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Abstract 

This thesis is about building interactive graphical user interfaces in a compositional man- 
ner. Graphical user interface applications hold out the promise of providing users with 
an interactive, graphical medium by which they can carry out tasks more effectively and 
conveniently. The application aids the user to solve some task. Conceptually, the user is 
in charge of the graphical medium, controlling the order and the rate at which individual 

actions are performed. 

This user-centred nature of graphical user interfaces has considerable ramifications for how 

software is structured. Since the application now services the user rather than the other way 
around, it has to be capable of responding to the user's actions when and in whatever order 
they might occur. This transfer of overall . control towards the user places a heavy burden on 
programming systems, a burden that many systems don't support too well. Why? Because 
the application now has to be structured so that it is responsive to whatever action the user 
may perform at any time. 

The main contribution of this thesis is to present a compositional approach to constructing 
graphical user interface applications in a purely functional programming language. 

The thesis is concerned with the software techniques used to program graphical user inter- 
face applications, and not directly with their design. A starting point for the work presented 
here was to examine whether an approach based on functional programming could improve 
how graphical user interfaces are built. Functional programming languages, and Haskell in 

particular, contain a number of distinctive features such as higher-order functions, polymor- 
phic type systems, lazy evaluation, and systematic overloading, that together pack quite 
a punch, at least according to proponents of these languages. A secondary contribution 
of this thesis is to present a compositional user interface framework called Haggis, which 
makes good use of current functional programming techniques. The thesis evaluates the 

properties of this framework by comparing it to existing systems. 
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Introduction 

This thesis is about building interactive graphical user interfaces in a compositional man- 
ner. Graphical user interface applications hold out the promise of providing users with 
an interactive, graphical medium by which they can carry out tasks more effectively and 
conveniently. The application aids the user to solve some task. Conceptually, the user is 
in charge of the graphical medium, controlling the order and the rate at which individual 

actions are performed. 

This user-centred nature of graphical user interfaces has considerable ramifications for how 

software is structured. Since the application now services the user rather than the other way 
around, it has to be capable of responding to the user's actions when and in whatever order 
they might occur. This transfer of overall control towards the user places a heavy burden on 
programming systems, a burden that many systems don't support too well. Why? Because 
the application now has to be structured so that it is responsive to whatever action the user 
may perform at any time. 

The main contribution of this thesis is to present a compositional approach to constructing 
graphical user interface applications, which overcomes many of the problems that current 
systems suffer from. 

The thesis is concerned with the software techniques used to program graphical user in- 

terface applications, and not with the design of graphical user interface applications. A 

starting point for the work presented here was to examine whether an approach based on 
functional programming could improve how graphical user interfaces are built. Functional 

programming languages, and Haskell[P+971 in particular, contain a number of distinctive 
features such as higher-order functions, polymorphic type systems, lazy evaluation, and 

systematic overloading, that together pack quite a punch, at least according to proponents 

of these languages. For theoretical and technical reasons we will touch upon later, func- 

1 



CHAPTER 1. INTRODUCTION 

tional languages have not been fully exploited in the domain of graphical user interfaces 

until recently. A secondary contribution of this thesis is to present a compositional user 
interface framework based on current functional programming ideas, and to evaluate how 
it compares to existing systems. 

The emphasis of this thesis is strongly practical. We describe a fully-fledged user interface 
framework and an implementation thereof in a current functional programming language. 
We're interested in applying a real language to the task and actually building something 
of practical use; it is only through considerable implementation experience and subsequent 
evaluation that we can have confidence in any conclusions drawn. Being based in a current 
language naturally implies that the language imposes boundaries; we cannot roam freely in 
the design space. In our case, the language of choice is Haskell, the standard non-strict, 
purely functional programming language[P+971. 

Others have addressed goals similar to ours. In the context of functional programming, 
eXene(GR92], Fudgets[CH93], Clean[Ach96], Gadgets[Nob96] and TkGofer[CVM97] are all 
examples of considerable graphical user interface systems. As we will see in Chapter 3, 
the design space is quite rich and the framework presented in this thesis is a thorough 
exploration of one part. A dimension that distinguishes these different systems is how 
they solve the basic problem of communication with the graphical user interface and, more 
generally, the outside world. By drawing on the hard-learned experiences of the functional 

programming community on expressing 1/0 conveniently and purely, this thesis proposes 
a design that fits graphical user interface interaction within Haskell's monad based 1/0 

model [PJW93]. By integrating the graphical user interface into the general 1/0 model the 
user interface becomes part of the programmer toolbox, rather than the programmer (and 

application) having to accommodate an existing user interface toolbox. 

User interface systems based in non-functional languages share similar goals to the work 
presented in this thesis. LiveWorld[Tra94], Interviews [LVC89], ET++[NVG94] and to some 
extent -Mastermind [SSC+96] all emphasise composition as an important ingredient in their 
approach to building user interface applications. As will be expanded upon later, the pro- 
gramming model being put forward in this thesis differs from these systems in a number of 
ways, but perhaps most importantly, it is based on top of a functional programming lan- 

guage. One of the central tenets of functional programming is the construction of programs 
by the repeated composition of values [Hug89], so a user interface system built on top of 
a functional language has in principle the greater potential for exploiting compositional 
programming techniques. 



1.1. THE IMPACT OF INTERACTIVE USER INTERFACES 

1.1 The impact of interactive user interfaces 

What's all the fuss about writing interactive user interface applications? One major reason 
is their importance. An application that interfaces with its users through a richly interactive 
and graphical medium has the potential to be both more compelling, effective (to the user) 
and offer a closer mapping to its domain. Another important feature of such applications is 
that they represent a shift of control in the direction of the user. The user is in control, with 
the application taking on the role of a supervisor or a servant. The increased expressiveness 
that such interfaces represent can only be realised if there is good programming support for 
writing graphical user interfaces. 

Is it a 'solved' problem? The use of interactive graphical interfaces is hardly new: from one of 
the first applications to make use of interactive graphics, SketchPad[Sut63] in 1963, the field 
of computer graphics, and later the fields of user interface software technology and human- 

computer interaction, have developed tremendously. Applications with graphical surfaces 
that are both involving and richly interactive are today not an uncommon occurrence. With 

current advances in computer hardware, this trend is set to continue, especially with respect 
to quality of the graphical content. 

However, the cost of creating and maintaining user interface applications is currently high. 
Surveys of programming projects [MR92] have shown that it is not uncommon to spend 
around 50 percent of the resources on user interface issues. One reason for suchligh numbers 
is that arriving at an effective and usable user interface is an experimental process. There 
isn't always a right or a wrong, or if there is, it is normally arrived at through user testing 
and prototyping. Clearly, human-computer interaction techniques can educate, guide and 
help locate an effective user interface quicker, but experimentation and prototyping of user 
interfaces are an integral part of this process. 

Another main reason for the difficulty and cost of writing the user interface is that software 
te chnology lacks expressiveness. Libraries for programming graphical usei interface appli- 
cations tend to be bolted onto existing languages, sequential languages with operational 
models that are inimical to the nature of a graphical user interface. The result is that 

, 
both 

the application and user interface part have to be expressed in contorted and unnatural 
ways. 

A consequence of graphical user interface programming being hard with current systems is 
that it restricts the experimentation and sheer playfulness on the part of the designer. If 
the creation of novel and special-purpose interactive content is hard, it is much harder to 
justify the cost of creating it, which results in tried and tested solutions being employed 
instead. It could be argued that application-specific user interface controls is not a Good 
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Thing, having basic elements such as text input fields and button groups behave differently 

across applications in a desktop environment can be confusing, error-prone and downright 

annoying. However, having the possibility of easily creating new user interface abstractions 
does not have to conflict with good design and the conformance to user interface guidelines. 

