

Finnie, Sigbjorn O. (1998) Composing graphical user interfaces in a
purely functional language. PhD thesis.

http://theses.gla.ac.uk/1597/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Glasgow Theses Service
http://theses.gla.ac.uk/

theses@gla.ac.uk

RII

UNIVERSITY
Of

GLASGOW

Department of
Computing Science

Composing graphical user
interfaces in a purely functional

language

Sigbiorn 0. Finne

A thesis submitted for a Doctor of Philosophy Degree in
Computing Science at the University of Glasgow

September 1998

@ Sigbjorn 0. Finne 1998 ýY

BLANK IN

ORIGINAL

Abstract

This thesis is about building interactive graphical user interfaces in a compositional man-
ner. Graphical user interface applications hold out the promise of providing users with
an interactive, graphical medium by which they can carry out tasks more effectively and
conveniently. The application aids the user to solve some task. Conceptually, the user is
in charge of the graphical medium, controlling the order and the rate at which individual

actions are performed.

This user-centred nature of graphical user interfaces has considerable ramifications for how

software is structured. Since the application now services the user rather than the other way
around, it has to be capable of responding to the user's actions when and in whatever order
they might occur. This transfer of overall . control towards the user places a heavy burden on
programming systems, a burden that many systems don't support too well. Why? Because
the application now has to be structured so that it is responsive to whatever action the user
may perform at any time.

The main contribution of this thesis is to present a compositional approach to constructing
graphical user interface applications in a purely functional programming language.

The thesis is concerned with the software techniques used to program graphical user inter-
face applications, and not directly with their design. A starting point for the work presented
here was to examine whether an approach based on functional programming could improve
how graphical user interfaces are built. Functional programming languages, and Haskell in

particular, contain a number of distinctive features such as higher-order functions, polymor-
phic type systems, lazy evaluation, and systematic overloading, that together pack quite
a punch, at least according to proponents of these languages. A secondary contribution
of this thesis is to present a compositional user interface framework called Haggis, which
makes good use of current functional programming techniques. The thesis evaluates the

properties of this framework by comparing it to existing systems.

iv

a-

Contents

Abstract iii

1 Introduction I

1.1 The impact of interactive user interfaces
3

1.2 Thesis contributions
4

1.3 Thesis outline
6

2A picture language 7

2.1 Describing the scene
7

2.1.1 Summary
13

2.2 The Picture type
14

2.2.1 Running example
16

2.3 Picture elements
16

2.4 Transforming pictures
17

2.5 Structured translation
21

2.6 Graphical transformations
23

2.7 Composing pictures
25

2.8 Tiling pictures
27

2.9 Example
29

2.9.1 Histogram 0.........
33

2.10 Rendering Pictures ý. '. .0.6.....
34

2.11 Related work o... o...... o..............
36

2.12 Concluding remarks
37

V

vi Contents

3 Exploring the design space 39

3.1 The callback model 39

3.2 Object oriented user interfaces 43

3.3 Functional user interface representations 46

3.3.1 A road map 47

3.4 The user interface as a value 47

3.5 Adding component identity 50

3.5.1 Using type classes 52

3.6 Making communication implicit 55

3.7 Explicit two-way communication 58

3.8 Summary 63

4 Virtual 1/0 devices 65

4.1 Programming 1/0 with actions 65
4.1.1 Handling 1/0 66
4.1.2 Concurrency 68
4.1.3 Building on 10 68

4.2 Virtual 1/0 devices 68
4.3 Application handles 70
4.4 Virtual 1/0 device handles 75
4.5 Virtual 1/0 device types 76
4.6 Virtual user interface handles .. 79
4.7 New handles from old 80

4.7.1- Example: radio group 81
4.8 Summary 83

5 'Composing Haggis 87

5.1 Chapter overview 87

5.1.1 A simple graphical user interface
.................... 88

5.1.2 Adding graphics 90

5.1.3 Creating virtual 1/0 devices
....................... 91

Contents vii

5.1.4 Adding concurrency
93

5.1.5 Adding interaction
94

5.1.6 Adding layout
95

5.1.7 Summary
95

5.2 Displaying graphical output
96

5.2.1 Changing the glyph's picture
97

5.2.2 Creating new glyphs
98

5.2.3 Adding state
100

5.2.4 Displaying values
104

5.2.5 A simple framework for visualising data
106

5.3 Adding concurrency
108

5.4 Adding interaction
111

5.5 Adding layout
119

5.5.1 Pairwise tiling
119

5.5.2 Boxing it up
123

5.5.3 Constrained boxing
127

5.5.4 Computing the box layout
128

5.5.5 Building layout abstractions
129

5.5.6 Embedding a component
130

5.5.7 Free-form layout
131

5.6 Summary
132

6 The implementation of Haggis 139

6.1 Display handles *---**
139

6.1.1 System requests ***, ***, 143

6.2 Display contexts **
144

6.3 Accessing the window system ** 145

6.4 Customising components **,, * 145

6.5 Realisation * 151

6.6 Summary
151

viii Contents

7 Evaluating Haggis 153

7.1 Example: 15 puzzle 153

7.2 The Haggis solution 154

7.3 The Java/AWT solution 158

7.4 The Tcl/Tk solution 161

7.5 Evaluation 162

7.6 Concluding remarks 167

8 Conclusion 179

8.1 Summary 179

8.2 Future work 179

A Picture definition 183

A. 1 Basic geometric types 183

A. 2 Picture elements 183

A. 3 Picture operations 184

A. 4 Graphical attributes 185

A. 4.1 Pen attribute styles 186

A. 5 The Painter type 186

B 1/0 in Haskell 189

B. 1 Syntactic support 192

C Concurrent Haskell 193

CA The basic ideas 194

C. 1.1 A review of monadic 1/0
........................ 194

C. 1.2 Processes 197

C. 1.3 Synchronisation and communication 199

C. 2 A standard abstraction: buffering
........................ 200

C. 2.1 A buffer variable 201

C. 2.2 A buffered channel 202

C. 2.3 Skip channels 204

Contents , ix

C. 3 Control over scheduling 205

C. 3.1 Implementing quantity semaphores 206

C. 3.2 Variable-munch quantity semaphores 207

C. 3.3 Priority 208

C. 3.4 Summary 208

CA Choice 209

C-4.1 Iterated choice 210

C-4.2 Singular choice 211

C-5 Semantics
..................................... 212

C. 5.1 Deterministic Reduction 213

C. 5.2 Concurrent Reaction
213

C. 5.3 Fairness
216

C. 5.4 Summary
216

C. 6 Implementation
217

C. 6.1 Other primitives
218

C-6.2 Garbage collection 218

C. 6.3 Distributed implementation 219

C. 7 Related work 219

C. 7.1 Concurrent functional languages 220

C. 7.2 Functional operating systems 221

C. 7.3 Concurrent object-oriented languages
222

C. 7.4 Synchronous vs asynchronous
222

C. 8 Conclusions and further work
223

x Co'ntents

List of figures

2.1 The boxedCircle picture
15

2.2 Picture primitives
17

2.3 Basic geometric types
18

2.4 Picture primitives
18

2.5 Transformed geometric shapes
19

2.6 A spiral Picture
20

2.7 Structured translation of pictures
22

2.8 graph (scatter) dataPts - scatter plot of annual data 29

3.1 A counter button in Java/AWT
45

3.2 Functional user interface representations
46

3.3 The Fudgets counter 57

4.1 Type class structure for Haggis handles
78

4.2 Standard handle constructors, part 1...................... 84

4.3 Standard handle constructors, part 2...................... 85

5.1 Hello, world example in Haggis
88

5.2 Displaying pictures with a glyph
91

5.3 Displaying Picture values with a glyph 97

5.4 Changing the Picture displayed by a glyph 98

5.5 Duplicating the contents of a glyph
99

5.6 Picture book abstraction 103

5.7 The DeviceEvent data type *, * 113

xi

xii List of figures

5.8 The Channel interface 114

5.9 Using beside to layout components
120

5.10 Nested applications of above 122

5.11 Geometric attributes of a user interface component 124

5.12 Geometry attribute abstractions 133

5.13 Making a component refuse to resize 134

5.14 Centreing a component 134

5.15 Constrained boxing in action 134

5.16 Putting a border around a component 135

5.17 Adding border to a button 136

5.18 Framing a component 136

5.19 CompositeContainerElt operations 137

5.20 The composite container at work 137

6.1 User interface component system commands 142

6.2 System requests 142

6.3 The DeviceEvent data type 143

6.4 Window operations 146

7.1 The architecture of Haggis puzzle 154

7.2 The Board interface 156

7.3 The 15-puzzle game board in Haggis
....................... ý 156

7.4 The Board and Puzzle in Haggis
......................... 168

7.5 The graphical user interface to the puzzle in Haggis
169

7.6 Screendump of the 15 puzzle in Haggis
.....................

170

7.7 Toplevel control 170

7.8 The Piece class 171

7.9 The 15 puzzle in Java, part 1.......................... 172

7.10 The 15 puzzle in Java, part 2.......................... 173

7.11 Snapshot of 15 puzzle in Java 174

7.12 Building the puzzle board in Tcl/Tk 175

List of figures xiii

7.13 Snapshot of 15 puzzle in Tcl/Tk 176

7.14 Initialisation of the 15 puzzle in Tcl/Tk 176

7.15 Checking for valid move and updating board 177

7.16 Evaluation dimensions
177

A. 1 Basic geometric types 184

A-2 Picture primitives 184

A-3 Picture combinators
185

A. 4 Pen attribute type
185

A. 5 Pen attribute specific settings
186

A. 6 The Painter dictionary type
187

CA A channel with unbounded buffering
202

C. 2 The skip-channel abstraction
205

BLANK IN

ORIGINAL

Acknowledgement s

I would like to thank my supervisor, Professor Simon Peyton Jones, for his guidance, bound-
less enthusiasm and support during this research. I would also like to thank the members
of the Functional Programming Group at the University of Glasgow for providing a stimu-
lating environment to work in. Many thanks also to the Pacsoft group at the Department

of Computer Science and Engineering at Oregon Graduate Institute for their hospitality
during my 9 month stay there (October 1996 to July 1997.)

This research would not have been possible without financial support. I am very grateful
to the Royal Norwegian Research Council for the Research Scholarship that made all this

possible. I am also grateful to Simon Peyton Jones for giving me time off to complete the
writing up of this thesis.

Finally, I'd like to thank family and friends for all the support and encouragement through-
out, without which there would have been no end product.

xv

0 11
C.,. L. Lapter

Introduction

This thesis is about building interactive graphical user interfaces in a compositional man-
ner. Graphical user interface applications hold out the promise of providing users with
an interactive, graphical medium by which they can carry out tasks more effectively and
conveniently. The application aids the user to solve some task. Conceptually, the user is
in charge of the graphical medium, controlling the order and the rate at which individual

actions are performed.

This user-centred nature of graphical user interfaces has considerable ramifications for how

software is structured. Since the application now services the user rather than the other way
around, it has to be capable of responding to the user's actions when and in whatever order
they might occur. This transfer of overall control towards the user places a heavy burden on
programming systems, a burden that many systems don't support too well. Why? Because
the application now has to be structured so that it is responsive to whatever action the user
may perform at any time.

The main contribution of this thesis is to present a compositional approach to constructing
graphical user interface applications, which overcomes many of the problems that current
systems suffer from.

The thesis is concerned with the software techniques used to program graphical user in-

terface applications, and not with the design of graphical user interface applications. A

starting point for the work presented here was to examine whether an approach based on
functional programming could improve how graphical user interfaces are built. Functional

programming languages, and Haskell[P+971 in particular, contain a number of distinctive
features such as higher-order functions, polymorphic type systems, lazy evaluation, and

systematic overloading, that together pack quite a punch, at least according to proponents

of these languages. For theoretical and technical reasons we will touch upon later, func-

1

CHAPTER 1. INTRODUCTION

tional languages have not been fully exploited in the domain of graphical user interfaces

until recently. A secondary contribution of this thesis is to present a compositional user
interface framework based on current functional programming ideas, and to evaluate how
it compares to existing systems.

The emphasis of this thesis is strongly practical. We describe a fully-fledged user interface
framework and an implementation thereof in a current functional programming language.
We're interested in applying a real language to the task and actually building something
of practical use; it is only through considerable implementation experience and subsequent
evaluation that we can have confidence in any conclusions drawn. Being based in a current
language naturally implies that the language imposes boundaries; we cannot roam freely in
the design space. In our case, the language of choice is Haskell, the standard non-strict,
purely functional programming language[P+971.

Others have addressed goals similar to ours. In the context of functional programming,
eXene(GR92], Fudgets[CH93], Clean[Ach96], Gadgets[Nob96] and TkGofer[CVM97] are all
examples of considerable graphical user interface systems. As we will see in Chapter 3,
the design space is quite rich and the framework presented in this thesis is a thorough
exploration of one part. A dimension that distinguishes these different systems is how
they solve the basic problem of communication with the graphical user interface and, more
generally, the outside world. By drawing on the hard-learned experiences of the functional

programming community on expressing 1/0 conveniently and purely, this thesis proposes
a design that fits graphical user interface interaction within Haskell's monad based 1/0

model [PJW93]. By integrating the graphical user interface into the general 1/0 model the
user interface becomes part of the programmer toolbox, rather than the programmer (and

application) having to accommodate an existing user interface toolbox.

User interface systems based in non-functional languages share similar goals to the work
presented in this thesis. LiveWorld[Tra94], Interviews [LVC89], ET++[NVG94] and to some
extent -Mastermind [SSC+96] all emphasise composition as an important ingredient in their
approach to building user interface applications. As will be expanded upon later, the pro-
gramming model being put forward in this thesis differs from these systems in a number of
ways, but perhaps most importantly, it is based on top of a functional programming lan-

guage. One of the central tenets of functional programming is the construction of programs
by the repeated composition of values [Hug89], so a user interface system built on top of
a functional language has in principle the greater potential for exploiting compositional
programming techniques.

1.1. THE IMPACT OF INTERACTIVE USER INTERFACES

1.1 The impact of interactive user interfaces

What's all the fuss about writing interactive user interface applications? One major reason
is their importance. An application that interfaces with its users through a richly interactive
and graphical medium has the potential to be both more compelling, effective (to the user)
and offer a closer mapping to its domain. Another important feature of such applications is
that they represent a shift of control in the direction of the user. The user is in control, with
the application taking on the role of a supervisor or a servant. The increased expressiveness
that such interfaces represent can only be realised if there is good programming support for
writing graphical user interfaces.

Is it a 'solved' problem? The use of interactive graphical interfaces is hardly new: from one of
the first applications to make use of interactive graphics, SketchPad[Sut63] in 1963, the field
of computer graphics, and later the fields of user interface software technology and human-

computer interaction, have developed tremendously. Applications with graphical surfaces
that are both involving and richly interactive are today not an uncommon occurrence. With

current advances in computer hardware, this trend is set to continue, especially with respect
to quality of the graphical content.

However, the cost of creating and maintaining user interface applications is currently high.
Surveys of programming projects [MR92] have shown that it is not uncommon to spend
around 50 percent of the resources on user interface issues. One reason for suchligh numbers
is that arriving at an effective and usable user interface is an experimental process. There
isn't always a right or a wrong, or if there is, it is normally arrived at through user testing
and prototyping. Clearly, human-computer interaction techniques can educate, guide and
help locate an effective user interface quicker, but experimentation and prototyping of user
interfaces are an integral part of this process.

Another main reason for the difficulty and cost of writing the user interface is that software
te chnology lacks expressiveness. Libraries for programming graphical usei interface appli-
cations tend to be bolted onto existing languages, sequential languages with operational
models that are inimical to the nature of a graphical user interface. The result is that

,
both

the application and user interface part have to be expressed in contorted and unnatural
ways.

A consequence of graphical user interface programming being hard with current systems is
that it restricts the experimentation and sheer playfulness on the part of the designer. If
the creation of novel and special-purpose interactive content is hard, it is much harder to
justify the cost of creating it, which results in tried and tested solutions being employed
instead. It could be argued that application-specific user interface controls is not a Good

CHAPTER 1. INTRODUCTION

Thing, having basic elements such as text input fields and button groups behave differently

across applications in a desktop environment can be confusing, error-prone and downright

annoying. However, having the possibility of easily creating new user interface abstractions
does not have to conflict with good design and the conformance to user interface guidelines.

1.2 Thesis contributions

The main contribution of the thesis is to provide a compositional view of user interface con-
struction in a functional language. One important development in the history of graphical
user interface programming was the introduction of object-oriented programming languages.
Indeed, the user interface is a showcase for object-oriented ideas and a multitude of object-
oriented GUI frameworks and libraries have been built over the years. Interactive objects
on the screen are naturally represented and modelled by objects in the language. One

such influential system was InterViews[LVC89] which used object orientation heavily. One

of the main features
'
of InterViews was the use of composition as the main programming

glue, a user interface being made up of components that have been repeatedly combined
together. The result, it is claimed, is a consistent and extensible user interface programming
framework. ''

A main distinguishing feature of functional programming languages is the use and emphasis
placed on composition. Values representing complete programs are constructed by combin-
ing smaller units. The number of ways that values can be combined (the toolbox) is not
fixed. Through the use of higher-order functions and models of evaluation more conducive
to a declarative, value-based view of the world, appropriate combining forms ftlue') can
easily be built[Hug89].

If composition is considered a worthwhile feature when programming graphical user inter-
faces, functional programming languages provide the natural home for taking advantage of
this.

The thesis introduces a simple programming framework for building graphical user interfaces

which employs composition as the main programming glue. Using this framework, a number
of examples are presented to highlight the simple and uniform model it presents to the

graphical user interface programmer.

A fully-fledged implementation of this framework, called Haggis, is also presented -a system
which makes essential use of the features of its implementation language, Haskell, a lazy
functional programming language. The resulting system provides the programmer with
a means to construct'and manipulate user interface applications that is compatible with

1.2. - THESIS CONTRIBUTIONS 5

functional programming ideas.

More concretely, the thesis makes the following contributions:

Compositional model Present a simple and uniform model for composing graphical
user interface applications in a functional language. Through the introduction of
a small set of graphical user interface primitives and the glue for combining these
together, a modular and extensible framework for writing user interface applications
is presented.

One distinguishing feature of the framework is that it makes no distinction between a
primitive component and one built by composing existing components together. One

outcome of this uniformity is that the distinction between building a user interface

application and a user interface abstraction is eliminated.

Virtual I10 devices The user interface and the application interact through virtual
I10 devices. The thesis explores how a user interface component can be seen as just

another 1/0 device, which just happens to appear in a window. Using the basic

compositional model, these virtual 1/0 devices can then be combined together to
build complete user interface applications.

Haggis In order to demonstrate properly the use of composition as the main program-
ming glue for user interface applications, the thesis introduces Haggis, a fully-fledged

user interface framework. Implemented in a functional language, it provides a practi-
cal demonstration of the benefits of compositional user interfaces and how functional

programming techniques can with benefit be applied to a domain that has always
been a stronghold for object-oriented programming techniques.

Abstraction through concurrency We show that concurrency is vital to support fully

the compositional style of programming based on virtual 1/0 devices. One 'side-effect'

of the thesis work was the development of Concurrent Haskell [PJ GF96], a concurrency

substrate for Haskell that allows the programmer to conveniently deal with the multi-
threaded nature of user interfaces.

Evaluating compositionality To assess the properties of Haggis, we present a collection
of common user interface abstractions built using it. With the help of these abstrac-
tions, a number of application examples are presented to evaluate the advantages and
disadvantages of a compositional framework.

CHAPTER 1. INTRODUCTION

1.3 Thesis outline

The thesis presents a compositional approach to user interface construction by first looking

at how to present static graphical content. Chapter 2 introduces a simple model for describ-
ing two dimensional pictures as values, and a set of primitive mechanisms for combining
picture values together. The chapter also introduces a pervasive theme of the thesis, namely
a compositional view of programming graphics and graphical user interfaces.

Chapter 3 explores the design space for a user interface system based in a functional lan-

guage. It evaluates the programming models used by existing systems, leading up to a
representation of a user interface as a virtual I10 device. Chapter 4 presents a virtual 1/0
device programming model, and how it can be applied to the representation of user interface

components. Chapter 5 introduces Haggis, a user interface framework that puts the virtual
1/0 device model of the previous model to the test.

Chapter 6 considers some implementation aspects of Haggis. In Chapter 7 Haggis' pro-
gramming model is'evaluated by comparing it against some commonly used user interface

systems. After having presented the conclusions of this evaluation, Chapter 8 concludes the
thesis.

/-III

C,. L. Lapter

picture language

A natural component of a graphical user interface system is the ability to describe graphical
output that can be viewed and manipulated by the user. This chapter presents a simple
framework for describing two-dimensional graphical static scenes from within a functional
language. Later chapters employ this framework to describe the appearance of graphical
user interfaces.

As well as introducing a model for describing pictures, this chapter also illustrates some
pervasive themes of this thesis:

The compositional view of graphical and user interface programming. As we will see,
a picture is represented as a value, built by composing smaller pictures together rather
than by a sequence of drawing actions.

The separation of modelling from presentation. A picture can be rendered in many
ways, none of which need be considered when constructing the picture.

2.1 Describing the scene

When describing graphical content using a programming notation, not surprisingly, ab-
straction is a powerful tool. By providing a programming notation that hides details of
how to render graphical objects on a particular device, graphical content can be mapped to

multiple devices. The framework or system library that is provided as part of the graphical

programming model takes care of converting the device-independent graphical content to

output on the screen and printer, say. No changes are required on the part of the program-

mer describing the graphical model.

7

CHAPTER 2. A PICTURE LANGUAGE

Device-independence is clearly a Good Thing and technology is certainly moving in that
direction, converging on and standardising programming interfaces to graphical capabil-
ities, PostScript [AS90a], OpenGL[SG97] and DirectX[DX98] being recent examples. So,

abstraction is being put to good use in hiding low-level details of graphical devices, but

what about the actual description of the device-independent graphical content itself? One

way of expressing the drawing of a rectangle in a procedural programming language might
be:

void Rectangle(DrawContext d, int x, int y, int w, int h)

DrawLine(d, x, y, x+w, h);
DrawLine(d, x+w, y, x+w, y+h);
DrawLine(d, x+w, y+h, x, y+h);
DrawLine(d, x, y+h, x, y);

I

the Rectangle procedure draws the lines making up the rectangle, with the DrawContext

parameter encoding the device we will be drawing onto. This function can then be used as
a building block for others:

void RectPair(DrawContext d, int x, int y, int w, int h);
f

Rectangle(d, x, y, w/2, h);
Rectangle(d, x+w/2, y, w/2, h);

I

RectPair creates a pair of rectangles horizontally next to each other, taking care of trans-
lating the second rectangle to the right of the first one. Procedural abstraction certainly
helps. Here's a pair of blue and red rectangle pairs:

BlueRed(DrawContext d, int x, int
I

Color c;
Bool fill;, --
/* record some graphics state
c= GetCol0r(c);
fill = GetFillFlag(d);

SetFill(d, True);

2.1. DESCRIBING THE SCENE ,9

SetFillColor(dired);

RectPair(d, x, y, 100,100);

SetFillColor(d, blue);
MoveRelative(d, 0,100);
RectPair(d, x, y, 100,100);

/* restore graphics state
MoveRelative(d, O, -100);
SetFill(d, fill);
SetFillColor(d, c);

I

The construction of the rectangles is hidden away, but the above code snippet does exhibit
some rather serious shortcomings:

The graphical state has to be, managed by the programmer, taking care to set and
reset the necessary pieces of the state encoded in the drawing context. The drawing

context represents the state of the surface/canvas we'r e drawing onto, and maintains
amongst other things the current set of graphical attributes to use when drawing.
Managing the graphics state can be unpleasant and error-prone. For example, the
BlueRed procedure saves away the current settings for the graphi

'
cal attributes it

wishes to override. After having performed the drawing operations, care is taken to

restore the original state of the drawing content.

The second rectangle is drawn using a modified transformation matrix, so that it

appears next to the red one. A similar form of programmer management of state
happens here, this time with the transformation matrix, translating before drawing

the second rectangle. Again, the programmer is forced to restore the transformation

matrix to what it was before returning.

In effect, the above procedure implements scoping for both graphical and geometric trans-
formations, which the underlying programming language unfortunately is not providing. An

alternative is to make use of the underlying procedural language's support for scoping and
pass the various elements of the graphics state around explicitly via procedure arguments.
Since there axe numerous graphical attributes a picture can have, this is not particularly
feasible or convenient. Drawing procedures would end up having tortuously long argument
lists, which perhaps would be just as error prone as passing in a mutable drawing context.

10 CHAPTER 2. A PICTURE LANGUAGE

However, there's an alternative to having drawing procedures explicitly manage the state

of a drawing context: Instead of having the procedures perform the actual drawing actions,
they return an object or data structure that descHbes the graphical content it wants to
draw:

Picture Rectangle(DrawContext d, int x, int y, int w, int h),
f

Picture rect = emptyPictureo;
AddPicture(rect, DrawLine(d, x, y, x+w, y));
AddPicture(rect, DrawLine(d, x, y, x+w, y));
AddPicture(rect, DrawLine(d, x, y, x+w, y));
AddPicture(rect, DrawLine(d, x, y, x+w, y));

return rect;
I

Now Rectangle is a procedure that returns a Picture value, a data structure that encodes
the picture to draw. The Picture value representing the rectangle is built by incrementally

adding the necessary lines to the rect, with the AddPicture function side-effecting its first

argument to include the Picture value passed as second argument.

With the representation of pictures as a value, geometric transformations can now be dealt

with more smoothly:

Picture Transf6rm(DrawContext d, Transform tr, Picture pic);

Picture Translate(DrawContext d, int dx, int dy, Picture pic)

return (Transfom(d, Translation(dx, dy), pic));
I

The Translate function takes a Picture as argument and returns a new one that, when
rendered, takes care of adding the desired translation amount while drawing the embedded
Picture. It is implemented using Transform, a primitive operator over Picture values.
The Transform procedure returns a Picture that when drawn will take care of setting the
transformation matrix before rendering pic, and restoring it afterwards.

A Picture value is turned into actual graphical output by a system-provided procedure
Render, passing it the picture data structure to display:

void Render(DrawContext d, Picture

2.1., DESCRIBING THE SCENE 11

Given a drawing context and the picture to display, Render converts the data structure into

a series of drawing actions.

A fundamental shift has occurred by going from a system where graphical output was
done by performing a series of drawing commands, to one where procedures return a data

structure representing the graphical content. The move to a declarative approach allows
us to abstract away the details of how to issue the right graphics commands and having
to explicitly manage display state such as the drawing context. For instance, here is how
BlueRed can now be expressed:

extern Picture Overlay(Picture pl, Picture p2);
extern Picture FillPicture(Picture p);
extern Picture WithColour(Colour c, Picture p);

Picture BlueRed(DrawContext d, int x, int

return (
FillPicture(

Overlay(
(WithColour(blue, DoubleRect(d, x, y, 100,100)))p
(Translate(d, 100,100,
WithColour(red,

DoubleRect(d, x, y, 100,100)))))));
I

The Picture returned from BlueRed is a composition of existing Picture values and proce-
dures. The example makes use of Overlay which takes a pair of Picture values as arguments
and returns a Picture value, where the picture given as first argument will appear on top

of the second.

This is an improvement over the previous version of BlueRed, where the graphical state
had to be manipulated directly by the programmer in between issuing drawing commands.
The focus has instead been shifted towards modelling the graphical content rather how to

present it. The result is a value-based description, where graphical content is jonstructed

by repeated applications of procedures taking and returning Picture values. Procedural

abstraction is certainly helpful here, being used to create Picture building blocks that can
later be re-used. However, this style of programming does tend to demand greater support
for abstraction from a programming language - what if we wanted to generalise Overlay

to take a collection of Picture values?

12 CHAPTER 2. A PICTURE LANGUAGE

Picture Overlays(PictureList ls)

f

Picture Pic;
Picture res = emptyPictureo;
PictureList ls-tmp = ls;

while (lisEmptyList(ls-tmp))

Pic = head(ls-tmp);

AddPicture(res, pic);
ls-tmp = tail(ls-tmp);

I

return res;

The Overlays procedure achieves this, accumulating a Picture value by iterating over
its PictureList argument, a sequence of Picture values. This works quite well, but

the support for data structures is somewhat restricted, requiring a list type specialised. to
Picture. A language that supported the definition of parameterised data types such as
lists would be of help here.

A natural extension beyond passing and returning picture values is also to pass functions

as arguments to Picture building blocks. For instance, when implementing a function that

places an arbitrary picture next to a blue rectangle:

Picture ByRect(DrawContext d, int x, int y,

,,, (Picture f(DrawContext, int, int)), Picture pic)

return
Overlay

WithColour(blue, DoubleRect(d, x, y, loo, loo)),

Trýnslate(d, 100,100, f(dpx, y))));

The ByRect fufiction takes as one of its arguments a function value. The function argument
expects'to"be applied to the coordinates where to position the graphical object it returns,
and'the drawing context to use. To use ByRect, we simply have to supply the desired
function: "' !- '' -ý--

Picture DoubleRect(DrawContext d, int x, int

2.1., DESCRIBING THE SCENE 13

f
return(ByRect(d, x, y, Rect));

I

The exact syntax of how function arguments are passed is not important here - the definition

of DoubleRect calls upon ByRect, supplying it with a function, Rect, that will draw the

second picture to use:

Picture Rect(DrawContext d, int x, int, y)

return(Rectangle(d, x, y, 100,100));
I

Notice that we have to create a special-purpose procedure, Rect, which wraps up a call to
Rectangle with the size of the rectangle fixed. Not satisfactory - what we really want is
higher-order functions and the ability to create anonymous functions:

Picture DoubleRect(DrawContext d, int x, int
f

return(ByRect(d, x, y, (\ (a, b) -> Rectangle(d, a, b, 100,100))));
I

The fourth argument to ByRect is now an anonymous function that takes a coordinate pair
as arguments, and then calls Rectangle to produce the desired Picture result.

The above example could be re-worked not to use a function argument without too much
effort, but having the ability to define and use functions as arguments and results is a very
powerful and useful abstraction tool.

The style of expressing graphical content we've been outlining in this section has a natural
home in a functional programming language. As we've seen, this style of programming

can to some extent be emulated in a procedural, C-like, programming language, or in an

object-oriented language. However, a functional programming language is more suitable to

the task, as the programming style that the declarative view of graphical content engenders
is better supported by a pure functional language.

Summary

To summarise this discussion of what is a convenient format for expressing graphical content

programmatically, here are some of the main points:

14 CHAPTER 2. A PICTURE LANGUAGE

Programs that display graphical content tend to mix the details of how to present
it on a graphical output device with what to draw. The result is that the details of

presentation obscure the content itself.

Using a procedural programming language, the lower-level details of the interaction

with a graphics device can be abstracted away from the view of the programmer. How-

ever, by using a programmer interface where you draw by issuing graphics calls that

will perform device-specific drawing operations for you, it is left to the programmer
to manage the (abstract) state of the graphical output device.

e Separating presentation from modelling helps. Instead of issuing graphics calls, pro-
grams construct a value describing the model they want to present, leaving it up to

some system-provided facility to convert the model into actual graphical output.

A value-based compositional programming style engenders the use of features such
as higher-order functions and parametric data types. These can to some extent be

emulated in a procedural programming language. However, composition and higher-

order functions axe particularly well supported in a functional language, so applying
such a language to the task of modelling structured graphics declaratively sounds like

the natural choice.

Elliott[E1197] presents an argument similar to this of why making the distinction between

modelling and presentation is valuable, but this time applied to the much richer domains

of multimediaand three-dimensional animations. We're here solely interested in the de-

scription, of static, two-dimensional scenes and how to model them conveniently within
a functional language, but the arguments of why a separation between presentation and
modelling is valuable holds for both domains.

With the goal in mind of describing graphical content declaratively using a functional lan-

guage, the rest of
'
this chapter presents the Picture type and the primitive Picture building

blocks for describing two-dimensional graphical scenes. The Picture type and its primitives
are, embedded inside the lazy, purely functional language Haskell[P+97].

2.2 The Picture type

To express two-dimensional graphics declaratively, the programmer builds a value repre-
senting the graphical scene. For instance, to construct a picture of a box inside a circle:

boxedCircle :: Pictureý

2.2. THE PICTURE TYPE ,11 15

C
Figure 2.1 The boxedCircle picture.

boxedCircle = overlay c (centre s)
where

c= circle 10
s= square 20

The boxedCircle definition represents such a picture, and its appearance when rendered
is shown in Figure 2.1. The first line gives the type of boxedCircle, Picture. A value
of type Picture is an abstract type representing a two-dimensional graphical scene that,

when rendered, will produce some graphical output.

To return to the boxedCircle definition above, it is constructed out of a pair of basic

picture elements, created with the following two functions:

circle :: Unit -> Picture

square :: Unit -> Picture

The expression (circle 10) has type Picture, and represents a circle with radius 10. Mag-

nitudes and sizes in our picture language are all expressed as an integral number of printer's
points. ' Similarly for square, applied to a size it returns a Picture value representing a
square shape object.

Picture values are combined together using overlay

overlay :: Picture -> Picture -> Picture

which returns a new Picture value with its first argument appearing on top of its second.

The reason why the circle is contained within the square is that overlay combines two

pictures into one by aligning the origins of the pictures. All pictures are expressed in terms

of their own coordinate system, and, by definition, the Picture returned by circle has as

origin the origin of the circle. Similarly for the picture representing the square.

11 point -- 1/72 inch, using the same approximation of a printer's point as PostScript[AS90a].

16 CHAPTER 2. A PICTURE LANGUAGE

2.2.1 Running example

To help present the Picture type and the features it provides. we'll make use of a running

example awl gradually introduce the various features needed to construct it. The example
is the saine as the one used in an earlier presentation of the Picture type, [FP. 19, '-); tl, a
traffic light:

I I' we break tIi is (low nn it o pieces It
I Ic t r; III ic I 1A II1 1" 1) 11 11t mII of' III Ive uolw I red u1n. If. " place(I

on top of a black rectangular background. Centred inside each circle is the initial letter of
the colour of the circle itself.

2.3 Picture elements

A number of' basic geometric shapes can be created through a set of' primillNv Picture
functions, Figure 2.2 sbows the type signatures for a selection of these, Appendix A glVes
the complete list. The graphical representations created by these functions are shown in
Figure 2.4. One of the primitive Picture constructors is ellipse:

ellipse :: Size2 -> Picture

Given a two-dimensional vector speciýying the width and height, it returns a Picture vdue
representing a circular ellipse with ininor and major axes equal to the x and y components

of the vector. Sizes are all expressed in printers' points.

A Picture has its own local coordinate system. The ellipse is defined aus having the origin
of its coordinate systern coincide with the origin of the ellipse. Expressing the primitives

within their own coordinate system avoids having to explicitly place thein within soine
external coordinate system when creating thein, i. e., instead of the above type signature for

ellipse, we would then have:

ellipse :: Coord2 -> Size2 -> Picture

Having the extra argument just adds clutter and is better dealt with by placing each Picture

value within its own coordinate system and then transforming the local coordinatesystem of
a picture into a global one should the need arise. Section 2.4 shows the primitive invchanisn's

2.4. TRANSFORMING PICTURES 17

empty Picture
point Picture
line Size2
polyrline [Size2l
rectangle Size2
square Unit

raster Raster
bezier Coord2
ellipse Size2
circle Unit
arc Size2

Picture
Picture
Picture
Picture

Picture
Coord2 Coord2--> Picture
Picture
Picture
Angles Picture

Figure 2.2 Picture primitives.

used to transform a Picture value.

Notice that the Picture type is treated as abstract; once a Picture value has been created,
there's no way of taking it apart using pattern matching, for instance. This doesn't turn out
to be such a big loss, as the need for examining the concrete representation of a Picture is
rarely needed when building a graphical scene. The concrete representation of a Picture is
clearly needed when converting the value into actual graphical output, and we look at the
concrete representation and how to render Picture values in Section 2.10.

Associated with all values of type Picture is an implicit bounding box, the smallest rectangle
that fully encloses the graphical object it represents. 2 For instance, the bounding box of
halfCircle,

halfCircle = arc (Size2 40 20) 0 pi

is a rectangle with width 80 points and height 20 points. Apart from empty which represents
the nullary picture, all Picture values have a bounding box of some extent. The dimensions

of a picture's bounding box play an important role when combining pictures together.

2.4 '11-ansforming pictures

A picture can be transformed geometrically using the following combining form: 3

'The bounding box rectangle has sides that are parallel with the axes of the Picture's coordinate system.
3 Functions such as transform are often termed by functional programmers as combinators, combining

operators that create a new value of some type taking one or more values of the same type as arguments.

18 1 CHAPTER 2. A'PICTURE LANGUAGE

newtype Unit = Unit Int

-- integral number of printers' points

data Size2 = Size2 Unit Unit -- 2d vector
size :: Unit Unit Size2

width, height Size2 Unit

data Coord2 = Coord2 Unit Unit -- 2d point
coord Unit -> Unit -> Coord2

X, y Coord2 -> Unit

type Radians Double
data Angles Angles Radians RadiansDelta

start angle plus delta radians to turn
to reach final angle.

data Transform2 = -- 2d transform, abstract type.
idTr Transform2
transTr Size2 Transform2

rotateTr Radians Transform2

scaleTr Double -> Double -> Transform2

combineTr Transform2 -> Transform2 -> Transform2

-'associative.

Figure 2.3 Basic geometric types.

Figure 2.4 Picture primitives.

transform :: Transform2 -> Picture -> Picture

The function constructs a new Picture value by applying a two-dimensional transformation

to the Picture value it is passed as its second argument. The Transf orm2 is an abstract

For instance, (++) is a list combinator, appending a pair of list values together to produce a new one.

"I

2.4. - TRANSFORMING PICTURES 19

Figure 2.5 IYansformed geometric shapes

data type for 2D transformations, allowing both uniform (scaling, rotation) and non-uniform
(shearing, reflection) transformations to be expressed. Some commonly used transformation
functions are presented in Figure 2.3. Using the primitive transform, derived Picture
transformation functions can easily be defined:

scale :: Double -> Double -> Picture -> Picture

scale sx sy pic = transfom (scaleTr sx sy) pic

uscale :: Unit -> Picture -> Picture
uscale f Pic - scale (size f f) Pic

xlt :: Size2 -ý' Picture -> Picture
xlt t Pic = transform (transTr t) Pic

type Degrees = Int

rotate :: Degrees -> Picture -> Picture

rotate deg Pic = transform (rotateTr (deg2rad. deg)) Pic

Examples of these geometric transformations applied to the basic shapes in Figure 2.4, can
be seen in Figure 2.5. For instance, the scaled rectangle is built using half Size,

halfSize :: Picture -> Picture
halfSize pic = scale 0.5 0.5 pic

halving the width and height of a picture. Applying half Size to a rectangle that is 100

units wide and 60 high produces a rectangle 50 units wide and 30 units high. A more
involved and visually interesting example of transform is this little spiral:

20 CHAPTER 2. A PICTURE LANGUAGE

Figure 2.6 A spiral Picture.

overlay :: Picture -> Picture -> Picture

espiral :: Picture

espiral = foldr (overlay) empty pics

where

pics =
zipWith (rotate)

[O, pi/8 .. pil
(replicate (ellipse (size 40 20)))

The espiral produces the shape shown in Figure 2.6, consisting of a sequence of rotated
ellipses superimposed on top of one another. The definition of espiral uses the function

f oldr to walk over a list of pictures, building up the final picture by overlaying all the

elements in the pics list.

If applications of transform are nested, they combine as follows:

transform tl (transform t2 pic) = transform (combineTr tl t2) pic

where combineTr returns the multiplication of a pair of Transf orm2 values. For instance,

shrink

shrink :: Picture -> Picture

shrink pic = halfSize (halfSize (halfSize pic))

shrinks a picture by a factor of eight by applying an equal scaling amount three times to a
picture, halving the scaling factors each time.

2.5. STRUCTURED TRANSLATION 21

2.5 Structured translation

The transform combinator applies a transformation to a picture. Transformations such as
scalings and rotations are all about the origin of the local coordinate system of the picture.
Often we need to translate the picture prior to performing the transformation. For instance,

suppose we want to rotate an ellipse around its leftmost point: 4

ellipseA =
rotate (pi/4) $

ellipse (30,20)

ellipseB =
rotate (pi/4) $

xlt (30,0) $

ellipse (30,20)

To rotate around the leftmost point of an ellipse (rightmost picture), the ellipse first has

to be translated along the X-axis before rotation, as seen in the definition of ellipseB.
For ellipses, rotation around the centre is straightforward, the origin of the ellipse picture
coincides with the origin of its local coordinate system.

However, for ellipseB, the definition depended on knowing the exact amount it had to
be translated by. This makes it hard to write a general picture combinator for rotating a
picture around the leftmost or western point of its bounding box, say, without some extra
support. One way to support the writing of such general translation functions is to provide
a function that computes the bounding box of a picture value:

computeBBox :: Picture -> Rectangle

This is certainly possible, but it implies answering some awkward questions. For exam-

ple, what is the bounding box of (text "Hello")?, It is hard to say without committing
to device-dependent rendering details such as what default font to use. Equipping the

programmer with the functions for computing size of bounding boxes is also somewhat low-
level, so, if possible, we would like to work at a higher-level than manipulating concrete
bounding box sizes when constructing a picture. To deal with this problem we introduce

structured translation. Structured translation is the abstract translation of the origin of a

picture, provided by the move picture combinator in Figure 2.7.

