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ABSTRACT 

 

Touchscreen interactions are far less expressive than the range of touch that human hands are 

capable of - even considering technologies such as multi-touch and force-sensitive surfaces. 

Recently, some touchscreens have added the capability to sense the actual contact area of a finger 

on the touch surface, which provides additional degrees of freedom - the size and shape of the 

touch, and the finger's orientation. These additional sensory capabilities hold promise for 

increasing the expressiveness of touch interactions - but little is known about whether users can 

successfully use the new degrees of freedom. To provide this baseline information, we carried out 

a study with a finger-contact-sensing touchscreen, and asked participants to produce a range of 

touches and gestures with different shapes and orientations, with both one and two fingers. We 

found that people are able to reliably produce two touch shapes and three orientations across a 

wide range of touches and gestures - a result that was confirmed in another study that used the 

augmented touches for a screen lock application. 
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CHAPTER 1 

1 INTRODUCTION 

Touch-based interaction is a ubiquitous method of interaction with various forms of computing 

systems provided with multi-touch screens. One of the main reasons for touch-based input being 

popular is its inherently natural affordances [213].  Touch input allows users to directly manipulate 

the system without intermediary devices such as a mouse, keyboard or joystick. Even with the 

availability of input methods like pen/stylus and voice commands, touch input remains the primary 

mode of input on mobile devices such as smartphones. Several researchers have shown that direct-

touch displays offer benefits over other pointing devices like a mouse [59, 76, 150, 185, 226]. 

However, current multi-touch interaction designs are mainly based on a single point for each finger 

(i.e. x-y coordinate of each finger touch point), which does not make use of all the available 

information about the touch. 

When a user touches the screen with their finger, it creates a blob on the touch sensor, which 

detects the x-y coordinates of all the points covered on the screen by the finger touch and 

determines the center coordinates of this blob. This center point is typically used as the cursor 

position by the system. However, touch interfaces do not provide the expressiveness of other 

technologies such as mouse-and-keyboard systems. Mouse and keyboard systems allow 

augmentations on the 2D input, such as holding different mouse buttons or different keyboard 

keys, to add modes that multiply the capabilities of the 2D input (for example, using shift + click 

as a shortcut for a different mode). Mode-based augmentations such as these are uncommon in 

touch interfaces – largely because there are no devices such as keyboards or mouse buttons 

available on touch devices such as smartphones and tablets. There are, however, other ways (such 

as the use of physical buttons, touch pressure sensing, interaction on the backside of the touch 

device, etc.) that these augmented modes could be expressed. 
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Touch-based gestures – including single-finger taps, multi-finger taps, and movement-based 

touches – are the most common way to interact with a touch screen and hence, it becomes 

important to have a large gesture set to accommodate commands in various applications. Gesture-

based interaction acts as a medium of communication between the user and the system. The gesture 

itself encodes the information that the user wants to communicate with the system. The system 

decodes the gesture into intended actions and acts upon it. One of the major challenges of HCI 

research is increasing the bandwidth of communication between users and the system. The 

expressive power or the capacity of the communication channel in gesture-based interactions 

depends on the number of different gestures supported and how they can express varying actions 

[11]. In other words, increasing the size of the available gesture set may increase the capacity of 

the communication channel which enables users to perform more functions. 

Various researchers have demonstrated the use of auxiliary information other than touch position 

coordinates to enhance the expressiveness of touch interactions. Some have used contact shape 

[42, 219], size of the finger contact region [31, 37] or finger contact orientation [213] to augment 

touch interactions. However, a combination of contact shape and orientation of the touch is yet to 

be explored in touch interaction research. Orientation is a natural source of information for 

augmentation as it provides the direction in which a user is pointing [213]. The orientation of the 

finger touch can be provided by the hardware of the touch screen sensors or can be determined by 

the shape of the finger contact area on the screen [213]. Contact shape is determined by the screen 

area touched by the finger and it depends upon the part of the finger touching the screen: the 

fingertip tends to be circular in shape whereas the pad and side of the finger tend to create oval 

shapes. 

This auxiliary information such as orientation and contact shape are not being used by interaction 

designers for touch-based hand-held devices which results in touch devices being less expressive 

than desktop systems. Therefore, to enhance the expressiveness of touch-based interactions such 

as taps and swipes, we present a novel augmented touch technique which provides an enhanced 

input vocabulary comprising of both one finger and two-finger touch actions which exploit 

additional touch information such as contact shape and orientation. This thesis carries out research 

to investigate the performance of our novel input vocabulary, determine which contact shapes and 
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orientations people can reliably produce and determine their usability and learnability in a realistic 

task. 

1.1 PROBLEM 

The problem addressed in this thesis is that touch screen interactions are not expressive enough to 

support rich user interactions, whereas, keyboard and mouse-based systems have several 

possibilities for augmentation. There are various potential ways to achieve performance efficiency 

and large input vocabulary on any graphical user interface, but we focus our investigation on the 

use of direct-touch input methods [17] and multiple-finger input [41].  

Current touch screens primarily track only the x-y coordinates of touch points. This gives a user 

reduced control over the interaction as the user must do more steps to manipulate an object on 

touch screens. On desktop systems, there are multiple input modalities such as mouse and 

keyboard and hence, complex commands can be issued quickly. For example, selecting, copying 

and pasting text takes less effort and time on desktop computers than touch-based systems, because 

desktop PCs allow the use of shortcuts and modifiers such as shift-clicking and control-dragging. 

This makes touch-based systems less productive. Touch based GUIs employ menus and buttons 

to arrange and issue commands. One solution to the problem is to use more screen space to display 

many commands. However, due to the small size of the mobile device’s screen, there is a limit to 

the size of the command set it can support. There are several possible directions to allow 

augmentation of the 2D touch input and reduce dependence on the GUI elements such as menus 

and buttons. 

In this research, we add additional degrees of freedom (DoF) to traditional touch actions such as 

tap and swipe. DoF, in the context of gestural interaction means the number of parameters that 

may vary independently. The number of DoF is equal to the total number of independent aspects 

of motion. For example, a touch point can control the x and y position of an object which results 

in 2DoF. Similarly, when sensing the location of two fingers, there are 4DoF. Another example is 

that a touch point can have finger pressure and time of contact with the screen as two different 

DoF with multiple levels. A main goal of this work is to leverage the additional finger properties 
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of contact shape and orientation to augment the traditional gestures and investigate whether people 

can successfully use these additional DoF. 

1.2 SOLUTION 

The solution presented in this thesis is addition of two DoF to traditional touch actions such as tap, 

swipe and finger rotation to create a novel input vocabulary for touch-based devices. Our new 

input vocabulary is a set of eight different augmented touches, which are primarily based on 

traditional touch actions already in use. 

1.3 STEPS IN THE SOLUTION 

There were four main steps in the research: 

1.3.1 Contact Shape and Orientation Detection 

Before we investigated adding additional DoF, our first task was to find out if contact shape and 

orientation of the finger could be extracted from the touch sensor. We found that MotionEvent 

API [8] of the Android platform provides orientation of the finger touch and lengths of major and 

minor axes of the ellipse formed by finger touch which can used to determine the contact shape. 

Contact area is another finger property which can be used to augment touch actions; however, we 

do not use it in our approach. Contact area is the area covered by the finger screen while in contact 

with the screen. Prior investigations of finger input properties [214], provides an evidence that 

contact area of vertical touch (touch with tip of finger) and oblique touch (touch with pad of the 

finger) are significantly different. We do not use contact area as an input dimension because area 

is not reliable enough to identify the contact shape or whether it is vertical or oblique touch. A 

large contact area can also result from pressing harder in a vertical touch. Hence, we use contact 

shape as an additional DoF instead of contact area. 

Our next step was to find out an Android OS based device which could provide this information. 

After trying many Android OS based touch screen devices, we found Samsung Nexus 10 tablet 
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which provides the finger touch orientation and lengths of minor and major axes of the ellipse 

formed by the finger touch. 

1.3.2 Development of the Input Vocabulary 

We present the novel input vocabulary in Chapter Three, consisting of eight augmented touch 

actions using two additional DoF (contact shape and orientation). These touch actions are based 

on traditional touch actions such as tap, swipe and rotate. Our novel input vocabulary was 

implemented for Android OS based hand-held touch tablet and was evaluated in controlled 

experiments. 

1.3.3 Development of the system for baseline information 

Before the interaction designers augment the touch interactions with contact shape and orientation, 

it is required to know which contact shapes and orientations can be produced by human users 

reliably. We developed an Android application which records the lengths of major and minor axes 

of the ellipse formed by the finger touch along with its orientation. In Chapter 4, we present study 

1 (touch action replication study) in which participants produced touch actions from our novel 

input vocabulary with multiple variations of contact shapes and orientations using the above-

mentioned Android application. This provided us the baseline information about the contact shapes 

and orientations which humans can produce reliably. 

1.3.4 Development of the system for learnability and usability test 

To find out the learnability of touch actions of our input vocabulary and usability of augmented 

touch actions in a realistic task, we developed two systems which are memory test (see Chapter 5) 

and screen lock application (see Chapter 6). In the Memory test, we associated a command name 

with each of the touch action from our input vocabulary. Participants learn these associations and 

perform the touch actions when commands are shown on screen without any feedback about its 

correctness. We developed an Android application for Memory test which records the lengths of 

major and minor axes of the ellipse formed by the finger touch along with its orientation. We 

validate the touch actions produced by participants for accuracy against the baseline information 

(about the contact shape and orientation) which we gathered from study 1 (touch action replication 

study, see Chapter 4). In study 3, (screen lock application study, see Chapter 6), we developed an 



 

6 

Android application for locking and unlocking the device’s home screen. It uses pattern lock 

mechanism. To lock and unlock the screen, participants were required to perform a touch action 

with a particular contact shape and orientation. Like memory test, we used the baseline information 

from touch action replication study (see Chapter 4) to validate lock and unlock actions performed 

by participants. 

1.4 EVALUATION 

1.4.1 Questions of performance, learnability and usability 

To provide evidence that augmenting touch actions with additional DoF such as contact shape and 

orientation information can help achieve better expressiveness in touch interactions, we addressed 

the following questions: 

• Which contact shapes and orientations can be produced reliably? 

• What should be the criterion to differentiate between various contact shapes (oval, narrow 

oval and circle)? 

• Is our novel input vocabulary easy to learn? 

• How do participants perform with contact shapes and orientations in a realistic task? 

To find out the baseline information regarding the which contact shapes and orientations can be 

produced reliably by human users, we carried out an empirical study (touch action replication 

study, Chapter 4). To establish evidence for memorability and learnability of touch actions in our 

input vocabulary, we carried out an empirical study called memory test (see Chapter 5) and third 

empirical study (Chapter 6) as an evidence of learnability of touch actions involving contact shape 

and orientation as additional DoF in a realistic task. 

The evaluation processes that we followed in our experiments are as follows: 
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• Before designing touch interactions with our input vocabulary, the designers need to know 

which contact shapes and orientations can be reliably produced by the human users. For 

this goal, an empirical study (Study 1) was done in which participants performed series of 

touch actions from our input vocabulary. As a result of this study, we establish the baseline 

information about the different contact shapes and orientations which participants could 

produce reliably. 

• In the Memory test (Study 2), we asked participants to perform a series of touch actions 

taken from our novel input vocabulary in two different stages. Popular 

applications/commands like Camera, Facebook were associated with different touch 

actions. In stage 1, participants could refer to cheat sheet carrying the touch actions and 

names of associated applications/commands. Stage 2 was blind as they did not have cheat 

sheet. However, there was no feedback about correctness of the gesture at any stage. Our 

goal to find out what happens to gesture retrieval from memory in blind stage. 

• In another study called Screen Lock Application study (study 3), participants performed 

gestures in a realistic task which had contact shape and orientation as additional DoF. This 

experiment had two different stages. Stage 1 had feedback where participants could see the 

contact shape, orientation and single-stroke pattern created by them in real time whereas 

in stage 2 there was no feedback. However, there was no feedback about correctness of the 

pattern drawn at any stage. 

• Subjective responses were also taken after Study 1 and evaluated for each of the touch 

actions from our input vocabulary in the studies. Participants completed ease and ability 

questionnaire and provided comments about our input vocabulary. 

1.5 CONTRIBUTIONS 

There are four primary contributions presented in this thesis. 

• First, we show that additional finger properties such as contact shape and orientation of the 

finger touch can used as additional DoF in augmenting the touch interactions. 
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• Second, we provide the baseline information for touch interaction designers about the 

contact shapes and orientations which can be produced reliably by human users. 

• Third, we provide our novel input vocabulary for touch screens consisting of eight touch 

actions. 

• Fourth, we provide empirical evidence that human users can learn touch actions of our 

input vocabulary, and the contact shapes and orientations baselined in Study 1 can be 

produced reliably in a realistic task. 

Secondary contributions of this thesis are the set of design principles developed for designers of 

touch interactions using contact shape and orientation, reasons for participant preferences, method 

for detecting contact shape and orientation of a finger touch. 

1.6 THESIS OUTLINE 

This thesis is organized into several chapters. Chapter Two presents a survey of related research, 

and techniques for augmenting input which form the foundation for the research presented here. 

First, we discuss history of touch input, its challenges, touch actions (tap and swipe). Second, we 

discuss several strategies that been applied to augment input in traditional devices such as mouse 

and keyboard. We also discuss other kinds of input to computing system such as eye gaze, voice, 

time, etc. Finally, we describe and discuss various additional hand and finger touch properties used 

to augment touch input. We also discuss other techniques used to augment touch input such as 

back of device interaction, interaction above the screen, use of pen/stylus. 

In Chapter Three we set out the basic idea of using contact shape and orientation as additional DoF 

to augment touch actions for enhancing the expressivity of input on touch-based handheld tablets. 

We define several finger properties such as contact area, contact shape, orientation and pressure. 

We provide the rationale behind using only the contact shape and orientation. The technique to 

detect the contact shape and orientation is presented and based on this two information we 

developed a novel input vocabulary which comprised of eight augmented touch actions. Using the 
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novel input vocabulary, we motivate our research into enhancing the expressivity of touch input 

by augmenting touch actions using contact shape and orientation. 

Chapter Four presents our work to determine the granularity at which a system can recognize 

contact shape and orientation with high accuracy. We present study 1 (touch action replication 

study), a user study carried to determine which contact shapes and orientations can be produced 

reliably by the participants. We present the results of this study and their implications are 

discussed. 

Chapter Five presents our work to investigate the learnability and memorability of our novel input 

vocabulary. We created study 2 (memory test study) in which participants learned the associations 

of command names and touch actions and performed the required touch actions when command 

names were shown as command stimulus. We present the results of this study and implications are 

discussed. 

Chapter Six presents our work to investigate the use of contact shape and orientation in a realistic 

task. We created study three (screen lock application study) in which participants performed 

variations of a single-stroke circle gestures in an application which can be used to lock and unlock 

the screen. We present the results of this study and implications are discussed. 

Chapter seven presents a discussion of the most important results from Chapters Three to Six. 

Some higher-level implications of our findings, their explanations, design guidelines, use cases 

and limitations of our overall work are addressed. 

Finally, Chapter Eight summarizes the research presented in this thesis. It discusses the main 

contributions of our work and highlights the avenues of future work revealed as a result of this 

thesis. 
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CHAPTER 2 

2 RELATED WORK 

Our exploration into the use of additional degrees of freedom such as contact shape and orientation 

for augmenting touch interactions was influenced by three areas of previous related literature: 

touch input, augmented input and augmented touch input. 

2.1 TOUCH INPUT 

A touchscreen interface is a device that performs both input (touch input) and output (display) 

functions. The screen displays a GUI, and a user’s finger touch is interpreted as an input or 

interaction with the device and displays the response accordingly. In the following section, we 

discuss a brief history of mobile touch input, describe challenges in touch input, provide a 

classification of touch actions and discuss their features, shortcomings, and techniques used to 

enhance their expressivity on touch screen devices. 

2.1.1 History of Touch Input 

The first finger-driven touchscreen was invented by Eric Johnson in 1965 [104] (see Figure 2.1.1) 

and was first used in the European Council for Nuclear Research (CERN) particle accelerator in 

1976 [30]. Touchscreens were in commercial production by Hewlett-Packard in 1983 [96]. The 

earliest adoption of touch based interactions was on touch-tablets that were input sensing devices 

separated from the screens which would display the output [87]. Often these tablets employed the 

relative pointing with a cursor on the display just like keyboards and mice. Although touch tablets 

such as Wacom tablets [210] are still available for commercial use, but they are far outnumbered 

today by touch screen devices whose input and output surfaces are collocated. Hence, today, the 

direct-touch interfaces on touch screen devices mostly operate without a cursor in absolute 

positioning mode.  
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The mobile touchscreens history can be divided into two eras in the adoption of touchscreens: pre- 

and post-iPhone. In the pre-iPhone era, touchscreens were used in personal devices from 1993 to 

2006. Touch screens were predominantly used in Personal Digital Assistant Devices (PDA) such 

as Microsoft Pocket PC and Palm Pilot. These PDAs devices had mostly stylus-driven interfaces 

because their touch screens were based on resistive touchscreen technology, which requires 

physical pressure on the screen to register a touch event. 

 

Figure 2.1.1: Brief history of the touchscreen technology. Adapted from [66, 153]. 

One of the prominent the pre-iPhone era device was Apple’s Newton Message Pad PDA (see  

Figure 2.1.2 Left) which was commercially released in 1993 by Apple Inc. [15]. It was touch based 

device which used a stylus to operate and was the first device to feature handwriting recognition. 

Another competing PDA platform PalmPilot (see  Figure 2.1.2 Right) was commercially launched 

by Palm [218] in 1992 which eventually reduced the market share of Apple Newton [15] also used 

stylus and could do handwriting recognition. 
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 Figure 2.1.2: Pre-iPhone era devices with touchscreen interfaces. Left: Apple Newton Message 

Pad launched in 1993 [173]. Right: PalmPilot launched in 1992 [162]. 

There are several different methods employed by touchscreen technologies for sensing touch such 

as resistive, surface acoustic wave, capacitive, infrared grid, optical imaging, etc. During pre-

iPhone era, most of the popular touch screen mobile phones used resistive touch technology. One 

such mobile phone was Nokia 7710 (see Figure 2.1.3) launched in 2004 [158]. A resistive 

touchscreen panel comprises several thin layers and the most important of which are two 

transparent electrically resistive layers which face each other and have a thin gap between them. 

When an object, such as fingertip or stylus, presses down onto the outer surface, the two layers 

touch to become connected at that point. The position of pressure on the screen is detected as touch 

point by the system [199]. The pre-iPhone era devices had capabilities beyond the basic level of 

touchscreen interaction and allowed finger usage but still the touch gestures were mostly limited 

to finger tap and stylus touch. 
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Figure 2.1.3: Nokia 7710 launched in 2004; it used resistive touchscreen technology [158]. 

A capacitive touch screen panel consists of an insulator, such as glass, coated with a 

transparent conductor, such as indium tin oxide. As the human body is also an electrical conductor, 

touching the screen’s surface results in a distortion of the screen’s electrostatic field which is 

measured as a change in capacitance [199]. With the introduction of first Apple iPhone in 2007, 

capacitive touch became dominant in hand-held mobile devices replacing resistive touch 

technology in most touch-based devices. The capacitive touch screen unlike resistive ones does 

not require certain amount of pressure to be applied on screen’s surface which results in quick 

touch input. The first generation iPhone GUI included five touchscreen gestures in its vocabulary; 

single tap, swipe, drag and drop, pinch to zoom and double tap [53]. This capability of capacitive 

screens supporting responsive touch and various gestures provided opportunity to mobile 

touchscreen interaction designers to create novel GUIs and interactions as the touch user interface 

supported more touch actions than available in the pre-iPhone era. 

2.1.2 Touch Input Challenges 

Today touch input is the most popular method on hand-held devices such as smartphones and 

tablets as it allows users to directly manipulate the system without intermediary devices such as 

https://en.wikipedia.org/wiki/Insulator_(electrical)
https://en.wikipedia.org/wiki/Glass
https://en.wikipedia.org/wiki/Electrical_conductor
https://en.wikipedia.org/wiki/Indium_tin_oxide
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mouse, keyboard and joystick. However, using the finger in direct-touch interfaces raises various 

challenges. One such challenge is fat-finger problem [191] which makes the selection of small 

targets difficult and error-prone due to user’s relatively large fingertips. Another related issue is 

occlusion problem, in which the user’s finger or hand occludes the objects beneath it [208].  

Researchers have proposed various methods to improve target acquisition and avoid occlusion 

problems on touch surfaces. Parhi et al. [163] report an optimum target size of 9.6 mm for minimal 

error rates for thumb-based interaction with handheld touch screen devices. Offset cursors [166] 

is a technique in which a cursor appears slightly above the place where finger touches the screen, 

users drag the cursor to select an object and validate the selection by lifting their finger up. 

However, offset cursor does not cover the entire extent of the screen. This problem was solved 

using Shift [207] technique which reveals the occluded screen content in a callout displayed above 

the finger along with a pointer representing the selection point of the finger. There is another 

similar technique called TapTap [176] which outperformed Shift in target selection accuracy. In 

this technique a selection is done in two steps. First tap allows the user to define an area of interest 

on the screen and this area is magnified and displayed as a popup on the screen, and with the 

second tap user selects the desired target inside the popup. Albinsson and Zhai [5] proposed two 

techniques Cross-Keys and Precision Handle that allow users to precisely point at single pixels 

avoiding zooming, as zoom does not maintain the complete view of the entire area of interest. For 

one handed input, Karlson and Bederson [108] proposed a software based interaction technique 

called ThumbSpace for accurate selection for small and far targets. Another approaches to solve 

finger occlusion involves finger interaction on back of the devices (discussed in Section 2.2.2). 

Apart from the above-mentioned issues, another major issue in touch-based interaction for mobile 

devices is limited expressive abilities of touch input. We discuss this problem and solutions later 

in Section 2.3. 

2.1.3 Touch Actions 

A touch screen gesture is a 2D movement trajectory of a user’s finger or stylus contact point with 

a touch sensitive surface [232]. Each gesture has input dimensions. A simple tap has one input 

dimension which is touch point position on screen (x-y coordinates). The number of input 

dimensions are dependent on degrees of freedom (DoF) involved. A user can control the x and y 
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position of simple tap action on the screen and it results in 2DoF. If we introduce additional DoF 

such as contact time, the number of input dimensions increases. Now, along with x and y position, 

the user must control the time duration of touch as well. The expressive power of gestures can be 

enhanced by adding additional DoF as it may help in enhancing the amount of distinct information 

it conveys to the touchscreen. For example, a simple tap can have other DoF apart from 2D 

information (x-y coordinates), such as contact shape, area or finger orientation of the finger-touch 

point. In this way, the same tap gesture can perform varying actions depending upon additional 

DoF such as contact shape, area or orientation [31, 37, 42, 213, 219]. 

The most common input dimensions of traditional touch screen gestures are number of strokes, 

the stroke length, and the number of touch points on the screen. A simple tap action lacks the 

stroke action or movement of finger on the screen surface. Whereas touch actions such as swipe 

or flick which comprise of single stroke are also known as single-stroke touch actions (see Figure 

2.1.4). 

 

Figure 2.1.4: Touch gesture classification based on number of strokes. Left: Tap action. Right: 

single-stroke gestures. 

In this thesis, we introduce additional DoF (contact shape and orientation) to two types of touch 

actions; simple tap and single-stroke touch actions such as swipe and rotation to create our novel 

input vocabulary. In following two sections, we present previous research done on features and 

shortcomings of both simple tap actions and single-stroke actions and various approaches taken 

by researches to improve their expressive power. 
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Tap Action 

A simple tap action can be interpreted in different ways depending upon which graphical object it 

points to. They are used to manipulate graphical objects such as menus, buttons, icons and toolbars 

or issue a command. Although it may seem that tap actions are limited to acquiring graphical 

objects on the screen but the researchers have used tap actions in menu techniques such as FastTap 

[74] to provide faster command selection. The expressive ability of tap gestures is related to how 

many graphical objects can be fit into the screen and how easy it is to point at them. Usually GUIs 

on hand-held touch devices offer small menus and toolbars which may provide quick access to 

common items but for larger command sets, users may be required to do extensive visual search 

through hierarchical menus and various tap operations to reach desired item [160]. 

GUI designers can add more GUI elements such as buttons, menus and toolbars to accommodate 

large command set on touch interfaces. However, due to limited display size of mobile devices, 

there is a limit to the number of GUI elements that can be accommodated on the screen. One 

solution to this problem is the use of other information such as duration (short tap, long tap), or 

touch finger properties such as orientation and pressure to augment the touch input for different 

commands. One example is iPhone 6s, which introduced built-in pressure sensor that provides 

capability of 3D touch [1]. It has three levels of pressure: light, normal and deep press and different 

level of pressure can be used to invoke different actions. We explain the previous research work 

which involves use of these additional finger touch properties to improve expressive power of 

touch input later in Section 2.3 Augmented Touch Input. 

One of the main uses of tap actions in GUIs is to press buttons or icons. As interface designers 

want to support large command sets it is very important to understand the limits of recognizability 

of buttons/icons as they get smaller. Previous literature suggests that for buttons to work well with 

fingers, the button size needs to be larger than 22 mm in width [71, 123]. The average width of the 

index finger and the thumb for adult men are 18.2 mm and 22.9 mm respectively and women 15.5 

mm and 19.1 mm respectively [97]. Lee and Zhai did a study which showed that users are able to 

tap on buttons even if their size is smaller than the average finger width [122]. Smaller buttons or 

icons means that the interface can support from large command sets on display. However, smaller 

buttons and icons require more effort and precision by user for correct command execution. Fitts’ 
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law [62] is a predictive model used in HCI as a strong predictor of pointing performance. However, 

it has been inadequate in modelling small-target acquisition with touch-based input on screens [3, 

45]. Bi et al. proposed FFitts’ Law [33] which is an extension of Fitts’ law and is more accurate 

than Fitts’ law in predicting a finger touch input. 