1.2 Thesis contributions 

The main contribution of the thesis is to provide a compositional view of user interface con- 
struction in a functional language. One important development in the history of graphical 
user interface programming was the introduction of object-oriented programming languages. 
Indeed, the user interface is a showcase for object-oriented ideas and a multitude of object- 
oriented GUI frameworks and libraries have been built over the years. Interactive objects 
on the screen are naturally represented and modelled by objects in the language. One 

such influential system was InterViews[LVC89] which used object orientation heavily. One 

of the main features 
' 
of InterViews was the use of composition as the main programming 

glue, a user interface being made up of components that have been repeatedly combined 
together. The result, it is claimed, is a consistent and extensible user interface programming 
framework. '' 

A main distinguishing feature of functional programming languages is the use and emphasis 
placed on composition. Values representing complete programs are constructed by combin- 
ing smaller units. The number of ways that values can be combined (the toolbox) is not 
fixed. Through the use of higher-order functions and models of evaluation more conducive 
to a declarative, value-based view of the world, appropriate combining forms ftlue') can 
easily be built[Hug89]. 

If composition is considered a worthwhile feature when programming graphical user inter- 
faces, functional programming languages provide the natural home for taking advantage of 
this. 

The thesis introduces a simple programming framework for building graphical user interfaces 

which employs composition as the main programming glue. Using this framework, a number 
of examples are presented to highlight the simple and uniform model it presents to the 

graphical user interface programmer. 

A fully-fledged implementation of this framework, called Haggis, is also presented -a system 
which makes essential use of the features of its implementation language, Haskell, a lazy 
functional programming language. The resulting system provides the programmer with 
a means to construct'and manipulate user interface applications that is compatible with 
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functional programming ideas. 

More concretely, the thesis makes the following contributions: 

Compositional model Present a simple and uniform model for composing graphical 
user interface applications in a functional language. Through the introduction of 
a small set of graphical user interface primitives and the glue for combining these 
together, a modular and extensible framework for writing user interface applications 
is presented. 

One distinguishing feature of the framework is that it makes no distinction between a 
primitive component and one built by composing existing components together. One 

outcome of this uniformity is that the distinction between building a user interface 

application and a user interface abstraction is eliminated. 

Virtual I10 devices The user interface and the application interact through virtual 
I10 devices. The thesis explores how a user interface component can be seen as just 

another 1/0 device, which just happens to appear in a window. Using the basic 

compositional model, these virtual 1/0 devices can then be combined together to 
build complete user interface applications. 

Haggis In order to demonstrate properly the use of composition as the main program- 
ming glue for user interface applications, the thesis introduces Haggis, a fully-fledged 

user interface framework. Implemented in a functional language, it provides a practi- 
cal demonstration of the benefits of compositional user interfaces and how functional 

programming techniques can with benefit be applied to a domain that has always 
been a stronghold for object-oriented programming techniques. 

Abstraction through concurrency We show that concurrency is vital to support fully 

the compositional style of programming based on virtual 1/0 devices. One 'side-effect' 

of the thesis work was the development of Concurrent Haskell [PJ GF96], a concurrency 

substrate for Haskell that allows the programmer to conveniently deal with the multi- 
threaded nature of user interfaces. 

Evaluating compositionality To assess the properties of Haggis, we present a collection 
of common user interface abstractions built using it. With the help of these abstrac- 
tions, a number of application examples are presented to evaluate the advantages and 
disadvantages of a compositional framework. 
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1.3 Thesis outline 

The thesis presents a compositional approach to user interface construction by first looking 

at how to present static graphical content. Chapter 2 introduces a simple model for describ- 
ing two dimensional pictures as values, and a set of primitive mechanisms for combining 
picture values together. The chapter also introduces a pervasive theme of the thesis, namely 
a compositional view of programming graphics and graphical user interfaces. 

Chapter 3 explores the design space for a user interface system based in a functional lan- 

guage. It evaluates the programming models used by existing systems, leading up to a 
representation of a user interface as a virtual I10 device. Chapter 4 presents a virtual 1/0 
device programming model, and how it can be applied to the representation of user interface 

components. Chapter 5 introduces Haggis, a user interface framework that puts the virtual 
1/0 device model of the previous model to the test. 

Chapter 6 considers some implementation aspects of Haggis. In Chapter 7 Haggis' pro- 
gramming model is'evaluated by comparing it against some commonly used user interface 

systems. After having presented the conclusions of this evaluation, Chapter 8 concludes the 
thesis. 
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picture language 

A natural component of a graphical user interface system is the ability to describe graphical 
output that can be viewed and manipulated by the user. This chapter presents a simple 
framework for describing two-dimensional graphical static scenes from within a functional 
language. Later chapters employ this framework to describe the appearance of graphical 
user interfaces. 

As well as introducing a model for describing pictures, this chapter also illustrates some 
pervasive themes of this thesis: 

The compositional view of graphical and user interface programming. As we will see, 
a picture is represented as a value, built by composing smaller pictures together rather 
than by a sequence of drawing actions. 

The separation of modelling from presentation. A picture can be rendered in many 
ways, none of which need be considered when constructing the picture. 

2.1 Describing the scene 

When describing graphical content using a programming notation, not surprisingly, ab- 
straction is a powerful tool. By providing a programming notation that hides details of 
how to render graphical objects on a particular device, graphical content can be mapped to 

multiple devices. The framework or system library that is provided as part of the graphical 

programming model takes care of converting the device-independent graphical content to 

output on the screen and printer, say. No changes are required on the part of the program- 

mer describing the graphical model. 

7 
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Device-independence is clearly a Good Thing and technology is certainly moving in that 
direction, converging on and standardising programming interfaces to graphical capabil- 
ities, PostScript [AS90a], OpenGL[SG97] and DirectX[DX98] being recent examples. So, 

abstraction is being put to good use in hiding low-level details of graphical devices, but 

what about the actual description of the device-independent graphical content itself? One 

way of expressing the drawing of a rectangle in a procedural programming language might 
be: 

void Rectangle(DrawContext d, int x, int y, int w, int h) 

DrawLine(d, x, y, x+w, h); 
DrawLine(d, x+w, y, x+w, y+h); 
DrawLine(d, x+w, y+h, x, y+h); 
DrawLine(d, x, y+h, x, y); 

I 

the Rectangle procedure draws the lines making up the rectangle, with the DrawContext 

parameter encoding the device we will be drawing onto. This function can then be used as 
a building block for others: 

void RectPair(DrawContext d, int x, int y, int w, int h); 
f 

Rectangle(d, x, y, w/2, h); 
Rectangle(d, x+w/2, y, w/2, h); 

I 

RectPair creates a pair of rectangles horizontally next to each other, taking care of trans- 
lating the second rectangle to the right of the first one. Procedural abstraction certainly 
helps. Here's a pair of blue and red rectangle pairs: 

BlueRed(DrawContext d, int x, int 
I 

Color c; 
Bool fill;, -- 
/* record some graphics state 
c= GetCol0r(c); 
fill = GetFillFlag(d); 

SetFill(d, True); 



2.1. DESCRIBING THE SCENE ,9 

SetFillColor(dired); 

RectPair(d, x, y, 100,100); 

SetFillColor(d, blue); 
MoveRelative(d, 0,100); 
RectPair(d, x, y, 100,100); 

/* restore graphics state 
MoveRelative(d, O, -100); 
SetFill(d, fill); 
SetFillColor(d, c); 

I 

The construction of the rectangles is hidden away, but the above code snippet does exhibit 
some rather serious shortcomings: 

The graphical state has to be, managed by the programmer, taking care to set and 
reset the necessary pieces of the state encoded in the drawing context. The drawing 

context represents the state of the surface/canvas we'r e drawing onto, and maintains 
amongst other things the current set of graphical attributes to use when drawing. 
Managing the graphics state can be unpleasant and error-prone. For example, the 
BlueRed procedure saves away the current settings for the graphi 

' 
cal attributes it 

wishes to override. After having performed the drawing operations, care is taken to 

restore the original state of the drawing content. 

The second rectangle is drawn using a modified transformation matrix, so that it 

appears next to the red one. A similar form of programmer management of state 
happens here, this time with the transformation matrix, translating before drawing 

the second rectangle. Again, the programmer is forced to restore the transformation 

matrix to what it was before returning. 

