1,298 research outputs found

    Low-cost sensors technologies for monitoring sustainability and safety issues in mining activities: advances, gaps, and future directions in the digitalization for smart mining

    Get PDF
    Nowadays, monitoring aspects related to sustainability and safety in mining activities worldwide are a priority, to mitigate socio-environmental impacts, promote efficient use of water, reduce carbon footprint, use renewable energies, reduce mine waste, and minimize the risks of accidents and fatalities. In this context, the implementation of sensor technologies is an attractive alternative for the mining industry in the current digitalization context. To have a digital mine, sensors are essential and form the basis of Industry 4.0, and to allow a more accelerated, reliable, and massive digital transformation, low-cost sensor technology solutions may help to achieve these goals. This article focuses on studying the state of the art of implementing low-cost sensor technologies to monitor sustainability and safety aspects in mining activities, through the review of scientific literature. The methodology applied in this article was carried out by means of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and generating science mapping. For this, a methodological procedure of three steps was implemented: (i) Bibliometric analysis as a quantitative method, (ii) Systematic review of literature as a qualitative method, and (iii) Mixed review as a method to integrate the findings found in (i) and (ii). Finally, according to the results obtained, the main advances, gaps, and future directions in the implementation of low-cost sensor technologies for use in smart mining are exposed. Digital transformation aspects for data measurement with low-cost sensors by real-time monitoring, use of wireless network systems, artificial intelligence, machine learning, digital twins, and the Internet of Things, among other technologies of the Industry 4.0 era are discussed.The authors are indebted to the projects PID2021-126405OB-C31 and PID2021-126405OB-C32 funded by FEDER funds—A Way to Make Europe and Spanish Ministry of Economy and Competitiveness MICIN/AEI/10.13039/501100011033/. The financial support of the Research Department of the Catholic University of Temuco and the Civil Engineering Department of the University of Castilla-La Mancha is also appreciated.Peer ReviewedPostprint (published version

    Drone’s node placement algorithm with routing protocols to enhance surveillance

    Get PDF
    Flying ad-hoc network (FANET) is characterized by key component features such as communication scheme, energy awareness, and task distribution. In this research, a surveillance space considering standard petroleum pipe was created with three drones viz: drone 1 (D1), master drone (DM), and drone 2 (D2) to survey as FANET. DM aggregate packets from D1, D2 and communicate with the static ground control station (SGCS). The starting point of the three drones and their trajectories during deployment were calculated and simulated. Selection of DM, D1, and D2 was done using battery level before take-off. Simulation results show take-off time difference which depends on the distance of each drone to the SGCS during deployment. D1 take-off first, while DM and D2 followed after 0.0704 and 0.1314 ms respectively. The position-oriented routing protocols results indicated variation of information flow within time notch due to variation in the density of the transmitted packets. Packets delivery periods are 0.00136×103 sec, 0.00110×103 sec, and 0.00246×103 sec for time notch 1, 2, and aggregating time notch respectively. From the results obtained, two algorithms were used successfully in deploying the drone

    Prediction Model of Smelting Endpoint of Fuming Furnace Based on Grey Neural Network

    Get PDF
    Since grey theory and neural network could improve prediction precision, the technology of combination prediction was proposed in this study. Then the algorithm was simulated by Matlab using practical data of a fuming furnace. The results reveal that the smelting endpoint of fuming furnace could be accurately predicted with this model by referring to small sample and information. Therefore, GNN model is effective with the advantages of high precision, fewer samples required and simple calculation

    Magnetic Flux Leakage techniques for detecting corrosion of pipes

    Get PDF
    Oil and gas pipelines are subjected to corrosion due to harsh environmental conditions as in refinery and thermal power plants. Interesting problems such as internal and external corrosion, emerging from the increasing demand for pipeline protection have prompted this study. Thus, early detection of faults in pipes is essential to avoid disastrous outcomes. The research work presented in this thesis comprises investigations into the use of magnetic flux leakage (MFL) testing for pipe in extreme (underwater and high temperature) conditions. The design of a coil sensor (ferrite core with coil) with a magnetic circuit is carried out for high temperature conditions. The sensor thus developed lays the ground for non-destructive evaluation (NDE) of flaws in pipes through the MFL technique. The research focusses on the detection and characterization of MFL distribution caused by the loss of metal in ferromagnetic steel pipes. Experimental verifications are initially conducted with deeply rusted pipe samples of varying thicknesses in air. AlNiCo magnets are used along with Giant Magneto Resistance (GMR) sensor (AA002-02). The experiment is further repeated for saltwater conditions in relation to varying electrical conductivity with radio frequency identification (RFID) technique. A further study carried out in the research is the correlation between magnetic and underwater data communication. The study has resulted in the development and experimental evaluation of a coil sensor with its magnetic response at room and high temperatures. This makes the system effective under high temperature conditions where corrosion metal loss needs to be determined

