349 research outputs found

    Freeform User Interfaces for Graphical Computing

    Get PDF
    報告番号: 甲15222 ; 学位授与年月日: 2000-03-29 ; 学位の種別: 課程博士 ; 学位の種類: 博士(工学) ; 学位記番号: 博工第4717号 ; 研究科・専攻: 工学系研究科情報工学専

    VelociWatch: Designing and evaluating a virtual keyboard for the input of challenging text

    Get PDF
    © 2019 Association for Computing Machinery. Virtual keyboard typing is typically aided by an auto-correct method that decodes a user’s noisy taps into their intended text. This decoding process can reduce error rates and possibly increase entry rates by allowing users to type faster but less precisely. However, virtual keyboard decoders sometimes make mistakes that change a user’s desired word into another. This is particularly problematic for challenging text such as proper names. We investigate whether users can guess words that are likely to cause auto-correct problems and whether users can adjust their behavior to assist the decoder. We conduct computational experiments to decide what predictions to ofer in a virtual keyboard and design a smartwatch keyboard named VelociWatch. Novice users were able to use the features of VelociWatch to enter challenging text at 17 words-per-minute with a corrected error rate of 3%. Interestingly, they wrote slightly faster and just as accurately on a simpler keyboard with limited correction options. Our fnding suggest users may be able to type dif-fcult words on a smartwatch simply by tapping precisely without the use of auto-correct

    AUGMENTED TOUCH INTERACTIONS WITH FINGER CONTACT SHAPE AND ORIENTATION

    Get PDF
    Touchscreen interactions are far less expressive than the range of touch that human hands are capable of - even considering technologies such as multi-touch and force-sensitive surfaces. Recently, some touchscreens have added the capability to sense the actual contact area of a finger on the touch surface, which provides additional degrees of freedom - the size and shape of the touch, and the finger's orientation. These additional sensory capabilities hold promise for increasing the expressiveness of touch interactions - but little is known about whether users can successfully use the new degrees of freedom. To provide this baseline information, we carried out a study with a finger-contact-sensing touchscreen, and asked participants to produce a range of touches and gestures with different shapes and orientations, with both one and two fingers. We found that people are able to reliably produce two touch shapes and three orientations across a wide range of touches and gestures - a result that was confirmed in another study that used the augmented touches for a screen lock application

    Predicting and Reducing the Impact of Errors in Character-Based Text Entry

    Get PDF
    This dissertation focuses on the effect of errors in character-based text entry techniques. The effect of errors is targeted from theoretical, behavioral, and practical standpoints. This document starts with a review of the existing literature. It then presents results of a user study that investigated the effect of different error correction conditions on popular text entry performance metrics. Results showed that the way errors are handled has a significant effect on all frequently used error metrics. The outcomes also provided an understanding of how users notice and correct errors. Building on this, the dissertation then presents a new high-level and method-agnostic model for predicting the cost of error correction with a given text entry technique. Unlike the existing models, it accounts for both human and system factors and is general enough to be used with most character-based techniques. A user study verified the model through measuring the effects of a faulty keyboard on text entry performance. Subsequently, the work then explores the potential user adaptation to a gesture recognizer’s misrecognitions in two user studies. Results revealed that users gradually adapt to misrecognition errors by replacing the erroneous gestures with alternative ones, if available. Also, users adapt to a frequently misrecognized gesture faster if it occurs more frequently than the other error-prone gestures. Finally, this work presents a new hybrid approach to simulate pressure detection on standard touchscreens. The new approach combines the existing touch-point- and time-based methods. Results of two user studies showed that it can simulate pressure detection more reliably for at least two pressure levels: regular (~1 N) and extra (~3 N). Then, a new pressure-based text entry technique is presented that does not require tapping outside the virtual keyboard to reject an incorrect or unwanted prediction. Instead, the technique requires users to apply extra pressure for the tap on the next target key. The performance of the new technique was compared with the conventional technique in a user study. Results showed that for inputting short English phrases with 10% non-dictionary words, the new technique increases entry speed by 9% and decreases error rates by 25%. Also, most users (83%) favor the new technique over the conventional one. Together, the research presented in this dissertation gives more insight into on how errors affect text entry and also presents improved text entry methods