In effect, the above procedure implements scoping for both graphical and geometric trans- 
formations, which the underlying programming language unfortunately is not providing. An 

alternative is to make use of the underlying procedural language's support for scoping and 
pass the various elements of the graphics state around explicitly via procedure arguments. 
Since there axe numerous graphical attributes a picture can have, this is not particularly 
feasible or convenient. Drawing procedures would end up having tortuously long argument 
lists, which perhaps would be just as error prone as passing in a mutable drawing context. 
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However, there's an alternative to having drawing procedures explicitly manage the state 

of a drawing context: Instead of having the procedures perform the actual drawing actions, 
they return an object or data structure that descHbes the graphical content it wants to 
draw: 

Picture Rectangle(DrawContext d, int x, int y, int w, int h), 
f 

Picture rect = emptyPictureo; 
AddPicture(rect, DrawLine(d, x, y, x+w, y)); 
AddPicture(rect, DrawLine(d, x, y, x+w, y)); 
AddPicture(rect, DrawLine(d, x, y, x+w, y)); 
AddPicture(rect, DrawLine(d, x, y, x+w, y)); 

return rect; 
I 

Now Rectangle is a procedure that returns a Picture value, a data structure that encodes 
the picture to draw. The Picture value representing the rectangle is built by incrementally 

adding the necessary lines to the rect, with the AddPicture function side-effecting its first 

argument to include the Picture value passed as second argument. 

With the representation of pictures as a value, geometric transformations can now be dealt 

with more smoothly: 

Picture Transf6rm(DrawContext d, Transform tr, Picture pic); 

Picture Translate(DrawContext d, int dx, int dy, Picture pic) 

return (Transfom(d, Translation(dx, dy), pic)); 
I 

The Translate function takes a Picture as argument and returns a new one that, when 
rendered, takes care of adding the desired translation amount while drawing the embedded 
Picture. It is implemented using Transform, a primitive operator over Picture values. 
The Transform procedure returns a Picture that when drawn will take care of setting the 
transformation matrix before rendering pic, and restoring it afterwards. 

A Picture value is turned into actual graphical output by a system-provided procedure 
Render, passing it the picture data structure to display: 

void Render(DrawContext d, Picture 
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Given a drawing context and the picture to display, Render converts the data structure into 

a series of drawing actions. 

A fundamental shift has occurred by going from a system where graphical output was 
done by performing a series of drawing commands, to one where procedures return a data 

structure representing the graphical content. The move to a declarative approach allows 
us to abstract away the details of how to issue the right graphics commands and having 
to explicitly manage display state such as the drawing context. For instance, here is how 
BlueRed can now be expressed: 

extern Picture Overlay(Picture pl, Picture p2); 
extern Picture FillPicture(Picture p); 
extern Picture WithColour(Colour c, Picture p); 

Picture BlueRed(DrawContext d, int x, int 

return ( 
FillPicture( 

Overlay( 
(WithColour(blue, DoubleRect(d, x, y, 100,100)))p 
(Translate(d, 100,100, 
WithColour(red, 

DoubleRect(d, x, y, 100,100))))))); 
I 

The Picture returned from BlueRed is a composition of existing Picture values and proce- 
dures. The example makes use of Overlay which takes a pair of Picture values as arguments 
and returns a Picture value, where the picture given as first argument will appear on top 

of the second. 

This is an improvement over the previous version of BlueRed, where the graphical state 
had to be manipulated directly by the programmer in between issuing drawing commands. 
The focus has instead been shifted towards modelling the graphical content rather how to 

present it. The result is a value-based description, where graphical content is jonstructed 

by repeated applications of procedures taking and returning Picture values. Procedural 

abstraction is certainly helpful here, being used to create Picture building blocks that can 
later be re-used. However, this style of programming does tend to demand greater support 
for abstraction from a programming language - what if we wanted to generalise Overlay 

to take a collection of Picture values? 
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Picture Overlays(PictureList ls) 

f 

Picture Pic; 
Picture res = emptyPictureo; 
PictureList ls-tmp = ls; 

while (lisEmptyList(ls-tmp)) 

Pic = head(ls-tmp); 

AddPicture(res, pic); 
ls-tmp = tail(ls-tmp); 

I 

return res; 

The Overlays procedure achieves this, accumulating a Picture value by iterating over 
its PictureList argument, a sequence of Picture values. This works quite well, but 

the support for data structures is somewhat restricted, requiring a list type specialised. to 
Picture. A language that supported the definition of parameterised data types such as 
lists would be of help here. 

A natural extension beyond passing and returning picture values is also to pass functions 

as arguments to Picture building blocks. For instance, when implementing a function that 

places an arbitrary picture next to a blue rectangle: 

Picture ByRect(DrawContext d, int x, int y, 

,,, (Picture f(DrawContext, int, int)), Picture pic) 

return 
Overlay 

WithColour(blue, DoubleRect(d, x, y, loo, loo)), 

Trýnslate(d, 100,100, f(dpx, y)))); 

The ByRect fufiction takes as one of its arguments a function value. The function argument 
expects'to"be applied to the coordinates where to position the graphical object it returns, 
and'the drawing context to use. To use ByRect, we simply have to supply the desired 
function: "' !- '' -ý-- 

Picture DoubleRect(DrawContext d, int x, int 
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f 
return(ByRect(d, x, y, Rect)); 

I 

The exact syntax of how function arguments are passed is not important here - the definition 

of DoubleRect calls upon ByRect, supplying it with a function, Rect, that will draw the 

second picture to use: 

Picture Rect(DrawContext d, int x, int, y) 

return(Rectangle(d, x, y, 100,100)); 
I 

Notice that we have to create a special-purpose procedure, Rect, which wraps up a call to 
Rectangle with the size of the rectangle fixed. Not satisfactory - what we really want is 
higher-order functions and the ability to create anonymous functions: 

Picture DoubleRect(DrawContext d, int x, int 
f 

return(ByRect(d, x, y, (\ (a, b) -> Rectangle(d, a, b, 100,100)))); 
I 

The fourth argument to ByRect is now an anonymous function that takes a coordinate pair 
as arguments, and then calls Rectangle to produce the desired Picture result. 

The above example could be re-worked not to use a function argument without too much 
effort, but having the ability to define and use functions as arguments and results is a very 
powerful and useful abstraction tool. 

The style of expressing graphical content we've been outlining in this section has a natural 
home in a functional programming language. As we've seen, this style of programming 

can to some extent be emulated in a procedural, C-like, programming language, or in an 

object-oriented language. However, a functional programming language is more suitable to 

the task, as the programming style that the declarative view of graphical content engenders 
is better supported by a pure functional language. 

Summary 

To summarise this discussion of what is a convenient format for expressing graphical content 

programmatically, here are some of the main points: 
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Programs that display graphical content tend to mix the details of how to present 
it on a graphical output device with what to draw. The result is that the details of 

presentation obscure the content itself. 

Using a procedural programming language, the lower-level details of the interaction 

with a graphics device can be abstracted away from the view of the programmer. How- 

ever, by using a programmer interface where you draw by issuing graphics calls that 

will perform device-specific drawing operations for you, it is left to the programmer 
to manage the (abstract) state of the graphical output device. 

e Separating presentation from modelling helps. Instead of issuing graphics calls, pro- 
grams construct a value describing the model they want to present, leaving it up to 

some system-provided facility to convert the model into actual graphical output. 

A value-based compositional programming style engenders the use of features such 
as higher-order functions and parametric data types. These can to some extent be 

emulated in a procedural programming language. However, composition and higher- 

order functions axe particularly well supported in a functional language, so applying 
such a language to the task of modelling structured graphics declaratively sounds like 

the natural choice. 

Elliott[E1197] presents an argument similar to this of why making the distinction between 

modelling and presentation is valuable, but this time applied to the much richer domains 

of multimediaand three-dimensional animations. We're here solely interested in the de- 

scription, of static, two-dimensional scenes and how to model them conveniently within 
a functional language, but the arguments of why a separation between presentation and 
modelling is valuable holds for both domains. 