A few researchers have explored multi finger tap (multi-touch) to augment tap action which 

enhances the expressive power of tap actions for faster command selection on touch surfaces. 

FastTap [75] (see Figure 2.1.5) is one such menu interface which uses entire screen to display a 

spatially stable grid of commands which is hidden by default. Novice users press the activation 

button using thumb to show the grid, visually search for the commands they need and then select 

a command. However, expert users can select a command with a single chorded tap using the 

thumb and the forefinger removing the need to wait for grid to appear and display the commands. 

 

Figure 2.1.5: FastTap selection: (Left) Default state of FastTap interface, (Center) Visual search 

by novice user, (Right) Rapid command selection by expert user without waiting for commands 

to appear [75]. 

HandMark [202] (see Figure 2.1.6) menus is a bimanual (i.e., using both hands) command 

selection technique which uses people’s hands as a landmarking technique for command selection 

where commands are placed between a user’s spread out fingers of one hand. Each finger presents 

a different command set. Novice users wait for grid with commands to appear and as they practice 

command selection, they remember the landmarks and transit into expert mode, and then they 
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execute chorded action with finger of hand used to display command set and finger from another 

hand to select the command without waiting for commands to appear. 

 

Figure 2.1.6: HandMark Menus. From left, 1: HandMark-Finger (novice mode). 2: HandMark-

Finger chorded selection (expert mode), 3: HandMark-Multi (novice mode), 4: HandMark-Multi 

chorded selection (expert mode) [203]. 

 

Figure 2.1.7: Finger count menu: A bimanual interaction technique for faster command selection. 

Bailly et al. [20] introduced finger-count menu technique which uses bimanual interaction for 

faster command selection on touch tables. In this technique, a user can invoke one of the menus 

from the toolbar using corresponding number of fingers from non-dominant hand and a command 
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from that menu can be selected by touching down a specific number of fingers from the dominant 

hand (see Figure 2.1.7). 

Since, single-stroke gestures have more input dimensions than simple tap, there is more 

opportunity to increase their expressive power, relative to simple tap. 

Single-Stroke Action 

A single-stroke touch action involves a finger stroke on the screen covering several x, y points 

over time. For example, one-finger or two-finger swipe to scroll and one-finger flick come under 

this category. Unlike tap action which mainly acts on graphical objects, single-stroke actions can 

be drawn anywhere on the screen, hence they do not take a lot of valuable screen real estate [13]. 

Instead of doing discrete tap actions to traverse through a menu to locate an item, the user can 

execute a single-stroke action as a command shortcut in one step which can support rapid 

command execution. As they are not dependent on graphical objects, single-stroke actions can 

support larger gesture set relative to simple tap which in turn can help interface designers to support 

larger command sets. Most of the touch gestures which involve strokes (movement of the finger 

over the screen) use single-stroke touch actions such as swipe or flick. Hence, it is important to 

discuss the issues related to stroke gestures made up of single-stroke actions such as swipe action. 

One of the major uses of stroke gestures is in command shortcuts on touch interfaces. As more 

gesture shortcuts are available in an interface, the more difficult it may become for the system to 

recognize the gesture input and users to recall the shape of gesture shortcut [232]. Thus, the gesture 

should be unique so that it is easier for a system to recognize the gesture. Increasing complexity 

in gesture shortcuts such as different gesture shapes, using additional finger properties (contact 

shape, orientation, pressure), multi-touch, etc. can help systems to recognize a larger number of 

gestures and help users in gesture recall [13]. 

GUI designers always strive to develop interfaces which require minimum user effort and tap 

gestures fulfil that goal as the users can locate graphical objects visually. Performing gestures 

made up of single-stroke actions as command shortcuts in an interface may require users to put 

more effort relative to tap action initially as they must retrieve the mapping of gesture and 

command from their memory. However, previous research shows that increasing the mental effort 

of interaction can help users remember spatial patterns better than sequential patterns as they can 
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develop spatial memory for both locations and trajectory of gestures [51]. Using gesture shortcuts 

for command execution has been shown to be more effective than using keyboard shortcuts. Appert 

and Zhai [13] compared the performance and ease of learning of stroke shortcuts in comparison to 

keyboard shortcuts. Users could recall more stroke shortcuts and produced fewer errors with stroke 

shortcuts than with keyboard shortcuts even though both type of shortcuts were performed after 

same amount of practice. Stroke gestures were found to be easier to learn and recall due to their 

spatial properties and iconic properties. Memory-based command selection techniques are 

dependent on human memory which can be divided into declarative and procedural memory [67]. 

Novice users use declarative memory also called explicit memory which refers to those memories 

which can be consciously recalled whereas expert users use procedural memory, it is unconscious 

and implicit as no explicit effort is required to recall memories. Hence, well designed gesture 

shortcuts can be provided for touch interfaces which help users to become experts and perform 

rapid command selection.  

 

Figure 2.1.8: Marking Menu command selection mechanism: (a) Novice Method-Visual Search 

and (b) Expert Method using recall from memory [118]. 

Researchers have developed various interfaces to for efficient and faster command selection using 

single-stroke touch actions such as swipe and flick. One of the prominent examples is Marking 

Menu [118], which is one of the alternatives to hierarchical linear menus and contains a contextual 

circular menu that allow expert users to traverse the radial menu via directional strokes allowing 
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rapid command selection (see Figure 2.1.8). However, the number of items which can appear at 

each hierarchical level are limited. It can be extended in order to accommodate larger command 

set by making it hierarchical [236]. Another technique to extend marking menu is the use of 

Augmented Letters [178], in which gestures consist of the initial of command names drawn in 

single-stroke style which invokes the Marking Menu. FlowMenu [73] is a command entry system 

for pen-based inputs and an extension of hierarchical marking menu which is used to select an 

item and then do parameter entry for that item. For example, a user can select a zoom command 

and when sub-menus appear, user can enter the sub menu for zoom value and provide the value. 

Li [125] examined real world deployment of Gesture Search tool (see Figure 2.1.9) with mobile 

phone users which showed that single-stroke gesture shortcuts successfully provide rapid and easy 

access to various items in mobile phone such as contacts, bookmarks and application etc. their day 

to day lives. 

 

Figure 2.1.9: Gesture Search tool provides users quick access to items in mobile phones by 

drawing gesture shortcuts. 

To summarize researchers have used various techniques such as memory-based techniques 

(gestures) [17, 120, 131], hotkeys [136], spatial locations [50, 74, 183] and multi-touch chorded 

actions [68] to improve expressiveness of interaction with devices. However, there is still a gap 
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between the capabilities of touch screen devices, kinesthetic abilities of users and input vocabulary 

for touch devices. One method with great potential is to use of additional finger properties [31, 37, 

42, 213, 219] as additional input dimensions to augment the touch actions. In this thesis, we used 

contact shape and orientation of the finger touch to develop novel input vocabulary of augmented 

touch actions. 

Multi-Stroke Action 

A multi-stroke touch action involves multiple finger strokes on the screen covering several x, y 

points over time. For example, pinch-to-zoom and two-finger rotate are commonly used touch 

actions which come under this category. Pinch-to-zoom is a two-finger action used to change the 

size of objects or content onscreen (see Figure 2.1.10). For example, map views use pinch actions 

to change the zoom level of the map. Pinch-to-zoom is performed by placing two fingers on the 

surface, typically thumb and index finger of the dominant hand and then pinching them together 

(zoom out) or spreading them apart (zoom in). The standard implementation of pinch-to-zoom sets 

the document/map zoom level according to the change in distance between these two simultaneous 

touch points [85, 200]. The two-finger pinch-to-zoom has been the standard technique for multi-

scale navigation for long. Buxton in his essay on multi-touch systems, traces the early use of pinch-

to-zoom to the early 1980s [153]. Krueger's Videoplace supported the use of a two-finger pinch 

action to scale and transfer objects as early as 1983 [115]. Wellner’s Digital Desk video from 1991 

clearly demonstrates various multi-touch concepts such as two-finger scaling and translation of 

graphical objects using a pinch action [217]. Kurtenbach et al. demonstrated the use of pinch-to-

zoom to zoom and rotate the artwork [117]. Hinckley et al. used a similar pinch action in 1998 to 

zoom and pan around the center of two contact points for map navigation [85]. 

 

Figure 2.1.10: Pinch-to-zoom action. Touch surface with thumb and index fingers and bring 

them closer together to zoom out and move them apart to zoom in document/map. 
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Hoggan et al. [93] examine the mechanics of pinch-to-zoom action, identifying the factors that 

affect performance such as direction, distance, angle and position. They also provide insight into 

which hand postures and positions are the easiest for users to achieve, and further provide 

significant insights for designers. One prominent problem that emerges with pinch-to-zoom is that 

sometimes a target resolution cannot be achieved in a single pinch or spread, and multiple 

successive actions are required. In this context, making a series of repeated pinch or spread actions 

to achieve a target is called clutching. Although interacting at multiple zoom levels can be useful 

to its users but it can be inefficient due to the need to repeatedly clutch [121, 156]. Also, with 

repeated zooming, finger occlusion can make it difficult to keep track of the underlying target area. 

DTLens [63] and Cyclostar [137] eliminated this problem by supporting the zoom functionality 

without clutching. Avery et. al introduced an enhanced zooming technique called Pinch-to-Zoom-

Plus [16] that reduced the clutching and panning operations compared to standard pinch-to-zoom 

behavior. Apart from occlusion problem, pinch-to-zoom also inherits the precision problem. The 

lack of precision means that selecting the intended target is difficult, so successive attempts must 

be done. The scaling operations are centered on the point of contact, and hence, the area of interest 

will be occluded during target selection and remain occluded even after the zoom action. Hence, 

the users performing a pinch-to-zoom action are often required to zoom, and then perform a 

corrective pan to reposition the target so that it is visible. A few researchers have focused on 

eliminating these issues specifically during zooming and scaling. Albinsson and Zhai introduced 

Zoom-Pointing technique [5], a bimanual technique in which the user draws a bounding box to 

define a persistent zoom area. This technique allows the users to specifically delineate the content 

they want to see onscreen, which removes the need to perform corrective pan after zoom action. 

However, it is designed to work with a fixed resolution and does not support dynamic scaling. 

DTLens [63] is similar to Zoom-Pointing technique, but adds controls for minimizing, closing or 

annotating the enlarged viewport. It allows users to save and restore the zoom levels. 

Two-finger rotate action is defined as a radial motion of the thumb and index finger around a fixed 

point (see Figure 2.1.11). Rotational gestures are commonly used to manipulate objects onscreen. 

For example, you might use them to rotate a view or update the value of a custom control. 
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Figure 2.1.11: Two-finger rotate action. Touch surface with thumb and index finger and move 

them in a clockwise or counterclockwise direction to rotate the view. 

Several research projects have proposed different multi-finger touch actions including rotation, for 

use with multi-touch displays [77, 116]. Buxton in his essay on multi-touch systems, traces the 

early use of two-finger rotate action to early 2000s [153]. Wu and Balakrishnan describe the use 

of a rotation widget that allows users to manipulate the orientation of an object using a two-point 

action with the thumb and index finger [226]. A few researchers have examined the usability and 

performance of rotation actions in comparison to other techniques. Hancock et al. [77] presented 

a comparison of different multi-touch techniques with a focus on the input and output DoF, while 

Kruger et al. [116] investigated the speed and accuracy of traditional rotational actions in 

comparison to Rotate’N Translate. Zhao et al. [234] used the combination of Mahalanobis distance 

metric and Fitts’s law to create a model of movement time for translation, scaling and rotation. 

The model shows a linear relationship between movement time and their model. However, in all 

these studies, the participants in the experiments used the combination of various type of touch 

actions. This means it is difficult to isolate the performance of rotations. 

Typically, the researchers examine touch gestures with respect to their speed, accuracy and DoF 

involved. However, there are other important factors too such as ergonomics. Muscovich and 

Hughes [151] found out in their study that it can be difficult to complete large rotations without 

positioning the hand in an awkward manner. This is because of the physical limitations of finger 

and writs movement. The average dominant wrist extensor muscle activity has been shown to be 

higher for gestures that employ two fingers as opposed to one [130]. Hogan et al. evaluated the 

usability of two-finger rotation actions by measuring users’ biomechanical ability to perform 

rotations. They also determine the factors affecting the performance and ergonomics of rotation 

actions. Their study found the effects of the angle, direction, rotation diameter and position on 
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participants’ performance of two-finger rotation actions. Son and Lee proposed FingerSkate [193] 

rotation technique to reduce the effects of musculoskeletal constraints. In this technique, the user 

first performs a normal two-finger rotate action and then can continue the operation without having 

to maintain both fingers on the screen. Nguyen and Kipp [157] studied the orientation (direction 

in which rotation occurs; clockwise or counterclockwise) factor in translation and rotation of 

objects with two fingers. The results of their study show that right-oriented movements were faster 

and easier than left-oriented ones. Movement combinations in different directions (translation 

right, rotation left, and vice versa) are more tiresome compared to equidirectional combinations. 

2.2 AUGMENTED INPUT 

An input device is a piece of computer hardware which is used to transmit data and signals to an 

information processing system such as desktop computer, mobile phone, etc. One of the primary 

goals of HCI researchers is to broaden the communication channel between the user and the input 

devices. Addition of physical buttons to a device, addition of tactile or haptic feedback or inclusion 

of additional DoF to any device or GUI based interaction technique is called augmenting input 

capacities of the system.  In this section, we discuss various augmentations done in two most used 

computer peripherals such as mouse, keyboard and other interactions such as gaze, voice, etc. 

2.2.1 Mouse 

A computer mouse is a hand-held pointing device that detects 2D motion relative to a surface [55]. 

The motion of mouse is usually translated into the motion of a pointer on the monitor’s screen and 

it allows the manipulation of the GUI elements such as selecting a file, moving a file, etc. A typical 

mouse consists of two buttons and a scroll wheel (see Figure 2.2.1). 
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Figure 2.2.1: Computer mouse: two buttons (left and right) and a scroll wheel [55]. 

The desktop computer interactions on latest Windows 10 and Apple’s macOS 10.15 Catalina still 

look and act like Xerox Star [32], following the direct-manipulation paradigm common in 

Windows, Icons, Menus and Pointers (WIMP) interfaces. The mouse and keyboard remain the 

most common devices for input on desktop computers. The interactions such as selecting an object, 

drag and drop, widget controls still remain same as those designed for the first graphical interfaces 

[32]. Although the designs based on the WIMP model have been successful, but researchers have 

also demonstrated number of flaws [27–29, 32, 101, 102]. For instance, the WIMP interfaces often 

require a large number of widgets, to accommodate large command set as each widget is typically 

mapped to a single system command. As a result, the higher-level tasks are not well supported and 

require multiple controls to be activated or a control activated multiple times in order to execute a 

real-world task. One such problem is navigating a document which is poorly supported by WIMP 

interfaces [12, 100] as navigational sub tasks such as scrolling, and zooming are controlled by 

separate widgets. 
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To improve the support for higher level tasks, various types of augmentations have been done on 

computer mice. The three main approaches taken so far are: use of additional DoF; addition of 

feedback; adding buttons to the mouse. 

Additional degrees of freedom 

The basic design of a computer mouse has remained essentially unchanged for 40 years following 

its first public demonstration by Doug Englebart et al. [2]. Since then, there have many efforts 

made to augment the basic mouse functionality with additional capabilities. One of the most 

successful addition to the mouse has been the scroll wheel [205] which originally added to support 

3D interactions. One of the primary areas of research in this space has been focused on extending 

the number of DoF that the mouse can sense and thereby control. 

MacKenzie et al. [135] and Fallman et al. [61] describe prototype devices that contain hardware 

from two mice rigidly linked into a single chassis to enable rotation sensing and thereby provide 

three degree of freedom (DoF) input. Rockin’s Mouse [23] augments a mouse with tilt-sensing 

accelerometers to enable 4DoF input. The bottom of the device is rounded to facilitate this rocking 

motion, which is used to control two extra DoF for manipulation of 3D environments. VideoMouse 

[88] is a mouse augmented with a camera on its underside and employs a mouse pad printed with 

a special 2D grid pattern. The VideoMouse software runs a real-time vision algorithm that 

calculates 6DoF mouse movement by comparing camera images over time. The mouse can sense 

two axes of horizontal motion like a standard mouse, tilts of the mouse forward, backward, left 

and right, rotation of the mouse around the z-axis and limited height sensing. This allows 

VideoMouse [88] to perform a number of 3D manipulation tasks. FieldMouse [192] is a 

combination of an ID recognizer like a barcode reader and a mouse which detects relative 

movement of the device. FieldMouse users can interact with virtual objects using any flat surface 

that has an embedded ID strip. Balakrishnan et al. [24] described the PadMouse, where the 

conventional mouse buttons had been replaced with a touchpad, allowing users to activate 

modifiers and commands. Multi-touch mice [12] is set of novel mice that combines the standard 

capabilities of a computer mouse with multi finger touch sensing. 

Cechanowicz et al. [44] investigated the possibility of providing pressure-based input by 

augmenting a mouse with either one or two pressure sensors (see Figure 2.2.2). A pressure sensor 
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is an absolute, continuous, and one-DoF input device. This augmentation allows the users to 

control many input modes with minimal movements of the mouse. Cechanowicz et al [44] 

developed several pressure mode selection mechanisms and showed that with two pressure sensors 

users can control over 64 discrete pressure modes. 

 

Figure 2.2.2: (Left) Uni-pressure augmented mouse with a sensor in the top location for the 

second finger. (Right) Dual-pressure augmented mouse with sensors located in the top location 

for the second finger and in the left location for the thumb [44]. 

However, the pressure based interaction techniques proposed by Cechanowicz et al [44] are largely 

based on users manipulating the pressure input independently of the mouse’s movement degrees 

of freedom (2DoF in traditional mouse’s case). To solve this issue, Shi et al [188] demonstrated a 

pressure-based interaction technique called PressureMove that enables simultaneous control of 

pressure input and mouse movement. This technique supports tasks like rotation and translation of 

an object or pan and zoom. There are other pressure sensitive mouse implementation such as 

Inflatable Mouse [111]. It is a volume-adjustable mouse, having a balloon inside which can be 

inflated to allow the mouse to be adjusted to the size of a standard mouse and can be deflated and 

stored in a PC card slot of a laptop computer when not in use. The balloon has is fit with a gas-

pressure sensor, allowing the user to squeeze or apply pressure to the mouse and control continuous 

parameters. The pressure change by deformation of the balloon provides users passive haptic 

feedback naturally and can be transformed into an input signal to computer. The mouse contains 

two touch sensors which acts as primary and secondary mouse buttons, and an array of touch 

sensors that act as a scroll wheel [111]. 
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Addition of Feedback 

The tactile mouse [4] is a modification of a standard mouse that has been augmented with a small 

actuator. The mouse vibrates under certain conditions. This kind of feedback can inform users 

when certain events are occurring. For example, when the cursor is moving into different areas of 

windows or when the user is crossing window boundaries. Akamatsu et al. [4] conducted a study 

to compare the effects of tactile feedback, visual feedback and auditory feedback in mouse based 

selection. The results of the study show that users performed better in selection tasks with tactile 

feedback over visual and auditory controls. Just like tactile mouse, there are commercially 

available products like SteelSeries Rival 700 Gaming Mouse1, which provides tactile feedback to 

give gamers in-game cues and also a little OLED display that can show game statistics. The 

product page states, “The Tactile Alerts have been carefully placed in the center of your mouse, 

so you feel the pulse strongly in your palm. By directing the pulse to only move up through your 

hand, as opposed to left and right, Tactile Alerts will never impact your mouse’s tracking, so you 

can keep your pixel-perfect aim.” 

 

Figure 2.2.3: SteelSeries Rival 700 Gaming Mouse: a gaming mouse that features an OLED 

screen for visual notifications, in-game statistics and provides tactile feedback about instant 

game cues [194]. 

 

1 SteelSeries Imbues Rival 700 Gaming Mouse with Haptic Feedback, OLED Display 

https://www.tomshardware.com/news/steelseries-rival-700-gaming-mouse,31875.html 
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The Inflatable mouse [111] is a balloon like inflatable mouse which can be deformed by user’s 

fingers and palm. The pressure change by deformation provides users passive haptic feedback 

naturally and can also be transformed into an input signal to the computer. LensMouse [231], a 

novel device that embeds a touch-screen display onto a mouse. Users interact with the display of 

the mouse using direct touch, while also performing regular cursor-based interactions. Certain 

application relies heavily on auxiliary windows to relay feedback to users. These auxiliary 

windows can occlude the main workspace and thus distracting the users from their main tasks. 

With LensMouse [231], such visual feedback can be displayed on the display of the mouse and 

users are alerted of their appearance through a notification. Hence, the separation of auxiliary 

information from the main display avoid occlusions and unnecessary distractions. This also 

reduces the mouse movement as user can interact with auxiliary information with direct touch.  

Park et al. [164] embedded an electromagnet in a mouse operated over a ferromagnetic mouse pad 

to control the difficulty to move the mouse, but the mouse is not capable moving. For example, 

when the mouse cursor moves into clickable area, magnetic attraction generates friction, allowing 

the user to find the target easily. This system can be helpful to increase work efficiency for CAD 

work and graphic design as it requires abundant mouse control to select lines. It can also enrich 

the gaming experience on computers as it can provide the game user with various tactile 

experiences. 

Adding buttons to the mouse 

One of the most successful augmentation to the mouse is addition of the scroll wheel. It is usually 

placed on top of the mouse and can be accessed by the first and second fingers. It is a variation of 

a button that facilitates discrete input along a single bidirectional axis. The scroll wheel allows 

users to scroll vertically or horizontally in a window without moving the mouse to activate scroll 

bar. Few researches have shown that the scroll wheel is particularly effective when used for 

navigating through long documents [86, 235].  

An alternative to scroll wheel was introduced by the IBM to IBM ScrollPoint mouse [99] that 

features an isometric joystick on top of the mouse where usually scroll wheel is placed. This 

isometric joystick is accessible to first and second fingers and provides the user an additional 

bidirectional DoF. The pressure applied on the joystick controls the rate of scrolling and the 
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direction of pressure determines the direction of scrolling. The TrackMouse [140] 2 + 2 DoF 

controller, allowing two axes of control like a standard mouse and an additional two axes of control 

from a trackball added to the top of this mouse instead of a scroll wheel. The TrackMouse gives 

the user 4DoF with a single-handed interaction. Martin et al. conducted experiments to compare 

the TrackMouse to bimanual control of two mice in a two-cursor control task. The results show 

that users were somewhat slower using the TrackMouse than when they used two mice setup. 

Various manufacturers have added additional buttons to the mouse’s form factor. Some mouse 

manufacturers have added multiple secondary buttons on the left, right and top sides of the mouse. 

Adding additional buttons can make certain tasks easier but it requires users to remember the 

mappings between buttons and functions and may require the repositioning of fingers to press 

buttons. Also, the buttons on the sides of the mouse may be accidentally depressed during normal 

use of the mouse. However, this has not stopped mouse manufacturers to add additional buttons. 

The SteelSeries Rival 700 Gaming Mouse [194] has included two buttons on the left side of the 

mouse and one button on top of the mouse behind the scroll wheel (see Figure 2.2.3). The two 

buttons on the left side can be used to navigate backward and forward in a browser, increase and 

decrease sound in multimedia applications and zoom in and zoom out while navigating on Google 

Maps. The top button when pressed invokes the SteelSeries Gaming Engine which is a special 

application for video gaming support on computers [194]. 

2.2.2 Keyboard 

A computer keyboard is a typewriter-style input device which uses an arrangement of keys to act 

as mechanical levers or electronic switches [54]. The keyboard keys typically have characters 

printed on them, and each press of a key typically corresponds to a single written symbol (see 

Figure 2.2.4). However, to produce some symbols users are required to press and hold several keys 

simultaneously or in sequence. 
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Figure 2.2.4: A standard wired chiclet style keyboard [54]. 

Keyboards have remained essentially the same for last 30 years, despite increases in the variety 

and complexity of software [27, 144]. Various researches on keyboards have investigated 

ergonomic designs, enhanced layouts, and new capabilities [124]. Although we have already 

discussed keyboard augmentations for mouse input (e.g., shift + clicking) in Chapter One, keys 

are also input devices that can be augmented. The three main approaches taken so far to augment 

the keyboard input capabilities are: enhanced keyboards, and addition of feedback. 

Enhanced Keyboards 

One of the approaches taken by researchers to augment keyboard is to add finger-touch sensing 

capabilities on the keyboard keys. The usual two states of a key are pushed or released. This adds 

an additional input state called “touched” which can be used for various purposes such as 

previewing information, manipulating virtual objects or perform gestures. Block et al. [35] 

demonstrated an augmented keyboard called Touch-Display keyboard (TDK), a keyboard that 

combines the physical ergonomic qualities of the conventional keyboard with dynamic display and 

touch-sensing embedded in each key. A conventional keyboard can only provide input to a 

graphics display. A TDK, in contrast has graphical elements distributed between primary display 

and keyboard display (see Figure 2.2.5). On the keyboard, the graphical elements become 

associated with the key regions they occupy. The touch is supported as a third state for manual key 

input, providing three-state input to the keyboard. 
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Figure 2.2.5: Touch-Display keyboard. Slider controls being displayed on the keyboard which 

can be manipulated using finger touch. 

