A University
& of Glasgow

Finnie, Sigbjorn O. (1998) Composing graphical user interfaces in a
purely functional language. PhD thesis.

http://theses.gla.ac.uk/1597/

Copyright and moral rights for this thesis are retained by the author

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

This thesis cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the Author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the Author

When referring to this work, full bibliographic details including the
author, title, awarding institution and date of the thesis must be given

Glasgow Theses Service
http://theses.qgla.ac.uk/
theses@gla.ac.uk

Department of
Computing Science

UNIVERSITY
of
GLASGOW

Composing graphical user

interfaces in a purely functional

language

Sigbjorn O. Finne

A thesis submitted for a Doctor of Philosophy Degree in
Computing Science at the University of Glasgow

September 1998

© Sigbjgrn O. Finne 1998

" BLANK IN
ORIGINAL

Abstract

This thesis is about building interactive graphical user interfaces in a compositional man-
ner. Graphical user interface applications hold out the promise of providing users with
an interactive, graphical medium by which they can carry out tasks more effectively and
conveniently. The application aids the user to solve some task. Conceptually, the user is
in charge of the graphical medium, controlling the order and the rate at which individual
actions are performed.

This user-centred nature of graphical user interfaces has considerable ramifications for how
software is structured. Since the application now services the user rather than the other way
around, it has to be capable of responding to the user’s actions when and in whatever order
they might occur. This transfer of overall control towards the user places a heavy burden on

programming systems, a burden that many systems don’t support too well. Why? Because
the application now has to be structured so that it is responsive to whatever action the user

may perform at any time.

The main contribution of this thesis is to present a compositional approach to constructing
graphical user interface applications in a purely functional programming language.

The thesis is concerned with the software techniques used to program graphical user inter-
face applications, and not directly with their design. A starting point for the work presented
here was to examine whether an approach based on functional programming could improve
how graphical user interfaces are built. Functional programming languages, and Haskell in
particular, contain a number of distinctive features such as higher-order functions, polymor-
phic type systems, lazy evaluation, and systematic overloading, that together pack quite
a punch, at least according to proponents of these languages. A secondary contribution
of this thesis is to present a compositional user interface framework called Haggis, which

makes good use of current functional programming techniques. The thesis evaluates the
properties of this framework by comparing it to existing systems.

AL

Contents

Abstract

1 Introduction

1.1 The impact of interactive user interfaces« v v v o v oo

1.2 Thesis contributions

llllllllllllllllllllllllllllll

1.3 ThesiS OUtlIne & & v v ¢ v o v o e ¢ o o o o o o o o o s s s ¢ s 0 o s s o s s o o

2.1 Describing the scene

2.2

2.3
24
2.5
2.6
2.7

2.1.1

The Picture type

2.2.1

Picture elements

Transforming pictures

Structured translation

A picture language

llllllllllllllllllllllllllllll

Summary

Runningexample« v o v v v i it i i e e e e

>
lllllllllllllllllllllllllllll

.

Graphical transformations ¢ . v v ¢ v v v v e e e e e e e e

Composing pictures

lllll
lllllllllllllllllllllllll

28 TIlng pICtUIeS . v v v ¢ ¢ v o ¢ v o o o o o o ot s s s s o s o o s o oo s oo
29 Example i v it i it i e e e e e e s e

29.1 Histogram vt e v v oo oo Ve e s e e e .
2.10 Rendering Pictures S A R

2.11 Related work

iiiiiiiii

i1l

S s W -

-3

vi Contents
3 Exploring the design space 39
3.1 Thecallbackmodel i it ittt e e e 39
3.2 Object oriented userinterfaces 43
3.3 Functional user interface representations 46
331 Arocadmap i i ittt e e e e e e e e e e e A" ¥ {

3.4 Theuserinterfaceasavalue ¢ vueeno. 47
3.0 Adding componentidentity, 50
3.0.1 Using type classes v v v v it it i e e e e e e e e 02

3.6 Making communicationimplicit 0. 55
3.7 Explicit two-way communication i i it e o8
3.8 SUmMMAIY it i it i i e e e e e e et e e 63

4 Virtual I/O devices | 65
4.1 Programming I/O withactions 65
4.1.1 HandlingI/O o 0 i i it it e e e e e e e 66

4.1.2 COnCUITENCY & ¢ v ¢ v v v e vt vt e et e e e ee e e it 68

4.1.3 BuildingonIO e 68

4.2 VirtualI/Odevices. o v i i i i it e e e e 68
4.3 Applicationhandles 70
44 VirtualI/Odevicehandles 75
4.5 VirtualI/Odevicetypes o v 76
4.6 Virtual user interfacehandles 79
4.7 Newhandlesfromold 80
4.7.1 Example: radiogroup 81

4.8 SUMMATY . . v v v vttt e e e e e e e e e e e e e 83

5 Composing Haggis 87
5.1 Chapteroverview 87
0.1.1 A simple graphical user interface 88

0.1.2 Addinggraphics 90

5.1.3 Creating virtual I/Odevices. 91

Contents vii

0.2

0.d
0.4
3.0

0.0

6 The
6.1

6.2
6.3

0.4
6.5

0.0

5.1.4 Adding conCurrency« oo oo e v ottt oo o o0 e 93
5.1.5 Addinginteraction« . ¢t i ittt it e 94
5.1.6 Addinglayoutt it e 95
5.1.7 SUIMINATY &« v v v v o e o e v e e ottt a o aaaasosaenos 95
Displaying graphicaloutputt i v ie oo 96
5.2.1 Changing the glyph’spicture 97
0.2.2 Creatingnewglyphs ¢ i i i it i il i e i e e 98
5.23 Addingstate i it i e e e e e e e e 100
524 Displayingvalues v i i i i e e e e e 104
5.2.5 A simple framework for visualisingdata 106
Adding concurrency ¢ v v v v b v et e e e e e e e e e e 108
Adding interaction « v ¢ v v i b ot et i e e e e e e e e 111
Addinglayout v v v o v it e e e e e e e e e 119
55.1 Pairwisetiling ¢t ittt i i e e i 119
552 Boxingit up . . ¢ v v v o vttt et it e e s e e e 123
553 Constrained boxing. . . .« « ¢« ¢ ¢ ¢t e i et et i i et 127
0.0.4 Computingtheboxlayout......... ... 128
5.5.0 Building layout abstractions 0 0oL 129
5.5.6 Embeddingacomponent0c0 0000 130
5.5.7 Freeformlayout i i ittt e 131
SUINIMNATY '+ v v v v v o v o e o e o o s e ot v s o o s s o s o s oo n o oo s oo 132
implementation of Haggis 139
Display handles« ¢« ¢ v it v i it i et e e e e s 139
6.1.1 SystemrequestS . . . ¢ v ¢ v it e e e e e e v e e e 143
Display contexts U T I S 144
Accessing the window system e e e e 145
Customisingcomponents. v v v v v v v v v o oo s o v oo n oo oo 145
Realisation i v vt v v v v v o e v o o oo o e e e e e e e s 151

Viii Contents

7 Evaluating Haggis 153
71 Example: 16 puzzle. L e e e e e e 153
72 TheHaggissolution ittt ieeeneeenno. 154
7.3 TheJava/AWT solution ittt innnn. 158
74 The Tcl/Tksolution i i ittt ittt ee e 161
7.5 Evaluation. . . o ¢ ¢ v v v i i i i e i e i e e e e e e e e e e e e e e e e e 162
7.6 Concludingremarks ittt ittt 167

8 Conclusion r 179
8.l SUMMATY . . v v i i it et e e e e et et e ettt et e 179
8.2 Future work v o v i i i e e e e e e e e e e e et e e e e e 179

A Picture definition 183
A.l BasicgeometriC types . ¢ v v ¢t v i i i it e e e e e e e e e e e e e e e 183
A2 Pictureelementso i v i it it i it e e e e et 183
A3 Picture operations v v v v i i i it i e e e e e e e e e e .. 184
A4 Graphical attributes o it i s e e e e e e e e e e 185

A.4.1 Penattributestyles 00 i vttt ittt et 186
AD The Painter type v v i i i i i it s e e e s e e e e e e e e e e 186

B 1/0 in Haskell | 189
B.1 Syntactic support. e e e e e e e e e e e e 192

C Concurrent Haskell 193
C.1 Thebasicideas e, 194

C.l.1 AreviewofmonadicI/O 194
C.ll2 Processes . . . v v i i it it it it e e e e e 197
C.1.3 Synchronisation and communication ¢¢.... 199
- C.2 A standard abstraction: buffering 200
C21 Abuffervariable 201
C22 Abufferedchannel 202

-
. P, FUET o ST W N e PR T N S R PE T B g PP S e T L o T T S F L e A T T -

Contents 1X

C.3

CA4

C.5

C.6

C.7

C.8

Control over scheduling 205
C.3.1 Implementing quantity semaphores 206
C.3.2 Variable-munch quantity semaphores 207
C3.3 Priority v i it i it i i et e e e e e e e e e 208
C.34 SUMMATY . v v v vttt et e e e e et e et e e et i e 208
0 1T) (- 209
C.4.1 Iterated choice e e et e et e e e e e e e e e 210
C4.2 Singularchoice i i i i it i it it ettt e e e e e 211
SCMANLICS & v v v v v e e e e e e e e e e e e e e e e e e 212
C.5.1 Deterministic Reduction 213
C.5.2 Concurrent Reaction ¢ i v v v v v vttt v oo v o 213
C5.3 Fairness v v i i i i it i ittt e e e et et 216
Chd4d Summary v v v v i it e ot s oo oo vt e et ot 216
Implementation ¢ v v v vttt e e e e e e e e e 217
C.6.1 Otherprimitives« ¢ ¢t vt ot v v o o v v o v v o v oo 218
C.6.2 Garbagecollection ¢ o v i vt v vt vt ittt vt i, 218
C.6.3 Distributed implementation ¢ v, 219
Related work i 0 i i it it e e e e e e e e e e e 219
C.7.1 Concurrent functional languages 220
C.7.2 Functional operating sysfems 221
C.7.3 Concurrent object-oriented languages 222
C.7.4 Synchronousvsasynchronous ¢ oo 222
Conclusions and furtherwork v oo 223

Contents

[M L e e e L el L

i e R b e o T i i - bl A S AT 2 20 o e
"

4

List of figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1
3.2

3.3
4.1
4.9
4.3

2.1
0.2
9.3
5.4
0.0
5.0
2.7

The boxedCircle PICtUIE. . . « & ¢ ¢ v ¢ vt o v v o o o o o s s o s o v s s o 15
Picture primifives.. « . ¢« ¢ ¢ v ¢ ¢ o v et 6 v o o v oo v o a8 s o s o s e 17
Basic geometric types. « .« v v v v v o v i i e e e e et e e e e e e e e 18
Picture primitives.. . « .« . v v ¢ v o v v v v i e e e e e e e e e e 18
Transformed geometricshapes.« o v v i v v v v i v i oL 19
Aspiral Picture. ¢ v v i o v v vttt e e et 20
Structured translationof pictures « « v ¢ o oot e oo oL 22
graph (scatter) dataPts - scatter plot of annualdata 29
A counter button in Java/AWT. 45
Functional user interface representations. 46
The Fudgets counter vt v i i i it it i it ittt e s oo 57
Type class structure for Haggishandles. 78
Standard handle constructors, part 1 ¢ o i e e oo e e 84
Standard handle constructors, part 2 ¢ o oo oo e e e e e e 85
Hello, world example in Haggis.« v ot et v v vt oo n oo oo v 88
Displaying pictures withaglyph.« ¢ e e e v v v v v e oo v o0 v 91
Displaying Picture values withaglyph. “ e s e e e 97
Changing the Picture displayed by a glyph.. . ..« « « o« ¢ & e e e e e e 98
Duplicating the contents of a glyph. ¢ v v v e v v v v oo 99
Picture book abstraction. G e e e e e e e e 103
The DeviceEvent datatype SRR e e v e e e s e e e 113