4 To avoid the deep nesting of brackets, the'right associative I function application operator $ is used here,
i. e., we write f$gh instead of f (g h).

22 CHAPTER 2. A PICTURE LANGUAGE

move :: Offset -> Picture -> Picture

data Offset
= OffDir CompassDirection
j'OffPropX Fraction
I OffPropY Fraction

type Fraction = Double [O. O.. J. O]

data CompassDirection
West NorthWest
North NorthEast
East SouthEast
South SouthWest

I Centre

Figure 2.7 Structured translation of pictures

The move combinator allows you to abstractly translate a picture with respect to its bound-

ing box, instead leaving it up to the function that converts the Picture value into actual

output to compute the translation amount to use. The function move constructs a new
Picture value by performing such a translation, moving the origin either to one of the
bounding box positions given by the CompassDirection type, or shifting it horizontally or

vertically by a fraction. For instance, (move (Of f Dir NorthEast) (square 20)), returns

a square with the top lefthand corner as its origin. Notice that the move function does not

extend the size of a picture's bounding box, but moves the origin of the picture's coordinate
system.

To return to the example of rotating an ellipse around its leftmost point, ellipseB can be

written as follows using structured translation:

westRot :: Radians -> Picture -> Picture

westRot rad pic
rotate rad $

move (OffDir West) pic

ellipseB = westRot (pi/4) (ellipse (30,20))

The westRot function translates pic such that its bounding box is shifted to the right
of the vertical axis and centred around the horizontal axis before applying the rotation
transformation.

2.6. GRAPHICAL TRANSFORMATIONS 23

Nested applications of the move constructor are clearly redundant:

move dirl (move dir2 pic) = move dirl pic

since an application of move does not alter the size of a picture's bounding box, the inner
application of move can safely be ignored.

2.6 Graphical transformations

Another class of transformations are graphical ones, where you want to change or set the
graphical attributes that a picture should be drawn with. For instance, suppose you want
to create a filled, green circle for the initial traffic light example:

greenCircle Unit -> Picture

greenCircle rad
withPen [Foreground green,

Fill True] $
circle rad

withPen :: [PenModifierl -> Picture -> Picture

The withPen combinator is applied to a circle together with a list of pen modifier attributes,
returning a new picture value. When rendered, the circle will be drawn with the fill flag
turned on, using a green colour. The PenModif ier values given in the list to withPen are
attribute-value pairs, and Appendix A gives a complete list of attributes supported.

The attribute-value pairs in a PeModif ier list gives you a fine-grained control over the

settings of various graphical attributes when drawing, but sensible defaults are defined for

all attributes, so the withPen combinator is only used when you want to override these

values.

In the case of nested applications of withPen, the outermost application has priority over
inner ones, i. e., the attribute-value pairs set in an application of withPen will only apply if

there's no enclosing application of withPen that overrides it. That is,

withPen pi (withPen p2 pic) == withPen (pl++p2) pic

24 CHAPTER 2. A PICTURE LANGUAGE

To illustrate the scoping of graphical attributes, when the following Picture is ren(lered.

picture =
withPen [Fill True,

Foreground grey801

withPen [Fill False,

Foreground black] $

circle 30

the picture on the right should be displayed. NNI'lien the circle is rendered. tlj(, foreground

colour is grey8O and the circle is filled, since the outermost application of withPen overrides

any subsequent settings of the foreground colour or fill flag. This choice of scoping, of pen

attributes is different from what is normally done in other systems, where local gmphical

attributes override global ones.

Note that the graphical attribution done by withPen creates a new Picture value. and

avoids having to use some shared, mutable graphics state. withPen simply ts,, o(-'; It('s (I s('t

of graphical attribute values with a picture that will be in scope when rendering it.

If we return to the traffic light example, drawing the individual lights can now be expressed

with the help of withPen:

filledCircle :: Colour -> Unit -> Picture
filledCircle col rad =

withPen [Foreground col, Fill True]

(circle rad)

red, orange, green :: Colour

redLight, amberLight, greenLight :: Unit -> Picture

redLight = filledCircle red

amberLight = filledCircle orange

greenLight = filledCircle green

By defining a function for creating filled circles, the individual lights are constructed by

supplying the appropriate colours.

2.7. COMPOSING PICTURES 25

2.7 Composing pictures

To get any ffirther with the traffic light picture, the different Picture values i-epi-esenting

the lights will have to he (. 0111hined togethei- somehow. The Picture tYpe pi-ovides thive

pl-inlitive walys of combilling pictm*es together, one of which we've all-eadY Seen 11"ed:

overlay :: Picture -> Picture -> Picture

The overlay primitive creates a new pictill-c hy collibilling togethel. (I Imil. of pictill-cs,
Placing the fil-st pictill-e Oil top of the second by aligning their origins:

picture

overlay
(ellipse (40,20))

(ellipse (20,40))

The bounding box of the collI)illed picture is the bounding box of the union of the bounding

boxes for the two pictures.

The second form of picture compositioll is (. Iil),)illg, ilit(q. preting one picture as defining the

clip mask to use when drawing the second:

cliP :: Picture -> Picture -> Picture

clip clipper clipped is a new pictilre that clips the second picture by the clip inask
defined by the first:

picture =
clip

(withPen [Font largeFont] (text "Clip"))

(lines 500)

lines 1
foldll

cli

EI H
(overlay)

F

[rline (1*cos a, l*sin a) Ia <- [0, (pi/72).. 2*pil

The bounding box of' the constructed picture is equal to the bounding box of the picture
describing the clip mask.

26 CHAPTER 2. A PICTURE LANGUAGE

The overlay primitive combines a pair of pictures, but what if we wanted to express the
following function in terms of it?

inBox :: Picture -> Picture

The inBox function should take a picture and frame it inside a rectangle. Combining the

rectangle and the picture together with overlay is straightforward, but what dimensions

should the rectangle in this have? It is of course dependent on the size of the picture supplied
as argument. Since we do not supply a function for computing a picture's bounding box, a
third form of picture composition is provided. Constrained overlay combines two pictures
together just like overlay, but places constraints between the sizes of the pair of pictures
being combined:

constrainedOverlay :: RelSize -> RelSize -> Picture -> Picture

data RelSize

None

Fixed Which Unit

Prop Which Double

data Which = First I Second

The picture constrained0verlay None (Prop Second 2.0) picA picB is a picture that,

when rendered, will align the origins of picA and picB, drawing picA on top of picB. The

second picture, picB, is also scaled in the Y direction such that height of its bounding box
is double that of picA's. The RelSize arguments to constrained0verlay indicate the
type of constraint to place between the height and widths of the two picture's sizes. The

constraints are uni-directional, with the Which type indicating what direction the constraint
is meant to hold.

Using constrained0verlay, the inBox function becomes easy to express:

inBox :: Picture -> Picture

inBox pic =
constrainedOverlay (Fixed Second 4)

(Fixed Second 4)
(centre pic)
(centre $ rectangle 10 10)

2.8. TILING PICTURES 27

The surrounding rectangle is made four points wider and higher, combining the rectangle
and the picture by aligning their centres.

Clearly, the constrained0verlay operator provides a superset of the functionality of
overlay,

overlay = constrainedOverlay None None

but since overlay is so common, we choose to present (and represent) the unconstrained
overlay as a separate construct.

2.8 Tiling pictures

Combining the overlay operator with the structured translation operator move in Sec-

tion 2.5, picture combinators that tile pictures together can now also be expressed:

beside :: Picture -> Picture -> Picture
beside picA picB =

overlay
(move (OffDir East) picA)
(move (OffDir West) picB)

above :: Picture -> Picture -> Picture

above picA picB
overlay

(move (OffDir South) picA)
(move (OffDir North), picB)

The beside combinator overlays two pictures, but translates their local origins such that

picA will be shifted to the left of the vertical axis and picB wholly to the right, before

combining the two picture values. The combinator above uses the same trick, but this time
the translation is with respect to the horizontal axis.

As an example of these various composition o erators in use, we can finally present the
z-'ý

p
construction of the traffic light example presented at the beginning of the introduction to

the Picture type, starting with a combinator for placing an arbitrary text string within a

coloured oval:

light :: Colour -> String -> Picture

28 CHAPTER 2. A PICTURE LANGUAGE

light col lab =

constrainedOverlay
(Fixed Second 20)
(Fixed Second 20)
(withColour black $ centre $ Text lab)
(filledCircle col 2)

The light combinat, or centres the text string lab within an ellipse that has horizont; d mid

vertical extent 20 tinits bigger than Oiat of the extent of tjj(ý picture representing the string.
Using this combinator, t1w pictures for the individual fights now simply become:

redTLight = light red "R"

amberTLight = light orange "A"

greenTLight = light green "G"

TO align the light's horizontally, We want to use the horizontal tiling operator beside, but

want, to add some 'air' between the lights first:

besideSpace :: Unit -> Picture -> Picture -> Picture

besideSpace spc picA picB =
beside

picA
(xlt (size spc 0)

moveWest picB)

besideSpace uses the x1t combill, 'for to translate the picture on the right liand side further

to the right" so Chat Whell it, is ('01"billVd with the other, we have the desired space in betweell

them. The three traffic lights thell become jllst,:

lights

f oldrl
(besideSpace 10)

[redTLight,

amberTLight,
greenTLight]

T() fillish ()IF the traffic light, w(' OW" MAY I'Ved to add a black rectangular background to

t, I le I ig I its:

2.9. EXAMPLE

.............

Figure 2.8 graph (scatter) dataPts - scat, tei- ph)t ol'annual (hit(I

trafficLight =

constrainedOver
(Fixed Second

(Fixed Second

(move (OffDir

lights)

(move (OffDir

lay
20)

20)

Centre)

Centre)
(Rectangle (2,2)))

29

This exal"Ple, while small, demonstrates the compositional programming st, Yle that follows

naturally, where c0l"PIVte Pictures are built by repeatedly appl
. N, ing picf, 'Ilre CoIll'bli'llalors

to existing Pictures.

2.9 Example

To further demonstrate and bring together the various features, t1lit the Picture type

provides, let's consider the problein of plotting 2D graphs. A common situation is to 1mve

a set of data generated by a program that, we want to vistialise (Illicki
'v

using a graph. Fm-

the purpose of this exal"PIO, let lis assume that the data 111("Islire the '1111111al (list riblit iml

of soille value, producing output like Figure 2.8. The X axis represen(s the months and
the Y axis the values Nve've measured each month ill, the illillibel. of bligs I'Milld ill I pl(1CC

of software, say. The Picture representing this grýlph cmisists of sevend slimllel. pletilres
joined together, starting Nvidi Ole gridded background:

30 CHAPTER 2. A PICTURE LANGUAGE

grid :: Size2 -> Size2 -> Picture

grid (Size2 w h) (Size2 stepx stepy)
let

pen =
[Foreground grey5O,
LineStyle, (OnOffDash 1 Ol

lines-x =h 'div' stepx
lines-y =w 'div' stepy

in

withPen pen

overlay
(move (OffDir Centre) $

rectangle (size w h))
(overlay

(move (OffDir Centre) $
hlines stepx lines-x W)

(move (OffDir Centre) $

rotate (pi/2) $
hlines stepy lines-y h)

The grid function, given a size and spacing between the grid lines in both directions, returns
a Picture of the grid, built by overlaying horizontal and vertical lines. To make the grid
lines appear discretely in the background, we apply a pen modifier that dashes the lines

and renders them in grey (see Appendix A for definition of the graphical attributes). The

picture of the horizontal lines h1ines is also a combined picture:

hlines :: Unit -> Unit -> Unit -> Picture

hlines spc no x

nabove
(map (xlt (size 0 spc))

(replicate no $ hline x)

nabove [Picture] -> Picture

nabove foldr (above) empty

The horizontal lines are composed out of a collection of lines arranged vertically using
above. To achieve the necessary spacing between the lines, each line is translated so as to

enlarge the bounding box the above uses to compute the geometric arrangement'between
two pictures.

2.9. EXAMPLE 31

The axes of the coordinate system are also created by combining smaller pictures together,
this time two arrowed lines:

axes :: Size -> Picture

axes (w, h) =
overlay

(leftArrowLine w)
(upArrowLine h)

The arrowed lines can also be subdivided into a picture element for the arrow line and
the head that has been combined together, but for reasons of space we will leave out their
definition here.

To get the picture of a gridded. coordinate system, we simply overlay the picture returned
by axes with that for the grids, making sure of moving the origin of the grid to its lower

left corner, so that the gridding coincides with the origin of the axes:

cartesian :: Size2 -> Size2 -> Picture

cartesian sz steps =

overlay
(axes sz)
(move (OffDir SouthWest)

grid sz steps)

To plot data points within the coordinate system, the picture(s) representing the points
just have to be placed on top. Here's how a scatter plot of a set of coordinates is done:

scatter [Coordl -> Picture

scatter noverlay $ map (plotAt)

where
plotAt pos =

x1t (coord2Size pos) (filledCircle 2)

noverlay [Picture] -> Picture

noverlay foldr (overlay) empty

The different points are plotted by translating a circle to each data point and then overlaying
the pictures of all the data points. Since overlaying is performed by matching up the

origins of two pictures, and the points to be plotted are all expressed within the same

coordinate system, the pictures will also have the same origin. The resulting plot can then

32 CHAPTER 2. A PICTURE L. AýNGUAGE

be superimposed on a coordinate system to produce the plot in Figure 2.8:

graph ([Coord2] -> Picture)
[Intl
Size2

-> Size2

-> Picture

graph plot pts size stepsQ(Size2 dx dY)

let

coords - zip pts Edx 'div' 2, dx..]

in

overlay
(plot coords)
(cartesian size steps)

The graph takes a function for producing the plot of the supplied data together with the
data points themselves and a size plus grid steps. For the purpose of this example, we
assume that the size and data points are in the same range; additional code that checks
and appropriately scales the data to fit has been omitted for reasons of space.

Now let's change the plot a little bit, connecting the points up with solid lines:

solid :: [Coord2l -> Picture

solid ls =
overlay

(polyline ls)
(scatter ls)

The scatter plot as produced with scatter is overlaid with a poly-line connecting all the
data points up. Using solid in a call to graph will produce output like this:

2.9. EXAMPLE 33

2.9.1 Histogram

Instead of plotting data points, we could plot the data in a histogram and to make the

resulting graph a bit more understandable, adding month labels to the X-axis. The month
labels can be added by overlaying the X axis with the appropriate labels:

xAxis :: [String] -> Int -> Int -> Picture

xAxis labels sz spc =

overlay
(leftArrow sz)
(move (OffDir NorthWest) $

noverlay ,
(zipWith (\ p pic -> xlt (size p (-15M pic)

[spcl, (spc+spcl)..]
(map (label) labels)))

where

spcy = spc 'div' 2

label str =

rotate (pi/2) $

move (OffDir East)

text str

The labels in the X direction are placed on top of the axis by rotating each label 90 degrees

clockwise beforehand. To incorporate the labelled axis, the functions cartesian and axes
have to be altered to thread the labels through to xAxis, but we will leave out the details

here.

plotting a histogram instead of a scatter-plot is straightforward, just substitute scatter

with histo in a call to graph:

histo :: [Intl Int Picture

histo Pts sPc

foldl
(besideB)

empty
(map (bar) 1s)

where
bar sz

move (OffDir South) $

311 CHAPTER 2. A PICTURE LANGUAGE

overlay
(rectangle (size spc sz))
(fillColour grey80 $

rectangle (size spc sz)))

besideB :: Picture -> Picture -> Picture
besideB picA picB

overlay
(move (OffDir SouthEast) picA)
(move (OffDir SouthWest) picB)

The bars are created I)y goilig through the data points left to right. -Note that instead of

using beside to combine the bars together, we use the combinator besideB to align tll(,,
bars by their bottoms instead. Visualising the data using histo will then produce output
like this:

F1

7S 0z Cý

TO conchide this graphing ex; InIple, it shows that by using the Picture type, it is relatively

emsy to write application-specific combining forms for generating drawings. While this is a
toy example, an interesting experiment would be to try to build a complete graph drawing

library using Pictures and a functional language, and see how well the simple Picture

111mlel scales to larger examples.

2.10 Rendering Pictures

Having presented the programmer interface for constructing Picture values, the question
now is how do we convert them into actual graphical output? One of the motivations for

2.10. RENDERING PICTURES 35

using an abstract data type to represent graphical content was device independence, so to

make it easy to define a mapping to a new output device, we define a generic framework
for rendering pictures. The following primitive rendering function is provided:

render :: Painter -> Picture -> 10 Rectangle

The render action takes as arguments the painter characterising the output device and
the picture to render. Before rendering the picture, render tries to simplify the Picture

value by reducing and removing superfluous parts, e. g., the nested application of the move
operator can be removed as discussed in Section 2.5.

As a result, the render action returns the bounding box of the rendered picture, expressed
in the global coordinate system of the Painter.

The Painter axgument describes the features that the Picture renderer requires from a
particular graphics device. It is represented as a dictionary of operations:

data Painter

= Painter

pushPen Pen ID

popPen 10, (),

setClipMask Coord2 Transform2 10

drawText String Transform2 10 Rectangle,

drawRectangle Size Transform2 -> 10 Rectangle,
drawEllipse Size Angles -> Transform2 -> 10 Rectangle,

I

The painter operations include operations for rendering picture elements and for setting

graphical state. The complete definition of the Painter type is given in Appendix A.

The set of primitive drawing operations that a Painter needs to support reflects the render-
ing primitives that Xlib[Nye90] and PostScript [AS90a] provides. An alternative would be

to require each Painter to provide a primitive for rendering a more general mathematical
form like nonuniform, rational B-splines(NURBS) [RA90], and e? (press the above drawing

primitives in terms of it.

When the renderer encounters one of the primitives mentioned in Section 2.3, it looks up
and invokes the corresponding method in the Painter. Currently, two graphical Painters

exist for producing output in PostScript and to Haggis [FPJ95a], but the Painter interface

36 CHAPTER 2. A PICTURE LANGUAGE

has also been used to implement picking, i. e., testing whether a point intersects the picture,
and to incrementally update parts of a Picture structure.

2.11 Related work

The presentation of the Picture type in this chapter is based on an earlier presentation
of the Picture type, [FPJ95b]. This approach to structured graphics builds on previous
approaches to describing graphics in a functional language. One of the earliest attempts was
Henderson's functional geometry[Hen82a], where, using Escher's square limit as an example,
functions for repeatedly combining together a set of basic picture tiles were presented.
Arya's work on functional animation [Ary89] uses the same graphical model. The repertoire
of primitive drawing elements was restricted to lines which has to be placed explicitly within
a tile/element's coordinate system. Functions for horizontal and vertical tiling are provided
as primitives. The Picture type presented in this chapter extends this early work by
providing a fuller set of drawing primitives and picture transformers, and through the use
of structured translation and constrained overlays, picture composition functions such as
above and beside can be readily expressed.

Several other 'functional' systems have made use of PostScript's [AS90a] basic graphics
model, layering functional abstractions on top of it[CC92, LZ87]. These approaches make
good use of PostScript's page description model, but force the programmer to use PostScript's

stateful model of stencil and paint for describing the basic picture elements. While power-
ful, its inherent statefulness can lead to unexpected results when used from within a lazy
functional language.

Although the Picture graphics model differs significantly from the PostScript model, a
module for describing PostScript stencil paths in terms of Pictures can easily be defined:

module Path

Path,

currentPoint, Path Coord

moveTo, Coord Path Path

rline, Size Path Path

)

2.12. CONCLUDING REMARKS 37

Graphical output is described by incrementally building larger and larger Paths, behaving

much like an output monad. The Path module does not provide the full set of features that

a PostScript interpreter has, but it shows that the Picture type could be used as a basis

for creating other graphics abstractions. One interesting point to note is that the Path

module elevates the path to a first-class value, something that is not the case for PostScript
interpreters.

Another area of related work is the declarative description of graphics using constraint-
based systems [Knu79, vW82, Hob94, HN94]. Through the use of constraints, relationships
between components of a picture can be expressed declaratively. Prior to actually drawing

a picture, the constraints between the different parts of the picture have to be satisfied.
Whether the extra generality and flexibility that these constraint-based systems offer com-
pared to the Picture data type is worth the additional overhead of solving and maintaining
these relationships, is an open question.

2.12 Concluding remarks

We have in this chapter presented a simple model for describing two dimensional structured

graphics within a functional language. The Picture type provides the primitives and basic

combining forms for building graphical scenes through composition. As an example of the

Picture model in action, a set of basic graph drawing combinators were developed on top

of the model.

38 CHAPTER 2. A PICTURE LANGUAGE

Chapter 3

Exploring the design space

A design often ends up being the result of repeated attempts at finding the Right Solution.

Through the exploration of the available design space, the relative advantages and disad-

vantages of the alternative choices are evaluated, before settling on a solution that overall
is the most satisfactory design. The user interface framework presented in this thesis is

no exception to this pattern. Multiple programming models and graphical user interface

representations were tried out, before finally arriving at the system that is presented in the

next chapter.

To set the scene and properly motivate the reasons for opting for the framework presented in

the next chapter, we discuss some of the important design choices that need to be addressed.
In the process of doing this we review relevant related work, examining the properties of

the programming models they present to the user interface programmer.

3.1 The callback model

Programming a graphical user interface application imposes a different way of thinking

about and structuring your applications compared to programs that engage in conventional
file or terminal 1/0. The application presents a graphical interactive surface to the user,

which is used to interact and control the application and its progress. The interaction is

mostly non-modal, 'i. e., the user may arbitrarily interleave work between the different tasks

that an interface presents, and the application has to obey and update itself accordingly.
The non-modality forces the,, application to take on a servant's role, appropriately (and

quickly) responding to eventsl describing actions performed by the user.

One way to support this style of programming in an imperative programming language,

such as C or Pascal, is to repeatedly fetch events from the outside and use a big switch

39

40 CHAPTER 3. EXPLORING THE DESIGN SPACE

statement to decide what action to take:

eventLoopo
f
Event ev;

do f

ev - GetNextEvento;

switch(ev)
case BUTTON-DOWN:

pt = GetEvCoords(ev);
/* Use pt to interpret button event
break;

case REPAINT:
Redrawo;
break;

/* and so on
I

while(l);
I

The application is centred around an event loop which receives and interprets the incoming

events, keeping up with the user's actions. The application is forced to deal with a lot of
details, receiving a continual stream of low-level user action events that it has to map back
into actions meaningful to the application, e. g., a mouse button press could, depending on
its coordinates, be interpreted as a click on a start button to reload a document, or the

start of a dragging action.

In addition to events representing user actions on input devices, the event loop also has

to handle events and commands regarding the management of the graphical surface being
displayed, events that are not of direct interest to the application.

The event loop is the basic programming model provided by the X Window system's [SG92]
C interface binding, Xlib, and Microsoft Windows window message queues [PR96]. It offers
great control on how to interpret and deal with all events, albeit at a low level.

To abstract away from the details of the different system events and concentrate on events
that are directly relevant to the application, the event loop model can be refined. Instead

of having the programmer implement the event loop from scratch, allow the application to

plug in procedures that a library-provided event loop will invoke when a specified condition

3.1. - THE CALLBACK MODEL ý 41

has occurred. A primitive form of this is the message crackers used by Windows programs
[PR96], where application-specific procedures can easily be plugged into the event loop to
handle certain classes of events.

More commonly, user interface systems or toolkits, provide a set of standard, pre-packaged

controls or widgets that implement common user interface elements, e. g., text input fields,

scrollbars, buttons etc. These controls take care of plugging into a system event loop, hiding
it from the view of the programmer. To use instances of these controls in an application,
one or more callback procedures have to be specified:

char str[801;

void incButton(void *st, Button *b)
f

*(int *)st = *(int *)st + 1;

sscanf(str, "%d", *(int *)st);

SetButtonText(b, str);
I

void counter(WContext wc)
I

int *state malloc(sizeof(int));

*state 0;

CreateButton(wc, "O'l, state, &incButton);
I

The procedure CreateButton creates a push button widget, supplying its initial label to-

gether with the callback procedure to invoke whenever the user clicks with the mouse pointer

over the button.

The system event loop is responsible for fetching events from the outside and interpreting

them. When it resolves an event as representing a button click, the incButton procedure
is invoked. It simply changes the label displayed by the button and returns control back to

the system event loop.

Constructing a user interface application now becomes the creation of the user interface

components that make up the graphical surface, paxameterising them with the callback

procedures they each should invoke. Collectively, these callbacks implement the application

semantics and the overall behaviour of the user interface controls. Since the system event
loop is stateless, the callbacks rely on the use of shared state to record the current state

42 CHAPTER 3. EXPLORING THE DESIGN SPACE

of the application. When a callback is invoked, it consults the shared state to identify the

current state of the application, acts accordingly and updates the state before returning.

Callback procedures hide the direct handling of events from within an event loop, instead

components from a toolkit are selected and instantiated with a callback procedure repre-
senting a little piece of the application.

Many windowing systems based in sequential (imperative) programming languages use this

model, good examples are the X Intrinsics widget layer [AS90b] and Tcl/Tk [Ous94].

However, this model has rather serious weaknesses:

9 Decentralised application control

The application is spread across a number of code snippets, each of which is invoked
by the system event loop. This makes application changes harder, as changes often
force the modification of multiple callbacks.

o Use of shared state

The different callbacks communicate through shared state, each callback makes sure
to update the state so that subsequent invocations of the callbacks will see it.

Temporal constraints

The event loop is in overall control of the application, handing control over to a
callback procedure before resuming the processing of events. Hence, in order to ensure
that the application appears responsive to user actions the callback procedure cannot
perform too much work before returning.

9 Little support for abstraction

Toolkits tend to provide the programmer with a fixed set of common user interface

controls/widgets, but do not give the programmer the ability to easily define new
user interface abstractions. Creating new abstractions is not unsupported, but forces
the programmer to drop down to lower levels of abstraction compared to the pro-
gramming done when using the provided widget set. That is, the toolkits make a
distinction between creating a user interface application and creating new user inter-
face abstractions.

9 Toolkit specific callbacks

The callbacks supported and used differ between toolkits, resulting in programs that
have to be reworked when moving from one toolkit to another.

3.2. OBJECT ORIENTED USER INTERFACES 43

Another look at the properties and weaknesses of using callback procedures to structure
graphical user interface applications can be found in [Mye9l].

3.2 Object oriented user interfaces

The callback-based widget toolkits attempt to provide a graphical user interface program-
ming model where an application is constructed by creating a set of widgets, wiring them
together via callback procedures. This approach runs into some problems because the

component view of graphical user interface widgets doesn't extend to application callback
code. The callbacks communicate with others by modifying shared application state, but

there's little language support for controlling what components can modify what parts of
the application state.

Object-oriented languages provide a more natural home for this view of a graphical user
interface. Each interactive graphical component is represented as an object that maintains
its own state, updating it in response to input from the user and other application objects.
However, the object oriented view also extends to other parts of the application, representing
these as a network of objects that communicate and interact with each other. Through

programming language support, some of the problems evident with the callback model in

sequential, imperative programming languages are successfully addressed.

A distinct feature of most object-oriented programming languages is the use of a class mech-

anism to describe and structure the functionality that different objects support. Classes

allow You to specify the interface supported by an obj
,
ect, giving the properties and oper-

ations that an object has to provide to be a 'member' of that class. Different 'types' of

objects can be related through inheritance, e. g., a coloured point class inherits all the prop-

erties and functionality of a point class, augmenting it just with a colour attribute. Class

inheritance helps to organise and re-use different object interfaces, specifying how different

types of objects are related. Another benefit of inheritance is implementation re-use, a class
declared to be a subclass of another, inherits also the implementation of the class' methods.
This is particulaxly useful when making minor extensions to an abstraction, inheriting the
implementation from its class, can reduce the implementation work required.

Object-oriented graphical user interface frameworks are organised in a class hierarchy, pro-

viding a set of user interface elements and abstractions to the programmer. Inheritance is

used to extend the graphical representation, interactive behaviour or application semantic

properties of more 'primitive' user interface components. For instance, the class implement-

ing a push button could inherit from the class implementing string labels, extending it to

44 CHAPTER 3. EXPLORING THE DESIGN SPACE

respond to mouse input.

A recent example of an object-oriented user interface framework is the Abstract Window
Toolkit (AWT)[GY+96], a class hierarchy provided as standard by the programming lan-

guage Java [AG96]. Just as Smalltalk, AWT uses implementation inheritance to re-use and
relate the different user interface abstractions. AWT provides abstractions for common user
interface elements together with containers for arranging collections of them together. The
framework is abstract in the sense that AWT defines the architecture and protocol for how

components interact with each other in a platform independent manner. An implementa-
tion of AWT on a particular platform can bind the user interface elements to whatever is

convenient or common there.

AWT also makes u, se of Java's interfaces, abstract classes that just specify the functionality

an object should support, not its implementation. In AWT, for instance, the functionality

of objects that control the layout and placement of a set of objects is specified through an
interface. Interfaces can also be inherited, so the interface for layout containers that tile
their objects would inherit from the general layout interface.

As an example of AWT in use, Figure 3.1 shows the implementation of a counter button.
Whenever the button is clicked, AWT invokes the action method of a button, so to have

the button increment its label value when it is clicked, we create a new class IncButton. It
inherits from the standard button class, overriding its implementation of action to provide
the desired behaviour. Apart from action, IncButton reuses the implementation of all the

methods it inherits.,

Compared to the callback model of the previous section, an object-oriented solution, as
represented by AWT here, has a number of advantages:

* The management and access to the counter state is encapsulated within instances of
the IncButton.

Implementation inheritance is particularly useful here, requiring the specialisation of
a single method to implement the counter button. Implementation inheritance makes
incremental extensions or specialisations of an abstraction relatively straightforward,
provided the interface of the class has enough functionality to support the change, of
course. For instance, consider the task of creating a counter button that displayed the
current number using Roman numerals instead. Since the Button class in Java does

not provide any direct functionality for having arbitrary graphics as a button's label,

making such an extension would be non-trivial compared to the implementation of
IncButton. That is, code re-use through implementation inheritance doesn't come

3.2. OBJECT ORIENTED USER INTERFACES 45

import java. awt. *;

public class IncButton extends java. awt. Button

int count = 0;

IncButtono f

super(String. value0f(O));
I-

public boolean action(Event ev, Object what)
if (ev. id == Event. ACTIDN_EVENT)

count = count + 1;
this. setButtonText(String. value0f(count));
return true;

else f

return (super. handleEvent(ev));
I

I
I

Figure 3.1 A counter button in Java/AWT.

for free; classes have to be designed with it in mind.

User interface elements such as labels, scrollbars and buttons are the primitives out of

which we can build more user interface applications. However, applications often require
higher-level support to provide their interactive, graphical surface. For instance, a common

application pattern is to present some data to the user, which perhaps can also be edited.
To help maintain the consistency between the application's data and the user's view of it,

most object-oriented user interface systems provide specific support for this. An object

can register its interest in changes to another, asking to be notified whenever it changes

state. The archetypical example of this is the Model-View-Controller (MVC) provided by

most implementations of Smalltalk [KP88]. The model maintains the abstract data that

the view will map to some graphical representation, while the controller is responsible for

relating user interaction on the view back to changes to its model. Apart from its usefulness,
MVC offers the programmer higher-level glue for connecting together application and user
interface.

An example of a system that takes the provision of higher-level application patterns such

as MVC, further is ET++[NVG94], an object-oriented application framework implemented
i in the language C++. On top of a standard collection of user interface elements, ET++

46 CHAPTER 3. EXPLORING THE DESIGN SPACE

Sequential

UI as a explicit

value references
(one-way)

Concuffent

Streams two-way
communication

wires/channels virtual IVO
devices

Figure 3.2 Functional user interface representations.

provide frameworks that help in implementing certain classes of applications. For instance,

one ET++ framework is targeted at browsers, providing the skeleton and infrastructure

needed to display and manipulate a hierarchical data structure like a file system, say. ET++

was originally based on MacApp[Sch86]. Another system that puts extra emphasis on
providing higher-level user interface abstractions or frameworks is InterViews[LVC89].

3.3 Functional user interface representations

The underlying programming language naturally plays an important part when designing

a graphical user interface framework. The need to resort to callback procedures and shared
state to fit the application in around the event loop in a sequential, procedural language,
has a strong influence on the final solution. Similarly with object-oriented languages and
the features they provide.

One emphasis of the object-oriented system Interviews [LVC89] was its use of composition to
build user interfaces. Starting with a set of basic building blocks, a user interface application
is constructed by piecing these together. Central to functional programming languages is

also the use of composition to build bigger parts from smaller, so what would a compositional
user interface framework in a lazy functional programming language look like?

A number of graphical user interface systems based in functional languages have already
been suggested and implemented [GR92, CH93, NR95, Ach96, VTS96]. To better under-
stand the issues that a functional user interface system has to satisfactorily address, this
section works through a number of the different solutions that have been proposed and
discusses their relative advantages and disadvantages.

3.4. THE USER INTERFACE AS A VALUE 47

3.3.1 A road map

To help structure the discussion on the various functional user interface representations,
Figure 3.2 shows a roadmap. Starting from the left, we start by looking at representing the

user interface using algebraic data types, and then working our way through a gamut of
representations.

3.4 The user interface as a value

A natural starting point when deciding to use a functional language to program user in-

terface applications is to model it on how external, mainstream systems do it. As we've
seen, the prevalent way of writing graphical user interface applications is centred around
the representation of a user interface component as an object. To create a slider, say, you
instance an object representing it. To attach interpretation (other than the visual) to the

movement of the slider thumb, the slider object allows you to attach callbacks/action pro-

cedures. The slider object then invokes the callback function each time the user moves
the slider thumb. So if you wanted to use the slider to navigate through a document, the

callback you'd register with the slider would synchronise, the document display view with
the relative position of the slider thumb.

User interface programming then consists of creating and configuring the network of objects
in your application before handing it over to a centralised system control. The system will
then repeatedly fetch events from the window system and forward them to the network of

user interface objects. The state of the application is distributed among the objects, and
they will in response to the incoming event messages update their state accordingly. For

instance, if the event from the underlying window system signalled that the user has moved
the slider thumb, the slider object updates its state to

' record the new thumb position before

invoking any of its callback functions to notify the application of the change in state.

One way of mimicking this style of user interface programming in a functional language is

to represent the user interface object as a data value, Widget:

data Widget =

Values of type Widget are returned by functions that create the different types of user
interface elements supported. The signature for the function that creates a push button

might be:

button :: Picture -> a -> (a -> 10 ()) -> Widget

48 CHAPTER 3. EXPLORING THE DESIGN SPACE

The first two parameters to button specify the label to decorate the button withl, and
what value the instance should report when it has been clicked. The third argument is the

callback action the button instance should invoke each time the button is clicked. button

returns a value of type Widget representing the new instance.

A Widget value represent a user interface 'thing', a generic value that can be used to describe
the physical layout of multiple components through the use of functions such as box:

box :: [Widget] -> Widget

The box combinator takes a list of Widgets and returns a new component that arranges
the contained components horizontally, say.

Note that a Widget value does not reflect in its type what kind of component it is. But
for describing the physical layout of a user interface this does not matter, as the layout

combinators are only interested in generic properties of a user interface component such as
its size, position etc.

This is similar to th6 model used by Clean[AP94], where algebraic data types are used
to encode a large collection of standard, user interface components. Data constructors
representing common user interface components are applied to the callback functions and
attributes that control the particular behaviour and look of the component. In the Clean

system, the callback functions have different type signatures to the one given above, each
callback is passed as argument the state of the user interface and application, which it then

can modify and return. -
The Clean system takes care of cI onverting values of the user interface data type into actual
graphical user applications, translating the data structures corresponding to Widget by

constructing corresponding UI component instances from some external widget library. The

collection of user interface components created is then handed over to a centralised event
dispatch loop, which takes care of forwarding window system events and perhaps invoke a
callback function for a component to update the application state. This approach has its

advantages:

To the (functional) programmer, describing a user interface by just creating a value
of some algebraic data type, is familiar and intuitive. One good example of this is the
use of data types to declare the structure of a pull-down menu:

'To avoid mixing in the issue of how labels and graphical output in general are described by different
systems, we use the abstract type Picture consistently for all the different systems to represent graphical
objects.

3.4. THE USER INTERFACE AS A VALUE 49

f_menu :: Widget

-menu =
Menu (Option "New.. " - New,

Option "Open File"
Option "Save"
Option "Save As.. "
Separator,
Option "Print.. "
Separator,
Option "Exit"

Open,
Save,
SaveAs,

Print,

Exit]

This is clear and very much to the point, the menu is just a list of options partitioned
into groups using separators.

If the intention is to provide a mapping to some external user interface library, the use

of algebraic data types offers a good fit, as graphical user interface toolkits provide

a boxed set of standard GUI abstractions. With care, the data type can be used

with different window systems. The Clean system, for instance, maps the widget data

structures down to the standard GUI library on the platform you're working on.

However, a representation based on graphical user interface components being purely func-

tional values, has some serious drawbacks:

Using algebraic data types, the constructors tend to quickly become burdened with a
lot of arguments for controlling every possible property configurable for the compo-

nent. When creating instances of a component, like the pull-down menu above, the
initial simplicity tends to get lost as you have to decorate the constructors with a lot

of default values.

One way around this is to introduce abstractions that hide the data constructors for

the different components and all their arguments, plus perhaps a bunch of combinators
(a monad, say) to take care of basic book-keeping. But the initial simplicity and
familiarity of just using data constructors would be lost here.

Writing the graphical user interface application now roughly becomes the construc-

tion and filling in of a data structure describing its physical layout. This style mimics

mainstream practice of using callbacks to connect components together, and sub-

scribes to the belief ý that graphical user interface programming has to be centred

around an event dispatch loop. As a result, the application is partitioned up into a

set of callback functions that act on state that encodes the application.

50 CHAPTER 3. EXPLORING THE DESIGN SPACE

Ignoring the issue of whether a state-based approach like this is how you would ideally

want to express a graphical user interface application in a functional language, there's

a more serious side to a programming model based on callback functions. The user
interface suddenly takes control over the application and how you express it, requiring
the application to be shoe horned to fit into the 'stateful bowl of spaghetti' that is
the event dispatch Ioop we discussed in Section 3.1.

In the case of the Clean, one obvious problem
'
is the use of a shared global state for the

whole application. This problem has to some extent been addressed in later versions
of the Clean system where user interface components can have private state [Ach96].

Callbacks provide a way of letting the user interface call upon the application, but it
does not address the inverse problem of how the application can reference and affect
parts of the user interface from within the callback functions. To give an example of
this, consider the counter example consisting of a push button and a label displaying
the number of, times the button has been clicked. The callback for the button will
cause the label to update its display, but how do we refer to the label? In an object-
oriented system, the callback would just use the object reference for the label and
forward a message that will cause the label to update itself. With algebraic data
types, there is no way to reference a data constructor, so to solve this problem, the
Clean system requires the programmer to annotate each constructor with a unique
id. Apart from burdening the programmer with the generation and book-keeping of
unique identifiers, this scheme is not type-safe - how do you know the operation on
'the unique identifier of a component is supported? Earlier work by Dwelly[Dwe89]

suffered from this same problem.

Algebraic data types with separate constructors for each component supported is

not easily extensible. With the range of components fixed in the definition of the
type, there is no way of creating new abstractions. This may not be of concern if

you're just interested in providing a mapping to some external widget library, but
the development of a user interface application often requires the creation of special-
purpose abstractions, which is not fully supported using an algebraic data type.

3.5 Adding component identity

The direct use of an algebraic data type to represent different user interface elements runs
into several problems, a major one being that there is no direct way for the application
to refer to other components. For instance, if the callback procedure attached to a push

3.5. ADDING COMPONENT IDENTITY, 51

button is intended to cause the data displayed by another component to be updated, the

callback needs to be able to refer to it. The Clean system solves this problem by requiring
the programmer to label all constructors of the user interface element data type with a

unique identifier. The callback routines can then use these unique identifiers to update and

affect specific paxts of a user interface.

Instead of using an algebraic data type and forcing the programmer decoration of its con-

structors with unique identifiers, let's instead represent the various user interface elements

as abstract types. For instance, the type signature for the function that creates a push
button could be:

button :: Picture -> 10 () -> 10 Button

The button is an 10 action that needs to be supplied with its initial label and a callback

action to invoke when that happens. It returns a value of type Button, a handle. A handle is

an explicit reference to the instance of the object, in the case of button the handle returned

can be used to alter the button's physical properties, e. g., size, position, look etc.:

setLabel Button Picture JO

setFg Button Colour JO

setBg Button Colour ->'Io

enable Button ID

disable Button 10

Given a button handle to operate on, the above actions change various graphical display

properties. For example, setLabel replaces the current picture label of the button, while
disable makes the button become unresponsive to user actions, and greys out the button's

label to indicate so.