Surfboard [110] is a technique which consists of a conventional keyboard with a monaural 

microphone which augments the input capability of a keyboard by recording and analyzing sounds 

produced when user lightly touches the keyboard and moves their fingers horizontally over it. It 

adds an operation modality called Surfing to the standard keyboard without changing their physical 

properties. Surfboard allow the user to maintain a focus on the screen while surfing the keyboard. 

As the surfing and typing happens at the same place, the user can seamlessly continue touch typing 

after surfing. 

A standard keyboard provides CTRL + Z shortcut for undoing changes. However, it is often not 

possible to undo an action. In such scenarios, previewing the effects of command can be helpful. 

Rekimoto et al. [172] developed a previewing device called PreSense keypad. PreSense is a keypad 

that recognizes position, touch and pressure of a user’s finger. The keypad recognizes the finger 

motions and the system provides preview information about the key/command to the user so that 

they can make decision before executing a command [172]. 

Another approach to augment the input capability of a conventional keyboard is addition of 

pressure-based input. The pressure sensing further extend the finger-sensing capabilities by 

offering a continuum of states between touched and pushed. Dietz et al. [58] demonstrated a 

pressure sensitive computer keyboard that independently senses the force level exerted on every 

depressed key. Dietz et al. suggest that this pressure sensitive keyboard can be used in gaming and 

emotional instant messaging [58]. Jong et al. [105] demonstrated a tactile input method for 

pressure sensitive keyboards based on the detection and classification of pressing movements on 

already pressed-down keys. Loy et al. [129] demonstrated a biometrics user authentication system 

based on a pressure-sensitive keyboard using special hardware and software solutions. 
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Typically, a keyboard detects keystrokes as binary states (e.g. a key is “pressed” or “released”). 

Usually one key corresponds to one character to be printed or a function key. Due to this, complex 

input commands need multiple key presses. For example, pressing “Command + Shift + Opt + 4” 

takes a screenshot and saves it in clipboard on MacOS. Shi et al. presented solution called 

GestAKey [189], a technique to enable multifunctional keystrokes on a single key. The system 

consists of touch sensitive keycaps and a software that recognizes the micro-gestures performed 

on individual keys to perform system or input special characters [189]. Bailly et al introduced a 

novel keyboard called Métamorphe [22] with keys that can be individually raised and lowered to 

promote hotkeys usage. It augments the output of traditional keyboards with haptic and visual 

feedback. The key input is augmented by using push-type solenoids mounted under each key. This 

results into a novel set of gestures. For instance, the keyboard raises a subset of hotkeys when a 

user presses the CTRL key. The ‘F’ key is also raised and can be pushed down to select Find 

command or can be pushed left or right to select variations of Find command (see Figure 2.2.6). 

 

Figure 2.2.6: a). Métamorphe keyboard raises a subset of keys when CTRL key is pressed. b). 

Each key can be raised with an embedded solenoid and contains force sensors. c-d-e). For 

instance, ‘F’ key can be pushed to select “Find” command or pushed left or right to select the 

variations of this command [22]. 

Other additions to the keyboard have generally served special purposes. For instance, the IBM 

TrackPoint [179] is a small rubber nub to the center of the keyboard, which is used as an isometric 

joystick to control the cursor in the absence of the mouse. The force exerted, and direction of force 

applied determines the rate of scrolling and its direction. However, addition of a rubber nub to the 

keyboard is not an augmentation to the keypress as it is just a second input device integrated into 

the hardware. 
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Addition of feedback 

Active haptic feedback is often used to increase the accuracy of virtual keyboards [92] or non-

physical buttons [134] on touch surfaces. In the context of physical keyboards, force feedback has 

been proposed to improve a user’s comfort and to prevent errors during text entry [91]. Savioz et 

al. [182] designed a haptic keyboard with user-adjustable force feedback under each key by using 

coils and electromagnets but provided no user performance data. Kim et al. [103] used 

piezoelectric switches to replace the dome structures of keys on a physical keyboard to simulate a 

flat, zero-travel keyboard with haptic feedback. Their study showed that users typed faster with 

local haptic keyclick feedback (55.1 WPM) than with global feedback (51.8 WPM) or no haptic 

feedback (46.3 WPM). 

Touch-Display keyboard [35], Microsoft adaptive keyboard [146], The Optimus [161] contain 

small screens on each key that can display application-specific icons or notifications. These visual 

enhancements encourage the recognition of hotkeys, but they also divide the attention of users 

between the screen and keyboard which can be tiring and time-consuming [144]. 

2.2.3 Other Interaction Methods 

There are interaction methods apart from the mouse and keyboard that add expressivity to input 

using additional degree of freedom (DoF). 

Eye Gaze 

Eye tracking is the process of measuring either the point of gaze or the motion of an eye relative 

to the head. An eye tracker is a device for measuring eye positions and eye movement [60]. One 

of the earliest to use eye gaze as an input was Erica [98], a computer workstation equipped with 

imaging hardware and software. The system automatically records a digital portrait of the user’s 

eye. From the portrait, the interface calculates the approximate location of the user’s eye gaze on 

the computer screen. The computer then executes the command related to the menu option 

displayed at the eye gaze location [98].  

Porta et al. [165] develop a system called Eye-S that allows input using gaze tracking hardware. 

The system tracks relative eye movements and absolute eye position, allowing the eyes to control 
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point movement, and issue commands and to write using “eye graffiti” approach. This system 

allows the eyes to be used for 2DoF bidirectional input [165]. Lucas et al [132] used eye gaze as 

an extra DoF to resize 3D objects in virtual environments. They ran a study comparing 

performance of gaze control, pointer control and 3D widgets. The results show that users were 

significantly faster resizing objects when using the combination of gaze and pointer control 

compared than with existing 3D widgets technique [132]. However, these examples just 

demonstrate that eye gaze can be used as an input to a computer system. Therefore, interaction 

designers can add eye gaze to augment input of devices such as mouse and keyboard (e.g., eye 

gaze input is added to mouse input). 

Voice 

The human voice can be used as an additional DoF to augment a device’s input capabilities. One 

such technique is Voice Pen [78] which uses voice input to control parameters such as line width 

in a 2D drawing program. Usually, this parameter is controlled by the stylus pressure in most 

drawing programs. This system allows users to control the movements of an on-screen cursor using 

voice. The user has to say a vowel which is mapped to a direction on the screen to control the 

cursor position. This system uses non-linguistic voice input in which the user can say vowel 

sounds, vary the pitch of sound or control the loudness to augment the pen input [78]. Like Voice 

Pen, Mihara et al. demonstrated an interface called Migratory Cursor [148] to control cursor 

movements. The migratory cursor displays multiple ghost cursors that are aligned vertically or 

horizontally with the actual cursor. The user quickly specifies the approximate position by 

referring to the ghost cursor nearest the desired position and then uses non-verbal vocalizations to 

move the ghost cursors continuously until a cursor reaches the desired position [148].  

Sakamoto et al. proposed a technique called Voice Augmented Manipulation (VAM) [180] for 

augmenting user operations on a mobile phone. Tasks such as scrolling, zoom in and zoom out 

require repeated finger gestures as the mobile phone screens are small and hence, all content cannot 

be shown at once. Also, repeating finger touch can also hide the content on the screen. With VAM 

technique, the user first presses a button or makes a finger gesture to manipulate something on the 

mobile device and then say a sound. The operation then continues until the user stops doing the 

action or making the sound [180]. 
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Bimanual Input 

Bimanual input techniques use both hands and can be useful for designing more powerful 

interactive systems. Various research projects have investigated the advantages of bimanual input 

[24, 40, 43, 59, 106, 171] . In single handed interaction techniques, only the dominant hand is used 

to provide input to the system, whereas in case of bimanual interfaces, non-dominant hand can be 

used to augment the input provided by the dominant hand. Multi-touch interaction designers can 

employ bimanual input to increase the input vocabulary and hence, enhance expressivity of the 

input. Bimanual input has also been explored in traditional input devices: For instance, devices 

such as trackballs, styluses and tool glasses have been used along with keyboards and mice. 

Bimanual interactions can have both positive and negative effects on performance. Various 

research projects have demonstrated that comparisons among these input devices [64, 83, 107, 

154, 159] indicate that some perform well under certain conditions and perform poorly in others 

[38]. 

Kabbash et al. [106] studied the impact that bimanual interaction has on compound task 

performance. The results show that bimanual interactions can have both positive and negative 

effects on performance. Also, certain kinds of bimanual interactions, where the second hand’s 

action is dependent on the first hand, can yield the highest performance when the interaction 

technique is designed properly [106]. SmartSkin [171] is a multi-touch interaction technique that 

can track multiple positions of multiple hands as well as shape of hands and fingers. Rekimoto et 

al. [171] created a prototype for digital interactive tables that supports bimanual interaction for 

object manipulation tasks such as zooming and panning. Holowall [141], a computer augmented 

wall supports bimanual interactions along with single hand and whole body interactions. Dietz et 

al. created DiamondTouch [57], a technique for creating touch sensitive surfaces which allows 

multiple, simultaneous users to interact and the touch location information is determined 

independently for each user. This technique supports bimanual interaction in table-sized displays. 

This technique has been later successfully incorporated in other bimanual interactive techniques 

[40, 46, 59, 64, 227]. 

Several studies have been done to investigate the performance of different bimanual interaction 

techniques against standard input devices. Forlines et al. [64] compared a two-handed mouse to 
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direct touch input on large tabletop interface. Kabbash et al. [107] compared the performance of 

different input devices (e.g. stylus, mouse and trackball) for bimanual interactions.  Brandl et al. 

[38] used both pen and direct touch simultaneously for bimanual interactions and reported that 

users were faster and did fewer errors using pen and touch input compared to either touch and 

touch or pen and pen input. 

Bimanual interactions have also been implemented and studied in touch-based interfaces. The 

Marking menu technique, a gesture-based and memory dependent menu technique has also been 

implemented for two handed operation [119]. Odell et al. [159] introduces a new input technique, 

bimanual marking menus, and compare its performance with toolglasses and hotkeys in both one-

handed and two-handed fashion. Their results from the experiment shows that bimanual 

interactions can improve overall performance. 

 

Figure 2.2.7: Bimanual interaction in finger count menu [21]. 

Finger count menu [21] is another menu technique which uses bimanual interaction for fast 

command selection on touch tables. Using this technique, a user can invoke one of the menus from 

the toolbar using corresponding number of fingers from non-dominant hand and a command from 

that menu can be selected by touching down a specific number of fingers from the dominant hand 

(see Figure 2.2.7). Uddin et al. [202] introduced HandMark menus, a rapid access and bimanual 
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interaction technique designed for large multi-touch surfaces. The commands are placed in 

spatially stable spaces around and between fingers of both hands. Once, locations of the commands 

are learned the users can use expert mode in which they combine menu invocation and command 

selection to perform a rapid bimanual chorded selection. 

Modes 

A mode in HCI is a context where user actions such as keypresses and mouse clicks are treated in 

a specific way. That is, the same action may have a different meaning depending on the mode. 

Modes can either be explicit (part of the interface) and therefore can add power without needing 

extra input capability, or implicit (not part of the interface) and therefore need to have additional 

input capability. For example, pressure sensing on the pen is an implicit mode switch. Modes can 

be a way to increase expressiveness without adding extra DoF to input. For instance, the 

FlowMenu [73] is a type of marking menu [119] that makes use of multiple modes, set parameters, 

allows users to select commands and perform text entry with a stylus.  

In pen-based interfaces, inking and gesturing are two central tasks and switching between these 

two modes is an important task [201]. Various researchers have explored the availability of 

pressure in pen-based devices for mode switching. Stylus pressure can be used to switch input 

mode from inking to gesturing [126]. Ramos et al. [169] conducted the investigation of human 

ability to select discrete target by varying stylus pressure under full and partial visual feedback. 

Pressure Marks [170] is technique designed by Ramos et al. which employs pressure as a feature 

for selection and action simultaneously. Using pressure can be an effective input method for 

mobile devices. Varying levels of pressure can be used, for instance, to convert the case of letters 

[39]. Miyaki and Rekimoto proposed a single-handed UI scheme to realize multi-state input using 

pressure sensing [149]. 

Tapping on back of the device is also a popular method of mode switching. Sugimoto and Hiroki 

mounted a touchpad to the rear surface of a PDA and proposed a new technique called 

HybridTouch [197]. Similarly, Yang et al. [230] designed a Dual-Surface technique in which a 

touchpad was mounted at the back of a PDA. Back tapping has been used to trigger a continuous 

mode in mobile devices [175]. 
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Another technique used widely for mode switching in pen-based devices is pressing and holding. 

In this technique, the user holds the pen tip on the screen for predefined time, then mode switching 

feedback is provided. The user can lift the pen tip to choose from a menu item or move the pen tip 

to draw a gesture on the screen. Tu et al. [201] designed a pressing and holding technique as per 

method proposed by Li et al. [126] and compared this technique to other mode switching 

techniques such as pressure, tapping on device’s back and pressing buttons on the device. Their 

results show that back tapping offered the fastest performance among all techniques whereas 

pressing and holding was significantly slower than other techniques. However, pressing and 

holding resulted in fewer errors. 

There are other methods explored by researchers for mode switching in pen-based interfaces. Bi 

et al. [34] explored the use of pen rolling in pen-based interaction and the task of mode switching. 

Pen tilt [229] has also been employed to perform mode switching. Wang et al. [215] designed a 

text entry solution called Shrimp for mobile phone keypads and the systematic investigation of 

this technique shows that motion gesture can produce better mode switching for word input. Other 

standard method used in pen-based application include pressing the stylus’s barrel button for 

gesturing [127]. The barrel button also acts as a right click equivalent found in computer mouse. 

Before gesturing, users press the barrel button while the pen is in air. User must keep it pressed 

until drawing is started. The gesture mode is not disengaged even after a pen down event until the 

pen up event or the barrel button is released [126]. Physical buttons on mobile devices can also be 

used for initiating mode switching. 

Time 

Another way to enhance the expressivity of an interaction technique without requiring extra 

hardware is to use time. Dwell click [25], is a technique which allows individuals to use a mouse 

or other pointing device (e.g. joystick) without having to click buttons. Users simply hover their 

cursor over an item on the screen for a predetermined time (known as dwell time) and this item 

will be clicked. Dwell clicking can to control a computer by individuals who physically have no 

other way of interacting with the computer [25]. Use of dwell click and time has been found to be 

more efficient and less fatiguing to the hand than traditional mouse clicking [36]. Time is used in 

acceleration functions for rate-based controls to control activation through dwell time [36, 168]. 
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Time can also be used as a dimension in gestural input techniques like Pressure Marks [170]. 

However, there are challenges with adding time as an input dimension to interaction technique. 

Dwell time-based interaction techniques implicitly removes some user control over the interaction 

as the user must wait for dwell timers to expire and acceleration functions to reach their peak 

velocity. Midas touch is a problem with using dwell time in eye gaze systems as it may end in 

inadvertent clicks when the user gazes at an object of interest for too long that they do not wish to 

select [204]. A mode switching technique in pen-based devices called pressing and holding [126] 

uses the additional DoF of time and it does not require any new input capability but does require 

the system to keep track of another factor (i.e., how long the press has occurred). This is now 

ubiquitous in the Android OS based devices using pen/stylus. 

2.3 AUGMENTED TOUCH INPUT 

Modern multi-touch devices such as smartphones, hand-held tablets and digital tabletops support 

a wide variety of interactions. The primary mode of interaction on these devices is direct touch, 

but other methods such pen or stylus are also common. In the following sections, we discuss 

various methods researchers have used to augment the touch input. 

2.3.1 Contact Area 

The contact area is the area covered by the finger on the screen surface when it touches the screen. 

Using the contact area of the finger or thumb touching the screen has been proposed as an input 

parameter. Wang et al. [213] present a solution that determines the orientation vector of the 

touching finger relative to the touchscreen by using the shape of the contact area. They demonstrate 

some use cases in which the finger orientation can be used to enhance the touch input capabilities. 

The use cases include enhancing target acquisition, rotating and onscreen dial and identifying 

inputs from two different users. Benko et al. [31] also proposed the use of contact area to simulate 

pressure input on the tabletop devices. They introduced rocking and pressing gestures to define 

various states, including a click event.  

Modern mobile devices offer a rich set of multi-finger interactions such as two-finger pinch gesture 

for zooming. However, two hands are required to perform such gestures. A smartphone user on 
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the go may have only single hand available for using the smartphone. A solution for single handed 

smartphone use has been proposed by Boring et al. [37]. They introduced Fat Thumb interaction 

technique for single handed use, which uses the thumb’s contact area as a form of simulated 

pressure. They demonstrate that this additional DoF can be used, for example, to integrate panning 

and zooming into a single interaction. The thumb’s contact area also determines the mode (e.g. 

panning with a small size, zooming with a large one) while thumb movement performs the selected 

mode [37]. Potential use cases are e.g. for zooming in and out when viewing images, the current 

de facto pinch to zoom gesture requires two-finger interaction and hence, it is challenging to 

accomplish using only the hand holding the device. Goh et al. [70] developed an eyes-free text 

entry interface for people with visual impairment which uses pseudo-pressure detection algorithm 

based on the finger touch’s contact area. 

2.3.2 Contact Size and Shape 

Contact shape is the shape of the area in contact with the finger skin when the finger is in contact 

with the touch screen. Contact shapes allow for disambiguation of different hand parts touching 

the surface. Contact size is related to the shape of the touch; when a user touches the screen with 

fingertip, it tends to produce a circular shape and the pad of the finger produces oval shape. As, 

the pad of the finger takes up more area than fingertip, so the contact size of fingertip is smaller 

than the pad of the finger. Both capacitive and vision-based multi-touch screens provide sensing 

of the shape of the finger touch and contact size respectively [76, 109]. In Sphere, menus can only 

be triggered with a finger, and placing the palm on a menu item does not affect it [31]. Moscovich 

uses the contact size to allow for a subsequent selection of all targets that were covered by a finger 

[152]. SimPress, is a clicking technique which uses the small contact size (circular shape) produced 

by the fingertip to simulate a hover state (see Figure 2.3.1 a) and the larger one (oval shape) 

produced by the pad of the finger for selecting the target (see Figure 2.3.1 b) [31]. 
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Figure 2.3.1: SimPress clicking technique: a). tracking (hover) state. b). dragging (clicking) state. 

Cao et al. in ShapeTouch [42] has utilized the contact shape on interactive surfaces to 

manipulations of objects and interactors. It discriminates coarse contact shapes of the finger 

against hands for mode switching. FatThumb [37] also uses the contact shape for changing the 

modes but differs from ShapeTouch [42] as it only relies on fine-grained variations in thumb’s 

contact shape. The contact size and shape can also be used for increasing the selection accuracy 

and input correction. In the MicroRolls, the contact size provides information about the finger’s 

angle [177]. Holz et al. developed a new model called “generalized perceived input point model” 

for improving touch accuracy, that considers the change in contact’s size over time to differentiate 

moving from rolling the finger [95]. Wang et al. use the contact shape of the finger touch to 

determine the finger’s orientation [213]. 

2.3.3 Orientation 

Orientation is a natural source of information for augmentation as it provides the direction in which 

a user is pointing [213]. Orientation of the finger touch can be provided by the hardware of the 

touch screen sensors or can be determined by the shape of the finger contact area on the screen 

[213]. Finger orientation was firstly used by Malik et al. in the Visual Touchpad system [138]. 

This system utilized two color cameras mounted above the touchpad to detect the user’s hands and 

fingers. They employed computer vision methods to find the fingertips on a hand contour. The 

hand contour is used to determine the finger orientation of each finger. Malik et al.’s [138] 

approach is based on color images and a direct view on the hands which contrasts with the 

prevalent multi-touch sensing technologies employing infrared images and a bottom view on the 

sensing surface. By leveraging extra hover information enabled by the DI technology Microsoft 
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Surface detects full finger orientation [147]. Frustrated total internal reflection (FTIR) is a 

technology that makes touches on a glass surface visible to a camera beneath the surface. Using a 

FTIR-based multi-touch surface, Wang and Ren [214] examined finger’s different contact 

properties such as size, shape, width, length and orientation. In another research, Wang et al. [213] 

presented a simple algorithm for unambiguously determining the finger’s orientation with direct-

touch surfaces by considering the dynamics of the finger landing process. They determine 

orientation based on the contact areas covered by the finger touches. They fit and ellipse into the 

contact shape and use the longer ellipse axis for determination of the finger orientation. They also 

demonstrate with few use cases that finger orientation is a useful input property that can be 

employed to enhance the user interactions. 

However, there are limitations in Wang et al.’s [213] approach. Their algorithm usually detects a 

wrong finger orientation if users touch the surface with the side face of the thumb. This happens 

due to the center displacement of the contact area covered by the thumb’s side is different from 

the other fingers. Also, the center displacement while performing a sliding down gesture is 

different from the center displacement of an index finger’s landing process [56]. This results in 

incorrect determination of finger orientation. Dang et al. proposed an alternative approach called 

“Countourtrack” based on finger contour to fix this problem of determine wrong finger orientation 

as it shows the correct finger orientation even in cases where Wang et al.’s approach fails [56]. A 

simple and inexpensive way to accommodate finger orientation to augment multi-touch tabletop 

interaction was conducted by Marquardt et al. [139]. They used the Microsoft Surface table [147] 

and a glove which was tagged with several fiducial markers. The tabletop system was able to detect 

the markers along with their orientation. Their system could determine finger orientation of each 

finger and identify individual parts of the hand. However, wearing gloves is contrary to natural 

interaction. Mayer et al. conducted systematic investigation of orientation on straight line single-

stroke touch gestures and provided general design guidelines for interaction designers designing 

gestures consisting of straight lines. Their findings suggest that designers should avoid use of 

orientations close to horizontal or vertical segments of the single-stroke gestures. The above-

mentioned methods have achieved orientation tracking by using special hardware and that is 

impractical for hand-held devices such as tablets and smartphones. 



 

45 

Various researchers have studied the tracking of 3D orientation of finger touch and its effects on 

touch interactions.  Rogers et al. [174] presented a finger-tracking system for touch-based 

interaction which can track 3D finger angle in addition to position. It uses low-resolution 

conventional capacitive sensors and therefore, compensating for the inaccuracy due to pose 

variation in conventional touch systems. They improved the accuracy in target acquisition using 

inferred pitch and yaw orientations, but they do not report the comparison between real finger 

orientations to the inferred ones [174]. Similarly, another project done by Xiao et al. [228] which 

used capacitive sensing determined not only the pitch and yaw angles but also the roll angle. They 

also presented several example applications to demonstrate interactions on smart watches and 

smartphones using 3D finger orientation information. PointPose [114] is a prototype developed by 

Kratz et al. that determines the finger pose information at the location of touch using a short-range 

depth sensor viewing the touch screen surface. They developed an algorithm which can extract the 

yaw and pitch angles from a point cloud generated by a depth sensor oriented towards the device’s 

touchscreen. Similarly, Mayer et al. [142] also used depth cameras and PointPose [114] algorithm 

to estimate the pitch and yaw for the finger. 

Zhang et al. [233] used a vision-based system above a tabletop to determine the yaw orientation 

of the fingers touching the tabletop screen. This information is further used by a machine learning 

algorithm to predict the correct position of the user as they interact with the table surface. They 

reported the accuracy of user recognition but did not report the accuracy of orientation 

measurement. Holtz et al. [95] employed the fingerprint scanner to increase the accuracy of touch 

interaction. They analyzed the user’s fingerprint in contact and compared it to the database of 

fingerprint examples, their system could infer the yaw, pitch and roll angles. However, they did 

not report the recognition rate of the angle information. Goguey et al. [69] studied the effects of 

finger pitch and roll orientation during atomic touch input actions such as tap, drag and flick on 

for one setting (a flat tablet in front of the user). Their results indicate that for a given hand, the 

ring, little and middle fingers are used in a similar manner whereas, the thumb uses different range 

of orientations. They also report that ranges of orientation which a finger can perform tightens as 

the tablet pitch increases [69]. In our study, we use only 2D orientation of the finger touch and it 

is reported by the device itself and hence, we did not need to use any of the above methodologies 

to determine the finger touch orientation. 
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2.3.4 Pressure 

Sensing the pressure with which users touch or press the touchscreen has also been explored to 

increase the touchscreen input vocabulary. In earlier research, touch and press events have been 

distinguished and utilized as different input events for mobile phone applications [94]. Pressure 

has been used in interactive systems for a wide range of applications. Ramos et al. [169] pressure 

widgets, showed how stylus pressure can be used in selections tasks and how many pressure levels 

can be discriminated. Heo et al. [82] developed “Force Gestures” interaction technique in which 

they augmented tapping and dragging operations with pressure to extend the available gesture set. 

A more general investigation of pressure-based interaction was done by Stewart et al. [195] who 

looked at how holding a device influences target acquisition time. Harrison and Hudson evaluated 

“shear force” i.e. [79] force tangential to the screen’ surface as an additional DoF for touchscreen 

input. This provides an additional analog 2D input space for touchscreen interaction. Wilson et al. 

[221] investigated the granularity of input possible using pressure on a mobile device. Their 

findings suggest that selection using ten different pressure levels was possible and performance 

was only marginally degraded when visual feedback was removed. Wilson et al. [220] also 

explored the use of pressure in touch input when the user is walking. They used a prototype mobile 

phone with a pressure sensor attached to it. In this study, they concluded that using the rate that 

pressure is applied, rather than absolute level of pressure, provides a more robust interaction [220]. 