<ii List of figures

5.8 The Channelinterface i i i i i i vt v it v v oo oo 114
5.9 Using beside to layout components. 120
5.10 Nested applicationsofabove. e 122
5.11 Geometric attributes of a user interface component 124
5.12 Geometry attribute abstractions e R 133
5.13 Making a component refusetoresize. it ittt e 0. 134
5.14 Centreingacomponent. v v v v v v v v v o v oo o v s o oo e 134
5.15 Constrained boxing inaction. i v v v v v o ot o o s 0 0 oo 134
5.16 Putting a border aroundacomponent. ¢ ... 135
5.17 Adding bordertoabutton. it e e e e 136
5.18 Framingacomponent. i i i i i i e st e e e e e e e e e 136
5.19 CompositeContainerEltoperations. ¢ v v v v v v v ooeoo 137
5.20 The composite container at work. v v v v v v b v o e oo 137
6.1 User interface component system commands v v v v v v v v v v 0 v . 142
#6.2 System requests e 142
6.3 TheDeviceEvent data type v i i i v i v it e e e o e oo oo eos 143
6.4 Window Operations . . . v v v i v i i i i i e ittt e e e e e e 146
7.1 The architecture of Haggispuzzle. 154
7.2 The Board Interface v v v v v v v s s s e e e e e e e . 156
7.3 The 15-puzzle game boardinHaggis. 156
74 The Board and Puzzlein Haggis. v v v v v v v v e e e v e 168
7.5 The graphical user interface to the puzzle in Haggis 169
7.6 Screendump of the 15 puzzleinHaggis. 170
7.7 Toplevel control i i e e e e e e e 170
7.8 ThePiececlass. i ittt it 171
79 TheldpuzzleinJdava,part 1l i i i i i it v e 172
710 The 15 puzzlein Java, part 2 o i i i i it it e e e e e 173
7.11 Snapshot of 15 puzzleinJava.. 0o, . 174

7.12 Building the puzzle board in Tcl/Tk 175

List of figures Xiii

7.13 Snapshot of 15 puzzlein Tel/Tk. v v v o v i e v o oot 176
7.14 Initialisation of the 15 puzzlein Tcl/Tk. o v oot 176
7.15 Checking for valid move and updatingboard. 177
7.16 Evaluation dimensions ¢ v i i it i ittt e e e e o177
A.1 Basicgeometric types. « v v v v v v it ot e e e e e e e e e e e e e e 184
A2 Picture PrimitIves.. .« v v v v v v v e e o e e e e o e b e o e e oo n e 184
A3 Picturecombinators. i i it it e e 185
A4 Penattribute type. « v v v v v v vt e e e e e e e e e e e e 185
A.5 Pen attribute specific settings. i i e v e e 186
A.6 The Painter dictionary type. . . . « ¢« v o v e v v v et o v o o v o o o 0 o o 187
C.1 A channel with unbounded bufferingo 202

C.2 The skip-channel abstractionottt 205

" BLANK IN
ORIGINAL

Acknowledgements

I would like to thank my supervisor, Professor Simon Peyton Jones, for his guidance, bound-
less enthusiasm and support during this research. I would also like to thank the members

of the Functional Programming Group at the University of Glasgow for providing a stimu-
lating environment to work in. Many thanks also to the Pacsoft group at the Department
of Computer Science and Engineering at Oregon Graduate Institute for their hospitality
during my 9 month stay there (October 1996 to July 1997.)

This research would not have been possible without financial support. I am very grateful
to the Royal Norwegian Research Council for the Research Scholarship that made all this
possible. I am also grateful to Simon Peyton Jones for giving me time off to complete the

writing up of this thesis.

Finally, I'd like to thank family and friends for all the support and encouragement through-
out, without which there would have been no end product.

XV

Chapter 1

Introduction

This thesis is about building interactive graphical user interfaces in a compositional man-
ner. Graphical user interface applications hold out the promise of providing users with
an interactive, graphical medium by which they can carry out tasks more effectively and
conveniently. The application aids the user to solve some task. Conceptually, the user is
In charge of the graphical medium, controlling the order and the rate at which individual

actions are performed.

This user-centred nature of graphical user interfaces has considerable ramifications for how
software is structured. Since the application now services the user rather than the other way
around, it has to be capable of responding to the user’s actions when and in whatever order

they might occur. This transfer of overall control towards the user places a heavy burden on
programming systems, a burden that many systems don’t support too well. Why? Because
the application now has to be structured so that it is responsive to whatever action the user
may perform at any time.

The main contribution of this thesis is to present a compositional approach to constructing
graphical user interface applications, which overcomes many of the problems that current

systems suffer from.

The thesis is concerned with the software techniques used to program graphical user in-
terface applications, and not with the design of graphical user interface applications. A
starting point for the work presented here was to examine whether an approach based on
functional programming could improve how graphical user interfaces are built. Functional
programming languages, and Haskell[P*97] in particular, contain a number of distinctive
features such as higher-order functions, polymorphic type systems, lazy evaluation, and

systematic overloading, that together pack quite a punch, at least according to proponents
of these languages. For theoretical and technical reasons we will touch upon later, func-

2 CHAPTER 1. INTRODUCTION

tional languages have not been fully exploited in the domain of graphical user interfaces
until recently. A secondary contribution of this thesis is to present a compositional user
interface framework based on current functional programming ideas, and to evaluate how
it compares to existing systems.

The emphasis of this thesis 1s strongly practical. We describe a fully-fledged user interface
framework and an implementation thereof in a current functional programming language.

We're interested in applying a real language to the task and actually building something

of practical use; it is only through considerable implementation experience and subsequent -

evaluation that we can have confidence in any conclusions drawn. Being based in a current
language naturally implies that the language imposes boundaries; we cannot roam freely in
the design space. In our case, the language of choice is Haskell, the standard non-strict,
purely functional programming language[P197].

Others have addressed goals similar to ours. In the context of functional programming,
eXene[GR92], Fudgets[CH93], Clean[Ach96], Gadgets[Nob96] and TkGofer[CVM97] are all
examples of considerable graphical user interface systems. As we will see in Chapter 3,
the design space is quite rich and the framework presented in this thesis is a thorough
exploration of one part. A dimension that distinguishes these different systems is how
they solve the basic problem of communication with the graphical user interface and, more
generally, the outside world. By drawing on the hard-learned experiences of the functional
programming community on expressing I/O conveniently and purely, this thesis proposes
a design that fits graphical user interface interaction within Haskell’s monad based I/0
model [PJW93]. By integrating the graphical user interface into the general I/O model the

user interface becomes part of the programmer toolbox, rather than the programmer (and
application) having to accommodate an existing user interface toolbox.

User interface systems based in non-functional languages share similar goals to the work
presented in this thesis. LiveWorld[Tra94], Interviews[LVC89], ET++[WG94] and to some
extent' Mastermind [SSC*96] all emphasise composition as an important ingredient in their
approach to building user interface applications. As will be expanded upon later, the pro-
gramming model being put forward in this thesis differs from these systems in a number of
ways, but perhaps most importantly, it is based on top of a functional programming lan-
guage. One of the central tenets of functional programming is the construction of programs

by the repeated composition of values [Hug89], so a user interface system built on top of

a functional language has in principle the greater potential for exploiting compositional
programming techniques.

1.1. THE IMPACT OF INTERACTIVE USER INTERFACES 3

1.1 The impact of interactive user interfaces

What'’s all the fuss about writing interactive user interface applications? One major reason
is their importance. An application that interfaces with its users through a richly interactive

and graphical medium has the potential to be both more compelling, effective (to the user)
and offer a closer mapping to its domain. Another important feature of such applications is
that they represent a shift of control in the direction of the user. The user is in control, with

the application taking on the role of a supervisor or a servant. The increased expressiveness
that such interfaces represent can only be realised if there is good programming support for

writing graphical user interfaces.

Is it a ‘solved’ problem? The use of interactive graphical interfaces is hardly new: from one of
the first applications to make use of interactive graphics, SketchPad{Sut63] in 1963, the field
of computer graphics, and later the fields of user interface software technology and human-

computer interaction, have developed tremendously. Applications with graphical surfaces
that are both involving and richly interactive are today not an uncommon occurrence. With
current advances in computer hardware, this trend is set to continue, especially with respect

to quality of the graphical content.

However, the cost of creating and maintaining user interface applications is currently high.
Surveys of programming projects [MR92] have shown that it is not uncommon to spend
around 50 percent of the resources on user interface issues. One reason for such high numbers
s that arriving at an effective and usable user interface is an experimental process. There
isn’t always a right or a wrong, or if there is, it is normally arrived at through user testing
and prototyping. Clearly, human-computer interaction techniques can educate, guide and
help locate an effective user interface quicker, but experimentation and prototyping of user

interfaces are an integral part of this process.

Another main reason for the difficulty and cost of writing the user interface is that software
teéhnology lacks expressiveness. Libraries for programming graphical user interface appli-
cations tend to be bolted onto existing languages, sequential languages with operational
models that are inimical to the nature of a graphical user interface. The result is that both

the application and user interface part have to be expressed in contorted and unnatural

ways.

A consequence of graphical user interface programming being hard with current systems 1S
that it restricts the experimentation and sheer playfulness on the part of the designer. If
the creation of novel and special-purpose interactive content is hard, it is much harder to
justify the cost of creating it, which results in tried and tested solutions being employed
instead. It could be argued that application-specific user interface controls is not a Good

4 CHAPTER 1. INTRODUCTION

Thing, having basic elements such as text input fields and button groups behave differently
across applications in a desktop environment can be confusing, error-prone and downright
annoying. However, having the possibility of easily creating new user interface abstractions
does not have to conflict with good design and the conformance to user interface guidelines.

1.2 Thesis contributions

The main contribution of the thesis is to provide a compositional view of user interface con-

struction in a functional language. One important development in the history of graphical
user interface programming was the introduction of object-oriented programming languages.

Indeed, the user interface is a showcase for object-oriented ideas and a multitude of object-
oriented GUI frameworks and libraries have been built over the years. Interactive objects

on the screen are naturally represented and modelled by objects in the language. One
such influential system was InterViews[LVC89] which used object orientation heavily. One
of the main features of InterViews was the use of composition as the main programming
glue, a user interface being made up of components that have been repeatedly combined
together. The result, it is claimed, is a consistent and extensible user interface programming
framework.