With the goal in mind of describing graphical content declaratively using a functional lan- 

guage, the rest of 
' 
this chapter presents the Picture type and the primitive Picture building 

blocks for describing two-dimensional graphical scenes. The Picture type and its primitives 
are, embedded inside the lazy, purely functional language Haskell[P+97]. 

2.2 The Picture type 

To express two-dimensional graphics declaratively, the programmer builds a value repre- 
senting the graphical scene. For instance, to construct a picture of a box inside a circle: 

boxedCircle :: Pictureý 
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C 
Figure 2.1 The boxedCircle picture. 

boxedCircle = overlay c (centre s) 
where 

c= circle 10 
s= square 20 

The boxedCircle definition represents such a picture, and its appearance when rendered 
is shown in Figure 2.1. The first line gives the type of boxedCircle, Picture. A value 
of type Picture is an abstract type representing a two-dimensional graphical scene that, 

when rendered, will produce some graphical output. 

To return to the boxedCircle definition above, it is constructed out of a pair of basic 

picture elements, created with the following two functions: 

circle :: Unit -> Picture 

square :: Unit -> Picture 

The expression (circle 10) has type Picture, and represents a circle with radius 10. Mag- 

nitudes and sizes in our picture language are all expressed as an integral number of printer's 
points. ' Similarly for square, applied to a size it returns a Picture value representing a 
square shape object. 

Picture values are combined together using overlay 

overlay :: Picture -> Picture -> Picture 

which returns a new Picture value with its first argument appearing on top of its second. 

The reason why the circle is contained within the square is that overlay combines two 

pictures into one by aligning the origins of the pictures. All pictures are expressed in terms 

of their own coordinate system, and, by definition, the Picture returned by circle has as 

origin the origin of the circle. Similarly for the picture representing the square. 

11 point -- 1/72 inch, using the same approximation of a printer's point as PostScript[AS90a]. 
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2.2.1 Running example 

To help present the Picture type and the features it provides. we'll make use of a running 

example awl gradually introduce the various features needed to construct it. The example 
is the saine as the one used in an earlier presentation of the Picture type, [FP. 19, '-); tl, a 
traffic light: 

I I' we break tIi is (low nn it o pieces It 
I Ic t r; III ic I 1A II1 1" 1) 11 11t mII of' III Ive uolw I red u1n. If. " place( I 

on top of a black rectangular background. Centred inside each circle is the initial letter of 
the colour of the circle itself. 

2.3 Picture elements 

A number of' basic geometric shapes can be created through a set of' primillNv Picture 
functions, Figure 2.2 sbows the type signatures for a selection of these, Appendix A glVes 
the complete list. The graphical representations created by these functions are shown in 
Figure 2.4. One of the primitive Picture constructors is ellipse: 

ellipse :: Size2 -> Picture 

Given a two-dimensional vector speciýying the width and height, it returns a Picture vdue 
representing a circular ellipse with ininor and major axes equal to the x and y components 

of the vector. Sizes are all expressed in printers' points. 

A Picture has its own local coordinate system. The ellipse is defined aus having the origin 
of its coordinate systern coincide with the origin of the ellipse. Expressing the primitives 

within their own coordinate system avoids having to explicitly place thein within soine 
external coordinate system when creating thein, i. e., instead of the above type signature for 

ellipse, we would then have: 

ellipse :: Coord2 -> Size2 -> Picture 

Having the extra argument just adds clutter and is better dealt with by placing each Picture 

value within its own coordinate system and then transforming the local coordinatesystem of 
a picture into a global one should the need arise. Section 2.4 shows the primitive invchanisn's 
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empty Picture 
point Picture 
line Size2 
polyrline [Size2l 
rectangle Size2 
square Unit 

raster Raster 
bezier Coord2 
ellipse Size2 
circle Unit 
arc Size2 

Picture 
Picture 
Picture 
Picture 

Picture 
Coord2 Coord2--> Picture 
Picture 
Picture 
Angles Picture 

Figure 2.2 Picture primitives. 

used to transform a Picture value. 

Notice that the Picture type is treated as abstract; once a Picture value has been created, 
there's no way of taking it apart using pattern matching, for instance. This doesn't turn out 
to be such a big loss, as the need for examining the concrete representation of a Picture is 
rarely needed when building a graphical scene. The concrete representation of a Picture is 
clearly needed when converting the value into actual graphical output, and we look at the 
concrete representation and how to render Picture values in Section 2.10. 

Associated with all values of type Picture is an implicit bounding box, the smallest rectangle 
that fully encloses the graphical object it represents. 2 For instance, the bounding box of 
halfCircle, 

halfCircle = arc (Size2 40 20) 0 pi 

is a rectangle with width 80 points and height 20 points. Apart from empty which represents 
the nullary picture, all Picture values have a bounding box of some extent. The dimensions 

of a picture's bounding box play an important role when combining pictures together. 

2.4 '11-ansforming pictures 

A picture can be transformed geometrically using the following combining form: 3 

'The bounding box rectangle has sides that are parallel with the axes of the Picture's coordinate system. 
3 Functions such as transform are often termed by functional programmers as combinators, combining 

operators that create a new value of some type taking one or more values of the same type as arguments. 
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newtype Unit = Unit Int 

-- integral number of printers' points 

data Size2 = Size2 Unit Unit -- 2d vector 
size :: Unit Unit Size2 

width, height Size2 Unit 

data Coord2 = Coord2 Unit Unit -- 2d point 
coord Unit -> Unit -> Coord2 

X, y Coord2 -> Unit 

type Radians Double 
data Angles Angles Radians RadiansDelta 

start angle plus delta radians to turn 
to reach final angle. 

data Transform2 = -- 2d transform, abstract type. 
idTr Transform2 
transTr Size2 Transform2 

rotateTr Radians Transform2 

scaleTr Double -> Double -> Transform2 

combineTr Transform2 -> Transform2 -> Transform2 

-'associative. 

Figure 2.3 Basic geometric types. 

Figure 2.4 Picture primitives. 

transform :: Transform2 -> Picture -> Picture 

The function constructs a new Picture value by applying a two-dimensional transformation 

to the Picture value it is passed as its second argument. The Transf orm2 is an abstract 

For instance, (++) is a list combinator, appending a pair of list values together to produce a new one. 

"I 



2.4. - TRANSFORMING PICTURES 19 

Figure 2.5 IYansformed geometric shapes 

data type for 2D transformations, allowing both uniform (scaling, rotation) and non-uniform 
(shearing, reflection) transformations to be expressed. Some commonly used transformation 
functions are presented in Figure 2.3. Using the primitive transform, derived Picture 
transformation functions can easily be defined: 

scale :: Double -> Double -> Picture -> Picture 

scale sx sy pic = transfom (scaleTr sx sy) pic 

uscale :: Unit -> Picture -> Picture 
uscale f Pic - scale (size f f) Pic 

xlt :: Size2 -ý' Picture -> Picture 
xlt t Pic = transform (transTr t) Pic 

type Degrees = Int 

rotate :: Degrees -> Picture -> Picture 

rotate deg Pic = transform (rotateTr (deg2rad. deg)) Pic 

Examples of these geometric transformations applied to the basic shapes in Figure 2.4, can 
be seen in Figure 2.5. For instance, the scaled rectangle is built using half Size, 

halfSize :: Picture -> Picture 
halfSize pic = scale 0.5 0.5 pic 

halving the width and height of a picture. Applying half Size to a rectangle that is 100 

units wide and 60 high produces a rectangle 50 units wide and 30 units high. A more 
involved and visually interesting example of transform is this little spiral: 
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Figure 2.6 A spiral Picture. 

overlay :: Picture -> Picture -> Picture 

espiral :: Picture 

espiral = foldr (overlay) empty pics 

where 

pics = 
zipWith (rotate) 

[O, pi/8 .. pil 
(replicate (ellipse (size 40 20))) 

The espiral produces the shape shown in Figure 2.6, consisting of a sequence of rotated 
ellipses superimposed on top of one another. The definition of espiral uses the function 

f oldr to walk over a list of pictures, building up the final picture by overlaying all the 

elements in the pics list. 