Numerous researchers have worked on improving typing on touch devices using pressure as an 

input dimension. The use of pressure sensing as a modifier for touchscreen text input provides an 

interesting application for the technology [216]. In this case, users were able to lightly press 

characters they were less sure about being correct, which was then used as an input parameter to 

the language model correcting the user’s typing. For keypads, McCallum et al. [143] demonstrated 

how pressure-based disambiguation allows faster text entry than multi-tap. Hughes et al. [39] used 

pressure to allow the selection of letter case when typing. 

2.3.5 Pen or Stylus Interaction 

In computing, a pen or stylus is a small pen-shaped instrument whose tip position on a touchscreen 

can be detected by the screen [196]. Pen based interaction is available in touch-based devices [89], 

and it is also widely available on hand-held devices such as tablets and digital tables [145]. 
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Numerous researchers have explored the use of combination of pen and touch for advanced 

interaction [84]. For instance, Kitani et al.’s [113] Palm lift manipulation leverages the unintended 

touches while notes are being taken to open a context menu naturally. Hinckley et al. examined 

the direct pen + touch inputs in touch sensitive surfaces, and they propose several mode-based pen 

+ touch interactions for tablets [90]. 

Various researchers have focused on understanding and improving the usability of pen or stylus 

based interactions [9, 10]. Hover Widgets [72] developed by Grossman et al. increase the 

capabilities of pen-based interfaces by using the pen movements above the display surface (i.e., in 

the tracking state). Saund et al. [181] proposed an inferred-mode interaction protocol that avoids 

the mode issues in sketch or notetaking systems. This technique tries to understand the user’s intent 

from the properties of the pen trajectory and the context of the trajectory [181]. Although pen and 

stylus-based interactions are popular, but they cover only a limited range of interactions and suffer 

from occlusion problems in certain situations. Research has shown that on small scale touch 

devices such as tablets, the interaction tools such as pen, hand or forearm can occlude 

approximately half of the screen [206, 209], which often makes the interactions less effective. 

2.3.6 Device back or Side Interaction 

Modern touch devices support numerous simultaneous touch points [7, 14] but typically users 

cannot use all the fingers from both hands, as the non-dominant hand is used to hold and orient the 

device [84]. This restricts the touch devices to one hand use. A few researchers have attempted to 

solve this issue by introducing limited touch interaction for the holding hand. For instance, Wagner 

et al. developed BiTouch [211, 212] system using which users can interact with the thumb or 

fingers of the non-dominant hand along with a finger from the dominant hand. Wong et al.’s 

developed Back-Mirror [225], a low-cost camera-based approach for back of device interaction. 

Back-Mirror can detect the swiping and tapping gestures directly on the back surface of the device. 

This technique supports occlusion free gaming, can be used to control media player, unlock and 

lock the phone and navigation of the photo album [225]. There are other projects done by 

researchers which demonstrates how the back of device can be used for meaningful touch 

interactions [187, 222, 224]. Another widely discussed limitation of small touchscreens is fat 

finger problem (i.e. the interacting finger obscures part of the screen area making target selection 
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harder). Baudish and Chu [26] proposed back-of-device interaction to solve this issue. They 

developed a prototype nano-touch device with a 2.4” display and used it to validate back of device 

interaction down to display size of 1” diagonal. 

Other researchers have explored the use of position sensors or the device bezel for interaction. For 

instance, Baglioni et al’s Jerktilts [19] allow quick selection of limited number of commands by 

tilting the mobile device quickly. BezelTap [186] detects taps on the edge of the device using the 

accelerometer sensor. User can interact with device using taps on the edge as shortcuts while the 

device is asleep. Schramm et al.’s Hidden Toolbars [184] use the edges and corners of hand-held 

devices such as tablets as landmarks to organize a grid menu and toolbar. Users perform swipe 

gestures across the bezels to facilitate fast command selection in tablets.  

2.3.7 Hand and Finger Identification 

Associating different interaction functionality to each of the user’s hands or fingers has been 

explored as one approach to increasing the input vocabulary of touchscreen interaction. Various 

researchers have done projects to distinguish between individual user’s hands in the context of 

collaborative interfaces such as tabletops. In Ramakers et al. [167], camera-based tracking is used 

to distinguishing between multiple users’ hands from their shape. Capacitive fingerprinting has 

been studied by Harrison et al. [80] to identify different individuals touching the screen. One such 

use case presented by Harrison et al is that capacitive finger printing enables different users to 

draw in different colors in a drawing application [80]. 

Distinguishing between fingers has been demonstrated by Azenkot et al. [18] using the Perkinput 

method in the context of nonvisual touch screen text input. This approach is limited to nonvisual 

touch screen text input and does not consider generalizing the principle for UI design. 

Distinguishing between different parts of hands (e.g., fingertip and knuckle) has been 

demonstrated by Harrison et al. [81] and Lopes et al. [128]. They demonstrated various use cases, 

such as using the knuckle to open a context specific menu (e.g. mouse right click). 

2.3.8 Interaction above the Screen 

Numerous researchers have explored the idea of using smartphone’s front camera to identify 

gestures made a by a finger above a smart phone. For instance, Lv et al. implemented a system 
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which allows the user to perform in-air touch-less interaction in front of the phone’s camera [133]. 

The combination of on-touchscreen interaction and gestures in the air above the screen is presented 

by Chen et al. [49] in their air + touch concept. Chen et al. demonstrated an approach using the 

distance between the user’s body and the smartphone as a parameter to augment touchscreen input 

[48]. Earlier research by Chen et al. studied the body centric interactions in general, for example, 

different content is revealed on a mobile device by placing it over a certain part of the user’s body 

[47]. 

Despite the many ways in which touch input has been augmented, researchers still have little 

knowledge about human capabilities with these new degrees of freedom, and how effective the 

augmentations can be at increasing the size of a user's input vocabulary. 

 

 

 

 

 

 

 

 

 

 

 



 

50 

CHAPTER 3 

3 AUGMENTING TOUCH INPUT WITH CONTACT SHAPE AND 

ORIENTATION 

In this chapter, we introduce a new input vocabulary with eight touch actions that use contact shape 

and orientation to enhance the expressiveness of touch-based interaction. This chapter introduces 

the additional degrees of freedom (contact shape and orientation) used in the studies reported in 

later chapters and describe their detection methods and the design of the augmented touch actions. 

3.1 FINGER TOUCH MECHANICS AND PROPERTIES 

Touch screens have changed the way we interact with computing systems. They allow users to 

directly manipulate the system but require an understanding of the way that touch occurs on current 

touchscreens. 

3.1.1 Finger Touch Mechanics 

The human finger comprises soft tissue which deforms as the touch occurs [213] (see Figure 3.1.1). 

 

Figure 3.1.1: Finger contact deformation over time. The center of the contact region is denoted 

by crosshair [213]. 

The finger touch covers many points on screen’s surface and the touch system takes the center of 

the blob formed by the area covered by finger touch as center point of the contact region. This 
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center of the contact region (x-y position) is typically used by software applications to perform 

actions on objects on the screen. 

3.1.2  Finger Touch Properties 

An augmentation is a modification of an action done to increase the expressivity of that action. 

Finger touch has various properties which are not used commonly in touch interactions for mobile 

devices. Here, we describe various finger touch properties which have potential to give users more 

control over touch interactions. 

Contact Shape and Orientation 

Earlier research [31, 65] classifies finger touch in two categories; vertical touch and oblique touch. 

 

Figure 3.1.2: Two ways of finger touch. Left: Vertical touch. Right: Oblique touch [213]. 

A vertical touch (see Figure 3.1.2 left) occurs when user touches the screen using their fingertip. 

This type of touch points downward toward the surface, whereas in oblique touch (see Figure 3.1.2 

right), the finger touches the surface at an oblique angle. 

The tip of the finger (see Figure 3.1.3 left) typically takes up lesser area relative to pad of the finger 

(see Figure 3.1.3) [214] . Fingertip tends to cover a circular region (see Figure 3.1.3 left) as the 

fingertip touching the surface itself tends to be circular in shape whereas the pad of the finger is 

oval in shape (see Figure 3.1.3 center) and thus touch with pad of the finger results in oval shape. 

The side of thumb is also oval shaped (see Figure 3.1.3 right) but is narrower than the pad of the 

finger. 
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Figure 3.1.3: Left: Fingertip region of the index finger tends to be circular shaped. Center: Pad of 

the index finger tends to be oval shaped. Right: Side of the thumb tends to be narrow oval shaped 

relative to index finger. 

The oblique touch results in an elliptical/oval shape and hence, the length of the major axis differs 

from the length of the minor axis. This can help touch designers detect the orientation of the finger 

touch. Here, finger orientation is a 2D orientation (yaw angle) of the finger’s projection on the 

surface (see Figure 3.1.2 right). Wang et. al use this elliptical shape and equation presented in 

[214] using least-square fitting method to extract finger orientation [213]. 

In case of vertical touch, the contact shape tends to be circular which means there is no significant 

difference between lengths of major and minor axes of the ellipse formed. Hence, in case of vertical 

touch, there is no 2D orientation of the finger projection on the surface. 

Therefore, to complement the touch point information, designers can use additional finger 

properties as additional degrees of freedom (DoF) in touch interactions. 
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Contact Area 

Another property of the finger touch is the contact area. The Android OS provides MotionEvent 

API [8] methods which can provide the lengths of the major and minor axes of the area covered 

by the finger touch. This can help designers to find the area of the finger touch. The formula for 

finding area of an ellipse is 𝐴 = 𝜋ab, where a is half length of the major axis and b is half length 

of the minor axis (see Figure 3.1.4). Prior investigations of finger input properties [214], shows 

that the contact area of a vertical touch is significantly different than oblique touch. The mean 

contact area in vertical touch lies between 28.48 and 33.52 mm2 whereas for vertical touch it lies 

between 165.06 and 292.99 mm2. 

 

Figure 3.1.4: An ellipse. Major axis is the longest diameter whereas minor axis is the shortest 

diameter of an ellipse. 

However, contact area is not reliable enough to identify an oblique touch because a large contact 

area can also result because of vertical touch when pressed hard. 

Touch Pressure 

Most modern touchscreens fit an ellipse to finger contact areas, obtaining ellipse axes and 

orientation [6]. The ellipse size is often used as a proxy for pressure and can also trigger different 

functions or modes in touch interactions [37]. More pressure of the finger touch results into larger 

contact area due to flattening of the finger's pad. However, there are devices such as iPhone 6s 

which has built-in pressure sensor that provides capability of 3D touch [1]. It has three levels of 
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pressure: light, normal and deep press and different level of pressure can be used to invoke 

different actions.  

As the device we used does not have real pressure sensor, we would have to use contact area as a 

proxy for pressure. Contact area is not reliable enough to identify the part of the finger with which 

touch is performed (i.e. it cannot help differentiating between pad, tip or side of the finger). Hence, 

we decided to not include pressure as an additional degree of freedom (DoF) in our research. 

3.2 TOUCH ACTIONS TAXONOMY 

To organize the component parts of a touch interaction, we follow the model proposed by 

Cechanowicz et al. which divides augmented interaction for GUIs [44] into two parts: objects and 

actions. 

Objects 

Objects are visual representation of entities being manipulated by direct finger touch. Images, 

links, texts, icons, menus and buttons can be considered as Touch Objects. In some cases, such as 

buttons and links the manipulation of an object can result in the execution of a command whereas 

in case of image the interaction does not result in command execution but the object itself is 

manipulated. 

 

Touch Actions 

The commands used to manipulate the objects on screen are called touch actions. The touch actions 

can be categorized by the type of data being manipulated and the number of finger used [17] (see 

Figure 3.2.1). 

• Single-finger discrete actions: Touch actions performed by single finger for pointing on 

the screen fall in this category. For example, selecting an icon with a one-finger tap, or 

double tap to open an application. 

• Single-finger continuous actions: 
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Continuous touch actions performed by a single finger fall in this category. For example, 

swipe, flick and drag all involve 2D movements of the finger. These touch actions are 

commonly available in most modern touch interfaces. 

• Multi-finger discrete actions: 

Discrete touch actions performed by multiple fingers fall in this category. For example, a 

multi-finger tap. 

• Multi-finger continuous actions: 

Continuous gestures with multiple fingers, such as the pinch, zoom and rotate commands 

seen in many multi-touch interfaces. Although modern devices support many simultaneous 

touch points, and people can use multiple fingers at a time [41], most touch interfaces only 

provide interactions that can be performed with two fingers of one hand. 

• Bimanual actions: If an action is composed of the actions above but uses both hands, it is 

called a bimanual action. These gestures are commonly available in large table displays as 

the screen real estate can accommodate both hands for data manipulation. In desktop 

systems, where input is received through mice and keyboards, people can efficiently use 

chorded actions, often with two hands. However, these complex bi-manual actions are rare 

on touch interfaces [20, 112], although kinesthetic models suggest humans are proficient 

in using richer and more expressive forms of multi-fingers touch interaction [41]. 
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Figure 3.2.1: Examples of Multi-touch actions [198]. 
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3.3 ADDITIONAL DEGREES OF FREEDOM 

Contact shape is determined by the contact region covered by the finger while touching the screen. 

If a user taps the screen using their fingertip, the shape tends to be circular, whereas touching with 

the pad of the finger or side of the thumb creates an oval or narrow oval shape (see Figure 3.3.1). 

When a user performs oval/narrow oval tap, the major axis of the ellipse has a direction which 

determines the orientation of the finger touch (see Figure 3.3.2). We describe the methods used to 

extract contact shape and orientation from the touch screen sensor and render the shape and 

orientation.  

 

Figure 3.3.1: Left: Tap using fingertip of the index finger resulting in circular shape. Center: Tap 

using pad of the index finger resulting in oval shape. Right: Tap using side of the thumb resulting 

in narrow oval shape. 

3.3.1 Contact Shape Detection 

We used the MotionEvent API [8] to get (x, y) coordinates of the touch point using getX() and 

getY() methods. getTouchMajor() and getTouchMinor() methods reports the lengths of the major 

and minor axes of the ellipse formed that represents the touch area at the point of contact. The 

units are display pixels. We used these details to draw the ellipse on the screen in order to show 

the contact shape. 

3.3.2 Orientation Detection 

Prior investigations have determined orientation from contact shape [213]. In our case, we get 

finger touch orientation directly from the device itself. getOrientation() method of MotionEvent 

API [8] provides the orientation of the touch shape in radians clockwise from the vertical (see 

Figure 3.3.2). We converted radians into degrees for our study. 
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Figure 3.3.2: Shape of the finger touch. Orientation, major and minor axes of the ellipse formed. 

When the major axis of the ellipse formed is vertically oriented (parallel to edges of the tablet), 

getOrientation() method gives 0° degrees as Orientation (θ=0°) and the touch is vertical oriented. 

Whereas a positive angle (θ>0°) indicates that the major axis is oriented towards right and the 

touch is called right oriented. Negative angle (θ<0°) indicates that the major axis is oriented 

towards the left and the touch is called left oriented. The value of the angle ranges from -π/2 (-90°) 

to π/2 (+90°). Circle tap does not have any orientation as lengths of the major and minor axes of 

the ellipse formed tends to be similar. 

3.4 INPUT VOCABULARY 

We used the additional touch information of finger contact shape and orientation to create a novel 

input vocabulary consisting of eight augmented touch actions. 
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Figure 3.4.1: Left: Index finger oval tap. Right: Two-finger oval tap. 

3.4.1 Index Finger Oval Tap 

For this touch action, the user must touch the screen with the pad of their index finger, which 

results in an oval contact shape with a specific orientation (see Figure 3.4.1 left). 

3.4.2 Two-Finger Oval Tap 

For this touch action, the user must touch the screen with the pad of their index and middle fingers 

simultaneously, which results in two oval contact shapes with a specific orientation (see Figure 

3.4.1 right). 

3.4.3 Index Finger Oval Swipe 

For this touch action, the user must touch the screen with the pad of their index finger and perform 

a swipe, which results in an oval contact shape while swiping with a specific orientation (see Figure 

3.4.2 left). 
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Figure 3.4.2: Left: Index finger oval swipe. Right: Thumb side narrow oval tap. 

3.4.4 Thumb Side Narrow Oval Tap 

For this touch action, the user must touch the screen with the side of their thumb, which results in 

narrow oval contact shape with a specific orientation (see Figure 3.4.2Figure 3.4.2 right). 

3.4.5 Thumb Side Narrow Oval Swipe 

For this touch action, the user must touch the screen with the side of their thumb and perform a 

swipe, which results in a narrow oval contact shape while swiping with a specific orientation (see 

Figure 3.4.3 left). 
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Figure 3.4.3: Left: Thumb side narrow oval swipe. Right: Index finger rotation. 

3.4.6 Index Finger Oval Rotation 

For this touch action, the user must touch the screen with the pad of their index finger and rotate 

it which results in an oval contact shape through the finger rotation. It starts and ends with different 

orientations (see Figure 3.4.3 right). 

3.4.7 Index Finger Circle Tap 

For this touch action, the user must touch the screen with the fingertip of their index finger, which 

results in a circular contact shape with no orientation (see Figure 3.4.4 left). 
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Figure 3.4.4: Left: Index finger circle tap (No Orientation). Right: Two finger circle tap (No 

Orientation). 

3.4.8 Two Finger Circle Tap 

For this touch action, the user must touch the screen with fingertips of their Index and its middle 

fingers simultaneously, which results in two circular contact shapes with no orientation (see Figure 

3.4.4 right). 

Table 3.4.1 describes the input dimensions of the touch actions in our novel input vocabulary. 
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 Shape Orientation Fingers Type of Motion 

Index Finger Oval Tap Oval Yes Index Tap 

Two Finger Oval Tap Oval Yes Index, Middle Tap 

Index Finger Oval Swipe Oval Yes Index Swipe 

Thumb Side Narrow Oval 

Tap 

Narrow 

Oval 

Yes Thumb Tap 

Thumb Side Narrow Oval 

Swipe 

Narrow 

Oval 

Yes Thumb Swipe 

Index Finger Oval Rotation Oval Yes Index Rotation 

Index Finger Circle Tap Circle No Index Tap 

Two Finger Circle Tap Circle No 

Orientation 

Index, Middle Tap 

Table 3.4.1: Input dimensions of our input vocabulary. 

3.5 IMPLEMENTATION DETAILS 

For the implementation we used a 10-inch Samsung Nexus 10 tablet. This is a multi-touch tablet 

that senses ten simultaneous touch points and has a screen resolution of 2560 x 1600 pixels. The 

Nexus 10 has a dual-core 1.7 GHz Cortex-A15 CPU and used Android 5.1 Lollipop as the 

operating system. 

First, we implemented a simple Android application for identifying the contact shape and 

orientation of finger touch. Our application recorded the (x, y) coordinates of the touch points, 

lengths of major and minor axes of the ellipse formed by the finger touch along with its orientation. 

This application rendered the contact shape and we could figure out orientation of the shape by 

just seeing the shape of the ellipse rendered on screen. Then we implemented the three different 

Android applications for three different studies; study 1 (touch action replication study, see 

Chapter 4), study 2 (memory test study, see Chapter 5) and study 3 (screen lock application study, 

see Chapter 6). 

3.6 RELATIONSHIP TO OTHER TECHNIQUES 

There are several other techniques that attempt to provide efficient multi-touch interactions by 

leveraging finger properties as additional DoF. Boring et al.’s Fat Thumb [37] has used thumb’s 

contact size as a form of simulated pressure for performing different actions on a smartphone. 
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They performed panning task with a small size, zooming with a large one. SimPress uses small 

contact sizes to simulate a hover state and larger ones for selecting a target [31]. Cao et al. in 

ShapeTouch has utilized the contact shape on interactive surfaces to manipulations of objects and 

interactors [42]. 

Similarly, prior research indicates that various researchers have used finger orientation as an input 

for touch interactions. For the first time, finger orientation was exploited by Malik et al. in the 

Visual Touchpad system [138]. For detecting finger’s orientation, they used a pair of overhead 

cameras to track the entire hand of the user. By leveraging extra hover information enabled by the 

DI technology Microsoft Surface detects full finger orientation [147]. Using a FTIR-based multi-

touch surface, Wang and Ren [214] examined finger’s different contact properties such as size, 

shape, width, length and orientation. In another research, Wang et al. presented a simple algorithm 

for detecting finger’s orientation with direct-touch surfaces by considering the dynamics of the 

finger landing process and used that to develop novel interaction techniques [213]. 

However, some of the approaches rely on external sensing technologies and are therefore, not 

generally applicable to hand-held touch tablets. These techniques have either used contact size, 

contact shape or finger orientation. Moreover, they did not investigate interaction designs that 

specifically utilize both contact shape and finger orientation. 

3.7 SUMMARY 

In this chapter, we have discussed different aspects related to augmenting touch interactions and 

design of our input vocabulary. We discussed the finger touch mechanics and additional finger 

properties available. We describe the touch actions taxonomy and the methods used to extract 

contact shape and orientation to augment touch actions such as tap, swipe and rotation. The 

technique requires the (x, y) coordinates of finger touch point, lengths of major and minor axes of 

the ellipse formed and orientation of the finger touch. We presented a novel input vocabulary 

consisting of eight touch actions which uses tap, swipe or finger rotation. 
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CHAPTER 4 

4 STUDY 1: USER ABILITY TO REPRODUCE CONTACT SHAPES 

AND ORIENTATION 

In this chapter, we describe the design of a touch action replication study and report the 

participants’ performance reproducing the touch shapes and orientations. As discussed in the 

previous chapter, introducing additional touch information such as contact shape and orientation 

to touch screen actions can increase the input vocabulary for touch screens. However, for the 

additional degrees of freedom to be valuable for interaction, users must be able to reliably and 

consistently replicate the different contact shapes and orientations of the augmented input 

vocabulary. We carried out a controlled experiment to determine the user's accuracy in producing 

different elements of the augmented vocabulary. In this chapter, we describe the touch action 

replication study and determine the granularity at which a system can recognize contact shape and 

orientation with high accuracy. 

4.1 GOALS 

We chose the eight finger postures based on the simple touch actions (i.e. tap, swipe, finger 

rotation) currently used on touch screens. The basic execution is like traditional touch actions and 

the only change to the touch action is the orientation and shape using a part of the finger. 

To find out the orientations and contact shapes which participants could reliably produce, we 

conducted a study in which participants performed a series of touch actions from our novel input 

vocabulary over several blocks. 
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4.1.1 Methods 

Apparatus 

The study was conducted on a multi-touch Samsung Nexus 10 Android tablet (10-inch screen, 

1280x800 resolution). The application for study1 was written in Java and recorded all experimental 

data. Each participant was seated on a chair in our research lab and held the tablet with their non-

dominant hand and performed the touch actions with their dominant hand (see Figure 4.1.1). 

       

Figure 4.1.1: Left. Participant seated on a chair during experiment. Right. Participant holding 

tablet with non-dominant hand and performing gestures with dominant hand. This image is not 

of an actual participant and was recreated after the studies for demonstration. 
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Participants 

We recruited 16 people (3 females; mean age 24.9 years and s.d. 4.1 years) from the University of 

Saskatchewan campus. All our participants were students. Two participants were left-handed, and 

no participant was ambidextrous. The same participants also took part in study 2 and study 3 

discussed in Chapters 5 and 6 respectively. We used the same set of participants for all three studies 

because we introduced a new interaction technique and if we used a different set of participants 

for study 2 and 3 they would not know the execution method for these augmented touch actions in 

study 2 and 3. All three studies took ~60 minutes in total, and we provided a $10 remuneration to 

each participant for the set of three studies. All of them had used multi-touch systems such as 

tablets and smartphones before, with 12 participants reported owning a tablet and average weekly 

use being more than ten hours per week. 

 

Task and Stimuli 

We carried out a controlled experiment where participants performed a series of touch actions over 

several blocks. This study was divided into two stages: practice and touch actions replication. 

During practice, each participant was asked to perform a touch action 20 times individually for 

each of the shape i.e. oval, narrow oval and circle (see Section 3.1.2). Participants were shown 

only the instructions on the tablet’s screen and no shapes were shown. An arrow portraying the 

orientation to be produced (in case of oval and narrow oval) was  shown and participants were 

asked to produce oval and narrow oval shapes following the orientation of arrow (see Figure 4.1.2 

Centre and Right). In case of Circle shape, no arrow was shown (see Figure 4.1.2 Left). When the 

participant performed the touch actions the shape produced could be seen in real time on the screen 

(see Figure 4.1.2). We introduced offset with regards to finger position (both in practice and touch 

action replication stages) while rendering the shape on the screen so that participant could see the 

shape and orientation as they performed touch actions.  

In the practice stage, we recorded the lengths of major and minor axes of the ellipses formed in 

each trial for the three different shapes for each participant. For each participant, we took average 

lengths of major and minor axes of all three shapes and used them to create the pictures of stimuli 

shapes to be replicated by the participant in touch actions replication stage. For example, if a 
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participant’s average ratio of lengths of minor to major axes for oval shape over 20 trials is 0.6, 

then in the touch actions replication stage, the stimuli for all touch actions with oval shapes would 

have ovals with minor to major ratio of 0.6. 

        

Figure 4.1.2: Practice stage: Instructions shown at the top of the screen and participants 

performing the touch actions accordingly. Left: Circle, Center: Oval and Right: Narrow Oval. 