A main distinguishing feature of functional programming languages is the use and emphasis
placed on composition. Values representing complete programs are constructed by combin-
ing smaller units. The number of ways that values can be combined (the toolbox) is not

fixed. Through the use of higher-order functions and models of evaluation more conducive

to a declarative, value-based view of the world, appropriate combining forms (‘glue’) can
easily be built[Hug89].

If composition is considered a worthwhile feature when programming graphical user inter-
faces, functional programming languages provide the natural home for taking advantage of
this.

The thesis introduces a simple programming framework for building graphical user interfaces
which employs composition as the main programming glue. Using this framework, a number
of examples are presented to highlight the simple and uniform model it presents to the
graphical user interface programmer.

A fully-fledged implementation of this framework, called Haggis, is also presented - a system
which makes essential use of the features of its implementation language, Haskell, a lazy
functional programming language. The resulting system provides the programmer with
a means to construct' and manipulate user interface applications that is compatible with

1.2, . THESIS CONTRIBUTIONS o

functional programming ideas.

More concretely, the thesis makes the following contributions:

o Compositional model Present a simple and uniform model for composing graphical
user Interface applications in a functional language. Through the introduction of
a small set of graphical user interface primitives and the glue for combining these

together, a modular and extensible framework for writing user interface applications

1S presented.

One distinguishing feature of the framework is that it makes no distinction between a

‘primitive component and one built by composing existing components together. One
outcome of this uniformity is that the distinction between building a user interface

application and a user interface abstraction is eliminated.

o Virtual I/0 devices The user interface and the application interact through virtual
I/0 devices. The thesis explores how a user interface component can be seen as just
another I/O device, which just happens to appear in a window. Using the basic
compositional model, these virtual I/O devices can then be combined together to

build complete user interface applications.

e Haggis In order to demonstrate properly the use of composition as the main program-
ming glue for user interface applications, the thesis introduces Haggis, a fully-fledged
user interface framework. Implemented in a functional language, it provides a practi-
cal demonstration of the benefits of compositional user interfaces and how functional
programming techniques can with benefit be applied to a domain that has always

been a stronghold for object-oriented programming techniques.

o Abstraction through concurrency We show that concurrency is vital to support fully
the compositional style of programming based on virtual I/O devices. One ‘side-effect’
of the thesis work was the development of Concurrent Haskell[PJGF96], a concurrency
substrate for Haskell that allows the programmer to conveniently deal with the multi-

threaded nature of user interfaces.

o Evaluating compositionality To assess the properties of Haggis, we present a collection
of common user interface abstractions built using it. With the help of these abstrac-
tions, a number of application examples are presented to evaluate the advantages and

disadvantages of a compositional framework.

6 CHAPTER 1. INTRODUCTION

1.3 Thesis outline

The thesis presents a compositional approach to user interface construction by first looking
at how to present static graphical content. Chapter 2 introduces a simple model for describ-
ing two dimensional pictures as values, and a set of primitive mechanisms for combining
picture values together. The chapter also introduces a pervasive theme of the thesis, namely
a compositional view of programming graphics and graphical user interfaces.

Chapter 3 explores the design space for a user interface system based in a functional lan-
guage. It evaluates the programming models used by existing systems, leading up to a
representation of a user interface as a virtual I/0 device. Chapter 4 presents a virtual I/O
device programming model, and how it can be applied to the representation of user interface
components. Chapter 5 introduces Haggis, a user interface framework that puts the virtual
I/0O device model of the previous model to the test.

Chapter 6 considers some implementation aspects of Haggis. In Chapter 7 Haggis’ pro-
gramming model is evaluated by comparing it against some commonly used user interface
systems. After having presented the conclusions of this evaluation, Chapter 8 concludes the

thesis.

Chapter 2
A picture language

A natural component of a graphical user interface system is the ability to describe graphical
output that can be viewed and manipulated by the user. This chapter presents a simple
framework for describing two-dimensional graphical static scenes from within a functional
language. Later chapters employ this framework to describe the appearance of graphical

user interfaces.

As well as introducing a model for describing pictures, this chapter also illustrates some

pervasive themes of this thesis:

e The compositional view of graphical and user interface programming. As we will see,
a picture is represented as a value, built by composing smaller pictures together rather
than by a sequence of drawing actions.

¢ The separation of modelling from presentation. A picture can be rendered in many
ways, none of which need be considered when constructing the picture.

2.1 Describing the scene

When describing graphical content using a programming notation, not surprisingly, ab-
straction is a powerful tool. By providing a programming notation that hides details of
how to render graphical objects on a particular device, graphical content can be mapped to
multiple devices. The framework or system library that is provided as part of the graphical
programming model takes care of converting the device-independent graphical content to
output on the screen and printer, say. No changes are required on the part of the program-

mer describing the graphical model.

8 CHAPTER 2. A PICTURE LANGUAGE

Device-independence is clearly a Good Thing and technology is certainly moving in that
direction, converging on and standardising programming interfaces to graphical capabil-
ities, PostScript{AS90a], OpenGL[SG97] and DirectX[DX98] being recent examples. So,
abstraction is being put to good use in hiding low-level details of graphical devices, but
what about the actual description of the device-independent graphical content itself? One
way of expressing the drawing of a rectangle in a procedural programming language might

be:

void Rectangle(DrawContext d, int x, int y,int w,int h)

{

DrawLine(d,x,y,x+w,h);
DrawLine(d,x+w,y,x+w,y+h);
DrawLine(d,x+w,y+h,x,y+h);
DrawLiﬁe(d,x,y+h,;,y);

}

the Rectangle procedure draws the lines making up the rectangle, with the DrawContext
parameter encoding the device we will be drawing onto. This function can then be used as
a building block for others:

void RectPair(DrawContext d, int x, int y, int w, int h);
{

Rectangle(d,x,y,w/2,h);

Rectangle(d;x+w72,y,w/2,h);

}

RectPair creates a pair of rectangles horizontally next to each other, taking care of trans-
lating the second rectangle to the right of the first one. Procedural abstraction certainly

helps. Here’s a pair of blue and red rectangle pairs:

BlueRed(DrawContext d,int x,int y)
{

Color c;

Bool fill; -

/* record some graphics state */
¢ = GetColor(c);

fill = GetFillFlag(d);

SetFill(d,True);

2.1. DESCRIBING THE SCENE 1 9

SetFillColor(d;red);
RectPair(d,x,y,100,100);

SetFillColor(d,blue):
MoveRelative(d,0,100);

RectPair(d,x,y,100,100);

/* restore graphics state */
MoveRelative(d,0,-100);
SetFill(d,fill);
SetFillColor(d,c);
}

The construction of the rectangles is hidden away, but the above code snippet does exhibit

some rather serious shortcomings:

e The graphical state has to be managed by the programmer, taking care to set and
reset the necessary pieces of the state encoded in the drawing context. The drawing
context represents the state of the surface/canvas we’re drawing onto, and maintains
amongst other things the current set of graphical attributes to use when drawing.
Managing the graphics state can be unpleasant and error-prone. For e}iample, the
BlueRed procedure saves away the current settings for the graphical attributes it
wishes to override. After having performed the drawing operations, care is taken to

restore the original state of the drawing content.

¢ The second rectangle is drawn using a modified transformation matrix, so that it
appears next to the red one. A similar form of programmer management of state
happens here, this time with the transformation matrix, translating before drawing
the second rectangle. Again, the programmer is forced to restore the transformation

matrix to what it was before returning.

In effect, the above procedure implements scoping for both graphical and geometric trans-
formations, which the underlying programming language unfortunately is not providing. An
alternative is to make use of the underlying procedural language’s support for scoping and
pass the various elements of the graphics state around explicitly via procedure arguments.
Since there are numerous graphical attributes a picture can have, this is not particularly
feasible or convenient. Drawing procedures would end up having tortuously long argument
lists, which perhaps would be just as error prone as passing in a mutable drawing context.

10 | CHAPTER 2. A PICTURE LANGUAGE

However, there’s an alternative to having drawing procedures explicitly manage the state
of a drawing context: Instead of having the procedures perform the actual drawing actions,
they return an object or data structure that describes the graphical content it wants to

draw:

Picture Rectangle(DrawContext d, int x, int y,int w,int h)
{
Picture rect = emptyPicture();
AddPicture(rect,DrawLine(d,x,y,x+w,y));
AddPicture(rect,DrawLine(d,x,y,x+w,y));
AddPicture(rect,DrawLine(d,x,y,x+w,y));
AddPicture(rect,DrawLine(d,x,y,x+w,y));

return rect;

}

Now Rectangle is a procedure that returns a Picture value, a data structure that encodes
the picture to draw. The Picture value representing the rectangle is built by incrementally
adding the necessary lines to the rect, with the AddPicture function side-effecting its first
argument to include the Picture value passed as second argument.

With the‘representa‘tion of pictures as a value, geometric transformations can now be dealt
with more smoothly:

Picture Transform(DrawContext d, Transform tr, Picture pic);

Picture Translate(DrawContext d,int dx, int dy,Picture pic)

{

return (Transform(d,Translation(dx,dy),pic));

}

The Translate function takes a Picture as argument and returns a new one that, when
rendered, takes care of adding the desired translation amount while drawing the embedded
Picture. It is implemented using Transform, a primitive operator over Picture values.
The Transform procedure returns a Picture that when drawn will take care of setting the
transformation matrix before rendering pic, and restoring it afterwards.

A Picture value is turned into actual graphical output by a system-provided procedure
Render, passing it the picture data structure to display:

void Render(DrawContext d, Picture p);

2.1. DESCRIBING THE SCENE _ 11

Given a drawing context and the picture to display, Render converts the data structure into

a series of drawing actions.

A fundamental shift has occurred by going from a system where graphical output was
done by performing a series of drawing commands, to one where procedures return a data
structure representing the graphical content. The move to a declarative approach allows
us to abstract away the details of how to issue the right graphics commands and having
to explicitly manage display state such as the drawing context. For instance, here is how

BlueRed can now be expressed:

extern Picture Overlay(Picture pl, Picture p2);
extern Picture FillPicture(Picture p);
extern Picture WithColour(Colour ¢, Picture p);

Picture BlueRed(DrawContext d, int x, int y)
{

return (
FillPicture(

Overlay(
(WithColour(blue,DoubleRect(d,x,y,100,100))),
(Translate(d, 100,100,

WithColour(red,

DoubleRect(d,x,y,100,100)))))));

The Picture returned from BlueRed is a composition of existing Picture values and proce-
dures. The example makes use of Overlay which takes a pair of Picture values as arguments

and returns a Picture value, where the picture given as first argument will appear on top

of the second.

This is an improvement over the previous version of BlueRed, where the graphical state
had to be manipulated directly by the programmer in between issuing drawing commands.
The focus has instead been shifted towards modelling the graphical content rather how to
present it. The result is a value-based description, where graphical content is constructed
by repeated applications of procedures taking and returning Picture values. Procedural
abstraction is certainly helpful here, being used to create Picture building blocks that can
later be re-used. However, this style of programming does tend to demand greater support
for abstraction from a programming language — what if we wanted to generalise Overlay

to take a collection of Picture values?