If applications of transform are nested, they combine as follows: 

transform tl (transform t2 pic) = transform (combineTr tl t2) pic 

where combineTr returns the multiplication of a pair of Transf orm2 values. For instance, 

shrink 

shrink :: Picture -> Picture 

shrink pic = halfSize (halfSize (halfSize pic)) 

shrinks a picture by a factor of eight by applying an equal scaling amount three times to a 
picture, halving the scaling factors each time. 
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2.5 Structured translation 

The transform combinator applies a transformation to a picture. Transformations such as 
scalings and rotations are all about the origin of the local coordinate system of the picture. 
Often we need to translate the picture prior to performing the transformation. For instance, 

suppose we want to rotate an ellipse around its leftmost point: 4 

ellipseA = 
rotate (pi/4) $ 

ellipse (30,20) 

ellipseB = 
rotate (pi/4) $ 

xlt (30,0) $ 

ellipse (30,20) 

To rotate around the leftmost point of an ellipse (rightmost picture), the ellipse first has 

to be translated along the X-axis before rotation, as seen in the definition of ellipseB. 
For ellipses, rotation around the centre is straightforward, the origin of the ellipse picture 
coincides with the origin of its local coordinate system. 

However, for ellipseB, the definition depended on knowing the exact amount it had to 
be translated by. This makes it hard to write a general picture combinator for rotating a 
picture around the leftmost or western point of its bounding box, say, without some extra 
support. One way to support the writing of such general translation functions is to provide 
a function that computes the bounding box of a picture value: 

computeBBox :: Picture -> Rectangle 

This is certainly possible, but it implies answering some awkward questions. For exam- 

ple, what is the bounding box of (text "Hello")?, It is hard to say without committing 
to device-dependent rendering details such as what default font to use. Equipping the 

programmer with the functions for computing size of bounding boxes is also somewhat low- 
level, so, if possible, we would like to work at a higher-level than manipulating concrete 
bounding box sizes when constructing a picture. To deal with this problem we introduce 

structured translation. Structured translation is the abstract translation of the origin of a 

picture, provided by the move picture combinator in Figure 2.7. 

4 To avoid the deep nesting of brackets, the'right associative I function application operator $ is used here, 
i. e., we write f$gh instead of f (g h). 
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move :: Offset -> Picture -> Picture 

data Offset 
= OffDir CompassDirection 
j'OffPropX Fraction 
I OffPropY Fraction 

type Fraction = Double [O. O.. J. O] 

data CompassDirection 
West NorthWest 
North NorthEast 
East SouthEast 
South SouthWest 

I Centre 

Figure 2.7 Structured translation of pictures 

The move combinator allows you to abstractly translate a picture with respect to its bound- 

ing box, instead leaving it up to the function that converts the Picture value into actual 

output to compute the translation amount to use. The function move constructs a new 
Picture value by performing such a translation, moving the origin either to one of the 
bounding box positions given by the CompassDirection type, or shifting it horizontally or 

vertically by a fraction. For instance, (move (Of f Dir NorthEast) (square 20) ), returns 

a square with the top lefthand corner as its origin. Notice that the move function does not 

extend the size of a picture's bounding box, but moves the origin of the picture's coordinate 
system. 

To return to the example of rotating an ellipse around its leftmost point, ellipseB can be 

written as follows using structured translation: 

westRot :: Radians -> Picture -> Picture 

westRot rad pic 
rotate rad $ 

move (OffDir West) pic 

ellipseB = westRot (pi/4) (ellipse (30,20)) 

The westRot function translates pic such that its bounding box is shifted to the right 
of the vertical axis and centred around the horizontal axis before applying the rotation 
transformation. 
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Nested applications of the move constructor are clearly redundant: 

move dirl (move dir2 pic) = move dirl pic 

since an application of move does not alter the size of a picture's bounding box, the inner 
application of move can safely be ignored. 

2.6 Graphical transformations 

Another class of transformations are graphical ones, where you want to change or set the 
graphical attributes that a picture should be drawn with. For instance, suppose you want 
to create a filled, green circle for the initial traffic light example: 

greenCircle Unit -> Picture 

greenCircle rad 
withPen [Foreground green, 

Fill True] $ 
circle rad 

withPen :: [PenModifierl -> Picture -> Picture 

The withPen combinator is applied to a circle together with a list of pen modifier attributes, 
returning a new picture value. When rendered, the circle will be drawn with the fill flag 
turned on, using a green colour. The PenModif ier values given in the list to withPen are 
attribute-value pairs, and Appendix A gives a complete list of attributes supported. 

The attribute-value pairs in a PeModif ier list gives you a fine-grained control over the 

settings of various graphical attributes when drawing, but sensible defaults are defined for 

all attributes, so the withPen combinator is only used when you want to override these 

values. 

In the case of nested applications of withPen, the outermost application has priority over 
inner ones, i. e., the attribute-value pairs set in an application of withPen will only apply if 

there's no enclosing application of withPen that overrides it. That is, 

withPen pi (withPen p2 pic) == withPen (pl++p2) pic 
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To illustrate the scoping of graphical attributes, when the following Picture is ren(lered. 

picture = 
withPen [Fill True, 

Foreground grey801 

withPen [Fill False, 

Foreground black] $ 

circle 30 

the picture on the right should be displayed. NNI'lien the circle is rendered. tlj(, foreground 

colour is grey8O and the circle is filled, since the outermost application of withPen overrides 

any subsequent settings of the foreground colour or fill flag. This choice of scoping, of pen 

attributes is different from what is normally done in other systems, where local gmphical 

attributes override global ones. 

Note that the graphical attribution done by withPen creates a new Picture value. and 

avoids having to use some shared, mutable graphics state. withPen simply ts,, o(-'; It('s (I s('t 

of graphical attribute values with a picture that will be in scope when rendering it. 

If we return to the traffic light example, drawing the individual lights can now be expressed 

with the help of withPen: 

filledCircle :: Colour -> Unit -> Picture 
filledCircle col rad = 

withPen [Foreground col, Fill True] 

(circle rad) 

red, orange, green :: Colour 

redLight, amberLight, greenLight :: Unit -> Picture 

redLight = filledCircle red 

amberLight = filledCircle orange 

greenLight = filledCircle green 

By defining a function for creating filled circles, the individual lights are constructed by 

supplying the appropriate colours. 
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2.7 Composing pictures 

To get any ffirther with the traffic light picture, the different Picture values i-epi-esenting 

the lights will have to he (. 0111hined togethei- somehow. The Picture tYpe pi-ovides thive 

pl-inlitive walys of combilling pictm*es together, one of which we've all-eadY Seen 11"ed: 

overlay :: Picture -> Picture -> Picture 

The overlay primitive creates a new pictill-c hy collibilling togethel. (I Imil. of pictill-cs, 
Placing the fil-st pictill-e Oil top of the second by aligning their origins: 

picture 

overlay 
(ellipse (40,20)) 

(ellipse (20,40)) 

The bounding box of the collI)illed picture is the bounding box of the union of the bounding 

boxes for the two pictures. 