Each type of user interface element would have operations similar to that of button, but

all of them would return a handle to the instance of the user interface element created.
For instance, the action for creating a component displaying a string label would return a
handle that supported a set of operations similar to that of a button. Both handles would
have operations for changing colours and setting the label etc. To avoid having to give all

these handle operations unique names, e. g., setButtonLabel and setLabelLabel, we can

make use of Haskell's qualified names. If needed, each handle operation is prefixed with the

type of the handle (which coincides with the module name):

Label. label String 10 Label

Label. setLabel Label String -> jo

52 CHAPTER 3. ' EXPLORING THE DESIGN SPACE

sample 10

sample do

lab <- Label. label "Start"

btn <- Button. button (text "Do")

,,
(Label. setLabel lab "Done")

Button. setFg btn blue

Label. setFg lab blue

The use of qualified names here requires the programmer to be explicit about what type

of handle is being accessed and modified, which is not necessarily a Bad Thing. However$

representing each user interface element by a separate handle type becomes a burden when
we want to use the handles to arrange the layout of the components. The best we can
do is to have a layout function for arranging components with the same handle type. For

example:

box :: [Button] -> 10 Button

This is clearly not desirable; what is really needed here is to be able to relate the different
handle types, so that we can combine the presentation of them.

3.5.1 Using type classes

The. use of qualified names forces the programmer to be explicit about the kind of handle
being manipulated, even for operations that apply to all user interface components, e. g.,
setting the background colour. To try to relate the different handles, Haskell's type classes
can be used to introduce operations that are overloaded to work over all kinds of user
interface components. Here's one possible set of classes for capturing some of the different
types of handle operations:

class Widget a where
resize a Size2 ID

move a Coord2 10

getSize a 10 Size2

quit a 10 ()

setFg a Colour 10

setBg a Colour 10

3.5. ADDING COMPONENT IDENTITY 53

class Widget a => Display a where

setLabel :: a -> Picture -> Jo

getLabel :: a -> 10 Picture

class Display a => Iactive a where

enable a 10

disable a 10

The Widget type class has all the base operations supported for user interface components,

such as moving, resizing etc. A slight extension of that type class is Display which in

addition to the Widget operations, defines operations for setting and getting the picture
label on a Display instance. The Iactive class extends this further and defines operations
for enabling and disabling the interaction state of a user interface component.

For a component like the push button, we now need to declare the appropriate instances

for it:

button :: Picture 10 10 Button

instance Widget Button where

instance Display Button where

instance Iactive Button where

ýI
With the definition of these instances for the Button type and similarly for the Label

handle, the handles can now be operated on using the overloaded names:

sample = do

lab <- label (text "Start")

btn <- button (text "Do") action

setFg btn blue

setF9 lab blue

However, Haskell's type classes do enforce certain constraints on their use. For instance,

the following code is not legal:

sample = do

lab <- label (text "Start")

btn <- button (text "Do") action

map (\x -> setFg X blue) [btn, lab]

54 CHAPTER 3. EXPLORING THE DESIGN SPACE

Grouping together instances of one type class in a list is not allowed by the Haskell type

system (unless they all happen to be of the same type, of course). The type Widget a =>
[a] does not represent a list of widget instances, but rather a list of a particular Widget
instance. For our purposes, this limits the usefulness of type classes since we cannot express

a simple layout combinator such as:

hbox :: Widget a => [a] -> Box

and expect to use it for heterogeneous collections of Widgets. For example, the application
hbox [lab, btnl is unfortunately not well typed. Of course, you could explicitly coerce

each Widget instance to be of the same instance type when building the list:

boxer ::: Widget a -> a -> BoxElt

instance Widget BoxElt where f..)

beside lab btn ='hbox [boxer lab, boxer btn]

but this just provides the programmer with functionality to work around the problem,
requiring the explicit insertion of type coercion functions such as boxer in the right place.

The Embracing Windows[Tay96] and TkGofer[VTS96] systems make use of type classes

quite extensively to structure their window system interfaces. The TkGofer system suffers
from the above limitation, so some of its layout combinators only allow you to arrange
components of the same instance (e. g., the matrix combinator). Instead, TkGofer primarily
relies on the use of layout functions of the form:

above, beside :: (Widget a, Widget b) => a -> b -> Box

i. e., binary layout functions that group pairs of components together. Arrangement of
multiple components is then done by repeated applications of these binary operators.

The Embracing Windows[Tay96] run into similar problems, indeed the type class hierarchy
introduced for Controls in Chapter 2, is avoided completely when introducing abstractions
for expressing layout combinators over them in Chapter 3.

Using type classes is definitely an improvement over having separate types of handles for

the different user interface components. However, type classes are not as expressive as one

might have hoped for, which restricts their overall usefulness.

The handles introduced in this section allow the application to affect user interface com-
ponents through typed, explicit references. The handles are however only used to commu-

3.6. MAKING COMMUNICATION IMPLICIT 55

nicate from the application to the-user interface component; the communication the other
way from the user interface to the application is still done through callback functions, e. g.,
the 10 action argument to button. Hence, the inherent problems of a callback-based model
discussed in Section 3.1 is still present.

3.6 Making communication implicit

To summarise briefly, the functional representations based on algebraic data types and
abstract handle types

,
have problems arranging the explicit communication between user

interface elements and the underlying application code.

One approach to solving these problems is simply not to make communication explicit, but
instead handle input and output between components in a more functional manner. That
is, inputs to a user interface element are just arguments to the function representing it, and

outputs to others are part of the result that the function returns. Instead of representing

a component as an object that the event loop can notify and update through its callback
functions, what if we view the events destined for a component as a stream of input values?
A user interface component is a stream processor which consumes window system events on,
its input stream, and produces in return a stream of window system commands:

type Component = [Event] -> [Command]

This component definition is similar to the Dialogue type used in earlier 1/0 models in

Haskell[H+92], accepting user events as input and outputting a stream of commands to the

underlying window system. The evaluation of a Component applied to its input event stream
is demand-driven. When its result stream is evaluated, it will in turn force the Component

to demand and process the events sent to it by the window system. This is identical to

what would happen in Haskell when you try to print ups in the following example:

main
let

ls

ups map toUpper ls

in

print ups

Here, the print action forces the evaluation of ups in order to print the list of characters,
which in turn will force the evaluation of is.

56, CHAPTER 3. EXPLORING THE DESIGN SPACE `

However, treating a user interface application as just a stream processor from window

system events to commands is not modularAn particular, components must communicate

with each other as well as the window system. To accommodate the interaction of values

other than window system specific data, another pair of, streams could be added to the

representation for a component:

type Component ab= [a] -> [Event] -> (Ebl, [Commandl)

In addition to the window system input and output streams from the previous version,
Component now takes an extra input stream as argument carrying input from another

component. This input stream would emanate from the extra output stream that the
Component returns. For instance, the type of a push button component would now be:

button :: String -> Component () Click

Given the label name, button returns a component that every time the user clicks the
button, will output a value of type Click on its result stream. 2

This type of Component is essentially the representation of a user interface component used
by Fudgets [CH93], where all user interface components have a pair of input and output
streams. A component, called a Fudget in their system, will in response to input from

either the application or the window system, output values on the application or window
system output stream (or both).

To construct complete applications, Fudget values can be joined up to create bigger ones
using combinators; as an example, Figure 3.3 shows the implementation of a counter using
Fudgets.

A fudget is represented by the F type, parameterised over the values communicated on its
input and output streams, just like Component. The SP type is used to represent abstract
fudgets, or stream processors, components with no user interface part. Conceptually, it is
defined as follows:

type SP ab= [a] -> [b]

Returning to the counter example, the counter fudget is built by connecting a push button

to a fudget displaying the number of times the button has been clicked. The fudgets are
connected up in-series using the (>==<) function, with the output stream of the button
being connected to the display fudget's input stream. To get the counting behaviour, an

2 The type definition given for Component here is its conceptual type. When implemented, the pair of input
streams would have to be merged in order to make the component deterministic and cheaper to implement.

3.6. MAKING COMMUNICATION, IMPLICIT 57

button String F () Click

absF SP abFab
intDispF F Int
(>==<) FabFbc -> Fac

mapAccumlSP :: (a b -> (a, c)) -> a -> SP bc

counter F

counter
button, "Inc" >==< countF >==< intDispF

countF Fa Int

countF
absF counterSP
where

counterSP = mapAccumlSP inc 0

inc n-= let n' = n+1 in (n', n')

Figure 3.3 The Fudgets counter

abstract fudget (countF) is'interpos6d between button and display. It converts a sequence

of button clicks into a stream of increasing number values - the details of how this is done

are not important here.

The (>==<) function is one example of a fudget combinator, an operation which creates new
fudget values by combining together existing ones.

Through the representation of a UI component as a pair of input and output streams, Fud-

gets avoid the problem encountered with the callback-based representations of the previous

section, i. e., how does the button's callback affect the label displaying the counter value?
By using operations, or combinators, that sets up the streams of communication between

the different components/fudgets, the components communicate and affect each other im-

plicitly. Using streams also avoids the need to explicitly modify the application's state.
An example of this the definition of countF in Figure 3.3, which implements the stateful

counting behaviour through the use of an accumulating parameter to hold the current value.
Encoding state this way has the, benefit that the state is local, and therefore not accessible,

nor modifiable, by anything other than the stream processor itself.

However, avoiding the use of explicit references and relying on implicit communication
between components through streams instead is not without its problems:

58 CHAPTER 3. EXPLORING THE DESIGN SPACE

Parameterising a user interface component over the type of elements transmitted on
its input and output streams has consequences for the range of combinators that can
be expressed. A layout combinator such as box has quite restrictive type:

boxF :: [F a bl -> F (Int, a) (Int, b)

as the type of both input and output streams have to agree for 'all the fudgets that
are arranged by boxF. The coupling of the'application part of a component, (Le., ' the
types of the input and output stream,) with the user interface side is too strong: the
layout of the interface dictates how applications streams are plumbed together. By
definition, the user interface part of a fudget is inseparable from its application part.

In some cases, fudget programs need to introduce what effectively amounts to explicit
references themselves. For instance, a fudget that has to communicate with a number
of other fudgets, ends up having types like the following: 3

bigF :: F aý(b+b+c)

That is, the fudget has to internally tag the output to address it to the right recipient.
This tagging of messages is necessary because fudgets are restricted to having just one
output stream. Messages can often be tagged on-the-fly via combinators, but apart
from the run-time overhead of constructing and taking apart of tagged messages, the
use of one output stream makes it hard to see what and where a fudget is sending its
output values.

Just as the callback model forces us to program in a certain style, Fudgets requires
the application to be expressed as a network of stream processors. For an example
like the counter, this is very natural, but it is unclear how well Fudgets can be blended

with the (now'standard) method of expressing 1/0 with the abstract 10 action type.

3.7 Explicit two-way communication

With the exception of Fudgets,, the representations we've considered so far have made use of
callback routinesý to hook the application into the user interface. As discussed in Section 3.1,
the callback model has its structuring problems. Using a stream-based representation is one
way to avoid the use of a callback model and many of its problems, but, as we saw in the
previous section, that, introduces new ones.

3 The use of (+) in the output type for the fudget indicates a sum type.

3.7. EXPLICIT TWO-WAY, COMMUNICATION 59

Another way of getting away from the dominance of the event loop is instead to have the

user interface and application communicate with each other on typed channels. An example

of a system that does this is the Gadgets[Nob96] system. With Gadgets, a user interface

application consists of a set of components that communicate on wires, uni-directional

channels that have a write end (called the output port) and a read end (the input port).
The Gadgets type signature for a push button is:

button :: Picture -> a -> OutPort a -> Gadget

The button component constructor receives as one of its arguments an output port. The

button uses this port to emit a value whenever the user clicks the button.

The Gadgets wire communications operations are:

newWire (Wire a Gadget) -> Gadget

outport Wire a (OutPort a Gadget) Gadget

inport Wire a (InPort a Gadget) Gadget

tx (OutPort aa Gadget) Gadget transmit

rx [(InPort aa Gadget)] Gadget receive

To communicate on a wire, its read or write end has to be selected first using the operators
inport and outport.

A consequence of introducing a communication abstraction like a wire as the primary means

of interaction between user interface elements and the application, is that it relies on some

notion of a process. The callback model is sequential. Driven by the event loop, an ap-

plication is repeatedly notified of the occurrence of window system events by invoking its

callback routines. With the use of channels or ports, the writing of a value into an OutPort

must somehow cause readers at the other end of the wire to run (or become runnable).
Similarly, when the actions that listen for button clicks on an InPort are executed, the

whole application should not block waiting. Instead, you need the ability to create multiple

evaluation contexts or processes, each of which may engage in communication with others

on the wires. In Gadgets, new processes are created with the spawn primitive: 4

spawn :: Gadget -> Gadget -> Gadget

spawn creates a new evaluation context to concurrently evaluate the first Gadget argument,

while continuing to work on the second.

4 This type signature is only approximately correct, a Gadget is just an instance of the more general
Component type.

60 CHAPTER 3. ' EXPLORING THE DESIGN SPACE

Before presenting the counter example in Gadgets, it is worth introducing the programming
style used. Gadget programs are written using a continuation-passing style of programming

- each operation takes an additional function argument to which its result should be applied.
For instance; addition would be expressed as follows using continuations:

plus :: Int -> Int -> (Int -> a) -> a

plus ab cont = cont (a+b)

The continuation argument is applied, passing it the sum of the first two arguments. The

result returned from plus is the type of the value returned from the continuation. An
important operator whenprogramming with continuations in Haskell is the right-associative
infix application operator:

($) ::

It avoids the excessive use of paxentheses when nesting the applications of -continuations:

times3 :: Int -: ý-'Int--> (Int -> a) -> a
times3 ab cont ="

plus ab$
plus ab$
plus ab cont

One programmer benefit of using a continuation-passing style is that it makes the order in

which operations are performed cleax.

Returning to Gadgets, ' here's how the counter example could be expressed: 5

counter Gadget

counter

wire $ wirel

wire $ wire2
let

btn = button "Inc" (outport wirel) (+J)

lab - label "0', Unport wire2)

in
spawn (count 0 Unport wirel) (outport wire2))

(btn <-> lab) -- lay them out side by side.
'sThe example code ignores the restrictions Gadgets places on communication on wires and how graphical

output is expressed, but the programming structure remains intact.

3.7. EXPLICIT TWO-WAY COMMUNICATION 61

where

count :: Int

-> InPort (Int -> Int)

OutPort String

Gadget

count nio=

rx [f rom i$

let n' =fn in

tx op (show n')

count n' i o]

The counter Gadget creates three components that communicate on a pair of wires, wirei

and wirel Both the label and button have a process attached to them (the actual spawning
is done inside their constructor functions), and the counting behaviour is implemented by a

separate process. It will in response to input received on the wire, compute a new counter

value, and output it on the wire which the label is listening to.

Having explicit communication channels between components solves some of the problems

of previous representations:

Through the use of typed channels and concurrency, the limitations and constraints
imposed by the callback model is overcome. Each process created takes care of small,

well-defined tasks (e. g., the accumulation of the counter state) and execute indepen-

dently of other the event dispatch loop and other processes in the system.

The plumbing problems experienced with Fudgets is addressed through the use of

multiple, explicit channels between components. In Gadgets, some implementation

restrictions axe imposed on how you create and access these channels, but the overall

result is a more modular description of a graphical user interface. That is, the de-

scription of the user interface is not as intimately tied up to wiring of the application
(and vice versa), as, the descriptions of the two are separated from each other.

The use of typed channels does not solve all the problems that-untyped handles introduced

though. For instance, usable abstractions for components like push buttons or labels may

need the ability to dynamically modify their appearance at run-time. To accommodate this,

an extra configuration InPort could be added to their constructor functions:

labelPlus :: String InPort LabelCmd -> Gadget

buttonPlus :: String a -> OutPort aIt

62 CHAPTER'3. EXPLORING THE DESIGN SPACE

-> InPort ButtonCmd -> Gadget

These are (imaginary) Gadget abstractions that allow you to configure the appearance of a
label and button dynamically through an InPort. The set of commands on the label and
push button are defined using data types:

data LabelCmd = LabelJustify Justify I LabelEnable

data ButtonCmd = ButtonFg Colour I ButtonEnable I ...

i. e., we end up creating a set of data types with constructors that achieve the same thing,
both the label and button have constructors in their command data type to change their

colours, for instance. To avoid the redundancy and the introduction of a collection of rather
special-purpose data types, type classes. could be put to use (similar to what was done in
Section 3.5.1), the type classes being defined over different types of ports/channels:

class Port p => InPort p where

get :: pa -> (a -> Gadget) -> Gadget

class InPort p => Label p where

setFg ::. p Colour -> Gadget -> Gadget

setBg ::...

class Label, p => ButtonPort p where

enable :: p -> Gadget -> Gadget

This reduces and structures the namespace for operations on the ports for the different
Gadgets, but the use of type classes suffers from the same problems as the previous use
did, see Section 3.5.1. `

The signature for components such as buttonPlus end up having separate ports for the
input and output to the component, so it makes good sense to group these two together, as
is done with Duplex in Gadgets, to create a higher-level communication abstraction than
the basic one-directional channels used in Gadgets.

Other systems based on the use of channels as the primary communication medium between

application and user interface is eXene[GR92] and the Pict[PRT93] widget libraries, both of
which use Concurrent ML events, or, in the case of Pict, similar concurrency abstractions
to build higher level abstractions such as channels.

3.8. SUMMARY 63

The use of explicit concurrency together with channels or wires as the basic communication

abstraction frees the programmer from the event loop. However, channels provide just

the primitive mechanism for building grapical user interfaces. Higher-level communication

abstractions are required.

3.8 Summary

We have in this chapter considered a range possible programming representations for a

user interface component, concentrating on the design alternatives available when using a
functional language. The representation discussed in the last section had a number of ad-

vantages over earlier alternatives. However, the use of channels as the main communication

abstraction between components. made it inconvenient to program the interaction between

them. The next chapter presents a programming model that builds on the ideas in this

chapter, introducing a representation where a user interface component is a virtual I10

device.

64 CHAPTER 3. EXPLORING THE DESIGN SPACE

Chapter

virtual 1/0 device model

Graphical user interface programming has gained a reputation for being uncompromising on
the application. A graphical user interface toolkit often predetermines how an application
has to be built into the user interface and its control structures. One notorious example

of this is how the centralised event loop model of Section 3.1 force the application to be

broken up and distributed into a set of callback procedures.

Instead of focusing on the needs of the user interface and later start worrying about how

we can fit the code that will be using the user interface elements into them, let's turn the

tables: What is a convenient. and flexible way for non-user interface code to interact with

the collection of components that make up the user interface?

The previous chapter looked at a number of different user interface representations and com-

pared their relative advantages and disadvantages. Towards the end, a representation that

emerged as promising and unexplored was one based on the use of processes and explicit,
high level, communication between user interface components. This chapter introduces a

user interface representation which treats the user interface component as a virtual I10 de-

vice. It builds on the experiences made with expressing 1/0 in Haskell, so before introducing

the user interface model, the next section introduces how to program 1/0 in Haskell.

4.1 Programming 1/0 with actions

Before considering how to represent a user interface component as a virtual 1/0 device,

it is important that we understand how 1/0 is currently programmed in the underlying
language, Haskell.

In Haskell, you express interaction with the outside world by a series of 1/0 actions. An

65

66 CHAPTER 4. VIRTUAL 1/0 DEVICES

1/0 action is represented by a value of type 10 a, that, when performed, may interact and
affect the outside world before returning a value of type a. For instance, the Haskell prelude
library provides a pair of actions for reading and writing characters to and from standard
input and output:

getChar 10 Char

putChar Char -> 10

getChar is an action'that, when performed, reads, the next character from the standard
input and returns it. Similarly, putCha'r is a function that will output the character it is

given as argument to standard output, before returning. '

ID actions can be sequenced together to build bigger ones. For instance, the composite
action echo first reads a character and then echoes it:

echo :: 10 0-

echo, = do

ch <- getChar

putChar ch

The first line performs the getChar action and binds the character it returns to ch. The

scope of this variable extends to the end of the echo action, so putChar uses it to output
the character just read. The echo is now a building block that can be used to build more
complex 1/0 actions.

,-ý,,

4.1.1 Handling 1/0

To manipUlate the contents of files Haskell provides an action for opening files:

openFile Fileýath FileMode -> 10 Handle

Given a filename and an access mode, e. g., for reading or writing, openFile tries to open
the file. Should openFile succeed it returns a handle to the opened file. 2 The handle is the
programmer's interface to the opened file, and all access to the file is mediated through it.
For instance, operations such as hGetChar and hPutChar take the handle to perform 1/0

on as an argument:

'The unit type, represented by 0, indicates that the putChar action doesn't return any value of interest.
21f the attempt to open the file fails for some reason, an exception is flagged. See Appendix B for how

exceptions can be caught and handled.

4.1. PROGRAMMING 1/0 WITH ACTIONS 67

hGetChar :: Handle -> 10 Char

hPutChar :: Handle -> Char -> 10 ()

Assuming the handle has been opened for reading, hGetChar returns the next character
from the file; similarly hPutChar writes a character. Using these handle operations, here is
an example of an action that copies the contents of a file: 3

I

copyFile :: FilePath -> FilePath 7> 10 ()

copyFile from to = do

hTo <- openFile to WriteMode

hFrom. <- openFile from ReadMode

copyBytes hFrom hTo

'catch' (\ err ->
if isEOFError err, then do

hClose hTo
hClose hFrom

else
f ail err)

where
copyBytes hFrom hTo = do

ch <- hGetChar hFrom

liputChar hTo ch

copyBytes hFrom hTo

The workings of the copyFile action is straightforward; using a pair of handles we copy
the contents of one file to another. This is similar to how you would express file copying in

any imperative language, so there's nothing particularly unique about the above solution.
The Handle type provides an abstract interface to character streams and files, which the

application can interact with and manipulate without being concerned with how and when
the data gets transferred to and from the underlying files. Indeed, the input 'file' that we
copy from could be any character stream, e. g., it could be represented by a text input field

on the user's screen. The same holds for the output file.

13 The catch action is used to handle exceptions, see Appendix B.

68 CHAPTER 4. VIRTUAL 1/0 DEVICES

4.1.2 Concurrency

The file copying example above demonstrates the sequential nature of an 1/0 performing
program: read a character from the input file, then write it to the output file, then .. etc.
What if we wanted to change the file copying program to instead of echoing the input from

one input handle to an output file, copy the input from any number of input handles to one
output handle? Since the 10 actions are sequential, 'listening' and reacting to simultaneous
input on multiple input handles is at odds with this.

Concurrent Haskell [PJGF96] extends the Haskell 1/0 model with an operation for creating
new processes, f orkID:

forkIO :: 10 () -> 10 ()

A new process is created to perform the 10 action passed as argument to f orkIO, the

evaluation of it proceeding concurrently with the process that created it. With the help of
f orkID listening to multiple input handles is not a problem; just create processes to listen

to them.

The primitives and the programming model provided by Concurrent Haskell is presented in
depth in Appendix C.

4.1.3 Building on 10

After considerable evolution, 1/0 in Haskell is performed using the monadic framework

outlined in this section, where a Handle is used to identify an 1/0 device. The obvious
question is now this: could we build a user interface framework in which graphical interface

components ar
-e

virtua. 1 I10 devices - that is, they are identified by a handle, and are accessed
through monadic actions just like 'conventional' 1/0 devices.

tý,

4.2 Virtual 1/0 devices

The Handle type provides a uniform way to access any character-based device or file from

within Haskell, representing these devices by a common abstract type. The application is
free to interact with these devices at its own pace, and in whatever order. Extending this

style of programming to cover devices that represent graphical user interface components
has some interesting consequences. Just as a file is opened for reading, a graphical user
interface could be opened or realised and a handle could be returned for the application

4.2. VIRTUAL 1/0 DEVICES 69

to use. The returned handle would be the medium through which the application and the

user interface interacts. A simple example of this could be the creation of a window on
the user's screen containing a text entry field. When this input field virtual 1/0 device is

created, a handle representing it could be returned. The application will then use it to get

at the string that the user (eventually) will enter. In the case of an input field, there is

little or no difference between its handle and the handle for a text file opened for reading,
both representing character-based input devices.

One advantage of fitting both 'conventional' 1/0 devices and these new, virtual 1/0 devices

into the same programming framework, is that the programmer is now able to apply the

same programming techniques to them both. An important advantage of a handle-based

programming view of input/output is that the application is clearly in control of the way
in which the interaction with the outside world progresses; e. g., if the application requires
the current value of the input field, it will ask for it, noCbefore. This is the complete

opposite to what a callback based system would do, where user actions on the input field

are communicated as events to the event dispatcher. The dispatcher invokes a callback

procedure or forwards a message to an object, so that the application can update its state
to reflect the occurrence of the event.

A virtual 1/0 device representing a user interface component differs from a character-based
file or device, because the type returned is often not a character. To support the creation

of user-defined virtual 1/0 devices representing user interface components, it must also be

easy for the programmer to create new virtual 1/0 device types/instances.

However, there are a number of problems that needs to be addressed if the treatment of

graphical user interfaces as virtual 1/0 devices is going to be practical for anything but

the simplest of examples. One important problem is how the'user interface surface can still

appear responsive to the user if the application is in control of the interaction between it

and the user interface. Another is how can the application 'listen' to many sources of input

simultaneously?

These problems are addressed by the use of Concurrent Haskell introduced in Section 4.1.2,

which provides the basic mechanisms for creating processes to simultaneously interact with

multiple input sources. Indeed, the work on Concurrent Haskell was directly motivated
by the need for a concurrency substrate to model graphical user interface components as

virtual 1/0 devices.

With concurrency support added, the question then becomes: what's a convenient program-

ming interface to the virtual 1/0 devices representing the various graphical user interface

components?

70 CHAPTER 4. VIRTUAL 1/0 DEVICES

4.3 Application handles

Using a two-way communication abstraction such as a channel as a lead, let's attempt to''
develop a representation of a user interface component as a virtual 1/0 device. To do this,

we introduce application handles, handles to a user interface component that can be used by
the programmer to interact and manipulate user interface components. A new application
handle is created with the newAppHandle action:

newAppHandle :: ID a -> (a -> 10 0) -> 10 (AppHandle a) 1,

Given a receive and a send operation as arguments, the newAppHandle action returns a new
value of type AppHandle. The application handle is parameterised over the type of values.,
that can be communicated along it. For instance, to create an AppHandle interface to a
channel, the following would do:

newHandle IO. (AppHandle a)

newHandle do

ch <- newChan
ýewAppHandle (readChan ch) (writeChan ch)

The AppHandle returned by newHandle contains as its receive and send operations the,

corresponding ch annel operations. To actually receive and send values along an AppHandle,

the AppHandle interface provides the following set of functions:

hGet AppHandle a ID a
hPut AppHandle-a a -> 10

The hGet action is used for input, and hPut to output values to a handle. Their implemen-'
tation is simple; projecting out the send and receive actions given as arguments when the
application handle was created.

The actions that creaýe user interface components will now return application handles repre-
senting a newly created instance of the component. For example, the good old push button
has the following construction action: 4

button Picture -> a -> 10 (AppHandle a)

'Ignoring the details of how the user interface part of the component and its interaction with the window
system is done here.

4.3. APPLICATION HANDLES 71

With each click a value of type a will be reported on the AppHandle for the button, which
the application can then listen to with hGet and appropriately respond to. For example,
the counter example now becomes:

counter :: 10 ()

counter = do

btn <- button (text "Inc")

lab <- label (text 11011)

wopen (hbox [btn, labD

forkID (count 0 btn lab)

return 0

where
count n btn lab = do

f <- hGet btn

let n' =fn
hPut lab (text $ show n)

count n' btn lab

The counter action creates the user interface components, both the label and the button

returning application handles. The counting behaviour is implemented in almost identical

fashion to how it was done with Gadgets. When clicks are returned from the button's

application handle, the count loop's local state is
,
changed and the string label updated.

To have the label updates happen immediately in response to a click, we create a process
to monitor the button handle with Concurrent Haskell's f orkIO:

forkIO :: 10 a -> 10 ()

The count loop runs in a separate process, so it is able to react and respond to button

clicks independently from the rest of the application.

On top of the basic send and receive operations on application handles, there are a number

of other useful combinators that can be defined:

hCombine (AppHandle a] -> IQ (AppHandle a)
hFilter (a Bool) -> AppHandle a -> AppHandle a
hMap (a b) -> (b -> a) -> AppHandle a -> AppHandle b

The hCombine combinator is used to create a multiplexed handle, such that when values

are received on any of the handles it is combining, they are echoed on the new handle that

hCombine returns. This operation allows you to listen to multiple handles at the same time.

72 CHAPTER 4. VIRTUAL 1/0 DEVICES -ý

For example, if you added another button to the counter example for decrementing, the

pair of button handles could then simply be combined and then the combined handle could
then be passed to count.

hFilter and hMap changes the view of a component, filtering what values that can be sent

or received, or mapping the values reported on handle to a different type. 5

Application handles do have some advantages over the representations introduced earlier,
including the channel based representations of Gadgets[Nob96] and eXene[GR93]:

An application handle can either be bi-directional, or moded, operations exist for

creating uni-directional handles

newInHandle 10 a -> 10 (AppHandle a)

newOutHandle (a -> 10 0) -> 10 (AppHandle a)

Note that the AppHandles created with newInHandle and newOutHandle differ from

the ports in Gadgets, since the directionality of an AppHandle is not captured by type.
Instead, an exception is raised if you should try to write to a read-only AppHandle.
One reason for not using types here, is the hCombine combinator, you want to be able
to merge handles that are both bi-directional and read-only.

An application handle can be viewed as a polymorphic extension to the Haskell 1.3
handles used for file and terminal 1/0, intuitively:

type Handle = AppHandle Char

Having an application handle be just an extension of the existing ways of expressing
1/0, allows you to blend in and freely mix interaction with virtual 1/0 devices (i. e.,
user interface components) and interaction 'normal' devices. 6

Operations for reading and writing to a channel works fine for 'discrete' user interface

components such as push buttons or menus, where the 'result' of a user interaction
(e. g., button click) will cause a value to be output on the component's application
handle. Not all user interactions fall into this pattern though; an application using
a slider may want to catch transient movement of the slider thumb or just want to
be told when the thumb has been moved to d new position and released. To support
this, AppHandles need to have a more general input operation:

5It is somewhat unfortunate that we have to give mapping functions both ways here.
6For this story to hold we assume that the underlying 1/0 library is multi-threaded, so, for instance,

when a process tries to read from a handle representing a socket, say, it should not block the whole system.

4.3. APPLICATION HANDLES, ., 73

data Transient a= Final aI Transient a

hGetTransient :: AppHandle a -> ID (Transient a)

Components such as sliders would then report Transient values during the period
the thumb is moved, and a Final value when the user let the thumb go. Handles
for discrete change components such as buttons will always report Final values. The

hGet operation is then really just an efficient version of hGetTransient, filtering out

any transient values and returning the next Final value it sees.

It is sometimes useful to be able to enable or disable a user interface component. For
instance, you want to disable the Save option in a pulldown menu until a change
has been made to a document. This capability could easily be added to application
handles, providing the following two operations:

hEnable AppHandle a 10

hDisable AppHandle a 10

AppHandles unifies the representation of different user interface components, all components

are represented by an abstract type encoding the common properties of an interactive user

interface component.

However, application handles fall a little bit short of being the ideal representation for a

virtual 1/0 device:

For bi-directional application handles, the assumption is made that the type of values
being input on a handle is the same as the values being output. This is not always the

case; consider the case of a slider again. There you may want to provide an interface

with the following extra operations on top of the standard AppHandle ones:

type Slider a- AppHandle a

setInterval Num a => Slider a (a, a) -> ID

setPageDelta Num a => Slider aa -> Jo

setPosition Slider a -> a -> 10 ()

The standard hPut operation on AppHandles will change the position of the thumb,

but what about an operation like setPageDelta for changing how much to move the

74 CHAPTER 4. VIRTUAL 1/0 DEVICES,

thumb by when clicking on the slider background? The AppHandle type defines a
fixed number of operations, and is not easily extensible.

One way around this would be to define a data type describing the'input language for

sliders:

data SliderCmd-a

= NewVal a I'SetPageDelta aI Interval aa..

type Slider a= AppHandle (SliderCmd a)

but then what about outputting values on the AppHandle? The operations on a handle

for a slider may very well be richer than just having hGet:

getInterval Slider a 10 (a, a)

getPageDelta Slider a 10 a

these operations could be accommodated by extending the SliderCmd data type:

data SliderCmd a
NewVal a GetVal I CurrentVal a

I GetInterval I CurrentInterval aa

getInterval h =ýdo
hPut h GetInterval

v <- hGet h

case v, of f CurrentInterval aa -> return (a, a)

,
But this is not a very robust solution, with the SliderCmd data type mixing both

input and output commands.

Forcing all user interface elements to be an instance of a common handle type,

AppHandle, leads to a number of 'holes' for certain instances. An example of this is

performing an hGetTransient operation on an output-only abstraction like a string
label; what should the behaviour of it be?

An earlier version of the user interface framework presented in this thesis used a represen-
tation akin to AppHandles for graphical user interface components [FPJ 96). Building on the

experiences made with it, the next section presents the user interface representation we opt
for.

4.4. VIRTUAL 1/0 DEVICE HANDLES 75

4.4 Virtual 1/0 device handles

Representing graphical user interfaces as virtual 1/0 devices makes them similar to 'conven-

tional' 1/0 devices such as a terminal or a file stored on a disk. A user interface appearing
in a window is represented as a handle through which the application can interact with it in

the same way as the application transfers data to and from the handle of an opened file or

a network connection. One difference though is that the types of values transmitted along

via these handles differ. For instance, a user interface component displaying the Picture

values of Chapter 2, could provide a handle for accessing its picture:

data PictureHandle

getpicture PictureHandle 10 Picture

setPicture PictureHandle Picture -> 10

Operations for querying and setting the picture to display
'
is provided. This interface

looks adequate, but it turns out that a number of other components have identical sets of

operations over their handles. For instance, a component displaying string labels would also

provide its own handle and operations over it:

data LabelHandle =

getLabel LabelHandle ID String

setLabel LabelHandle String -> 10

The read and write operations for the Labe lHandle, perform the same task as those for

the pictureHandle. It makes good sense to see if we can unify the two handle types,

since having operations specific to each type of handle quickly leads to a cumbersome

programming interface. Instead of having separate types, we can define one handle type

that is parameterised over the type of values that can be read from and written to it:

data StateH a=... -- abstract

hRead StateH a 10 a

hWrite StateH aa -> 10

The StateH type defines an abstract stateful handle, which represent an object or virtual
1/0 device that maintains some state. The stateful handle is polymorphic in the values it

communicates, so the picture and label handles axe now just instances of it:

76 CHAPTER 4. VIRTUAL 1/0 DEVICES

type PictureHandle = StateH Picture

type LabelHandle = StateH String

By defining a pair of generic operations for, reading and writing to any stateful handleý'

the operations defined earlier over the picture and label handle become superfluous. By

using parametric polymorphism to abstract over the type of values that stateful handles

communicates, the programmer landscape is made simpler and more uniform.

An additional benefit of using parametric polymorphism is that it helps us to relate different

handles. The handles for the components displaying a picture and a string are both instances

of StateH, supporting the same operations over them.

4.5 Virtual 1/0 device types

What about the handles to user interface components that support not just operations like

hRead and hWrite, but others as well? For instance, the handle representing a toggle button

has operations for setting and getting the up or down status of the toggle plus an operation
that waits until the'next time the toggle changes state. It clearly cannot be fitted into a
StateH handle. One solution to this problem is simply to define a new handle type along
the lines of StateH, but augmented with the extra toggle operation: 7

data ToggleH a=... --abstract

hReadToggle ToggleH a 10 a
hWriteToggle ToggleH aa -> 10

hWaitToggle ToggleH a'-> 10 a

But, this reintroduces the very problem we sought to eliminate with the introduction Of
StateH; unifying different types of stateful handles and operations over them! To distinguisl,

the read operation on a toggle from that on a stateful handle, we append Toggle to the

name of the toggle operation. This is tedious, apart from forcing the programmer to use
long winded function names, syntactically distinguishing identical operations on toggles and
stateful handles hides the close relationships between these two handle types.

The solution is to overload the read and write operations. This is done using Haskell's tYpe
classes, defining a class Statef ul:

'To uniquely name the toggle operations we append Toggle. An alternative solution would be to use
qualified names in Haskell.

4.5. VIRTUAL 1/0 DEVICE TYPES 77

class Stateful h where
hRead :: ha -> ID a
hWrite :: ha -> a -> 10 ()

The Stateful type class overloads the read and write operations, Mead and hWrite can
be used on all type constructors that have been defined to be a Stateful instance. Two
instances of Stateful are StateH and ToggleH: 8

instance Stateful StateH where
hRead = hReadState

hWrite = hWriteState

instance Stateful ToggleH where
hRead = hReadToggle

hWrite = hWriteToggle

A number of type classes is used to structure the different. types of handles in Haggis,
Figure 4.1 summarises them. Here is an overview of the functionality provided by the
different classes:

Stateful

An instance of the Statef ul type class is a virtual 1/0 device that allows you to
sample and update the state of the device. An example of a Statef ul instance is a
string label display.

o InputHandle

The InputHandle class supports the operation hGet for getting the next input value
from the handle, perhaps blocking to wait for it to become available. An example of
a InputHandle is a push button, where the hGet method blocks waiting for the next
button click.

o outputHandle

The dual of InputHandle, OutputHandle, provides hPut, a method for outputting a
value on a handle. If the handle is also an instance of InputHandle, an application
of hPut will cause any blocked hGet to wake up and see the value just output. An
example of an OutputHandle instance is a push button that allows the application to
click the button synthetically.

8Since hRead and Write are now overloaded operations, we append State to theoperationsdefined
earlier over stateful handles.

78 CHAPTER 4. VIRTUAL 1/0 DEVICES

class Stateful h where class InputHandle h where
hRead ha 10 a hGet ha -> IC a
hWrite haa -> 10 ()

class OutputHandle h where class'ActiveHandle h where
hPut ha -ý> a -> 10 ''hEnable :: ha -> Bool -> ID

hIsEnabled :: ha -> 10 Bool

class TrackHandle h where
hPutTransient haa -> ID
hGetTransient ha 10 (Transient a)

class (InputHandle h, OutputHandle h) => AppHandle h

class (AppHandle h, ActiveHandle h) => InteractiveHandle h

class (InteractiveHandle h, Stateful h) => ControlHandle h

class (ControlHandle h, TrackHandle h) => SliderHandle h

Figure 4.1 Type class structure for Haggis handles.

o AppHandle

The , AppHandle, type class is the combination of the InputHandl-, e
and OutputHandle classes. It doesn't overload any operations on its own.

o ActiveHandle

The Act iveHandle class defines operations for enabling or disabling a handle. Whell

handle is disabled it is unresponsive to user interaction. An example of an ActiveHand: Le
instance is an element of a pulldown menu that allows the application to it grey out. -,

o InteractiveHandle

The InteractiveHandle class is the join between AppHandle

and ActiveHandle. It doesn't overload any operations on its own.

e ControlHandle.

The ControlHandle class is the join between InteractiveHandle

and Statef ul. It doesn't overload any operations on its own.

9 TrackHandle

4.6. VIRTUAL USER INTERFACE HANDLES 79

The TrackHandle class defines a pair of operations for setting and getting transitory

values that a virtual 1/0 device may take on. For instance, a scrollbar allows the

user to pick up the scrollbar thumb and drag it to a new position and release it.

With hGetTransient7 it is possible to catch and listen to the intermediate values the

scrollbar takes on before the thumb is released, and hPutTransient allows you to set
the intermediate value of a device. The Transient type distinguishes between such
intermediate values and final ones:

data Transient a= Transient aI Final a

o SliderHandle

The SliderHandle is the join between the TrackHandle and
ControlHandle. It doesn't overload any operations on its own.

Through the use of type classes the problem encountered with application handles of having

to define all handle operations over the one common type, AppHandle, is avoided. By

layering the different types of operations into separate classes, the concrete type of a handle

can be made instances of just the classes it supports. For example, the ToggleH type would
be an instance of the Statef ul and InputHandle classes.

4.6 Virtual user interface handles

The handle type classes introduced in the previous section organises the different operations

supported on abstract handles. The classes are not user interface specific, as the classes

just capture abstract input/output operations on a handle.

We build on this type class framework and represent the user interface nature of a component
handle through the type class Widget: '

class Widget h where

getDH ha DH

setDH ha DH -> ha

The Widget class has two operations: one for setting and the other for getting at the display

handle of a component. The display handle is a concrete handle type that is used to set

up communication between the external window system and the component. The display

handle's capabilities is covered in detail in Chapters 5 and 6, suffice to say here that the

Widget class abstracts away the detail of whether a particular handle type supports the

display handle interface.

80 CHAPTER 4. VIRTUAL 1/0 DEVICES

4.7 New handles from old

The type class framework organises the functionality provided by the different handles

- but how do we create them in the first place? The actions'that create user interface

components return a handle to their component: for example, the string display label is

created by label:

label :: String -> 10 Label

where Label is an instance of the Statef ul class. In addition to the actions that create
handles to common user interface components, it is also possible to create new user interface
handles:

mkStatefulH :: Widget h

hb

10 a read action
(a -> 10 0) write action
StatefulH a

where Statef u1H is similar to the StateH type introduced earlier, but it is also an instance

of the Widget class:

data StatefulH a=... --abstract
instance Stateful StatefulH where
instance Widget StatefulH where

The mkStatef u1H function constructs a new Statef u1H handle given a pair of actions that
implements its read and write operations. The Statef u1H handle gets its user interface

part from the Widget value it is passed as argument. A simple example of the use of
mkStatef u1H is the creation of an integer display label using the string display label:

type IntLabel - StatefulH Int

intLabel :: Int -> 10 IntLabel

intLabel init-val - do

lab <- label (show init-val)

ref <- newVar init-val

let

readILab, - readVar ref

4.7. NEW HANDLES FROM OLD ý-- 81

writeILab v= do

-- change the value displayed.
hWrite lab (show v)
writeVar ref v

return (mkStatefulH lab (readILab) (writeILab))

The integer display abstraction is created in terms of the string display, using mkStatef u1H
to create the handle that the programmer can use to query and change the integer currently
displayed.