12 CHAPTER 2. A PICTURE LANGUAGE

Picture Overlays(PictureList ls)

{
Picture pic;
Picture res = emptyPicture();

PictureList ls_tmp = ls;

while (!isEmptyList(ls_tmp)) {
pic = head(1s_tmp);
AddPicture(res,pic);
1s_tmp = tail(ls_tmp);

}

return res;

}

The Overlays procedure achieves this, accumulating a Picture value by iterating over
its PictureList argument, a sequence of Picture values. This works quite well, but
the support for data structures is somewhat restricted, requiring a list type specialised to
Picture. A language that supported the definition of parameterised data types such as
lists would be of help here.

A natural extension beyond passing and returning picture values is also to pass functions
as arguments to Picture building blocks. For instance, when implementing a function that

places an arbitrary picture next to a blue rectangle:

Picture ByRect(DrawContext d,int x,int y,
~ (Picture f(DrawContext,int,int)), Picture pic)

I-r
Y
{ !._'-.‘
i -

return (.

tOverlay (
WithColour (blue,DoubleRect(d,x,y,100,100)),
Translate(d,100,100,£(d,x,¥))));

y
r
} b
- 1

The ByRéct function takes as one of its arguments a function value. The function argument
expects to be applied to the coordinates where to position the graphical object it returns,
and the drawing context to use. To use ByRect, we simply have to supply the desired

, . s
function:
_:-:‘,L" 3 ;f :-*?f%fj“ H 4

Picture DoubleRect(DrawContext d, int x,int y)

2.1. . DESCRIBING THE SCENE * ~ 13

{
return(ByRect(d,x,y,Rect));

}

The exact syntax of how function arguments are passed is not important here — the definition
of DoubleRect calls upon ByRect, supplying it with a function, Rect, that will draw the

second picture to use:

Picture Rect(DrawContext d,int x,int .y)

{
return(Rectangle(d,x,y,100,100));

}

Notice that we have to create a special-purpose procedure, Rect, which wraps up a call to
Rectangle with the size of the rectangle fixed. Not satisfactory — what we really want is

higher-order functions and the ability to create anonymous functions:

Picture DoubleRect(DrawContext d, int x,int y)

{
return(ByRect(d,x,y, (\ (a,b) -> Rectangle(d,a,b,100,100))));

}

The fourth argument to ByRect is now an anonymous function that takes a coordinate pair
as arguments, and then calls Rectangle to produce the desired Picture result.

The above example could be re-worked not to use a function argument without too much
effort, but having the ability to define and use functions as arguments and results is a very

powerful and useful abstraction tool.

The style of expressing graphical content we’ve been outlining in this section has a natural
home in a functional programming language. As we've seen, this style of programming
can to some extent be emulated in a procedural, C-like, programming language, or in an
object-oriented language. However, a functional programming language is more suitable to
the task, as the programming style that the declarative view of graphical content engenders

1s better supported by a pure functional language.

2.1.1 Summary

To summarise this discussion of what is a convenient format for expressing graphical content

programmatically, here are some of the main points:

14 CHAPTER 2. A PICTURE LANGUAGE

e Programs that display graphical content tend to mix the details of how to present
it on a graphical output device with what to draw. The result is that the details of
presentation obscure the content itself.

.. o Using a procedural programming language, the lower-level details of the interaction

1;5 with a graphics device can be abstracted away from the view of the programmer. How-
ever, by using a programmer interface where you draw by issuing graphics calls that
will perform device-specific drawing operations for you, it is left to the programmer
to manage the (abstract) state of the graphical output device.

o Separating presentation from modelling helps. Instead of issuing graphics calls, pro-
grams construct a value describing the model they want to present, leaving it up to
some system-provided facility to convert the model into actual graphical output.

e A value-based composmonal programming style engenders the use of features such
' as hlgher-order functions and parametric data types. These can to some extent be
emulated in a procedural programming language. However, composition and higher-

order functions are particularly well supported in a functional language, so applying
such a language to the task of modelling structured graphics declaratively sounds like
the natural choice.

Elliott[Ell97] presents an argument similar to this of why making the distinction between
modelling and presentation is valuable, but this time applied to the much richer domains
of multimedia and three-dimensional animations. We’re here solely interested in the de-

scription of static, two-dimensional scenes and how to model them conveniently within

a functional la.nguage but the ‘arguments of why a separation between presentation and
modelling is valuable holds for both domains.

With the goal in mind of describing graphical content declaratively using a functional lan-
guage, the rest of this chapter presents the Picture type and the primitive Picture building
blocks for describing two-dimensional graphical scenes. The Picture type and its primitives
are embedded inside the lazy, purely functional language Haskell[P*97].

2.2 The Picture type

To express two-dimensional graphics declaratively, the programmer builds a value repre-
senting the graphical scene. For instance, to construct a picture of a box inside a circle:

,
P *1 -I-""I-
1 4 j

boxedCircle :: Picture-

2.2, THE PICTURE TYPE - 15

7\
NS

Figure 2.1 The boxedCircle picture.

boxedCircle = overlay ¢ (centre s)

where

C = circle 10

s = square 20

The boxedCircle definition represents such a picture, and its appearance when rendered
is shown in Figure 2.1. The first line gives the type of boxedCircle, Picture. A value

of type Picture is an abstract type representing a two-dimensional graphical scene that,
when rendered, will produce some graphical output.

To return to the boxedCircle definition above, it is constructed out of a pair of basic

picture elements, created with the following two functions:

circle :: Unit => Picture

square :: Unit -> Picture

The expression (circle 10) has type Picture, and represents a circle with radius 10. Mag-
nitudes and sizes in our picture language are all expressed as an integral number of printer’s
points.! Similarly for square, applied to a size it returns a Picture value representing a

square shape object.

Picture values are combined together using overlay
overlay :: Picture -> Picture -> Picture

which returns a new Picture value with its first argument appearing on top of its second.

The reason why the circle is contained within the square is that overlay combines two
pictures into one by aligning the origins of the pictures. All pictures are expressed in terms
of their own coordinate system, and, by definition, the Picture returned by circle has as
origin the origin of the circle. Similarly for the picture representing the square.

*1 point = 1/72 inch, using the same approximation of a printer’s point as PostScript{AS90a].

16 CHAPTER 2. A PICTURE LANGUAGE

2.2.1 Running example

To help present the Picture type and the features it provides, we’ll make use of a running
example and gradually introduce the various features needed to construct it. The example
is the same as the one used in an earlier presentation of the Picture type, [FPJ95al, a

tratfic light:

If we break this down into pieces, the trafhic light is built out of three coloured circles placed
on top of a black rectangular background. Centred inside each circle is the initial letter of

the colour of the circle itself.

2.3 Picture elements

A number of basic geometric shapes can be created through a set of primitive Picture
functions, Figure 2.2 shows the type signatures for a selection of these, Appendix A gives
the complete list. The graphical representations created by these functions are shown in

Figure 2.4. One of the primitive Picture constructors is ellipse:
ellipse :: Size2 -> Picture

(Given a two-dimensional vector specifying the width and height, it returns a Picture value
representing a circular ellipse with minor and major axes equal to the x and y components

of the vector. Sizes are all expressed in printers’ points.

A Picture has its own local coordinate system. The ellipse is defined as having the origin
of its coordinate system coincide with the origin of the ellipse. Expressing the primitives
within their own coordinate system avoids having to explicitly place them within some
external coordinate system when creating them, i.e., instead of the above type signature for

ellipse, we would then have:
ellipse :: Coord2 -> Size2 -> Picture

Having the extra argument just adds clutter and is better dealt with by placing each Picture
value within its own coordinate system and then transforming the local coordinate system of

a picture into a global one should the need arise. Section 2.4 shows the primitive mechanisms

24. TRANSFORMING PICTURES 17

empty :: Picture

point :: Picture

line 1t Size2 -> Picture

polyrline :: [Size2] -> Picture

rectangle :: Size2 -> Picture

square :: Unit -> Picture

raster :: Raster => Picture

bezier :: Coord2 -> Coord2 -> Coord2 -> Picture
ellipse :: Size2 -> Picture

circle :: Unit -> Picture

arc :: Size2 -> Angles -> Picture

Figure 2.2 Picture primitives.

used to transform a Picture value.

Notice that the Picture type is treated as abstract; once a Picture value has been created,
there’s no way of taking it apart using pattern matching, for instance. This doesn’t turn out

to be such a big loss, as the need for examining the concrete representation of a Picture is
rarely needed when building a graphical scene. The concrete representation of a Picture is
clearly needed when converting the value into actual graphical output, and we look at the
concrete representation and how to render Picture values in Section 2.10.

Associated with all values of type Picture is an implicit bounding boz, the smallest rectangle

that fully encloses the graphical object it represents.? For instance, the bounding box of
halfCircle,

halfCircle = arc (Size2 40 20) 0 pi

Is a rectangle with width 80 points and height 20 points. Apart from empty which represents
the nullary picture, all Picture values have a bounding box of some extent. The dimensions
of a picture’s bounding box play an important role when combining pictures together.

2.4 Transforming pictures

A picture can be transformed geometrically using the following combining form:?

*The bounding box rectangle has sides that are parallel with the axes of the Picture’s coordinate system.
Functions such as transform are often termed by functional programmers as combinators, combining
operators that create a new value of some type taking one or more values of the same type as arguments.

18 CHAPTER 2. A PICTURE LANGUAGE

newtype Unit = Unit Int
-- integral number of printers’ points

data Size?2 = Size2 Unit Unit -- 2d vector
size :: Unit ~> Unit -> Size2
width,height :: Size2 -> Unit

data Coord2 = Coord2 Unit Unit -- 2d point
coord :: Unit -> Unit -> Coord?2 '
x,y :: Coord2 -> Unit

type Radians = Double

data Angles = Angles Radlans RadiansDelta
-- start angle plus delta radians to turn
-- to reach final angle.

data Transform2 = -- 2d transform, abstract type.

idTr :: Transform2

transTr :: Size2 -> Transform?2
rotateTr :: Radians -> Transform?
scaleTr :: Double -> Double -> Transform?2

combineTr :: Transform2 -> Transform?2 -> Transform2
-= agsoclative.

Figure 2.3 Basic geometric types.

