained 16 SMPs, each containing a total of 32 cores 

creating a device total of 512 CUDA cores.  Each SMP is equipped with both an integer 
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arithmetic logic unit (ALU) and a floating point unit; therefore, in each clock cycle, each SMP 

can execute either a floating point or integer instruction.  The Fermi architecture also included 

a dual warp scheduler allowing for two warps to be scheduled on the device simultaneously. 

 The most recent development in the GPU architecture made by NVIDIA is the Kepler 

[Reference: Kepler Architecture] architecture.  This architecture was used in this research and 

will be explained in the subsequent section along with details about the specific device used. 

4.1.2.1  NVIDIA Tesla K20 (Kepler GK110) 

 In 2012, NVIDIA introduced the Kepler GK110 [43] architecture offering the GPU 

market a significant improvement over the previous Fermi architecture including 

improvements in compute capabilities and performance and reduced power consumption.  Of 

the GK110 architecture (Figure 4.3) devices, the K20 and K20X GPUs are two of the most 

popular devices being used in machines and clusters today. 

 
Figure 4.3: NVIDIA Kepler GK110 Architecture [43] 
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The GK110 Kepler GPUs typically have 5GB of GDDR5 memory, with a GPU clock 

speed of 706 MHz and a memory clock speed of 1300 MHz.  Each GK110 GPU supports 

CUDA compute capability 3.5.  The Kepler GK110 contains Next Generation Streaming 

Multiprocessors (SMX), which provide astounding performance improvements while lowering 

the necessary power consumption compared to earlier generations of the GPU containing 

SMPs.  Each SMX (Figure 4.4) inside a Kepler GK110 contains 192 single-precision CUDA 

cores, while the SMX still holds the ability for single and double-precision arithmetic 

computations.  The Kepler family of GPUs can support a total of 16 SMX units per block, 

but all GK110 devices do not contain the maximum number of SMX units.  For example, the 

NVIDIA Tesla K20 (the device used in this research) contains 13 SMX units, meaning the 

device contains a total of 2496 CUDA cores instead of the maximum 3072 CUDA cores. 

 
Figure 4.4: GK110 SMX Architecture [43] 
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 The Kepler GK110 GPU has a warp size of 32 threads and supports up to 64 warps 

per SMX.  This architecture also includes a quad warp scheduler (compared to the dual warp 

scheduler of the Fermi), which allows for a total of four warps to be executed concurrently.  

Other important information about the GK110 architecture (in particular, the NVIDIA Tesla 

K20) can be found in Table 4.2. 

 The Kepler GK110 also has a few features that are altogether new to the realm of 

GPU programming including Hyper Q and dynamic parallelism.  Hyper Q [44] enables 

multiple CPU threads to offload tasks to the GPU simultaneously, which creates less idle time 

for the CPU while increasing the utilization of the GPU.  Dynamic parallelism allows the 

developer to have an application directly launched by the GPU instead of going through the 

CPU as a middle-man.  This allows for more effective load balancing on the GPU as well as 

lower communication times between the host and device.  

Table 4.2: Kepler GK110 (Tesla K20) Statistics 

  NVIDIA Tesla K20 

GPU Name GK110 

Processor Size 28 nm 

GPU Clock Speed 706 MHz 

Memory Clock Speed 1300 MHz 

Memory Size 5120 MB (GDDR5) 

Memory Width 320-bits 

Threads/Warp 32 

Max Warps/SMX 64 

Max Threads/SMX 16 

Max Thread Blocks/SMX 2048 

Max Registers/Thread 255 

SMX Memory (Local) 

64 KB (48 KB shared/16 KB L1 cache 
or 

16 KB shared/48 KB L1 cache 

# of CUDA Cores 2496 

Single Precision Performance 3.52 teraflops 

Double Precision Performance 1.17 teraflops 
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4.2  Programming Models 

 This section introduces the programming models used in this study: MPI [35] and 

CUDA [3].  Message Passing Interface (MPI) is a standardized “message-passing” system 

design that allows programmers to utilize the parallel nature of modern processors and 

processor cores.  This provides programmers with the ability to parallelize applications and 

algorithms when only multi-core processors are available.  Compute Unified Device 

Architecture (CUDA) is a widely used programming platform and framework for parallel 

computing on GPGPUs.  CUDA is designed for use with NVIDIA GPGPUS, and 

furthermore only supports NVIDIA GPGPUs.  For a more generic solution, a programmer 

could use a model such as OpenCL [2], which supports a wide variety of HPC architectures 

such as GPGPUs and FPGAs while not being vendor specific.  CUDA was used in this 

research study instead of OpenCL or another generic models because of the availability of 

NVIDIA GPGPUs. 

4.2.1  MPI 

 One of the more popular techniques for utilizing multi-core processors is to “scatter” 

the data and computations to multiple processor cores to achieve a faster result.  Message 

Passing Interface (MPI) [35] is a standardized system designed by collaborators in academia 

and industry to allow “message-passing” in a parallel environment.  MPI provides system calls 

and functions for users to easily parallelize computations and spread data across a multi-core 

system.  MPI allows users of a wide variety of programming languages including Fortran, C, 

C++, and Java to utilize the parallel functionality of message passing.  Table 4.3 gives a few 
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of the commonly used functions and their descriptions to explain the premise of the 

programming language. 

Table 4.3: Commonly used MPI Functions 

 Function Description 

MPI_Send Send a buffer of data to another process  

MPI_Recv 
Receives a buffer of data from another 

process 

MPI_Bcast 
Send a buffer of data to every process 

from “root” process 

MPI_Scatter 
Send a buffer from one process to all 

other processes (dissemination) 

MPI_Gather 
Gather together values from a group of 

processes 

MPI_Init Initialize MPI execution environment 

MPI_Finalize Terminate MPI execution environment 

MPI_Allreduce 
Performs a specified operation on each 

processes set of data (i.e. addition) 

 

4.2.2  CUDA 

 The Compute Unified Device Architecture (CUDA) [3] showcases the power of 

GPGPUs by providing the programmer a C-like experience when developing.  CUDA was 

introduced in 2007 by NVIDIA to be a single programming language for use with NVIDIA 

GPUs.  CUDA is vendor specific (meaning that it is only possible to utilize CUDA on 

NVIDIA GPUs) however most details in the CUDA programming language have been 

optimized to work well with its family of GPUs.  OpenCL is another language that can be 

used to program any type of GPU, but there are limited optimizations performed for 

architectures because it is designed for being open source and working on a multitude of 

devices. 

 The CUDA architecture, being architecture specific, is able to exploit all specialties of 

the NVIDIA GPU including shared and textured memory and utilizing all of the processing 
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(CUDA) cores.  In CUDA, the code that is executed on the device is known as a kernel.  

Kernels are C-like functions (with CUDA specific directives) that are executed in parallel by 

utilizing every CUDA core on the device.  In most situations, one kernel is executed on the 

device followed by another in a sequential fashion.  In newer models of NVIDIA GPUs, it is 

possible to launch multiple kernels simultaneously, but this is not studied in this research. 

 Each thread that is created for a given application executes the kernel in parallel.  

CUDA executes threads in groups called thread blocks as a grid in either one-, two-, or three-

dimensions.  Each thread block is executed on a separate SMX, which are grouped into 32 thread 

groups called warps.  The threads inside each thread block can be accessed through device 

parameters threadIdx, blockIdx, and blockDim, which give the programmer the ability to access 

any thread by using its global index.  The threadIdx variable specifies the thread index within a 

given block, blockIdx gives the number of the current block, and the number of threads per 

dimension is given by the variable blockDim.  When a CUDA kernel is launched, the 

information about number of blocks and number of threads per block is defined and setup on 

the device.  Figure 4.5 shows the CUDA thread hierarchy and how the threads and blocks 

inside a kernel interact. 
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Figure 4.5: Thread block layout in CUDA [3] 

 The CUDA programming model provides a wide range of memory types for which 

each thread has the opportunity to access throughout the kernel execution.  At the per-thread 

level, there is local memory and registers that each thread can access for a private memory 

location separate from other threads.  Even though the local memory is only accessible to a 

single thread it actually resides in the external device memory (global memory) and is therefore 

slower than other types of memory.  All threads in a thread block share a bank of memory, 

coincidentally named shared memory, in which each thread in the block can access and modify.  

Thread synchronization is needed for shared memory as well because multiple threads could 

possibly change the same memory location.  In addition to the shared and local memory, there 

is also global memory and constant memory.  Global memory is the largest of the memory banks on 

the GPU device (off-chip memory) and is accessible to any thread in the kernel.  The constant 

memory is also accessible to all threads active in a kernel however it is read-only memory so it 

cannot be modified.  To make constant memory accesses faster, because the memory locations 

are read-only and it resides in the global memory, the values in memory are cached and 
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therefore only take a few clock cycles to retrieve rather than a few hundred retrieving data 

from the global memory. 

 There are many optimization techniques that can be used when performing GPU 

programming using CUDA including memory optimization, varying execution configurations, 

and instruction optimizations.  Rather than mentioning all optimization techniques for CUDA, 

the particular optimization techniques and implementation strategies that are used for the 

applications mentioned in Chapter 3 will be described in detail in Chapter 5. 