After the practice stage, in the touch actions replication stage, participants were shown all eight 

types of touch actions as command stimuli one by one by one on upper half of the screen (see 

Figure 4.1.3) over several blocks. Participants had to replicate these shapes along with their 

orientation on the lower half of the screen (see Figure 4.1.3). Participants could see the shape of 

the finger touch in real time (see Figure 4.1.3). However, there was no feedback to tell if the gesture 

was done correctly or not. If a participant felt that a gesture was not done correctly, they could 

press on “Previous Gesture” button placed at top center of the screen and redo the gesture. 
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Figure 4.1.3: Touch actions replication stage. Instructions and touch action stimulus were shown 

on top half of the screen and participant replicated the touch action in the bottom half of the 

screen and the contact shape created was shown in real time on bottom half of the screen. 
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Procedure and Design 

Participants completed a demographics questionnaire, and then performed a sequence of touch 

actions in a custom study system in two stages: practice and touch actions replication. In the touch 

actions replication stage, for each trial, a command stimulus consisting of a touch action was 

displayed on top half of the screen; the participant then replicated the gesture on bottom half of 

the screen (see Figure 4.1.3). Participants were told to take as much time as they wanted to take to 

perform a gesture and were instructed to complete tasks as accurately as possible. Participants 

were instructed to use the “Previous Gesture” button provided on the top of the screen (see Figure 

4.1.3) if they felt that gesture was performed incorrectly, to go back and perform it again. 

The touch action replication trials were organized into blocks of 67 trials comprising eight types 

of touch actions repeated over five blocks.  Each block consists of 18 trials for index finger rotation 

action and seven trials for each of the rest seven touch actions from our input vocabulary. 

Participants first performed one practice block of 67 trials (data discarded) separately from five 

actual blocks to ensure they could use the interface successfully. Targets were presented in random 

order (sampling without replacement) for each block. After this study, participants were allowed 

to rest and filled out a questionnaire to report their perceived ease and ability to perform for each 

gesture from our input vocabulary (see Appendix). 

For each trial performed, we recorded the lengths of minor and major axes of the ellipses formed 

along with their orientation. With 16 participants, 5 blocks and 67 trials per block, the system 

recorded a total of (16×5×67) 5360 trials for this study. This experiment took approximately 30 

minutes per participant. 

In this study, we analyzed the participant’s contact shape and orientation data to establish the 

classification rules for deciding the categories of contact shapes and orientations. 

4.1.2 Performance Measures 

The study software recorded all experimental data including orientation of the finger touch for 

each trial. Along with orientation, it also recorded the lengths of minor and major axes of the 

ellipses formed in each trial and the ratio of the minor/major axes was used to determine the shape. 

We did two separate analyses for orientation (see Section 4.3) and contact shape (see Section 4.2) 
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of the gestures performed. In Section 4.3, we analyze the orientation data separately for each touch 

action type and provide classification rules to identify orientation categories. We had eight 

different touch actions which can be divided into three categories based on the part of the finger 

touching the screen; finger pad (oval), side of the thumb (narrow oval) and fingertip (circle). There 

is no orientation in touch actions involving fingertip (circle) and hence, they were not analyzed 

under Section 4.3. However, in Section 4.2, for analyzing contact shape, we included all eight 

touch actions. Also, we provide classification rules to distinguish between oval and circle shapes. 

Based on these classification rules for orientation and shape, we provide accuracy rate with which 

a system can recognize different orientations and shapes. 

4.1.3 Data Analysis 

The study software used for studies 1, 2 and 3 recorded all the experimental data it gets from 

MotionEvent API [8] for each trial. For each trial, movements in terms of an action code (touch 

down-user touches the screen, move-moves the finger or touch up-release finger from the surface), 

position information (x, y coordinates), orientation and the lengths of minor and major axes of the 

ellipse formed for all the touch points covered on the screen are recorded in a plain text file in 

tabular format. For example, in case of index finger oval tap (see Table 4.1.1, row 1), the row in 

the tabular formatted text file starts with a column having an action code that suggests that a touch 

down has occurred followed by touch up, the next column has the x, y coordinates of touch point 

and so on. In case of two finger oval tap, the data is recorded for middle finger as well along with 

index finger (see Table 4.1.1, row 2). Index finger oval swipe involves movement of the finger 

over several points on the screen. Table 4.1.1 (row 3) shows data recorded for index finger oval 

swipe. It records the events (touch down, move or touch up) and other experimental data for each 

touch point covered on the screen. We wrote a java program that contains several methods written 

to perform various functionalities. One such functionality of our java program is that it reads the 

tabular format data from the text file, analyses it and provides the results for orientation and shape 

for study 1 (discussed in Section 4.2 and 4.3).  
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Table 4.1.1: Study software for studies 1, 2 and 3 record experimental data in tabular format in a 

text file for each trial. 
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The studies 2 and 3 also record the experimental data in tabular format as shown in Table 4.1.1. 

We performed statistical analysis on our results in studies 2 and 3. We used R studio and wrote R 

programming scripts to perform the statistical analysis. Our java program reads the tabular data 

from the text file and convert it to the format which R programming script expects. We also 

validate the touch actions in study 2 and gestures in study 3. Our java program also performs 

validation of touch actions and gestures in study 2 and 3. For example, if a participant is asked to 

perform index finger oval tap, then the expected motion events would be touch down and touch 

up (see Table 4.1.1, row 1). But in a case in which our java program reads move as one of the 

motion events then it will mark it is as incorrect touch action because move event means that the 

participant did swipe or rotate action instead of a tap. 

4.2 RESULTS-SHAPE 

In this new input vocabulary consisting of eight touch actions, users can perform three different 

shapes. The circular shape can be created by touching the screen with tip of the index finger, 

narrow oval shape with side of the thumb and oval shape with pad of the index finger (see Figure 

4.2.1). After practice stage, participants performed touch actions replication stage in which 

participants were shown target shapes with instructions on top part of the screen and were asked 

to perform these shapes on the lower part of the screen (see Figure 4.1.3). As described in section 

4.1.1, participants performed gestures which were organized into blocks of 67 trials comprising of 

eight types of touch actions repeated over 5 blocks. Out of these eight touch actions in our input 

vocabulary, index finger oval tap, two-finger oval tap, index finger oval swipe, index finger oval 

rotation involved performing oval shapes, thumb side narrow oval tap and thumb side narrow oval 

swipe involved narrow oval shapes and index finger circle tap and two-finger circle tap involved 

circle shapes (see Table 4.2.1). During this stage, participants produced Oval shape 3,680 times, 

narrow oval 1120 times and circular shape 1,680 times in total. We removed 88 trials (58 from 

oval, 21 from narrow oval and 9 from circle shape) in total for all the shapes combined where 

participants performed different touch action than asked (for example, performed two-finger oval 

tap when asked to perform index finger oval tap). 
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Figure 4.2.1: Shapes. Left: Circular shape produced by tip of the index finger. Center: Narrow 

oval shape produced by side of the thumb. Right: Oval shape produced by pad of the index 

finger. 

Shape Touch Action Count 

Oval Index finger oval tap 560 (16 participants x 5 blocks x 7 gestures per block) 

Oval Two finger oval tap 1120 (16 participants x 5 blocks x 7 gestures per block) 

560 for index finger and 560 for middle finger 

560 (16 participants x 5 blocks x 7 gestures per block) 

Oval Index finger oval swipe 560 (16 participants x 5 blocks x 7 gestures per block) 

Oval Index finger oval rotation 1440 (16 participants x 5 blocks x 18 gestures per block) 

Narrow oval Thumb side narrow oval 

tap 

560 (16 participants x 5 blocks x 7 gestures per block) 

Narrow oval Thumb side narrow oval 

swipe 

560 (16 participants x 5 blocks x 7 gestures per block) 

Circle Index finger circle tap 560 (16 participants x 5 blocks x 7 gestures per block) 

Circle Two finger circle tap 1120 (16 participants x 5 blocks x 7 gestures per block) 

560 for index finger and 560 for middle finger 

 
Table 4.2.1: Count of shapes produced per touch action type. 

To determine how many different shapes could be accurately recognized, we plotted histograms 

of the ratios of lengths of minor and major axes of ellipses produced by participants in both practice 

and touch actions replication stage for each target shape separately. As can be seen from Figure 

4.2.2 and Figure 4.2.3, there is substantial overlap between the target shapes: participants produced 

circular shape reliably, but narrow oval and oval have wide distributions that overlap each other 

in both practice and touch actions replication stage. It is evident that participants could not reliably 

produce different oval and narrow oval shapes. Therefore, we collapsed oval and narrow oval 

shape into oval shape. 
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Figure 4.2.2: Histogram of the minor/major ratios produced by participants for oval, narrow oval 

and circle shape during practice stage. 

 

Figure 4.2.3: Histogram of the minor/major ratios produced by participants for oval, narrow oval 

and circle shape during replication stage. 

As can be seen in Figure 4.2.3, even if we merge oval and narrow oval into oval shape, there is 

little overlap between circle and oval (oval and narrow oval) shapes. 
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Using the recorded data from practice stage, we calculated average of ratios of lengths of minor 

and major axes for ellipses produced for each shape type for each participant (see Table 4.2.2). To 

further explore this minimal overlap between oval and circle shape, we needed a threshold value 

to decide whether a shape is oval or circle. Using the average of the highest ratio for the oval 

(0.768) and lowest ratio of the circle (0.917) (see Table 4.2.2) shape which is 0.84, we determined 

the threshold value of minor/major ratio for distinguishing between circle and oval shapes. 

 

Table 4.2.2: Minor/Major ratio for each participant recorded during practice stage. 

The shapes which have minor/major ratio less than or equal to 0.84 were recognized as oval and 

if higher than 0.84 were recognized as circular shape. We used this classification rule (if ellipse’s 

minor/major ratio<=0.84, then the shape is circle otherwise it is oval) on our data collected from 

touch actions replication stage for 560 trials of  index finger oval tap touch actions (see Table 

4.2.1) and, we found out that 98.67% of the oval shapes performed by participants were recognized 

as oval and 99.12% of the circle shapes were recognized as circle (see Table 4.2.3). These results 

show that systems can use two shapes (oval and circle) with overall accuracy of more than 98.9% 

in index finger oval tap touch actions. 

  Minor/Major ratio 

  
Oval 

Narrow 

Oval 
Circle 

P
a

rt
ic

ip
a
n

ts
 

1 0.736 0.573 1 

2 0.768 0.685 0.99 

3 0.566 0.485 1 

4 0.664 0.594 0.989 

5 0.671 0.592 1 

6 0.528 0.523 0.987 

7 0.725 0.59 0.991 

8 0.526 0.497 0.991 

9 0.603 0.639 1 

10 0.659 0.5 0.98 

11 0.515 0.51 1 

12 0.658 0.62 0.917 

13 0.537 0.528 0.978 

14 0.613 0.538 1 

15 0.599 0.473 0.989 

16 0.598 0.529 1 
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Table 4.2.3: Confusion matrix for oval and circle shapes for index finger oval tap actions (cells 

show percentages). 

Using the same approach, we did a follow up analysis for combination of two-finger oval tap (560 

trials), index finger oval swipe (560 trials) and index finger rotation (1440 trials) touch actions. 

We found out that 95.77% of the oval shapes performed by participants were recognized as oval 

and 98.64% of the circle shapes were recognized as circle (see Table 4.2.4). The combined overall 

accuracy for contact shapes for two-finger oval tap, index finger oval swipe, index finger rotation 

is 97.21%. It is evident that participants were more efficient in performing oval shape in case of 

index finger oval tap touch actions than rest of the touch actions. 

 

Table 4.2.4: Confusion matrix for oval and circle shapes for combined two-finger oval tap, index 

finger oval swipe and index finger rotation actions (cells show percentages). 

Hence, we merge both oval and narrow oval shape into oval shape. These results show that systems 

can use two shapes (oval and circle) with overall accuracy of more than 98% for all touch actions 

combined in touch interaction. 
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4.3 RESULTS-ORIENTATION 

In this section, we report the on-participant’s ability or replicate orientation and provide 

classification rules for categorizing orientations. 

4.3.1 Index Finger Oval Tap 

Participants were asked to perform oval taps with index finger oriented at seven different angles 

(-45°, -30°, -15°, 0°, 15°, 30° and 45°, see Figure 4.3.1); they were shown the target oval on the 

top part of the screen and performed the index finger oval tap on the lower part of the screen (see 

Figure 4.3.2). The study gathered 560 data points (16 participants x 5 trials for each angle x 7 

angles). We removed four trials where participants performed a circle tap rather than an oval tap 

(resulting in no orientation measure). 

 

Figure 4.3.1: Target orientations for index finger oval tap. 

To determine how many different angles can be reliably used as augmentations to index finger 

oval tap, we plotted a scatterplot of the actual orientations produced by participants for each target 

orientation (see Figure 4.3.3). Note that in all the scatterplots of orientations produced by 

participants presented in Section 4.3, the angle bin range is 2 degrees. For example, the angle 0° 

on x-axis of the scatterplot is the range between (0°, 1°), the angle 5° is the range between (5°, 6°) 

and so on.  As can be seen from Figure 4.3.3, there is substantial overlap between the intended 

orientations: participants produced orientations of -45°, 0°, and +45° reliably, but ±15° and ±30° 

have wide distributions that overlap other targets. To explore this overlap further, we built a 

confusion matrix, using midpoint angles as the cutoff points between orientations (e.g., any touch 

actions between -7.5° and +7.5° were classified as 0°, and so on for the other orientations). The 

confusion matrix is shown in Table 4.3.1. There is an overall accuracy rate of 57.5%, with 

substantial variation between the different targets: -45°, 0°, and +45° have accuracies above 93%, 

but the other angles are all below 35%. 
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Figure 4.3.2: Participant performing index finger oval tap during replication stage. Instructions 

and target touch action were shown on top half of the screen and participant replicated the touch 

action in the bottom half of the screen and the contact shape created was shown in real time on 

bottom half of the screen. 
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Figure 4.3.3: Scatterplot of orientations produced by participants for index finger oval tap, by 

target angle. Each bin is range of two degrees. e.g. 0° is (0°, 1°). 

  

Table 4.3.1: Confusion matrix for index finger oval tap (cells show percentages). 

These accuracy results clearly indicate that systems will not be able to differentiate between seven 

different orientations.  

We carried out two further analyses with smaller sets of targets, to determine whether fewer 

orientations would improve accuracy. We first re-coded trials simply as left, vertical, or right – 

i.e., assuming that a system has three orientation categories, and that any amount of left or right 

tilt past ±7.5° is allowed. The confusion matrix for this analysis is shown in Table 4.3.2. 
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Table 4.3.2: Confusion matrix for left / vertical / right targets, index finger oval tap touch (cells 

show percentages). 

This reinterpretation provides a much higher overall accuracy (95.28%), but there are still 

classification errors due to the difficulty participants had in producing touches at ±15° (which were 

sometimes classified as vertical). As a second revision, we removed these two orientations from 

the set, and collapsed ±30° and ±45° into a single set. We used ±15° as the cutoff angle between 

left, vertical, and right orientations. The confusion matrix for this set of targets is shown in Table 

4.3.3; with this wider spread of targets, we can achieve perfect recognition accuracy (100%) in our 

test data. 

 

Table 4.3.3: Confusion matrix for left-of-15° / vertical / right-of-15° targets, index finger oval 

tap (cells show percentages). 

To convey these three categories to the user, the higher accuracy at +45 and -45 degrees suggests 

that we could use these angles as the goal for the "left" and "right" categories. Therefore, users 

would be told to produce orientations at 45 degrees left, vertical, and 45 degrees right. 

4.3.2 Two Finger Oval Tap 

Participants were asked to perform oval taps with index and middle fingers simultaneously 

oriented at seven different angles (-45°, -30°, -15°, 0°, 15°, 30° and 45°, see Figure 4.3.5); they 

were shown the target ovals on the top part of the screen and performed the two-finger oval tap on 

the lower part of the screen (see Figure 4.3.4).  
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Figure 4.3.4: Participant performing two-finger oval tap during replication stage. Instructions and 

target touch action were shown on top half of the screen and participant replicated the touch 

action in the bottom half of the screen and the contact shape created was shown in real time on 

bottom half of the screen. 
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The study gathered 560 data points (16 participants x 5 trials for each angle x 7 angles). We 

removed 10 trials where participants performed a circle tap with either of the two fingers rather 

than an oval tap (resulting in no orientation measure) or single tap instead of a tap with two fingers. 

 

Figure 4.3.5: Target orientations for two-finger oval tap. 

To determine how many different angles can be reliably used as augmentations to two-finger oval 

tap, we plotted two scatterplots of the actual orientations produced by participants for each target 

orientation for each finger. As can be seen from Figure 4.3.6 and Figure 4.3.7, there is substantial 

overlap between the intended orientations: as with index finger oval  participants produced 

orientations of -45°, 0°, and +45° reliably, but ±15° and ±30° have wide distributions that overlap 

other targets. 

 

 

Figure 4.3.6: Scatterplot of orientations produced by participants for two-finger oval tap (index 

finger), by target angle. Each bin is range of two degrees. e.g. 0° is (0°, 1°). 
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Figure 4.3.7: Scatterplot of orientations produced by participants for two-finger oval tap (middle 

finger), by target angle. Each bin is range of two degrees. e.g. 0° is (0°, 1°). 

To explore this overlap further, we built confusion matrices for each finger, using midpoint angles 

as the cutoff points between orientations (e.g., any touch actions between -7.5° and +7.5° were 

classified as 0°, and so on for the other orientations). The confusion matrices are shown in Table 

4.3.4 (index finger) and Table 4.3.5 (middle finger). There is an overall accuracy rate of 53.7% for 

the index finger and 58.4% for the middle finger with substantial variation between the different 

targets: -45°, 0°, and +45° have accuracies above 80%, but the other angles are all below 55% for 

both fingers. 
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Table 4.3.4: Confusion matrix for (index finger) two-finger oval tap (cells show percentages). 

 

Table 4.3.5: Confusion matrix for (middle finger) two-finger oval tap (cells show percentages). 

Again, we tested smaller category sets (left is < -7.5°, vertical (-7.5°, +7.5°) and right is > +7.5°) 

as described above in Section 4.3.1. Grouping all left, vertical, and right touch actions results in 

the confusion matrices in Table 4.3.6 and Table 4.3.7, and an overall accuracy of 90.07% for the 

index finger and 92.51% for the middle finger. 

 

Table 4.3.6: Confusion matrix for left/ vertical/ right targets, for (index finger) two-finger oval 

tap (cells show percentages). 
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Table 4.3.7: Confusion matrix for left/ vertical/ right targets, for (middle finger) two-finger oval 

tap (cells show percentages). 

Further grouping the results as left/vertical/right (left is < -15°, vertical is (-15°, +15°) and right is 

> +15°) and removing the +/- 15 degrees category results in confusion matrices in Table 4.3.8 and 

Table 4.3.9; with this scheme, we achieve 97.53% recognition accuracy in our test data (96.34% 

for index finger and 98.72% for middle finger). 

 

Table 4.3.8: Confusion matrix for left-of-15° / vertical / right-of-15° targets, for (index finger) 

two-finger oval tap (cells show percentages). 

 

Table 4.3.9: Confusion matrix for left-of-15° / vertical / right-of-15° targets, for (middle finger) 

two-finger oval tap (cells show percentages). 

These results show that systems can use these three orientations; left, vertical and right in case of 

two-finger oval tap with more than 97% (combined for index and middle finger) accuracy in touch 

interaction. 
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4.3.3 Index Finger Oval Swipe 

Participants were asked to perform oval swipes with index finger oriented at seven different angles 

(-45°, -30°, -15°, 0°, 15°, 30° and 45°, see Figure 4.3.9); they were shown the target ovals on the 

top part of the screen and performed the oval swipe on the lower part of the screen (see Figure 

4.3.8). Participants were asked to perform oval swipe with index finger in different directions 

(vertically, horizontally and diagonally) such as left to right, right to left, top to bottom, bottom to 

top and diagonally as well. The study gathered 560 data points (16 participants x 5 trials for each 

angle x 7 angles). For each trial, we recorded the mean of the orientations for all the points covered 

on the screen while swipe action. We removed 15 trials where participants performed a circle shape 

rather than an oval (resulting in no orientation measure), swiped with multiple fingers or performed 

taps instead of a swipe. 
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Figure 4.3.8: Participant performing index finger oval swipe during replication stage. 

Instructions and target touch action were shown on top half of the screen and participant 

replicated the touch action in the bottom half of the screen and the contact shape created was 

shown in real time on bottom half of the screen. 
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Figure 4.3.9: Target orientations for index finger oval swipe. 

 

 

Figure 4.3.10: Scatterplot of orientations produced by participants for index finger oval swipe, by 

target angle. Each bin is range of two degrees. e.g. 0° is (0°, 1°). 

To determine how many different angles can be reliably used as augmentations to index finger 

oval swipe, we plotted a scatterplot of the actual orientations produced by participants for each 

target orientation (see Figure 4.3.10). As can be seen from Figure 4.3.10, there is substantial 

overlap between the intended orientations: participants did not produce any of the intended 

orientation reliably as each of them have wide distributions that overlap other targets apart from 

target angle 0°. 

To explore this overlap further, we built a confusion matrix, using midpoint angles as the cutoff 

points between orientations (e.g., any touch actions between -7.5° and +7.5° were classified as 0°, 

and so on for other orientations). The confusion matrix is shown in Table 4.3.10. There is an overall 
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accuracy rate of 54.92% with substantial variation between the different targets: -45° and +45° 

have accuracies above 88%, but the other angles are all below 53%. 

 

Table 4.3.10: Confusion matrix for index finger oval swipe (cells show percentages). 

Again, we tested smaller category sets (left is < -7.5°, vertical is (-7.5°, +7.5°) and right is > +7.5°) 

as described above in Section 4.3.1. Grouping all left, vertical, and right touch actions results in 

the confusion matrix in Table 4.3.11 and an overall accuracy of 98.45%. 

 

Table 4.3.11: Confusion matrix for left / vertical / right targets, index finger oval swipe (cells 

show percentages). 

Further grouping the results as left/vertical/right (left is < -15°, vertical is (-15°, +15°) and right is 

> +15°) and removing the +/- 15° degrees category results in confusion matrix in Table 4.3.12; 

with this scheme, we achieve 98.89% recognition accuracy in our test data. 
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Table 4.3.12: Confusion matrix for left-of-15° / vertical / right-of-15° targets, index finger oval 

swipe (cells show percentages). 

These results show that systems can use three orientations in case of index finger oval swipe with 

more than 98% accuracy in touch interaction. 

4.3.4 Thumb Side Narrow Oval Tap 

Participants were asked to perform narrow oval tap with side of the thumb oriented at seven 

different angles (-45°, -30°, -15°, 0°, 15°, 30° and 45°, see Figure 4.3.11); they were shown the 

target oval on the top part of the screen and performed the narrow oval tap on the lower part of the 

screen (see Figure 4.3.12). The study gathered 560 data points (16 participants x 5 trials for each 

angle x 7 angles). We removed seven trials where participants performed a circle tap rather than 

narrow oval tap (resulting in no orientation measure). 

 

Figure 4.3.11: Target orientations for narrow oval tap. 

To determine how many different angles can be reliably used as augmentations to narrow oval tap, 

we plotted a scatterplot of the actual orientations produced by participants for each target 

orientation (see Figure 4.3.13). As can be seen from Figure 4.3.13, there is substantial overlap 

between the intended orientations. To explore this overlap further, we built a confusion matrix, 

using midpoint angles as the cutoff points between orientations (e.g., any touch actions between -

7.5° and +7.5° were classified as 0°, and so on for the other orientations). The confusion matrix is 

shown in Table 4.3.13. There is an overall accuracy rate of 60.3%, with substantial variation 
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between the different targets: -45°, 0°, and +45° have accuracies above 73%, but the other angles 

are all below 51%. 

 

Figure 4.3.12: Participant performing thumb side narrow oval tap during replication stage. 

Instructions and target touch action were shown on top half of the screen and participant 

replicated the touch action in the bottom half of the screen and the contact shape created was 

shown in real time on bottom half of the screen. 
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Figure 4.3.13: Scatterplot of orientations produced by participants for narrow oval tap, by target 

angle. Each bin is range of two degrees. e.g. 0° is (0°, 1°). 

 

Table 4.3.13: Confusion matrix for narrow oval tap (cells show percentages). 

These accuracy results clearly indicate that systems will not be able to differentiate between seven 

different orientations.  
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Again, we tested smaller category sets (left is < -7.5°, vertical is (-7.5°, +7.5°) and right is > +7.5°) 

as described above in Section 4.3.1. Grouping all left, vertical, and right touch actions results in 

the confusion matrix in Table 4.3.14, and an overall accuracy of 91.9%. 

 

Table 4.3.14: Confusion matrix for left / vertical / right targets, narrow oval tap (cells show 

percentages). 

Further grouping the results as left/vertical/right (left is < -15°, vertical is (-15°, +15°) and right is 

> +15°) and removing the +/- 15 degrees category results in confusion matrix in Table 4.3.15; with 

this scheme, we achieve 99.13% recognition accuracy in our test data. 

 

Table 4.3.15: Confusion matrix for left-of-15° / vertical / right-of-15° targets, narrow oval tap 

(cells show percentages). 

These results show that systems can use three orientations in case of thumb side narrow oval tap 

with more than 99% accuracy in touch interaction. 

4.3.5 Thumb Side Narrow Oval Swipe 

Participants were asked to perform narrow oval swipe with side of the thumb oriented at seven 

different angles (-45°, -30°, -15°, 0°, 15°, 30° and 45°, see Figure 4.3.15); they were shown the 

target ovals on the top part of the screen and performed the narrow oval swipe on the lower part 

of the screen (see Figure 4.3.14). Participants were asked to perform narrow oval swipes in 

different directions (vertically, horizontally and diagonally) such as left to right, right to left, top 
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to bottom, bottom to top and diagonally as well. The study gathered 560 data points (16 participants 

x 5 trials for each angle x 7 angles). For each trial, we recorded the mean of the orientations for all 

the points covered on the screen while swipe action. We 14 trials where participants performed a 

circle tap rather than an oval tap (resulting in no orientation measure) or swiped in a direction other 

than asked in the stimulus. 