Each of the classes in Figure 4.1 have a corresponding function for creating a handle that is
an instance of that class. These handle constructor functions are shown in Figure 4.2 and
Figure 4.3.

The handle constructors make the creation of user-defined handles quite easy to do, perhaps
making use of a collection of library provided handle operators. For instance,

hMap InputHandle h => (a b) ha InputH b

hFilter InputHandle h => (a Bool) ha InputH a
hCombine InputHandle h => [h a] -> InputH a

I, Map creates a new input handle that applies a mapping function to all values reported on
an existing input handle. The hCombine operator is particularly useful, combining a list

of input handles into one; values reported on any of the input handles are reported on the
handle returned by hCombine

4.7.1 Example: radio group

To demonstrate how the handle constructors can be used to create user. defined handle

abstractions, consider the common radio group user interface abstraction. A collection
of toggle buttons are grouped together in such a way that when a button is toggled, the

previously selected button is turned off.

Ignoring the issuse of how the radio group is presented to the user, implementing its inter.

active behaviour is quite straightforwaxd:

mkRadioGroup :: (Stateful h, InputHandle h)

=> Ch Booll

-> ControlH Int

mkRadioGroup elts = do

82 CHAPTER 4. VIRTUAL'I/O DEVICES

h <- hCombine (zipWith (\ xh -> hMap (\flg -> (x, flg)) h)
[0..] elts)

hWrite (head elts) True

var <- mkVar 0

ch <- newChan
let

getSelection - readVar var

setSelection v= do

oldv <- readVar var
hWrite (elts! 1oldv) False -- turn off old.

writeVar var v
hWrite (eltsliv) True -- turn on new.
hWrite ch v

handle = mkControlH nullWidget
(getSelection) (setSelection)

(hGet ch) (setSelection)

(return True) return
forkIO (listen elts var ch h)

return handle

The mkRadioGroup action takes a list of input handles to combine as argument, and returns
a ControlH handle in return. The implementation uses hCombine to combine these handles
into one, taking care of tagging them so that just by looking at the value coming from the

combined handle, we can determine what input handle that the input occurred on.

Since the radio group handle also needs to support the read and write operations of the
Statef ul class, it internally maintains a variable holding the current value. To respond to
the user clicking on any of the members of the radio group, a process is created to monitor
the combined handle and update the internal state in response:

listen :: (Stateful h, InputHandle h)

=> [h Booll

-> MutVar Int

-> Channel Int

InputH (Int, Bool)

ID ()
listen elts current-v ch h= loop

where

4.8. SUMMARY 83

loop = do

(v, flg) <- hGet h

oldv <- readVar current-v
if not flg 11 v- oldv
then loop

else do

oldv <- readVar current-v
hWrite (elts!! oldv) False -- turn off old.
writeVar current-v v
hWrite (elts!! v) True -- turn on new.
hWrite ch v
loop

4.8 Summary

To summarise, we have in this chapter introduced the representation of graphical user
interface components as virtual 1/0 devices. These virtual devices are accessed via handles,

abstract types with a set of 1/0 operations defined over them. To structure the set of
operations that different handle types support we made use of Haskell's type classes, defining

a collection of abstract handle types.

In order to make it easy for the programmer to define new virtual 1/0 device instances,

Section 4.7 presented the range of constructors for creating new handles from old.

The use of virtual 1/0 devices in the context of user interface systems is not new; the virtual
1/0 devices of Pike's Newsqueak [Pik89] and earlier work by Anson(AnS82] and Rosenthal

et al. [RMP+82] on logical input devices are two examples. Compared to these, the virtual
1/0 devices presented in this chapter places greater emphasises on user-defined composition

of devices, providing functions like hCombine and hMap to make the creation of new devices

easier.

At a higher level, the virtual 1/0 device model share many similarities with Paterno's

Interactors [Pat931 and Garnet's Interactors [Mye90], both of which provide a set of abstract
interaction objects/devices that represent a wide range of common user interface objects.

In the next chapter we will see how the representation of user interface components presented
here is put to use when we introduce the Haggis user interface framework.

I

84 CHAPTER 4. VIRTUAL 1/0 DEVICES

data StatefulH a-... --abstract
instance Stateful StatefulH where
instance Widget StatefulH where
mkStatefulH :: Widget h

=> hb
(10 a) -- read action
(a -> 10 0) -- write action
StatefulH a

data InputH a=... --abstract
instance InputHandle InputH where f..

instance Widget InputH where f

mkInputH Widget h
hb
UO a) -- get action
InputH a

data OutputH a=... --abstract
instance OutputHandle OutputH where
instance Widget OutputH where
mkOutputH Widget h

hb
(a -> 10 0) -- put action
OutputH a

data AppH a=... --abstract
instance AppHandle AppH where
instance InputHandle AppH where
instance OutputHandle APpH where
instance Widget AppH where
mkInputH Widget h

hb
(10 a) -- get action
(a -> 10 0) -- put action
AppH a

instance ActiveHandle ActiveH where
instance Widget ActiveH where
mkActiveH Widget h

hb
(Bool -> ID enable action
(10 Bool) isEnabled action
ActiveH a

Figure 4.2 Standard handle constructors, part 1

4.8. SUMMARY 85

data TrackH a=... --abstract
instance TrackHandle TrackH where
instance Widget TrackH where
mkTrackH :: Widget h

=> hb
(10 (Transient a)) get-transient action
(a -> ID 0) put-transient action
TrackH a

data InteractiveH a=... --abstract
instance of: InteractiveHandle, AppHandle, InputHandle,

OutputHandle, ActiveHandle, Widget
mkInteractiveH :: Widget h

=> hb
(10 a) get action
(a -> 10 put action
(10 Bool) enabled action
(Bool -> 10 0) -- is-enabled action
InteractiveH a

data ControlH a=... --abstract
instance of: ControlHandle, InteractiveHandle, AppHandle,

InputHandle, OutputHandle, ActiveHandle, Widget

mkControlH :: Widget h
=> hb

(10 a) (a 10 0) read&write actions
(10 a) (a 10 ()) get&put actions
(10 Bool) enabled action
(Bool -> 10 0) is-enabled action
ControlH a

data SliderH a=... --abstract
instance of: ControlHandle, TrackHandle,

InteractiveHandle, AppHandle, InputHandle,
OutputHandle, ActiveHandle, Widget

mkControlH :: Widget h

=> hb
(10 a) (a 10 0) read&write actions

> (10 a) (a 10 0) get&put actions
(10 (Transient a)) -> (a -> 10 0) -- get&put transient
(ID Bool) enabled action
(Bool -> ID is-enabled action
ControlH a

Figure 4.3 Standard handle constructors, part 2

86 CHAPTER 4. VIRTUAL 1/0 DEVICES

t-I 11
uhapter

Composing Haggis

The previous chapter presented a virtual 1/0 device programming model for user inter-
face components. This chapter puts that model to real use, introducing a user interface
framework called Haggis, which allows the programmer to build and Compose virtual user
interface devices.

5.1 Chapter overview

The Haggis user interface framework tries to provide the programmer with a compositional
programming model. What does that really mean? It is compositional in the sense that it

provides support for combining virtual user interface devices together to build new compo-

nents. The support provided by Haggis for building user interfaces compositionally can be
divided up into five different kinds:

Graphical output. Using the Picture model of Chapter 2 as basis, Haggis provides
rich support for building graphical output abstractions.

e Spatial composition. Haggis has support for describing the layout of a set of user
interface components.

Behavioural composition. As well as allowing you to combine the presentation of
a set of components, the interactive behaviour of components can be combined or
augmented.

Concurrency. A natural consequence of treating user interface components as virtual
1/0 devices is the reliance on concurrency. Using concurrency, an application can
conveniently interact with multiple virtual 1/0 devices simultaneously.

87

88 CHAPTER 5. COMPOSING HAGGIS

Hi, there!

Figure 5.1 II(Ilo, world cxamplc in Ilaggis.

Rcalisation. I'll(! user interface frainework provides the programmer with actions for

i-calising N, iilual 1/0 devices. Haggis frees the application from most system level

interact loll With the Window system.

This chapter introduces Haggis along these five different, dimensions, presenting the func-

tionality provided and giving a nuinher of examples of new abstractions that can be creat(, (l

on top of the primitives. Before starting a detailed presentation of each of these different

(Illnellsions, We first, give a Short overview of each of them, starting with how to create a
simple user interface application and how to realise it in a window.

5.1.1 A simple graphical user interface

I lies of the user interface fi-ainework liaggis, To introdme, solne of the fundamental propei
jj(,,, (ý is the liello, world' example:

hello Component Label

hello label "Hi, there! "

main : 10 ()

main do f wopen hello; return

As showii hi Figure 5.1, this prograni creates a whidow disphtyiiig the hibel Hi, there! iii a
willdow. I low is this dolle? By defiiiitioii, the eiftry I)oiiit to a Haskell prograiii is the main

witf, type I0. (See Appowlix B for aii overview of how to prograiii Nvith 10 actions
hi Ilwskell.) The main actioii here perfornis wopen, aii actioii which takes care of opeiiing
III) a will(low to disphy the label hiside.. As its arguineiit, wopen receives a value of type
Component Label, which describes the user iiiterface conipoiwiit to create iiiside the new
whidow. The main actiou could just as easily create a pair of windows:

main = do f wopen hello ; wopen hello ; return

mwlhý

5.1. CHAPTER OVERVIEW 89

Invoking wopen twice. The type signature for wopen is

wopen :: Widget h => Component (h a) -> 10 (h a)

wopen is an an 10 action that takes one argument, a value of type Component (h a). The
Widget h part of the type signature is the type class context, specifying that the type
constructor h must be an instance of the Widget class. That is, we can only display user
interface components within a window. The argument to wopen represents the user interface

component to realise inside a window. As a convenience, the Component type is a synonym
for the following:

type Component a= DC -> 10 a

The Component type abstracts away the display context, an environment represented by the
type DC. It contains various system data structures that is important when creating a user
interface component. Information such as the window that the user interface component is

going to be realised within. Since all functions that create user interface components need
this environment, we introduce a type abbreviation. Section 6.2 present display contexts
and the Component type in more detail.

The result expected from the Component action by wopen is a handle that has to be an
instance of the Widget type class. The reason for this is that wopen must be able to

communicate with the user interface component it is displaying inside the window. The
Widget type class, introduced in Section 4.6, is used here to identify the user interface

'nature' of a handle. It is defined as follows:

class Widget h where

getDH ha DH

setDH DH ha -> ha

An instance of Widget has to provide a pair of methods for setting and getting at the
display handle of a component. The display handle is the system-level view of a user
interface component, and through it wopen is able to set up the communication between

the window system and the component. For instance, whenever the user resizes the window
the component appears in, the component will be told via its display handle that the
dimensions have changed and that it should modify its output accordingly.

Display handles represent the common interface that all user interface components im.

plement, and is outside the programmer view most of the time. Section 6.1 defines the
properties of display handles.

90 CHAPTER 5. COMPOSING HAGGIS

Returning to the initial example, we can now see that the label created by hello has the
type expected by wopen:

hello Component Label

hello label "hi, there! "

label :: String -> Component Label

instance Widget Label where f ...

The label is the actual user interface component used for displaying strings, with the
hello definition supplying it with the initial string to use. The Label handle returned by
the label component is an instance of the Widget class, hence applying wopen'is legal.
With it, wopen opens up a window that displays the label and returns the Label handle it
has realised.

5.1.2 Adding graphics

For graphical output, Haggis supports the display of the Picture values from Chapter 2.
Here's the display of a spiral:

spiral Picture

spiral
noverlay

withColour (hsl n 1.0 0.5)

rotate n$
centre $

square (n 'div' 3) 1n <- [0,4.. 36011

main :: 10 ()

main - do

wopen (glyph spiral)

return 0

The window created by wopen is shown in Figure 5.2. The primitive abstraction used to
display a Picture is called a glyph. New glyphs are created using the glyph action:

glyph :: Picture -> Component Glyph

5.1. CHAPTER OVERVIEW

Figure 5.2 Displaying pichires with a glYph.

91

It takes a picture wilue as argument and returns a Glyph handle. The glYph cmi be t hought

of as a virtual 1/0 device, with the Glyph limidle being used to cmninunic; ite Nvith this

OtItplit only device.

Glyphs are presented in Section 5.2.

5.1.3 Creating virtual 1/0 devices

The 91NIPII is a primitive compo"Nit in Haggis, but the handle returned bY glyph IS ;I

s- the al StatefulH handle:
Y1,011VII, fol more gener,

type Glyph = StatefulH Picture

i. (, Ype introdliced ill Section To recap,
-, tll(, l glyph is represented by the StatefulH tN I

Statefulf-I is an abstract handle tYpe representing stateful virtual 1/0 devices. It is ; ill

instance of the Stateful class,

instance Stateful StatefulH where II

92 CHAPTER 5. COMPOSING HAGGIS,

class Stateful, h where

hRead ha 10 a
hWrite haa -> 10

which defines operations for reading the current value associated with a handle and for

updating it with a new'value. In the case of glyph handles, hWrite is then used to change

the Picture displayed by a glyph, while hRead returns the picture currently being displayed

by a glyph.

To ease the creation of new stateful handles, Section 4.7 also provided

mkStatefulH:

mkStatefulH :: Widget h

h

10 b hRead

(b -> 10 hWrite

StatefulH b

Given the actions to use when either hRead or hWrite is invoked together with a handle to

a user interface component, mkStatef u1H returns a new Statef u1H handle, as discussed in
Section 4.7.

With the help of mkStatef u1H, it is possible to build new glyph abstractions. Here is one
that rotates its Picture value:

rotGlyph :: Picture -> Component Glyph

rotGlyph pic env = do

gl <- glyph (rotate 90 pic) env

lot

rot-gl -
mkStatefulH gl (hRead gi)

(\ p -> hWrite gl (rotate 90 p))

in

return rot-gl

The rotGlyph component is implemented in terms of a primitive glyph: using the handle

returned from glyph, it returns a new handle that takes care of rotating its pictures by go
degrees. This user defined handle has the same type as the 'primitive' handle returned by

5.1. CHAPTER OVERVIEW' 93

glyph, and they are also treated on equal terms by the underlying user interface framework.

Having this ability to create new handle values on-the-fly plays an important part in Haggis.
For example, a string label component is very similar to a glyph, instead of showing arbitrary
picture values, it displays character strings. Creating a label abstraction in terms of the
glyph is actually not that much work:

type Label = StatefulH String

label :: String -> Component Label

label str env = do

gi <- glyph (text str) env

v <- newVar str
let

lab =

mkStatefulH
(readVar v)
(\ str ->

hWrite gl (text str)
writeVar str)

return lab

Section 5.2.4 shows how you can create abstractions on top of a glyph for displaying arbitrary
application values.

5.1.4 Adding concurrency

So far, the examples have consisted of the display of static picture values. Here's an example
that adds animation:

animator :: [picture] -> Component (StatefulH [Picture])

animator frames env = do

gl <- glyph firstFr env

var <- newVar frames

let

anim-h
mkStatefulH gl (readVar var) (writeVar var)

forkIO (animLOOP var 91)

94 CHAPTER 5. COMPOSING HAGGIS

return anim-h

where
firstFr Picture
firstFr

case frames of
11 -> empty

The details are not too important at this stage, but the animator component creates a
glyph and implements animation by repeatedly cycling through the frames that make up
the animation sequence. Since we want the animation to progress independently from the
rest of the application, concurrency is used.

In a sense, the process created with f orkIO takes care of the interaction and communication
with the user on the virtual 1/0 device that is the animated glyph. The rest of the applica-
tion is free to independently interact with the user via other virtual 1/0 devices. Section 5.3

shows how concurrency is used in Haggis to structure user interface applications.

5.1.5 Adding interaction

To input and not just output, Haggis has support for catching and handling of user actions
on user interface components. For instance, as part of the standard collection of user
interface elements supplied with Haggis, the push button can be used to catch buttoll

clicks:

button :: Picture -> a -> Component (Button a)
instance InputHandle Button where

shutdown :: ID ()

main - do
btn <- wopen (button (text "Click mel")
hGet btn

shutdown

Here a window containing a solitary button is created. As seen from button's type signature)
it returns a Button handle. Thb Button handle is an instance of the InputHandle type
class presented in Section 4.4. Hence, the hGet operation can be applied to a button to
wait for user button clicks. Once the user clicks the button, this is reported on the button's

'5.1. CHAPTER OVERVIEW 95

handle and hGet returns. For the above example, we call shutdown upon receiving a click,
which closes the button's window and quits the application.

Section 5.4 presents the primitives that allow you to catch and interpret user actions such
as mouse clicks.

5.1.6 Adding layout

Applications do not consist of single components within a window, but of the combined
presentation of a collection of them. Haggis provides support for expressing the geometric
arrangment of user interface components in a number of ways. Here's how to tile a pair of
components horizontally:

counter Component DH

counter env = do

lab <- label "011 env
btn <- button (text "Inc") 0 env

let

countLoop n= do

hGet btn
hWrite lab (show n)

countLoop (n+l)

forkIO (countLoop 1)

return (hbox [getDH btn, getDH lab])

main - do

wopen counter

return 0

Section 5.5 presents the primitives and a number of useful abstractions for describing the
layout of user interface components in Haggis.

5.1.7 Summary

We have in this section presented a quick overview of the compositional features of Haggis.
Based on the representation of user interface components as virtual 1/0 devices, examples
of the different ways in which devices can be combined together, was presented.

96 CHAPTER 5. COMPOSING HAGGIS

It is now time to look at the features of Haggis in more detail, starting with the support
for displaying pictures.

5.2 Displaying graphical output

To do anything of interest with graphical user interfaces, we most certainly need to be

able to display graphical content conveniently. Equipped with the picture language for
describing graphical content presented in Chapter 2, we introduce the following primitive
for displaying Picture values:

glyph :: Picture -> Component Glyph

The user interface abstraction glyph is an action that given a Picture value, creates a
component for converting the description of graphical content into actual output inside a
window on your screen. The glyph primitive takes care of all the system-level interactions

required to display the graphical content, and as an example, here is the traffic light of
Section 2.2.1 displayed using a glyph:

wopen :: Widget h => Component (h a) -> 10 (h a)

main = do f wopen (glyph trafficLight) ; return () I

Figure 5.3 shows what appears in a window when the application is run.

The wopen action creates a window with initial size just big enough for displaying the traffic
light. In addition, wopen is also responsible for setting up the communication between the
glyph and the underlying window system. Having done that, the wopen action returns. The

glyph continues to interact independently with the window system, so when the user resizes
the window, the glyph will respond by resizing the traffic light and redisplaying with its

new dimensions.

As mentioned at the start of the chapter, the glyph is represented by a stateful handle:

type Glyph = StatefulH Picture

As presented in Section 4.4, a Statef u1H handle is an instance of the Statef ul type class,
which overloads operations for setting and getting the current value of a stateful handle. 11,
addition to these two operators, in Section 4.7, the, following constructor was introduced:

mkStatefulH :: Widget h

5.2. DISPLAYING GRAPHICAL OUTPUT

Figm-e 5.3 Displaying Picture values wit li a glYpIl.

=> hb

10 a -- read action
(a -> 10 0) -- write action
StatefulH a

w1licli creates a new StatefulH handle.

5.2.1 Changing the glyph's picture

97

Si, ic(,. the glyph handle is defined as a type synom, 11, foi- a StatefulH Ilmidle, hWrite cmi
be Use(I to dynamically modify the Picture vahie that a g]N, 1)11 is (jispjjN, ijjg:

pic :: Picture

Pic = centre (square 40)

main -= do

gl <- wopen (glyph pic)

rotLoop 91

rotLoop :: 10 0

rotLoop 91 -= do

putStr "Rotate(deg.):

is <- getLine

case reads is of
[(deg,

-)] -> do

hWrite gl (overlay (centre $ text (show deg))
(rotate (degToRad deg) pic))

rotLoop gl

9s CHAPTER 5. COMPOSING HAGGIS

Figure 5.4 Changing the Picture displ; ýNvd by a glYph.

-> return ()

Notice that, we here do not, ignore the handle returned as result from wopen, but instead

pa, ss it to the rotLoop action. Depending on the rotation aniount read in froin the. standard
inpia, the rotLoop action rotates the square displayed by the glyph accordingly, Figure. 5.4

shows a screen shot, of the application.

The code above is very much similar to that of the file copying example presented ill

Section 4.1.1. Instead of opening a file, a user interface component is realised inside a

", ijj(low. The open operation (wopen) returns to the created glyph., just like openFile.
%ýIjjejj 111)(lating the picture displayed, the glyph handle is used in inuch the same way as
the file handle Was used to Write additional characters to a file.

5.2.2 Creating "(! w 91YPI's

Using Ole plifilitive glyph, NVC (All StMl to build new graphical abstractions. Ifelv's a simpl(,

example of olle that (111plicates the Picture values it, is being tol(I to (Jisj&ýV:

doubleGlyph :: Picture -> Component Glyph

doubleGlyph pic env = do

gl <- glyph (dup pic) env
let

double-gl =

5.2. DISPLAYING GRAPHICAL OUTPUT

Figure 5.5 Dtiplicating the contents of ;I glYpIl.

mkStatefulH gl (hRead gl)
(\ pic -> hWrite (dup pic))

return double-gl

where
dup p= beside pp

main = do I gl <- wopen (doubleGlyph pic) ; rotLoop gl I

99

The new glyph handle in terms of an existing one. The Nvrit, eact ion SlIPplied to mkStatef ulH

above, updates die existing glyph by first (1111)li('; Itillg the Picture valm, it Is

result can be seen in Figure 5.5.

Notice again that the type of the handles returned frmn doubleGlyph mi(I ille pl-11111t I%v

glyph are the saine, so rotLoop (-; in be Ils('d ý%'itl'Ollt ('11,1119(' to the ncw Glyph

abstractioll.

The above code illustrates how new Glyph abstnictions cill be (, (I, tising mkStatef u1H
to create new handle values with different, behaviour alld content. Ill this c; 1"'e, the new
handle value was built oil top of a basic Glyph handle, reusing its disphy Imn(Ile, silice
doubleGlyph has the same output area. The change ill 'be1mviour' th ; it we Nvallied for the

til)(1ýitingapi(! tiircisiiiil)leiii(, ilte(II)Nlslll)l)IN, iiig, thWrite 111(ýtIl()d t1lit

glypll to draw a pair of the new Picture value.

To make it a bit more generally applicable, Nve can abstract awty the function dup lis(, (l f'()I,

doubleGlyph, and instead pass the picture transformation filly-tioll j() Is(,:

transformGlyph (Picture -> Picture)

Picture

-> Component Glyph

100 CHAPTER 5. COMPOSING HAGGIS

transformGlyph picTr
,
ans pic env = do

gl <- glyph (picTrans pic) env
let

tr-gl = mkStatefulH gl (hRead gl)

pic -> hWrite (picTrans pic))

return tr-gl

The transf ormGlyph is an abstraction that allows You to specify which picture transforrner

to apply to a picture when displaying it. The extra argument to transformGlyph is
function for transforming'picture values into the form we want to present them. Both tly"e
initial picture and all subsequent picture values are transformed using it, so expressiha,
doubleGlyph in terms of transf ormGlyph is straightforward, passing dup as argument:

doubleGlyph = transformGlyph (dup)

where
dup p= beside pp

Notice that the view transforma
'
tion which this glyph applies is not hidden from the appli-

cation: a hWrite followed by a hRead will not return the Picture value just set, but'i-ts
transformed, form. To be able to hide the view transformation, the transf ormGlyph needs
to remember the current picture value it is transforming. A convenient way of doing this is
to use state, which we introduce next.

5.2.3 Adding, state

Quite often, a user interface component handle needs to maintain some state. For instance

the glyph primitive has to keep track of the picture value it is currently displaying tc)
be able to redisplay and return meaningful values via hRead. The use of state extends
to user-defined abstractions. A simple example is that of a picture book, a glyph'that
remembers and displays the last n pictures. To be able to express such an abstraction, -we

need operations for creating an updating pieces of mutable state. Assuming we've got that,,
here's what the picture book abstraction might look like:

bookGlyph :: (Picture] -> Component Glyph
bookGlyph ls env = do

gl <- glyph (showPics ls) env
var <- newVar ls

let

5.2. DISPLAYING GRAPHICAL OUTPUT 101

book-h =

mkStatefulH

gi (readBook var) (writeBook var gl)
in

return book-h

The code for bookGlyph is more or less the same as that for transf ormGlyph. A primitive
glyph is created and using it, a new glyph handle is created. However, to record the current
set of pictures, a mutable variable is created to hold it. The variable is created with the
action newVar, which is part of the non-standard interface MutVar:

data MutVar a=...

newVar a -> 10 (MutVar a)

readVar MutVar a 10 a

writeVar MutVar aa -> 10

The type MutVar a is an abstract type representing mutable variables of some type a,
with operations defined over it for reading and updating their contents. Notice that the
operations for creating and accessing mutable variables are all 10 actions, so the order of
the operations on a mutable variable has to be sequentialised by the programmer.

In the case of bookGlyph, a mutable variable is created to hold the current set of pictures, a
variable that is accessed by the action that implements the hRead for a bookGlyph handle:

readBook :: MutVar [Picture] -> ID Picture I
readBook v-= do

is <- readVar v

return (showPics is)

which reads the current contents out of the variable, and converts the list of pictures into

a single one with showPics (see below.)

The hWrite action is responsible for updating the variable and displaying a new picture
book:

writeBook :: MutVar [Picture] -> Glyph -> Picture -> ID

writeBook v gl pic = do

is <- readVar v

let new-ls = pic: init is

writeVar v new-ls

102 CHAPTER 5. COMPOSING HAGGIS

hWrite gl (showPics new_ls)

The new set of pictures is stored in the mutable variable, adding a new picture at the
expense of the 'oldest' picture. To draw the new picture book, the writeBook calls upon
the help of the hWrite action of the primitive glyph, passing it a Picture that is constructed
with showPics:

showPics :: [Picture] -> Picture

showPics ls
let

middle = length ls 'div' 2
(bef, aft) - splitAt middle ls

in

above (besides bef) (besides aft)

which arranges the set of pictures in a pair of rows. The bookGlyph abstraction is show,,
in its entirety in Figure 5.6

With the help of mutable vaxiables, the bookGlyph abstraction was capable of holding onto
and displaying a bounded history of pictures. The use of state could also be used to improve
the transf omGlyph of the previous section, having it remember the current picture it is
transforming so that the Mead can return the appropriate, non-transformed value:

applyPicTransform :: (Picture -> Picture) -> Glyph -> 10 Glyph

applyPicTransform f gl - do

pic <- hRead gl

var <- newVar pic
hWrite gl (f pic)
let

tr-glyph -
mkStatefulH

gi (readVar var) (writePic var gi)

writePic Pic = do

writeVar var Pic
hWrite gl (f Pic)

in

return tr-glyph

.
5.2. DISPLAYING GRAPHICAL OUTPUT 103

bookGlyph :: (Picture] -> Component Glyph
bookGlyph ls env = do

gi <- glyph (showPics ls) env
var <- newVar ls
let
book-h

mkStatefulH
gi (readBook var) (writeBook var gl)

in
return book-h
where
middle length ls Idiv' 2

readBook :: MutVar [Picture] -> 10 Picture
readBook v-= do

ls <- readVar v
return (showPics ls)

writeBook :: MutVar [Picture] Glyph -> Picture -> ID
writeBook v gl Pic = do

ls <- readVar v
let new-ls = pic: init ls

writeVar v new-ls
hWrite gl (showPics new-1s)

showPics :: (Picture] -> Picture

showpics ls
let '

(bef, aft) splitAt middle ls
in

above (besides bef) (besides aft)

Figure 5.6 Picture book abstraction

The abstraction is expressed slightly differently, instead of
'
creating a primitive glyph,

applyPicTransf orni expects a glyph handle as argument. By recording the current pic-
ture value in a mutable variable, performing hRead on a applyftcTransf orm handle will
return the non-transformed picture value.

One example of a use of applyPicTransf orm is doubleView, a glyph transformer that given
a glyph handle, returns a new one that displays the contents of the old one, but double in
size.

104 , P'ý'CHAPTER 5. COMPOSING HAGGIS

doubleView :: Picture -> Component Glyph

doubleView Pic env = do

gl <- glyph Pic env

mkDoubleView gl-

mkDoubleView Glyph -> 10 Glyph

mkDoubleView applyPicTransform (uscale 2)

uscale :: Int -> Picture -> Picture

Nested applications of applyPicTransf orm are also possible.

To recap, this section introduced the use of state via mutable variables, and how user
interface abstractions could make use of it internally. The range of abstractions expressible
is increased, abstractions that record their state can now be created on top of the primitive
glyph, an example of this being the picture book.

Normally though we really want to work at a higher-level than Picture values. The ap-
plication manipulates and performs input and output with values that are 'closer to home'

than Picture values, e. g., strings, integers etc., so let's create some abstractions that cater
for this.

5.2.4 Displaying values

To create abstractions for displaying values of types other than Picture, we continue make
use Statef u1H handles. To recap, the glyph handle has the following type:

type Glyph - StatefulH Picture

The Statef u1H handle type is parameterised over what type of value to transmit and receive
over it, so user interface abstractions that display other types of values than Picture can
be created quite easily. To demonstrate, here is the string label abstraction used in the the
introductory 'hello, world' example:

type Label - StatefulH String

label :: String -> Component Label

label str env - do

gl <- glyph (text str) env

5.2. ' DISPLAYING GRAPHICAL OUTPUT 105

mkLabel str gl

mkLabel :: String -> Glyph -> 10 Label

mkLabel str gl = do

-var <- newVar str
let

label-h

mkStatefulH
gl (readVar var) (\ str -> hWrite gl (text str))

return label-h

The label action returns a Label handle, a synonym for a Statef ulH handle for reading
and writing strings to. The label is constructed out of a primitive glyph that takes care of a
displaying the actual label contents. The label handle is created as before with mkStatef ulH,
building a new handle that when updating the label with a new string value, the string will
be converted into a picture and the glyph will be updated.

To conveniently read back the current label string, a variable is used to record it, which the
hRead operation just reads from.

The mkLabel action creates a new handle by setting up the mapping from the external
interface it is providing, an abstraction for dynamically displaying string labels, to the
component it is implemented in terms of, the primitive, Picture displaying glyph. This is

really just the same as was done for the picture book example earlier,, the only difference
being that the type of values being communicated on the handle returned by mkLabel are
now character strings.

The label abstraction itself can be used to create a more general display component capable
of showing any Haskell type that can be mapped to a character string.

type GenLabel a= StatefulH a

display :: Show a => a -> Component (GenLabel a)
display v env = do

lab <- label (show v) env

; mkDisplay v lab

MkDisplay :: Show a => a -> Label -> 10 (GenLabel a)

MkDisplay v lab = do

var <- newVar v

106 CHAPTER 5. COMPOSING HAGGIS

let

disp-h

mkStatefulH
lab (readVar var)
(\ v -> do

writeVar var v
hWrite lab (show v))

return disp-h

This time the display is built on top of a label, returning a handle that can display any
type that is an instance of the standard type class Show, i. e., a value of this type can be

converted to a character string.

5.2.5 A simple framework for visUalising data

With the display of the previous section, any type that could be converted into a character
string could be displayed in a label. For some types such as Int, this probably what we
want, but more complex data structures could have more effective graphical representations
than a string. For instance, a tree data type could be presented by drawing the tree rather
than displaying a, textual description of it. Creating an abstraction that allows this is

straightforward:

presenter (a Picture) -> a Component (StatefulH a)
presenter present-f v env = do

gl <- glyph (present-f v) env
mkPresenter present-fýv glý

mkPresenter :: (a Picture) -> a 10 (StatefulH a)
mkPresenter pres-f v gl - do

var <- newVar v
let

pres-h =
mkStatefulH

gl (readVar var)
(\ new-v -> do

writeVar var new-v
hWrite gl (pres-f new-v))

return pres-h

5.2. 'DISPLAYING GRAPHICAL'OUTPUT 107

Instead of converting the value into a string and displaying it, presenter takes an extra
function argument for converting a value into a Picture directly. One example of how
presenter could be used, is a basic pie-chart display:

type Fraction = Double

, pieChart Fraction -> Component (StatefulH Fraction)

pieChart presenter mkPieý

where
mkPie frac

overlay
(circle 30)
(withFill $

arc (size 30 30) half-pi (2*pi*fracl))

where
fracl = min 1.0 (max frac 0.0)

The pie chart is just a specialised call to presenter, 'supplying the function for converting
.a fraction into a picture.

With the help of Haskell's type classes, a more systematic conversion of values into their
picture representation is possible:

class Visualise a where

present :: a -> Picture

The type class defines an overloaded operation, present, for Converting a value into a
picture. The instance for Int could then be defined as follows:

I-
instance Visualise Int where

present v- text (show v)

I "i. e. 'Just draw a string representing it. A more visually interesting mapping can be defined
"for lists of values:

instance Visualise a => Visualise [a] where

present ls u
let

pics - map (circleAround . present) ls

in

108 CHAPTER 5. COMPOSING HAGGIS

besides (intersperse (rightArrow) (pics ++ terminator))

terminator :: Picture

terminator =

For a list containing elements that can be converted into Pictures, the picture returned
for the list puts a circle around each element and connects a list cell to the next by pointing

an arrow. Using the Visualise class, the definition of presenter can be modified to use
it:

presenter :: Visualise a => a -> Component (StatefulH a)

presenter v env = do

gl <- glyph (present v) env

mkPresenter (present) v 91

The change from the initial version of presenter is that the conversion function is now
implicit, i. e., only types that are known to be instances of the Visualise class can be

presented. There's a price to pay for this apparent simplification though, you now have

to define a Visualise instance for the type you want to display. Apart from the minor
inconvenience

,
of having to declare the instance, a type class is too general a device here,

since Haskell does not allow the definition of an instance for the pie chart example:

instance Visualise [Fraction] where (I

the instance type not being legal.

5.3 Adding concurrency

Another graphical extension that we would like to add is the ability to define abstractions
that display animations. Independently from the progress of the rest of application, the

abstraction would display and update the animation. One common way of doing this is to

specify the animation as a sequence of frames, and leave it to the animation abstraction to

step through the sequence. To express this, the picture book abstraction can be re-used:

animator :: [Picture] -> Component (StatefulH [Picture])

animator frames env = do

gl <- glyph firstFr env

mkAnimator frames gl

_5ý'3.
ADDING CONCURRENCY , 109

, where
f irstFr =

case frames of
emptyPic

(X: -) -> x

mkAnimator :: [Picture] -> Glyph -> 10 (StatefulH [Picture])

mkAnimator frames gl do

var <- newVar frames

let

anim-h
mkStatefulH

gi (readVar var) (writeVar var)

forkIO (animLoop var gl)

return anim-h

The animation abstraction is created on top of a primitive glyph, and
mkAnimator creates a new Statef u1H handle that provides the programmer interface to the
animation. Using the handle, what animation to play can be dynamically changed.

To have the animation progress independently from the rest of the application, the sequence
of actions needed to perform the animation must be performed concurrently to the other
tasks. To do this, we introduce the primitive f orkIO:

forkIO :: Io () -: 1 10 ()

f orkIO proc is an action that, when performed, will create a new evaluation context to
evaluate the 10 action proc, concurrently with the process that performed the f orkIO
action. The f orkID construct is part of Concurrent Haskell[PJGF96], a concurrent substrate
which is presented in Appendix C.

In the case of the frame animation abstraction, the process will execute the following loop:
i--

animLoop :: MutVar (Picture] -> Glyph -> ID

animLoop var gl = loop D,

ý -where
'-s-loop do

readVar var pics <

loop pics

110 CHAPTER 5. COMPOSING HAGGIS

loop (f: fs) -, do

waitFor 100

hWrite gl f
loop fs

waitFor :: Int(-millisecs-I -> ID ()

The loop iterates through the frame sequence, using the primitive waitFor to stagger the

rate at which the frames are rendered. At the end of the sequence, the variable holding the

current frame sequence to use is consulted before starting all over again.

The animLoop is performed concurrently to the other tasks of an application, the details

of how the animation is implemented is completely hidden from view. The animation
abstraction is an example of the use of concurrency to abstract away control, where a
separate process is created to take caxe of maintaining the animation. The application is
freed from somehow having to interleave the management of the animation with whatever
else the application is up to, i. e., separation of concerns is achieved.

As we will see, concurrency is used throughout to structure a user interface application.
New abstractions are created that internally, create processes to manage their behaviour

and interaction with the Haggis components they are built out oL

To demonstrate the use of animator, here's a slide show abstraction that uses it:

slideShow :: [Picture] -> Component (StatefulH [Picture])

slideShow p, ics env = do

gi <- glyph firstPic env

gis <- mkDoubleView gl

mkAnimator pics gl'

where
f irstPic

case pics of
emptyPic

(f f

The pictures in the slide show are scaled by a factor of two, using the
mkDoubleView combining form introduced earlier to do this.

So far the abstractions built have been variations on how to present graphical output,
constructing more and more sophisticated abstractions on top of a primitive glyph. The next
natural step is to add the user to the mix, supporting interaction with the user employing

5., , 4. ' ADDING INTERACTION

the graphical abstractions that we have now built.

5.4 Adding interaction

To deal with user interaction, actions performed by the user via some physical input device
such as a mouse must be caught by the application and interpreted, e. g., when the user
wiggles the mouse, the drawing application should see this and draw wiggly lines in response.
The primitive that allows the application to catch user interaction is catchDeviceEv:

catchDeviceEv :: Widget h => ha -> 10 InputDevice

type InputDevice - AppH DeviceEvent

The catchDeviceEv action fakes a handle to a user interface component as argument and
returns an InputDevice handle. All user events directed at the on-screen area occupied
by the component handle passed to catchDeviceEv will be caught and redirected to the
InputDevice handle. The returned InputDevice handle also contains the user interface

part (i. e., the display handle) of the component it is encapsulating.

.
The InputDevice handle is a type synonym for the application handle, a virtual 1/0 device

introduced in Section 4.4:

class (InputHandle h, OutputHandle h) => AppHandle h

class InputHandle h where

hGet :: ha -> 10 a

class outputHandle h where

hput :: ha -> a -> 10 ()

The AppHandle type class is a join between the InputHandle and Output'Handle type
classes, having operations for both sending and receiving data along the handle. The AppH
is a type constructor that is an instance of AppHandle, see Section 4.7.

Through the handle returned by catchDeviceEv, we can listen for user events such as, key

presses and mouse button clicks, using the hGet operation. The interpretation of performing
the . hput action on an InputDevice handle is to forward events to the component that
catchDeviceEv encapsulates.

112 CHAPTER 5. COMPOSING HAGGIS

The values being communicated via the InputDevice handle are of
type DeviceEvent, a data type specifying the nature of the user event, Figure 5.7 has

the complete definition. '

To make uses of this type a bit more convenient, defining some predicates and selector
functions over this type is quite useful:

evCoord ::, DeviceEvent Coord2-

evCoord (DevEv
- x-y, - -Y, P7, coord xy

isMouseDown DeviceEvent Bool

isMouseDown (DevEv

(MouseButton Down True

isMouseDown (DevEv
-----)=

True

keyDown-maybe :: DeviceEvent -> Maybe KeyValue

keyDown-maybe (DevEv

(Key Down kv)) = Just kv

keyDown-maybe (DevEv Nothing

getKeyValue,,.: DeviceEvent KeyValue

getKeyValue (DevEv
- --- -

(Key
-

kv)) =, kv

With all the types and' definitions associated with the handling of interaction out of the way,
it is finally time to start creating some abstractions using the catchDeviceEv combining
form. Here is a simple abstraction that displays the last key pressed:

echoKey :: Component (AppH Char)

echoKey env - do

gi <- glyph (text "None") env
ip <- catchDeviceEv gl

ch <- newChan
forkIO (echoer gl ip ch)

return (mkAppH ip (readChan ch) (updDisp gl ch))

where

echoer gl ip ch do

ev <- hGet ip

case map keyValToChar (keyDown-maybe ev) of

'By using a data type, there is a problem when it comes to extension in functionality: modifications
would require a complete recompilation of all sources that use the type. We do not currently consider that
to be a major problem; the number of devices and their repertoire of events is more or less stable.