4.3  Palmetto Cluster 

 For the purposes of this research, the Palmetto Cluster [36] is used as the 

heterogeneous computing platform.  This cluster allows the user to specify whether a CPU-

only implementation is sufficient or whether a homogenous system utilizing CPU-GPU pairs 

is necessary.  Each node (that was utilized) in the cluster is an HP SL250s containing two Intel 

Xeon E5-2665 (see Section 4.1.1.1) processors with 16 cores and 64GB of RAM together on 

the machine.  To utilize all cores on a given node, MPI is used to handle all communications 

and transfers.  Along with the pair of processors on each node, they are also equipped with 2 

NVIDIA Tesla K20 GPU devices.  For applications that will utilize the GPU, it is possible to 

use open source languages such as OpenCL to program the GPU, but for the purposes of this 

study, CUDA is the only programming language used. 

 For applications that can utilize multiple GPUs to perform the computations, other 

strategies can be employed.  The CUDA-MPI programming model can be applied to distribute 

the data to each of the GPUs to perform a larger scale parallel computation.  The same idea 

is applied for programming on a single CPU-GPU pair except the data that will be computed 



 

40 

 

will be divided onto different nodes so the processing can be performed in parallel.  The 

communication between the CPU and GPU is done over the PCI-Ex bus while the 

communication between nodes uses 56g Infiniband [4]. 

 When retrieving nodes for computation, even if all 16 cores on a node will not be 

utilized, the entire node should be allocated.  If only a few cores are allocated, the PBS 

scheduler could schedule other jobs to occur on the same node using the other cores altering 

runtime of your application, leading to irrelevant or outlying results.  The Palmetto cluster is 

used for all implementations including MPI-only (CPU-only), CUDA-only (single CPU-GPU 

pair), and CUDA-MPI (multiple CPU-GPU pairs). 

4.4  Summary 

 In this chapter, the computing architectures used in this research (namely, Intel Xeon 

E5-2665 and NVIDIA Tesla K20) were discussed as well as the programming models (MPI 

and CUDA) used to program these devices.  A discussion of the Palmetto Cluster was also 

given explaining the heterogeneous nature of the system.  Chapter 5 will present a detailed 

description of the single-GPU and multi-GPU setup for each algorithm as well as 

implementation details about the applications used to exploit features of the architectures. 
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Chapter 5 

Experimental Setup and  

Implementation 

 This chapter presents the single-GPU and multi-GPU setup for each of the algorithms 

described in Chapter 3.  This chapter also discusses the features of the GPU architecture used 

in this study and the different implementations that are used to exploit these features.  This 

chapter concludes with a detailed section on the parallelization of each algorithm and how 

they were mapped successfully to single-GPU and multi-GPU systems. 

5.1  Experimental Setup 

 In this section, the experimental setup for this research is discussed.  The experimental 

setup includes the setup of the heterogeneous system on which each application is executed 

as well as the compiler and runtime environment that is utilized.  Section 5.1.1 describes the 

single-GPU and multi-GPU experimental setup and section 5.1.2 describes the compiler and 

runtime environment used in this research. 
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5.1.1  Heterogeneous System Setup 

 The single-GPU heterogeneous system setup consists of a 2.4 GHz Intel Xeon E5-

2665 [39] host processor coupled with a single NVIDIA K20m (Kepler GK110) [43].  The 

multi-GPU heterogeneous system setup includes multiple 2.4 GHz Intel Xeon E5-2665 host 

processors along with an equivalent number of K20m GPUs (1:1 ratio).  On the Palmetto 

Cluster [36], each node equipped with K20m GPUs is designed to have 2 host processors 

paired with 2 GPGPUs.  To incorporate larger heterogeneous systems, these nodes can be 

agglomerated together utilizing the two CPUs and GPUs on each node.  For instance, to create 

a system with 16 GPUs, 8 nodes are initialized (each with two host processors and two 

GPGPUs). 

 All algorithms discussed in this research were developed using CUDA 5 installed on 

the host system running Scientific Linux.  Table 5.1 illustrates some of the features offered by 

the accelerators located on the Palmetto Cluster.  The results for this table were acquired by 

using NVIDIA’s deviceQuery utility, which allows developers to view device properties.  The 

two GPUs on each node of the cluster are identical, therefore it does not matter which device 

the CUDA runtime environment chooses to be Device 0 (default first device). 

5.1.2  Compiler 

 All source files that contain CUDA kernels and any other device functions that utilize 

the extension .cu and are compiled using the nvcc compiler [45].  The nvcc compiler 

automatically calls all other necessary compilers and tools to compile the device code and 

create a device executable.  All CUDA code requires the CUDA runtime library (cudart) along 
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with the CUDA core library (cuda).  Both are necessary for a complete compilation of device 

code. 

Table 5.1: Features available on the NVIDIA Tesla K20m device 

Features NVIDIA K20m 

CUDA Driver Version / Runtime 
Version 6.0 / 5.5 

CUDA Compute Capability 3.5 

Total Global Memory 4800 MB 

Memory Clock Rate 2600 MHz (2.6 GHz) 

Memory Bus Width 320-bit 

Number of Multiprocessors 13 

Number of CUDA Cores / MP 192 

Total Number of Cores 2946 

L2 Cache Size 1280 KB 

Total Constant Memory 64 KB 

Total Shared Memory / Block 48 KB 

Total Registers / Block 65536 

Warp Size 32 

Max Number of Threads / MP 2048 

Max Number of Threads / Block 1024 

Max Dimension of Thread Block 1024 x 1024 x 64 

Max Dimension Size of Grid 2147483647 x 65535 x 65535 

Clock Rate 706 MHz ( 0.71 GHz) 

Concurrent Copy and Kernel Execution Yes (2 copy engines) 

 

5.2  Implementations 

 In this section, the implementations for each of the algorithms described in Chapter 3 

are discussed.  Some of the optimization strategies that include device specific information are 

described multiple times for each algorithm simply because each algorithm lends itself slightly 

differently to each optimization technique.  Described below are the optimization techniques 

and input information used to obtain the results described later in Chapter 6. 
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5.2.1  K-Means 

 Table 5.2 provides information about the test cases created in this research.  To create 

test cases, there are many ways to generate input data sets including structured data points and 

random data points.  In this research, the data sets were created to be in structured format 

meaning each data set was constructed with the idea of belonging to a single cluster and only 

a single cluster.  Therefore, each data set only has a single “best/minimum” solution.  If the 

data had been generated randomly, depending on the starting values for each mean of the 

clusters, the algorithm may not converge to a global minimum, but will return a local minimum 

value as the result.  This behavior could cause the results to vary dramatically based on the 

starting values (with random data points), causing each execution of the algorithm to be 

unpredictable.  For this reason, the data was structured in a way to perform similarly every 

time regardless of the starting values allowing for a fair comparison of the multi-core 

implementation with the GPU implementations. 

Table 5.2: Data Configurations for K-Means Clustering 
Input Data Size 

(Number of 
Data Points) 

Number of Clusters 

0.4% 1.0% 2.0% 4.0% 

1000 4 10 20 40 

2500 10 25 50 100 

5000 20 50 100 200 

7500 30 75 150 300 

10000 40 100 200 400 

25000 100 250 500 1000 

50000 200 500 1000 2000 

75000 300 750 1500 3000 

100000 400 1000 2000 4000 

250000 1000 2500 5000 10000 

500000 2000 5000 10000 20000 

750000 3000 7500 15000 30000 
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 As seen in Table 5.2, the input data size for the test cases generated range from 1,000 

data points to 750,000 data points.  For each data size there are four test cases (number of 

clusters) based on the number of data points.  The number of clusters is determined by taking 

a percentage of the entire data set size (i.e. 0.4%, 1%, 2%, and 4%). 

5.2.2  Spiking Neural Networks 

 The spiking neural network application used in this research is slightly different from 

the other two applications.  Unlike the other two applications discussed, this application was 

originally written in MATLAB.  Therefore instead of changing the input data and parameters, 

this application was converted to C/C++ and then the C implementation was used to 

construct a GPGPU implementation.  Table 5.3 provides details on the parameters used in 

the original algorithm (and in turn, the converted implementations). 

Table 5.3: Data Configuration for Izhikevich SNN Algorithm 

Parameter Value 

Excitatory Neurons 800 

Inhibitory Neurons 200 

Total Neurons 1000 

Synapses/Neuron 100 

Max Axonal Conduction Delay 20 

Max Synaptic Strength 10 

Max Fired Neurons/Second 100000 

 

 The excitatory neurons form long-term connections within the networks while the 

inhibitory neurons make local connections.  The pulsing of these excitatory (+) and inhibitory 

(-) synapses will determine how the neurons will fire along the axon.  The maximum axonal 

conduction delay and maximum synaptic strength are characteristics that model physical 

phenomena about each neuron.  Also, a value of 100,000 is set as the maximum number of 
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neurons allowed to fire every second.  Changing this value can change the behavior of the 

entire network. 

5.2.3  Longest Common Subsequences 

 Table 5.4 provides information about the test cases created for the longest common 

subsequences problem.  Initially n number of sequences were generated and placed in a file 

and for each test case, a fraction of the input file was used for the testing.  Each of the n 

sequences was generated using a minimum length of 30 and a maximum length of 

MAX_LENGTH, which varied from 50 to 500 to monitor the performance.  