    A Formal Approach to Computer Aided 2D Graphical Design for Blind People

    Get PDF
    The growth of computer aided drawing systems for blind people (CADB) has long been recognised and has increased in interest within the assistive technology research area. The representation of pictorial data by blind and visually impaired (BVI) people has recently gathered momentum with research and development; however, a survey of published literature on CADB reveals that only marginal research has been focused on the use of a formal approach for on screen spatial orientation, creation and reuse of graphics artefacts. To realise the full potential of CADB, such systems should possess attributes of usability, spatial navigation and shape creation features without which blind users drawing activities are less likely to be achieved. As a result of this, usable, effective and self-reliant CADB have arisen from new assistive Technology (AT) research. This thesis contributes a novel, abstract, formal approach that facilitates BVI users to navigate on the screen, create computer graphics/diagrams using 2D shapes and user-defined images. Moreover, the research addresses the specific issues involved with user language by formulating specific rules that make BVI user interaction with the drawing effective and easier. The formal approach proposed here is descriptive and it is specified at a level of abstraction above the concrete level of system technologies. The proposed approach is unique in problem modelling and syntheses of an abstract computer-based graphics/drawings using a formal set of user interaction commands. This technology has been applied to enable blind users to independently construct drawings to satisfy their specific needs without recourse to a specific technology and without the intervention of support workers. The specification aims to be the foundation for a system scope, investigation guidelines and user-initiated command-driven interaction. Such an approach will allow system designers and developers to proceed with greater conceptual clarity than it is possible with current technologies that is built on concrete system-driven prototypes. In addition to the scope of the research the proposed model has been verified by various types of blind users who have independently constructed drawings to satisfy their specific needs without the intervention of support workers. The effectiveness and usability of the proposed approach has been compared against conventional non-command driven drawing systems by different types of blind users. The results confirm that the abstract formal approach proposed here using command-driven means in the context of CADB enables greater comprehension by BVI users. The innovation can be used for both educational and training purposes. The research, thereby sustaining the claim that the abstract formal approach taken allows for the greater comprehension of the command-driven means in the context of CADB, and how the specification aid the design of such a system

    Voice and Touch Diagrams (VATagrams) Diagrams for the Visually Impaired

    Get PDF
    If a picture is worth a thousand words would you rather read the two pages of text or simply view the image? Most would choose to view the image; however, for the visually impaired this isn’t always an option. Diagrams assist people in visualizing relationships between objects. Most often these diagrams act as a source for quickly referencing information about relationships. Diagrams are highly visual and as such, there are few tools to support diagram creation for visually impaired individuals. To allow the visually impaired the ability to share the same advantages in school and work as sighted colleagues, an accessible diagram tool is needed. A suitable tool for the visually impaired to create diagrams should allow these individuals to: 1. easily define the type of relationship based diagram to be created, 2. easily create the components of a relationship based diagram, 3. easily modify the components of a relationship based diagram, 4. quickly understand the structure of a relationship based diagram, 5. create a visual representation which can be used by the sighted, and 6. easily accesses reference points for tracking diagram components. To do this a series of prototypes of a tool were developed that allow visually impaired users the ability to read, create, modify and share relationship based diagrams using sound and gestural touches. This was accomplished by creating a series of applications that could be run on an iPad using an overlay that restricts the areas in which a user can perform gestures. These prototypes were tested for usability using measures of efficiency, effectiveness and satisfaction. The prototypes were tested with visually impaired, blindfolded and sighted participants. The results of the evaluation indicate that the prototypes contain the main building blocks that can be used to complete a fully functioning application to be used on an iPad

    Composing graphical user interfaces in a purely functional language

    Get PDF
    This thesis is about building interactive graphical user interfaces in a compositional manner. Graphical user interface application hold out the promise of providing users with an interactive, graphical medium by which they can carry out tasks more effectively and conveniently. The application aids the user to solve some task. Conceptually, the user is in charge of the graphical medium, controlling the order and the rate at which individual actions are performed. This user-centred nature of graphical user interfaces has considerable ramifications for how software is structured. Since the application now services the user rather than the other way around, it has to be capable of responding to the user's actions when and in whatever order they might occur. This transfer of overall control towards the user places heavy burden on programming systems, a burden that many systems don't support too well. Why? Because the application now has to be structured so that it is responsive to whatever action the user may perform at any time. The main contribution of this thesis is to present a compositional approach to constructing graphical user interface applications in a purely functional programming language The thesis is concerned with the software techniques used to program graphical user interface applications, and not directly with their design. A starting point for the work presented here was to examine whether an approach based on functional programming could improve how graphical user interfaces are built. Functional programming languages, and Haskell in particular, contain a number of distinctive features such as higher-order functions, polymorphic type systems, lazy evaluation, and systematic overloading, that together pack quite a punch, at least according to proponents of these languages. A secondary contribution of this thesis is to present a compositional user interface framework called Haggis, which makes good use of current functional programming techniques. The thesis evaluates the properties of this framework by comparing it to existing systems

    Relational multimedia databases.

    Get PDF

    Drawing from calculators.