5.4., ADDING INTERACTION 113

data DeviceEvent
DeviceEvent

mods :: ModState,

pos :: Coord2,
tstamp TimeStamp,

evt EventType
I

modifiers
position of mouse pointer

data EventType
MouseButton PressedState MouseButton
MouseClick MouseButton
MultiClick MouseButton Inti-no of clicks-I
MouseDrag MouseButton Coord2
Key PressedState KeyValue
Motion I Leave I Enter

data PressedState = Down I Up
type MouseButton = Int

Figure 5.7 The DeviceEvent data type

Nothing -> do -- false alarm, pass on event.
hPut ip ev

echoer gl ip ch
Just c ->

updDisp gl ch

echoer gl ip ch

updDisp :: Glyph -> Channel Char -> Char -> JO

updDisp 91 ch c= do

hWrite 91 (text [c])

hput ch c

Whenever the mouse pointer is inside the area of the echo area, each hit of a key corre-
sponding to a printable character will be echoed. As usual, the echoing is done via a glyph,
and to catch the keyboard events, catchDeviceEv is used to intercept, user events destined
for the glyph handle.

To interpret the keyboard events, echoKey creates a separate process to monitor the InputDevice
handle returned by catchDeviceEv. The process will perform the echoer action, looping

around looking for keyboard events coming from keys that correspond to printable charac-

114 CHAPTER 5. COMPOSING HAGGIS

data Channel a=.. -- abstract

newChan 10 (Channel a)
readChan Channel a, -> 10 a,
writeChan Channel a -> a -> 10

instance InputHandle Channel where
hGet = readChan

instance OutputHandle Channel where
hPut = writeChan

instance AppHandle Channel

Figure 5.8 The Channel interface

ters.

The application interface to the basic echoKey abstraction is a application handle that can
be used to both write characters to the echo area and listen for what characters are being
typed. To pass back the characters being typed, we need a medium to communicate thern
through. For this purpose, a channel is created using newChan. Channel is a standard Con-

current Haskell abstraction [PJGF96], and the programmer interface is shown in Figure 5.8.
By doing an hGet on the handle returned by echoKey, the application can listen to what's
being typed.

The ability to catch keyboard events is useful in other contexts, so creating a separate
abstraction for it makes sense., To help building this abstraction, let's first define a pair of
auxillary operations on AppH handles:

mapAppH :: AppHandle h

=> (a -> b) -> (b -> a)

->
AppH b

mapAppH a2b b2a h= mkAppH h get' put;

where
put' b= hPut h (b2a b)

get I- do

a <- hGet h

return (a2b a)

5.4. ADDING INTERACTION 115

filterAppH :: AppHandle h => (a -> Bool) -> ha -> AppH a
filterAppH pred h= mkAppH h get' put'
where
get I= do

x <- hGet h

if pred x then

return x

else
do fhPut hx; get'

put) x= do

if pred x then
hPut x

else
return silently ignore.

The mapAppH creates a new application handle by mapping to (and from) the values commu-
nicated by an existing one, while f ilterAppH creates a handle that will only pass through
values that satisfy a supplied predicate. With these two in hand, defining a combining form
that only intercepts keyboard events then simply becomes:

catchKeyboardEv :: Widget h => ha -> ID (AppH KeyValue)

catchKeyboardEv h= do

-ip <- catchDeviceEv h

return (

mapAppH getKeyValue mkKeyboardEv
filterAppH isKBEvent ip)

-- manufacture a keypress event.

mkKeyboardEv :: Char -> DeviceEvent

isKBEvent :: DeviceEvent ->-Bool

The derived combining form specialises catchDeviceEv, returning a handle that intercepts
keyboard events, but passes on all other user events to the component being encapsulated. It
is implemented by first filtering out all but the keyboard events reported on an InputDevice,

and then converting these keyboard-only into KeyValues, a type that encodes what type of

116 CHAPTER 5, COMPOSING HAGGIS,

key was hit on the keyboard.

Defining a similar abstraction for the mouse pointer is even easier:

catchMouseEv :: Widget h => ha -> 10 (AppH DeviceEvent)

catchMouseEv h= do

ip <- catchDeviceEv h

return (filterAppH isMouseEv ip)

Using catchMouseEv, implementing a button abstraction now becomes possible:

button :: Picture -> Component (AppH

button Pic env = do

gl <- glyph pic env

ch <- newChan
mouse <- catchMouseEv gl
forkID (btnTrack mouse gl ch pic (invert pic))
let btn-h = mkAppH ip (hGet ch) (hPut ch)

return btn-h

The button action takes as argument the picture label to use and returns an application
handle representing the button. The application handle is used to listen for 'clicks' via
hGet.

The button uses a glyph as its output area, catching all mouse events destined for it with
catchMouseEv. To ensure that user interaction is responded to, a process is create&whose

sole purpose in life is to listen for mouse events and react to mouse button clicks by changing
the label displayed by the glyph. The following loop is executed by the process:

btnTrack Mouse -> Glyph -> Channel

Picture -> Picture -> 10

btnTrack ip gl ch picA picB - track

where
track = do

ev <- hGet (filterAppH isButtonDown ip)
hWrite gl picB

ev <- hGet (filterAppH (\x -> isButtonUp x 11 isLeaveEv x) ip)
if isLeaveEv ev -- aborted.
then do

hWrite gl picA

5A. ADDING INTERACTION 117

track

else do -- interaction finished.

hWrite gl picA
hPut ch
track

It waits for events to be reported via the application handle and depending on whether the
event is mouse button event or not, the label is changed. It is worth noting that the process
will be mostly blocked, only waking up whenever a new mouse event is reported.

On top of basic interaction events such as mouse button clicks and keyboard presses, we
can define some derived events such as double clicking of a mouse button. Depending on
the underlying window system, such synthetic events may not be supported directly, but
defining an abstraction that manufactures them is straightforward:

doubleClick :: Widget h => Int -> ha 10 (h a)
doubleClick msecs h= do

mouse <- catchMouseEv h

forkIO (clickTracker Nothing mouse)

return (setDH (getDH mouse) h)

where
clickTracker :: Maybe (TimeStamp, ButtonNO) -> Mouse -> ID

clickTracker last-click mouse = do

ev <- hGet mouse
if isMouseDown ev then

case last-click of
Nothing

do

hPut mouse ev

clickTracker (Just (getTimeStamp ev,
getButtonNo ev))

mouse
Just (ts, b-no)

if (getButtonNo ev == b-no)
(getTimeStamp ev - ts <= msecs) then

do

hPut mouse (mkDoubleClickEv ev)

clickTracker (Just (getTimeStamp ev,
getButtonNo ev))

118 CHAPTER 5. COMPOSING HAGGIS

mouse

else
clickTracker Nothing mouse

else
clickTracker Nothing mouse

mkDou bleClickEv : -: 'DeviceEvent DeviceEvent

The doubleClick abstraction is following a, by-now familiar pattern, intercepting mouse

events with catchMouseEv, and creating a separate process to monitor these. Whenever a

mouse button event is caught, the clickTracker will compare it with the time stamp of
the previous mouse, click. If they're- close enough in time, the mouse click will be treated as

a double click, and , communicate this to the user interface component being encapsulated
by doubleClick.

Another example of what can be done using the combining forms for catching user events)
is keyboard accelerators, transforming the interpretation of key presses. Here is a button

extended with keyboard shortcuts, pressing u is interpreted as a mouse button down event:

accelButton :: Picture -> Component (AppH 0)

accelButton Pic env = do

btn <- button Pic env
ip <- catchDeviceEv btn

forkID (accelTrack ip)

let accBtn-h - mkAppH ip (hGet btn)(hPut btn)

return accBtn-h

accelTrack ip a- do

ev <- hGet ip

(if isKBEvent ev then

case toLower (keyValueToChar (getKeyValue ev)) of
lul hPut ip (mkMouseButtonEv Down ev)
Idl hPut ip (mkMouseButtonEv Up ev)

- -> hput ip ev

else
hPut ip ev)

accelTrack ip

mkMouseButtonEv :: PressedState -> DeviceEvent -> DeviceEvent

5.5. ' ADDING LAYOUT 119

The accelButton action encapsulates a push button with catchDeviceEv, creating a pro-
cess to listen for events being transmitted to the button. Upon seeing keyboard events
representing hits on keys u and d, these events are transformed into button click events.

Notice that the nested application of catchDeviceEv being performed here, once at the
keyboard acceleration level, and another inside the button abstraction for catching mouse
clicks. The distribution of events is top-down, so the outermost event filter (the accelerator
in this case) will see the events first. This filter gets to decide whether to interpret, transform
or pass on the user events to the handle it is encapsulating. A top-down distribution of
user events has benefits over the more conventional bottom-up style used in many user
interface toolkits, as behaviour can now be overridden and transformed at will, without the
cooperation of the component being encapsulated.

5.5 Adding layout

Up until now, a primitive graphical output abstraction, the glyph, has been used as a
basis to create a collection of user interface abstractions, ranging from a simple output-only
label to components that respond and interact with the user. Normally, a user interface

application consists of more than one component, so we need a mechanism for combining
the presentation of multiple components together.

In the introductory example of this chapter of a counter we avoided the question of how to
describe the physical laýout of the label and the button. The user had to arrange the two

separate windows. Clearly, this is not a viable strategy in general, and in this section we
look at how to create and use abstractions for presenting a collection of components.

5.5.1 Pairwise tiling

A simple and effective way of arranging a set of components is to tile them either horizontally

or vertically. For instance, here is the introductory counter example re-done, the button

and label appearing next to each other in a window:

beside :: (Widget, ht, Widget h2) => hl a h2 b -> DH

counter :: Component DH

counter env = do

lab <- label "Oil env
btn <- button (text "Inc") (+I) env

120 CHAPTER 5. COMPOSING HAGGIS

Figure 5.9 Using beside to 1; ýyoiit components.

forkIO (countLoop 0 lab btn)

return (btn 'beside' lab)

main = do f wopen counter ; return () I

The counter component creates a label and a button component, as before, with tile

comiting behaviour defined as expected. As seen on the screen shot in Figure 5.9, tile

beside combinhig form arranges the two components horizontally.

The beside laýyout operator takes a pair of handles as arguments and returns a display

11,11ldle Omt, when realised, takes care of arranging the two components next to vad, other.
'J'o I-ecap, heing an instance of the Widget type class signals that a handle represents a i1ser
inted"Ice component, i. e., that it, is possible to get at its display handle:

class Widget h where

getDH :: ha -> DH

setDH :: DH -> ha -> ha

A display is t, he sYste'll-level represeirt, ation of a user int, erface component- Amongst,

oj, jj(ýJ. thiligs, it, provides all interface for setting and querying the geometric properties of a

coulponent- And, since beside is only concerned with presentation, its only constraint oil
Hie argument handles is that it is possible to get at the 'user interface part', ix, their displav

11,111(Ijes, t, o cont, rol the size and imsition of' the components. The combining forin does

return ;I (IiSI)1; 1. v 11,111div that Inallages the horizontal arrangement of the two componeilts.
For inst'ance, whenever 1-he beside display handle is asked to change its size, the new sizes
for its (. 1111(ji-ell are computed and resize commands forwarded. The det. ails of how this is

dolle are explained ill Section 6.1.

Ret m-ning to beside, it is also possible to nest applications to it:

5.5. ADDING LAYOUT 121

fours :: Widget h => Eh a] -> DH

fours Ehl, h2, h3, h4l -
beside (beside hl h2)

(beside h3 h4)

where f ours aligns four components horizontally. A variation on this layout is quad, which
uses above, the tiling dual to beside:

above :: (Widget hl, Widget h2) => hl a -> h2 b -> DH

quad :: Widget h => [h a] -> DH

quad [hl, h2, h3, h4l =

above
(beside hl h2)

(beside h3 h4)

quad Is = error (showString "quad: expected 4 elements, not
shows (length Is) 'An")

quad takes four handles of identical type and arranges them in a rectangle:

labels :: String -> Component DH

labels str env - do

cs <- mapM (\ v -> label v env) (words str)

return (quad cs)

main 10

main do

wopen (labels "A nested layout example")

return 0

Figure 5.10 shows the screenshot when running the above application. Notice the restriction
on quad's type:, only handles of the same type can be grouped together in a list. Hence, it
is not possible to group together labels and buttons like this,

layout btnl btn2 labl lab2 = quad [btnll, btn2, labi, lab2l

since the list would not be well-typed. Instead, the handles passed to quad must be coerced
1ý1 i explicitly to the same handle type:

layout btnl btn2 labl lab2 =- -I

122 CHAPTER 5. COMPOSING HAGGIS

Figure 5.10 Nested applications of above.

quad ((EgetDH btnl, getDH btn2,

getDH labl, getDH lab2l) :: [DHI)

All handles to iiser interface components have a disphty handle embedded inside theiii, so
bY applYing getDH when constructing quad's argument list, different types of user iilt(, rfa, (-(,
c(miponents can be presented together. This explicit coercion of arguments is not ail ideal

solution, but, there doesn't, seem to be a way around with Haskell's type system.

The tiling layout forms call be generalised to handle a list of handles:

besides, aboves :: Widget h => [h a] -> DH

besides ls = foldr (beside) nullDH ls

aboves ls = foldr (above) nullDH ls

nullDH :: DH

The aboves fuliCtiol, is 1), Issed a list Of ('0111ponelits, which will be tiled vertically from top

tO bottmn. The nu11DH is a display handle representing the simplest possible user interface,

with no extent, appearall(T 11or interactive behaviour.

The ; 119()"it III" fol, (*()"'I)lltillg 1101A' Inuch space, cither child is allOCated is very simple,
ba. sed ()I] thv natural sizes Of t1W two col"Imnents, the proportion allocated ill the tiling

staý, s cmistant (hiring resizes:

beside_size :: Size2 -> Size2 -> (Ratio, Ratio, Size2)

beside-size (Size2 wl hl) (Size2 w2 h2)

let

wl+w2

pi = wi/w -- prop. of width allocated to left

5.5. 'ADDING LAYOUT 123

p2 = I-pl -- prop. of width allocated to right
in
(pl, p2s
Size2 w (max hi h2)) -- size of tile box

beside-resize Ratio Int Ratio Int
Size2 (Size2, Size2)

beside-resize pi p2 (Size2 w h)

(Size2 (toInt (pl fromInt w)) h,

Size2 (toInt (p2 fromInt w)) h)

The beside-size function computes the natural width and height of the tiling box together
with how large a proportion of the widýh is going to be allocated to either component. The

proportions are used by beside-resize to compute the new widths whenever the box

occupied by beside is told to change its size.

In addition to managing the position and size of its two components, the beside combining
form is also responsible for distributing user events to the appropriate component, i. e., for

each interaction event, the event coordinate is used to decide which of the two children the

event should be forwarded to.

5.5.2 Boxing it up

The layout abstractions beside and above provides a convenient way of tiling a set of
components. However, the level of control of how the components should adapt to changes
in size to the overall box is limited. There are several cases where the additional control is

needed. For instance, some components may have a minimum size that their output area
should not be pushed beyond, as there is no way of faithfully reproducing their content
at sizes smaller than this, e. g., a glyph displaying a bitmap may not be able to shrink it
faithfully. The be side and above combinators allocate a proportion of the size of the overall
bI ox to its components, regardless of any minimum sizes.

A: ýother example of where we would like to have additional control over resize behaviour,
is that sometimes, some components may be more willing to resize than others, e. g., for a
drawing editor, an increase in window size for the editor should result in the drawing area
becoming larger, but the control panels should stay at their constant sizes. To be able to

express this, we need something beyond above and beside. ,

common and well-tried model for expressing more flexible tiling layouts is the TFX model

124 CHAPTER 5. COMPOSING HAGGIS

type GLength = Unit
type WillOrder = Int
type Willingness = Int

data GHint
GHint f

nat-size GLength,

min-size GLength,

stretch (WillOrder, Willingness),

squash (WillOrder, Willingness)

data Geo
=Geo

GHint
GHint

Space GHint

Figure 5.11 Geometric attributes of a user interface component

of boxes-and-glue. In addition to natural size, each component has a set of geometric re-
quirements or attributes that a layout function will take into consideration when computing
the size and position of its children. Attributes such as how willing is the component to

change size from the natural dimensions specified, or the minimum size of the component.
To represent these attributes in Haggis, the Geometry type in Figure 5.11 is used.

A value of type Geometry represent the geometric requirements of a user interface conj-
ponent, and specifies the geometric 'hints' in either one or two dimensions. Except for

components repres
,
enting space, a user interface component specifies its geometric hints

both horizontally and vertically. The attributes specify:

o Natural size.
A component will be displayed at its natural size in one direction unless it exceeds
some external constraint, e. g., the maximum size of the window you're displaying it
in.

o Minimum size.
A component should not be displayed at sizes smaller than this. If it is, the content
cannot be displayed, or if it can, not faithfully so.

o Stretch- and squashiness.

5.5. ADDING LAYOUT 125

How willing the component is to change from its natural size. The will is represented
as a two-dimensional quantity, the willingness order and the will within that order.
When computing the layout,, the layout algorithms may sort the components according
to their willingness, and allocate size based on it.

The stretching properties are treated separately from squashing, as components might
be very willing to expand, but not to contract. I

In Haggis, all display handles can be queried for their Geometry attribute, something the
following layout 'boxing' abstractions make good use of. ,

hbox, vbox :: Widget h => [h a] -> DH

The hbox function takes a list of user interface handles, and returns a new display handle

that, when realised, will arrange the list of components horizontally from left to right. This
display handle has a Geometry value attached to it

'
that describes the geometric attributes

-of
the resulting box. Using hbox, creating an beside-like abstraction is straightforward:

beside :: (Widget hl, Widget h2) => hl a -> hl b -> DH

beside hl h2 = hbox [getDH hi, getDH h2l

Since hbox expects a list of user interface handles, all of the same type, the two different

user interface handles passed to beside axe coerced to display handles first.

This implementation of beside is more flexible than the one presented in the previous

chapter, and is only intended as an illustration of the basic kinds of abstractions that can
be created with hbox. When an hbox is told to change size, it recomputes the new sizes of
its children by taking into consideration the Geometry values of its components, whereas

.,, the basic beside combinator outlined eaxlier just used the natural sizes of its children when

computing their new sizes.

To make any use of the Geometry attributes, we need some way of setting the value attached

to a user interface component. To do this, the transf ormGeo combining form is provided:

transformGeo :: Widget h

=> (Geometry -> Geometry)
h

->

attributes of a component by applying a function that transforms -It changes the geometric

the current Geometry value into a new one. The handle returned by transf ormGeo has tile

126 CHAPTER 5. COMPOSING HAGGIS

transformed geometric attribute attached to it.

The transf ormGeo abstraction is the most general abstraction for changing'the Geometry

value of a component. Several, more specialised abstractions for setting the geometric
attributes can be created using it - Figure 5.12 shows some of them.

These abstractions can now be used to control the resize behaviour of components:

pair :: Component DH

pair env - do
btnl <- button (text "Left") env
btn2 <- button (text "Right") env

return (

hbox [btnl,

fixedW btn2l)

The pair action creates a pair of buttons, arranging them next to each other, as seen in
Figure 5.13. The width of the second button is fixed with the help of f ixedW. As a result,
whenever the size of the box occupied by pair is told to change, changes in width affect
the left component only. Normal to the tiling direction, both components' height axe equal
to the height of the hbox bounding box.

By tuning the geometry attributes of the components presented, better control can be had

over how components should adapt to changes in size. Sometimes it is useful to mix the

presentation of 'real' user interface component with components that just occupy space.
This is provided with the help of space:

space :: GLength -> DH

The space function creates a display handle with no output, but with extent of fixed width
or height (depending on the context in which it is used.) Using it, an abstraction that left
justifies the output from a component, becomes just:

justifyLeft Widget h => ha -> ha
justifyLeft h

setDH h$
hbox [withStretch (0,1) (getDH h),

withStretch (1,1) (space 1)]

The space used inside the hbox is made stretchier than the component, so when the width
of the hbox changes, the space component on the right will soak up the change.

5.5. ADDING LAYOUT 127

A variation of justif yLef t is an abstraction for centring the output of a component:

centreDir :: Widget h => UDHI -> DH) -> ha -> ha

centreDir fh=

setDH h$

f [withStretch (1,1) (space 1),

withStretch (0,1), (getDH h),

withStretch (1,1) (space 1)]

centreV, centreH :: Widget h -> ha -> ha

centreV = centreDir (hbox)

centreH = centreDir (vbox)

centre:: Widget h => ha -> ha

centre = centreV . centreH

The implementation is analogous to that of justif yLef t, this time the centred component
is padded with more stretchy space on both sides. The centre abstraction arranges a
component in the middle in both directions, applying the horizontal and vertical centreing
functions in turn, nesting the application of hbox inside a use of vbox. Figure 5.14 shows
the centre abstraction in use.

Another example of nested applications of the boxing layout abstractions, is when creating
a two dimensional table layout:

table :: Widget h => [Eh all -> DH

table lss -
let rows = map (hbox) lss in

vbox rows

The table takes a list of list of user interface handles as argument, a list of user interface

handles representing a row. After having constructed each row, the rows are placed on top

of each other vertically.

5.5.3 Constrained boxing

The hbox and vbox abstractions create a bounding box big enough to hold the contents of the
box, computing their Geometry based on the geometries of their children. An alternative
approach is to instead pass the boxing combinator the Geometry it should assume, and

128 CHAPTER 5. COMPOSING HAGGIS

instead it will have to fit the children it is presenting within that from the start. This is
done by the 'parbox' abstractions, which are patterned on 7ý-, X parboxes:

phbox, pvbox :: Widget h -> Geometry -> Eh a] -> DH

The extra Geometry argument allows you to specify boxes that should have fixed widths
and heights, and layout the components within the box accordingly. Figure 5.15 shows the

phbox in action.

5.5.4 Computing the box layout

To compute the initial size and positions of components within a box and subsequent resizes,
the boxing layout abstractions use the following two functions:

compute-box BoxType [BoxInfol -> (BoxInfo, [BoxInfol)

resize-box BoxType BoxInfo -> (BoxInfo] -> [BoxInfo]

type BoxInfo

(Rectangle, position and size within parent coord. system.
f Geometry) geometric hints

data BoxType

- VBOX
HBox
PHBox Geometry

PVBox Geometry

Given the geometric attributes and current size and position, compute-box computes the
Geometry for the whole box and the initial size and position of its children. Similarly,

whenever the box is resized, resize-box implements the boxes-and-glue layout algorithm,
and will compute the new configurations for the children within the box.

The implementation of box is then 'just' responsible for gathering together the BoxInf o for

each child and invoke the resize-box whenever the box itself is resized. But how do we
actually implement these boxing abstractions? That is the topic of the next section, where
the basic abstraction for implementing tiling layouts is presented.

5.5. ADDING LAYOUT ', 129

5.5.5 Building layout abstractions

The hbox layout operator isn't primitive. It is built using the basic layout abstraction Tiler.

The Tiler takes care of the lower-level interaction with the tiled components, allowing you
to simply instantiate the appropriate tiling layout. A Tiler is created with mkTiler:

mkTiler :: TilerMethods -> Component Tiler

type Tiler = Tiler-t Void

instance Widget Tiler-t where fI

Given a record of tiling methods that collectively implement the physical layout of a set
of tiled components, mkTiler returns a Tiler handle which implements and manages the
layout abstraction. The methods contained in the TilerMethods dictionary are:

data TilerMethods

TilerMetods (

compute-geo":: 10 (Size2, Geometry, [TileInfol),

resize :: Size2 -> Geometry -> 10 [TileInfol

I

data TileInfo

TileInfo f

bbox Rectangle,

geo Geometry,

dh DH

I

Notice that the Tiler does not itself keep track of the components being tiled, that is the

responsibility of whoever creates calls mkTiler. One reason for this decision is that it avoids
fixing on a particular data structure to use for the Tiler, which then every use of it must

adapt to. Instead, the methods in the TilerMethods record will internally share access to

the set of components, using whatever data structures that is appropriate.

The TilerMethods dictionary contain methods for computing the initial size and resizing

the Tiler contents. The compute-geo method returns the initial size and geometry for both

the tiling bounding box and the children. The TileInf o type records the per-component
information required, holding the current size, geometry and display handle of a component.

130 CHAPTER 5. COMPOSING HAGGIS

Using the list of TileInf os returned by compute-geo, mkTiler takes care of communicating
to each component their initial size and position. Similarly, the resize method computes
the new arrangement of its children at a given size, and returns an updated set of TileInf o
values.

To illustrate how the Tiler abstraction'can be used to create new layout abstractions, Fig-

ure 5.16 gives the implementation of bordered, which adds a border around a component.
The example program in Figure 5.17 shows how this new abstraction can be put to use.

Some notes on the implementation bordered: it makes use of onRealise to create the
display handle returned from the abstraction. It takes a pair of arguments,

onRealise :: DH -> (DH -> 10 DH) -> DH

an existing display handle, and an action for c' rea ting a new display handle. The second
argument is given the realised representation of the display handle given as first argument.
Display handles have a 'phase' distinction, being either realised or not. Section 6.1 presents
display handles in some detail and explains why the distinction between being realised and
not is needed. It is only when a display handle is realised that it can be queried for its
geometry, which we need to do for bordered in order to work with TileInf o values.

The implementation also makes use of the function expandGeo for changing the size of the
natural and minimum size of a component:

expandGeo :: Size2 -> Geometry -> Geometry

which is provided as part of the Haggis library.

5.5.6 Embedding a component

The bordered abstraction is an instance of a more general class of layout abstractions that
decorate a component, embedding it inside a container. The generic abstraction for this
sort of layout is the container:

container :: Widget h
(Size2 (Size2, Rectangle)) -- initial size
(Size2 Rectangle -> Rectangle)-- resize
Maybe DH background

-> -- embeddee

->

5.5. ADDING LAYOUT -'' 131

Given functions for dealing with change in size, and perhaps a component to use as back-

ground, container embeds a component. One layout abstraction that is implemented in

terms of container, is the framing combinator:

frame :: Widget h => Unit -> Size2 -> Relief -> ha -> ha

data Relief = Raised I Sunken I Ridge I Groove I Flat

The f rame abstraction is useful whenever you want to put some spacing between compo-

nents, Figure 5.18 shows what it looks like when used.

5.5.7 Free-form layout

The most general of all layout abstractions is the composite container, which provides an

rectangular surface where components can be placed, freely moved around and interacted

with:

compositeContainer':: Maybe Size -> Component CompositeContainer

Given an initial size, compositeContainer returns a CompositeContainer handle whicli
can be used to place user interface components onto the surface that it manages:

placeComponent :: Widget h

=> CompositeContainer

-> Coord2

->

-> ID CompositeContainerElt

The placeComponent adds a component to the container, returning

a CompositeContainerElt handle that can then be used to move and resize the component.
Figure 5.19 shows a selection of the supported functions over CompositeContainerElt

handles.

The CompositeContainer takes care of managing event distribution and the redisplay of
the components it contains. No assumptions are made about the layout and arrangement

of the components present inside the container. Figure 5.20 shows a screen shot of a set of

overlapping buttons within a composite container.

132 CHAPTER 5. COMPOSING HAGGIS

5.6 Summary

We have in this chapter introduced the main features of the Haggis user interface framework.
Haggis represent user interface components as virtual 1/0 devices which can be combined
together in a number of different ways to build new abstractions. The support for building

composable user interfaces covered the description of the physical appearance of the user
interface, how new interactive behaviour could be constructed and the creation of new
application behaviour in terms of existing ones.

This chapter's presentation of Haggis differs from the ones in [FPJ95a, FPJ96, Fin96] in its

use of type classes to organise the programmer interface to virtual 1/0 devices.

The presentation of how Haggis supports three types of composition, presentational, be-
havioural and application or semantic composition, highlights similarities that Haggis shares
with other user interface systems. Took's UMA architecture [Too9Oa] structures a user in-
terface application into an application and a user interface surface part, which can be
broken up into a medium part (presentational) and a user part (behavioural.) Similar splits
in functionality can be found in various variations on a Model-View-Controller pattern
[KP88, Hi186, Cou87, HBP+93].

The next chapter goes under the hood, and considers some of the infrastructure that un-
derlies the programmer interface to Haggis presented here.

5.6. SUMMARY 133

withGeo :: Widget h => Geometry ha -> ha
withGeo geo = transformGeo (\

- geo)

withSquashX,
withSquashY,
withStretchX,
withStretchY Widget h

(WillOrder, Willingness)
ha
ha

withSquashX squ = transformGeo f

where
f (Geo ghx ghy) = Geo ghxfsquash=squl ghy
f (Space gh) = Space ghfsquash=squl

withMinSize :: Widget h
Size2
ha
ha

withMinSize (Size2 w h) - transformGeo f

where
f (Geo ghx ghy) = Geo ghxfmin-size=wl ghy(min-size=hl
f (Space gh) = Space gh

fixedW Widget h => ha -> ha
fixedW transformGeo f
where
not-willing = (0,0)

:f (Geo ghx ghy) =
Geo ghx(min-size = nat-size ghx,

stretch = not-willing,
squash = not-willingl

ghy
f (Space h) = Space hfmin-size = nat-size h,

stretch = not-willing,
squash - not-willingl

--similarly for fixedH
fixedSize Widget h => ha -> ha
fixedSize fixedH - fixedW

Figure 5.12 Geometry attribute abstractions

i :i CHAPTER 5. COMPOSING IIAGGtS

Left Right

Figtire 5.13 Nlakhig a component rofiiso to resize.

Fo- IxII

Middle

Figure 5.14 Centreing a component.

Button-1

Button-2

Button-1 Piittnn-9

Figure 5.15 Constrained boxing in action.

5.6. SUMMARY' 135

bordered :: Widget h => Size2 ha -> ha
bordered (Size2 w h) wdgt

setDH wdgt $
onRealise (getDH wdgt) wdgt-dh

let
g- getGeo wdgt-dh
mkTileInfo r= TileInfo (g=geo, bbox-r, dh-wdgt_dhl

sz-var <- newVar (Size2 0 0)
let

resize sz@(Size2 cw ch) - do
let

cwl = cw - 2*w
chl = ch - 2*h

writeVar sz-var (size cwl chl)
return (mkTileInfo (rect wh cwl chl))

compute-geo = do
let (Size2 nw nh) = natSize g
return (rect 00 nw nh,

expandGeo (size (2*w) (2*h)) g,
wdgt-dh)

tiler <- mkTiler (TilerMethods resize compute-geo)
return (getDH tiler))

Figure 5.16 Putting a border around a component.

136 CHAPTER 5. COMPOSING HAGGIS

main = do

wopen
env -> do
btn <- button (text "Bordered") () env
return (bordered (size 20 10) btn))

return 0

Bordered

Figure 5.17 Adding border to a button

Figure 5.18 Framing a component.

5.6. SUMMARY 13 7

type ContElt = CompositeContainerElt -- shorthand
moveContainerElt ContElt Coord2 10
translateContainerElt ContElt Translation 10
scaleContainerElt ContElt Scaling 10 Scaling

deleteContainerElt ContElt 10 ()

inContainerElt ContElt Coord2 -> 10 Bool

raiseContainerElt ContElt 10
lowerContainerElt ContElt 10

getContainerEltBBox ContElt 10 Rectangle

getContainerEltGeo ContElt 10 Geometry

Figure 5.19 CompositeContainerElt opci-at ions.

Figure 5.20 'I'lic conilmsitc contamer at w()rk.

138 CHAPTER 5. COMPOSING HAGGIS

/-III
ý,,. L. Lapter

The implementation of Haggis

Haggis has so far been presented as consisting of a set of primitive types and building blocks

on top of which we've seen how a large set of user interface abstractions can be constructed.
This chapter looks at how these primitives are actually implemented in the underlying lan-

guagq Haskell. The goal of the chapter is to give an overview of the implementation work

required to provide the user interface framework we've used so far. An exhaustive presen-
tation of the programming abstractions provided by Haggis can be found in its reference

manual [Fin96].

6.1 Display handles

The display of the graphical surface of a user interface is conveniently structured as a
hierarchy. At each level of the hierarchy, a layout container is in charge of the placement

and size of a set of components, some of which may themselves be containers that manage
their own set of components. In the case of Haggis, the hierarchy does not just control
the presentation of the interactive graphical surface. The container (the parent) is in full

control of its children, controlling its display and general interaction with the external

window system. For instance, the container is responsible for forwarding keyboard and

mouse events to its children. Commands and events are distributed from the top down; at

the top, commands and events are fed in from the external window system, being filtered

and transformed down the hierarchy until consumed by a component.

In Haggis, this hierarchy is built out of display handles. The user interface nature of

a component is represented by a display handle, it provides an interface through which
the graphical surface of the component can be managed. At the programmer level, we

represented the user interface nature of a handle by membership of the Widget type class:

139

140 CHAPTER 6. THE IMPLEMENTATION OF HAGGIS

class Widget h where

getDH :: ha -> DH

setDH :: ha -> DH -> ha

A display handle is represented by the abstract type DH, and the Widget class provides
overloaded operations for getting and setting the display handle associated with a user
interface component handle.

The display handle type is abstract, but new display handle values are created using mkDH:

mkDH :: (SystemCmd 10 0)
(DeviceEvent -> 10
UO Size2)
(10 Geometry)

->, DH

It takes four separate 10 actions that collectively implement the behaviour and look of a
'7- ''"

user interface component. The first action handles all the system commands. It takes an
argument of type SystemCmd, a data type that ranges over the different commands that

can be sent to a component. Figure 6.1 gives the complete definition of the type, but it is
instructive to look at what the individual commands do:

9 Resize newWidth newHeight trans

A component does not control its own size nor position, but is told its dimensions

via the Resize command. Whenever the output area allocated to a user interface is

changed, the'layout is recomputed and the children of a layout container will be told
their new sizes.

The transformation matrix trans, transforms the local coordinate system of the con, -
ponent to the

' global coordinate system in which the component is to be displayed. It
is merely recorded when the Resize command happens, but used when the component
subsequently needs to redisplay itself.

9 DrawWith painter

The DrawWith command changes the painter that a component should use when'it
displays its contents. All display handles have associated with them a current painter$
the DrawWith command replacing the current one. The painter argument is identical
to the data structure used in Section 2.10 to render Picture values. It is a dictionary

of methods implementing the various drawing operations needed to render a Picture

on a particular graphics device.

6.1. DISPLAY HANDLES' 141

One typical use of the DrawWith command is to temporarily replace the painter, e. g.,
by temporarily attaching a PostScript painter to a display handle, the appearance of

a user interface can be captured in a readily printable form.

4P Repair damage

The repair command tells the user interface component that part of its output area
has been damaged and needs to be redisplayed as quickly as possible. When receiving
this command, the user interface component will redraw the damaged region using its

current painter.

* ClipRegion region

A user interface component might be partially obscured by other user interface coln-
ponents, and the MpRegion command informs a component what part of its output
area is currently obscured. The component is obliged to take the clipping region into

consideration when rendering.

o CloseDown

This command is issued when you want to close a component down. When a compo-
nent receives Shutdown it is required to quit, unconditionally.

Focus takeft

A user interface component can ask to become the focus of input device events such as
keyboard presses or mouse movement. It does so by requesting focus from its parent,

as explained in a later Section 6.1.1.

Input device event distribution is normally based on mouse pointer coordinates, but

by acquiring input focus, device events will be forwarded indiscriminately to a selected

component. When a component receives the Focus command, it is notified whether
it has gained or lost focus. The component should then inform the user about the

change in focus, e. g., when a text input field gains input focus, it will perhaps dra%v a
highlighting frame around the input field.

9 ParentContext upHandler

The ParentContext command registers a communication link from the child back up
to the parent. By using the up handler supplied, the child can send requests to the

parent., The range of requests possible together with the type of upHandler is shown
in Figure 6.2 and presented separately in Section 6.1.1 below.

Parental control is the default for the hierarchy of display handles, with the layout

container ordering its children to redisplay, assume a particular size and position etc.

142 CHAPTER 6. THE IMPLEMENTATION OF HAGGIS

data SystemCmd
Resize Int Int Transform Draw Painter
Repair (Portion Region) CloseDown
Focus Bool ParentContext UpHandler
ClipRegion (Portion Region)

Figure 6.1 User interface component system commands

type UpHandler = SystemReq -> 10 ()

data SystemReq
RedisplayReq
ResizeReq Size2 CompassDirection
GeoChanged
FocusReq DeviceHandler
UnFocusReq
DieReq

Figure 6.2 System requests

H, owever, the upHandler provides the child with a sink to forward requests in the

other direction. For instance, suppose we're implementing a text input field and have

to cope with the situation where the user types in a text string that won't fit the

current size allocated to the field. The ResizeReq sz dir request can be used to ask
the parent of the field for some more space. The parent is not obliged to honour the
request, " or if it does, allocate the exact increase in size that was asked for. Hence, the
input field cannot take on a new size until it is told so via a Resize command.

Returning to the definition of mkDH, the second action deals with interaction from the user,

receiving device events of type DeviceEvent forwarded from the parent. The DeviceEvent

type is defined in Figure 6.3. It is a record type, holding information that is shared by all
input device event together with an EventType value that more precisely records what kind

of user interaction event it is.

Notice that the device events could have been made part of the SystemCmd by includ-
ing the DeviceEvent record as a constructor. The reasons for having them separate is
that in the case of abstractions such as catchDeviceEv, it is only interested in intercept-
ing device events, so by separating the handling of device event from system commands,

6.1. DISPLAY HANDLES ' 143

data DeviceEvent
DeviceEvent (

, mods :: ModState,

pos :: Coord2,
tstamp TimeStamp,

evt EventType
I

modifiers
position of mouse pointer

data EventType
MouseButton PressedState MouseButton
MouseClick MouseButton
MultiClick MouseButton Int(-no of clicks-I
MouseDrag MouseButton Coord2
Key PressedState KeyValue
Motion I Leave I Enter

data PressedState = Down I Up
type MouseButton = Int

Figure 6.3 The DeviceEvent data type

catchDeviceEv does not have to manually forward all the system commands.

The EventType type has constructors for common types of low-level mouse and keyboard

interaction events. The use of a data type restricts extensibility of the range of input devices

and events supported by Haggis. Adding new ones would require changing the data type

and recompiling all abstractions that use DeviceEvents.

The last two actions passed to mkDH return the current size and geometry of the output

area of a component. These two could have been combined into one action, returning the
information as a pair.

6.1.1 System requests

The ParentContext command provides a child with an up handler through which a com-

ponent can request its parent to change its size, for instance. The type of the up handler

is

type UpHandler = SystemReq -> ID ()

144 CHAPTER 6. THE IMPLEMENTATION OF HAGGIS

with the SystemReq data type defining the set of requests the child can issue. The type is

defined in Figure 6.2, with the requests performing the following functions:

9 RedisplayReq

This request is used to redisplay a component. When a parent receives a RedisplayReq,

it tries to issue a redisplay command to the child that issued the request.

9 ResizeReq sz dir

Request the parent if

9 GeoChanged

Whenever the geometry attribute of a component is changed,
the GeoChanged notification is issued. It tells the parent to update the
Geometry information it may have cached for the child.

o FocusReq

Ask the parent for input focus, supplying the device handler dh, it should forward the
device events if the parent decides to grant focus to the child. If the focus is granted,
the child will be sent the Focus True command.

UnFocusReq

Ask the parent if a child can have its input focus dropped. If it is granted, the child
will be sent the Focus False command.

9 DieReq ,-ý
This request informs the parent that the child wants to shut down. If the child is

allowed to shut down, the CloseDown command is sent to the child.

6.2 Display contexts

When a user interface component is created, it needs access to information from the windoW
system it will appear in and other pieces of setup information. This information is passed
to all actions that create components through a display context environment. It consists of
two different pieces, a Window and a Style:

createDC Window -> Style -> DC

getStyle DC Style

getWindow DC Window

6.3. ACCESSING THE WINDOW SYSTEM 145

Since all actions that create a user interface component, take a display context as argument,
we create a type synonym to capture this:

type Component a= DC -> 10 a

It could be argued that the passing of the display context should be done implicitly, using
monadic programming techniques [Wad92], instead of relying on the programmer plumbing
this environment around explicitly. The reason for not doing so in Haggis is that graphical
user interfaces are treated as virtual 1/0 devices and interacted with just like any other
1/0 device in Haskell. Programming 1/0 in Haskell means the use of the Ic monad, and
it is unclear how to combine the ID monad with a monad that passed a display context
environment in a programmer transparent and extensible manner.

6.3 Accessing the window system

The components do at various times have to access the external window system. Through

the window handle that each component is passed in via its display context, the properties of
the window system can be accessed. The Window interface'defines a set of abstract window

system operations. Type signatures for a selection of them are given in Figure 6.4.

One attribute of a window is that it has a painter. When used, the painter will render into

the window, using whatever low-level graphics calls necessary.

The operation setWindowHandle provides the interface between the display handles and

a window system. It sets the display handle that is to appear within that window, and
the display handle supplied is normally a hierarchy of handles. The window takes care of
interfacing with the window system, and will convert and forward all the events it receives
from the system to its display handle. In the case where the receiving display handle is a
layout container, say, the latter will then take over and correctly distribute and forward the

incoming events. The processing and delivery of events happens concurrently to the rest of
the application, relieving the application from having to listen for external system events.