Table 5.4: Data Configurations for LCS Algorithm 
Number of 
Sequences Maximum Length of Sequence 

5 50 100 250 500 

10 50 100 250 500 

20 50 100 250 500 

25 50 100 250 500 

50 50 100 250 500 

75 50 100 250 500 

100 50 100 250 500 

 

Each sequence has a length between the minimum and maximum values and contains 

the number of characters between a and z.  The algorithm then uses a subset of the entire 

collection of sequences as its input data to perform the algorithm described in Chapter 3.  An 

example of an input sequence (with length 52) generated could be as follows: 

aopueqdqnirpiscphywkatcgnkvrqfhwuccoobszgqlmnmhvoscq 

 After each sequence is generated the algorithm then uses subsequences to compute 

comparisons.  The algorithm generates similarity values and alignment sequences, which 
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illustrate the maximal alignment of the two subsequences.  The final result reveals the 

alignment comparisons between each sequence with every other sequence in the set. 

5.3  GPU Implementations 

 In this section, the GPU implementation details will be described.  The techniques 

described in sections 5.3.1, 5.3.2, and 5.3.3 are similar across all applications although some 

have minor differences because of algorithmic restrictions.  As described in Chapter 4, there 

are many different types of memory (with different latencies) as well as other details of the 

GPU architecture that can be utilized to accelerate the execution of each application.  The 

following implementation strategies illustrate some of the possible acceleration techniques that 

can be used with the GPGPU.  Implementation 1 describes converting the serial CPU-only 

implementation into a GPU implementation.  This is a very naïve approach simply because it 

only uses global memory, which can lead to high latency.  Implementation 2 makes use of 

constant memory, which is located within the global memory but is cached, therefore leading 

to faster access times for the data.  Implementation 3 utilizes the same techniques as 

implementation 2, however also utilizes built-in mathematical operations where possible.  

Because the built-in math operations have been designed to execute relatively fast on the 

hardware, theoretically they should be faster than user defined functions to perform the same 

task. 

5.3.1  Implementation 1 (Global Memory) 

 Implementation 1 simply converts the traditional CPU-only code into a naïve 

implementation for the GPGPU.  For implementation 1, all data is placed into the global 

memory of the device and then accessed without moving to any other types of memory.  Since 
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global memory is off chip and not cached, each memory access is lengthy and will cause the 

application to be slower than an optimized version.  Other implementations improve on this 

fact, attempting to decrease memory latency by utilizing cached memory, which will cut down 

on the significant overhead required to access the high latency global memory. 

K-Means 

 For the k-means algorithm, the data points as well as the initial centroids (which will 

be calculated on the CPU because it is a very small computation) will be placed into global 

memory on the device.  Because of the configurations described in Table 5.2, the entire data 

set as well as centroids will fit in global memory, therefore leading to only one host to device 

transfer.  For larger data sets the data points and centroids would require partitioning before 

transfer to the GPU and partitioned execution causing multiple kernel calls, in turn slowing 

down the execution of the entire algorithm.  For each iteration of the algorithm, new means 

are calculated by going through each of the data points and the cluster to which it belongs.  

New means are created until either they are no longer changing between iterations or the 

means are oscillating between a set of points.  For accurate performance comparisons, the 

input data is created in a deterministic fashion so the new means will not oscillate causing 

inaccurate performance results. 

 The performance improvement over the CPU-only version will be achieved simply by 

the parallelization of the computations.  Each data point belongs to a cluster and does not 

depend on any other data point; therefore, each data point can be dealt with independently (in 

parallel).  Each thread inside the GPGPU kernel will calculate a small portion of the result (i.e. 

compute the new mean as well as the data points that belong to that mean).   
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Spiking Neural Network 

 The spiking neural network algorithm presented in this research has many possible 

sections for parallelization that update the firing patterns and the activity variables and many 

other parameters described in Table 5.3.  In the initialization step of the algorithm, when the 

synaptic weights and inhibitory delays are calculated and set, there are nested for loops, which 

is the very first thing to look for when parallelizing an application.  To parallelize the loops, 

the innermost for loop can be unrolled and each iteration can be calculated by a different thread 

while the outermost loop can utilize thread blocks for each of its iterations.  During the 

training phase of the algorithm there are nested loops in which the same manner of 

parallelization can be utilized.  The overall output of the trained system will be the firing rate 

for the neurons as well as the indices and timing of each of the spikes that occur throughout 

the process. 

Longest Common Subsequences 

 The longest common subsequences problem, similar to the k-means algorithm, has a 

very large percentage of its computations completed on the GPGPU device because of the 

inherent parallel nature of the application.  Each of the sequences that is to be tested is loaded 

into the global memory of the GPGPU device along with the sizes and starting positions of 

each sequence within the collection of sequences.  The data sizes to be tested are displayed in 

Table 5.4.  The larger data sets give the GPGPU a better opportunity to outperform the CPU 

implementation because of more data to process and many more computations.  Having 

substantially more computations is beneficial for the GPGPU when compared to the CPU 

because it is inherently parallel and with more computation, the latency of memory operations 

can be overlooked or hidden with enough computation. 
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 As with the k-means algorithm, performance improvement will be achieved in this 

implementation simply by the parallelization of the computations on the GPGPU device.  

Each thread or block inside the GPGPU will calculate a small set of subsequence similarities 

and then place the results in global memory for final processing.  This operation can also be 

accelerated with the use of optimization techniques described in the following two 

implementation strategies. 

5.3.2  Implementation 2 (Constant Memory) 

 Implementation 2 is a continuation of implementation 1 with the addition of the use 

of device constant memory.  Constant memory is used for data that will not change throughout 

the course of the kernel execution.  Constant memory, however residing inside the global 

memory of the device is cached, therefore leading to much faster access of the data.  To declare 

constant memory, the programmer must simply use the __constant__ keyword. 

 In the k-means algorithm, the data points are the same throughout the execution of 

the algorithm.  Therefore, the entire set of data points can be placed into constant memory on 

the device for faster access.  For the Izhikevich spiking neural network algorithm, there are 

many candidates that can be placed in constant memory on the device.  Some of these include 

arrays of postsynaptic neurons, synaptic weights and their derivative, distributions of delays, 

and numerous others.  The tradeoff for this algorithm as well as the k-means algorithm is the 

size of the constant memory on the device.  As mentioned in Table 5.1 there is only 64KB of 

constant memory on the device.  Therefore, entire data sets or arrays will not fit into constant 

memory for access.  Therefore, a tradeoff must be made between moving data to the constant 

memory and accessing it in the global memory.  In this research as much data as possible is 
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moved into the constant memory for each iteration of each algorithm and then the remaining 

data is simply accessed through global memory instead of repopulating the constant memory.  

The data chosen to be placed in the constant memory is the data that was found to be used 

most in one iteration of the algorithm. 

 In contrast, the longest common subsequences problem has a very small input data 

set and therefore the entire set of input characters and sequence positions can be placed in 

constant memory.  This means that all of the global memory access times will be negated in 

this algorithm implementation, leading to substantially better execution times. 

5.3.3  Implementation 3 (GPGPU Math Library) 

 Implementation 3 is an attempt to improve slightly on the already accelerated 

implementation 2.  There are many commonly used mathematical functions defined in the 

CUDA Toolkit [46] that have been optimized for NVIDIA hardware, therefore executing in 

fewer clock cycles than user-defined device functions.  Wherever applicable in each algorithm 

implementation, user defined functions or typical C programming functions are replaced with 

the hardware accelerated functions for slightly better performance.   

For example, in the k-means algorithm, the max function, the absolute value 

function, and the square root function are used in each iteration of the calculation.  

Therefore, by replacing each of these with the GPGPU device math library function, a 

performance improvement should be observed, however slight for smaller data sets.  For the 

longest common subsequences problem, the max and the power functions are used in every 

iteration of the algorithm and can be replaced by the equivalent GPGPU device functions for 

improved/more efficient device performance.  Unfortunately, all of the mathematical 
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operations for the spiking neural network algorithm, although many in number, are quite 

simple mathematical operations (i.e. addition, multiplication, etc.).  Therefore, there is no need 

to try and accelerate any of these mathematical operations for this algorithm; although to make 

the research complete, the device functions are utilized. 

5.3.4  Multi-GPU Implementations 

 The above implementation details illustrate the single-GPU implementations.  

However, in this research, multi-GPU systems and implementations are developed and 

studied.  The implementation details are exactly the same except for inherent need to spread 

the data across nodes.  The data is still parallelized on the GPGPU, but before the computation 

is done, the data is partitioned and distributed to different nodes.  This means that each node 

will be operating on smaller chunks of the data and, in theory, execute faster. 

 The k-means algorithm is partitioned based on the data points and centroids.  There 

are far fewer centroids than there are data points, therefore, all centroids can be copied to 

every node’s memory.  The data points are partitioned so that each node has a similar amount 

of data points.  For most test cases, each node receives the same number of data points, but 

for cases with an odd number of data points, the data is partitioned in a way so that each node 

has a similar number of data points.  The data points do not change throughout the algorithm, 

so the only communication between nodes during each iteration is the new centroids that are 

calculated.   

The Spiking Neural Network algorithm is partitioned based on the neurons in the 

network.  The neurons in the network are split evenly across the nodes so that the 

computations on each set of neurons can be calculated in parallel.   
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The Longest Common Subsequences problem is very simple to partition into a multi-

GPU system for computation.  The sequences are predetermined in the initialization phase of 

the algorithm and are not changed throughout the algorithm, therefore, each node is given a 

subset of the entire data set for computation.  Once each node has completed the computation 

on the sequences it was given, the results are then collected on one node and compiled for 

final display. 