:

h’l" Yy n-;m—}-“ui -*lrv"i oy

:-----El--tlslr"-!-- . -f r ,..: =egan=-.---..."..--..-.-.;r“-}
e 3 EN 1 :
El ? -g ? e) .t.-.. r “1““’ ‘ : » : - E-".!--l?:
.rn-.l-;ﬂ!ﬂﬂ;-ﬁ-»in -.q." -~ ‘. -r 'rrn : 1:’.!-;'-; lm-i
I {3 .t i g i i 3
!'rif,tliﬁriil?r! apunue l.. ",.,.“...., . LA v -!-nn?un-?
S I I Bt RV A
!'“‘!“'1""‘?“ - -?f lr 4}--“7.-- l-tl-l“"! l?“ii!'t’?li#1‘
f 3 1 1 BRIV
;-Hr?lll-!--! q!-- .’ “.;m.:...-z. PQ]Yllne -’-ll-?ﬂi:'
1t A R SN A I
E---.*-. ! T TR -:-1' : =
' S I T O
“ ﬂu- ‘ =rm‘i =vrr-;m N o
: : : , ! [] ¥

i ll
'1‘-:-‘ -uﬂr-!nu lr"-! r ‘1‘ *-'i- -,mif
l 'l lI: i

P ;o3 %7 1 : 3 1 f
- H y ' - H : I H : :
aas “.’}lll?lil eCtang e-!m-}- -II o?“ u’ T AT r-ri l‘l -I im'lr ‘-
4 [[] [|] : : -I- . l -I - ‘ "
L) [) d B 4 d 4 " *
T T Loy e ﬂ-.--l----i“-:--ﬁ:.-&- -I ----‘Ir -'l ---i ‘ -‘- Py .li o uah wdadh

I‘fﬁ-ﬂ IE‘“'E"‘T#I

PAmy T
] [

:

Figure 2.4 Picture primitives.

transform :: Transform2 -> Picture -> Picture

The function constructs a new Picture value by applying a two-dimensional transformation
to the Picture value it is passed as its second argument. The Transform?2 is an abstract

For instance, (++) is a list combinator, appending a pair of list values together to produce a new one.

2.4.- TRANSFORMING PICTURES ~ 19

e .Polylme' :

ottt (sTale(2:0.8) i
.,.,((,.)j (rotate p112) L.

.......Rectan; lg e tate. 1)-e4-
T scale (0.5.0.50 T (m p) :

‘rfﬂ \r -ha.\- .t -nh -r a.h- 1- h-.-h -r

Figure 2.5 Transformed geometric shapes

data type for 2D transformations, allowing both uniform (scaling, rotation) and non-uniform
(shearing, reflection) transformations to be expressed. Some commonly used transformation
functions are presented in Figure 2.3. Using the primitive transform, derived Picture

transformation functions can easily be defined:

scale :: Double -> Double -> Picture -> Picture

scale sx sy pic = transform (scaleTr sx sy) pic

uscale :: Unit => Picture -> Picture

uscale f pic = scale (size f f) pic

xlt :: Size2 ~> Picture -> Picture

xlt t pic = transform (transTr t) pic

type Degrees = Int

rotate :: Degrees -> Picture -> Picture
rotate deg pic = transform (rotateTr (deg2rad deg)) pic

Examples of these geometric transformations applied to the basic shapes in Figure 2.4, can
be seen in Figure 2.5. For instance, the scaled rectangle is built using halfSize,

halfSize :: Picture -> Picture
halfSize pic = scale 0.5 0.5 pic

L

halving the width and height of a picture. Applying halfSize to a rectangle that is 100
units wide and 60 high produces a rectangle 50 units wide and 30 units high. A more
involved and visually interesting example of transform is this little spiral:

20 . CHAPTER 2. A PICTURE LANGUAGE

Figure 2.6 A spiral Picture.

overlay :: Picture -> Picture -> Picture

espiral :: Picture
espiral = foldr (overlay) empty pics
where
pics =
zipWith (rotate)
[0,pi/8 .. pil
(replicate (ellipse (size 40 20)))

The espiral produces the shape shown in Figure 2.6, consisting of a sequence of rotated
ellipses superimposed on top of one another. The definition of espiral uses the function
foldr to walk over a list of pictures, building up the final picture by overlaying all the
elements in the pics list.

If applications of transform are nested, they combine as follows:
transform t1 (transform t2 pic) = transform (combineTr ti1 t2) pic

where combineTr returns the multiplication of a pair of Transform2 values. For instance,
shrink

shrink :: Picture -> Picture
shrink pic = halfSize (halfSize (halfSize pic))

shrinks a picture by a factor of eight by applying an equal scaling amount three times to a
picture, halving the scaling factors each time.

2.5. STRUCTURED TRANSLATION 21

2.5 Structured translation

The transform combinator applies a transformation to a picture. Transformations such as

scalings and rotations are all about the origin of the local coordinate system of the picture.
Often we need to translate the picture prior to performing the transformation. For instance,
suppose we want to rotate an ellipse around its leftmost point:*

ellipseld =
rotate (pi/4) $
ellipse (30,20)

ellipseB =

rotate (pi/4) $
xlt (30,0) $
ellipse (30,20)

To rotate around the leftmost point of an ellipse (rightmost picture), the ellipse first has
to be translated along the X-axis before rotation, as seen in the definition of ellipseB.
For ellipses, rotation around the centre is straightforward, the origin of the ellipse picture

coincides with the origin of its local coordinate system.

However, for ellipseB, the definition depended on knowing the exact amount it had to
be translated by. This makes it hard to write a general picture combinator for rotating a
picture around the leftmost or western point of its bounding box, say, without some extra
support. One way to support the writing of such general translation functions is to provide
a function that computes the bounding box of a picture value: |

computeBBox :: Picture -> Rectangle

This is certainly possible, but it implies answering some awkward questions. For exam-
ple, what is the bounding box of (text "Hello")?, It is hard to say without committing
to device-dependent rendering details such as what default font to use. Equipping the
programmer with the functions for computing size of bounding boxes is also somewhat low-
level, so, if possible, we would like to work at a higher-level than manipulating concrete
bounding box sizes when constructing a picture. To deal with this problem we introduce
structured translation. Structured translation is the abstract translation of the origin of a

picture, provided by the move picture combinator in Figure 2.7.

*To avoid the deep nesting of brackets, the right assiociativei function application operator $ is used here,
i.e., we write f $ g h instead of f (g h).

22 CHAPTER 2. A PICTURE LANGUAGE

move :: Offset -> Picture -> Picture

data Offset
= 0ffDir CompassDirection

| '0ffPropX Fraction
| 0ffPropY Fraction

type Fraction = Double -- [0.0..1.0]
data CompassDirection
= West | NorthWest

| North | NorthEast
| East | SouthEast

| South | SouthWest
| Centre

Figure 2.7 Structured translation of pictures

The move combinator allows you to abstractly translate a picture with respect to its bound-
ing box, instead leaving it up to the function that converts the Picture value into actual
output to compute the translation amount to use. The function move constructs a new
Picture value by performing such a translation, moving the origin either to one of the
bounding box positions given by the CompassDirection type, or shifting it horizontally or
vertically by a fraction. For instance, (move (0ffDir NorthEast) (square 20)), returns
a square with the top lefthand corner as its origin. Notice that the move function does not
extend the size of a picture’s bounding box, but moves the origin of the picture’s coordinate
system.

To return to the example of rotating an ellipse around its leftmost point, ellipseB can be
written as follows using structured translation:

westRot :: Radians -> Picture -> Picture
westRot rad pic =

rotate rad $

move (0ffDir West) pic

ellipseB = westRot (pi/4) (ellipse (30,20))

The westRot function translates pic such that its bounding box is shifted to the right
of the vertical axis and centred around the horizontal axis before applying the rotation
transformation.

2.6. GRAPHICAL TRANSFORMATIONS 23

Nested applications of the move constructor are clearly redundant:

move dirl (move dir2 pic) = move dirl pic

since an application of move does not alter the size of a picture’s bounding box, the inner
application of move can safely be ignored.

2.6 Graphical transformations

Another class of transformations are graphical ones, where you want to change or set the
graphical attributes that a picture should be drawn with. For instance, suppose you want
to create a filled, green circle for the initial traffic light example:

greenCircle :: Unit -> Picture
greenCircle rad =
withPen [Foreground green,

Fill True] $
circle rad

withPen :: [PenModifier] -> Picture -> Picture

The withPen combinator is applied to a circle together with a list of pen modifier attributes,
returning a new picture value. When rendered, the circle will be drawn with the fill flag

turned on, using a green colour. The PenModifier values given in the list to withPen are
attribute-value pairs, and Appendix A gives a complete list of attributes supported.

The attribute-value pairs in a PenModifier list gives you a fine-grained control over the
settings of various graphical attributes when drawing, but sensible defaults are defined for
all attributes, so the withPen combinator is only used when you want to override these

values.

In the case of nested applications of withPen, the outermost application has priority over
Inner ones, i.e., the attribute-value pairs set in an application of withPen will only apply if

there’s no enclosing application of withPen that overrides it. That is,

withPen pl (withPen p2 pic) == withPen (p1++p2) pic

24 | CHAPTER 2. A PICTURE LANGUAGE

To illustrate the scoping of graphical attributes, when the following Picture is rendered.

picture =
withPen [Fill True,
Foreground grey80] $
withPen [Fill False,
Foreground black] §

circle 30

the picture on the right should be displayed. When the circle is rendered, the foreground

colour is grey80 and the circle is filled, since the outermost application of withPen overrides
any subsequent settings of the foreground colour or fill flag. This choice of scoping of pen

attributes is different from what 1s normally done in other systems, where local graphical

attributes override global ones.

Note that the graphical attribution done by withPen creates a new Picture value, and
avoids having to use some shared, mutable graphics state. withPen simply associates a set

of graphical attribute values with a picture that will be in scope when rendering it.

If we return to the trathc light example, drawing the individual lights can now be expressed
with the help of withPen:

filledCircle :: Colour -> Unit =-> Picture

filledCircle col rad =
withPen [Foreground col, Fill True]

(circle rad)
red, orange, green :: Colour

redLight, amberLight, greenLight :: Unit -> Picture
redLight = filledCircle red

amberLight = filledCircle orange

greenLight = filledCircle green

By defining a function for creating filled circles, the individual lights are constructed by

supplying the appropriate colours.

2.7. COMPOSING PICTURES 25

2.7 Composing pictures

To get any further with the traffic light picture, the different Picture values representing
the lights will have to be combined together somehow. The Picture type provides three

primitive ways of combining pictures together, one of which we’ve already seen used:
overlay :: Picture -> Picture -> Picture

The overlay primitive creates a new picture by combining together a pair of pictures,

placing the first picture on top of the second by aligning their origins:

picture =

overlay
(ellipse (40,20))
(ellipse (20,40))

The bounding box of the combined picture is the bounding box of the union of the bounding

boxes for the two pictures.

The second form of picture composition is clipping, interpreting one picture as defining the

clip mask to use when drawing the second:

clip :: Picture -> Picture -> Picture

clip clipper clipped is a new picture that clips the second picture by the clip mask

defined by the first:

picture =
clip
(withPen [Font largeFont] (text "Clip"))
(lines 500)
lines 1 =
foldl1l
(overlay)
[rline (l*cos a,l*sin a) | a <- [0, (pi/72)..

The bounding box of the constructed picture is equal to the bounding box of the picture

describing the clip mask.

26 CHAPTER 2. A PICTURE LANGUAGE

The overlay primitive combines a pair of pictures, but what if we wanted to express the
following function in terms of it?

inBox :: Picture -> Picture

The inBox function should take a picture and frame it inside a rectangle. Combining the
rectangle and the picture together with overlay is straightforward, but what dimensions
should the rectangle in this have? It is of course dependent on the size of the picture supplied

as argument. Since we do not supply a function for computing a picture’s bounding box, a
third form of picture composition is provided. Constrained overlay combines two pictures

together just like overlay, but places constraints between the sizes of the pair of pictures
being combined:

constrainedOverlay :: RelSize -> RelSize -> Picture -> Picture

data RelSize

= None
| Fixed Which Unit

| Prop Which Double

data Which = First | Second

The picture constrainedOverlay None (Prop Second 2.0) picA picBis a picture that,
when rendered, will align the origins of picA and picB, drawing picA on top of picB. The
second picture, picB, is also scaled in the Y direction such that height of its bounding box
is double that of picA’s. The RelSize arguments to constrainedOverlay indicate the
type of constraint to place between the height and widths of the two picture’s sizes. The
constraints are uni-directional, with the Which type indicating what direction the constraint
is meant to hold.