 

Figure 4.3.14: Participant performing thumb side narrow oval swipe during replication stage. 

Instructions and target touch action were shown on top half of the screen and participant 

replicated the touch action in the bottom half of the screen and the contact shape created was 

shown in real time on bottom half of the screen. 
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Figure 4.3.15: Target orientations for thumb side narrow oval swipe. 

To determine how many different angles can be reliably used as augmentations to narrow oval 

swipe, we plotted a scatterplot of the actual orientations produced by participants for each target 

orientation (see Figure 4.3.16). As can be seen from Figure 4.3.16, there is substantial overlap 

between the intended orientations: participants did not produce any of the intended orientation 

reliably as each of them have wide distributions that overlap other targets. 

 

 

Figure 4.3.16: Scatterplot of orientations produced by participants for narrow oval swipe, by 

target angle. Each bin is range of two degrees. e.g. 0° is (0°, 1°). 

To explore this overlap further, we built a confusion matrix, using midpoint angles as the cutoff 

points between orientations (e.g., any touch actions between -7.5° and +7.5° were classified as 0°, 

and so on for other orientations). The confusion matrix is shown in Table 4.3.16. There is an overall 
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accuracy rate of 54.77% with substantial variation between the different targets: -45°, 0°, and +45° 

have accuracies above 77%, but the other angles are all below 58%. 

 

Table 4.3.16: Confusion matrix for narrow oval swipe (cells show percentages). 

These accuracy results clearly indicate that systems will not be able to differentiate between seven 

different orientations.  

Again, we tested smaller category sets (left is < -7.5°, vertical is (-7.5°, +7.5°) and right is > +7.5°) 

as described above in Section 4.3.1. Grouping all left, vertical, and right touch actions results in 

the confusion matrices in Table 4.3.17, and an overall accuracy of 99.27%. 

 

Table 4.3.17: Confusion matrix for left / vertical / right targets, narrow swipe tap (cells show 

percentages). 

Further grouping the results as left/vertical/right (left is < -15°, vertical is (-15°, +15°) and right is 

> +15°) and removing the +/- 15 degrees category results in confusion matrix in Table 4.3.18; with 

this scheme, we achieve 99.59% recognition accuracy in our test data. 
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Table 4.3.18: Confusion matrix for left-of-15° / vertical / right-of-15° targets, narrow oval swipe 

(cells show percentages). 

These results show that systems can use three orientations in case of thumb side narrow oval swipe 

with more than 99% accuracy in touch interaction. 

4.3.6 Index Finger Oval Rotation 

Participants were asked to perform oval rotation touch action with index finger for eighteen 

different rotations (see Figure 4.3.17); they were shown the target ovals on the top part of the 

screen and performed the index finger oval rotation on the lower part of the screen (see Figure 

4.3.18). The study gathered 1,440 data points (16 participants x 5 trials for each angle x 18 

rotations). For each trial, we recorded the mean of the orientations for all the points covered on the 

screen while rotation action. We removed 29 trials where participants performed a circle tap or 

two-finger tap rather than an oval tap while finger rotation (resulting in no orientation measure). 

 

Figure 4.3.17: Target orientations for index finger oval rotation. 
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Figure 4.3.18: Participant performing index finger oval rotation during replication stage. 

Instructions and target touch action were shown on top half of the screen and participant 

replicated the touch action in the bottom half of the screen and the contact shape created was 

shown in real time on bottom half of the screen. 
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To determine how many different angles can be reliably used as augmentations to index finger 

oval rotation, we plotted two scatterplots of the actual orientations produced by participants for 

each target angle (see Figure 4.3.19 and Figure 4.3.20) separately for starting point and end point. 

In Figure 4.3.17, first nine touch actions shown are done by rotating index finger from left to right 

direction (as shown by the arrow on top) and last nine touch actions are done from right to left 

direction. As can be seen from Figure 4.3.19 and Figure 4.3.20, there is substantial overlap between 

the intended orientations: participants produced orientations of -45°, 0°, and +45° reliably (better 

in case of start orientation relative to end orientation), but ±15° and ±30° have wide distributions 

that overlap other targets.  

 

 

Figure 4.3.19: Scatterplot of orientations produced by participants for index finger oval rotation, 

by target angle (start orientation). Each bin is range of two degrees. e.g. 0° is (0°, 1°). 
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Figure 4.3.20: Scatterplot of orientations produced by participants for index finger oval rotation, 

by target angle (end orientation). Each bin is range of two degrees. e.g. 0° is (0°, 1°). 

To explore this overlap further, we built two confusion matrices each for start orientation and end 

orientation, using midpoint angles as the cutoff points between orientations (e.g., any touch actions 

between -7.5° and +7.5° were classified as 0°, and so on for the other orientations). The confusion 

matrices for start and end orientations are shown in Table 4.3.19 and Table 4.3.20 respectively. 

There is an overall accuracy rate of 58% for start point and 54.08% for end point, with substantial 
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variation between the different targets: -45°, 0°, and +45° have accuracies above 69%, but the 

other angles are all below 59%. 

 

Table 4.3.19: Confusion matrix for index finger oval rotation – start orientation (cells show 

percentages). 

 

Table 4.3.20: Confusion matrix for index finger oval rotation – end orientation (cells show 

percentages). 

Again, we tested smaller category sets (left is < -7.5°, vertical is (-7.5°, +7.5°) and right is > +7.5°) 

as described above in Section 4.3.1. Grouping all left, vertical, and right touch actions results in 

the confusion matrices in Table 4.3.21 and Table 4.3.22, and an overall accuracy of 93.91% for 

start orientation and 90.05% for end orientation. 
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Table 4.3.21: Confusion matrix for left / vertical / right targets, index finger oval rotation-start 

orientation (cells show percentages). 

 

Table 4.3.22: Confusion matrix for left / vertical / right targets, index finger oval rotation-end 

orientation (cells show percentages). 

Further grouping the results as left/vertical/right (left is < -15°, vertical is (-15°, +15°) and right is 

> +15°) and removing the +/- 15 degrees category results in confusion matrices in Table 4.3.23 

and Table 4.3.24; with this scheme, we achieve 95.27% recognition accuracy in our test data 

(97.70% for start point and 92.84% for end point). 

 

Table 4.3.23: Confusion matrix for left-of-15° / vertical / right-of-15° targets, index finger oval 

rotation – start orientation (cells show percentages). 
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Table 4.3.24: Confusion matrix for left-of-15° / vertical / right-of-15° targets, index finger oval 

rotation – end orientation (cells show percentages). 

These results show that systems can use three orientations in case of index finger oval rotation 

with more than 95% accuracy in touch interaction. 

Touch Action Accuracy % 

Index finger oval tap 100 

Two finger oval tap 97.53 

Index finger oval swipe 98.89 

Thumb side narrow oval tap 99.13 

Thumb side narrow oval swipe 99.59 

Index finger oval rotation 95.27 

Overall Accuracy % 98.40 

Table 4.3.25: Orientation accuracy in % per touch action type and overall for all touch actions 

combined. 

Using the classification rule, we used above for analyzing orientation data for all touch actions i.e. 

left is < -15°, vertical is (-15°, +15°) and right is > +15°, the results show that systems can use 

these three orientations in six touch actions (see Table 4.3.25) with more than 98% accuracy in 

touch interaction. 

4.4 SUBJECTIVE RESPONSES 

4.4.1 Effort and Preferences 

Participants were asked to rate the ease and their ability to perform each type of touch actions in 

study1: touch action replication study (see Appendix for questionnaires at page 173). Participants 
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gave positive responses for both ease and ability to perform. The scale ranges from 1 to 5 and 

higher is better. We ran the Friedman tests and there were no strong differences in the scores (see 

Table 4.4.1) for all types of touch actions. 

 

Table 4.4.1: Mean (s.d.) Ease and Ability to perform scores (0-5 scale, low to high). 

The results for user preferences indicate that participants perceived similar ease and ability for 

eight augmented touch actions present in our novel input vocabulary. 

4.4.2 Participant Comments 

Participant comments were taken after all three experiments were done. Participants’ comments 

also followed the similar pattern of their rating results as shown above in section 4.4.1Table 4.4.1. 

Most of them were in favor of this new input vocabulary and found it useful, novel and easy to do. 

One participant commented “I like these new gestures; they can increase the speed of operations 

in tablets if used as command shortcuts.” Another participant commented “overall good 

experiment with future prospects of efficient and fast interaction with touch screen 

ipads/mobiles/surface tablets.” Another participant commented “this study can make a huge 

difference in future of interaction with touch-based devices.” 

Some participants faced difficulty with few touch actions but overall, they were satisfied with this 

new input vocabulary. For example, a participant commented “It's really great and novel idea. I 

found it bit difficult at times to do Two Finger Oval touch and Swipe with side of Thumb with left 

 Ease Ability 

Index Finger Oval Tap 4.1 (0.85) 3.6 (1.33) 

Two Fingers Oval Tap 3.87 (1.26) 3.42 (1.46) 

Index Finger Oval Swipe 4.37 (0.69) 3.68 (1.29) 

Thumb Side Narrow Oval Tap 4.25 (0.82) 3.63 (1.34) 

Thumb Side Narrow Oval Swipe 4.25 (0.82) 3.73 (1.37) 

Index Finger Oval Rotation 4.2 (0.7) 3.7 (1.3) 

Index Finger Circle Tap 4.7 (0.4) 4.1 (1.4) 

Two Fingers Circle Tap 4.5 (1.06) 4.15 (1.46) 

χ2 8.4 11.7 

p 0.29 0.10 
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orientation as I am left-handed, I was totally comfortable with right and no orientation. All the 

gestures were easy to perform and follow.” 

Some participants pointed out that they could recognize ±45° and 0° more reliably compared to 

±15° and ±30°. For example, one participant said, “it was easy to perform the extreme angles on 

left and right side and also the vertical one; however, inner angles were tough to distinguish.” 

Some of the participants commented about screen lock application used in study 3 (see Chapter 6) 

and preferred using it as compared to lock screens currently available. For example, one participant 

said “the screen lock application was very interesting and innovative. It worked smoothly and was 

very easy to use. It will enhance the security of touch-based phones and tablets. I would like to use 

this application on my phone.” 

4.5 INTERPRETATION 

Study 1: touch action replication study provides four main results: 

• Participants performed better at -45°, 0°, and +45° angles for orientation replication 

compared to rest of the orientations (-30°, -15°, +15°and +30°). 

• Overall orientation recognition accuracy was highest for index finger oval tap (100 %) 

whereas it was lowest for index finger oval rotation at 95%, when ±15° is used as the cutoff 

angle between left, vertical, and right orientations. 

• Participants could perform oval and circle shapes reliably with more than 98% overall 

accuracy, as we merged both oval and narrow oval into oval shape category. 

• Participants performed oval shape with 98.9 % accuracy while performing index finger 

oval tap whereas it dropped to 95.77% in case of rest of the touch actions combined. 

• There were no significant differences for perceived ease and ability to perform gestures 

between touch actions in our input vocabulary. 
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Here we interpret the findings of this study and provide their explanations. 

Performance analysis of Orientation replication 

The study showed that participants could not reliably produce all seven orientations, though they 

were better at producing -45°, 0°, and +45° orientations. We found out participants when 

producing -15° and -30° targets would lie in (-15° to -45°) range and +15° and +30° lie in (+15° 

to +45°) range as they could not distinguish between ±15° and ±30° angles. We discuss the reasons 

for these results below. 

One possible explanation is that people have more experience with vertical and ± 45° things 

because they occur commonly in the ordinary world (e.g., the diagonal of a square). 0° is vertical 

and ±45° were the extreme angles and were relatively easier to identify as compared to inner angles 

(±30°, ±15°) which lie in between the vertical and extreme angles. This finding is also confirmed 

by one of the participants’ comment that they found extreme angles and vertical angles easier to 

perform. 

Orientation recognition rate for index finger oval tap was highest (100%) and was lowest for index 

finger oval rotation. The overall accuracy for tap based touch actions was higher compared to the 

those involving swipes and rotation. Tap actions are simple pointing gestures and have fewer input 

dimensions relative to swipe and rotation actions. In swipe and rotation actions, the user must 

maintain the contact shape, orientation and the movement on the screen surface as well. In index 

finger swipe gesture, the user is maintaining one orientation throughout the stroke whereas in the 

index finger oval rotation action, the user must maintain start and end orientations. Therefore, more 

input dimensions may reduce accuracy as the user has to consider more input dimensions while 

performing the touch action. 

 

Performance analysis of Shape replication 

The study showed that participants could not reliably produce different oval and narrow oval 

shapes. However, when oval and narrow oval are considered oval shape then shape recognition 

accuracy is more than 98%. We discuss the reasons for these results below. 

One of the participants commented that they were uncomfortable with performing touch with side 

of the thumb especially in left orientation as a person with left hand as dominant hand. Participants 

must have felt uncomfortable and focused on achieving the orientation and might have rolled their 
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thumb inward and hence, the pad of the thumb replaced the side of the thumb resulting in fatter 

oval. 

Participants performed best with index finger oval rotation to produce oval shape in comparison 

to other touch actions involving oval shape. One possible reason is that index finger oval tap is 

based on a simple tap action and a participant had to consider only orientation and shape whereas 

in other touch actions such as index finger oval swipe the participant had to maintain the contact 

shape and orientation throughout the stroke of the finger. Participants performed best with index 

finger oval tap in case of orientation also. This shows that more input dimensions such as multi-

finger touch, stroke and rotation may reduce accuracy. However, overall accuracy for shape 

recognition was more than 98%. 

Hence, the interaction designers should avoid the use of thumb side and use the fingertip and pad 

of the index finger for touch actions. 

 

User preferences 

There were no significant differences for perceived ease and ability to perform gestures between 

touch actions in our input vocabulary (see Section 4.4.1). This validates our choice of touch actions 

included in our novel input vocabulary. Our input vocabulary is based on touch actions (tap, swipe 

and rotate) widely used in real life and hence, users did not perceive a touch action difficult than 

other. 

 

Limitations of touch action replication study 

The participants produced touch actions in touch action replication study by seeing a visible target 

shown as command stimulus on the screen (see Figure 4.1.3) and not from their memory. 

Participants could match the orientation and contact shape of their finger touch with the ones 

shown as command stimuli. Hence, in this study participants were not required to learn, and they 

could use the real time feedback to see if their produced contact shapes and orientations matched 

with the target or not. To investigate the learnability and memorability of these touch actions we 

did study 2; memory test study (see Chapter 5). 



 

109 

4.6 SUMMARY 

In this chapter, we presented touch action replication study which established the classification 

rules for determining contact shapes and orientations which can be performed reliably. Participants 

performed eight augmented touch actions over the blocks. Results of our study shows that systems 

can reliably use three orientations for our input vocabulary touch actions i.e. vertical, left and right. 

Users must be told, however, that left and right orientations must be produced with an angle of 

greater than fifteen degrees and vertical lies between -15° and +15°. Also, the contact shape 

produced with pad or side of the finger should be considered as oval shape if the minor/major axes 

lengths ratio is less than equal to 0.84 and any finger touch with ratio above 0.84 would be 

considered as circular shape. In the next chapter, we continue our exploration of learnability and 

memorability of our novel input vocabulary. 

 

 

 



 

110 

CHAPTER 5 

5 STUDY 2: MEMORY TEST STUDY 

In this chapter, we investigate the learnability and memorability of our novel input vocabulary. 

We use the findings from study 1 (see Chapter 4) to establish the accuracy of touch actions 

performed in this study. In this study, our primary goal was to find whether participants can learn 

these new augmented touch actions and reproduce them accurately once they have been learned. 

5.1 OVERVIEW OF THE STUDY 

Touch actions are used as command shortcuts on touch interfaces as GUI designers want to limit 

the use of graphical objects due to limited screen space. Users learn the association of a touch 

action with the corresponding command as they use it. Touch actions as shortcuts are memory-

based command execution technique as there is no visual interface to guide the user’s touch. With 

any memory-based technique, there is a possibility that a touch action’s command association 

could interfere with another’s command. Hence, we performed the study 2 (memory test study) 

where participants learn the touch actions and command associations and then are asked to perform 

them without feedback to test the learnability of our novel input vocabulary. 

5.2 METHODS 

5.2.1 Apparatus 

The study was conducted on a multi-touch Samsung Nexus 10 Android tablet (10-inch screen, 

1280x800 resolution). The application for memory test study was written in Java and recorded all 

experimental data. Each participant was seated on a chair in our research lab and held the tablet 

with their non-dominant hand and performed the touch actions with their dominant hand (see 

Figure 4.1.1). 
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5.2.2 Participants 

We recruited 16 people (3 females; mean age 24.9 years and s.d. 4.1 years) from the University of 

Saskatchewan campus. All our participants were students. Two participants were left-handed, and 

no participant was ambidextrous. The same participants also took part in study 1 and study 3 

discussed in Chapters 4 and 6 respectively. Study 2 (memory test study) took ~15 minutes in total, 

and we provided a $10 remuneration to each participant for the set of three studies. All of them 

had used multi-touch systems such as tablets and smartphones before, with 12 participants reported 

owning a tablet and average weekly use being more than ten hours per week. 

5.2.3 Task and Stimuli 

The study consisted of a set of touch actions performed by participants, each associated with an 

application name (see Table 5.2.1). Notice that index finger circle tap, and two-finger circle tap 

are already in use in touch interfaces. These touch actions would not be used in situations where it 

could be confused with a selection tap. Participants were given a help sheet on which there were 

six command names mentioned (see Figure 5.2.1) along with visual representations of the 

associated touch actions. These command names were names of popular mobile phone applications 

such as facebook, camera, twitter, etc. In each trial, a word was shown on the top half of the screen 

and the participant was required to perform the associated touch action on the bottom half of the 

screen without any visual feedback (see Figure 5.2.2). Participants could take as much time as they 

wanted to perform a trial; once a touch action was performed it could not be changed and the 

system would move on to the next word. We did not use narrow oval shapes in this study as our 

system did not have a classification rule yet to distinguish between oval, narrow oval and circle 

shapes. 

 

Table 5.2.1: Mapping of application names with associated touch actions. 

Application Name Touch Action Type Shape Orientation 

Camera Two finger oval tap Oval Vertical oriented 

Facebook Index finger oval rotation Oval Left to right orientation  

Maps Two finger circle tap Circle No orientation 

Music Index finger oval tap Oval Right oriented 

Twitter Index finger circle tap Circle No orientation 

Video Index finger oval swipe Oval Right oriented 
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Figure 5.2.1: Help sheet used by participants for memory test study. 

 

Figure 5.2.2: Memory test. The command name is shown on upper half of the screen and the 

corresponding gesture performed on the lower half of the screen. 

5.2.4 Procedure and Design 

Participants performed six command actions, repeated over 12 blocks that were grouped into two 

stages. For the first 10 blocks, participants could refer to the help sheet (see Figure 5.2.1) which 

had the mappings between command names and touch actions. After they had performed 10 

blocks, the system would pause, and the help sheet was taken away for the last 2 blind blocks. 

There was no feedback on the screen throughout 12 blocks. Each block consisted of six trials and 

command names were presented randomly in each block. Participants were instructed to complete 
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the trials as accurately as possible. For each trial, we recorded the lengths of major and minor axes 

of the ellipses formed which would help us to determine the contact shape and orientation of the 

finger touch. 

In study 1 (see Chapter 4), we presented a classifier rule for determining contact shape (see section 

4.2, minor/major ratio<=0.84 for oval and ratio>0.84 for circle shape). We used this classifier rule 

to evaluate touch actions produced by the participants. For orientation, we used our findings from 

section 4.3, which says that left, and right orientations must be produced with an angle of greater 

than fifteen degrees and vertical orientation should be between -15° and +15°. We recorded the x, 

y coordinates and finger orientation for all points covered on the screen for all touch actions. We 

needed this to distinguish between tap actions, index finger oval swipe, and index finger oval 

rotation actions. The swipe action takes a line segment trajectory and the latter involves an arc 

trajectory. We wrote a computer program to analyze recorded x, y coordinates information and 

orientation for all touchpoints covered for tap, swipe and rotation actions to validate the touch 

actions. Any gesture not meeting these criteria was considered to be an incorrect gesture. 

The within-participants study used a repeated-measures factorial design, with factors ActionType 

(six touch actions, see Table 5.2.1) and Block (1-12); Dependent measures were touch action 

accuracy per trial. Hypotheses were: 

H1. There will be no evidence of a difference in accuracy rates between the six touch action 

types. 

H2. There will be no evidence of touch action accuracy rates decreasing significantly in 

blind blocks. 

5.3 RESULTS 

Accuracy per trial 

We analyzed accuracy per trial by tracking accurate touch actions performed. We analyzed mean 

accuracy for the 10 blocks (with help sheet) and 2 blind blocks (without help sheet) separately (see 

Figure 5.3.3). For both stages (block 1-10 and block 11-12), we report the effect size for significant 
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RM-ANOVA results as general eta-squared: η2(considering .01 small, .06 medium, and >.14 large 

[52]), and Holm correction was performed for post-hoc pairwise t-tests. 

 

Figure 5.3.1: Mean touch action accuracy rate for memory test for all blocks. 

 

Figure 5.3.2: Mean touch action accuracy rate per touch action type for blind blocks (block 11 to 

12) for memory test. 
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Figure 5.3.3: Mean touch action accuracy rate by touch action type for memory test. 

Notice that in Figure 5.3.3, the legends are as follows: TFOT (two-finger oval tap), IFOR (index 

finger oval rotation), TFCT (two-finger circle tap), IFOT (index finger oval tap), IFCT (index 

finger circle tap) and IFOS (index finger oval swipe). 

We compared the mean touch action accuracy for the six touch action types across trial blocks in 

stage 1 (Block 1 to 10, with help sheet) as described above in design section. A 6x10 two-factor 

ANOVA with ActionType and Block showed a significant effect of ActionType (F5,75=4.65, 

p<.001, η2=0.05) on accuracy but showed no effect of Block (F9,135=1.25, p=.26) and significant 

interaction effect between ActionType and Block (F45,675=1.59, p=.008, η2=0.06). Post-hoc t-tests 

(Holm-corrected) show that TFCT (0.99, s.d. 0.02) had higher mean accuracy than TFOT (0.81, 

s.d. 0.34), IFOT (0.98, s.d. .07) > TFOT (0.81, s.d. 0.34), TFCT (0.99 s.d. 0.02) > IFOR (0.86, s.d. 

0.31), with p<.001. IFOT (0.98, s.d. .07) > TFOT (0.81, s.d. 0.34), IFCT (0.98, s.d. 0.07) > IFOR 

(0.86, s.d. 0.31) with p=.001. IFOS (0.91, s.d. 0.24) > TFOT (0.81, s.d. 0.34) with p<0.05 but no 

difference between other pairs (all p>.05). Participants performed best with TFCT (mean 0.99, s.d. 

0.02) and worst with TFOT (mean 0.81, s.d. 0.39). 

We compared the mean touch action accuracy for the six touch action types across trial blocks in 

blind stage (Block 11 to 12) as described above in design section. A 6x2 two-factor ANOVA with 

ActionType and Block showed a significant effect of ActionType (F5,75=3.05, p=.014, η2=0.14) on 

accuracy but showed no effect of Block on accuracy (F1,15=1.90, p=.18) and no ActionType x Block 

interaction (F5,75=1.17, p=.32). Post-hoc t-tests (Holm-corrected) show that IFCT (1, s.d. 0) had 
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higher mean accuracy than IFOS (0.72, 0.46) with p=.009. IFCT (1, s.d. 0) > TFOT (0.75, s.d. 

0.44), TFCT (0.97, s.d. 0.12) > IFOS (0.72, s.d. 0.46) but no difference between other pairs (all 

p>.05). Hence, we reject H1 and accept H2. 

As shown in Figure 5.3.2, participants performed best with IFCT (mean 1) followed by TFCT 

(mean 0.97, s.d. 0.12), IFOR (mean 0.94, s.d. 0.17), IFOT (mean 0.84, s.d. 0.37), TFOT (mean 

0.75, s.d. 0.44) and IFOS (mean 0.72, s.d. 0.46). 

5.4 INTERPRETATION 

Our results from Study 2: memory test study suggest the following: 

• There was a significant difference in accuracy rates between various touch actions. 

• The touch action accuracy rate did not decrease significantly during blind blocks. 

Performance of input vocabulary in the memory test 

Our findings in the memory test study show that overall participants could remember some 

associations of touch actions with command words (stimuli) even when the help sheet was taken 

away from them in blind blocks (block 11-12) without a significant decrease in mean touch action 

accuracy rate. From Figure 5.3.2, it is clear that participants performed best with index finger circle 

tap (mean accuracy 1), followed by two-finger circle tap (mean accuracy 0.97, s.d. 0.03) and index 

finger rotation (mean accuracy 0.94, s.d. 0.17). However, for the rest of the three touch actions, 

the mean accuracy rate is 0.77 which means error rate is above 20% which is quite high for these 

augmented touch actions to be used in a realistic task. From Figure 5.3.2, it is evident that the error 

rate increases from left to right and the touch actions get complex as well. This confirms our 

finding from Chapter 4, that increasing the number of input dimensions may introduce more errors. 