6.4 Custornising components

A user interface component can be configured in many ways, e. g., to ensure consistency of
look, the combination of colours used in an application has to be consistent throughout.
User interface components can have a number of attributes controlling the appearance and

146 CHAPTER 6., THE IMPLEMENTATION OF HAGGIS

getWindowPainter :: Window ID Painter

getWindowSize Window 10 Size2

getWindowPos Window 10 Coord2

moveWindow Window Coord2 10

resizeWindow Window Size2 10

IredisplayWindow :: Window -> 10 ()

getWindowCursor
setWindowCursor

iconifyWindow
getWindowIcon
setWindowIcon

Window ID Cursor
Window Cursor -> ID

Window 10 () i
Window 10 Icon
Window Icon -> 10

getWindowTitle Window 10 String

setWindowTitle Window String 10

getWindowHandle Window ID DH

setWindowHandle Window DH -> 10

Figure 6.4 Window operations

behaviour of their graphical surface. The simplest solution to customisation is to rebuild
the application each time a change in appearance of the components is needed. This is

clearly not practical f6r anything but the smallest of applications. 1

Another problem of expressing the customisation of components using the same prograrn-

ming language is that the wealth of options that can be set for a component, runs the

risk of drowning the application in tedious detail. For example, the label action could be

parameterised over all the options it supports:

label :: Colour J-fg-I -> Colour f-bg-j

-> Font
BorderType
Size2

'Depending on the language and programming environment used, the pain threshold for the programmer
will differ by quite a margin, i. e., making incremental changes such as modifying the background colour for
all components in a programming environment that supports rapid prototyping, is not as onerous as doing
the same operation with a batch compilation system.

6.4. CUSTOMISING COMPONENTS 147

->-Justification
String
Component Label

Clearly, this is not a viable solution; the large number of arguments makes for hard reading
(and use) of invocations of label. In Haggis, the problem of customisation of components
is dealt with by the introduction of style environments. A style environment is a database

of style attributes that can be queried when a component is created. For each of the

options that a particular component supports, the style environment is consulted for what

value to use. Based on the results of the queries, the component is created. To make this

work, this assumes that all actions that create user interface components are passed a style

environment, via the display contexts presented in Section 6.2.

A style environment can either be created by reading it from a file or by supplying the style

attributes in a list:
I

MkStyle [StyleValuel Style

loadStyle String ID Style

type StyleName = String

type StyleValue = (StyleName, String)

An entry in a style environment is called a StyleValue, a pair holding the name of the at-
tribute and its corresponding value, both specified using character strings. The syntax used
for StyleName is identical to that used by the X11 resource manager abstraction (Xrm) [S G 92].
Once having decided upon using style environments to deal with customisation, opting for

the Xrm syntax was the sensible choice as it doesn't force the end-user to learn any new

notation when using Haggis compiled programs.

To query the contents of the environment, lookupStyle is used:

lookupStyle :: Style -> String'-> ID (Maybe String)

Given the style environment and the complete name of tile attribute we're interested in,

lookupStyle returns a possible match. The names used are hierarchical, reflecting the

context in which an attribute is needed, Le, for a label, the following name could be used

when looking up the foreground colour to use,

Counter. HBox. Label. foreground

148 CHAPTER 6. THE IMPLEMENTATION OF HAGGIS

The hierarchy levels are separated by dots, and in this case, the foreground attribute is

prepended with the name of the component (Label), and the layout abstraction that con-

trols the label (HBox.) Counter is the name of the application.

To specify the contents of a style environment, a StyleValue can give the name of the

attribute together with its value, i. e.,

("Counter. HBox. Label. foreground", "blue")

Wildcards can'also be used to match against parts that are either unknown or simply not

of interest:

("*. Label. foreground", "blue")

("*. foreground", "Yellow")

The first StyleValue will match against the foreground colour attributes of all labels,

while the second matches against all foreground attributes. Asterisks denote zero or more

name levels, and the matching algorithm used by lookupStyle gives these wildcards lower

precedence than a string. This means that when querying with the string,

Counter. HBox-Label. foreground

the first entry will match rather than the second. 2

'Style environments can be joined together with concatftyle:

concatStyle, Style Style -> Style

appendStyleValues-,::, [StyleValueI -> Style -> Style

The expression concatStyle sl s2 creates a new style environment, where lookups are
resolved by first trying s I, and if no match is found, s2 is used.

Being able to combine style environments allow parts of an application to enforce the style
defaults that should apply for it. For instance, the implementation of a push button appends
its defaults to the style environment it is passed via the display context.

AppendStyleValues augments a style environment, i. e., appendStyleValues vals (concaLtstyles

sl s2) augments s2 with the vals style attributes.

In addition to style attributes, the Style environment also accumulates the name and aliases
to use when looking up style values:

2 Assuming these are the only two entries in the environment matching a label's foreground, of course.

6.4. ' CUSTOMISING COMPONENTS 149

setStyleName StyleName Style Style

addStyleName StyleName Style Style

- addStyleAlias :: - StyleName -> Style -> Style

The addStyleNarae combinator appends a name to the name, that is if the current name of
sty is

puzzle. board

the expression addStyleName "piece" sty returns a style with the following name

puzzle. board. piece

A style name is a sequence of strings separated by periods. Additionally, a style can be

associated with a set of aliases, which are useful when setting the defaults for a class of
user interface components. To see why, the following pair of style attributes control tile
background and foreground colour of a specific button:

*. ok-button. background: midnightBlue

*. ok-button. foreground: yellow

However, sometimes it is useful to distinguish between a particular instance of a user in-

terface component and its type or the group it belongs to, e. g., instead of setting the
background colour of a specific button, we want to set it for all buttons:

*. Button. *. background: blue

Here, Button is the alias given to all components created from the function button. A

user interface component can have multiple aliases together with a name. When looking

up the style name takes priority over aliases, so the button named ok-button would have

a midnightBlue background colour.

To integrate the use of Style together with user interface components, the following func-

tions are provided:

withStyle [StyleValuel Component a Component a

withStyleName StyleName Component a Component a

withStyleAlias StyleName Component a Component a

getstyle Component Style

150 CHAPTER 6. THE IMPLEMENTATION OF HAGGIS

lookupStyle :: Style -> StyleName -> 10 (Maybe String)

The withStyle adds a set of style attributes to the Style environment passed via the
Component type. The lookupStyle action does the lookup using the attribute name sup-
plied and the style name accumulated by the Style.

The Style type presented here draws upon ideas from the Style interface in Fresco[Fre94],

and the older X11 resource manager abstraction xrm[SG92].

Wily use styles?

The style environment was introduced to aid in the customisation of a component, but why
opt for the solution just presented? There's a couple of motivations for doing so:

Easier to prototype.

The use of a separate resource mechanism to control the look and sometimes the feel

of an application, is common in user interface systems with longer turnaround times.
That is, user interface systems that rely on a compilation system with sufficiently high

overhead to discourage tweaking and the experimentation with the configuration of a
component.

A style environment is separate from the application. For instance, an application's
style attributes can be specified separately in a file.

* Customisation via programming is hard.

A component may have a wealth of configuration options that is supports. Using the
abstraction mechanisms provided by the application's programming language, it is
hard to come up with a solution for configuring a component without overloading the
program with a lot of configuration specific information.

Having a separate "language" for specifying the configuration attributes has the ben-

efit of separating the application from the detailed listings of what style attributes to
use.

s User customisation.

Style attributes can be specified in a file or on the command line, and provide a limited
form of end-user programming. By modifying or adding to the style environment used,
an application can be modified by a non-programmer.

6.5. REALISATION 151

It is worth noting that the Style environment relies on representing attribute values as

character strings. This does introduce overheads of converting values to and from strings,
but the relative ease by which attributes can specified/modified does make up for this.

6.5 Realisation

To easily and conveniently realise a user interface on your screen, Haggis provides a small

collection of operations. The most common of them being wopen,

wopen Widget h -> Component (h a) 10 (h a)

mkDC StyleAttrs -> 10 DC

realise Widget h => DC -> ha -> 10

which takes care of creating a window to display a user interface within before attaching
the display handle representing it to that window.

A more flexible form of realisation is possible with the mkDC and realise pair, which

separate the creation of a window and the subsequent realisation of a user interface within
it. mkDC creates a display context containing a window and a toplevel style environment.
The realise action then takes a handle from a component created using this display context

and opens up the window and starts to forward commands and events from the external

window system.

The latter form of realisation is useful when you want to specify an initial style environment
that contains information relevant to the creation of the window itself, i. e., in the case of

an X Window System implementation, what display to create the window on:

main = do

env <- mkDC ["*. display: foo: 0.0111

btn <- button (text "Greetings to foo") 0 env

realise env btn

6.6 Summary

This chapter has given a quick overview of some of the important pieces of the implemen-

tation underlying the programmer eye view of the user interface framework Haggis. The

interface between this implementation and the Haggis programmer is display handles, and

152 CHAPTER6. THE IMPLEMENTATION OF -HAG GIS

the primitive abstractions that create display handles were presented. Additionally, the

underlying protocol that display handles implemented were presented in some detail.

fl-I 11

,,.. apter

Evaluating Haggis

The last two chapters have presented the features of the Haggis user interface framework

in some detail. Prior to this, we explored in Chapter 3a number of user interface systems

and their relative advantages and disadvantages from a programming point of view. So,

how does Haggis compare to these?

To try to highlight how the programming model that Haggis offers differ from that of other

systems, this chapter presents the implementation of an example application. in Haggis

and compares it to how the same application is expressed in two mainstream user inter-

face frameworks, Java's Abstract Windowing Toolkit[GY+96] and the Tk toolkit of Tcl

[Ous94]. Using these example implementations as a basis, we discuss how the different

systems compare along a number of different dimensions. The goal here is not to try to

answer conclusively whether Haggis is 'worse' or 'better' for writing graphical user interface

applications, but to present an indicative evaluation of its relative strengths and weaknesses

compared to other systems.

7.1 Example: 15 puzzle

The example used to compare the different systems is the fifteen puzzle, a board game that

is small enough for the purpose of presentation here, but which highlights many features of

a graphical user interface framework.

The game consists of a four by four board with fifteen labelled pieces occupying all but one

of the sixteen positions. The goal of the game is to arrange these pieces. Assuming the

pieces have numbers in the range one to fifteen on them, the puzzle is solved by ordering

the pieces in ascending order, left to right, top to bottom, i. e., the piece labelled one in

the top lefthand corner, and the piece in the fifteen in the bottom row, third column. The

153

154 CHAPTER 7. EVALUATING HAGGIS

Pieces

Figure 7.1 The architecture of Haggis puzzle.

empty hole occupies the bottom righthand corner.

Only pieces immediately next to the unoccupied position on the board can be moved,

vertically or horizontally, leaving a hole behind.

7.2 The Haggis solution

The short description of the, game presented above states the rules without mentioning user
interface iss

,
ues such as what the pieces would look like and how the user can move then,

about. Achieving this separation between the game ('the application') and its user interface
falls quite naturally here, but it is worth trying to mirror it in an implementation.

Starting with the Haggis version of the puzzle, Figure 7.2 shows the architecture of the

solution., The middle component, Puzzle, takes care of the game control and is implemented
by the puzzle action:

puzzle :: Board Piece Pos

-> Pos
[Piece]

ID ()

It accepts three arguments; the first argument is a board abstraction that given a value
identifying a piece, returns its position on the board. The second argument is the current
position of the hole on the board, and the last argument is a stream of values representing
the sequence of moves performed by the user.

The puzzle action checks each move to see if it is valid or not. If the piece the user wants
to move is next to the hole, the piece is moved by updating the Board abstraction with its

7.2. THE HAGGIS SOLUTION

new position, and the next move is considered with the piece's old position being the new
hole. Illegal moves are simply ignored.

The implementation of puzzle is as follows:

puzzle board hole moves =

case moves of
0 return finished, no more moves.
(m: ms) do

pos <- pieceAt board m
if pos 'nextTo' hole then do

movePiece board m hole

puzzle board pos ms

else
puzzle board hole ms

The puzzle action is recursive, examining all the moves in the list it is passed before

returning.

The test for whether a move is valid or not is performed by the nextTo predicate:

nextTo :: Pos -> Pos -> Bool

nextTo (ax, ay) (bx, by) = (abs (ax-bx) + abs (ay-by» -- 1

type Pos = (Int, Int)

It checks to see if a pair of positions are adjacent to one another either horizontally or

vertically. The representation used for positions is a pair of integers representing the x and

y positions on the board.

The association between puzzle piece and its position on the board is maintained by the

Board abstraction, having the interface presented in Figure 7.2. It provides operations for

moving a piece to a new position and querying the current position of a piece.

The puzzle action describes
'
the game control logic, but how can we attach a graphical

user interface to it? Looking at Figure 7.2 again, the Puzzle component is attached to the
puzzle board component, which implements the graphical representation of the board. For

the pieces, buttons with numeric labels are used:
,

piece :: Int -> Component (Button Int)

piece val = button (text (show val)) val

156 CHAPTER 7. EVALUATING HAGGIS

data Board piece pos f- abstract type -1

pieceAt Board piece pos piece 10 pos
movePiece Board piece pos piece pos -> 10

mkBoard (piece IG pos) pieceAt action
(piece pos -> 10 0) movePiece action
Board piece pos ,

Figure 7.2 The Board interface

board :: Size2 -> Component (Button Int, Table)
board szQ(Size2 w h) env = do

pieces <- mkPieces
let
table-elts E(Pos, Button Int)]
table-elts zip posns pieces

in
tab <- mkFixedTable (w, h) (1, I) table-elts env
btn <- hCombine pieces
return (btn, tab)
where

labels -
mkPieces = mapM (\ x -> piece x env) labels

posns = Ux, y) Iy <- [I.. hl, x <- [I.. wl I

Figure 7.3 The 15-puzzle game board in Haggis.

where button creates a push button with the first argument as label. When the button is

clicked, the integer val is reported on the Button handle returned.

To arrange the pieces, a fixed table layout abstraction is used. It takes care of displaying a
set of user '

interface components in a two-dimensional grid. The width of each cell is equal
to the maximum natural width of all the components; ditto for the height.

Using the fixed table, the action for creating the puzzle board is shown in Figure 7.3.

Given the board size, the board action constructs a table filled up with puzzle pieces. ý All

but the cell in the lower righthand corner of the table is initially allocated a piece.

The board action returns the handle to the fixed table along with a button handle re pre-

7.2. THE HAGGIS SOLUTION 157

senting the join of all the pieces. The hCombine action takes a list of button handles and
returns a new combined handle which reports a button click whenever any of the buttons
it represents are clicked.

To join the board presentation together with the part implementing the rules, the user
interface needs to be dressed up as the Board representation of Figure 7.2 for thel puzzle
action to use. The boardSetup action takes care of this:

boardSetup :: Size2 -> Component (Button Int, Board Piece Pos)

boardSetup (Size2 w h) env = do
(btn, tab) <- board (size w h) env
board-array ' <- newArray (1, (w*h-1)) undefined

sequence (zipWith (writeArray board-array) [I.. (w*h-1)] posns)
let

board - mkBoard
(readArray board-array)
(\ Piece pos -> do

old-pos <- readArray board-array piece
writeArray board-array piece pos

swapTableElts tab old-pos pos)
in .I
return (btn, board)

where
posns Ux, y) Iyx

It creates the board of the right proportions, before setting up an array which maps piece
labels to their position on the board. Using this array, a Board is created. Since the array
maintains the mapping from labels to board positions, the first argument to mkBoard just

indexes the array. Moving a piece is little more work, updating the array and moving
the button to a new position in the fixed table. The boardSetup action return the Board

together with the button handle representing all the pieces on the board.

Finally, to hook the puzzle up to its graphical surface, nnPuzzle creates a window to display

the board in and then starts playing:

nnpuzzle :: Size2 -> 10 0

nnpuzzle szQ(Size2 w h) - do
(btn, board) <- wopen (boardSetup sz)

cs <- toStream (hGet btn)

158 CHAPTER 7. EVALUATING HAGGIS

puzzle board (w, h) cs

Since the puzzle action expects the sequence of moves to be represented via a list, the

toStream helper function is used:
7

toStream :: ID a 10 [a]

which, on demand, constructs a list of values by repeatedly performing the 10 action it is

passed. The stream consists here of values coming from the user clicks on the puzzle pieces.
When the puzzle action sees a legal move, it moves the piece via the movePiece action on
the Board action. This has the effect of updating both the mapping of piece label to board

position and moving the piece on the screen, but the details of how that is done is hidden
from the view of the puzzle action.

That completes the implementation of the fifteen puzzle for Haggis, Figure 7.6 shows a
screen dump of the application running, and the code to implement is presented in its

entirety in Figure 7.4 and Figure 7.5.

7.3 The Java/AWT solution

The Java programming language [AG96] comes with a standard set of class libraries for
implementing graphical user interface applications, the Abstract Window Toolkit (AWT)
[GY+96]. The Java version of the fifteen puzzle uses AWT to implement the interactive

graphical surface of the puzzle. 1

Before considering any user interface issues, the representation of a board is packaged up
in a Board class: ýý

public class Board

private Object[][] board;

public int width, height;

boardo f this(4,4);

board (int w, int h) I
board - new Object [w] [h] ;

'The solution presented here uses the version of AWT that was shipped with the Java Development Kit
(JDK), version 1.0.1. At the time of writing, the current version of the JDK is 1.1.1, which changes AWT
somewhat.

7.3. THE JAVA/AWT SOLUTION 159

width - w;
height = h;

I

public void setPos(int x, int y, Object on-off) (

board [xl [y] = on-of f; I

public Object atPos(IInt x, int y) (

return board[xl[y]; I

I

It hides the representation of the two-dimensional board, providing methods for accessing
and updating the board plus variables holding its size. Internally, the board uses an Obj e ct
array to hold the'pieces, the Object class being the base class that all Java objects inherit
from. Notice the parallel here with the use of type variables and parametric polymorphism
for the Board Haskell abstraction in Figure 7.2. A type variable ranges over all possible
values, just like Object. However, whereas the Board type in Haskell is parameterised over
the type of its elements, the Board class is not.

As in the Haggis version, the pieces of the puzzle are represented by push buttons. We
factor out this choice of representation by creating a Piece class, which subclasses from the

standard Button7 as shown in Figure 7.8.

In addition to a pair of constructors, the Piece class overrides the push button's handleEvent

method. This method controls how events are interpreted by a user interface component,

and in the case of Piece, each event corresponding to a button click are caught. Tile

handleEvent method returns a boolean indicating whether or not it handled the event. If

the component didn't, the event is passed up to its parent in the display hierarchy. Tile

reasons for doing this will become clearer after having looked at how the presentation of
the game board is implemented.

The implementation of the puzzle and game board is packaged up as an Applet, mak-
ing it easy to embed inside a web browser. Figures 7.9 and 7.10 shows the code for the

Fif teenPuzzle class, and Figure 7.11 has a picture of the applet running.

The Fif teenPuzzle class implements both the puzzle control logic and the graphical inter-

face for the puzzle. Its constructor shows some of the concerns of this class:

gameBoard (int w, int h) (

Board = new board(w, h);

160 CHAPTER 7. EVALUATING HAGGIS

hole - new Dimension(w-l, h-1);

setLayout(this);

setupo;
I

It initialises the puzzle state, creating an abstract board of the right dimensions and
a two-dimensional value holding the board position that is currently unoccupied. The
Fif teenPuzzle class implements its own layout management, and setLayout registers the

manager. In AWT, the interface LayoutManager specifies the methods and functional-
ity of an object that wants to control the placement of a set of objects. In the case of
Fif teenPuzzle, it takes care of the layout of the pieces on the board. The method at the

core of the layout management is layout Container:

public void layoutContainer (Container parent)
for(int x=O; x< Board. width; x++) (

for(int, y7O; y< Board. height; y++)
if (x hole. width 11 y != hole. height

Component foo = (Component)Board. atPos(x, y);
foo. reshape(x*50, y*50,50,50);

} I

It maps the position of a piece on the abstract board that the Fif teenPuzzle maintains to a
position ý and siz e inside the display area maintained by a
Fif teenPuzzle object.

To implement the user interaction, the class also overrides the handleEvent:

public boolean handleEvent (Event ev)
if (ev. id - Event. ACTION-EVENT) f

return (mouseUp(ev, ev. x, ev. y));
I else f

return (super. handleEvent(ev));

I

The puzzle pieces and the board cooperate here. Each time a piece is clicked on by the

7.4. THE TCL/TK'SOLUTION 161

user, it passes the event that signals this up to its parent in the display hierarchy, see
Figure 7.8. The above handleEvent method catches these events, passing them to MouseUp

which checks whether the button click indicated a valid move. The implementation of
the mouseUp method is shown in Figure 7.10. If the move is a valid one, the abstract
representation of the board is updated. To force the puzzle display to reflect the change,
the contents of the container is invalidated. As a result, the layoutContainer method will
eventually be called upon to reposition the pieces.

7.4 The Tcl/Tk solution

The next version of the fifteen puzzle is implemented in the language Tcl[Ous94] using its

user interface toolkit Tk. Tel is a scripting language, where the emphasis is on making it

easy to prototype or 'glue together' components of an application. These applications are
often graphical, and the Tk toolkit provides a good fit for the kind of scripting that Tel is

used for.

The- solution to the 15 puzzle presented here is taken from a demo application included

with the Tcl/Tk distribution. The implementation is split up and formatted into three

parts, Figure 7.12 shows the code that creates the puzzle board. User interface elements
are created with Tcl/Tk using the following syntax:

ui-type instance-id [-optionl valll*

That is, apart from giving the type of user interface element you want to create, you have

to give the instance you're creating a name. This name is the handle by which you later can
access and modify the properties of a user interface component. In addition to name, you
can also set a number of configuration options, e. g., the -text option to a push button sets
the button label. User interface components are wired into the application using callback

procedures, specified via the comand option. For instance, the dismiss button,

button $w. buttons. dismiss -text Dismiss -command "destroy $wIl

has a callback procedure that destroys the toplevel. window of the puzzle when it is clicked. 2

Figure 7.14 shows the code that creates and places the individual pieces on the board.
Each piece is represented by a button, and the layout is explicit, placing each piece within

2 Tcl has a number of mechanisms for delaying and controlling when an expression is evaluated. Enclosing
a string within double quotes is one of them, delaying the interpretation of its contents. Hence, the destroy
command is executed when the button is clicked, not when the button is created, which is clearly the
behaviour we want here.

162 CHAPTER 7. EVALUATING HAGGIS

a display frame. Each piece has a callback procedure that calls puzzleSwitch, whose
implementation is shown in Figure 7.15. The puzzleSwitch procedure implements the

puzzle control, checking to see if a button click constitutes a valid move. If so, the piece is

moved into the position of the current hole and the (global) data structure that holds the

state of the board is updated.

A screen shot of the Tcl/Tk version of the 15 puzzle is pictured in Figure 7.13.

7.5 Evaluation

Having gone through
,
three implementations of the fifteen puzzle in some detail, what dif-

ferences do we see between them? To help structure the discussion of their differences, we
evaluate the solutions along a number of different dimensions. The dimensions are based

on some of
,
Green's cognitive dimensions[GP96] plus a selection of properties that are con-

sidered desirable in user interface software. They are:

Ease of changelviscosity. Pinning down a priori what is a convenient and effective
graphical user interface for a particular application is hard. Commonly, this is an
iterative process. As the overall design, implementation and testing of the application
progresses, the interactive and presentational parts of it will also have to be changed
and modified through a process of experimentation. A programming system that is
less viscous will make it easier to perform such incremental local changes.

Another positive aspect with a low viscosity programming system is that it promotes
reuse; if it. is convenient for the programmer to incrementally modify and specialise
an existing abstraction, that will be the preferred option rather than starting fron,

scratch. However, the creation of an abstraction that can be reused doesn't come'for
free. If the possibility of reuse is not taken into account when working on a design, any
subsequent reuse is likely to be accidental, no matter how viscous the programming
system is.

Separation. Does the user interface system conveniently allow the programmer to
separate distinct implementation concerns? A long and much sought after property
for graphical user interface systems is the ability to separate the implementation of
the interactive graphical surface from the rest of the application [ABD+89, Coc88,
Too90b]. The components that are part of a separable user interface design are weakly
co4; ed, the dependencies between them are kept to a minimum. By keeping the
dependencies low and well defined, separation aids the dimension of viscosity.

'7.5. EVALUATION 163

9'Premature commitment. Does the programming system force you to make decisions

on issues before you want to or have the information available? e. g., when designing

the puzzle board, did the system force you to consider details of how each piece would

communicate information to its parent?

*., Abstraction. How well does the programming system support the creation of new user
interface abstractions? In the case of the fifteen puzzle, did the different systems lead

you to create any new abstractions?

Other dimensions, such as viscosity and separation, are in part the result of how

well a system supports user defined abstraction, but it is interesting to consider this
dimension on its own.

UI influence. How large an impact does the presence of a graphical user interface have

on the overall solution? This dimension is related to that of separation, but differs in
that it considers the logical separation between the components.

Abstraction gradient. How well does the programming system scale? Implementing

the simplest of programs in a system will require the programmer understanding of
a base set of concepts and abstractions. The abstraction gradient dimension tries
to gauge how the programmer abstraction load increases as the applications become
larger and more diverse. For instance, an application that needs to organise its pre-
sentation in a way that isn't supported by existing abstractions, may force the pro-
grammer to have to learn and implement an additional set of abstractions.

Rapid Prototyping How well does the system lend itself to the prototyping of user
interface applications? This dimension touches upon characteristics of the system
implementation, such as, is the time it takes between making a source code change and
seeing the effect of it in a running application short enough for rapid prototyping to
be feasible? Also, how much help does the programming language offer the prototype

programmer?

The cognitive dimensions of Green and Petre form a framework for performing broad-brush

evaluation of programming notations. For our purposes here, only a selection of the cognitive
dimensions is used, leaving out the ones that touch upon aspects of the programming

environment and notational details.

A summary of the dimensions is given in Figure 7.16, and with those in mind, it is time to

evaluate the different solutions:

o Separation

164 CHAPTER 7. EVALUATING HAGGIS

The fifteen puzzle does provide the opportunity for creating a solution where the

concerns of the user interface is separated from that of the application (what there is

of it here.) The rules of how the puzzle pieces can be moved and the effects of a move
are independent of what the pieces or board look like or behave.

The, Haggis solution factors out the control of the puzzle into a separate piece, see
the Puzzle module in Figure 7.4. The, function implementing the puzzle is defined

as taking as input a stream of user moves, all of which are checked for validity before

updating an abstract board. No mention is made of how the stream of moves map
to the interaction performed by the user, nor how an update of the abstract board

causes its graphical representation to be updated.
At the user interface level, the pieces are combined together in two ways. First,
the layout of the pieces is done through the use of a standard table abstraction and
secondly the handles for the pieces are all combined together into one. The combined
handle reports a value whenever a value is reported on any of the piece handles.
Hence, the Haggis solution manages to separate the construction (and maintenance)
of the display hierarchy from the handling of how user actions on puzzle pieces are
communicated to the underlying application. This can be seen from the type signature
of board in Figure 7.5, which returns a pair of handles, one representing the application
view of the pieces, the other representing their physical layout.

The Java solution in Section 7.3 does not have as clear a modular structure. The

abstract representation of the puzzle board and the individual pieces is factored out
into separate code chunks, but the main class Fif teenPuzzle has the responsibility of
managing the physical presentation, puzzle logic and the handling of user interaction.

Unlike the Haggis solution and its use of fixed tables, the Java version cannot directly

make use of any of the standard AWT layout containers, and is forced to implement
its own.

'
The FifteenPuzzle class implements the LayoutManager AWT interface

and the code required to do so is not particularly complex, see Figure 7.9. Since the
tabular layout used needs to keep track of its contents, the implementation has access
to the Board object that holds the pieces. When the mouseUp method has validated a
user move as valid, the Board object is updated to reflect the move and the contents of
the layout container is invalidated, so that its layout is recomputed and redisplayed.

The Tcl/Tk solution does not factor out any parts of the puzzle.

* Premature commitment
The Java solution forced the issue of how interaction on the puzzle piece had to be
communicated to the board. In the version of the JDK used here, the progarnmer was
forced to understand the event distribution model and how to implement a method

7.5. "EVALUATION, 165

that overrides the default behaviour. Also, since the Fif teenPuzzle class implements

both the concerns of the user interface and the application, you had to commit to a

specific layout and had to learn the details of how to implement it. Only after the
implementation of the layout container, could the puzzle control logic be implemented.

In comparison, the Haggis solution had a top-down structure. The rule of the puzzle
could be expressed abstractly without regard to how the board was going to be pre-
sented to the user. Details of how to do the physical layout was tackled independently
from how it connected into the puzzle, but requiring the programmer to combine the
handles of each individual piece into one so that the board could then be glued to-

gether with the part implementing the puzzle rules. Overall, the fifteen puzzle could
be implemented without Haggis forcing your approach to solving the problem.

The Tcl/Tk solution is dictated by the steps you have to follow to create a window
displaying a collection of buttons. To create the individual pieces, the system requires
you to come up with a unique label together with the callback function to invoke when
the piece is clicked.

* Abstraction

The fifteen puzzle is a small example, and consequently there's not a lot of reusable
abstractions that could be created. For the Haggis version, the puzzle function in
Figure 7.4 almost provides a general abstraction for controlling board games, but since
the test of a valid move is hard-wired to use one suited for the fifteen puzzle, it falls

just short. However, this can be fixed easily by adding a parameter to puzzle holding

the (higher-order) function that checks for valid moves.

Apart from the Board class which is a simple two-dimensional board abstraction, the
Java solution does not have any readily reusable abstractions. Notice that inheritance
is used in a number places to create abstractions that specialise existing classes, e. g.,
the Piece class adapts a standard button for use in the puzzle. The class mechanism

and inheritance is very well suited for this, overriding and specialising select pieces of

;, a component's behaviour and functionality.

do UI influence

The AWT does impose itself on the Java solution in a number of places, for instance,

the distribution of events influences how the user interaction was structured. Another

place is the use of Java interfaces to specify how layout abstractions are done. It made
it convenient to group the layout abstraction with the implementation of the puzzle
rules.

166 CHAPTER 7. EVALUATING HAGGIS

An example of non-influence is the Haggis puzzle action which abstracts away from

the details of any user interface system.

It could be argued that the Java solution could be expressed differently; instead of
bunching the layout of the puzzle pieces together with the puzzle rules, both these

parts could have shared and interacted with an abstract representation of the puzzle.
However, since layout management is expressed as an interface in AWT, this made it

convenient and to some extent natural to group the two together. The same didn't
happen in the Haggis version, where'a natural starting point was to express the puzzle
without regard of what the user interface might look like.

Rapid Prototyping

Both the Java and Haggis systems relied on a compiler to convert the programs into

an executable format. In the case of Java, the turnaround times were acceptable3 I
but for Haggis they were not. A compile and link turnaround time of at least 40

seconds is too long when prototyping and making small, incremental changes to the
user interface. Tcl/Tk is an interpretive scripting language, and hence supports a
much quicker turnaround cycle.

A programming system's support for prototyping goes beyond the duration of time it
takes between making a code change and seeing the effects of it in a running appli-
cation. The programming language determines how easy it is for the programmer to
make simplifying assumptions when implementing a prototype, modelling the parts
of a user interface applications that are of interest.

In the case of the fifteen puzzle example, there's little need to prototype the game itself,
as the rules of the game are simple and well understood. However, as we've seen, the
Haggis solution had a clear separation between implementation of the game itself and
the interactive surface presented to the user. Making the separation was natural and
didn't come at a great cost in terms of the amount code that had to be written to set it
up. This is an indication of a system that is suitable for prototyping, as it shows that
the creation of a design which clearly separates between its constituent components
can be done without too heavy an investment in terms of implementation work. A
case study of the applicabililty of functional programming languages to prototyping
can be found in [JH94].

9 Performance

Both Haggis and AWT share the property of being built on top of programming
languages that rely on automatic garbage collection. A concern often levelled at

3 The development environment used was Microsoft's Visual J++, version 1.1.

*. 7.6. CONCLUDING REMARKS 167

the use of such languages to implement interactive systems is that this will result in

applications that at arbitrary moments will appear unresponsive while the garbage

collector is running. However, experience with the implementation and use of the
fifteen puzzle and other graphical user interface applications does not show that the use
of a garbage collector is in conflict with having responsive user interface applications.

In the case of the fifteen puzzle, the overall speed and performance of all versions were
satisfactory.

7.6 Concluding remarks

We have in this chapter presented the solution of an example user interface application in
Haggis together with two mainstream user interface systems, Java's Abstract Windowing

Toolkit and Tcl/Tk. On the basis of one example, we should be wary of drawing any
definite conclusions, but the different solutions displayed quite different ways of structuring

and expressing the fifteen puzzle. ---

on the basis of this example, one thing that stands out is the ability to easily create new

abstractions with Haggis. Sealing up parts of the puzzle as separate components resulted
in a solution that had a clearer and better defined architecture.

The Tcl/Tk version didn't define any abstractions, creating the user interface components

and gluing them together using a callback procedure that had access to shared state.

The AWT solution in Java displayed the use of implementation inheritance to create special-
isations of standard user interface classes in a straightforward manner. The AWT solution
did not have a clear separation between the concerns of the puzzle and the layout man-

agement of the puzzle board itself. The framework made it convenient to group the two

together.

168 CHAPTER 7. EVALUATING HAGGIS

module Board

Board,
mkBoard,
pieceAt,
movePiece

where

data Board piece pos
= Board

(piece 10 pos)
(piece pos -> 10

mkBoard (piece 10 pos)
(piece pos -> 10
Board piece pos

mkBoard rd wr = Board rd wr

pieceAt :: Board piece pos -> piece -> ID pos
pieceAt (Board rd rd

movePiece :: Board piece pos -> piece -> pos -> ID
movePiece (Board

- wr) = wr

module Puzzle where

puzzle :: Board Piece Pos

-> Pos
[Piece]
ID

puzzle board hole moves
case moves of

11 -> return no more moves
(m: ms) -> do

pos <- pieceAt board m
if pos 'nextTo' hole then do

movePiece board m hole

puzzle board pos ms
else

puzzle board hole ms

nextTo :: Pos -> Pos -> Bool
nextTo (ax, ay) (bx, by) = (abs (ax-bx) + abs (ay-by»

Figure 7.4 The Board and Puzzle in Haggis.

7.6. CONCLUDING REMARKS 169

module FifteenPuzzle where
import Haggis
import Board

piece :: Int -> Component (Button Int)
piece val - button (text (show val)) val

board :: Size2 -> Component (Button Int, Table)
board szQ(Size2 w h) env = do

pieces <- mkPieces
let

table-elts UPos, Button Int)]
table-elts zip posns pieces

in
tab <- mkFixedTable (w, h) (1,1) table_elts env
btn <- combineButtons pieces
return (btn, tab)
where

labels = [I.. (w*h-1)]

mkPieces = mapM (\ x -> piece x env) labels

posns = E(x, y) Iy <- [I - hl ,x <- El.. w]]

boardSetup :: Size2 -> Component (Button Int, Board Piece Pos)
boardSetup (Size2 w h) env = do

(btn, tab) <- board (size w h) env
board-array <- newArray (1, (w*h-1)) undefined
sequence (zipWith (writeArray board-array) [I.. (w*h-1)] posns)
let

board = mkBoard
(readArray board-array)

piece pos -> do
old-pos <- readArray board-array piece
writeArray board-array piece pos
swapTableElts tab old-pos pos)

in

return (btn, board)

where
posns = Ux, y) Iy <- [I.. hl, x <- [I.. wl I

Figure 7.5 The graphical user interface to the puzzle in Haggis

170

IA
13i 14ý 12

1 101 &

153

64172

I'VALl' N'l IV. ll-\(. (. IS

Figure 7.6 Screendimil) of tll(. I. -) I)ilzzl(. I, jj; jg,, j,,

module Main(main) where

import System (getArgs)
import Haggis

import Board
import Puzzle
import FifteenPuzzle

nnPuzzle :: Size2 -> 10 0

nnPuzzle sz@(Size2 w h) do
(btn, board) <- wopen (boardSetup sz)
cs <- toStream (hGet btn)
puzzle board (w, h) cs

main 10 0

main do
(a: b:

-)
<- getArgs

nnPuzzle (read a, read b)

Figure 7.7 Toplevel control

7.6. CONCLUDING]REMARKS 171

import java. awt. *;

public
class Piece extends java. awt. Button

Piece (String v) ý

this(v, new Font("Arial", Font. BOLD, 16));
I

Piece (String v, Font f)

super(v);
this. setFont(f);

public boolean handleEvent (Event ev)
// pass click notifications upwards.
if (ev. id == Event. ACTION-EVENT)

return false;

else f

return (super. handleEvent(ev));

I

Figure 7.8 The Piece class.

172 CHAPTER 7. EVALUATING HAGGIS

import java. awt. *;
import java. applet. *;
import java. util. *;
import board;
import Piece;

public class FifteenPuzzle
extends Applet
implements java-awt. LayoutManager

static int xoff, yoff;
static Dimension hole;

static board Board;

// Applet initialisation.
public void inito f

this. setBackground(Color. red);
I

gameBoard () f this(4,4);

gameBoard (int w, int h)
Board = new board(w, h);

setLayout(this);
hole = new Dimension(w-l, h-1);

setupo;

public void addLayoutComponent (String name,
Component c) fl

public void layoutContainer (Container parent)
for(int x=O; x< Board. width; x++) f

for(int y=O; y< Board. height; y++) I
if (x != hole. width 11 y != hole. height

Component foo = (Component)Board. atPos(x, y);
foo. reshape(x*50, Y*50,50,50);

IM

public Dimension minimumLayoutSize(Container parent)
return (new Dimension(200,200));

I

public Dimension preferredLayoutSize (Container parent)
return (new Dimension(200,200));

I

Figure 7.9 'Flw 15 puzzl(, in Java, part I

7.6. CONCLUDING REMARKS 173

public void removeLayoutComponent (Component comp) fj
predicate for checking if a click should
result in the hole moving.

static boolean nextToHole(int x, int y)
return ((Math. abs(hole. width x) +

Math. abs(hole. height y))
protected void setupo J

for (int y=O; y< Board. height; y++)
for Unt x=O; x< Board. width; x++

if (x != hole. width 11 y != hole. height
Piece 1= new Piece(String. value0f(l+x+

y*Board. height));
Board. setPos(x, y, l);
add(l);

IM

public boolean handleEvent (Event ev)
catch action events (from the pieces),
and see if the click was relevant.

if (ev. id == Event. ACTION-EVENT) f
return (mouseUp(ev, ev. x, ev. y));

else f

return (super. handleEvent(ev));
11

public boolean mouseUp(Event evt, int x, int y)
if clickBoard(x, y))f

recompute layout and redisplay.
this. invalidateo;
this. validateo;

I

return true;
I

public boolean clickBoard(int x, int y)
int px =x xoff ;
int py =y yoff ;
if nextToHole(px, py)

swap hole and piece clicked.
Board. setPos(hole. width, hole. height, Board. atPos(px, py));
hole = new Dimension(px, py);
return true; // repaint.

else f

return false;
11

public String getAppletInfoo ýreturn "15 puzzle"; j
I

Figure 7.10 The 15 puzzle iii, Java, part 2

174 CHAPTER 7. EVALUATING HAGGIS

Figure 7.11 Snapshot of 15 Imizzle In Jýtva.

7.6. CONCLUDING REMARKS 175

set v puzzle
catch (destroy $wj
toplevel $w

wm title $w "15-Puzzle Demonstration"

wm iconname $w "15-Puzzle"

positionWindow $w

label $w. msg -font $font -wraplength 4i -justify left
-text "A 15-puzzle appears below as a collection

of buttons. Click on any of the pieces next \
to the space, and that piece will slide over \
the space. Continue this until the pieces
are arranged in numerical order from
upper-left to lower-right. "

pack $w. msg -side top

frame $w. buttons

pack $w. buttons -side bottom -fill x -pady 2m
button $w. buttons. dismiss -text Dismiss -command "destroy $w"
button $w. buttons. code -text "See Code" -command I'showCode $wI,

pack $w. buttons. dismiss $w. buttons. code -side left -expand I

Special trick: select a darker color for the
space by creating a scrollbar widget and
using its trough color.

scrollbar $w. s
frame $w. frame -width 120 -height 120

-borderwidth 2 -relief sunken
-bg [$w. s cget, -troughcolorl

pack $w. frame -side top -pady Ic -padx Ic

destroy $w. s

Figure 7.12 Building the puzzle board in Tcl/Tk

176 CHAPTER 7. EVALUATING HAGGIS

A 15-puzzle appears below as a collection of
buttons. Click on any of the pieces next to the
space, and that piece will slide over the space,
Continue this until the pieces are arranged in
numerical order from upper-left to lower-right.

Dismiss See Code

Figure 7.13 Snapshot of 15 ptizzle in TcI/Tk.

set order f3 16257 15 13 4 11 89 14 10 121
for fset i 01 f$i < 151 fset i [expr $i+111 f

set num [lindex $order $i]

set xpos($num) [expr ($i%4)*. 251

set ypos($num) [expr ($i/4)*. 251
button $w. frame. $num -relief raised -text $num

-highlightthickness 0\

-command "puzzleSwitch $w $num"

place $w. frame. $num -relx $xpos($num)

-rely $ypos($num) \

-relwidth . 25 -relheight . 25

set xpos(space) . 75

set ypos(space) . 75

Figure 7.14 Initialisation of thc 15 I)iizzl(, in TcI/Tk.