Using constrainedOverlay, the inBox function becomes easy to express:

inBox :: Picture -> Picture
inBox pic =
constrainedOverlay (Fixed Second 4)
(Fixed Second 4)
(centre pic)
(centre $ rectangle 10 10)

2.8. TILING PICTURES 27

The surrounding rectangle is made four points wider and higher, combining the rectangle

and the picture by aligning their centres.

Clearly, the constrainedOverlay operator provides a superset of the functionality of

overlay,

overlay = constrainedOverlay None None

but since overlay is so common, we choose to present (and represent) the unconstrained

overlay as a separate construct.

2.8 Tiling pictures

Combining the overlay operator with the structured translation operator move in Sec-
tion 2.5, picture combinators that tile pictures together can now also be expressed:

beside :: Picture -> Picture -> Picture
beside picA picB =
overlay
(move (0ffDir East) picA) .
(move (OffDir West) picB)

above :: Picture -> Picture -> Picture
above picA picB =
overlay
(move (0ffDir South) picA)
ﬁmove (0££fDir North) picB)

The beside combinator ?overlays two pictures, but translates their local origins such that
picA will be shifted to the left of the vertical axis and picB wholly to the right, before
combining the two picture values. The combinator above uses the same trick, but this time

the translation is with respect to the horizontal axis.

As an example of these various composition operators in use, we can finally present the
construction of the traffic light example presented at the beginning of the introduction to
the Picture type, starting with a combinator for placing an arbitrary text string within a

coloured oval:

light :: Colour => String -> Picture

28 CHAPTER 2. A PICTURE LANGUAGE

light col lab =
constrainedOverlay
(Fixed Second 20)

(Fixed Second 20)
(withColour black $ centre $ Text lab)

(filledCircle col 2)

The 1ight combinator centres the text string lab within an ellipse that has horizontal and

vertical extent 20 units bigger than that of the extent of the picture representing the string.

Using this combinator, the pictures for the individual lights now simply become:

redTLight = light red "R"
amberTLight = light orange "A"
greenTLight = light green "G"

To align the lights horizontally, we want to use the horizontal tiling operator beside, but

want to add some ‘air’ between the lights first:

besideSpace :: Unit -> Picture -> Picture -> Picture
besideSpace spc picA picB =
beside

picA

(x1t (size spc 0) $

moveWest picB)

besideSpace uses the x1t combinator to translate the picture on the right hand side further
to the right, so that when it is combined with the other, we have the desired space in between

them. The three traffic lights then become just:

lights =

foldrl
(besideSpace 10)
[redTLight,
amberTLight,
greenTLight]

To finish off the trafhic light, we then only need to add a black rectangular background to

the lights:

2.9. EXAMPLE 29

Figure 2.8 graph (scatter) dataPts - scatter plot of annual data

trafficlight =

constrained(Overlay
(Fixed Second 20)
(Fixed Second 20)
(move (0ffDir Centre)
lights)
(move (0ffDir Centre)
(Rectangle (2,2)))

This example, while small, demonstrates the compositional programming style that follows
naturally, where complete Pictures are built by repeatedly applying picture combinators

to existing Pictures.

2.9 Example

To further demonstrate and bring together the various features that the Picture type
provides, let’s consider the problem of plotting 2D graphs. A common situation is to have
a set of data generated by a program that we want to visualise quickly using a graph. For
the purpose of this example, let us assume that the data measure the annual distribution
of some value, producing output like Figure 2.8. The X axis represents the months and
the Y axis the values we've measured each month in, the number of bugs found in a piece
of software, say. The Picture representing this graph consists of several smaller pictures

joined together, starting with the gridded background:

30 CHAPTER 2. A PICTURE LANGUAGE

grid :: Size2 -> Size2 -> Picture
grid (Size2 w h) (Size2 stepx stepy) =
let
pen =
[Foreground grey50,
LineStyle (OnOffDash 1 1)]
lines_x = h ‘div‘ stepx
lines_y = w ‘div‘ stepy
in

withPen pen $

overlay :' r ‘l%‘lll!ﬂlii!‘ﬁiirlll?i‘“!‘“lrlii!
(move (OffDir Centre) $ B S S B S M s S
. A S T S A A

rectangle (size w h)) .,........i.,.,...,.,...-
runed eersd ssnfasechorsafune foseshunarieseopesust

(overlay i 3 F 0§ i & & & &
1'I1lli?iﬂ?til1lll?l.i? --!uto!:l--!““i

(move (OffDir Centre) $ ungiun?nn?u“%nn?un?un?nu?un%nn;

. . Preesdgrriidangund st
hlines stepx lines_x w) BRSO S O S O O

s« ¢+ 2 3 5 3 i + =

(move (0ffDir Centre) §$ M S R e B M R R

llllllllll

¥
3
5
}
&
3
$
y

rotate (pi/2) $
hlines stepy lines_y h)

The grid function, given a size and spacing between the grid lines in both directions, returns
a Picture of the grid, built by overlaying horizontal and vertical lines. To make the grid
lines appear discretely in the background, we apply a pen modifier that dashes the lines

and renders them in grey (see Appendix A for definition of the graphical attributes). The
picture of the horizontal lines hlines is also a combined picture:

hlines :: Unit ~> Unit -> Unit -> Picture
hlines spc no x =
nabove
(map (x1t (size O spc))
(replicate no $ hline x)

nabove :: [Picture] =-> Picture

nabove = foldr (above) empty

The horizontal lines are composed out of a collection of lines arranged vertically using
above. To achieve the necessary spacing between the lines, each line is translated so as to

enlarge the bounding box the above uses to compute the geometric arrangement between
two pictures.

2.9. EXAMPLE a 31

The axes of the coordinate system are also created by combining smaller pictures together,
this time two arrowed lines:

axes :: Size -> Picture
axes (w,h) =

overlay
(leftArrowLine w)

(upArrowLine h)

The arrowed lines can also be subdivided into a picture element for the arrow line and
the head that has been combined together, but for reasons of space we will leave out their
definition here.

To get the picture of a gridded coordinate system, we simply overlay the picture returned
by axes with that for the grids, making sure of moving the origin of the grid to its lower
left corner, so that the gridding coincides with the origin of the axes:

cartesian :: Size2 -> Size2 -> Picture
cartesian sz steps =

overlay
(axes sz)
(move (0ffDir SouthWest) $

grid sz steps)

To plot data points within the coordinate system, the picture(s) representing the points
just have to be placed on top. Here’s how a scatter plot of a set of coordinates is done:

scatter :: [Coord] -> Picture
scatter = noverlay $ map (plotAt)
where
plotAt pos =
x1lt (coord2Size pos) (filledCircle 2)

noverlay :: [Picture]l -> Picture

noverlay = foldr (overlay) empty

The different points are plotted by translating a circle to each data point and then overlaying
the pictures of all the data points. Since overlaying is performed by matching up the
origins of two pictures, and the points to be plotted are all expressed within the same
coordinate system, the pictures will also have the same origin. The resulting plot can then

32 CHAPTER 2. A PICTURE LANGUAGE

be superimposed on a coordinate system to produce the plot in Figure 2.8:

graph :: ([Coord2] -> Picture)
-> [Int]
-> S1ze2
-> Size2
-> Picture
graph plot pts size steps@(Size2 dx dy) =
let
coords = zip pts [dx ‘div‘ 2,dx..]
in
overlay
(plot coords)

(cartesian size steps)

The graph takes a function for producing the plot of the supplied data together with the
data points themselves and a size plus grid steps. For the purpose of this example, we
assume that the size and data points are in the same range; additional code that checks
and appropriately scales the data to fit has been omitted for reasons of space.

Now let’s change the plot a little bit, connecting the points up with solid lines:

solid :: [Coord2] -> Picture
solid 1s =
overlay

(polyline 1s)

(scatter 1s)

The scatter plot as produced with scatter is overlaid with a poly-line connecting all the
data points up. Using solid in a call to graph will produce output like this:

»
= 3
-lﬂal-ll
A]
+
- » -
.
lz-"l'l'"-l-“
* o a
i .
Basawe

llllllll
]

. - H a a -
PERG AN 4G S0 41-“13“.-3 o 11041.I:IE
RN AN

P, -
shwng
U S
:
g

I.‘E“‘éﬂ'%m%m-z
& [

3 » .
¢ 3 H!!m-!ul-}m-!umi
v - » - - *

2.9. EXAMPLE | , 33

2.9.1 Histogram

Instead of plotting data points, we could plot the data in a histogram and to make the
resulting graph a bit more understandable, adding month labels to the X-axis. The month
labels can be added by overlaying the X axis with the appropriate labels:

xAxis :: [String] -> Int -> Int -> Picture
xAxis labels sz spc =

overlay
(leftArrow sz)
(move (0ffDir NorthWest) $

noverlay .
(zipWith (\ p pic -> x1t (size p (~15))) pic)
[spc?, (spctspc?)..]
(map (label) labels)))

spc’ = spc ‘div® 2
label str =

rotate (pi/2) §
move (0ffDir East) $

text str

The labels in the X direction are placed on top of the axis by rotating each label 90 degrees
* clockwise beforehand. To incorporate the labelled axis, the functions cartesian and axes
have to be altered to thread the labels through to xAxis, but we will leave out the details

here.

Plotting a histogram instead of a scatter-plot is straightforward, just substitute scatter
With histo In a call to graph:

histo :: [Int] -> Int -> Picture
histo pts spc =
foldl
(besideB)
emply
(map (bar) 1ls)
where

bar sz =
move (0ffDir South) $

34 CHAPTER 2. A PICTURE LANGUAGE

overlay

(rectangle (size spc sz))
(fillColour grey80 §$

rectangle (size spc sz)))

besideB :: Picture -> Picture -> Picture
besideB picA picB =
overlay
(move (0ffDir SouthEast) picA)
(move (0ffDir SouthWest) picB)

The bars are created by going through the data points left to right. Note that instead of
using beside to combine the bars together, we use the combinator besideB to align the
bars by their bottoms instead. Visualising the data using histo will then produce output
like this:

To conclude this graphing example, it shows that by using the Picture type, it is relatively
easy to write application-specific combining forms for generating drawings. While this is a
toy example, an interesting experiment would be to try to build a complete graph drawing
library using Pictures and a functional language, and see how well the simple Picture

model scales to larger examples.

2.10 Rendering Pictures

Having presented the programmer mterface for constructing Picture values, the question

now is how do we convert them into actual graphical output? One of the motivations for

2.10. RENDERING PICTURES 35

using an abstract data type to represent graphical content was device independence, so to
make it easy to define a mapping to a new output device, we define a generic framework
for rendering pictures. The following primitive rendering function is provided:

render :: Painter -> Picture -> I0 Rectangle

The render action takes as arguments the painter characterising the output device and
the picture to render. Before rendering the picture, render tries to simplify the Picture
value by reducing and removing superfluous parts, e.g., the nested application of the move
operator can be removed as discussed in Section 2.5.