5.4  Summary 

 In this chapter, the setup for each of the algorithms described in Chapter 3 has been 

presented for the single-GPU and multi-GPU implementations.  The implementation details 

have been presented for each algorithm as well as the different optimizations for each.  

Parallelization of each algorithm and the mapping of each algorithm to the GPGPU resource 

has been described.  Chapter 6 will present a detailed discussion of the results and analysis 

following the setup of each algorithmic experiment. 
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Chapter 6 

Results and Analysis 

 In Chapter 2, the computing architectures and programming models used in this 

research are described while Chapter 5 describes the various implementations of the algorithm 

details in Chapter 3.  In this chapter, the implementations of each algorithm are analyzed and 

the results are given.  Initially the single-core implementation results are shown as a baseline 

for comparisons of other implementations of the algorithm.  Following the single-core 

implementation are the multi-core, single-GPU, and multi-GPU implementation results.  The 

performance of the multi-core and single-GPU implementations are evaluated by comparing 

the execution times of the single-core implementation.  It would not, however, be a fair 

comparison to compare the multi-GPU implementation to the single-core implementation, so 

this particular implementation is compared to the multi-core implementation.  These 

comparisons will show how much performance the GPU adds to the computation as an 

accelerator compared to a traditional CPU.  The comparison will also be made, as mentioned 

before, in terms of how much the algorithm “speeds up” compared to other implementations.  

Speedups for each algorithm are given in its corresponding final subsection. 

 



 

55 

 

6.1  K-Means 

6.1.1  Single-Core Implementation 

 As mentioned in Section 5.2.1 and Table 5.2, the data sets for the K-Means algorithm 

range from 1,000 data points to 750,000 data points while the cluster configurations consist 

of 0.4%, 1%, 2%, and 4% of the data size.  Table 6.1 shows the execution time of the single-

core version of the algorithm and Figure 6.1 illustrates the execution times.  It can be seen in 

Table 6.1 as well as Figure 6.1 that as the cluster configuration percentage increases, the 

execution time also increases.  For smaller data sizes, this time is much less noticeable because 

the entire algorithm executes in fractions of a second.  However, with larger data sizes, the 

difference in execution times is apparent when increasing the percentage of the points that are 

centroids.  The increased execution time is an intuitive finding however, because the algorithm 

works on locating centroids and calculating for the next iteration.  With more centroids there 

would be more calculation, leading to higher execution times. 

 As previously mentioned, as the input size is increased for most algorithms, the 

execution time will also increase, which is not a new observation.  Also, Figure 6.1 illustrates 

that as the cluster configuration (percentage of centroids) increases, the execution time 

increases as well (at approximately the same rate).  For example for a data set of size 750,000 

data points for the 2% configuration (15,000 centroids) the execution time is around 300 

seconds while for the 4% configuration (30,000 centroids) the execution time is around 600 

seconds.  This means that as the number of centroids in the algorithm is increased, the 

execution time of the algorithm increases linearly. 
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Table 6.1 – Execution Times for Single-Core K-Means Algorithm 
Input Data Size 

(Number of 
Data Points) 

Execution Time(s) 

0.40% 1% 2% 4% 

1000 0.032 0.01 0.003 0.005 

2500 0.033 0.005 0.007 0.009 

5000 0.084 0.018 0.032 0.031 

7500 0.017 0.037 0.069 0.068 

10000 0.029 0.064 0.061 0.119 

25000 0.156 0.371 0.367 0.724 

50000 0.598 1.458 1.447 2.884 

75000 1.662 1.639 3.216 6.249 

100000 2.841 2.804 5.572 11.101 

250000 14.007 17.694 35.933 71.744 

500000 57.629 72.029 142.971 285.797 

750000 126.443 156.65 312.294 621.724 

 

 
Figure 6.1 - Execution Times for Single-Core K-Means Algorithm 

 However, through the advent of accelerators (GPGPUs) and heterogeneous systems 

(multi-core with GPGPUs), the execution times for the algorithm can be greatly improved, 

achieving super linear performance.  Sections 6.1.2, 6.1.3, and 6.1.4 explore the results when 

the K-Means algorithm utilizes accelerators and multi-core systems to achieve better 

performance (i.e. better overall runtime). 
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6.1.2  Multi-Core Implementation 

 After studying the K-Means algorithm, it can be seen that the bulk of the computation 

is done when computing which centroid each one of the data points belongs to as well as 

computing the new centroids.  These two methods will be parallelized in the multi-core 

implementation in order study its performance.  For succinctness (so as not to have a graph 

for every input data size), only the largest value used in the single-core implementation will be 

used, 750,000 data points.  By using the largest data size, a direct comparison can be made 

between the multi-core and single-core implementations.  Smaller data sets would be ill suited 

for the multi-core system because most of the execution time would be dominated by data 

communication and pre-processing.  Table 6.2 shows the execution times for the multi-core 

implementation of the K-Means algorithm while Figure 6.2 illustrates these execution times. 

Table 6.2 – Execution Times for Multi-Core K-Means Algorithm 

Number of 
Nodes 

Execution Time (s) 

0.40% 1% 2% 4% 

1 126.443 156.65 312.294 621.724 

2 69.823 91.237 171.3 291.52 

4 35.127 43.93 92.832 163.285 

8 18.928 25.873 49.661 81.92 

16 7.293 13.375 24.51 43.791 

32 3.39 6.118 13.269 18.14 
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Figure 6.2 – Execution Times for Multi-core K-Means Algorithm 

 Figure 6.2 illustrates that as the number of cores increases, the overall execution time 

of the algorithm decreases for a given input configuration.  As expected, the multi-core system 

allows parallelization of the independent sections of the algorithm thereby achieving a faster 

result. 

6.1.3  Single-GPU Implementation 

 As with testing on the multi-core system, only the largest data size is used when 

evaluating the single-GPU implementations.  Table 6.3 shows the execution times of the 

single-GPU implementations of the K-Means algorithm.  Figure 6.3 illustrates the runtimes of 

the single-GPU implementations utilizing optimization techniques described in Section 5.3.  

Implementation 1 is a simple global memory implementation where all data is placed and 

accessed in global memory.  Implementation 2 utilizes constant memory to cache the data for 

much faster access.  Implementation 3 adds in the functionality of mathematical device 

functions. 
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Table 6.3 – Execution Times for Single-GPU K-Means Algorithm 

Input Data 
Size 

Execution Time (s) 

Implementation 
1 

Implementation 
2 

Implementation 
3 

0.40% 46.008 40.657 39.761 

1% 71.614 65.014 62.251 

2% 126.238 115.725 109.696 

4% 161.286 140.587 136.98 

 

 
Figure 6.3 – Execution Times for Single-GPU K-Means Algorithm 

Figure 6.3 sheds light into another important feature of the GPGPU and why it is very 

useful.  As the amount of computation increases (the higher percentages means there are more 

centroids and therefore more computation each iteration), the GPGPU performs better.  With 

little computation the GPGPU is “starved” and the communication overhead is the bulk of 

the computation time.  However when more computation is introduced into the algorithm, 

the GPGPU parallelism is better exploited.  Therefore, since there are many more centroids 

with 4% than there are with 0.4%, the execution time curve begins to trend down for a 

percentage of 4% due to the abundance of computation. 
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6.1.4  Multi-GPU Implementation 

 Analysis of the results from the multi-core and single-GPU sections above reveals 

potential advantage when exploiting the parallelism present in not only the multi-core systems 

but also accelerators such as GPGPUs.  Therefore, the last study conducted on the K-Means 

algorithm is a combination of the two; incorporating multi-core and GPGPUs to create a set 

of CPU/GPGPU pairs for computational purposes.  The CPU/GPGPU pairs will allow for 

distributed workloads as well as computation offload with the GPGPU.  Table 6.4 shows the 

execution times for the multi-GPU implementation of the K-Means algorithm while Figure 

6.4 shows a graphical representation of the execution times.  Because of its computational 

intensity, this sections results are based on a data size of 750,000 (as in previous sections), 

however only the 4% configuration for the centroids will be used. 

Table 6.4 – Execution Times for Multi-GPU K-Means Algorithm 

Number of 
Nodes 

Execution Time (s) 

Implementation 
1 

Implementation 
2 

Implementation 
3 

1 161.286 140.587 136.98 

2 78.341 71.67 68.723 

4 40.287 45.182 43.11 

8 24.924 20.551 19.759 

16 9.447 8.963 8.392 

32 6.832 6.507 6.378 
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Figure 6.4 – Execution Times for Multi-GPU K-Means Algorithm 

 As shown in Figure 6.4, there was not a significant different between the three 

optimization techniques for multi-GPU.  However, Table 6.4 shows that there is a difference 

between them, although slight.  Even though the difference is slight, utilizing constant memory 

and built-in math functions has provided the best performance improvement compared to the 

multi-core implementation.  Figure 6.5 shows the same curves as Figure 6.4 with the addition 

of the multi-core execution time curve.  This gives perspective on exactly how much 

performance benefit is gained by utilizing multi-GPU systems for this application.  It can easily 

be seen that there is a significant different in the execution time of the multi-core 

implementation versus all three of the optimized multi-GPU implementations.  Section 6.1.5 

will discuss exact speedup values for the K-Means algorithm. 
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Figure 6.5 – Execution Times for Multi-GPU Comparison with Multi-Core K-Means 

6.1.5  Speedup 

 The main reason most programmers use multi-core systems, GPUs, and multi-GPU 

systems is to accelerate their applications.  Speedup is calculated by taking the quotient of the 

single-core execution time with each implementation execution time.  The speedup value gives 

an idea of how well the accelerated and optimized implementations are performing compared 

to the original single-core implementation.  Table 6.5 shows the speedup values compared to 

the single-core implementation and Figure 6.6 depicts them and illustrates the usefulness of 

utilizing a multi-GPU implementation, which in this case yields approximately 97x speedup.  