7.6. "'CONIbLUDING REMARKS 177

puzzleSwitch --
This procedure is invoked when the user clicks
on a particular button; if the button is next
to the empty space, it moves the button into
the empty space.

proc puzzleSwitch fw numl f

global xpos ypos
if f(($ypos($nilm) >= ($ypos(space) - . 01))

($ypos($nilm) <= ($ypos(space) + . 01))
($xpos($nilm) >= ($xpos(space) - . 26))

&& ($xpos($num) <= ($xpos(space) + . 26)))
11 (($xpos($nilm) >= ($xpos(space) - . 01))
&& ($xpos($num) <= ($xpos(space) + . 01))
&& ($ypos($w1m) >= ($ypos(space) - . 26))
&& ($ypos($nilm) <= ($ypos(space) + . 26)W f

set tmp $xpos(space)

set xpos(space) $xpos($nilm)

set Xpos Mum) $tmp

set tmp $ypos(space)

set ypos(space) $ypos($num)

set ypos($num) $tmp

place $w. frame. $num -relx $xpos($nilm) -rely $ypos($num)

I

Figure 7.15 Checking for valid move and updating board.

" Separation. The weak coupling between components of a user interface application

" Viscosity. The ease by which local changes can be made.

" Premature commitment. Does the programming system impose or influence the order
in which parts are designed and implemented?

Abstraction. How well is the creation of user defined abstraction supported?

UI influence. How large an impact does the user interface parts have on the organi-
sation and implementation of the rest of the application?

" Abstraction gradient.

" Rapid prototyping. Is the programming system suited for prototyping?

Figure 7.16 Evaluation dimensions

178 CHAPTER 7. EVALUATING -HAGGIS

fl-I 11
k-..,. L. Lapter

Conclusion

8.1 Summary

This thesis has presented the Haggis user interface framework and its programming model.
It emphasised the use of compositional programming techniques for building graphical user
interface applications. On top of the declarative Picture model for describing static graph-
ical scenes presented in Chapter 2, a representation of user interface components as virtual
1/0 devices was introduced in Chapter 4. The programming representation of these vir-
tual 1/0 devices could be combined together and specialised, to create new user interface

abstractions. This was demonstrated by showing how a variation of different user intcr-

face abstractions could be constructed by combining together existing abstractions to build

'bigger' ones in Chapter 5.

To assess how this compositional view of building graphical user interfaces compared to

mainstream user interface systems, Chapter 7 evaluated Haggis against Java's AWT and
the Tcl/Tk toolkit. The result of the evaluation was a programming model that compared
favourably with these systems.

The programming model that Haggis introduced relied crucially on the support for con-

currency, and Haggis is built using the concurrent extensions to Haskell introduced by

Concurrent Haskell.

8.2 Future work

The work presented in this thesis'has through its exploration of the design space for pro-

gramming graphical applications opened up and exposed areas for future work:

179

180 CHAPTER 8. CONCLUSION

o Virtual I10 devices

The representation of user interfaces as virtual 1/0 devices could be improved in a

number of ways. One unsatisfactory feature of the representation presented in this

thesis was that virtual 1/0 device handles are linear. For example, the following code
is not correct:

main = wopen (\ env -> do

gl <- glyph pic

mouse <- catchMouseEv gl
keyb <- catchKeyboardEv 91

The calls to catchKeyboardEv and catchMouseEv share the glyph handle, both trying
to catch interaction events on its graphical surface. Sharing the user interface part of
a handle (i. e., its display handle) is not possible in Haggis, and will lead to run-time
failure. Handles have to be used in a linear manner, and thus cannot be shared.

A representation of a user interface component that either allowed the sharing of
handles or statically caught any sharing of handles, would be an obvious area for
improvement.

9 Being more declarative

The work presented here does make use of a number of imperative features of Haskell.
For example, several of the components make use of internal mutable state and ex-
plicit concurrency. It could be argued that the result is a system that loses a lot of
the declarative features of the underlying language Haskell, so an avenue of further
investigation would be to try to formulate a more declarative programming model
for graphical user interfaces. Potential benefits of a more 'functional' formulation

would be that traditional reasoning techniques could be applied to user interface ap-
plications. The problem of proving properties of an interactive application could also
become more tractable.

9 Joining presentation and interaction

One feature of Haggis is that it has the simple Picture model for describing graphical
content, and a different, but very similar, model for describing the composition of
user interface components. Combining the two would be preferable, and one starting
point for this would be to explore if we could apply to the domain of user interfaces
the reactive programming models that have been developed to describe multimedia
animations in a functional manner [E1197, Sch96]. By making values time-varying, a

8.2. FUTURE WORK 181

declarative model for describing animations is introduced in a way that doesn't make
use of explicit state nor concurrency. Whether this model can be successfully applied
to graphical user interface applications is an open question.

* Extending the scope

All the examples presented in this thesis have been examples of single-user user inter-
face applications. One natural extension of Haggis would be to augment it to support
the programming of multi-user applications. Extending the scope of Haggis in this

way would provide a good stress test of the compositional programming model it pro-
motes, since additional interaction sources would increase the need for support for

abstraction.

* Completeness of graphics model

The Picture model in Chapter 2 presented a graphical model that supported a set
of graphical primitives and combining forms that was geared towards expressing two
dimensional graphical user interfaces. This model could be extended in a couple of
ways: firstly, more general graphical primitives could be provided (e. g., nonuniform,
rational B-splines), and secondly, the compositional operators could be extended,
perhaps by providing more TIDX, -like operators at the Picture level.

9 Integrating external toolkits1frameworks

The components used in this thesis were all built in terms of Haggis primitive compo-
nents such as a glyph. One obvious extension to the user interface framework would
be to allow the use of 'foreign' user interface components. The programmer would
access these components via a virtual 1/0 device handle, just like the native ones,
preserving the handle-based programming model.

182 CHAPTER 8. CONCLUSION

Appendix A

Picture definition

This appendix contains the programmer interface to the Picture abstract type presented
in Chapter 2. To make the definition of the interface self-contained, we start by presenting
various auxiliary types and operations over them.

A. 1 Basic geometric types

Figure A. 1 defines a number of basic geometric types:

e Unit is the default unit at which sized quantities are expressed. The default interpre-
tation of a Unit value is as an (integral) number of printer's points.

* Size2 -a two dimensional vector type. Operations for selecting the width and height

are provided.

e Coord2 -a two dimensional, discrete Cartesian point type. Selectors for picking the
X and Y component of the Point are provided.

e Transf om2 -a two dimensional, (uniform) transformation. Operations for construct-
ing and combining transformation values are provided to the programmer.

A. 2 Picture elements

The function provided for constructing basic graphical shapes using the Picture type are

presented in Figure A-2.

183

184 APPENDIX A. PICTURE DEFINITION

newtype Unit = Unit Int

-- integral number of printers' points

data Size2 - Size2 Unit Unit -- 2d vector
size :: Unit Unit Size2

width, height Size2 Unit

data Coord2 = Coord2 Unit Unit -- 2d point
coord Unit -> Unit -> Coord2

x0y Coord2 -> Unit

type Radians Double
data Angles Angles Radians RadiansDelta

start angle plus delta radians to turn
to reach final angle.

data Transform2 = -- 2d transform, abstract type.
idTr Transform2
transTr Size2 Transform2

rotateTr Radians Transform2

scaleTr Double -> Double -> Transform2

combineTr Transform2 -> Transform2 -> Transform2

Figure Ad Basic geometric types.

empty Picture

point Picture
line Size2 Picture

polyrline [Size2l Picture

rectangle ::, Size2 Picture
text String Picture

arc Size2 Angles Picture

ellipse Size2 Picture

raster Raster Picture

curve Point2 Point2 Point2 -> Picture

Figure A. 2 Picture primitives.

0 A. 3 Picture operations

With the Picture values returned from the functions of the previous Section as basic
building blocks, Figure A. 3 contains the primitive operators for building new Pictures out

A. 4. GRAPHICAL ATTRIBUTES 185

withPen Pen Picture Picture

move Offset Picture Picture
transform Transform2 Picture Picture
overlay Picture Picture Picture
clip Picture Picture Picture
combinePic RelSize RelSize Picture

Picture Picture

Figure A. 3 Picture combinators.

type Pen = [PenAttr]

data PenAttr
Width BrushWidth
LineStyle LineStyle
JoinStyle JoinStyle
CapStyle CapStyle
Fill Bool
FillStyle FillStyle
ArcMode ArcMode
Font (FontAttr]
Invisible
Function Function
Foreground Colour
Background Colour

dashed lines or not?
for polyline joints
end point caps.
fill picture or not?
how

what font to use.
should the picture be drawn?
blit op, to eventually apply

Figure A. 4 Pen attribute type.

of old ones.

A. 4 Graphical attributes

The Pen constructor associates a set of graphical attribute-value pairs with a picture. The

attributes currently supported are shown in Figure A. 4.

186 APPENDIX A. PICTURE DEFINITION

data LineStyle
LineSolid
LineOnOffDash Int Int length of on and off dash,. resp.
LineDoubleDash Int. Int off dash rendered with bg. colour.

data JoinStyle = JoinMiter I JoinRound I JoinBevel

data CapStyle = CapButt I CapRound I CapProjecting

data ArcMode = ArcSlice I ArcChord

data Function = Xor I Or I And I Nor I Copy I Clear

Figure A. 5 Pen attribute specific settings.

A. 4.1 Pen attribute styles

The definition of the Pen type in Figure AA has a number of attribute constructors with
attribute specific settings/styles. The collection of these style types are presented in Fig-

ure A. 5.

A. 5 The Painter type

As discussed in Section 2.10, the Painter type contains the functionality. a device inde-

pendent renderer needs to render to a particular graphical output device. The complete
definition for this type is presented in Figure A. 6.

A. 5. THE PAINTER TYPE 187

data Painter
Painter

lockPainter ID 0
unlockPainter ID 0
pushPen PenModifier
popPen 10 0
setBBox Rectangle -> 10
getBBox 10 (Maybe Rectangle)
setClipRegion Region -> 10 ()
startClipMask Rectangle -> 10
endClipMask Coord2 10 0
clipWithMask 10 ()
pushTag PicTag Coord2 Rectangle 10
popTag 10 0
drawPoint Transform -> 10 Rectangle
computeBBox String 10 Rectangle
drawText String Transform -> 10 Rectangle
drawRPolyLine [Translation] -> Transform -> 10 Rectangle
drawPolyLine [Coord2l -> Transform -> 10 Rectangle
drawSegments [(Coord2, Coord2)]

Transform -> ID Rectangle

, drawArc Size2 -> Angles
Transform -> 10 Rectangle

, drawEllipse Size2 Transform -> 10 Rectangle

, drawRaster Raster Transform -> 10 Rectangle

, drawRectangle Size2 Transform -> 10 Rectangle
drawBezier Point2 Point2 -> Point2

Transform -> 10 Rectangle

Figure AX The Painter dictionary type.

188 APPENDIX A. PICTURE DEFINITION

Appendix B

1/0 in Haskell

In'a non-strict language it is completely impractical to perform input/output using side-

effecting "functions", because the order in which sub-expressions are evaluated - and
indeed whether they are evaluated at all - is determined by the context in which the result

of the expression is used, and hence is hard to predict. This difficulty can be addressed
by treating an I/0-performing computation as a state transformer; that is, a function that

transforms the current state of the world to a new state. In addition, we need the ability
for an I/0-performing computation to return a result. This reasoning leads to the following

type definition:

type 10 a= World -> (a, World)

That is, a value of type 10 t takes a world state as input, and delivers a modified world

state together with a value of type t. Of course, the implementation performs the 1/0 right
away - thereby modifying the state of the world "in place".

We call a value of type 10 t an action. Here are two useful ones:

hGetChar :: Handle -> ID Char

hPutChar :: Handle -> Char -> Io ()

The action hGetChar reads a character from the specified handle (which identifies some
file or other byte stream), and returns it as the result of the action. hPutChar takes a
handle and a character and returns an action that writes the character to the specified file

or stream.

Actions can be combined in sequence using the infix combinators >> and

10 a -> 10 b -> 10 b

189

190 APPENDIX B. 1/0 IN HASKELL

10 a -> (a -> 10 b) -> 10 b

For example, here is an action that reads a character from the standard input, and then

prints it twice to the standard output:

hGetChar stdin >>= \c ->
hPutChar stdout c
hPutChar stdout c

(The notation \c->E, for some expression E, denotes a lambda abstraction. In Haskell, the
scope of a lambda abstraction extends as far to the right as possible; in this example the
body of the \c-abstraction includes everything after the \c.) The sequencing combinators,
>> and >>=, feed the result state of their left hand argument to the input of their right
hand argument, thereby forcing the two actions (via the data dependency) to be performed
in the correct order. The combinator >> throws away the result of its first argument,
while >>= takes the result of its first argument and passes it on to its second argument.
The similarity of monadic I/0-performing programs to imperative programs is no surprise:
when performing 1/0 we specifically want to impose a total order on 1/0 operations.

It is often also useful to have an action that performs no 1/0, and immediately returns
specified value:

return :: a -> 10 a

For example, an echo action that reads a character, prints it, and returns the character
read, might look like this:

echo :: 10 Char

echo = hGetChar stdin >>= \C ->
hPutChar stdout

return c

echo is an action on equal footing with hGetChar stdin but built by stringing together
a collection of simpler actions. Another example of how actions can be strung together is
hGetLine, which reads a line of input from a handle:

hGetLine :: Handle -> 10 String

hGetLine hndl =

catch
(hGetChar hndl >>= \ ch

191

if ch == '\n' then

return 0

else
hGetLine hndl >>= \ ls

return (ch: ls))

-> return [1)

In order to catch errors such as end-of-file etc., hGetLine uses the catch to add a handler
for catching 1/0 exceptions:

catch :: 10 a -> (IOError -> 10 a) -> 10 a

It is a parameterised action that tries to execute its first action. If it fails with an error,
the exception handler will be invoked. If not, catch just returns the value from the first

action.

'As well as performing input/output, we also provide actions to create new mutable variables,
and operations to read and write from them. The relevant primitives are':

newMutVar 10 (MutVar a)

readMutVar MutVar a -> Io a
writeMutVar MutVar a -> a -> Io

A value of type MutVar t can be thought of as the name of, or reference to, a mutable
location in the World state that holds a value of type t. This location can then be modified
with writeMutVar and read with readMutVar.

So far we have shown how to build larger actions out of smaller ones, but how do actions
ever get performed - that is, applied to the real world? Every program defines a value
main that has type 10 (). The program can then be run by applying main to the state of
the world. For example, a complete program that reads and echoes its input is:

main ID 0-

main
hGetLine stdin >>= \ln

if ln == "" then

return
else

'In reality the types are a little more general than these, allowing state-manipulating computations to
be encapsulated, but we omit these details here. They can be found in [LPJ94a]

192 APPENDIX B. 1/0 IN HASKELL

hPutStr stdout ln

main

In principle, then, a program is just a state transformer that is applied to the real world
to give a new world. In practice, however, it is crucial that the side-effects the program
specifies axe performed incrementally, and not all at once when the program finishes. A

state-transformer semantics for 1/0 is therefore, alas, unsatisfactory, and becomes untenable
when concurrency is introduced.

More details of monadic 1/0 and state transformers can be found in [Gor94, PJW93,
LPJ94a]. Other 1/0 mechanisms for purely-functional languages are surveyed by [Gor93].

B. 1 Syntactic support

The monadic style of programming may seem foreign to a programmer accustomed to the
syntax of procedural languages, with the values of actions being bound to variable names on
the right of the action rather than the conventional left hand side. With the introduction

of Haskell version 1.3 [P+96], syntactic support for monadic programming was added with
the do notation. The above main can then instead be formulated as follows:

main 10

main
do

ln <- hGetLine stdin
if ln - I'll then

return
else

do

hPutStr stdout In

main

In a do expression, values returned from actions are now bound to variable names or patterns
to the left of action with <-. The complete translation of a do expression into 'de-sugared'

code that uses >> and >>= can be found in [P+97].

hk

Appendix C

Concurrent Haskell

This appendix contains in its entirety the Concurrent Haskell paper presented at POPL 196,
St. Petersburg Beach, FL. /PJGF96]

Concurrent Haskell is a concurrent extension to the lazy functional language Haskell. Our

principal motivation is to provide a more expressive substrate upon which to build sophis-
ticated I/0-performing programs, notably ones that support graphical user interfaces for

which the usefulness of concurrency is well established. Our earlier work showed how to

use monads to express 1/0, [PJW93, Gor94] and how the same idea could be generalised to

accommodate securely encapsulated mutable state [LPJ94a, LPJ94b]. Concurrent Haskell

represents the next step in this research programme, which aims to build a bridge between

the tidy world of purely functional programming and the gory mess of of I/0-intensive

progams.

This paper makes the following contributions:

We show how concurrency can be smoothly integrated into a lazy purely-functional
language, using only four new primitive operations and no new language constructs
(Section C. 1). Perhaps surprisingly, choice is not one of these primitive operations
(Section CA).

4, We give numerous examples of useful abstractions that can readily be built in Con-

current Haskell (Sections C. 2 and C. 3).

We give a semantics for Concurrent Haskell that is clearly stratified into a deter-

ministic layer and a concurrency layer (Section C. 5). Existing reasoning techniques
can be retained unmodified; for example, program transformations that preserve the
correctness of a sequential Haskell program also preserve correctness of a Concurrent

193

194 APPENDIX C. CONCURRENT HASKELL

Haskell program. This is an unusual feature: more commonly, the non-determinism
that arises from concurrency pervades the entire language.

Concurrent Haskell is implemented, freely available, and is the substrate upon which we are
building the Haggis graphical user interface toolkit.

This paper is not at all about concurrency as a means of increasing performance by ex-
ploiting multiprocessors. Our approach to that goal uses implicit, semantically transparent,

parallelism; but that is another story. Rather, this paper concerns the use of explicit, se-
mantically visible, concurrent I/0-performing processes. Our goal is to extend Haskell's

usefulness into a new class of applications.

CA The basic ideas

Concurrent Haskell adds two main new ingredients to Haskell:

* processes, and a mechanism for process initiation (Section C. 1.2); and

atomically-mutable state, to support inter-process communication and cooperation
(Section C. 1.3).

Before we disc
'
uss either of these, though, it is necessary to review the monadic approach

to 1/0 introduced by [PJW93], and adopted by the Haskell language in Haskell 1.3.

The semantics of Concurrent Haskell is discussed later, in Section C. 5.

A review of monadic 1/0

In a non-strict language it is completely impractical to perform input/output using side-
effecting "functions", because the order in which sub-expressions are evaluated - and
indeed whether they are evaluated at all - is determined by the context in which the result
of the expression is used, and hence is hard to predict. This difficulty can be addressed
by treating an I/0-performing computation as a state transformer; that is, a function that
transforms the current state of the world to a new state. In addition, we need the ability
for an I/0-performing computation to return a result. This reasoning leads to the following
type definition:

type 10 a= World -> (a, World)

C. l. THE BASIC IDEAS 195

That is, 'a value of type ID t takes a world state as input, and delivers a modified world

state together with a value of type t. Of course, the implementation performs the 1/0 right

away - thereby modifying the state of the world "in place.

We call a value of type 10 t an action. Here are two useful actions:

hGetChar :: Handle -> ID Char

hPutChar :: Handle -> Char -> ID ()

The action hGetChar reads a character from the specified handle (which identifies some
file or other byte stream), and returns it as the result of the action. hPutChar takes a
handle and a character and returns an action that writes the character to the specified file

or stream.

Actions can be combined in sequence using the infix combinators >> and

>> ::,
_IO

a 10 b -> 10 b

10 a (a -> 10 b) -> 10 b

For example, here is an action that reads a character from the standard input, and then

prints it twice to the standard output:

hGetChar stdin >>= \c ->
hPutChar stdout c
hPutChar stdout c

(The notation \c->E, for some expression E, denotes a lambda abstraction. In Haskell, the

scope of a lambda abstraction extends as far to the right as possible; in this example the

body of the \c-abstraction includes everything after the \c.) The sequencing combinators,

>> and >>=, feed the result state of their left hand argument to the input of their right
hand argument, thereby forcing'the two actions (via the data dependency) to be performed
in the correct order. The combinator >> throws away the result of its first argument,

while >>= takes the result of its first argument and passes it on to its second argument.
The similarity of monadic I/0-performing programs to imperative programs is no surprise:

when performing 1/0 we specifically want to impose a total order on 1/0 operations.

It is often also useful to have an action that performs no 1/0, and immediately returns a

specified value:

return :: a -> 10 a

196 APPENDIX C. CONCURRENT HASKELL

For example, an echo action that reads a character, prints it, and returns the character

read, might look like this:

echo ID Char

echo hGetChar stdin >>= \c

hPutChar stdout

return c

As well as performing input/output, we also provide actions to create new mutable variables,

and then to read and write them. The relevant primitives are 1:

newMutVar :: MutVar a

readMutVar :: MutVar a -> 10 a

writeMutVar :: MutVar a

A value of type MutVar t can be thought of as the name of, or reference to, a mutable
location in the state that holds a value of type t. This location can be modified with

writeMutVar and read with readMutVar.

So far we have shown how to build larger actions out of smaller ones, but how do actions

ever get performed - that is, applied to the real world? Every program defines a value

main that has type 10 (). The program can then be run by applying main to the state of
the world. For example, a complete program that reads and echos a single line of input is:

main :: ID ()

main - echo >>= \C

if c == '\n'

then return

else main

In principle, then, a program is just a state transformer that is applied to the real world
to give a new world. In practice, however, it is crucial that the side-effects the prograna

specifies are performed incrementally, and not all at once when the program finishes. A

state-transformer semantics for 1/0 is therefore, alas, unsatisfactory, and becomes untenable

when concurrency is introduced, a matter to which we return in Section C. 5.

More details of monadic 1/0 and state transformers can be found in [Gor94, PJW93,
LPJ94a]. Other 1/0 mechanisms for purely-functional languages are surveyed by [Gor93].

'In reality the types a little more general than these, allowing state-manipulating computations to be
encapsulated, but we omit these details here. They can be found in [LPJ94a]

k

C. l. THE BASIC IDEAS 197

C. 1.2 Processes

Conc'urrent Haskell provides a new primitive f orkIO, which starts a concurrent proCeSS2:

forkIO :: 10 () -> Io ()

f orkIO a is an action which takes an action, a, as its argument and spawns a concurrent
process to perform that action. The 1/0 and other side effects performed by a are interleaved
in an unspecified fashion with those that follow the f orkIO. Here's an example:

let

-- loop ch prints an infinite sequence of ch's
loop ch = hPutChar stdout ch >> loop ch

in

forkIO (loop 'a,)

loop Iz,

The f orkIO spawns a process which performs the action loop Iaý. Meanwhile, the "par-

ent" process continues on to perform loop Iz1. The result is that an infinite sequence of
interleaved IaIs and Izs appears on the screen; the exact interleaving is unspecified (but

see Section C-5.3).

As a more realistic example of f orkIO in action, a mail tool might incorporate the following
loop:

mailLoop :: 10 ()

mailLoop
- getButtonPress b >>=

case v of
Compose -> forkID doCompose >>

mailLoop

... other things

doCompose 10 Pop up and manage
doCompose composition window

2 We use the term process to distinguish explicit concurrency from implicit parallelism, for which we use
the term threads. A process is managed by the Haskell runtime system, and certainly does not correspond
to a Unix process.

198 APPENDIX C. CONCURRENT HASKELL

Here, getButtonPress is very like hGetChar; it awaits the next button press on button b,

and then delivers a value indicating which button was pressed. This value is then scrutinised
by the case expression. If its value is Compose, then the action doCompose is forked to
handle an independent composition window, while the main process continues with the

next getButtonPress.

The following features of f orkIO are worth noting:

(1) Because our implementation of Haskell uses lazy evaluation, f orkIO immediately re-
quires that the underlying implementation supports inter-process synchronisation.
Why? Because a process might try to evaluate a thunk (or suspension) that is al-
ready being evaluated by another process, in which case the former must be blocked

until the latter completes the evaluation and overwrites the thunk with its value.

(2) Since the parent and child processes may both mutate (parts of) the same shared state
(namely, the world), f orkIO immediately introduces non-determinism. For example,
if one process decides to read a file, and the other deletes it, the effect of running
the program will be unpredictable. Whilst this non-determinism is not desirable, it
is not avoidable; indeed, every concurrent language is non-deterministic. The only
way to enforce determinism would be by somehow constraining the two processes to
work on separate paxts of the state (different files, in our example). The trouble is
that essentially all the interesting applications of concurrency involve the deliberate

and controlled mutation of shared state, such as screen real estate, the file systern,
or the internal data structures of the program. The right solution, therefore, is to
provide mechanisms which allow (though alas they cannot enforce) the safe mutation
of shared state, a matter to which we return in the next subsection.

(3) f orkID is asymmetrical: when a process executes af orkIO, it spawns a child process
that executes concurrently with the continued execution of the parent. It would have
been possible to design a symmetrical fork, an approach taken by [JH931:

symFork :: 10 a -> 10 b -> Io (a, b)

The idea here is symFork pi p2 is an action that forks two processes, pl and p2.
When both complete, the symFork pairs their results together and returns this pair
as its result. We rejected this approach because it forces us to synchronise on the
termination of the forked process. If the desired behaviour is that the forked process
lives as long as it desires, then we have to provide the whole of the rest of the parent
as the other argument to symFork, which is extremely inconvenient.

C. l. THE BASIC IDEAS 199

(4) In common with most process calculi, but unlike Unix, the forked process has no

name. We cannot, therefore, provide operators to wait for its termination or to kill

it. The former is easily simulated (using an MVar, introduced next), while the latter

introduces a host of new difficulties (what if the process is in the middle of an atomic
action?).

C. 1.3 Synchronisation and communication

At first we believed that f orkIO alone would be sufficient to support concurrent program-
ming in Haskell, provided that the underlying implementation correctly handled the syn-
chronisation between two processes that try to evaluate the same thunk. Our belief was
based on the idea that two processes could communicate via lazily-evaluated streams, pro-
duced by one and consumed by the other [KM77]. Whilst processes can indeed communicate
in this way, we found at least three distinct reasons to introduce additional mechanisms for

synchronisation and communication between processes:

Processes may need exclusive access to real-world objects such as files. The straightfor-
ward way to implement such exclusive access requires a shared, mutable lock variable
or semaphore.

(2) How can a server process read a stream of values produced by more than one client

process? One way to solve this is to provide a non-deterministic merge operation,
but that is quite a sophisticated operation to provide as a primitive. Worse, it is

far from clear that the quest ends there; for example, one might also want several
server processes to service a single stream of requests, which seems to require a non-
deterministic split primitive. We wanted to find some very simple truly-primitive

operations that can be used to implement non-deterministic merge, and split, and

anything else we might desire.

(3) Writing stream-processing programs is throughly awkward, especially if a function

consumes several streams and produces several others, as well as performing in-

put/output. One of the reasons that monadic 1/0 has become so popular is precisely
because stream-style 1/0 is so tiresome to program with. It would be ironic if Con-

current Haskell re-introduced stream processing for inter-process communication just

as monadic 1/0 abolished it for input/output! We wanted to find a way to make com-

munication'between" processes look just as convenient as 1/0; indeed, from the point

of view of any particular process the other processes might just as well be considered

part of the external world.

200 APPENDIX C. CONCURRENT HASKELL

Our solution is to combine our work on mutable state [LPJ94a] with the I-structures and M-

structures of the dataflow language Id [AN89, BNA91]. First of all we have a new primitive
type:

type MVar a

A value of type War t, for some type t, is the name of a mutable location that is either
empty or contains a value of type t. We provide the following primitive operations on MVars:

newMVar :: 10 Mar a) creates anew Mr.

takeMVar :: MVar a -> 10 a blocks until the location is non-empty, then reads and
returns the value, leaving the location empty.

putMVar :: MVar a -> a -> ID 0 writes a value into the specified location. If there
are one or more processes blocked in takeMVar on that location, one is thereby allowed
to proceed. It is an error to perform putMVar on a location which already contains a
value. (See Section C. 8 for a discussion of other possible design choices for pumar.)

The tYpe MVar can be seen in three different ways:

e It can be seen as a synchronised version of the type MutVar introduced in Section C. 1.1.

* It can be seen as the type of channels, with takeMVar and putMVar playing the role
of receive and send.

A value of type War () can be seen as a binary semaphore, with the signal and wait
operations implemented by putMVar and takeMVar respectively.

MVars are also somewhat reminiscent of ML's ref types, which require quite a bit of work
in the type system to preserve soundness. It turns out that this type-soundness problem
does not arise for us, because values of type MVar t can only be lambda-bound, and hence

must be monomorphic.

C. 2 A standard abstraction: buffering

A good way to understand a concurrency construct is by means of examples. The following
sections describe how to implement a number of standard abstractions using Mrs: using
standard examples (such as buffering) allows easy comparison with the literature.

C. 2. A STANDARD ABSTRACTION: BUFFERING 201

The first example is usually a memory cell, but of course an Mar implements that directly.
Another common example is a semaphore, but an MVar implements that directly too.

C. 2.1 A buffer variable

An MVar can very nearly be used to mediate a producer/consumer connection: the producer
puts items into the MVar and the consumer takes them out. The fly in the ointment is, of
course, that there is nothing to stop the producer over-running, and writing a second value
before the consumer has removed the first.

This problem is easily solved, by using a second MVar to handle acknowledgements from

the consumer to the producer. We call the resulting abstraction a CVar (short for channel
variable).

type CVar a= War a, Producer consumer
MVar 0) Consumer producer

newCVar :: 10 Mar a)

newCVar
= newMVar

newMVar

data-var

ack-var

putMVar ack-var () >>

return (data_var, ack-var)

putCVar :: CVar a -> a -> 10 ()

putCVar (data-var, ack_var) val
- takeMVar ack-var >>

putMVar data-var val

getCVar Var a -> ID a

getCVar (data-var, ack_var)
takeMVar data-var >>= \ val
putMVar ack-var >>

return val

202 APPENDIX C. CONCURRENT HASKELL

Channel

Item Item

Read end "'rite end

First value Second value

Figure CA A channel with unbounded buffering

C. 2.2 A buffered channel

A CVar can contain but a single value. Next, we show how to implement a channel Nvith

unbounded buffering, along with some variants. Its interface is as follows:

data Channel a

newChan :: 10 (Channel a)

putChan Channel aa -> 10

getChan Channel a 10 a

The channel should permit multiple processes to write to it, and read from it, safely.

The implementation is illustrated in Figure C. I. The channel is represented by a pair of
MVars (drawn as small boxes with thick borders), that hold the read end and write end of
the buffer:

type Channel a= Mar (Stream a), Read

MVar (Stream a)) Write

The MVars ill a Channel are required so that channel put and get operations (-all atoinically

inodify the write and read end of the channels respectively. The data ill the buffer is lield
ill a Stream; that is, all MVar which is either ellipty (ill which case there is 110 dat'a ill tile
Stream), or holds all Item:

type Stream a= MVar (Item a)

C. 2. A STANDARD ABSTRACTION: BUFFERING 203

An Item is just a pair of the first element of the Stream together with a Stream holding

the rest of the data:

data Item a= Item a (Stream a)

A Stream can therefore be thought of as a list, consisting of alternating Items and full
MVars, terminated with a "hole" consisting of an empty MVar. The write end of the channel
points to this hole.

Creating a new channel is now just a matter of creating the read and write Mrs, plus one
(empty) MVar for the stream itself-

newChan = newMVar >>= Vead ->
newMVar >>= Write ->
newMVar >>= \hole ->
putMVar read hole >>

putMVar write hole >>

return (read, write)

Putting into the channel entails creating a new empty Stream to become the hole, extracting
the old hole and replacing it with the new hole, and then putting an Item in the old hole.

putChan (read, write) val -
newMVar >>= \new-hole

takeMVar write >>= \old-hole

putMVar write new-hole >>

putMVar old-hole (Item val new-hole)

Getting an item from the channel is similar. Notice that getChan may block at the second
takeMVar if the channel is empty, until some other process does a putChan.

getChan (read, write)

= takeMVar read >>= \Cts

takeMVar cts >>= VItem val new)
putMVar read new >>

return val

It is worth noting that any number of processes can safely write into the channel and read
from it. The'' values written will be merged in (non-deterministic, scheduling-dependent)

arrival order, and each value read will go to exactly, one process.

204 APPENDIX C. CONCURRENT HASKELL

Other variants are readily programmed. For example, consider a multi-cast channel, in

which there are multiple readers, each of which should see all the values written to the
channel. All that is required is to add a new operation:

dupChan :: Channel a -> 10 (Channel a)

The idea is that the channel returned by dupChan can be'read independently of the orig-
inal, and sees all (and only) the data written to the channel after the dupChan call. The
implementation is simple, since it amounts to setting up a separate read pointer, initialised
to the current write pointer:

dupChan (read, write)
= newMVar

takeMVar write
putMVar write hole

putMVar new-read hole

return (new_read, write)

new-read
hole

»

Another easy modification, left as an exercise for the reader, is to add an inverse to getChan:

unGetChan :: Channel a -> a -> 10 ()

C. 2.3 Skip channels

As a final example, Figure C. 2 implements a skip channel, a useful abstraction that we have
not seen elsewhere in the literature. A skip channel is useful when an intermittent source
of high-bandwidth information (mouse-movement events, for example) is to be coupled to
a process that may only be able to deal with events at a lower rate (scrolling a window,
for example). A read operation on a skip channel either returns the most-recently-written
value (skipping any values written previously), or else blocks if no write has been performed
since the last read. To make it more interesting, a dupSkipChan operation is also provided
that allows multiple independent readers, each with the above semantics.

A skip channel is implemented as a pair of Mrs. The second is a semaphore; it is full if
the skip channel contains a value as yet unread by this reader, and empty otherwise. The
first contains a pair consisting of the current contents of the channel and a list of the empty
semaphores of the readers that have already read the channel's current contents. With this
in mind the implementation of the skip channel's operations should be easy to follow.

C. 3. CONTROL OVER SCHEDULING 205

type SkipChan a= War (a, (MVar 01), MVar 0)

newSkipChan :: 10 (SkipChan a)
newSkipChan

newMVar >>= main
newMVar >>= sem
putMVar main (bottom, [seml) >>
return (main, sem)

putSkipChan :: SkipChan a -> a -> 10
putSkipChan (main, sem) v

takeMVar main >>= \ (-, sems)
putMVar main (v, >>
mapIO free sems >>
return

where
free sem = putMVar sem

getSkipChan :: SkipChan a -> Io a
getSkipChan (main, sem)

takeMVar main >>= \ (v, sems)
putMVar main (v, sem: sems) >>
return v

dupSkipChan :: SkipChan a -> 10 (SkipChan a)
dupSkipChan (main,

-)
newMVar >>= sem
takeMVar main >>= (v'sems)

putMVar main (v, sem: sems) >>
return (main, sem)

Figure C. 2 The skip-channel abstraction

C. 3 Control over scheduling

Next we study some examples that demonstrate how it is possible to "reify" scheduling de-

cisions, allowing the programmer to take control of them. Suppose we wanted to implement

a channel with bounded buffering; that is, one in which the writer would block if there were

more than a certain number of unread elements in the buffer. A straightforward way to
implement a bounded channel would be as a pair of an unbounded channel and a quantity
semaphore:

206 APPENDIX C. CONCURRENT HASKELL

type BChannel a (Channel a, QSem)

A quantity semaphore is an abstraction with the following interface:

type Qsem
newQSem 10 QSem
waitQSem QSem 10

signalQSem QSem 10

A QSem holds an integer, initially set to zero. waitQSem decrements this number, blocking
if it is already zero. signalQSem increments the number unless there are blocked processes,
in which case it frees one of them.

The QSem in a BChannel records how many available slots there are in the buffer, so it is
initialised with N calls to signalQSem, where N is the desired maximum buffer size. Then

every attempt to write into the channel calls waitQSem to gain permission to write, and
similarly every successful read calls signalWem

C. 3.1 Implementing quantity semaphores

It is possible to implement a quantity semaphore using only binary semaphores, but it is

surprisingly difficult, and correct solutions are not well known [Bar83]. However, because

we can freely allocate new Mrs, we can give a perfectly straightforward implementation:

type QSem = MVar (Int, [MVar ()])

A QSem is an MVar holding a pair (so that access to the whole pair is indivisible). The Int
plays the same role as before. The second component of the pair is a list of Mrs, on each
of which precisely one process is blocked. It is an invariant of QSeMs that if the quantity is
non-zero then the list is empty.

If a waitQSem finds a zero count in the QSem, it creates a new, private, MVar, adds it to the
list, puts the resulting pair back in the QSem's MVar, and then blocks on its private MVar:

waitQSem sem
= takeMVar sem >>= Vavail, blkd)

if avail >0 then

putMVar (avail-1, [1)

else
newMVar >>= \blk ->

C. 3. CONTROL OVER SCHEDULING 207

putMVar (0, blk: blkd)

takeHVar blk

The implementation of signalQSem is equally easy. It simply frees one blocked process if
there are any, and increments the count otherwise:

signalQSem sem
= takeMVar sem >>= \(avail, blkd)

case blkd of
0 -> putMVar (avail+l,
(blk: blkdl) -> putMVar (0, blkdl)

putMVar blk ()

C. 3.2 Variable-munch quantity semaphores

An obvious generalisation of quantity semaphores is for waitQSem and

signalQSem to specify how much of the resource they claim or return respectively:

waitQSemN QSem Int 10

signalQSemN QSem Int 10

Now, (signalQSemN s n) is equivalent to n successive calls to signalQSem, but if waitQSemN

were to be implemented in this way, deadlock might easily result. Why? Because two pro-

cesses'executing a waitQSeraN might each claim part, but not all, of the resource they require,
thereby depleting it to zero and deadlocking. So vaitQSemN must grab all its requirement
at once; if not enough is available, it must block without grabbing any.

The new problem that this raises it that we may have a set of blocked processes, each with
a different resource requirement. It is easy to record this information, and use it to release

only the appropriate ones:

type QSem = MVar (Int, [(Int, MVar

The implementation of waitWemN is essentially identical to

waitQSem. signalQSemN is a bit more interesting, because it may free zero or more blocked

processes:

signalQSemN sem n
takeMVar sem >>= \(avail, blkd) -> ,
free (avail+n) blkd ->>= Vavail', ' blkdI)->

208 APPENDIX C. CONCURRENT HASKELL

putMVar sem (avail', blkdl)

free :: Int -> War M -> 10 Unt, Mar ()1)

free avail 0= return (availj])

free avail ((req, blk): blkd)

= if avail >= req then

putMVar blk () >>

free (avail-req) blkd

else
free avail blkd >>= \(avail', blkdl)

return (avail', (req, blk): blkdl)

The function f ree walks down the list of blocked processes, freeing any it can, and returning
the depleted resource supply and remaining blocked processes.

C. 3.3 Priority

Suppose that many processes, some important and some less important, are blocked on a
single, empty Mr. Concurrent Haskell does not specify which of these processes will be

awakened when the MVar is written. How can we arrange that it'is the more important

ones that are awakened? It would be possible to add some sort of priority mechanism to
the language, but it turns out that there is no need: exactly the same trick as we used
for the quantity semaphore will work here. All that is necessary is to build an abstraction
that maintains a list of blocked processes (in the form of private Mrs on which they are
blocked), each paired with its priority.

C. 3.4 Summary

This section has demonstrated that we can readily "reify" scheduling decisions, allowing
them to be performed (when desired) in the language itself. The key idea is to represent
a blocked process as an empty MVar, so that scheduling the process, -can

be achieved by
writing to the MVar. Much the same trick is used in the Pict language. [PRT93]

CA. CHOICE 209

CA Choice

Most process languages provide a choice construct - ALT in Occam, select in Concurrent

ML, + in the 7r-calculus - that allows a process to determine what to do next based on

which of a number of communications are ready to proceed. For example, in the 7r-calculus
the process

x(v). P + Y(W)

will either read a value v from channel x and then behave like P, or read a value w from

channel y and then behave like Q, but not both. We say that x(v) is the guard for the first

alternative, and similarly y(w) guaxds the second.

We do not provide a choice construct in Concurrent Haskell, for several reasons:

(1) Most languages that provide choice restrict it in the following way: alternatives can
only be guarded with single primitive actions. As Reppy persuasively argues, such a
restriction interacts very badly with abstraction [Rep88]. For example, we might want
to guard an alternative with a call to getChan, without knowing anything about how

getChan is implemented.

Of course, lifting this restriction is not straightforward. For example, it is no good
synchronising on the first primitive action performed by the guard: just because the
first primitive operation (doing a take on the read-end MVar) succeeds does not mean
that the getChan succeeds! Furthermore, if the guard can be a compound action, as

getChan certainly is, what should be done with partially completed actions from the

non-chosen alternatives?

(2) In our experience, the generality of choice is rarely if ever used.

(3) Implementing a general choice construct can be costly, especially in a distributed

setting, and especially if guards can contain both read and write operations.

(4) Mrs already provide non-determinism, as we have seen in the case of channels with

multiple writers, and can be used to build application-specific choice constructs.

In short, contrary to initial impressions, choice is expensive to implement, rarely used in its

full generality, and limits abstraction.

In the rest of this section we describe how we live without choice. In common with the

programming language Pict, we distinguish singular choice from iterated choice, the latter

being by far the most common in practice.

210 APPENDIX C. CONCURRENT HASKELL

C. 4.1 Iterated choice

A very common paradigm is for a process to service several distinct sources of work. On

each iteration the server chooses one of its clients, services the request, and then returns to
select a new client. Such a server would be understood by the concurrent object-oriented
programming community as a concurrent object.

The important thing about iterated choice is that partially-executed guards of the alterna-
tives that "lose" - that is, are not selected - do not need to be undone, because they can
simply await the next iteration of the server.