As a result, the render action returns the bounding box of the rendered picture, expressed
in the global coordinate system of the Painter.

The Painter argument describes the features that the Picture renderer requires from a
particular graphics device. It is represented as a dictionary of operations:

data Painter
= Painter {

pushPen :: Pen -> I0 (),

popPen 20 10 Q),

setClipMask :: Coord2 =-> Transform2 -> I0 (),
drawText :: String -> Transform2 ~> I0 Rectangle,

drawRectangle :: Size -> Transform2 -> I0 Rectangle,
drawEllipse :: Size -> Angles -> Transform2 -> I0 Rectangle,

}

The painter operations include operations for rendering picture elements and for setting
graphical state. The complete definition of the Painter type is given in Appendix A.

The set of primitive drawing operations that a Painter needs to support reflects the render-
ing primitives that Xlib[Nye90] and PostScript[AS90a] provides. An alternative would be
to require each Painter to provide a primitive for rendering a more general mathematical
form like nonuniform, rational B-splines(NURBS) [RA90], and express the above drawing
primitives in terms of it.

When the renderer encounters one of the primitives mentioned in Section 2.3, it looks up
and invokes the corresponding method in the Painter. Currently, two graphical Painters
exist for producing output in PostScript and to Haggis [FPJ95a/, but the Painter interface

30 CHAPTER 2. A PICTURE LANGUAGE

has also been used to implement picking, i.e., testing whether a point intersects the picture,
and to incrementally update parts of a Picture structure.

2.11 Related work

The presentation of the Picture type in this chapter is based on an earlier presentation

of the Picture type, [FPJ95b]. This approa:ch to structured graphics builds on previous
approaches to describing graphics in a functional language. One of the earliest attempts was
Henderson’s functional geometry[Hen82a}, where, using Escher’s square limit as an example,
functions for repeatedly combining together a set of basic picture tiles were presented.

Arya’s work on functional animation [Ary89] uses the same graphical model. The repertoire
of primitive drawing elements was restricted to lines which has to be placed explicitly within
a tile/element’s coordinate system. Functions for horizontal and vertical tiling are provided
as primitives. The Picture type presented in this chapter extends this early work by
providing a fuller set of drawing primitives and picture transformers, and through the use
of structured translation and constrained overlays, picture composition functions such as

above and beside can be readily expressed.

Several other ‘functional’ systems have made use of PostScript’s|AS90a] basic graphics
model, layering functional abstractions on top of it{CC92, LZ87]. These approaches make
good use of PostScript’s page description model, but force the programmer to use PostScript’s
stateful model of stencil and paint for describing the basic picture elements. While power-
ful, its inherent statefulness can lead to unexpected results when used from within a lazy

functional language.

Although the Picture graphics model differs significantly from the PostScript model, a
module for describing PostScript stencil paths in terms of Pictures can easily be defined:

module Path

(

Path,

currentPoint, --:: Path -> Coord
moveTo, -=:: Coord -> Path -> Path
rline, ~=:: Size -> Path -> Path

2.12. CONCLUDING REMARKS | 37

Graphical output is described by incrementally building larger and larger Paths, behaving
much like an output monad. The Path module does not provide the full set of features that
a PostScript interpreter has, but it shows that the Picture type could be used as a basis
for creating other graphics abstractions. One interesting point to note is that the Path
module elevates the path to a first-class value, something that is not the case for PostScript

interpreters.

Another area of related work is the declarative description of graphics using constraint-
 based systems [Knu79, vW82, Hob94, HN94]. Through the use of constraints, relationships
between components of a picture can be expressed declaratively. Prior to actually drawing
a picture, the constraints between the different parts of the picture have to be satisfied.

Whether the extra generality and flexibility that these constraint-based systems offer com-
pared to the Picture data type is worth the additional overhead of solving and maintaining
these relationships, is an open question.

2.12 Concluding remarks

We have in this chapter presented a simple model for describing two dimensional structured
graphics within a functional language. The Picture type provides the primitives and basic
combining forms for building graphical scenes through composition. As an example of the
Picture model in action, a set of basic graph drawing combinators were developed on top

of the model.

38

CHAPTER 2. A PICTURE LANGUAGE

Chapter 3
Exploring the design space

A design often ends up being the result of repeated attempts at finding the Right Solution.
Through the exploration of the available design space, the relative advantages and disad-
vantages of the alternative choices are evaluated, before settling on a solution that overall
is the most satisfactory design. The user interface framework presented in this thesis is
no exception to this pattern. Multiple programming models and graphical user interface
representations were tried out, before finally arriving at the system that is presented in the

next chapter.

To set the scene and properly motivate the reasons for opting for the framework presented in
the next chapter, we discuss some of the important design choices that need to be addressed.
In the process of doing this we review relevant related work, examining the properties of
the programming models they present to the user interface programmer.

2 1 The callback model

Programming a graphical user interface application imposes a different way of thinking
about and structuring your applications compared to programs that engage in conventional
file or terminal I/O. The application presents a graphical interactive surface to the user,
which is used to interact and control the application and its progress. The interaction is
mostly non-modal, i.e., the user may arbitrarily interleave work between the different tasks
that an interface presents, and the application has to obey and update itself accordingly.
The non-modality forces the application to take on a servant’s role, appropriately (and
quickly) responding to events describing actions performed by the user.

One way to support this style of programming in an imperative programming language,
such as C or Pascal, is to repeatedly fetch events from the outside and use a big switch

39

40 CHAPTER 3. EXPLORING THE DESIGN SPACE

statement to decide what action to take:

eventLoop()
{

Event ev;

do {
ev = GetNextEvent();

switch(ev) {
case BUTTON_DOWN:

pt = GetEvCoords(ev);
/* Use pt to interpret button event */

break;
case RE?AINT:
Redraw()
break;
/* and so on */
}
} while(1);

}

The application is centred around an event loop which receives and interprets the incoming
events, keeping up with the user’s actions. The application is forced to deal with a lot of
details, receiving a continual stream of low-level user action events that it has to map back

into actions meaningful to the application, e.g., a mouse button press could, depending on
its coordinates, be interpreted as a click on a start button to reload a document, or the

start of a dragging action.

In addition to events representing user actions on input devices, the event loop also has
to handle events and commands regarding the management of the graphical surface being
displayed, events that are not of direct interest to the application.

The event loop is the basic programming model provided by the X Window system’s (SG92]
C interface binding, Xlib, and Microsoft Windows window message queues [PR96). It offers
great control on how to interpret and deal with all events, albeit at a low level.

To abstract away from the details of the different system events and concentrate on events
that are directly relevant to the application, the event loop model can be refined. Instead
of having the programmer implement the event loop from scratch, allow the application to
plug in procedures that a library-provided event loop will invoke when a specified condition

3.1.- THE CALLBACK MODEL 41

has occurred. A primitive form of this is the message crackers used by Windows programs
[PR96], where application-specific procedures can easily be plugged into the event loop to
handle certain classes of events.

More commonly, user interface systems or toolkits, provide a set of standard, pre-packaged
controls or widgets that implement common user interface elements, e.g., text input fields,
scrollbars, buttons etc. These controls take care of plugging into a system event loop, hiding

it from the view of the programmer. To use instances of these controls in an application,
one or more callback procedures have to be specified:

char str[80];

void incButton(void *st, Button #*b)

{

*(int *)st = *(int *)st + 1;
sscanf (str,"/%d",*(int *)st);
SetButtonText(b,str);

}

void counter(WContext wc)

{

int xgstate = malloC(SiZGOf(int));
*state} = 0:

CreateButton(wc,"0",state,&incButton);

}

The procedure CreateButton creates a push button widget, supplying its initial label to-
gether with the callback procedure to invoke whenever the user clicks with the mouse pointer

over the button.

The system event loop is responsible for fetching events from the outside and interpreting
them. When it resolves an event as representing a button click, the incButton procedure
is invoked. It simply changes the label displayed by the button and returns control back to

the system event loop.

Constructing a user interface application now becomes the creation of the user interface
components that make up the graphical surface, parameterising them with the callback
procedures they each should invoke. Collectively, these callbacks implement the application
semantics and the overall behaviour of the user interface controls. Since the system event
loop is stateless, the callbacks rely on the use of shared state to record the current state

42 CHAPTER 3. EXPLORING THE DESIGN SPACE

of the application. When a callback is invoked, it consults the shared state to identify the
current state of the application, acts accordingly and updates the state before returning.

Callback procedures hide the direct handling of events from within an event loop, instead
components from a toolkit are selected and instantiated with a callback procedure repre-
senting a little piece of the application.

Many windowing systems based in sequential (imperative) programming languages use this
model, good examples are the X Intrinsics widget layer [AS90b] and Tcl/Tk [Ous94].

However, this model has rather serious weaknesses:

o Decentralised application control

The application is spread across a number of code snippets, each of which is invoked
by the system event loop. This makes application changes harder, as changes often
force the modification of multiple callbacks.

e Use of shared state

The different callbacks communicate through shared state, each callback makes sure
to update the state so that subsequent invocations of the callbacks will see it.

o Temporal constraints

The event loop is in overall control of the application, handing control over to a
callback procedure before resuming the processing of events. Hence, in order to ensure

that the application appears responsive to user actions the callback procedure cannot
perform too much work before returning.

o Little support for abstraction

Toolkits tend to provide the programmer with a fixed set of common user interface
controls/widgets, but do not give the programmer the ability to easily define new
user interface abstractions. Creating new abstractions is not unsupported, but forces
the programmer to drop down to lower levels of abstraction compared to the pro-
gramming done when using the provided widget set. That is, the toolkits make a
distinction between creating a user interface application and creating new user inter-
face abstractions.

o Toolkit specific callbacks

The callbacks supported and used differ between toolkits, resulting in programs that
have to be reworked when moving from one toolkit to another.

3.2. OBJECT ORIENTED USER INTERFACES 43

Another look at the properties and weaknesses of using callback procedures to structure
graphical user interface applications can be found in [Mye91].

3.2 Object oriented user interfaces

The callback-based widget toolkits attempt to provide a graphical user interface program-
ming model where an application is constructed by creating a set of widgets, wiring them
together via callback procedures. This approach runs into some problems because the

component view of graphical user interface widgets doesn’t extend to application callback
code. The callbacks communicate with others by modifying shared application state, but

there’s little language support for controlling what components can modify what parts of
the application state.

Object-oriented languages provide a more natural home for this view of a graphical user
interface. Each interactive graphical component is represented as an object that maintains
its own state, updating it in response to input from the user and other application objects.
However, the object oriented view also extends to other parts of the application, representing

these as a network of objects that communicate and interact with each other. Through
programming language support, some of the problems evident with the callback model in
sequential, imperative programming languages are successfully addressed.