With only multi-core implementation, the K-Means algorithm achieved a 34x speedup while 

multi-GPU implementations boast around a 90x speedup.  The single-GPU implementations 

seem to not do as well as other implementations and this is simply because they are performing 

all of the computation and requires too much data transfer overhead.  For multi-core and 

multi-GPU the computations are spread out over 32 cores/32 GPGPUs.  The speedup for 
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the single-GPU implementation is approximately 4.5x while the multi-GPU implementation 

is about 97x faster than the single-core implementation. 

Table 6.5 – Speedup over Single-Core for all K-Means Implementations 

Implementation 
Speedup over Single-

Core 

Single-Core 1 

Multi-Core (32-cores) 34.274 

Single-GPU (Implementation 1) 3.855 

Single-GPU (Implementation 2) 4.422 

Single-GPU (Implementation 3) 4.539 

Multi-GPU (Implementation 1) 91.002 

Multi-GPU (Implementation 2) 95.547 

Multi-GPU (Implementation 3) 97.479 

 

 
Figure 6.6 – Speedup over Single-Core for all K-Means Implementations 

1

34.274

3.855 4.422 4.539

91.002
95.547 97.479

0

20

40

60

80

100

120

SI
N

G
L

E
-C

O
R

E
/I

M
P

L
E

M
E

N
T

A
T

IO
N

 S
P

E
E

D
U

P

IMPLEMENTATION

SPEEDUP OVER SINGLE-CORE



 

64 

 

6.2  Spiking Neural Network (SNN) 

6.2.1  Single-Core Implementation 

 As mentioned in Section 5.2.2, this application was converted from MATLAB into a 

C/C++ implementation, which was then used to create a parallelized multi-core 

implementation and GPGPU implementation.  Because the parameters were not significantly 

changed in this particular algorithm, there is not much to compare to other than the speedup 

of using multi-core systems and accelerators to achieve better performance.  The original 

execution time of the algorithm is shown in Table 6.6, which contains the total time for the 

application as well as the two iteration timings.  The two iterations of the algorithm are 

performed as two different levels in the neural network, but because the parameters are not 

changed throughout this experiment, they are not mentioned (except in the description located 

in Table 5.3 in Section 5.2.2. 

Table 6.6 – Execution Times for Single-Core Izhikevich SNN 
Algorithm 

Section 
Execution Time 

(s) 

Total 18927 

Iteration 1 6251.75 

Iteration 2 6263.5 

 

6.2.2  Multi-Core Implementation 

 After implementation of the single-core SNN algorithm, the next step was to 

parallelize the application to execute it across multiple cores simultaneously while splitting the 

computations evenly across the cores.  There is a very computationally intensive part of this 

application and then a few other parts that are more communication intensive.  For this reason, 
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only the computationally intensive segments were parallelized in an attempt to minimize the 

communication overhead between cores and nodes.  The SNN algorithm described in Section 

3.2.1 makes two calls to this “computationally intensive” section of code (i.e. two levels of 

neurons).  For this reason, the important execution times that are recorded are the total 

execution time, and the time of each one of the iterations of the SNN algorithm computing 

neuron firing.  Table 6.7 shows the values obtained when executing the code on 1-800 cores.  

Because of limited number of GPGPUs on the system and the inability to obtain a large 

number of nodes with GPGPUs, the only results that will be utilized from Table 6.7 are the 

results that come from node configurations up to 32 cores.  Some of the results for larger 

configurations of nodes are not used but are added here for interesting observations that will 

be discussed later.  Figure 6.7 shows the information in Table 6.7 and allows for a graphical 

explanation of the multi-core implementation. 

Table 6.7 – Execution Times for Multi-Core Izhikevich SNN 

Number of 
Nodes 

Execution Time 

Total 
Iteration 
1 

Iteration 
2 

1 18926.5 6251.75 6263.5 

2 12513.75 3135.25 3077.5 

4 10061.25 1657.5 1570 

8 8267 845.75 808.75 

16 6519 371 519.25 

32 5594.75 170 186.75 

64 5262.5 94.25 91.25 

80 4763.5 79.75 95 

100 6603.5 79.25 82.25 

128 5152.25 65 84 

200 4872.5 756.25 48 

256 3732.25 428.25 39.75 

400 4261.5 930 25.25 

800 4021 515.5 11.25 
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Figure 6.7 – Execution Times for Multi-Core Izhikevich SNN 

 Figure 6.7 shows that as the number of processors participating in the computation 

increases, the overall execution time of the algorithm as a whole as well as the iterations 

execution times decrease.  This behavior is expected due to the inherent nature of the 

parallelism present in a multi-core system.  For a comparison, in the single node 

implementation the total execution time for the application was approximately 18926 seconds 

(~315 minutes) compared to the 32-core application execution time of approximately 5595 

seconds (~93 minutes).  This same decrease in execution time can also be seen in the iteration 

timings (Iteration 1: ~6251 seconds vs. ~170 seconds, Iteration 2: ~6363 seconds vs. 187 

seconds).  The speedup values that incorporate these execution times will be described and 

shown in Section 6.2.5. 
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 It is very interesting what occurs when a node configuration of larger than 32-cores is 

allocated.  For the most part, the algorithm behaves the same, apart from some small 

variations.  Figure 6.8 shows only the two iteration curves starting with 32-cores going to 800-

cores for an easier view of what is occurring.  For all core configurations it seems that iteration 

2 steadily decreases, as it is expected to do.  However there are some data points that do not 

agree with this observation for iteration 1.  Some of these problems occur because of outliers 

resulting from a heavily loaded system.  For example, it is difficult to allocate 400 nodes at a 

time without getting queued in the middle of the job for utilizing so many resources.  

Therefore, some of the error occurs when the job is preempted by other tasks, causing much 

longer run times.  Also, it occurs for some values (mostly for values that are not powers of 2 

exactly), that the execution times are much longer because of the configuration.  The way the 

application is set up, it very easily divides the computation between cores when the total 

number is a power of 2.  However, if the total number of cores is not a power of 2, there is a 

symmetry problem with the computation where some cores are performing much more 

computation than others leading to slight timing problems, which can be seen in Figure 6.8.  

Some of the discrepancies in Figure 6.7 and 6.8 include extraneous execution times as well as 

configuration problems.  For example, in Figure 6.7, there is a large jump in the execution 

time when 100 cores are used for the computation.  When 100 cores were allocated on the 

cluster, there were preemption problems that occurred during the execution causing much 

longer execution times.  Also, for the larger number of cores that are not powers of 2 (i.e. 200, 

400), the execution times are much larger due to the design of the algorithm being more 

balanced with a power of 2 number of nodes. 
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Figure 6.8 – Execution Time for Multi-Core (Large # of Cores) Izhikevich SNN 

6.2.3  Single-GPU Implementation 

 As mentioned in Section 6.2.1, there is only a single implementation of the SNN 

algorithm with a single set of parameters that are used.  Unlike the other algorithms, this 

implementation will only utilize this one set of parameters while incorporating them into 3 

different implementations.  Table 6.8 shows the total execution time for all 3 implementations 

described in Section 5.3, 1. Global memory, 2. Constant memory, 3. GPGPU mathematical 

functions, along with the time for each iteration in the algorithm.  Figure 6.9 visualizes these 

execution times so that they may be easily compared with the single-core implementation. 

Table 6.8 – Execution Time for Single-GPU Izhikevich SNN 

Algorithm 
Section 

Execution Time (s) 

Implementation 
1 

Implementation 
2 

Implementation 
3 

Total 5239 3878 3761 

Iteration 1 1831 1291 1241 

Iteration 2 1848 1304 1238 

0

200

400

600

800

1000

3 2 6 4 8 0 1 0 0 1 2 8 2 0 0 2 5 6 4 0 0 8 0 0

E
X

E
C

U
T

IO
N

 T
IM

E
 (

S)

NUMBER OF CORES

MULTI-CORE (LARGER CORE 
CONFIGURATIONS)

Iteration 1 Iteration 2



 

69 

 

 
Figure 6.9 – Execution Times for Single-GPU Izhikevich SNN 

 From Figure 6.9, it can be seen that by optimizing first by the use of constant memory 

and then by utilizing built-in GPGPU math functions, the execution time for both iterations 

and the total execution time have been decreased.  Figure 6.10 shows the comparison between 

the three GPGPU implementations and the single-core implementation.  It can be seen that 

simply by utilizing the accelerator, the application has gained a large percentage of 

performance compared to the single-core implementation.  A description of the entire set of 

speedup values is included in Section 6.2.5. 
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Figure 6.10 – Execution Time for Single-GPU vs. Single-Core Izhikevich SNN 

6.2.4  Multi-GPU Implementation 

 As both the multi-core and single-GPU implementations both improved the 

performance of the algorithm, the logical next step is to utilize them both simultaneously.  