    Magnetic Flux Leakage techniques for detecting corrosion of pipes

    Get PDF
    Oil and gas pipelines are subjected to corrosion due to harsh environmental conditions as in refinery and thermal power plants. Interesting problems such as internal and external corrosion, emerging from the increasing demand for pipeline protection have prompted this study. Thus, early detection of faults in pipes is essential to avoid disastrous outcomes. The research work presented in this thesis comprises investigations into the use of magnetic flux leakage (MFL) testing for pipe in extreme (underwater and high temperature) conditions. The design of a coil sensor (ferrite core with coil) with a magnetic circuit is carried out for high temperature conditions. The sensor thus developed lays the ground for non-destructive evaluation (NDE) of flaws in pipes through the MFL technique. The research focusses on the detection and characterization of MFL distribution caused by the loss of metal in ferromagnetic steel pipes. Experimental verifications are initially conducted with deeply rusted pipe samples of varying thicknesses in air. AlNiCo magnets are used along with Giant Magneto Resistance (GMR) sensor (AA002-02). The experiment is further repeated for saltwater conditions in relation to varying electrical conductivity with radio frequency identification (RFID) technique. A further study carried out in the research is the correlation between magnetic and underwater data communication. The study has resulted in the development and experimental evaluation of a coil sensor with its magnetic response at room and high temperatures. This makes the system effective under high temperature conditions where corrosion metal loss needs to be determined

    Проект беспроводной ячеистой сети для индустриального парка «Великий Камень»

    Get PDF
    Беспроводная ячеистая сеть (WMN) все чаще становится популярным решением из-за низкой стоимости как альтернатива проводной сети для предоставления широкополосного доступа для пользователей. Беспроводная ячеистая сеть (WMN) представляет собой коммуникационные сети, состоящие из радио узлов, организованных в топологии сети. Беспроводные сети состоят из сети клиентов, сетевых маршрутизаторов и шлюзов. Клиенты сети - это часто ноутбуки, сотовые телефоны и другие беспроводные устройства, в то время как сетевые маршрутизаторы пересылают трафик и из шлюзов, которые могут, но не обязательно, быть подключены к Интернету. В статье рассматриваются разные каналы радио беспроводной связи, подключенные к точке доступа (AP) в рамках Белорусско-Китайского проекта индустриального парка «Большой Камень», который является территориальным образованием площадью около 80 кв. Км с особым правовым статусом для предоставления комфортных условий для ведения бизнеса. Парк расположен в уникальном природном комплексе в 25 км от Минска, столицы Республики Беларусь. Он находится в непосредственной близости от международного аэропорта, железнодорожных линий и транснациональной магистрали Берлин-Москва. Результат анализа показывает распределение точек доступа, обеспечивающих принципиальные функции на территории индустриального парка. При этом обеспечивается надежность и балансировка нагрузки в беспроводных ячеистых сетях связи

    Review. Monitoring the intermodal, refrigerated transport of fruit using sensor networks

    Get PDF
    Most of the fruit in Europe is transported by road, but the saturation of the major arteries, the increased demand for freight transport, and environmental concerns all indicate there is a need to change this means of transport. A combination of transport modes using universal containers is one of the solutions proposed: this is known as intermodal transport. Tracking the transport of fruit in reefer containers along the supply chain is the means by which product quality can be guaranteed. The integration of emerging information technologies can now provide real-time status updates. This paper reviews the literature and the latest technologies in this area as part of a national project. Particular emphasis is placed on multiplexed digital communication technologies and wireless sensor networks

    Marshall Space Flight Center Research and Technology Report 2019

    Get PDF
    Today, our calling to explore is greater than ever before, and here at Marshall Space Flight Centerwe make human deep space exploration possible. A key goal for Artemis is demonstrating and perfecting capabilities on the Moon for technologies needed for humans to get to Mars. This years report features 10 of the Agencys 16 Technology Areas, and I am proud of Marshalls role in creating solutions for so many of these daunting technical challenges. Many of these projects will lead to sustainable in-space architecture for human space exploration that will allow us to travel to the Moon, on to Mars, and beyond. Others are developing new scientific instruments capable of providing an unprecedented glimpse into our universe. NASA has led the charge in space exploration for more than six decades, and through the Artemis program we will help build on our work in low Earth orbit and pave the way to the Moon and Mars. At Marshall, we leverage the skills and interest of the international community to conduct scientific research, develop and demonstrate technology, and train international crews to operate further from Earth for longer periods of time than ever before first at the lunar surface, then on to our next giant leap, human exploration of Mars. While each project in this report seeks to advance new technology and challenge conventions, it is important to recognize the diversity of activities and people supporting our mission. This report not only showcases the Centers capabilities and our partnerships, it also highlights the progress our people have achieved in the past year. These scientists, researchers and innovators are why Marshall and NASA will continue to be a leader in innovation, exploration, and discovery for years to come

    Free hardware based system for air quality and CO2 monitoring

    Get PDF
    Due to the increase in air pollution, especially in Latin American countries of low and middle income, great environmental and health risks have been generated, highlighting that there is more pollution in closed environments. Given this problem, it has been proposed to develop a system based on free hardware for monitoring air quality and CO2, in order to reduce the levels of air pollution in a closed environment, improving the quality of life of people and contributing to the awareness of the damage caused to the environment by the hand of man himself. The system is based on V-Model, complemented with a ventilation prototype implemented with sensors and an application for its respective monitoring. The sample collected in the present investigation was non-probabilistic, derived from the reports of air indicators during 15 days with specific schedules of 9am, 1pm and 6pm. The results obtained indicated that the air quality decreased to 670 ppm, as well as the collection time decreased to 5 seconds and finally the presence of CO2 was reduced to 650 ppm after the implementation of the system, achieving to be within the standards recommended by the World Health Organization
    corecore