The mean accuracy in block 1 was 0.89 (s.d. 0.32), in block 11 was 0.89 (s.d. 0.32) and in block 

12 was 0.85 (s.d. 0.35) (see Figure 5.3.1). This shows that in the last block (block 12), the overall 

error rate was 15% which is quite high for a realistic task. 
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In touch replication study (see Chapter 4), there was real-time feedback about contact shape and 

orientation produced by participants and the target shape and orientation were also visible as 

command stimuli (see Figure 4.1.3). In this study, participants had to retrieve the associations of 

touch actions and command names from memory and there was no real-time feedback about 

contact shape and orientation both in stage 1 (with help sheet) and blind stage. This further 

impacted the participant’s performance regarding memorizing touch actions. We did not have 

classification rules for determining and validating contact shapes and orientations before this 

experiment. We believe that if we could give feedback about the accuracy of touch actions in stage 

1, it might have given better results in the blind stage as participants could correct the touch actions 

in case of an error. Now, we know the classification rules for orientation and contact shapes, a new 

study needs to be done with accuracy feedback in the learning stage (stage 1) and then we can have 

definite conclusions about the learnability and memorability of our augmented touch actions. 

The touch action accuracy rate did not decrease significantly during blind blocks. The touch 

actions in our input vocabulary are based on simple touch actions such as tap, swipe and rotate 

which are commonly used on touch devices. Also, they must remember the direction in which their 

finger has to point while it lands on the screen and the part of the finger touching it. Before memory 

test, they had already performed these touch actions multiple times in touch action replication 

study (see Chapter 4) and hence, this helped them to further learn the associations of gestures with 

the application names. 

Limitations of memory test 

One possible limitation of this study is that the touch actions were associated with command 

names. If the touch action’s method of execution is relevant to the context of a task, it becomes 

easier to remember. For example, associating a flick gesture with scrolling a document. In the 

future work, we will associate the touch actions with relevant real-world tasks and then perform a 

memory test, which will help us in producing more definite conclusions about the memorability 

and learnability of our input vocabulary. 
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5.5 SUMMARY 

In this chapter, we examined the performance of our novel input vocabulary using a memory test 

study. Participants performed a series of augmented touch actions associated with command names 

which were shown on screen. A help sheet having mappings of command names and touch actions 

associations was provided for the first ten blocks of the memory test. It was taken away in the last 

two blocks (blind stage), but overall participants’ performance did not change significantly in blind 

stage. Participants performed index finger circle tap, two-finger circle tap and index finger oval 

rotation with a mean accuracy of 97% during blind blocks. However, for the rest of the three touch 

actions, the accuracy was only 77% during blind blocks (error rate above 20%) which is not 

acceptable in real-world applications. We present the limitations of memory test study and give a 

few directions to be followed in future studies to give more definite conclusions for the learnability 

and memorability of our novel input vocabulary. 
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CHAPTER 6 

6 STUDY 3: AUGMENTED TOUCH INTERACTIONS IN A 

REALISTIC TASK 

In this chapter, we describe the design of our screen lock application developed for Android OS 

which can be used to lock and unlock the tablet’s screen based on pattern matching mechanism. 

Pattern-based screen lock applications are commonly used across smartphones and tablets. We use 

the One Dollar Recognizer algorithm for pattern matching [223] in our screen lock application. 

This software library comes with several predefined single-stroke gestures such as triangle and 

circle (see Figure 5.5.1). When a user performs these predefined single-stroke gestures on the 

screen the algorithm can detect the shape of the single-stroke gesture performed and can tell the 

name of the gesture. We developed this application to test out contact shape and orientation in a 

realistic task. 

 

Figure 5.5.1: Single-stroke gestures predefined by One Dollar Recognizer algorithm library 

[223]. 
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For this study, we created an application that can be used to lock and unlock the screen using the 

single-stroke gesture detection capabilities of One Dollar Recognizer algorithm [223]. Instead of 

using only shapes (see Figure 5.5.1), we added contact shape and orientation as additional input 

dimensions to these single-stroke gestures. In this chapter, we report on the study done using this 

application which shows that contact shape and orientation can be used to enhance touch screen 

interactions in realistic tasks. 

6.1 SCREEN LOCK APPLICATION 

Our screen lock application uses the One Dollar Recognizer algorithm [223] to detect the shape of 

a single-stroke gesture performed to set the lock pattern or unlock the screen. Along with the 

single-stroke gesture shape, it also records the lengths of minor and major axes of the ellipses 

formed to determine contact shape of all the finger touch points along with the orientation This 

means apart from the shape of the single-stroke gesture, the user has to remember the contact shape 

and orientation of the finger touch as well while locking or unlocking the screen. For example, if 

a user has set the lock pattern as a triangle shape with a right-oriented index finger swipe, one 

cannot just unlock the screen by drawing a triangle only. It must match both contact shape (oval 

or circular) and orientation (left, vertical, right or no orientation) produced while locking the 

screen. For our study, we used only a circle gesture out of all predefined gestures (see Figure 5.5.1) 

by One Dollar Recognizer algorithm library [223]. We chose circle shape over other shapes due 

to its simplicity in terms of movement of the finger, unlike triangle or zigzag where the user must 

perform a stroke and then change direction to continue the stroke. 

We defined a set of four lock/unlock patterns for Circle shape (see Table 6.1.1) for our study. 
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Gesture Contact Shape Orientation Finger Part 

No orientation circle Circle No orientation Fingertip of the index finger 

Vertical-oriented circle Oval Orientation = 0° Pad of the index finger 

Left-oriented circle Oval Orientation < 0° Pad of the index finger 

Right-oriented circle Oval Orientation > 0° Pad of the index finger 

Table 6.1.1: Single-stroke gesture, contact shape, orientation and finger part used to perform the 

gesture in screen lock application study. 

If a user wants to set a lock using a circle gesture with no orientation, the user was told that they 

have to perform a circle gesture with the fingertip of the index finger which means that the contact 

shape will be circular and there will be no orientation reported by the touch sensor. Whereas in the 

case of a right-oriented circle, the user was told to perform a circle gesture with the pad of the 

index finger in the right orientation (orientation > 0°). The user must maintain the contact shape 

and orientation throughout the trajectory of the circle single-stroke gesture. For each gesture 

performed, our system recorded the lengths of major and minor axes of the ellipses formed to 

determine the contact shape and recorded the orientations of all the finger touch points covered on 

the screen while performing a gesture. Our system also recorded whether the gesture performed 

was accurate or not. Even though we used only one gesture (circle), we recorded the shape 

accuracy reported by the One Dollar Recognizer algorithm [223]. It means if the recognizer failed 

to recognize the gesture performed as a circle, it was recorded as an incorrect gesture. 

To recognize a gesture as correct or incorrect, the screen lock application system considers three 

factors; single-stroke gesture shape, finger contact shape, and orientation. To determine if it is 

correct or not, we followed the below-mentioned algorithm: 

if One Dollar Recognizer recognizes the performed gesture as circle 

 take mean of ratios of lengths of minor and major axes for all the points 

 if mean of minor/major ratios is greater than 0.84 

  identify contact shape as circular 

 else 

  identify contact shape as oval 

  if each of the points covered were oriented at <= -15° 

   identify orientation as left                                                                                                                              

  if each of the points covered were oriented at >= +15° 

   identify orientation as right 
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  if each of the points covered were oriented between (-15°, +15°) 

   identify orientation as vertical 

else 

 identify gesture as incorrect due to failure of recognizer 

We used our findings from study 1 (see Chapter 4)  regarding the classification rules for contact 

shape (if ellipse’s minor/major ratio<=0.84, then the shape is circle otherwise it is oval) and 

orientation (left is < -15°, vertical is (-15°, +15°) and right is > +15°) to validate the contact shape 

and orientation of the gestures performed using screen lock application. We ran a pilot study for 

screen lock application before all three studies and recorded the touch point information (x-y 

coordinates), orientation and minor/major ratio of the axes of the ellipse formed for all the points 

covered while performing circle gesture. We found out for some of the circle gestures performed, 

our recorded data showed that some of the points covered had bad values for lengths of major and 

minor axes and orientation (i.e. length of major or minor axis only 1 pixel when full pad of the 

index finger is in contact with surface or orientation as more than 90°). The bad values arose from 

the touch sensor and device and not from the users’ actions. We found out that the amount of points 

that gave bad values always ranged between 4% and 5% out of all the points covered by finger 

movement on the screen. We removed these bad points from our recorded data before data 

analysis. 

6.1.1 Implementation Details 

For the implementation, we used the same 10-inch Samsung Nexus 10 tablet which was also used 

in study 1 (see Chapter 4) and study 2 (see Chapter 5). We create an Android OS based application 

in which we wrote our algorithm to detect the contact shape and orientation of the finger touch on 

top of the One Dollar Recognizer algorithm. 

6.2 METHODS 

6.2.1 Apparatus 

The study was conducted on a multi-touch Samsung Nexus 10 Android tablet (10-inch screen, 

1280x800 resolution). The application for study 3 was written in Java and recorded all 

experimental data. Each participant was seated on a chair in our research lab and held the tablet 
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with their non-dominant hand and performed the touch actions with their dominant hand (see 

Figure 4.1.1). 

6.2.2 Participants 

We recruited 16 people (3 females; mean age 24.9 years and s.d. 4.1 years) from the University of 

Saskatchewan campus. All our participants were students. Two participants were left-handed, and 

no participant was ambidextrous. The same participants also took part in study 1 and study 2 

discussed in Chapters 4 and 5 respectively. Study 3 (screen lock application study) took ~15 

minutes in total, and we provided a $10 remuneration to each participant for the set of three studies. 

All of them had used multi-touch systems such as tablets and smartphones before, with 12 

participants reported owning a tablet and average weekly use being more than ten hours per week. 

6.2.3 Task and Stimuli 

The study consisted of trials, each involving performing a single-stroke circle gesture with contact 

shape and orientation. In each trial, the participant was shown instructions on top of the screen and 

was asked to perform the single-stroke circle gesture on the bottom half of the screen. During the 

lock stage, the participant could see the trajectory of stroke in real-time along with the ellipse 

created by the finger touch (both contact shape and orientation produced were visible) (see Figure 

6.2.1 Left) whereas there was no such feedback in case of the unlock pattern blocks (see Figure 

6.2.1 Right). There was no feedback about the accuracy of the gesture in both lock and unlock 

stages. 
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Figure 6.2.1: Left: Participant performing left oriented circle gesture during lock pattern (with 

feedback). Right: Participant performing left oriented circle gesture during unlock pattern (no 

feedback). 

6.2.4 Procedure and Study Design 

The study was divided into two stages; each stage had four blocks. The first 4 blocks involved 

performing the lock patterns and the last 4 blocks involved performing Unlock patterns. The 

patterns used in both lock and unlock stages were the same (see Table 6.1.1). There was feedback 

about the trajectory of the finger stroke, contact shape and orientation in the lock stage but it was 

not available in unlock stages. Each participant went through the lock stage first and then the 

unlock stage. The stimuli were shown in random order in each block. After each stage, participants 

were allowed to rest. 

Each participant performed 16 patterns in total (eight lock patterns and eight unlock patterns) 

where each block consisted of four patterns (see Table 6.1.1). Participants performed one practice 

block before each stage to make them familiar with the interface and the data from these 2 practice 

blocks was discarded for analysis. The study aimed to find out if participants could perform these 

patterns with similar accuracy in both stages. Participants were instructed to take as much time as 
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they want and complete trials as accurately as possible. For each trial, we recorded a single-stroke 

gesture shape, the lengths of major and minor axes of the ellipses for all the touchpoints during 

these gestures along with the orientation for all the touchpoints. We used this data to validate the 

single-stroke gestures done by participants in this study. 

The within-participants study used a repeated-measures factorial design, with factors GestureType 

(four single-stroke circle gestures, see Table 6.1.1) and Block (1-8); Dependent measures were 

gesture accuracy per trial. Hypotheses were: 

H1. There will be no evidence of a difference in accuracy rates between the four single-

stroke circle gestures. 

H2. There will be no evidence of gesture accuracy rates decreasing significantly in unlock 

stage (Block 5-8). 

6.3 RESULTS 

Accuracy per trial 

We analyzed accuracy per trial by tracking the accuracy of that gesture performed in that trial. We 

analyzed mean accuracy for the first 4 blocks (lock stage with feedback) and the last 4 blind blocks 

(unlock stage with no feedback) separately. For both stages (block 1-4 and block 5-8), we report 

the effect size for significant RM-ANOVA results as general eta-squared: η2(considering .01 small, 

.06 medium, and >.14 large [52]). 

Notice that in Figure 6.3.1, the legends are as follows: NOC (no orientation circle), VOC (vertical-

oriented circle), LOC (left-oriented circle) and ROC (right-oriented circle). 

We compared the mean gesture accuracy for the four single-stroke circle gestures across trial 

blocks in the lock stage (Block 1 to 4, with feedback) as described above in the design section. A 

4x4 two-factor ANOVA with GestureType and Block showed no effect of GestureType 

(F3,45=1.19, p=.32) on accuracy but showed a significant effect of Block (F3,45=2.89, p=.04, 

η2=0.03) and there was no interaction effect between GestureType and Block (F9,135=.36, p=.94) 
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(see Figure 6.3.1). This shows that there was a learning effect and participants improved 

significantly and equally for all four gestures in lock stage blocks. 

 

Figure 6.3.1: Mean gesture accuracy rate by touch action type and block for screen lock study. 

We compared the mean gesture accuracy for the four single-stroke circle gestures across trial 

blocks in the unlock stage (Block 5 to 8, with no feedback) as described above in the design section. 

A 4x4 two-factor ANOVA with GestureType and Block showed no effect of GestureType 

(F3,45=2.08, p=.11) on accuracy and there was no effect of Block on accuracy (F3,45=1, p=.4).There 

was no GestureType x Block interaction (F9,135=1.03, p=.41) (see Figure 6.3.1). Gesture accuracy 

did not change significantly in blind blocks. Therefore, we accept H1 and H2. However, overall 

accuracy (see Figure 6.3.2) went up to mean accuracy 0.92 in block 8 (s.d. 0.27) from block 5 

mean accuracy 0.84 (s.d. 0.37). 
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Figure 6.3.2: Mean gesture accuracy rate by block (stage wise) for screen lock study. 

The overall mean accuracy for the unlock stage (block 5 to 8, without feedback) is 0.88. This 

means the mean error rate for the unlock stage is 12%. The recognizer algorithm used to detect 

gesture shape also reports the accuracy of gesture produced. Along with it using our classification 

rules for contact shape and orientation, we analyzed the data and we found out the reasons for 

errors done in the unlock stage (block 5 to 8). 60 % of the errors were due to the failure of 

recognizer in recognizing the gesture. 23.33% of the errors were due to the wrong contact shape 

and 16.67% due to orientation. Removing these 60% errors caused by the recognizer, we can say 

that the mean error rate during the unlock stage is 4.8% which is due to contact shape and 

orientation errors. 

6.4 INTERPRETATION 

Our results from Study 3: screen lock application study suggests following: 

• There was no difference in mean accuracy for all four gestures. 
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• Gesture accuracy rate increased significantly increased during lock stage (with feedback) 

and did not change during blind blocks. 

• The gesture error rate due to contact shape and orientation was 4.8%. 

Gesture performance in screen lock application study 

In this study, all four gestures were similar in terms of stroke shape which was “circle” but were 

varied in terms of different contact shapes and orientations involved. The results suggest that there 

was no difference in mean accuracy for all four gestures. Participants had already learned to 

produce the contact shapes (oval and circle) and all three orientations (left, vertical, right) in the 

lock stage (block 1 to 4, with feedback) and that learning effect helped participants performing all 

four gestures in unlock stage (block 5 to 8, without feedback) without any significant difference 

in accuracy among these four gestures. 

Gesture accuracy significantly improved in the lock stage (block 1 to 4) because participants 

performed these four single-stroke circle gestures for the first time and hence, we saw a learning 

effect. However, the accuracy rate did not change significantly during the unlock stage (block 5 to 

8, without feedback). This shows that participants learned the mechanism of performing these four 

gestures. They could maintain the contact shape and orientation while moving their finger to 

perform a circle gesture. 

Error rate in a realistic task 

Participants performed gestures at the mean error rate of 12% in the unlock stage (block 5 to 8, 

without feedback). The error rate is high for using contact shape and orientation as additional DoF 

in a realistic task. However, our analysis of these 12% errors shows that 60% of the errors were 

due to recognizer’s failure in recognizing the gesture. Removing the errors due to recognizer’s 

failure, the error rate drops down to 4.8% which is still high in case of real-world usage of contact 

shape and orientation. Pattern lock and unlock mechanism is commonly available on smartphones 

and tablets. People make errors in their current unlock gestures all the time, and to correct it they 

just redo the gesture. People will have far more practice with the gestures in a real-world version 

of our screen lock application. As long as they can reliably produce the gestures, and as long as 

the system can reliably interpret the gestures, then the memory aspect will take care of itself. It 
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means that with practice users will be able to remember the pattern shape, contact shape and 

orientation of the gesture. 

6.5 SUMMARY 

In this chapter, using the screen lock application we showed that contact shape and orientation can 

be used to enhance touch screen interactions in realistic tasks. Participants performed a series of 

gestures according to the instructions showed on the top area of the screen. There were two stages 

in this study; lock stage and unlock stage. Gesture accuracy improved significantly during the lock 

stage over the blocks but did not change significantly during the unlock stage. However, we can 

say that the mean accuracy went up from 0.61 in block 1 to 0.92 in the last block (see Figure 6.3.2). 

Also, participants performed equally well for all four gestures. Results of our screen lock study 

provide evidence that additional DoF such as contact shape and orientation can be used in realistic 

tasks. Users can learn to produce variations of a gesture with different contact shapes and 

orientations resulting in increased input vocabulary. 
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CHAPTER 7 

7 DISCUSSION 

Here we discuss the findings of our studies with novel input vocabulary having augmented touch 

actions using contact shape and orientation as additional degrees of freedom. We begin by 

discussing the implications of our findings for touch interactions, then consider the lessons that 

were learned through the research, use cases for augmented interactions and limitation of our 

studies. 

7.1 SUMMARY OF FINDINGS 

Our three quantitative user studies have resulted several findings. Here we summarize our main 

results. 

7.1.1 Contact Shape and Orientation can be used to augment the Touch Interactions 

We introduced a new input vocabulary comprising of eight touch actions that use additional 

degrees of freedom (DoF) such as contact shape and orientation to enhance the expressivity of 

interaction on touch-based hand-held devices. The contact shape is determined by the contact 

region covered by the finger while touching the screen. When a user taps on the screen using their 

fingertip (vertical touch, see Figure 3.1.2 left) the contact shape tends to be circular (see Figure 

3.1.3 left) whereas it is oval (see Figure 3.1.3 center) in case of the pad of the index finger (oblique 

touch, see Figure 3.1.2 right). The side of the thumb (see Figure 3.1.3 right) produces a narrower 

oval relative to the pad of the fingertip. The oblique touch results in an elliptical shape and as a 

result, the length of the major axis differs from the length of the minor axis. In vertical touch, these 

lengths are similar. Previous research has used this elliptical shape to determine the finger 

orientation [213]. In our research, the finger orientation is a 2D orientation (yaw angle) of the 

finger’s projection on the surface (see Figure 3.1.2 right) in case of oblique touch. 
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In our case, the orientation was provided by the getOrientation() method of MotionEvent API [8] 

of the Android platform. For detecting the contact shape, we used the getTouchMajor() and 

getTouchMinor() methods of MotionEvent API [8] as they report the lengths of the major and 

minor axes of the ellipse formed that represents the touch area at the point of contact. Once we 

developed the methods to obtain contact shape and orientation, we augmented three types of touch 

actions such as tap, swipe and rotate to develop our novel input vocabulary. 

7.1.2 Participants performed three Orientations and two Contact Shapes reliably 

Before designing the augmented touch-interactions using contact shape and finger orientation, the 

GUI designers need to know the contact shapes and orientations that can be produced by human 

users reliably. We developed an Android application that records the lengths of the major and 

minor axes of the ellipse formed by the finger touch along with its orientation. Using this 

application, we ran a study 1 (touch action replication study, see Chapter 4) to establish the baseline 

information about the contact shapes and orientations. In this study, participants first performed a 

practice stage (see Figure 4.1.2), in which they were asked to perform a touch action 20 times 

individually for each of the shape i.e. oval, narrow oval and circle along with its orientation. The 

instructions to perform each touch action was presented on the screen along with an arrow 

indicating the orientation of the shape. In case, of circle shape, there was no arrow (no orientation). 

We recorded the lengths of major and minor axes of the ellipses formed in each trial for three 

different shapes for each participant. For each participant, we took average lengths of major and 

minor axes of all three shapes and used them to create the pictures of stimuli shapes to be replicated 

by the participant in the touch action replication stage. 

During the touch action replication stage, participants were shown all eight types of touch actions 

from our input vocabulary as command stimuli one by one on the upper half of the screen (see 

Figure 4.1.3) over several blocks. Participants replicated these shapes along with their orientation 

on the lower half of the screen. For each trial performed, we recorded the lengths of minor and 

major axes of the ellipse formed along with their orientation. The target angles/orientations were 

-45°, -30°, -15°, 0°, 15°, 30°, 45°, and the shapes were oval, narrow oval and circle. Our analysis 

for the contact shape shows that participants could not reliably produce different oval and narrow 

oval shapes (see Figure 4.2.2). Hence, we merged oval and narrow oval shape together into the 
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oval shape. Even after that, there was minimal overlap between the circle and oval shapes (see 

Figure 4.2.3). Using the data recorded during the practice stage, we calculated the average of ratios 

of lengths of minor and major axes of the ellipses produced for each shape type for each participant 

(see Table 4.2.2). Using the average of highest ratio for the oval and lowest ratio for the circle 

shape we determined the threshold value of minor/major ratio for distinguishing between the circle 

and oval shapes. Using this ratio (0.84) as a classification rule to determine the contact shape, we 

analyzed the data for index finger oval tap trials done in the touch action replication stage and 

found out that participants could produce an oval shape with 98.67% and circle shape with 99.12% 

accuracy. The accuracy dropped to 95.77% for the oval shape and 98.64% for the circle shape 

during the follow-up analysis for a combination of two-finger oval tap, index finger oval, swipe 

and index finger rotation touch actions. These results show that systems can use two shapes (oval 

and circle) with an overall accuracy of more than 98% for all touch actions combined in touch 

interaction. 

To determine how many different angles can reliably be used as augmentations to touch actions in 

our input vocabulary, we plotted scatterplots of the actual orientations produced by participants 

for each target orientation(for example, orientation distribution by target angle for index finger 

oval tap, see Figure 4.3.3). We observed a general trend for all touch actions involving orientation 

that participants produced orientations of -45°, 0°, and +45° reliably, but ±15° and ±30° had wide 

distributions that overlap other targets. Further analysis was conducted with smaller sets of target 

orientations to determine whether fewer orientations would improve accuracy. We assumed that a 

system has three orientation categories and that any amount of left or right tilt past ±7.5° is allowed. 

This reinterpretation provides a much higher overall accuracy but there were still classification 

errors due to the difficulty participants had in producing touches at ±15° (which were sometimes 

classified as vertical). Another revision was done in which we removed two orientations from the 

set and collapsed ±30° and ±45° into a single set. We used ±15° as the cutoff angle between left, 

vertical, and right orientations. Using three target orientations; left/vertical/right (left is < -15°, 

vertical is (-15°, +15°) and right is > +15°), our results shows that we can achieve perfect 

recognition accuracy (100%) for index finger oval tap actions. The lowest accuracy in terms of 

orientation accuracy was found in the case of index finger oval rotation. Table 4.3.25 shows the 

list of touch actions involving orientation and the accuracy per touch action type. The results show 
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that systems can use these three orientations in six touch actions (see Table 4.3.25) with more than 

98% accuracy in touch interaction. 

7.1.3 Some Touch Actions were Easier to Learn and Memorize than Others 

We investigated the learnability and memorability of our novel input vocabulary in study 2 

(memory test study, see Chapter 5). In this study, participants learned the associations of 

application/command names and touch actions from our input vocabulary. Participants were 

shown a command name on the top of the screen and were asked to perform the associated touch 

action. Participants performed 10 blocks using the help sheet which consisted of mappings 

between command names and touch actions. Another two blocks (blind stage) were performed 

without help sheet and there was no feedback about contact shape, orientation or action accuracy 

in all blocks. We used the classification rules regarding contact shape and orientation established 

during study 1 (see Chapter 4) to validate the touch actions performed in the memory test.  

The results suggest that overall participants could remember some associations of touch actions 

with command names even when the help sheet was taken away without a significant decrease in 

the accuracy rate. Participants performed best with index finger circle tap (mean accuracy 1), 

followed by two-finger circle tap (mean accuracy 0.97) and index finger rotation (mean accuracy 

0.94), see Figure 5.3.2. However, for touch actions such as index finger oval tap, two-finger oval 

tap and index finger oval swipe the mean accuracy rate was 77% resulting in more in error rate 

above 20%. 

7.1.4 Participants could use Contact shape and Orientation in a Realistic Task 

We designed an application called screen lock application for touch-based hand-held devices to 

test out the participants’ performance regarding contact shape and orientation in a realistic task. 

This application uses a pattern-based mechanism to lock and unlock the device’s screen. Usually, 

only the shape of the pattern matters in the locking and unlocking of the device, but our application 

also considers the contact shape and orientation of the finger touch while performing the pattern 

along with the shape of the pattern. The application uses the One Dollar Recognizer algorithm 

[223] to detect the shape of a single-stroke gesture performed (shape of the pattern to lock and 

unlock) to set the lock pattern or unlock the screen. We use the classification rules for contact 
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shape and orientation from study1 (see Chapter 4) to validate the gestures performed in study 3 

(screen lock application study, see Chapter 6). We defined a set of four lock/unlock patterns for 

circle shape (see Table 6.1.1) for our study. Each participant performed 16 patterns in total (eight 

lock patterns and eight unlock patterns) where each block consisted of four patterns (see Table 

6.1.1). Participants were provided real-time feedback about the contact shape and orientation 

during the lock stage and no feedback in the unlock stage (see Figure 6.2.1). There was no feedback 

about gesture accuracy in all blocks. We wanted to find out if participants could perform these 

patterns with similar accuracy in both the stages. Our results suggest that there was no significant 

difference in mean accuracy for all four gestures. The gesture accuracy rate increased significantly 

during the lock stage (with feedback) but did not change during blind blocks. 