The second form of picture compositioll is (. Iil), )illg, ilit(q. preting one picture as defining the 

clip mask to use when drawing the second: 

cliP :: Picture -> Picture -> Picture 

clip clipper clipped is a new pictilre that clips the second picture by the clip inask 
defined by the first: 

picture = 
clip 

(withPen [Font largeFont] (text "Clip")) 

(lines 500) 

lines 1 
foldll 

cli 

EI H 
(overlay) 

F 

[ rline (1*cos a, l*sin a) Ia <- [0, (pi/72).. 2*pil 

The bounding box of' the constructed picture is equal to the bounding box of the picture 
describing the clip mask. 
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The overlay primitive combines a pair of pictures, but what if we wanted to express the 
following function in terms of it? 

inBox :: Picture -> Picture 

The inBox function should take a picture and frame it inside a rectangle. Combining the 

rectangle and the picture together with overlay is straightforward, but what dimensions 

should the rectangle in this have? It is of course dependent on the size of the picture supplied 
as argument. Since we do not supply a function for computing a picture's bounding box, a 
third form of picture composition is provided. Constrained overlay combines two pictures 
together just like overlay, but places constraints between the sizes of the pair of pictures 
being combined: 

constrainedOverlay :: RelSize -> RelSize -> Picture -> Picture 

data RelSize 

None 

Fixed Which Unit 

Prop Which Double 

data Which = First I Second 

The picture constrained0verlay None (Prop Second 2.0) picA picB is a picture that, 

when rendered, will align the origins of picA and picB, drawing picA on top of picB. The 

second picture, picB, is also scaled in the Y direction such that height of its bounding box 
is double that of picA's. The RelSize arguments to constrained0verlay indicate the 
type of constraint to place between the height and widths of the two picture's sizes. The 

constraints are uni-directional, with the Which type indicating what direction the constraint 
is meant to hold. 

Using constrained0verlay, the inBox function becomes easy to express: 

inBox :: Picture -> Picture 

inBox pic = 
constrainedOverlay (Fixed Second 4) 

(Fixed Second 4) 
(centre pic) 
(centre $ rectangle 10 10) 
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The surrounding rectangle is made four points wider and higher, combining the rectangle 
and the picture by aligning their centres. 

Clearly, the constrained0verlay operator provides a superset of the functionality of 
overlay, 

overlay = constrainedOverlay None None 

but since overlay is so common, we choose to present (and represent) the unconstrained 
overlay as a separate construct. 

2.8 Tiling pictures 

Combining the overlay operator with the structured translation operator move in Sec- 

tion 2.5, picture combinators that tile pictures together can now also be expressed: 

beside :: Picture -> Picture -> Picture 
beside picA picB = 

overlay 
(move (OffDir East) picA) 
(move (OffDir West) picB) 

above :: Picture -> Picture -> Picture 

above picA picB 
overlay 

(move (OffDir South) picA) 
(move (OffDir North), picB) 

The beside combinator overlays two pictures, but translates their local origins such that 

picA will be shifted to the left of the vertical axis and picB wholly to the right, before 

combining the two picture values. The combinator above uses the same trick, but this time 
the translation is with respect to the horizontal axis. 

As an example of these various composition o erators in use, we can finally present the 
z-'ý 

p 
construction of the traffic light example presented at the beginning of the introduction to 

the Picture type, starting with a combinator for placing an arbitrary text string within a 

coloured oval: 

light :: Colour -> String -> Picture 
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light col lab = 

constrainedOverlay 
(Fixed Second 20) 
(Fixed Second 20) 
(withColour black $ centre $ Text lab) 
(filledCircle col 2) 

The light combinat, or centres the text string lab within an ellipse that has horizont; d mid 

vertical extent 20 tinits bigger than Oiat of the extent of tjj(ý picture representing the string. 
Using this combinator, t1w pictures for the individual fights now simply become: 

redTLight = light red "R" 

amberTLight = light orange "A" 

greenTLight = light green "G" 

TO align the light's horizontally, We want to use the horizontal tiling operator beside, but 

want, to add some 'air' between the lights first: 

besideSpace :: Unit -> Picture -> Picture -> Picture 

besideSpace spc picA picB = 
beside 

picA 
(xlt (size spc 0) 

moveWest picB) 

besideSpace uses the x1t combill, 'for to translate the picture on the right liand side further 

to the right" so Chat Whell it, is ('01"billVd with the other, we have the desired space in betweell 

them. The three traffic lights thell become jllst,: 

lights 

f oldrl 
(besideSpace 10) 

[redTLight, 

amberTLight, 
greenTLight] 

T() fillish ()IF the traffic light, w(' OW" MAY I'Ved to add a black rectangular background to 

t, I le I ig I its: 
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............. 

Figure 2.8 graph (scatter) dataPts - scat, tei- ph)t ol'annual (hit(I 

trafficLight = 

constrainedOver 
(Fixed Second 

(Fixed Second 

(move (OffDir 

lights) 

(move (OffDir 

lay 
20) 

20) 

Centre) 

Centre) 
(Rectangle (2,2))) 
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This exal"Ple, while small, demonstrates the compositional programming st, Yle that follows 

naturally, where c0l"PIVte Pictures are built by repeatedly appl 
. N, ing picf, 'Ilre CoIll'bli'llalors 

to existing Pictures. 

2.9 Example 

To further demonstrate and bring together the various features, t1lit the Picture type 

provides, let's consider the problein of plotting 2D graphs. A common situation is to 1mve 

a set of data generated by a program that, we want to vistialise (Illicki 
'v 

using a graph. Fm- 

the purpose of this exal"PIO, let lis assume that the data 111("Islire the '1111111al (list riblit iml 

of soille value, producing output like Figure 2.8. The X axis represen(s the months and 
the Y axis the values Nve've measured each month ill, the illillibel. of bligs I'Milld ill I pl(1CC 

of software, say. The Picture representing this grýlph cmisists of sevend slimllel. pletilres 
joined together, starting Nvidi Ole gridded background: 
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grid :: Size2 -> Size2 -> Picture 

grid (Size2 w h) (Size2 stepx stepy) 
let 

pen = 
[Foreground grey5O, 
LineStyle, (OnOffDash 1 Ol 

lines-x =h 'div' stepx 
lines-y =w 'div' stepy 

in 

withPen pen 

overlay 
(move (OffDir Centre) $ 

rectangle (size w h)) 
(overlay 

(move (OffDir Centre) $ 
hlines stepx lines-x W) 

(move (OffDir Centre) $ 

rotate (pi/2) $ 
hlines stepy lines-y h) 

The grid function, given a size and spacing between the grid lines in both directions, returns 
a Picture of the grid, built by overlaying horizontal and vertical lines. To make the grid 
lines appear discretely in the background, we apply a pen modifier that dashes the lines 

and renders them in grey (see Appendix A for definition of the graphical attributes). The 

picture of the horizontal lines h1ines is also a combined picture: 

hlines :: Unit -> Unit -> Unit -> Picture 

hlines spc no x 

nabove 
(map (xlt (size 0 spc)) 

(replicate no $ hline x) 

nabove [Picture] -> Picture 

nabove foldr (above) empty 

The horizontal lines are composed out of a collection of lines arranged vertically using 
above. To achieve the necessary spacing between the lines, each line is translated so as to 

enlarge the bounding box the above uses to compute the geometric arrangement'between 
two pictures. 
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The axes of the coordinate system are also created by combining smaller pictures together, 
this time two arrowed lines: 

axes :: Size -> Picture 

axes (w, h) = 
overlay 

(leftArrowLine w) 
(upArrowLine h) 

The arrowed lines can also be subdivided into a picture element for the arrow line and 
the head that has been combined together, but for reasons of space we will leave out their 
definition here. 

To get the picture of a gridded. coordinate system, we simply overlay the picture returned 
by axes with that for the grids, making sure of moving the origin of the grid to its lower 

left corner, so that the gridding coincides with the origin of the axes: 

cartesian :: Size2 -> Size2 -> Picture 

cartesian sz steps = 

overlay 
(axes sz) 
(move (OffDir SouthWest) 

grid sz steps) 

To plot data points within the coordinate system, the picture(s) representing the points 
just have to be placed on top. Here's how a scatter plot of a set of coordinates is done: 

scatter [Coordl -> Picture 

scatter noverlay $ map (plotAt) 

where 
plotAt pos = 

x1t (coord2Size pos) (filledCircle 2) 

noverlay [Picture] -> Picture 

noverlay foldr (overlay) empty 

The different points are plotted by translating a circle to each data point and then overlaying 
the pictures of all the data points. Since overlaying is performed by matching up the 

origins of two pictures, and the points to be plotted are all expressed within the same 

coordinate system, the pictures will also have the same origin. The resulting plot can then 
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be superimposed on a coordinate system to produce the plot in Figure 2.8: 

graph ([Coord2] -> Picture) 
[Intl 
Size2 

-> Size2 

-> Picture 

graph plot pts size stepsQ(Size2 dx dY) 

let 

coords - zip pts Edx 'div' 2, dx.. ] 

in 

overlay 
(plot coords) 
(cartesian size steps) 

The graph takes a function for producing the plot of the supplied data together with the 
data points themselves and a size plus grid steps. For the purpose of this example, we 
assume that the size and data points are in the same range; additional code that checks 
and appropriately scales the data to fit has been omitted for reasons of space. 