As an example, suppose that the server is dealing with network traffic arriving from two dis-
tinct sources. The functions get I and get2 get a packet from the two sources respectively;
processPacket does whatever the server does to the packet:

getl, get2 ::.. 10 Packet

processPacket :: Packet -> 10

Of course, get I and get2 can be as complicated as necessary. They might consist of a large

series of 1/0 interactions, not just one primitive operation.

We can program the server by using a CVar as a rendezvous buffer. The server simply reads
packets from this buffer. Before it does so, it forks a process for each packet source that
simply reads a packet from its source and tries to write it into the buffer.

server :: 10 ()

server

-- Create empty buffer and full token

newCVar >>= \buf ->

, --
Create "sucking" processes

forkIO (suck getl buf) >>

forkID (suck get2 buf) >>

server-loop buf

server-loop :: CVar Packet -> ID

server-loop buf

= getCVar buf >>= \pkt

processPacket pkt

CA. CHOICE, 211

server-loop buf

suck :: 10 a -> Var a -> 10 ()

suck get-op buf

get-op >>- \pkt

putCVar buf pkt >>
suck get buf

Of course, if the clients can be "told" how to write to the server the "suck" processes are
not necessary. In practice we find that this approach, which is strongly reminiscent of call-
backs, loses a degree of modularity - for example, the client would have to be informed if
the server changes - so we normally use the formulation given above.

C. 4.2 Singular choice

On those occasions when we want to make a "one-off" choice among competing alternatives,
we put the obligation on the programmer to make the alternatives abortable. The way we
choose to express this obligation is by making the alternatives have type 3

type Alternative a= Commitment a 10
type Commitment a= 10 (Maybe (a 10
data Maybe a= Nothing

I Just a

An alternative takes an 1/0 action, of type Commitment, as an argument, which it performs
exactly when it wants to commit. This Commitment returns either Nothing, indicating

that some other alternative got there first and the alternative should abort, or Just reply
where reply is an action that should be applied to the result of the alternative. Exactly

one alternative will receive Just reply when it reaches its commitment point; the others

will all receive Nothing, whereupon they carry out any necessary abort actions and then
die quietly.

It is now simple to define select:

select :: [Alternative a] -> 10 a

3The Maybe type is standard in Haskell, and corresponds to option in Standard ML. A value of type
Maybe t is either Nothing or is of the form Just v, where v has type t. Maybe types are useful for encoding
values which may or may not be there.

212 APPENDIX C. CONCURRENT HASKELL

select arms

newMVar >>= result-var

newMVar >>= commit-var

putMVar commit-var
(Just (putMVar result-var))

let

commit = takeMVar commit-var >>= \ res

putMVar commit-var
Nothing

return res
do-arm arm = forkIO (arm commit)

in

mapIO do-arm arms
takeMVar result-var

Here, mapIO is an analogue in the 10 monad of the familiar map function:

mapIO :: (a -> 10 b) -> [a] -> 10 [b]

(mapIo f xs) applies f to each element of xs, producing an 10 action in each case. It

performs these actions in sequence, and returns the list of their results.

C. 5 Semantics

We have already hinted that regarding a program as a purely-functional state transformer

gives an inadequate semantics for input/output behaviour. For example, a program that

goes into an infinite loop printing IaI repeatedly, would just have the value I, even though
its behaviour is quite different to one that goes into an infinite loop performing no in-

put/output.

The situation worsens when concurrency is introduced, since now multiple concurrent pro-
cesses are simultaneously mutating a single
state. The purely-functional state-transformer semantics becomes untenable.

Instead we adopt an operational semantics, the standard approach to giving the semantics
of a concurrent language.

C. 5. SEMANTICS 213

C. 5.1 Deterministic Reduction

Suppose we already have an operational semantics for a purely functional fragment of
Haskell. [Gor94] presents a suitable operational semantics for a small fragment of Haskell,

and the approach could be extended to the full language.

We shall show how to incorporate our concurrency primitives into such a semantics. Suppose
A and B stand for types and a and b stand for programs, that is, closed, well-typed expres-
sions, and that the operational semantics consists of a deterministic, small-step reduction
relation, a F-+ b. We extend the grammar of types by

A :: = ... I MVarA I IDA

and allow the following new constants as expressions.

return
forkIO newMVar

putMVar takeMVar

A name, n, is drawn from an infinite set of tags, and uniquely identifies a particular Mr.
We extend the reduction relation to reduce the first argument of (>>=) and of putMVar and
takeMVar, and with the following axiom scheme

return a >>= b ý-4 b(a)

but we do not provide any reductions for f orkID, newMVar, putMVar
and takeMVar. It follows that a value - that is, a fully reduced program of type 10 A-
is either return a where a:: A or of the form M[vjO] where

vjo :: = forkIOalnewMVarlputMVarnaltakeMVarn

M[I :: =

In a value M [vjo], the expression vio represents the next concurrent action, and the context
MDrepresents the continuation that consumes the result of that action. This mild extension

preserves determinacy of ýý.

C. 5.2 Concurrent Reaction

To model the concurrent aspects of Concurrent Haskell we need to consider systems of
interacting monadic processes. We use P and Q to stand for processes.

214 APPENDIX C. CONCURRENT HASKELL

pa
PIQ
(vn)P
(a)n

I On

I ABORT

if a:: IO ()

parallel composition
restriction of name n to P
full MVar named n holding program a
empty MVar named n
erroneous process

The only binding construct for names is (vn)P. We write fn(P) for the set of names free
in process P, and P[m/n] for the outcome of substituting m for each occurrence of name n
free in process P.

We adapt the 'chemical abstract machine' presentation of polyadic 7r-calculus [Mil9l]. First,

we formalise the idea of a 'solution' of programs and Mrs waiting to react by defining a
structural congruence relation. Second, we specify the reaction of programs and MVars by

simple reaction rules.

Let structural congruence, =-, be the least congruence (that is, an equivalence relation
preserved by all process contexts) to include alpha-conversion of bound variables and names,
plus the following two collections of rules. The first group says that a process solution is

roughly a multiset:

(1) P1 IAI P3) (PI I PQ I P3

PIQ QIP
The second group are the standard rules for restriction from 7r-calculus. Restriction repre-
sents the locality of access of MVars.

(2) (vn)(vm)P (vm)(vn)P

(vn) (P I Q) PI (vn) Q, if ný fn (P)

Secondly, we extend the deterministic reduction relation, ý-*, on programs to a nondeter-

ministic reaction relation, -+, on processes, identified up to structural congruence. The first

two rules specify the interaction of programs and Mrs:

(put) On IM [putMVar n a] (a)njM[returno]
(Take) (a)njM[takeMVarn] OnIM[returna]
(Abort) (a)nIMýuMarnb] ABORT

The (Abort) rule deals with the erroneous situation of a putMVar on a full Mr. We also
need two rules to deal with the propagation of ABORT.

C. 5. SEMANTICS 215

(AbortPar) ABORT IP ABORT
(AbortNu) (vn)ABORT ABORT

The operations f orkIO and newMVar turn into process restriction and composition:

(Fork) M[forkIOa] aIM[returno]
(New) M[newMVar] (vn) ((),, I M [return n])

if ný fn(M)

These two structural rules allow reactions within compositions and beneath restrictions:

(Pax) PIQ
(Res) (vn) P

P, IQ
(vn)P'

if P -+
if P -+

The final reaction rule turns a reduction of a program into a reaction of that program
considered, as a process:

(Reduce) a -+ b if a ý-+ b

Since processes are identified up to -=, we may freely use the rules of =- to bring together

partner programs and Mrs for (Put) or (Take) interactions, and to enlarge the scope of
an MVar allocated by (New).

Our semantics is intentionally minimal but nonetheless it does support at least the following

result. Say that a process P passes a test R iff 3Q(P IR -+* done I Q), where done is a new
process constant allowed only in test processes such as R. Then two processes are testing

equivalent iff they pass the same tests. This is a standard definition from concurrency
theory [dNH83].

Theorem. If two programs a and b are denotationally equivalent as functional

programs, they are testing equivalent when considered as processes.

Our denotational semantics is a standard denotational semantics for a lazy functional Ian-

guage, with the JO type modelled as if it were an algebraic type with a constructor corre-
sponding to each of the constants putMVar, takeMVar, f orkID, newMVar and return. These

constants and >>= are ' modelled by functions acting on this algebraic type. To model the

values held by MVar's we use dynamic types. We omit the details but this is a generalisation
of constructions [Gor94]. In effect we model a program of 10 type as a potentially infinite
tree, where each node represents an instruction to be interpreted at runtime. The nodes
representing f orkID's have two successors, to be interpreted in parallel; all the others have

one or none. We omit the proof of the theorem, but intuitively it holds because as far as
passing a test is concerned, all that matters about a program of 10 type is the sequence of

216 APPENDIX C. CONCURRENT HASKELL

instructions it issues. If two programs are denotationally equivalent, they issue the same

sequence of instructions, so they axe testing equivalent.

This is not a particularly abstract denotational semantics, since it explicitly represents

the instructions issued by a program, rather than their observable effect. However, it

shares with standard denotational semantics of lazy functional languages the property that

a program of any type either equals a value of that type, or denotes
-L.

This fact makes it

straightforward to validate conventional reasoning about functional programs, such as P77-

equivalence. In particular, the theorem asserts that any compiler optimisation that depends

on such conventional reasoning will not invalidate testing equivalence.

The Concurrent Haskell type system restricts the possibility of side-effects, so we have been

able to put all the work of explaining side-effects into explaining 10 types. A denotational.

semantics for a language with unrestricted side-effects - see [CG94], for instance - would

need to account for side-effects at every type, and hence in general 877-equivalence (for

example) is unsound.

C. 5.3 Fairness

In any real system the programmer is likely to want some fairness guarantees. What,

precisely, does "fairness" mean? At least, it must imply that no runnable process will be

indefinitely delayed.

Is that enough? No, it is not. Consider a situation in which several processes are competing
for access to a single Mr. Assuming that no process holds the MVar indefinitely, it should

not be possible for any of the competing processes to be denied access indefinitely. One

way to avoid such indefinite denial would be to specify a FIFO order for processes blocked

on an MVar, but that is perhaps too strong. It would be sufficient to specify that no process

can be blocked indefinitely on an MVar unless another process holds that MVar indefinitely.

C. 5.4 Summary

There have been several previous semantics for concurrent functional languages [Ho183,

Rep9l, Jef95, Sch95]. Scholz' set-based semantics is closest, but nothing in his semantics

corresponds to our restriction, (vn)-, which captures locality of MVars.

A notable feature of our semantics is its stratification into a deterministic reduction relation

ý-*, and a non-deterministic reaction relation -+. We might consider -+ as specifying an
imperative coordination language, and ý-+ as specifying a functional computation language.

C. 6. IMP'LEMENTATION 217

Our semantics is sufficient to show that the nondeterministic, concurrent computation (-+)

at 10 types does not affect the deterministic, functional computation (ý-+) at non-ID types.
We sought the simplest semantics that would do so. We have not gone further - for
instance, by seeking to approximate testing equivalence using a labelled transition system
and bisimilaxity'- because the presence of both higher-order functions and local names
is known to make bisimilarity problematic. Jeffrey [Jef95] studies weak bisimilarity for a
monadic concurrent language similar in spirit to Concurrent Haskell but does not consider
the problems of local names. Although an adaptation of Jeffrey's work to Concurrent
Haskellwould be a worthwhile research project, our minimal semantics suffices for many
practical purposes. It provides a simple, precise and abstract specification of the operational
behaviour of Concurrent Haskell programs.

C. 6 Implementation

We have implemented Concurrent Haskell as a small extension to the Glasgow Haskell
Compiler (GHC), a highly-optimising compiler for Haskell.

Concurrent Haskell runs as a single Unix process, performing its own scheduling internally.
Each use of f orkIO creates a new process, with its own (heap-allocated) stack. Tile scheduler

can be told to run either pre-emptively (time-slicing among runnable processes) or non-pre-
emptively (running each process until it blocks). The scheduler only switches processes
at well-defined points at the beginning of basic blocks; at these points there are no half-

modified heap objects, and the liveness of all registers (notably pointers) is known.

A thunk is represented by a heap-allocated object containing a code pointer and the values

of the thunk's free variables. A thunk is evaluated by loading a pointer to it into a defined

register and jumping to its code. When a process begins the evaluation of a thunk, it replaces
the thunk's code pointer with a special "under-evaluation" code pointer. Accordingly,

any other process that attempts to evaluate that thunk while it is under evaluation will

automatically jump to the "under-evaluation" code, which queues the process on the thunk.
When the original process completes evaluation of the thunk it overwrites the thunk with
its final value, and frees any blocked processes.

An MVar is represented by a pointer to a mutable, heap-allocated, location. This location

includes a flag to indicate whether the MVar is full or empty, together with either the value
itself, or a queue of blocked processes.

218 APPENDIX C. CONCURRENT HASKELL

C. 6.1 Other primitives

One tiresome aspect is that a process performing ordinaxy Unix 1/0 might block the whole
Concurrent Haskell program, rather than just that process, which is obviously wrong. There

seems to be no easy way around this. We provide a primitive that enables a solution to be
built, however:

waitInputFD :: Int -> ID

waitInputFD blocks the process until the specified Unix file descriptor has input available.

The final useful primitive we have added allows a process to go to sleep for specified number
of milliseconds:

delay :: Int -> 10 ()

C. 6.2 Garbage collection

An interesting question is the following: is it ever possible to garbage-collect a process?
At first its seems that the answer might be quite complicated: after all, process garbage
collection is a notoriously tricky business (see, for example, [Hud86].)

Fortunately, it turns out to be rather easy in Concurrent Haskell. The principle is as follows:

a process can be garbage- collected only if it can perform no further side effects. Here are
two immediate consequences:

(1) A runnable process cannot be garbage collected, because it might perform more 1/0.

(2) A process blocked on an MVar can be garbage-collected if that MVar is not accessible
from another non-garbage process. Why? Because the blocked process can only be

released if another process puts a value into the blocking MVar, and that certainly
can't happen if the MVar is unreachable from any non-garbage process.

This leads us to a very simple modification to the garbage collector:

When tracing accessible heap objects, treat all runnable processes as roots.

9 When an MVar is identified as reachable, identify all the processes blocked on that
MVar as reachable too (and hence anything reachable from them).

C. 7. RELATED WORK' 219

Like any system, this one is not perfect; for example, an MVar might be reachable even
though no further writes to it will take place. It does, however, do as well as can be

reasonably expected, and it succeeds in some common cases. For example, a server with no
possibility of future clients will be garbage-collected, since it is blocked on its input MVar

and no other process now has that Mr.

C. 6.3 Distributed implementation

We are working on a distributed implementation of Concurrent Haskell. One nice property
of Wars is that they seem relatively easy to implement in a distributed setting, compared
to generalised choice for example.

Each MVar resides in one place, and a putMVar or getMVar operation on a remote MVar is
implemented with a message send. The message for a getMVar carries with it the identity

of the sending process, and may be blocked indefinitely at the far end, on an empty Mr.
When the MVar is written to, the blocked getMVar message is returned to the sender, now
carrying the value written to the Mr. On arrival at the original sender, the reply awakens

,. the process whose identity it carries.

A putMVar'message is simpler, since it requires no reply. Either it succeeds in writing to an
empty MVar, or it finds a full MVar, which is a run-time error (but see Section C. 8).

C. 7 Related work

We originally borrowed the idea of Mrs directly from Id, where they are called M-

structures. Id's motivation is rather different to ours: M-structures are used to allow certain
highly-parallel algorithms to be expressed that are difficult or impossible to express without
them. [BNA91] However the basic problem they solve is identical: convenient synchronisa-
tion between parallel processes. We also share with Id the expectation that programmers
should rarely, if ever, encounter Wars. Rather, Mrs are the "raw iroiP from which more
friendly abstractions can be built.

One big difference between Concurrent Haskell and Id is that in Concurrent Haskell oper-
ations on Mrs can only be done in the 1/0 monad, and cannot be performed in purely-
functional contexts. In Id, since everything is eventually evaluated, side effects axe permitted
everywhere.

It is interesting to compare MVars with ordinary semaphores, when each are used to provide

mutual exclusion. Using semaphores (or mutex locks in ML-threads) one must remember

220 APPENDIX C. CONCURRENT HASKELL

to claim the, lock before side-effecting the data it protects; that is, the mutex implicitly

protects the data. With an MVar, the protected data is explicitly inside the MVar, which
means that one cannot possibly forget to claim the lock before side-effecting it! Not only
that, but the connection between the lock and the data it protects is more explicit: MVar
t rather than (t, mutex). Lastly, mutual exclusion using a semaphore requires at least
two mutable locations: the semaphore and the data. Using an MVar usually collapses these
two locations into one, and thereby also reduces the number of side-effecting operations.
In complex situations implicit locking may still be unavoidable, but Mrs simplify the
common case.

C. 7.1 Concurrent functional languages

Two of the first functional languages providing concurrency were PFL [Hol83] and Am-
ber [Car86]. Both supported concurrency with communication along synchronous, typed

channels.

Reppy's Concurrent ML is, as the name suggests, the ML predecessor of Concurrent Haskell. [Rep9l]
CML is an influential synchronous concurrent language whose war-cry is "choice without
loss of abstractiore'. It achieves this goal using a new abstract data type of events, (a

subset of) whose signature is:

type 'a chan
type 'a event

val receive : 'a chan -> 'a event

val transmit : 'a chan -> 'a -> unit event

val guard (unit -> 'a event) -> 'a event

val wrap ('a event * ('a -> lb)) -> lb event

val choose : 'a event list -> 'a event

val sync :)a event ->)a

receive and transmit are the primitive events, guard and wrap add pre-synchronisation
and post-synchronisation actions respectively to

an event, choose combines a list of events into a single event, and sync actually synchronises
on an event., In many ways, a CML value of type event t is rather like a Haskell 1/0 action
of type 10 t. Both are first-class values that can be synchronised on (resp. performed)

C. 7. RELATED WORK 221

repeatedly.

An important difference is that CML events contain an implicit "synchronisation point"
that is a single primitive action, encapsulated in pre- and post-synchronisation actions.
Haskell 1/0 actions have no such structure. The corresponding disadvantage is that one
writes different CML code to perform a protocol depending on whether the result is simply
a unit-valued function that is called to perform side effects, or an event-valued function that
is activated by sync. The latter are not as easy to write as the former, and the mere fact

of the difference might be considered as a blow to abstraction.

FACILE is another extension of ML with concurrency, [GMP89] though one which is quite
a bit more complex than either CML or Concurrent Haskell. Like CML, FACILE employs
synchronous communication.

ML-threads is a concurrency package for ML developed by [CM90]. It provides threads,
together with mutex locks and condition variables to manage thread interaction. Concurrent
Haskell has a similar flavour, although it seems somewhat simpler: for example, Concurrent
Haskell provides only MVars rather than both mutexes and condition variables.

Using Gofer, [JH93] have recently explored issues similar to Concurrent Haskell, introducing

a (symmetric) fork primitive and synchronous channels into a mona-dic setting. This work
differs from ours in that the emphasis is on expressing parallel algorithms succinctly rather
than writing concurrent programs that engage in messy interaction with the outside world.
Evaluating two monadic sub-computations in parallel, by 'sparking' them using a symmetric
fork primitive is convenient for many parallel algorithms, but this synchronous view of

process is not appropriate in the concurrent case (see Section C. 1.2). Communication
between these 'sparked' processes is done on exclusive, synchronous channels, considering
it an error when more than one send occurs on a channel without a matching receive. This

restriction is quite severe in a concurrent setting, as resource managers such as a window
system that encapsulate and provide controlled access to some shared resource, cannot be

readily expressed.

It goes without saying that we share with all of these languages the benefits of higher-order

functions, polymorphic typing, the ability to pass any value along a channel (including

functions, channels, and as-yet-unevaluated suspensions).

C. 7.2 Functional operating systems

The early 1980s saw a great deal of work done on functional operating systems. Typical

was the work of Jones and Henderson, [Hen82b, Jon83, Jon84] and Stoye's "sorting office"

222 APPENDIX C. CONCURRENT HASKELL

[Sto84]. All of this work was based on the idea of processes communicating through streams
of messages, with a non-deterministic merge primitive, or in Stoye's case an external sorting
office, that provided a choice construct. Programming using streams is not particularly easy,
however, requiring a great deal of tagging and untagging to keep the plumbing straight.

Cupitt's made an advance over stream processing by introducing a form of monadic 1/0 (ac-
tually presented using continuations), with explicit process forking much like f orkIC. [Cup92]
Communication between processes was solely by sending messages to the process; that is,

every process had but a single input port through which it had to multiplex all its commu-
nication.

C. 7.3 Concurrent object-oriented languages

Much the largest group of asynchronous concurrent languages is the that of actor languages, [Agh86]

and concurrent object-oriented languages [Agh90] such as ABCL [Yon90]. It would be in-
teresting to undertake a systematic comparison of them with Concurrent Haskell, but we
have not yet done so

C-7.4 Synchronous vs asynchronous

We are convinced that an asynchronous model of communication gives a simpler, cleaner
design than a synchronous one. Briefly, our reasons are as follows:

e The asynchronous model allows one to think either in terms of messages or in terms of
shared memory. The synchronous model makes the former much easier than the latter,
by requiring a shared memory location to be modelled by a process and associated
communication protocol.

The asynchronous model seems to be much less profligate with process creation, by

substituting "passive" Mrs for active processes.

A synchronous model absolutely requires choice, with the difficulties discussed earlier,
while the asynchronous model does not.

In a distributed system, the underlying infrastructure directly supports asynchronous
messages, while synchronous ones have to be programmed on top. In this sense,
asynchronous communication is more primitive.

C. 8. CONCLUSIONS AND FURTHER WORK 223

C. 8 Conclusions and further work

We have described a small and simple extension to Haskell that allows concurrent programs
to be written. Using this substrate we are now well advanced in the construction of a
graphical user interface toolkit, Haggis. Indeed this application has been the driving force
for Concurrent Haskell throughout, just as eXene was used as a test case for CML. Despite
the apparently primitive nature of our single synchronisation mechanism, Mrs, we have
found the language surprisingly expressive.

The current semantics of MVars specify that a putMVar that finds a full MVar is an error
that aborts the whole program. Several other design choices are also reasonable:

* Make an MVar hold a multiset of values, as in Pict channels.

e Make an MVar hold a sequence of values.

* Make an MVar hold a single value, but specify that a putMVar on a full MVar should
block, rather than cause an error.

We are undecided whether any of these choices are "better" than our current semantics.
The semantics of each is fairly easy to describe, and their implementations are not hard

either.

One obvious topic for further work is further development of the formal semantics of Con-

current Haskell. On the implementation side we are actively working on a distributed,

multiprocessor implementation.

Concurrent Haskell is freely available by FTP. (Connect to
f tp. dcs. glasgov. ac. uk, look in pub/haskell/glasgow, and grab any version of Glasgow
Haskell from 0.24 or later.)

Acknowledgements

We are grateful to Benjamin Pierce, John Reppy, David Turner and Luca Cardelli, who all

gave us very helpful feedback on earlier versions of the paper. Thanks, too, to Jim Mattson,

who implemented concurrency and Mrs in Glasgow Haskell.

:1

:
1

-'

JA

224 APPENDIX C. CONCURRENT HASKELL

Bibliography

[ABD+89] G. Abowd, J. Bowen, A. Dix, M. Haxrison, and R. Took. User interface lan-
guages: a survey of existing methods. Technical Report PRG-TR-5-89, Pro-
gramming Research Group, Oxford University, May 1989.

[Ach96] Peter Achten. Interactive Functional Programs: Models, Methods, and Im-
plementation. PhD thesis, University of Nijmegen, February 1996. ISBN 90-
90009156-4.

[AG96] Ken Arnold and James Gosling. The Java Programming Language. The Java
Series. Addison Wesley, 1996. ISBN 0-201-63455-4.

[Agh86] , Gul A. Agha. Actors: A Model of Concurrent Computation in Distributed Sys-
tems. The MIT Press Series in Artifical Intelligence. MIT Press, 1986.

[Agh90] G Agha. Concurrent object-oriented programming. Communications of the

,
ACM, 33(9): 125-141, September 1990.

[AN89] Arvind and Rishiyur S. Nikhil. I-Structures: Data Structures for Parallel
Programming. ACM Ransactions on Programming Languages and Systems,
11(4): 598-632,1989.

[Ans82] Ed Anson. The device model of interaction. gomputer Graphics, 16(3): 107-114,
July 1982.

[AP94] Peter Achten and Rinus; Plasmeijer. Towards Distributed Interactive Programs
in the Functional Programming Language Clean. In Implementation of Func-
tional Programming Languages Workshop, University of East-Anglia, Norwich,
September 1994.

[Ary89] Kavi Arya. Processes in a functional animation system. In Proceedings of the
4th ACM Conference on Functional Programming and Computer Architecture,

pages 382-395, London, September 1989.

[AS90a] Inc. Adobe Systems. PostScript language reference manual. Addison Wesley,
second edition, 1990.

[AS90b] Paul Asente and Ralph Swick. X Window System Toolkit. Digital Press, 1990.

225

NOV

in"i A

I n? 4
pal

1: 1--w

VV"I

226 BIBLIOGRAPHY

[Bar83] HW Barz. Implementing semaphores by binary semaphores. SIGPLAN Notices,
18(2): 39-45, February 1983.

[BNA91] Paul S. Barth, Rishiyur S. Nikhil, and Arvind. Non-strict, Functional Lan-
guage with State. In J. Hughes, editor, Proceedings of the 5th A CM Conference
on Functional Programming and Computer Architecture, volume 523 of Lecture
Notes in Computer Science, pages 538-568. Springer Verlag, August 1991.

[Car86] L Cardelli. Amber. In Combinators and functional programming languages,
LNCS 242. Springer Verlag, 1986.

[CC92] Emmanuel Chailloux and Guy Cousineau. Programming Images in ML. In
Proceedings of the A CM SIGPLAN Workshop on ML and its Applications, 1992.

[CG94] RL Crole and AD Gordon. A sound metalogical semantics for input/output
effects. In L Pacholski and J Tiuryn, editors, Computer Science Logic 194,
Kazimierz, Poland, Springer Verlag LNCS 933, pages 229-353, September 1994.

[CH93] Magnus Carlsson and Thomas Hallgren. FUDGETS -a graphical user interface
in a lazy functional language. In Proceedings of the 6th ACM Conference on
Functional Programming and Computer Architecture, pages 321 - 330. ACM
Press, 1993.

[CM90] Eri
'cC.

Cooper and Greg Morrisett. Adding Threads to Standard ML. Tech-
nical Report CMU-CS-90-186, School of Computer Science, Carnegie Mellon
University, December 1990.

[Coc88] Gilbert Cockton. Interaction ergonomics, control and separation: Open prob-
lems in user interface. Technical Report Tech Rep. No. AMU 8811/0311, Scottish
HCI Centre, Heriot-Watt University, February 1988.

[Cou87] J Coutaz. Pac, an object oriented model for dialog design. In Proceedings of
INTERACT'87, pages 431-436,1987.

[Cup92] John Cupitt. The Design and Implementation of an Operating System in a
Functional Language. PhD thesis, Department of Computer Science, University
of Kent at Canterbury, August 1992.

[CVM97] Koen Claessen, Ton Vuillings, and Erik Meijer. Structuring graphical paradigms
in tkgofer. In Proceedings of the 1997 International Conference on Functional
Programming, 1997.

[dNH83] R de Nicola and MC Hennessy. Testing equivalence for processes. Theoretical
Computer Science, 34: 83-133,1983.

[Dwe89) A. Dwelly. Functions and Dynamic User Interfaces. In Proceedings of the 4th
ACM Conference on Functional Programming and Computer Architecture, Im-
perial College, London, September 1989.

BIBLIOGRAPHY 227

[DX981 Microsoft Corporation. The DirectX home page.
http: //www. microsoft. com/directx, 1998.

[0197]ý Conal Elliott. Modelling interactive 3d and multimedia animation with an em-
bedded language. In Conference on Domain Specific Languages, October 1997.

[Fin96] Sigbjorn Finne. The Haggis Manual. Available on the World Wide Web via the
Haggis home page, April 1996.
Url: http: //www. dcs. gla. ac. uk/fp/software/haggis.

[FPJ95a] Sigbjorn Finne and Simon L. Peyton Jones. Composing Haggis. In Proceedings
of the Fifth Eurographics Workshop on Programming Paradigms in Computer
Graphics, Maastrict, Netherlands, September 1995.

[FPJ95b] Sigbiorn Finne and Simon L. Peyton Jones. Pictures: A simple structured
graphics model. In Glasgow Functional Programming Workshop, Ullapool, July
1995.

[FPJ96] Sigbjorn Finne and Simon L. Peyton Jones. Composing the user interface with
Haggis. In John Launchbury and Erik Meijer, editors, Lecture Notes in Com-
puter Science. Springer Verlag, Olympia, WA, August 25-30 1996.

, [Fre94] ,X Consortium. Fresco Specification. Distributed with X1lR6, April 1994.

[GMP89] Alessandro Giacalone, Prateek Mishra, and Sanjiva Prasad. FACILE: A Sym-
metric Iintegration of Concurrent and Functional Programming. In Proceedings
of TAPSOFT89 (Volume II), LNCS 352, pages 184-209, March 1989.

'[Gor93] Andrew Gordon. An Operational Semantics for 1/0 in a Lazy Functional Lan-
guage. In Proceedings of the 6th ACM Conference on Functional Programming
and Computer Architecture, pages 136-145, CopenHagen, June 1993. ACM
Press.

[Gor94] Andrew D. Gordon. Functional Programming and Input/Output. Distinguished
Dissertations in Computer Science. Cambridge University Press, 1994.

[GP96] T. R. G. Green and M. Petre. Usability analysis of visual programming environ-
ments: a 'cognitive dimensions' framework. Journal of Visual Languages and
Co7nputing, 1996.

[GR92] Emden W. Gansner and John H. Reppy. A Foundation for User Interface Con-
struction. In Brad A. Myers, editor, Languages for Developing User Interfaces,
pages 239-260. Jones and Bartlett Publishers, Inc., 1992.

[GR93) Emden W. Gansner and John H. Reppy. A Multi-threaded Higher-order User
Interface Toolkit. In Bass and Dewan, editors, User Interface Software. John
Wiley & Sons Limited, 1993.

[GY+96] James Gosling, Frank Yellin, et al. The Java Application Programming Interface,
Volume 2: Window Toolkit and Applets. Addison Wesley, 1996.

228 BIBLIOGRAPHY

[H+92] Paul Hudak et al. Report on the Programming Language Haskell, Version 1.2.
A CM SIGPLAN Notices, 27(5), May 1992.

[HBP+93] Ralph D. Hill, Tom Brinck, John F. Patterson, Steven L. Rohall, and Wayne T.
Wilner. The Rendezvous Language and Architecture: Tools for Constructing
Multi-User Interactive Systems. Communications of the ACM, 36(l): 62-67,
1993.

[Hen82a] Peter Henderson. Functional geometry. In A CM Symposium on LISP and Func-
tional Programming, pages 179-187,1982.

[Hen82b] Peter Henderson. Purely Functional Operating Systems. In J. Darlington,
P. Henderson, and D. A. Turner, editors, Functional Programming and its Ap-

plications, pages 177-192. Cambridge University Press, 1982.

[Hil86] Ralph D. Hill. Supporting concurrency, communication and synchronization
in human-computer interaction - the sassafras uims. ACM Transactions on
Graphics, 5(3): 179-210, July 1986.

[HN94] Allan Heydon and Greg Nelson. The Juno-2 Constraint-Based Drawing Editor.
Technical Report 131a, DEC Systems Research Center, Palo Alto, CA, December
1994.

[Hob94] John Hobby. A User's Manual for MetaPost. Technical report, Bell Labs, 1994.

[Hol83] S6ren Holmstr6m. PFL: A functional language for parallel programming and
its implementation. Technical Report 3, Dept. of Computer Science, Chalmers
University of Technology, 1983.

[Hud86] Paul Hudak. Memory coherence in shared virtual memory systems. In Pro-

ceedings of the 5th ACM Symposium on Principles of Distributed Computing,
1986.

[Hug89) John Hughes. Why Functional Programming Matters. Computer Journal,
32(2): 98-107, April 1989.

[Jef95] A Jeffrey. A fully abstract semantics for a concurrent functional language with
monadic types. In Proceedings of the Tenth IEEE Symposium on Logic in Com-

puter Science, San Diego, 1995.

[JH93] Mark P. Jones and Paul Hudak. Implicit and Explicit Parallel Programming in
Haskell. Technical Report RR-982, Dept. of Computer Science, Yale University,
August 1993.

[JH94] Mark P. Jones and Paul Hudak. Haskell vs. ada vs c++ vs. awk vs. ..: An

experiment in software prototyping productivity. Technical report, Dept. of
Computer Science, Yale University, July 1994.

[Jon83] Simon B Jones. Abstract machine support for purely functional operating sys-
tems. Technical Report PRG-34, Programming Research Group, Oxford, August
1983.

BIBLIOGRAPHY. 229

[Jon84] Simon B. Jones. A Range of Operating Systems written in a Purely Functional
Style. Technical Report PRG-42, Programming Research Group, Computer
Laboratory, Oxford University, September 1984.

[KM77] G Kahn and DB MacQueen. Coroutines and networks of parallel processes. In
Information Processing '77, pages 993-998,1977.

[Knu79] Donald E. Knuth. TEX and METAFONT, New Directions in Typesetting. Dig-
ital Press and the American Mathematical Society, Bedford, MA, 1979.

[KP88] Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-view-
controller user interface paradigm in smalltalk-80. Journal of Object-Oriented
Programming, 1(3): 26-49, August/September 1988.

[LPJ94a] John Launchbury and Simon L. Peyton Jones. Lazy Functional State Threads.
In Proceedings of the ACM Conference on Programming Language Design and
Implementation, June 1994.

[LPJ94b] John Launchbury and Simon L. Peyton Jones. State in Haskell. Lisp and
Symbolic Computation, 1994. to appear.

[LVC89] Mark A. Linton, J. M. Vlissides, and P. R. Calder. Composing user interfaces
with InterViews. IEEE Computer, 22(2): 8-22, February 1989.

[LZ87] Peter Lucas and Stephen N. Zilles. Graphics in an Applicative Context. Tech-
nical report, IBM Almaden Research Center, 650 Harry Road, San Jose, CA
95120-6099, July 8 1987.

[Mil9l] R Milner. The polyadic 7r-calculus: A tutorial. Technical Report ECS-LFCS-
91-180, Lab for Foundations of Computer Science, Edinburgh, October 1991.

[MR92] Brad A. Myers and Mary Beth Rosson. Survey on user interface programming.
In Proceedings of the A CM SIGCHI 192 Conference, pages 195-202. ACM Press,
May 3-7 1992.

[Mye90] Brad A. Myers. A new model for handling input. A CM Ransactions on Infor-
mation Systems, 8(2): 289-320, July 1990.

[Mye9l] Brad A. Myers. Separating application code from toolkits: Eliminating the
spaghetti of callbacks. In Proccedings of the A CM SIGCHI '91 Conference on
User Interface Software and Technology, page 2110220. ACM Press, November
11-13 1991.

[Nob96] Rob Noble. Lazy Functional Components for Graphical User Interfaces. PhD
thesis, Department of Computer Science, University of York, April 1996.

[NR95] Rob Noble and Colin Runciman. Gadgets: Lazy functional components for
graphical user interfaces. In M. Hermenegildo and S. D. Swierstra, editors, Pro-
ceedings of the Seventh International Symposium on Programming Languages:
Implementations, Logics and Programs, number 982 in LNCS, pages 321-340,
Utrecht, The Netherlands, September 1995. Springer Verlag.

230 BIBLIOGRAPHY

[Nye90] Adrian Nye. X1ib Programming Manual, volume 1. O'Reilly & Associates, Inc.,
1990.

[Ous94] John Ousterhout. Tcl and the Tk Toolkit. Addison Wesley, 1994.

[P+96] John Peterson et al. Haskell 1.3: A non-strict, purely functional lan-
guage. Technical Report YALEU/DCS/RR-1106, Department of Comput-
ing Science, Yale University, May 1996. World Wide Web version at
http: //haskell. cs. yale. edu/haskell-report.

[P+97] John Peterson et al. Haskell 1.4: A non-strict, purely functional language. Tech-
nical report, Department of Computing Science, Yale University, April 1997.
Available on the World Wide Web at http: //haskell. org/.

[Pat93] Fabio Paterno. A methodology to design interactive systems based on Interac-
tors. Technical report, TR-WP7, ESPRIT BRA 7040, Amodeus-2,1993.

[Pik89] Rob Pike. A concurrent window system. Computing Systems, 2(2): 133-153,
Spring 1989.

[PJGF96] Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent Haskell.
In A CM Symposium on the Principles of Programming Languages, St. Peters-
burg Beach, Florida, January 1996.

[PJW93] Simon L. Peyton Jones and Philip NVadler. Imperative functional programming.
In ACM Conference on the Principles of Programming Languages, pages 71 -
84. ACM Press, January 1993.

[PR96] Charles Petzold and Paul Rao. Programming Windows 95. Microsoft Press,
1996.

[PRT93] Benjamin C. Pierce, Didier R6my, and David N. 'IVrner. A typed higher-order
programming language based on the pi-calculus. Submitted for publication, June
1993.

[RA90] David F. Rogers and I Alan Adams. Mathematical Elements for Computer
Graphics (2nd edition). McGraw Hill, 1990.

[Rep88] John H. Reppy. Synchronous Operations as First-Class Values. In Proceedings
of the A CM SIGPLAN '88 Conference on Programming Language Design and
Implementation, pages 250-259, June 22-24 1988.

[Rep9l] John H. Reppy. CML: A higher-order concurrent language. Proceedings of the
A CM SIGPLAN'91 Conference on Programming Language Design and Imple-
mentation, pages 293-305,1991.

[RMP+82] David S. H. Rosenthal, J-C. Michener, G. Pfaff, R. Kessener, and M. Sabin.
The detailed semantics of graphics input devices. ACM Computer Graphics,
16(3): 33-38, July 1982.

BIBLIOGRAPHY 231

[Sch86] Kurt Schmucker. Object Oriented Programming or the Machintosh. Hayden,
Hasbrouck Heghts, New Jersey, 1986.

[Sch95] E Scholz. Four concurrency primitives for haskell. In P Hudak, editor, The
Haskell Workshop, La Jolla, pages 1-12, June 1995.

[Sch96] Enno Scholz. PIDGETS: Unifying pictures and widgets in a constraint-based
framework for concurrent functional GUI programming. In Herbert Kuchen
and S. Doaitse Swierstra, editors, Proceedings of PLILP96: Eighth Interna-
tional Symposium on Programming Languages, Implementations, Logics and
Programs, LNCS 1130, pages 363-377, September 1996.

[SG92] Robert W. Scheifler and James Gettys. X Window System. Digital Press, third
edition, 1992.

[SG97] Silicon Graphics. The OpenGL graphic's system: A specification (version 1.1).
http: //www. sgi. com/Technology/openGL/glspec/glspec. html, 1997.

[SSC+96] P. Szekely, P. Sukaviriya, P. Castells, J. Muthukumarasamy, and E. Salcher. En-
gineering for Human- Computer Interaction, chapter Declarative interface mod-
els for user interface construction tools: the Mastermind approach. Chapman
and Hall, 1996.

[Sto84] William Stoye. A new scheme for writing functional operating systems. Technical
Report 56, Cambridge University Computer Laboratory, 1984.

[Sut63] I. Sutherland. Sketchpad, a man-machine graphical communication system. PhD
thesis, MIT, January 1963.

[Tay96] Colin Taylor. Embracing windows. Technical report, Department of Computing
Science, University of Nottingham, Oct 1996.

[Tbo90a] Roger Took. Surface interaction: A paradigm and model for separating appli-
cation and interface. In Proceedings of the CHI'90, pages 35-42, April 1990.

[Tbo90b] Roger Took. Surface Interaction: Separating Direct Manipulation Interfaces
from their Applications. PhD thesis, Department of Computer Science, Univer-
sity of York, July 1990.

[Tra94] Michael Travers. Recursive interfaces for reactive objects. In Proceedings of
CHI'94, pages 379-385, Boston, MA, April 24-28 1994.

[VTS96] T Vuillings, D Tuijnman, and W Schulte. Lightweight GUIs for functional
programming. In Proceedings of PLILP'95: Seventh International Symposium
on Programming Languages, Implementations, Logics and Programs, LNCS 982,
September 1996.

[vW82] Christopher I van Wyk. A High-Level Language for Specifying Pictures. A CM
Transactions on Graphics, 1(2): 163-182, April 1982.

232 BIBLIOGRAPHY

[Wad92] Philip Wadler. The essence of functional programming. In Proceedings of the
ACM SIGPLAN 19th Annual Symposium on Principles of Programming Lan-
guages, January 1992. Invited talk.

[WG94] Andre Weinand and Erich Gamma. ET++ -a portable, homogenous class
library and application framework. In Proceedings of UBILAB Conference 94.
UniversitRtsverlag Konstanz, 1994.

[yon9o] A Yonezawa. ABCL: an object-oriented concurrent system: theory, language,
programming, implementation, and application. MIT Press, 1990.

I
UGN

Gow

u.
LTNraRsrm
us