7.1.5 Error Rate due to Contact Shape and Orientation in a Realistic Task 

In study 3 (screen lock application study, see Chapter 6), the results show that overall mean 

accuracy during the unlock stage (without feedback) was 0.88 resulting in an error rate of 12%. 

We further analyzed the recorded data for these errors and found out that 60% of the errors were 

due to the failure of recognizer in determining the gesture. Removing these errors caused by failure 

of the recognizer, we can say that the error rate due to contact shape and orientation during unlock 

stage is 4.8%. 

7.1.6 No significant differences in User Preferences for Eight Touch Actions 

After study 1 (see Chapter 4), participants were asked to provide the ratings for ease and their 

ability to perform each type of touch actions from our novel input vocabulary. The results show 

that participants provided positive responses for both ease and ability to perform eight augmented 

touch actions. Participants perceived similar ease and ability to perform the eight augmented touch 

actions present in our novel input vocabulary. 

7.2 EXPLAINATION OF THE FINDINGS 

Here we provide explanations for the findings from our three quantitative user studies. 
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7.2.1 Participants Produced only -45°, 0°, and +45° Orientations Reliably 

The results from study 1 (see Chapter 4), showed that participants could not distinguish between 

all seven target orientations (-45°, -30°, -15°, 0°, 15°, 30°, 45°). Participants produced -45°, 0°, 

and +45° orientations reliably for all touch actions but struggled with ±15° and ±30° orientations. 

People see vertical (0°) and diagonal things such as a diagonal in a square (±45°) regularly as they 

occur commonly in the ordinary world. Hence, participants found it easier to identify 0° and ±45° 

(extreme angles) compared to inner angles (±30°, ±15°). This finding was also confirmed by 

participants’ comments as one of the participants commented that they found extreme angles and 

vertical angles easier to perform compared to inner angles. 

7.2.2 Participants Produced Oval and Circle Shapes Reliably but Performed Poorly with 

Narrow Oval Shape 

The results from study 1 (see Chapter 4), showed that participants could not reliably produce 

different oval and narrow oval shapes. One possible explanation is that participants felt 

uncomfortable while replicating the orientation with side of the thumb and while doing this might 

have rolled their thumb inward and hence, the pad of the thumb replaced the side of the thumb 

resulting in a fatter oval. This was confirmed by comments made by one of the participants. A 

participant reported that they felt uncomfortable while performing touch with the side of the 

thumb. 

7.2.3 Participants Performed Oval shape with Higher Accuracy for Index Finger Oval Tap 

than Other Touch Actions Combined 

Participants performed best with index finger oval rotation to produce oval shape in comparison 

to other touch actions involving oval shape. Index finger oval tap is based on a simple tap action 

and a participant had to consider only orientation and contact shape whereas, in other touch actions 

such as the index finger oval swipe, the participant has to maintain the contact shape and 

orientation along with a stroke of the finger or also perform multi-touch (two-finger touch) action. 

This demonstrates that more input dimensions such as multi-finger touch, stroke and rotation may 

impact accuracy. 
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7.2.4 Some Touch Actions were Easier to Learn and Memorize 

From the results of study 2 (memory test study, see Chapter 5), it is evident that overall participants 

could remember some associations of touch actions with command names even in the absence of 

the help sheet in blind blocks without a significant decrease in mean touch action accuracy rate. 

Participants performed best with index finger circle tap (mean accuracy 1), followed by two-finger 

circle tap (mean accuracy 0.97) and index finger rotation (mean accuracy 0.94). However, for the 

other three touch actions, the error rate was more than 20%. From Figure 5.3.2, it is evident that 

the error rates increase from left to right and the touch actions get complex as well. This confirms 

our finding from section 7.2.3, that increasing the number of input dimensions may negatively 

impact the accuracy of the touch actions. Another possible factor is the irrelevance of touch actions 

with command names used. If the touch action’s method of execution is relevant to the context of 

a task, it becomes easy to remember. For instance, a flick gesture for turning the pages in a book. 

In a real world scenario, participants will have more practice of these augmented touch actions and 

the practice would improve the learnability and memorability even of those augmented touch 

actions which participants found hard to learn and memorize in study 2. 

7.2.5 Participants Performance with Contact Shape and Orientation in a Realistic Task 

In study 3 (see Chapter 6), the results suggest that there was no significant difference in mean 

accuracy for all four gestures. Participants learned to produce contact shapes and three orientations 

in the lock stage (block 1 to 4) with real-time feedback of contact shape, orientation, and trajectory 

of the stroke. This learning effect helped participants perform all four gestures with similar 

accuracy. Another factor was that all the gestures had one common feature that is the gesture shape 

was the same (single-stroke circle gesture). So, mainly the participants focused on producing 

different contact shapes and orientations. 

Participants performed gestures at the mean error rate of 12% in the unlock stage (block 5 to 8, 

without feedback). Further removing the errors due to recognizer’s failure, the error rate comes 

down to 4.8%. This error rate is still high for the usage of contact shape and orientation in a realistic 

task. Pattern-based lock and unlock mechanism is commonly available on smartphones and tablets. 

People make errors all the time while performing their currently set unlock gesture and to correct 

it they redo the gesture. Participants will have far more practice with gestures in a real-world 
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version of our screen lock application. If the participants can reliably produce the gestures and 

these gestures can be reliably interpreted by the system, the memory aspect will take care of itself. 

7.2.6 Participants Perceived Similar Ease and Ability for All Touch Actions 

We developed our input vocabulary based on commonly used touch actions such as tap, swipe and 

rotate. All participants reported that they use touch-based hand-held devices such as smartphones 

and tablets. They were already used to perform tap, swipe and rotate actions on touch interfaces. 

Hence, participants perceived similar ease and the ability to perform eight augmented touch actions 

present in our novel input vocabulary (see Section 4.4.1). 

7.3 FINAL INPUT VOCABULARY 

Originally our novel input vocabulary consisted of eight augmented touch actions (see Section 

3.4). However, the results from study 1 (see Chapter 4) show that participants could not produce 

different oval and narrow oval shapes reliably. Hence, we remove the thumb side narrow oval tap 

and thumb side narrow oval swipe touch actions from our final input vocabulary. The final 

vocabulary consists of six augmented touch actions as listed in Table 7.3.1. 

 Shape Orientation Fingers Type of Motion 

Index Finger Oval Tap Oval Yes Index Tap 

Two Finger Oval Tap Oval Yes Index, Middle Tap 

Index Finger Oval Swipe Oval Yes Index Swipe 

Index Finger Oval Rotation Oval Yes Index Rotation 

Index Finger Circle Tap Circle No Index Tap 

Two Finger Circle Tap Circle No 

Orientation 

Index, Middle Tap 

Table 7.3.1: Input dimensions of our final input vocabulary. 

We have used combination of shape and orientation to augment these touch actions. Notice that 

contact shape (oval or circle) can alone be used as an input. In case of index finger oval tap, two 

finger oval tap and index finger oval swipe, the designers can use contact shape alone to double 

the expressive power of tap and swipe touch actions, i.e., two types of taps and swipes based on 
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contact shape. If we add orientation along with the contact shape, the expressive power of touch 

input is enhanced by a factor of two (two shapes) x three (three orientations). 

7.4 DESIGN GUIDELINES 

Here we provide design guidelines to GUI designers augmenting touch interactions using contact 

shape and orientation. 

7.4.1 Use Contact Shape and Orientation as Discrete Input 

The findings from the study 1 (see Chapter 4) for orientation suggests that participants could not 

reliably perform all seven orientations, though they were better at producing -45°, 0°, and +45° 

orientations. This shows that participants could reliably produce vertical and extreme angles but 

performed poorly with inner angles (±15° and ±30°). After further analysis, we categorize 

orientation in to three discrete levels: left is < -15°, vertical is (-15°, +15°) and right is > +15°. 

As it is evident that participants could not produce all the seven orientations with similar accuracy, 

it suggests that instead of using orientation as continuous input, it should be used as discrete input 

with three levels: left, vertical and right orientation. In the case of contact shape, the results of 

study 1 (see Chapter 4) suggests that participants could not reliably produce different oval and 

narrow oval shapes and hence, we merged oval and narrow oval shape into oval shape. Participants 

could distinguish between oval and circle contact shape with more than 98% accuracy. Our 

findings suggest that touch interaction designers can use contact shape as discrete input with two 

levels: oval and circle and orientation can be used as discrete input with three levels: left, vertical 

and right. 

7.4.2 Avoid using Side of the Finger for Contact Shape 

The findings from study 1 (see Chapter 4) for contact shape suggests that the ovals produced by 

participants using the pad of the index finger were not significantly different than the side of the 

thumb. Hence, we had to merge oval and narrow oval contact shape categories into oval shape 

category. One participant comment suggests that they felt uncomfortable while performing touch 
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actions with the side of the thumb. Hence, we suggest the designers of touch interactions to not 

use augmented touch actions using the side of the thumb. 

7.4.3 Contextual or Self-Defined Touch Actions 

In study 2 (memory test study, see Chapter 5), participants had to learn and memorize the 

associations of command names and augmented touch actions from our input vocabulary. They 

were shown command names on the screen and they had to retrieve the required touch action from 

their memory and execute it. The results of this study found out that some touch actions were easier 

to learn and memorize than others. We found out that as the touch action gets complex it gets 

tougher to memorize as there are more input dimensions involved (such as multi-finger touch, 

stroke, contact shape or orientation). To assist the learnability and memorability of augmented 

touch actions, the designers should create augmented touch actions with a context. For example, 

associating a flick gesture with scrolling a document or flipping the pages of a book. 

However, these contextual touch actions are still dependent on a user’s memory for execution. One 

alternative was suggested by Nacenta et al. [155]. They conducted a study comparing the 

memorability of pre-designed and user-defined gesture sets and they found that self-defined 

gestures are easier to remember [155]. So, we suggest the designers of touch interactions to 

augment touch actions within a context or provide the facility to user to define the augment touch 

actions themselves. 

7.5 USE CASES 

In this section, we provide a few use cases where touch interactions can use contact shape and 

orientation to enhance the expressivity in the input. 

7.5.1 Contact Shape and Orientation Sensitive Button 

Contact shape and orientation can be treated as additional input dimensions for buttons on touch 

interfaces. Typically, a button is associated with a command and user taps on the button to invoke 

that command. We present a button that allows the user to use the contact shape and finger 
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orientation to specify the parameter of the button functionality while hitting the button. By doing 

so, the command invocation and parameter specification are combined into a single step. We 

demonstrate such a button and its functionality using an example of a media player app on a touch-

based device. 

A user opens the application menu of the tablet or smartphone and taps on the media player icon 

with the fingertip to open the application. This action involves no orientation and has a circular 

contact shape. Typically, the user can operate the application by traversing the menus and toolbars 

to issue commands. An alternative way is to use augmented touch actions as command shortcuts 

for frequently used functionalities. For instance, without opening the interface of the application, 

the user can tap on the media player icon with the pad of the index finger and vertical orientation 

(see Figure 7.5.1 left). This action changes the state of the application as it starts playing a song 

(see Figure 7.5.1 right). Similarly, to play the previous song, the user can tap on the icon using the 

pad of the index finger with left orientation (see Figure 7.5.2 left) and can play next song by tapping 

on the icon using pad of the index finger with right orientation (see Figure 7.5.2 right). In this way, 

the user is not only invoking a command but also setting a parameter simultaneously. Hence, this 

technique can reduce the number of steps to perform frequently used functionalities. 

 

Figure 7.5.1: Operating media player application supporting augmented touch actions. Left: User 

taps on the icon button with pad of the index finger with vertical orientation to play the song. 

Right: The state of the application changes as the song is being played. 
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Figure 7.5.2: Operating media player application supporting augmented touch actions. Left: User 

taps on the icon button with pad of the index finger with left orientation to play the previous 

song. Right: User taps on the icon button with pad of the index finger with right orientation to 

play the next song. 

The above-mentioned example demonstrates that a simple tap can be augmented using contact 

shape and orientation to create variations of it which increases the discrete actions a tap can do. In 

this example, a tap can open the application, play or resume the song, play the previous song or 

play the next song. 

7.5.2 Contact Shape and Orientation Sensitive Dial 

 

Figure 7.5.3: Orientation sensitive dial. Adapted from Wang et al. [213]. 

An orientation dial can be used to continuously adjust a parameter with high precision (see Figure 

7.5.3). A user can perform index finger oval rotation touch action from our input vocabulary to 

adjust the parameter values. Other techniques such as sliders can provide continuous parameter 
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adjustment functionality. However, the orientation sensitive dial can support a large number of 

parameter values and takes minimal screen estate and finger movement. Wang et al. demonstrated 

the use of orientation sensitive dial on large tabletop surfaces [213, 214]. This interaction technique 

can be used to perform various tasks such as controlling volume or screen brightness, color 

selection or setting a timer. 

In study 1, we measured the absolute orientation values for index finger oval rotation touch action. 

Our orientation sensitive dial (see Figure 7.5.3) also requires users to produce absolute orientations 

i.e. starting from a specific orientation and ending a specific orientation. We did not test 

participants with regards to relative orientation. A user can be better at producing a 15° movement 

(angular displacement) than rotating finger starting at a specific orientation and ending at a specific 

orientation. In a future study, index finger oval rotation using relative orientation can be studied. 

7.5.3 Augmented Input in Video Games using Contact Shape and Orientation 

We developed augmented game controls for a video game called brick breaker game (see Figure 

7.5.4). A ball is bounced around to break the bricks. A user can bounce it back up to break more 

and if the user lets the ball pass the paddle, then the user loses a life. 

 

Figure 7.5.4: Brick breaker game. 
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Figure 7.5.5: Brick breaker game. Left: Default state of the game. Centre: First version of the 

game having controls using traditional touch actions such as swipe. Right: Second version 

having controls using augmented touch actions from our input vocabulary. 

We built two versions of the brick breaker game. As shown in Figure 7.5.5 left, the default state 

of the brick breaker game is shown. The first version (see Figure 7.5.5, center) of the game had 

game controls based on simple touch actions such as swipe whereas the second version (see Figure 

7.5.5, right) of the game had game controls using augmented touch actions using contact shape 

and orientation. Both the versions of the games are identical, the only difference is how the player 

controls the speed of the ball and the movement of the paddle. 

In the first version of the game, the player controls the movement of the paddle by sliding the 

finger on the screen. The speed of the ball is constant. The paddle moves in the direction in which 

the player slides the finger. As shown in Figure 7.5.5 left, the player slides the finger to the left 

direction and the paddle also moves to the left direction.  In the second version of the game, the 

paddle will move in the direction according to the finger orientation. As shown in Figure 7.5.5 

right, the paddle moves to the left direction as the finger touch is left-oriented. The speed of the 

ball can be controlled with the contact shape of the finger touch. If a player taps with the fingertip 

the ball gets slow, but paddle does not move. If a player taps with pad of the index finger with 

vertical orientation (see Figure 1, center) only speed of the ball gets fast but movement of paddle 

does not happen whereas a player can control both the speed of the ball and movement of the 

paddle simultaneously with pad of the index finger with left or right orientation. 
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7.5.4 Contact Shape in Drawing Applications 

In above given use cases we used both contact shape and orientation simultaneously as input. There 

are scenarios where only contact shape can be used as an input. For example, in a drawing app the 

user can select the pen, paint brush or an eraser and then can swipe with either pad of the index 

finger or the fingertip. The impact of the pen, paint brush or an eraser will depend upon the contact 

shape. For example, contact shape determines the eraser size in the drawing application. 

7.6 LIMITATIONS 

7.6.1 Fewer Left-Handed or Ambidextrous Participants 

We recruited 16 people from the University of Saskatchewan campus for our three studies. Out of 

16, two participants were left-handed, and no one was ambidextrous. Our results are mostly based 

on the data collected from the right-handed participants. We did not compare the performance of 

left-handed participants against right-handed participants as we had only two left-handed 

participants out of 16. 

7.6.2 Our Input Vocabulary requires Two Handed Use 

Our touch input vocabulary was tested in this research on a 10-inch Samsung Nexus tablet and 

requires two hands for operation. Users hold the tablet with the non-dominant hand and perform 

touch actions using fingers of the dominant hand. Our input vocabulary may also be used on 

smartphones as long as the user is holding the phone with the non-dominant hand and the dominant 

hand is free. In a case where the user is lifting things with the non-dominant hand, it leaves the 

user with only thumb of the dominant hand to interact with the touch screen. Hence, in such a 

scenario our input vocabulary cannot be used. Our studies were done on a 10 inch tablet and future 

studies need to be done to see if we get similar results for our augmented touch technique on 

smartphones. 
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7.6.3 Effect of Fingernail Length 

Usually, females keep long fingernails compared to men and fingernail length can affect the hand 

dexterity [190]. We had only 3 female participants in our three studies and for both male and 

female participants, we did not record the fingernail length. Longer fingernails may cause 

problems while performing index finger circle tap and two-finger circle tap as the user is required 

to perform vertical touch (see Figure 3.1.2 left) using the fingertip. Long enough fingernail may 

come in the way when the user is touching the screen with fingertip reducing the contact area 

relative to the case in which fingernail length is short. 

7.6.4 Lack of Feedback about Touch Action Accuracy in the Memory Test Study 

In both study 2 (memory test study, see Chapter 5),  and study 3 (screen lock application study, 

see Chapter 6), we could not provide feedback about the touch actions accuracy to the user because 

the classification rules for determining the various contact shapes and orientations were not 

established yet. In the learning stage of memory test study and lock screen application study, if 

participants were provided accuracy feedback apart from the contact shape and orientation 

feedback, it could have improved the participants performance in the blind stage (with no 

feedback; no help sheet in the memory test study and no shape, orientation and stroke feedback in 

screen lock application study). If participants were provided accuracy feedback in learning stages, 

they could correct the incorrect touch actions and it would improve their performance in later 

stages. 

7.6.5 Lack of Contextual Touch Actions in the Memory Test Study 

In study 2 (memory test study, see Chapter 5), the associations of the command names and touch 

actions lacked a context. If a touch action is designed according to the context of the task it can 

help in better learning and memorability of the touch action. For instance, using a flick gesture to 

scroll a document. This might have impacted the learning and memorability of our touch input 

vocabulary as the results from the memory test study suggest that few touch actions were easier to 

learn and memorize than other touch actions. 
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7.6.6 Effects of Tablet Angle on Finger Orientations 

All three studies were done in a controlled research lab environment and participants were asked 

to sit on a chair and hold the tablet with their non-dominant hand and perform touch actions with 

their dominant hand (see Figure 4.1.1). Participants could hold the tablet as per their convenience. 

Previous research done on finger pitch and roll orientations showed that there were substantial 

effects of tablet angle on touch orientations [69]. In our study, we did not study the effects of tablet 

handling by non-dominant hand on finger orientation performance. However, we observed in our 

studies that participants moved the tablet with non-dominant hand as per their convenience while 

performing touch actions. So, it may have not impacted our results significantly. 
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CHAPTER 8 

8 CONCLUSION 

8.1 CONTRIBUTIONS 

Primary contributions 

There are two four primary contributions presented in this thesis. First, we demonstrate the use of 

additional finger properties such as contact shape and orientation as additional degrees of freedom 

to augment the touch actions such as tap, swipe and rotate and introduce a novel input vocabulary 

(see Chapter 3). Second, we provide the classification rules for determining the contact shapes and 

orientations. Using these classification rules, we found out that participants can reliably perform 

three orientations (left, vertical, right) and two contact shapes (oval and circle). Third, we provide 

empirical evidence for the learnability and memorability of our input vocabulary (see Chapter 5). 

Fourth, we demonstrate the use of contact shape and orientation in a realistic task and provide 

empirical evidence that augmented touch actions can be performed reliably in a realistic task. 

Secondary contributions 

Secondary contributions of this thesis are the methods of detecting contact shape and orientation 

of a finger touch (see Chapter 3), reasons for participant preferences about touch actions (see 

Chapter 4). We provide a set of design principles for designing augmented touch actions using 

contact shape and orientation (see Chapter 7). 

8.2 FUTURE WORK 

The research conducted in this thesis has laid the foundation for future augmentations of touch 

interactions using additional finger properties such as contact shape and orientation and opened 

several paths for future research for using contact shape and orientation to augment touch 

interactions in real-world applications. 
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8.2.1 Comparison of Left-Handed, Right-Handed and Ambidextrous Performance 

In all three studies, we had only two left-handed participants and no ambidextrous participants. 

Our findings may not apply to users whose left hand is dominant. In a future study, we will 

compare the performances of left-handed, right-handed and ambidextrous people with three 

contact shapes and seven orientations. Then we can provide design guidelines for designing 

augmented touch interactions using contact shape and orientation depending on the user’s 

dominant hand. 

8.2.2 Understanding the Effects of Fingernail Length 

As explained in section 7.6.2, we will have more female participants as they usually keep longer 

fingernails than male participants. We will systematically investigate the effects of fingernail 

length on a participant’s ability to produce contact shapes and orientations and will provide design 

guidelines for touch interaction designers who are considering the users with long fingernails. 

8.2.3 Understanding the Effects of Tablet Angle on Contact Shape and Finger Orientation 

The three studies conducted in this research were done in a controlled research lab environment 

and participants were seated on a chair, asked to hold the tablet in their non-dominant hand and 

perform touch actions. They could handle the tablet as they wanted. The tablet angle can affect the 

performance of the participants producing various finger orientations [69]. In a future study, we 

will ask participants to perform touch actions from our input vocabulary in various configurations 

related to the tablet placement, for example, placing the tablet flat on the surface instead of holding 

it with the non-dominant hand and then performing the touch actions. A few participants reported 

that some orientations were harder to produce even when they were allowed to move the tablet. 

To remove the effects of tablet angle in future studies, we will ask the participants to calibrate 

while having tablet at fixed non-vertical orientation. 

8.2.4 Understanding the Effects of Contact Shape and Finger Orientation on Execution 

Time 

Reducing the command execution time is one of the primary goals of touch interaction research in 

HCI. In this research, we establish the baseline information about the contact shapes and 
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orientations which can be produced reliably. We created an input vocabulary consisting of 

augmented touch actions using contact shape and orientation as additional degrees of freedom. We 

tested our input vocabulary in study 2 (see Chapter 5) to find out the learnability and memorability 

of our input vocabulary. However, we did not consider the time taken to execute these touch 

actions. In a future study, we will compare the command execution time among all touch actions 

from our input vocabulary and develop a command selection technique based on this input 

vocabulary and compare to existing command selection techniques for touch-based hand-held 

devices. 

8.2.5 More Studies of Learnability and Memorability 

Study 2 (Chapter 5) was performed to find out the learnability and memorability of touch actions 

in our input vocabulary. We did not have classification rules for defining various contact shapes 

and orientations when this experiment was run. Now, study 1 (see Chapter 4) has provided us with 

those classification rules. Due to lack of classification rules, we could not provide the touch action 

accuracy feedback in the first stage of the experiment (block 1-10) in which touch actions were 

done using a help sheet that had associations of command names and touch actions. If we could 

provide touch action accuracy feedback in this stage, they could redo the action in case it was 

incorrect. In a future study regarding the learnability and memorability of our final input 

vocabulary (see Section 7.3), we will provide feedback assisted learning as it will help participants 

develop more confidence to perform these augmented touch actions and may also enhance the 

learnability and memorability of our final input vocabulary. 

Also, the associations of command names and touch actions lacked the context. For example, 

flicking down the document for scrolling down is a natural interaction. The touch actions done 

with a context may help in improving the learnability and memorability of our input vocabulary. 

We plan to perform a memory test study in which the target actions will be have a context (such 

as scroll the document, play next song, etc.) instead of using command names as target. This will 

help us in having more conclusive results about the learnability and memorability of touch actions 

in our input vocabulary. 
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8.2.6 Device Screen Size and Form Factor 

We used an Android touch-based hand-held Samsung Nexus 10 tablet (10-inch) for our three 

studies done in this research. So, all the results and design guidelines we report are for 10-inch 

diagonally long tablet form factor. However, there are tablets and smartphones available in 

different sizes (e.g. 7-inch Google Nexus tablet and 6.3-inch Samsung Note 10 Plus smartphone). 

In a future study, we will do a systematic investigation of augmented touch interactions using 

contact shape and orientation on various devices with different form factors and screen sizes. 

8.2.7 Advanced Interactions 

Most touch interfaces include widgets that are more advanced than simple buttons. For example, 

a slider or color picker can be used to provide a finer degree of control over application parameters. 

In section 7.5.2, we describe a contact shape and orientation sensitive dial which can be used for 

continuous parameter adjustment. In future studies, we will study more such widgets and other 

graphical elements and provide alternative advanced interactions using augmented touch 

interaction techniques. 

8.2.8 Development of Applications for Real World Usage 

We will continue the development of the screen lock application presented in Chapter 6 and release 

a fully-functional version of the application to gather real-world usage and performance data from 

a wide audience. We will also continue the development of the brick breaker game (see Section 

7.5.3) and release the game to a wider audience. The game will provide two modes; the first mode 

with traditional controls and second with augmented touch controls using contact shape and 

orientation. We will analyze the data gathered from this game. Also, we will use the contact shape 

and orientation sensitive buttons (see Section 7.5.1)  and dials (see Section 7.5.2) in real-world 

applications such as a fully functional drawing program and gather data for analysis. 
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