    Get PDF

    ZATLAB : recognizing gestures for artistic performance interaction

    Get PDF
    Most artistic performances rely on human gestures, ultimately resulting in an elaborate interaction between the performer and the audience. Humans, even without any kind of formal analysis background in music, dance or gesture are typically able to extract, almost unconsciously, a great amount of relevant information from a gesture. In fact, a gesture contains so much information, why not use it to further enhance a performance? Gestures and expressive communication are intrinsically connected, and being intimately attached to our own daily existence, both have a central position in our (nowadays) technological society. However, the use of technology to understand gestures is still somehow vaguely explored, it has moved beyond its first steps but the way towards systems fully capable of analyzing gestures is still long and difficult (Volpe, 2005). Probably because, if on one hand, the recognition of gestures is somehow a trivial task for humans, on the other hand, the endeavor of translating gestures to the virtual world, with a digital encoding is a difficult and illdefined task. It is necessary to somehow bridge this gap, stimulating a constructive interaction between gestures and technology, culture and science, performance and communication. Opening thus, new and unexplored frontiers in the design of a novel generation of multimodal interactive systems. This work proposes an interactive, real time, gesture recognition framework called the Zatlab System (ZtS). This framework is flexible and extensible. Thus, it is in permanent evolution, keeping up with the different technologies and algorithms that emerge at a fast pace nowadays. The basis of the proposed approach is to partition a temporal stream of captured movement into perceptually motivated descriptive features and transmit them for further processing in Machine Learning algorithms. The framework described will take the view that perception primarily depends on the previous knowledge or learning. Just like humans do, the framework will have to learn gestures and their main features so that later it can identify them. It is however planned to be flexible enough to allow learning gestures on the fly. This dissertation also presents a qualitative and quantitative experimental validation of the framework. The qualitative analysis provides the results concerning the users acceptability of the framework. The quantitative validation provides the results about the gesture recognizing algorithms. The use of Machine Learning algorithms in these tasks allows the achievement of final results that compare or outperform typical and state-of-the-art systems. In addition, there are also presented two artistic implementations of the framework, thus assessing its usability amongst the artistic performance domain. Although a specific implementation of the proposed framework is presented in this dissertation and made available as open source software, the proposed approach is flexible enough to be used in other case scenarios, paving the way to applications that can benefit not only the performative arts domain, but also, probably in the near future, helping other types of communication, such as the gestural sign language for the hearing impaired.Grande parte das apresentações artísticas são baseadas em gestos humanos, ultimamente resultando numa intricada interação entre o performer e o público. Os seres humanos, mesmo sem qualquer tipo de formação em música, dança ou gesto são capazes de extrair, quase inconscientemente, uma grande quantidade de informações relevantes a partir de um gesto. Na verdade, um gesto contém imensa informação, porque não usá-la para enriquecer ainda mais uma performance? Os gestos e a comunicação expressiva estão intrinsecamente ligados e estando ambos intimamente ligados à nossa própria existência quotidiana, têm uma posicão central nesta sociedade tecnológica actual. No entanto, o uso da tecnologia para entender o gesto está ainda, de alguma forma, vagamente explorado. Existem já alguns desenvolvimentos, mas o objetivo de sistemas totalmente capazes de analisar os gestos ainda está longe (Volpe, 2005). Provavelmente porque, se por um lado, o reconhecimento de gestos é de certo modo uma tarefa trivial para os seres humanos, por outro lado, o esforço de traduzir os gestos para o mundo virtual, com uma codificação digital é uma tarefa difícil e ainda mal definida. É necessário preencher esta lacuna de alguma forma, estimulando uma interação construtiva entre gestos e tecnologia, cultura e ciência, desempenho e comunicação. Abrindo assim, novas e inexploradas fronteiras na concepção de uma nova geração de sistemas interativos multimodais . Este trabalho propõe uma framework interativa de reconhecimento de gestos, em tempo real, chamada Sistema Zatlab (ZtS). Esta framework é flexível e extensível. Assim, está em permanente evolução, mantendo-se a par das diferentes tecnologias e algoritmos que surgem num ritmo acelerado hoje em dia. A abordagem proposta baseia-se em dividir a sequência temporal do movimento humano nas suas características descritivas e transmiti-las para posterior processamento, em algoritmos de Machine Learning. A framework descrita baseia-se no facto de que a percepção depende, principalmente, do conhecimento ou aprendizagem prévia. Assim, tal como os humanos, a framework terá que aprender os gestos e as suas principais características para que depois possa identificá-los. No entanto, esta está prevista para ser flexível o suficiente de forma a permitir a aprendizagem de gestos de forma dinâmica. Esta dissertação apresenta também uma validação experimental qualitativa e quantitativa da framework. A análise qualitativa fornece os resultados referentes à aceitabilidade da framework. A validação quantitativa fornece os resultados sobre os algoritmos de reconhecimento de gestos. O uso de algoritmos de Machine Learning no reconhecimento de gestos, permite a obtençãoc¸ ˜ao de resultados finais que s˜ao comparaveis ou superam outras implementac¸ ˜oes do mesmo g´enero. Al ´em disso, s˜ao tamb´em apresentadas duas implementac¸ ˜oes art´ısticas da framework, avaliando assim a sua usabilidade no dom´ınio da performance art´ıstica. Apesar duma implementac¸ ˜ao espec´ıfica da framework ser apresentada nesta dissertac¸ ˜ao e disponibilizada como software open-source, a abordagem proposta ´e suficientemente flex´ıvel para que esta seja usada noutros cen´ arios. Abrindo assim, o caminho para aplicac¸ ˜oes que poder˜ao beneficiar n˜ao s´o o dom´ınio das artes performativas, mas tamb´em, provavelmente num futuro pr ´oximo, outros tipos de comunicac¸ ˜ao, como por exemplo, a linguagem gestual usada em casos de deficiˆencia auditiva
    corecore