Now let's change the plot a little bit, connecting the points up with solid lines: 

solid :: [Coord2l -> Picture 

solid ls = 
overlay 

(polyline ls) 
(scatter ls) 

The scatter plot as produced with scatter is overlaid with a poly-line connecting all the 
data points up. Using solid in a call to graph will produce output like this: 
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2.9.1 Histogram 

Instead of plotting data points, we could plot the data in a histogram and to make the 

resulting graph a bit more understandable, adding month labels to the X-axis. The month 
labels can be added by overlaying the X axis with the appropriate labels: 

xAxis :: [String] -> Int -> Int -> Picture 

xAxis labels sz spc = 

overlay 
(leftArrow sz) 
(move (OffDir NorthWest) $ 

noverlay , 
(zipWith (\ p pic -> xlt (size p (-15M pic) 

[spcl, (spc+spcl).. ] 
(map (label) labels))) 

where 

spcy = spc 'div' 2 

label str = 

rotate (pi/2) $ 

move (OffDir East) 

text str 

The labels in the X direction are placed on top of the axis by rotating each label 90 degrees 

clockwise beforehand. To incorporate the labelled axis, the functions cartesian and axes 
have to be altered to thread the labels through to xAxis, but we will leave out the details 

here. 

plotting a histogram instead of a scatter-plot is straightforward, just substitute scatter 

with histo in a call to graph: 

histo :: [Intl Int Picture 

histo Pts sPc 

foldl 
(besideB) 

empty 
(map (bar) 1s) 

where 
bar sz 

move (OffDir South) $ 
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overlay 
(rectangle (size spc sz)) 
(fillColour grey80 $ 

rectangle (size spc sz))) 

besideB :: Picture -> Picture -> Picture 
besideB picA picB 

overlay 
(move (OffDir SouthEast) picA) 
(move (OffDir SouthWest) picB) 

The bars are created I)y goilig through the data points left to right. -Note that instead of 

using beside to combine the bars together, we use the combinator besideB to align tll(,, 
bars by their bottoms instead. Visualising the data using histo will then produce output 
like this: 

F1 

7S 0z Cý 

TO conchide this graphing ex; InIple, it shows that by using the Picture type, it is relatively 

emsy to write application-specific combining forms for generating drawings. While this is a 
toy example, an interesting experiment would be to try to build a complete graph drawing 

library using Pictures and a functional language, and see how well the simple Picture 

111mlel scales to larger examples. 

2.10 Rendering Pictures 

Having presented the programmer interface for constructing Picture values, the question 
now is how do we convert them into actual graphical output? One of the motivations for 
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using an abstract data type to represent graphical content was device independence, so to 

make it easy to define a mapping to a new output device, we define a generic framework 
for rendering pictures. The following primitive rendering function is provided: 

render :: Painter -> Picture -> 10 Rectangle 

The render action takes as arguments the painter characterising the output device and 
the picture to render. Before rendering the picture, render tries to simplify the Picture 

value by reducing and removing superfluous parts, e. g., the nested application of the move 
operator can be removed as discussed in Section 2.5. 

As a result, the render action returns the bounding box of the rendered picture, expressed 
in the global coordinate system of the Painter. 

The Painter axgument describes the features that the Picture renderer requires from a 
particular graphics device. It is represented as a dictionary of operations: 

data Painter 

= Painter 

pushPen Pen ID 

popPen 10, (), 

setClipMask Coord2 Transform2 10 

drawText String Transform2 10 Rectangle, 

drawRectangle Size Transform2 -> 10 Rectangle, 
drawEllipse Size Angles -> Transform2 -> 10 Rectangle, 

I 

The painter operations include operations for rendering picture elements and for setting 

graphical state. The complete definition of the Painter type is given in Appendix A. 

The set of primitive drawing operations that a Painter needs to support reflects the render- 
ing primitives that Xlib[Nye90] and PostScript [AS90a] provides. An alternative would be 

to require each Painter to provide a primitive for rendering a more general mathematical 
form like nonuniform, rational B-splines(NURBS) [RA90], and e? (press the above drawing 

primitives in terms of it. 

When the renderer encounters one of the primitives mentioned in Section 2.3, it looks up 
and invokes the corresponding method in the Painter. Currently, two graphical Painters 

exist for producing output in PostScript and to Haggis [FPJ95a], but the Painter interface 
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has also been used to implement picking, i. e., testing whether a point intersects the picture, 
and to incrementally update parts of a Picture structure. 

2.11 Related work 

The presentation of the Picture type in this chapter is based on an earlier presentation 
of the Picture type, [FPJ95b]. This approach to structured graphics builds on previous 
approaches to describing graphics in a functional language. One of the earliest attempts was 
Henderson's functional geometry[Hen82a], where, using Escher's square limit as an example, 
functions for repeatedly combining together a set of basic picture tiles were presented. 
Arya's work on functional animation [Ary89] uses the same graphical model. The repertoire 
of primitive drawing elements was restricted to lines which has to be placed explicitly within 
a tile/element's coordinate system. Functions for horizontal and vertical tiling are provided 
as primitives. The Picture type presented in this chapter extends this early work by 
providing a fuller set of drawing primitives and picture transformers, and through the use 
of structured translation and constrained overlays, picture composition functions such as 
above and beside can be readily expressed. 

Several other 'functional' systems have made use of PostScript's [AS90a] basic graphics 
model, layering functional abstractions on top of it[CC92, LZ87]. These approaches make 
good use of PostScript's page description model, but force the programmer to use PostScript's 

stateful model of stencil and paint for describing the basic picture elements. While power- 
ful, its inherent statefulness can lead to unexpected results when used from within a lazy 
functional language. 

Although the Picture graphics model differs significantly from the PostScript model, a 
module for describing PostScript stencil paths in terms of Pictures can easily be defined: 

module Path 

Path, 

currentPoint, Path Coord 

moveTo, Coord Path Path 

rline, Size Path Path 

) 
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Graphical output is described by incrementally building larger and larger Paths, behaving 

much like an output monad. The Path module does not provide the full set of features that 

a PostScript interpreter has, but it shows that the Picture type could be used as a basis 

for creating other graphics abstractions. One interesting point to note is that the Path 

module elevates the path to a first-class value, something that is not the case for PostScript 
interpreters. 

Another area of related work is the declarative description of graphics using constraint- 
based systems [Knu79, vW82, Hob94, HN94]. Through the use of constraints, relationships 
between components of a picture can be expressed declaratively. Prior to actually drawing 

a picture, the constraints between the different parts of the picture have to be satisfied. 
Whether the extra generality and flexibility that these constraint-based systems offer com- 
pared to the Picture data type is worth the additional overhead of solving and maintaining 
these relationships, is an open question. 

2.12 Concluding remarks 

We have in this chapter presented a simple model for describing two dimensional structured 

graphics within a functional language. The Picture type provides the primitives and basic 

combining forms for building graphical scenes through composition. As an example of the 

Picture model in action, a set of basic graph drawing combinators were developed on top 

of the model. 
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Chapter 3 

Exploring the design space 

A design often ends up being the result of repeated attempts at finding the Right Solution. 

Through the exploration of the available design space, the relative advantages and disad- 

vantages of the alternative choices are evaluated, before settling on a solution that overall 
is the most satisfactory design. The user interface framework presented in this thesis is 

no exception to this pattern. Multiple programming models and graphical user interface 

representations were tried out, before finally arriving at the system that is presented in the 

next chapter. 