Therefore, the last set of implementations includes utilizing a CPU/GPGPU pair to perform 

the computation as in the single-GPU implementation, however, the computation will be 

spread across many pairs to further enhance the performance.  Table 6.9 shows the total 

execution time of the each optimization technique using varying numbers of CPU/GPGPU 

pairs, Table 6.10 shows the execution time for Iteration 1, and Table 6.11 shows the execution 

time for Iteration 2.  Figures 6.11 and 6.12 illustrate the total execution time as well as show a 

comparison between it and the multi-core implementation.  Figures 6.13 and 6.14 show the 

execution time of Iteration 1 and compare it to the multi-core implementation.  Figure 6.15 

and 6.16 show the execution time of Iteration 2 and compare it to the multi-core 
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implementation.  It can be seen that in all 3 of the implementations for each section of the 

Izhikevich SNN, each successive implementation performs better than the previous, while all 

of them perform significantly better than the multi-core implementation without GPGPUs.  

Explicit speedup and performance values are shown and described in Section 6.2.5. 

Table 6.9 – Total Execution Times for Multi-GPU Izhikevich SNN 

Number of 
Nodes 

Execution Time (s) 

Total Time 

Implementation 1 Implementation 2 Implementation 3 

1 5239 3878 3761 

2 2772 2142 2076 

4 1724 1346 1349 

8 1316 976 924 

16 1061 781 719 

32 671 574 561 

 

 
Figure 6.11 – Total Execution Times for Multi-GPU Izhikevich SNN 
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Figure 6.12 – Total Execution Times Comparison to Multi-Core Izhikevich SNN 

Table 6.10 – Iteration 1 Execution Times for Multi-GPU Izhikevich SNN 

Number of 
Nodes 

Execution Time (s) 

Iteration 1 

Implementation 1 Implementation 2 Implementation 3 

1 1831 1291 1241 

2 910 648 650 

4 458 362 329 

8 221 172 155 

16 119 97 86 

32 57 46 41 
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Figure 6.13 – Iteration 1 Execution Times for Multi-GPU Izhikevich SNN 

 
Figure 6.14 – Iteration 1 Execution Times Comparison to Multi-Core Izhikevich SNN 
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Table 6.11 – Iteration 2 Execution Times for Multi-GPU Izhikevich SNN 

Number of 
Nodes 

Execution Time (s) 

Iteration 2 

Implementation 1 Implementation 2 Implementation 3 

1 1848 1304 1238 

2 951 651 658 

4 482 371 365 

8 219 164 169 

16 127 93 93 

32 59 46 39 

 

 
Figure 6.15 – Iteration 2 Execution Times for Multi-GPU Izhikevich SNN 
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Figure 6.16 – Iteration 2 Execution Times Comparison to Multi-Core Izhikevich SNN 

 

6.2.5  Speedup 

 The performance of algorithms is important in the domain of HPC however, one of 

the main criteria is speedup of an application when utilizing different optimizations and 

architectures.  Table 6.12 shows the speedup values for the Izhikevich SNN algorithm given 

by the single-core execution time over the given implementation execution time.  Tables 6.13 

and 6.14 show the speedup of the individual iterations (1 and 2).  Figure 6.17 illustrates the 

speedup values in a graphical manner and shows that a maximum speedup of 33x is achieved 

when utilizing the multi-GPU implementation.  Figure 6.18 illustrates the speedup values for 

Iteration 1 in the SNN algorithm, which yields a 152x speedup while Figure 6.19 illustrates 

speedup values for Iteration 2 in the SNN algorithm, which yields a 160x speedup.  Note that 

all multi-GPU implementation results are evaluated utilizing 32 CPU/GPGPU pairs to achieve 

highest speedups. 
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Table 6.12 – Speedup of Total Execution Time for Izhikevich SNN 

Implementation 
Speedup Over Single-

Core 

Single-Core 1 

Multi-Core (32-cores) 3.3338 

Single-GPU (Implementation 1) 3.5602 

Single-GPU (Implementation 2) 4.8097 

Single-GPU (Implementation 3) 4.9593 

Multi-GPU (Implementation 1) 27.7973 

Multi-GPU (Implementation 2) 32.4948 

Multi-GPU (Implementation 3) 33.2478 

 

 
Figure 6.17 – Speedup of Total Execution Time vs. Single-Core Izhikevich SNN 
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Table 6.13 – Speedup of Iteration 1 Execution Times for Izhikevich SNN 

Implementation 
Speedup Over Single-

Core 

Single-Core 1 

Multi-Core (32-cores) 36.7882 

Single-GPU (Implementation 1) 3.4156 

Single-GPU (Implementation 2) 4.8443 

Single-GPU (Implementation 3) 5.0395 

Multi-GPU (Implementation 1) 109.7193 

Multi-GPU (Implementation 2) 135.9565 

Multi-GPU (Implementation 3) 152.5366 

 

 
Figure 6.18 – Speedup of Iteration 1 Execution Times vs. Single-Core Izhikevich SNN 
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Table 6.14 – Speedup of Iteration 2 Execution Times for Izhikevich SNN 

Implementation 
Speedup Over Single-

Core 

Single-Core 1 

Multi-Core (32-cores) 33.5529 

Single-GPU (Implementation 1) 3.3907 

Single-GPU (Implementation 2) 4.8052 

Single-GPU (Implementation 3) 5.0614 

Multi-GPU (Implementation 1) 106.2034 

Multi-GPU (Implementation 2) 136.2174 

Multi-GPU (Implementation 3) 160.6667 

 

 
Figure 6.19 – Speedup of Iteration 2 Execution Times vs. Single-Core Izhikevich SNN 
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6.3  Longest Common Subsequences (LCS) 

6.3.1  Single-Core Implementation 

 As mentioned in Section 5.2.3 and Table 5.4, there is a single large data set used for 

the LCS algorithm where smaller subsets of the data set are used to achieve execution time 

values.  For all sequences generated, the maximum length for each sequence ranges from 50 

to 500 while the number of sequences that are being tested range from 5 to 100.  Table 6.15 

shows the execution times of the single-core version of the algorithm and Figure 6.20 

illustrates the execution times.  Comparisons are made to the single-core results for the multi-

core and single-GPU implementations, while the multi-GPU implementation is compared to 

the multi-core implementation for fairness. 

Table 6.15 – Execution of Single-Core LCS Algorithm 

Number of 
Sequences 

Execution Time (s) 

50 100 250 500 

5 4.2345 5.2763 5.9817 6.3173 

10 4.6782 5.9273 7.1973 7.9437 

20 5.1934 6.3847 7.6321 10.894 

25 5.4293 6.8119 8.1113 13.1029 

50 5.9283 8.1372 15.2837 25.7288 

75 6.3123 9.7262 21.7162 38.1152 

100 6.8374 10.7283 28.8162 49.1836 
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Figure 6.20 – Execution Times of Single-Core LCS Algorithm 

Both Table 6.15 and Figure 6.20 show that the execution time for the single-core 

algorithm is linear as expected.  As the number of sequence comparisons increase, the 

execution time will ultimately increase, and for a set of larger sequences the execution time 

will be greater.  Sections 6.3.2, 6.3.3, and 6.3.4 capture the results of the LCS algorithm utilizing 

accelerators and multi-cores systems to achieve better performance. 

6.3.2  Multi-Core Implementation 

 The LCS algorithm is an inherently parallel algorithm, meaning that each comparison 

between two subsequences can complete without any knowledge of the other comparison 

outcomes.  Therefore, the algorithm is a very good candidate for parallelization.  Two 

techniques are used for parallelization: one utilizing multi-core CPUs while the other offloads 

the computations to an accelerator.  This section covers the multi-core CPU implementation 

results while the following two sections cover the accelerator and multi-accelerator 

implementations. 
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 In the multi-core implementation the computation is simply spread across all of the 

processors available on a given node of the cluster.  In this case, a range of 1-32 processor 

cores (must be powers of 2 for best performance) is tested and the results are shown in Table 

6.16 and Figure 6.21.  The 1-core configuration are the same results shown in the previous 

sections.  To test the multi-core implementation, only the maximum sequence length of 500 

is used to ensure the most computation possible as well as searching through the maximum 

number of sequences, 100.  A larger number of cores could possibly be tested, however, to 

compare with the multi-GPU implementation, this relatively small number is used due to lack 

of hardware in the current cluster.  However it can be seen in both Table 6.16 and Figure 6.21, 

that when increasing the number of cores past a single node, the execution times are low 

enough that the transfer times are more difficult to hide, leading to slightly larger execution 

times.  With more computation being done on each node, the communication section of the 

algorithm can be negated therefore leading to better performance with each node.  For this 

reason, when the node configuration reaches 16 with the given data sizes, a threshold is 

reached where the computation was sufficient to hide the communication.  Larger 

configurations prove to cause communication overheads that in turn lead to higher execution 

times.  Due to the fact that larger data sets were not generated for this experiment, for the 

multi-GPU implementation, only node configurations up to 16 were tested because the GPU 

would only speed up the computation being done on the node making the communication 

overhead more noticeable leading to much worse performance. 
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Table 6.16 – Execution Times for Multi-core LCS Algorithm 
Number of 

Cores 
Execution Time 

(s) 

1 49.1836 

2 26.5827 

4 16.9123 

8 15.6392 

16 10.8321 

32 11.0052 

 

 
Figure 6.21 – Execution Times for Multi-Core LCS Algorithm 

 Figure 6.21 illustrates that in general, as the number of cores increase, the execution 

time decreases, which is expected in a multi-core environment.  However, during the testing, 

the cluster was under a heavy load, which could explain why the execution times of the 4-core 

implementation and the 8-core implementation are similar.  Most of the time when asking for 

4-cores, the entire node is not utilized and the unused portion of the node can be allocated to 

a different job leading to a degradation in execution time because the CPU is actually working 

on more than one task.  But in general, the trend of increased cores leading to decreased 

execution time has held for this application.  Section 6.3.5 will compare this implementation 
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to the single-node implementation to illustrate how much of a performance benefit is gained 

by simply using a multi-core system for the algorithm. 