A distinct feature of most object-oriented programming languages is the use of a class mech-
anism to describe and structure the functionality that different objects support. Classes
allow you to specify the interface supported by an object, giving the properties and oper-
ations that an object has to provide to be a ‘member’ of that class. Different ‘types’ of
objects can be related through inheritance, e.g., a coloured point class inherits all the prop-
erties and functionality of a point class, augmenting it just with a colour attribute. Class
inheritance helps to organise and re-use different object interfaces, specifying how different
types of objects are related. Another benefit of inheritance is implementation re-use, a class
declared to be a subclass of another, inherits also the implementation of the class’ methods.
This is particularly useful when making minor extensions to an abstraction, inheriting the
implementation from its class, can reduce the implementation work required.

Object-oriented graphical user interface frameworks are organised in a class hierarchy, pro-
viding a set of user interface elements and abstractions to the programmer. Inheritance is
used to extend the graphical representation, interactive behaviour or application semantic
properties of more ‘primitive’ user interface components. For instance, the class implement-
ing a push button could inherit from the class implementing string labels, extending it to

44 CHAPTER 3. EXPLORING THE DESIGN SPACE

respond to mouse input.

A recent example of an object-oriented user interface framework is the Abstract Window
Toolkit (AWT)[GY™96], a class hierarchy provided as standard by the programming lan-
guage Java [AG96]. Just as Smalltalk, AWT uses implementation inheritance to re-use and
relate the different user interface abstractions. AWT provides abstractions for common user
interface elements together with containers for arranging collections of them together. The
framework is abstract in the sense that AWT defines the architecture and protocol for how
components interact with each other in a platform independent manner. An implementa-
tion of AWT on a particular platform can bind the user interface elements to whatever is
convenient or common there.

AWT also makes use of Java's interfaces, abstract classes that just specify the functionality
an object should support, not its implementation. In AWT, for instance, the functionality
of objects that control the layout and placement of a set of objects is specified through an
interface. Interfaces can also be inherited, so the interface for layout containers that tile
their objects would inherit from the general layout interface.

As an example of AWT in use, Figure 3.1 shows the implementation of a counter button.
Whenever the button is clicked, AWT invokes the action method of a button, so to have
the button increment its label value when it is clicked, we create a new class IncButton. It
inherits from the standard button class, overriding its implementation of action to provide
the desired behaviour. Apart from action, IncButton reuses the implementation of all the
methods it inherits..

Compared to the callback model of the previous section, an object-oriented solution, as
represented by AWT here, has a number of advantages:

e The management and access to the counter state is encapsulated within instances of
the IncButton.

e Implementation inheljitance 1s particularly useful here, requiring the specialisation of
a single method to implement the counter button. Implementation inheritance makes
incremental extensions or specialisations of an abstraction relatively straightforward,
provided the interface of the class has enough functionality to support the change, of
course. For instance, consider the task of creating a counter button that displayed the
current number using Roman numerals instead. Since the Button class in Java does
not provide any direct functionality for having arbitrary graphics as a button’s label,
making such an extension would be non-trivial compared to the implementation of
IncButton. That is, code re-use through implementation inheritance doesn’t come

3.2. OBJECT ORIENTED USER INTERFACES 45

import java.awt.x*;
public class IncButton extends java.awt.Button

{
int count = 0;
IncButton() {
super (String.value0f (0));
} |
public boolean action(Event ev, Object what) {
if (ev.id == Event.ACTION_EVENT) {
count = count + 1;
this.setButtonText (String.valueOf (count));
return true;
} else {
return (super.handleEvent(ev));
}
}
}

Figure 3.1 A counter button in Java/AWT.

for free; classes have to be designed with it in mind.

User interface elements such as labels, scrollbars and buttons are the primitives out of

which we can build more user interface applications. Hovbever, applications often require
higher-level support to provide their interactive, graphical surface. For instance, a common
application pattern is to present some data to the user, which perhaps can also be edited.
To help maintain the consistency between the application’s data and the user’s view of it,
most object-oriented user interface systems provide specific support for this. An object
can register its interest in changes to another, asking to be notified whenever it changes
state. The archetypical example of this is the Model-View-Controller (MVC) provided by
most implementations of Smalltalk [KP88]. The model maintains the abstract data that
the view will map to some graphical representation, while the controller is responsible for
relating user interaction on the view back to changes to its model. Apart from its usefulness,
MVC offers the programmer higher-level glue for connecting together application and user
interface.

An example of a system that takes the provision of higher-level application patterns such
as MVC further is ET++{WG94], an object-oriented application framework implemented
in the language C++. On top of a standard collection of user interface elements, ET++

46 CHAPTER 3. EXPLORING THE DESIGN SPACE

|
. |
Sequential ! Concurrent
|
}
|
[}] l
Ulasa explicit v Streams two-ufay .
value references ! communication

(one-way) :
|
|
|
|

: wires/channels virtual I/0O
}
]

devices

Figure 3.2 Functional user interface representations.

provide frameworks that help in implementing certain classes of applications. For instance,
one ET+4 framework is targeted at browsers, providing the skeleton and infrastructure
needed to display and manipulate a hierarchical data structure like a file system, say. ET++
was originally based on MacApp[Sch86]. Another system that puts extra emphasis on
providing higher-level user interface abstractions or frameworks is InterViews[LVC89].

3.3 Functional user interface representations

The underlying programming language naturally plays an important part when designing
a graphical user interface framework. The need to resort to callback procedures and shared

state to fit the application in around the event loop in a sequential, procedural language,
has a strong influence on the final solution. Similarly with object-oriented languages and
the features they provide.

One emphasis of the object-oriented system Interviews [LVC89] was its use of composition to
build user interfaces. Starting with a set of basic building blocks, a user interface application
is constructed by piecing these together. Central to functional programming languages is
also the use of composition to build bigger parts from smaller, so what would a compositional
user interface framework in a lazy functional programming language look like?

A number of graphical user interface systems based in functional languages have already
been suggested and implemented [GR92, CH93, NR95, Ach96, VTS96]. To better under-
stand the issues that a functional user interface system has to satisfactorily address, this
section works through a number of the different solutions that have been proposed and
discusses their relative advantages and disadvantages.

3.4. THE USER INTERFACE AS A VALUE 47

3.3.1 A road map

To help structure the discussion on the various functional user interface representations,

Figure 3.2 shows a roadmap. Starting from the left, we start by looking at representing the
user interface using algebraic data types, and then working our way through a gamut of
representations.

2.4 The user interface as a value

A natural starting point when deciding to use a functional language to program user in-
terface applications is to model it on how external, mainstream systems do it. As we’'ve
seen, the prevalent way of writing graphical user interface applications is centred around
the representation of a user interface component as an object. To create a slider, say, you
instance an object representing it. To attach interpretation (other than the visual) to the
movement of the slider thumb, the slider object allows you to attach callbacks/action pro-
cedures. The slider object then invokes the callback function each time the user moves
the slider thumb. So if you wanted to use the slider to navigate through a document, the

callback you'd register with the slider would synchronise the document display view with
the relative position of the slider thumb.

User interface programming then consists of creating and configuring the network of objects
in your application before handing it over to a centralised system control. The system will
then repeatedly fetch events from the window system and forward them to the network of
user interface objects. The state of the application is distributed among the objects, and

they will in response to the incoming event messages update their state accordingly. For
instance, if the event from the underlying window system signalled that the user has moved
the slider thumb, the slider object updates its state to record the new thumb position before
invoking any of its callback functions to notify the application of the change in state.

One way of mimicking this style of user interface programming in a functional language is
to represent the user interface object as a data value, Widget:

data Widget = ...

Values of type Widget are returned by functions that create the different types of user
interface elements supported. The signature for the function that creates a push button

might be:

button :: Picture => a => (a => I0 ()) -> Widget

48 CHAPTER 3. EXPLORING THE DESIGN SPACE

The first two parameters to button specify the label to decorate the button with!, and
what value the instance should report when it has been clicked. The third argument is the

callback action the button instance should invoke each time the button is clicked. button
returns a value of type Widget representing the new instance.

A Widget value represent a user interface ‘thing’, a generic value that can be used to describe
the physical layout of multiple components through the use of functions such as box:

box :: [Widget] -> Widget

The box combinator takes a list of Widgets and returns a new component that arranges
the contained components horizontally, say.

Note that a Widget value does not reflect in its type what kind of component it is. But
for describing the physical layout of a user interface this does not matter, as the layout
combinators are only interested in generic properties of a user interface component such as

its size, position etc.

This is similar to the model used by Clean[AP94|, where algebraic data types are used
to encode a large collectlon of standard, user interface components. Data constructors
representing common user interface components are applied to the callback functions and
attributes that control the particular behaviour and look of the component. In the Clean
system, the callback functions have different type signatures to the one given above, each
callback 1s passed as argument the state of the user interface and application, which it then
can modify and return. -

The Clean system takes care of convertmg values of the user interface data type into actual
graphical user apphcatlons, translating the data structures corresponding to Widget by
constructing corresponding UI component instances from some external widget library. The
collection of user iﬂteffag:e components created is then handed over to a centralised event
dispatch loop, which takes care of forwarding window system events and perhaps invoke a
callback function for a component to update the application state. This approach has its

advantages:

e To the (functional) programmer, describing a user interface by just creating a value
of some algebraic data type, is familiar and intuitive. One good example of this is the
use of data types to declare the structure of a pull-down menu:

*To avoid mixing in the issue of how labels and graphical output in general are described by different
systems, we use the abstract type Picture consistently for all the different systems to represent graphical
objects.

3.4. THE USER INTERFACE AS A VALUE 49

f_menu :: Widget
f_menu =
Menu [Option "New.." New,
Option "Open File" Open,
Option "Save" Save,

Option "Save As.." Saveds,

Separator,

Option "Print.." Print,
Separator,

Option "Exit" Exit]

This is clear and very much to the point, the menu is just a list of options partitioned
into groups using separators.

¢ If the intention is to provide a mapping to some external user interface library, the use
of algebraic data types offers a good fit, as graphical user interface toolkits provide
a boxed set of standard GUI abstractions. With care, the data type can be used
with different window systems. The Clean system, for instance, maps the widget data
structures down to the standard GUI library on the platform you’re working on.

However, a representation based on graphical user interface components being purely func-
tional values, has some serious drawbacks:

o Using algebraic data types, the constructors tend to quickly become burdened with a
lot of arguments for controlling every possible property configurable for the compo-
nent. When creating instances of a component, like the pull-down menu above, the

initial simplicity tends to get lost as you have to decorate the constructors with a lot
of default values.

One way around this is to introduce abstractions that hide the data constructors for
the different components and all their arguments, plus perhaps a bunch of combinators
(a monad, say) to take care of basic book-keeping. But the initial simplicity and
familiarity of just using data constructors would be lost here. |

o Writing the graphical user interface application now roughly becomes the construc-
tion and filling in of a data structure describing its physical layout. This style mimics
mainstream practice of using callbacks to connect components together, and sub-
scribes to the belief that graphical user interface programming has to be centred
around an event dispatch loop. As a result, the application is partitioned up into a
set of callback functions that act on state that encodes the application.

o0 CHAPTER 3. EXPLORING THE DESIGN SPACE

Ignoring the issue of whether a state-based approach like this is how you would ideally
want to express a graphical user interface application in a functional language, there’s
a more serious side to a programming model based on callback functions. The user
interface suddenly takes control over the application and<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>