6.3.3  Single-GPU Implementation 

 Although, the multi-core implementation of the LCS algorithm performed well and 

showed achievements in execution time as more cores were used for computation, there are 

other concepts that can be utilized to further develop the application performance; for 

instance, the use of accelerators.  With the use of accelerators (i.e. GPGPUs) the parallel 

computation can be performed much quicker due to the high degree of parallelism in these 

devices with hundreds of cores.  As in the multi-core implementation, the single-GPGPU 

implementation performs the same tasks on subsets of the data set.  Contrastingly however, 

the GPGPU performs the tasks using threads in parallel while the multi-core implementation 

must use serialization to perform tasks over a data set.  For instance, on an 8-core machine, 

8-sequences can be compared simultaneously.  However, on a GPGPU device, hundreds of 

simultaneous comparisons can be made leading to probably performance improvements. 

 Table 6.17 shows the execution times of each of the different implementations on a 

single-GPU.  Figure 6.22 shows the same execution times compared to the single-core 

execution time.  This allows for comparison between a single-core and a single-GPU.  For the 

comparison shown in Figure 6.22, 100 sequences are used while varying the maximum length 

of the sequence.  The maximum number of sequences is used in order to maximize the runtime 

giving the GPGPU a chance to exploit its performance capabilities over a typical CPU. 
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Table 6.17 – Execution Times for Single-GPU LCS Algorithm 

Max Length of 
Sequences 

Execution Time (s) 

Implementation 
1 

Implementation 
2 

Implementation 
3 

50 5.9273 5.1498 4.9981 

100 9.2177 7.2514 6.9812 

250 17.6548 13.8642 13.2415 

500 34.8861 24.4469 23.0133 

 

 
Figure 6.22 – Execution Times for Single-GPU LCS Algorithm 

 It can be seen by Table 6.17 that a maximum sequence length of 50 does not allow the 

GPGPU to outperform the single-core version by much because the communication time 

between host and device provides substantial overhead compared to the required 

computation.  As the amount of computations needed increases (i.e. the input data set 

increases in size) the GPGPU begins to pull away from the single-core implementation in 

execution time.  Each successive implementation on the GPGPU also provides a slight 

performance benefit over not only the single-core but also previous implementations of the 

GPGPU.  For instance, with a maximum length for each subsequence set to 500, the single-

core execution time is approximately 50 seconds, while the first GPGPU implementation only 
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utilizing global memory (no other optimizations) completes in approximately 35 seconds.  By 

simply utilizing the GPGPU global memory, a 1.5x speedup was achieved over the single-core 

implementation. 

 Implementation 2 incorporates constant memory, allowing the sequences to be 

accessed very quickly through the caching aspects of constant memory.  The constant memory 

implementation allowed for execution times of about 25 seconds, which is about a 2x speedup 

over the single-core implementation as well as a slight speedup over the previous 

implementation.  As a last optimization, GPGPU optimized math functions were used to 

further enhance the performance.  Although there were not many occurrences of built-in 

mathematical functions, there were a few that were used hundreds of times for each sequence.  

Since there are many of these function calls throughout the algorithm, each clock cycle saved 

will reduce the overall execution time.  Although there was not a significant difference in the 

last two implementations, there is still a slight performance improvement simply through the 

use of built-in GPGPU math functions. 

6.3.4  Multi-GPU Implementation 

 To further evaluate the LCS algorithm, a combination of the multi-core and single-

GPU implementations is constructed leading to the multi-GPU implementation.  This 

implementation allows for the computation to not only be spread across multiple nodes, but 

instead of utilizing the compute power of the CPU, the GPGPU may be used to parallelize 

the computation and receive the result faster.  Table 6.18 shows the execution times of each 

implementation with different node configurations and Figure 6.23 illustrates the execution 

times as well as gives a comparison between the multi-core implementation.  Figure 6.23 shows 
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that all implementations of the algorithms performed using multiple GPGPUs perform better 

than the multi-core implementation, however, Table 6.18 illustrates how much of a difference 

utilizing 16 CPU/GPGPU pairs rather than 1 can make.  The results show that in 

implementation 1, when utilizing 16 CPU/GPGPU pairs instead of 1 shows improvements 

from 35 seconds to just over 5 seconds in execution time.  For implementation 3, which 

utilizes constant memory and built-in mathematical functions, the improvement is slightly less 

but still improves from 23 seconds to approximately 4.5 seconds.  These results prove that for 

the LCS algorithm, the multi-GPU configuration performs the best of the implementations, 

which is to be expected for algorithms that can utilize the computational power of the 

GPGPU. 

Table 6.18 – Execution Times for Multi-GPU LCS Algorithm 

Number of 
Cores/GPGPUs 

Execution Time (s) 

Implementation 1 Implementation 2 Implementation 3 

1 34.8861 24.4469 23.0133 

2 17.7162 13.6912 13.0198 

4 11.1872 7.8392 8.3924 

8 7.2934 6.5124 5.8712 

16 5.3385 4.9819 4.4928 
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Figure 6.23 – Execution Times for Multi-GPU LCS Algorithm 

6.3.5  Speedup 

 This section delves into the speedup of the application over the different 

implementations.  Since some applications only use 500 as the maximum length of the 

subsequences, only the single-core values that illustrate this maximum length will be used.  

Table 6.19 shows the speedup values while Figure 6.24 illustrates them and shows that with a 

multi-GPU implementation, almost an 11x speedup can be achieved. 

Table 6.19 – Speedup Values over Single-Core LCS Algorithm 

Implementation 
Speedup over Single-

Core 

Single-Core 1 

Multi-Core (16-cores) 4.469123687 

Single-GPU (Implementation 1) 1.409833716 

Single-GPU (Implementation 2) 2.011854264 

Single-GPU (Implementation 3) 2.137181543 

Multi-GPU (Implementation 1) 9.212999906 

Multi-GPU (Implementation 2) 9.872458299 

Multi-GPU (Implementation 3) 10.94720442 
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Table 6.24 – Speedup Values over Single-core for LCS Algorithm 

6.4  Summary 

 In this chapter, the results were presented and analyzed for each of the three 

algorithms discussed in Chapter 3 using the optimization techniques and setup described in 

Chapter 5.  It was observed that for all applications, the multi-GPU systems performed best 

when compared to other implementations.  The multi-GPU configurations edged out the 

multi-core systems because of the extra computational power present in each GPGPU as well 

as beating out the single-GPU because larger data sets are able to be evaluated as well as similar 
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size data sets can be partitioned and evaluated faster than on a single GPGPU.  Chapter 7 will 

present the conclusions that were obtained from this research study as well as future work. 
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Chapter 7 

Conclusions and Future Work 

7.1  Conclusions 

 In this thesis, successful implementations of the K-Means algorithm, the Izhikevich 

Spiking Neural Network (SNN), and the Longest Common Subsequences (LCS) Problem 

have been demonstrated.  The K-Means algorithm consisted of data sets that contained a 

range of data points from 1,000 to 750,000 providing a large range of computational difference 

when comparing optimization techniques and implementation strategies.  However, in the 

end, only the larger data sizes were compared because those results offer more interesting 

analysis.  After implementing the K-Means algorithm using multi-core and GPGPUs, speedup 

values of ~90x were achieved utilizing 32-cores, each with a GPGPU present for the heavy 

computation.  The Izhikevich SNN, algorithm consisted of a single data set that modeled a 

two-level neuron network.  Since all of the parameters of the algorithm were kept constant, 

the only thing changing was the GPGPU implementations.  Again the multi-GPU 

implementation performed best in this situation achieving speedup values of ~150x.  The LCS 

problem was the last algorithm studied.  100 sequences were generated for testing with the 

maximum length of each sequence ranging from 50 to 500.  After implementation, speedup 
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values of approximately 11x were achieved while utilizing 16 CPU/GPGPU pairs.  It is 

significant to mention that GPGPUs perform better when there are higher computational 

loads put on them rather than smaller loads with massive communications.  This is the reason 

why the larger data sets were used in an attempt to force the GPGPU to perform at its highest 

potential. 

 After reviewing the results for the multi-core implementation of the K-Means 

algorithm, it can be seen that the speedup is superlinear; speedup is greater than the number 

of cores. Superlinearity can result from a few factors but the most logical for this application 

is the caching that occurs when utilizing a large number of cores.  As more hardware is added 

(i.e. more nodes are added for the computation), the problem is split among the cores and 

each additional core provides it’s own cache.  Therefore, more data can be stored in the 

available cache (distributed across the cores) with more compute nodes leading to the ability 

to achieve superlinear speedup values.  However, with a small number of cores, the speedup 

values remain sublinear because the cache space is not large enough to house the entire data 

set.  Finally, for smaller data sets, the cost of communication vs. computation distribution 

negates the cache effect and the speedups remain sublinear. The K-Means application could 

be studied further to validate this assumption by examining the size of the cache on each node 

and viewing the cache utilization for each configuration.   

 Each GPGPU implementation was examined (using each algorithm) for its 

performance.  The first implementation was a simple, global-memory utilization algorithm.  

This algorithm performed well when compared to single-core simply because it was able to 

parallelize the computation where the single-core was not.  However, this was only the 

beginning of the optimizations.  The second optimization that made tremendous performance 
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improvements on the applications performance was the use of constant memory.  Constant 

memory is used for data that will be accessed very frequently but will not be changed 

throughout the duration of the kernel.  For example, in the K-Means algorithm, the data points 

will not change, so they can all use the constant memory and utilize the caching that takes 

place for quicker memory retrieval.  Similarly for the LCS algorithm, none of the sequences 

change throughout the entire algorithm duration; therefore, they can be placed in constant 

memory for fast access throughout the execution.  The final optimization technique was an 

attempt to gain slightly more performance out of each of the applications.  NVIDIA has built-

in mathematical functions that have been optimized for use on the GPGPU.  They can be 

written by hand or traditional math functions can be used, but the optimized functions tend 

to take significantly fewer clock cycles than other implementations.  Therefore, even if it is a 

small improvement, throughout an application, it could make a big difference to eliminate a 

few clock cycles each time through a loop.  The decrease in clock cycles achieved by utilizing 

the device optimized mathematical functions is not significantly apparent in this research, 

however, for other applications, utilizing the optimized functions could make a significant 

difference.  For example, if a particular algorithm consists of a large amount of trigonometric 

or logarithmic operations, utilizing the device functions over traditional mathematical 

functions could prove to achieve a much larger benefit in performance. 

 The research conducted in this thesis has led to several valuable contributions as well 

as insights into application development, computation on accelerators, and effective utilization 

of accelerators.  As discussed in Section 7.2 this research will be used extensively to validate 

existing performance modeling frameworks as well as develop improvements to the modeling 

approach in future work.  Each algorithm described in this thesis involves varying amounts 
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and types of computations creating a diverse test bed for the framework.  Many previous 

implementations of these algorithms have been developed in OpenCL or for single-GPU 

systems while in this research, the multi-GPU implementation was also developed.  The 

paradigm of High Performance Computing (HPC) is moving rapidly toward large-scale 

systems, enabling these applications to execute on much larger data sets than those studied in 

this research. 

 This research has also improved the ability to develop algorithm applications for use 

with accelerators.  Unlike sequential architectures, parallel programming architectures allow 

the programmer to perform computation much quicker, with the caveat that the data must be 

managed much more carefully to insure accurate results.  This research allowed for a better 

understanding of the use of parallel computing architectures with computational models.  

Developing GPGPU applications also allowed for the use of different types of memories 

inside the accelerator with different latencies.  Utilizing different device memory for subsets 

of the data illustrated the latency of each bank of memory and enabled a study of which type 

of data most efficiently takes advantage of each memory type. 

7.2  Future Work 

 The research completed in this thesis has presented the GPGPU and heterogeneous 

computing as a potential viable solution for problems that are very computationally intensive.   

In this research, scientific applications such as K-Means, Neural Networks, and Longest 

Common Subsequences demonstrate the effectiveness of utilizing heterogeneous systems.  In 

this research however, the only programming model that is used for the GPGPU is CUDA 

due to the abundant supply of NVIDIA GPGPUs in the Palmetto Cluster.  Also, there are 
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many more memory models and hardware optimizations that can be performed to further 

optimize the application execution. 

Other Implementations 

 Along with CUDA there are other programming models, namely OpenCL and the 

like, that could be utilized and possibly compared to the implementations shown above.  There 

are multiple reasons that OpenCL is a possibility for GPGPU implementations including a 

likeness in syntax to that of CUDA (with slight syntactical differences) as well as a comparison 

in performance to CUDA.  Programming models such as CUDA and OpenCL could be 

compared for programming efficiency and performance on the same types of applications.  

Because CUDA is specialized for NVIDIA GPGPUs, CUDA may have an edge when the 

computation is completed on this family of GPGPUs, however when other families of 

GPGPUs are available (i.e. AMD/ATI), the only alternative would be OpenCL, which is a 

cross-platform tool.  When using OpenCL, a comparison can also be made utilizing the same 

programming language for processor and accelerator rather than using C for the host 

processor and CUDA for the GPGPU kernels as it is presented in this research. 

 Along with the addition of the programming language comparison, other 

implementations of the CUDA applications could be explored to compare the performance.  

For instance, in this research, the shared memory of each block was not utilized and therefore 

some of the performance could have been degraded slightly from the maximum achievable 

performance.  However, all applications are not necessarily perfect for use with the shared 

memory because of their construction and algorithms.  Therefore a study would be required 

to determine if utilizing shared memory would benefit the applications performance. 
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In terms of scaling, the results show that the Izhikevich SNN scales better across 

multi-GPU systems when compared to the K-Means algorithm while the K-Means algorithm 

performs better when utilizing only the multi-core architecture.  The Izhikevich SNN scales 

better on the multi-GPU system because of the amount of computation being done by each 

GPU while in the K-Means algorithm, as the number of nodes increases, the GPU performs 

less computation causing the communication to be the overbearing part of the algorithm.  

Performing research on the exact reasoning behind why these algorithms perform better on 

multi-GPU or multi-core could be a topic of future work, since it is important to understand 

these characteristics and parameters for performance modeling.  Also, the LCS algorithm 

results show that as the number of CPU/GPU pairs increase, the performance of the multi-

core and multi-GPU implementations is converging.  Therefore, another possible area of 

future study is to examine where this overlap occurs to help with performance modeling and 

guiding scheduling decisions for applications that exhibit similar characteristics.   

 In this thesis, when designing the experiments for multi-GPU systems, a single 

CPU/GPU pair per node is used.  However, in the Palmetto Cluster, each GPU-capable node 

is equipped with 2 GPUs.  Utilization of both GPUs instead of one per node could yield 

performance improvements because it would allow for faster communication between the 

devices (i.e. intranode instead of internode communications).  GPU to GPU communication 

is also an area that has not be studied substantially and therefore, it would be worth researching 

if communication directly through RDMA between devices would be faster and provide a 

larger performance improvement over communicating through the CPU as a middle-man. 

 Aside from HPC, Big Data is also a very substantial community in performance of 

applications.  Big Data allows for distribution of large amounts of data for computation on 
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different nodes of a cluster or system.  Since the data is already distributed, the inherent parallel 

computation can be completed as in multi-core processing.  Hadoop is a programming model 

that allows for secure data distribution across a system with fault tolerances to avoid data loss.  

Hadoop allows the user to operate on the distributed data without combining it back on a 

single machine.  The applications developed in this research would benefit from Big Data 

programming paradigms such as Hadoop on larger data sets.  Accompanying the addition of 

larger data sets could be the inclusion of higher dimensional data sets.  In many scientific 

algorithms, there are very high dimensional sets of data (compared to the 3 dimensional data 

used in this research).  An interesting study would be to see how multi-core and multi-GPU 

systems perform on higher dimensional data sets with the same algorithms. 

Using Implementations for Verification 

 In the field of HPC, it is very important to exploit the concurrency existing in 

heterogeneous systems, which could include clusters of GPGPUs or Many Integrated Cores 

(MICs) technology.  These resources offer several petaflops of computing performance and 

therefore many developers choose to employ them for massively parallel applications.  

However, due to factors such as insufficient understanding of the architecture and inefficient 

load balancing, many times, these resources are not fully utilized and therefore, the 

application’s optimal performance is never reached.  To combat this problem, several 

performance models and strategies have been developed to efficiently tune these applications, 

but effective use of these models often requires substantial knowledge of the underlying 

computing architecture.   

Many performance prediction models that have been developed were tightly coupled 

to the underlying architecture of the system [47], but as new architectures evolve and include 
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new features, the previous architecture specific models are rendered incomplete and irrelevant.  

The aim of the future research is to extend the modeling framework presented in [48] and [49] 

to predict the application runtime with better accuracy and allow it to evolve for developing 

resources.  Further, other important HPC resource parameters will be included in the 

framework including load balancing, CPU-core count, accelerator count, and CPU-to-

accelerator ratio, will be included in the framework.  This future research provides the 

developer the ability to enter key parameters of the system and application, and the 

performance prediction framework will return the expected runtime and a suggested optimal 

allocation of the resources.  The framework will be tested with numerous benchmarks 

including those developed in this thesis for thorough verification and confirmation, thereby 

establishing the framework’s efficacy to predict application resource allocations quickly and 

effectively. 

The performance modeling framework that will be developed can be verified and 

extended with observations made in this thesis.  For example, it was seen that the Izhikevich 

SNN performed better on multi-GPU systems while the K-Means algorithm showed best 

performance using multi-core.  The framework will take all architectures available into account 

and based on algorithm parameters and characteristics determine which architectures would 

lead to the best overall performance. 
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