To set the scene and properly motivate the reasons for opting for the framework presented in 

the next chapter, we discuss some of the important design choices that need to be addressed. 
In the process of doing this we review relevant related work, examining the properties of 

the programming models they present to the user interface programmer. 

3.1 The callback model 

Programming a graphical user interface application imposes a different way of thinking 

about and structuring your applications compared to programs that engage in conventional 
file or terminal 1/0. The application presents a graphical interactive surface to the user, 

which is used to interact and control the application and its progress. The interaction is 

mostly non-modal, 'i. e., the user may arbitrarily interleave work between the different tasks 

that an interface presents, and the application has to obey and update itself accordingly. 
The non-modality forces the,, application to take on a servant's role, appropriately (and 

quickly) responding to eventsl describing actions performed by the user. 

One way to support this style of programming in an imperative programming language, 

such as C or Pascal, is to repeatedly fetch events from the outside and use a big switch 

39 
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statement to decide what action to take: 

eventLoopo 
f 
Event ev; 

do f 

ev - GetNextEvento; 

switch(ev) 
case BUTTON-DOWN: 

pt = GetEvCoords(ev); 
/* Use pt to interpret button event 
break; 

case REPAINT: 
Redrawo; 
break; 

/* and so on 
I 

while(l); 
I 

The application is centred around an event loop which receives and interprets the incoming 

events, keeping up with the user's actions. The application is forced to deal with a lot of 
details, receiving a continual stream of low-level user action events that it has to map back 
into actions meaningful to the application, e. g., a mouse button press could, depending on 
its coordinates, be interpreted as a click on a start button to reload a document, or the 

start of a dragging action. 

In addition to events representing user actions on input devices, the event loop also has 

to handle events and commands regarding the management of the graphical surface being 
displayed, events that are not of direct interest to the application. 

The event loop is the basic programming model provided by the X Window system's [SG92] 
C interface binding, Xlib, and Microsoft Windows window message queues [PR96]. It offers 
great control on how to interpret and deal with all events, albeit at a low level. 

To abstract away from the details of the different system events and concentrate on events 
that are directly relevant to the application, the event loop model can be refined. Instead 

of having the programmer implement the event loop from scratch, allow the application to 

plug in procedures that a library-provided event loop will invoke when a specified condition 
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has occurred. A primitive form of this is the message crackers used by Windows programs 
[PR96], where application-specific procedures can easily be plugged into the event loop to 
handle certain classes of events. 

More commonly, user interface systems or toolkits, provide a set of standard, pre-packaged 

controls or widgets that implement common user interface elements, e. g., text input fields, 

scrollbars, buttons etc. These controls take care of plugging into a system event loop, hiding 
it from the view of the programmer. To use instances of these controls in an application, 
one or more callback procedures have to be specified: 

char str[801; 

void incButton(void *st, Button *b) 
f 

*(int *)st = *(int *)st + 1; 

sscanf(str, "%d", *(int *)st); 

SetButtonText(b, str); 
I 

void counter(WContext wc) 
I 

int *state malloc(sizeof(int)); 

*state 0; 

CreateButton(wc, "O'l, state, &incButton); 
I 

The procedure CreateButton creates a push button widget, supplying its initial label to- 

gether with the callback procedure to invoke whenever the user clicks with the mouse pointer 

over the button. 

The system event loop is responsible for fetching events from the outside and interpreting 

them. When it resolves an event as representing a button click, the incButton procedure 
is invoked. It simply changes the label displayed by the button and returns control back to 

the system event loop. 

Constructing a user interface application now becomes the creation of the user interface 

components that make up the graphical surface, paxameterising them with the callback 

procedures they each should invoke. Collectively, these callbacks implement the application 

semantics and the overall behaviour of the user interface controls. Since the system event 
loop is stateless, the callbacks rely on the use of shared state to record the current state 
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of the application. When a callback is invoked, it consults the shared state to identify the 

current state of the application, acts accordingly and updates the state before returning. 

Callback procedures hide the direct handling of events from within an event loop, instead 

components from a toolkit are selected and instantiated with a callback procedure repre- 
senting a little piece of the application. 

Many windowing systems based in sequential (imperative) programming languages use this 

model, good examples are the X Intrinsics widget layer [AS90b] and Tcl/Tk [Ous94]. 

However, this model has rather serious weaknesses: 

9 Decentralised application control 

The application is spread across a number of code snippets, each of which is invoked 
by the system event loop. This makes application changes harder, as changes often 
force the modification of multiple callbacks. 

o Use of shared state 

The different callbacks communicate through shared state, each callback makes sure 
to update the state so that subsequent invocations of the callbacks will see it. 

Temporal constraints 

The event loop is in overall control of the application, handing control over to a 
callback procedure before resuming the processing of events. Hence, in order to ensure 
that the application appears responsive to user actions the callback procedure cannot 
perform too much work before returning. 

9 Little support for abstraction 

Toolkits tend to provide the programmer with a fixed set of common user interface 

controls/widgets, but do not give the programmer the ability to easily define new 
user interface abstractions. Creating new abstractions is not unsupported, but forces 
the programmer to drop down to lower levels of abstraction compared to the pro- 
gramming done when using the provided widget set. That is, the toolkits make a 
distinction between creating a user interface application and creating new user inter- 
face abstractions. 

9 Toolkit specific callbacks 

The callbacks supported and used differ between toolkits, resulting in programs that 
have to be reworked when moving from one toolkit to another. 
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Another look at the properties and weaknesses of using callback procedures to structure 
graphical user interface applications can be found in [Mye9l]. 

3.2 Object oriented user interfaces 

The callback-based widget toolkits attempt to provide a graphical user interface program- 
ming model where an application is constructed by creating a set of widgets, wiring them 
together via callback procedures. This approach runs into some problems because the 

component view of graphical user interface widgets doesn't extend to application callback 
code. The callbacks communicate with others by modifying shared application state, but 

there's little language support for controlling what components can modify what parts of 
the application state. 

Object-oriented languages provide a more natural home for this view of a graphical user 
interface. Each interactive graphical component is represented as an object that maintains 
its own state, updating it in response to input from the user and other application objects. 
However, the object oriented view also extends to other parts of the application, representing 
these as a network of objects that communicate and interact with each other. Through 

programming language support, some of the problems evident with the callback model in 

sequential, imperative programming languages are successfully addressed. 

A distinct feature of most object-oriented programming languages is the use of a class mech- 

anism to describe and structure the functionality that different objects support. Classes 

allow You to specify the interface supported by an obj 
, 
ect, giving the properties and oper- 

ations that an object has to provide to be a 'member' of that class. Different 'types' of 

objects can be related through inheritance, e. g., a coloured point class inherits all the prop- 

erties and functionality of a point class, augmenting it just with a colour attribute. Class 

inheritance helps to organise and re-use different object interfaces, specifying how different 

types of objects are related. Another benefit of inheritance is implementation re-use, a class 
declared to be a subclass of another, inherits also the implementation of the class' methods. 
This is particulaxly useful when making minor extensions to an abstraction, inheriting the 
implementation from its class, can reduce the implementation work required. 

Object-oriented graphical user interface frameworks are organised in a class hierarchy, pro- 

viding a set of user interface elements and abstractions to the programmer. Inheritance is 

used to extend the graphical representation, interactive behaviour or application semantic 

properties of more 'primitive' user interface components. For instance, the class implement- 

ing a push button could inherit from the class implementing string labels, extending it to 
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respond to mouse input. 

A recent example of an object-oriented user interface framework is the Abstract Window 
Toolkit (AWT)[GY+96], a class hierarchy provided as standard by the programming lan- 

guage Java [AG96]. Just as Smalltalk, AWT uses implementation inheritance to re-use and 
relate the different user interface abstractions. AWT provides abstractions for common user 
interface elements together with containers for arranging collections of them together. The 
framework is abstract in the sense that AWT defines the architecture and protocol for how 

components interact with each other in a platform independent manner. An implementa- 
tion of AWT on a particular platform can bind the user interface elements to whatever is 

convenient or common there. 

AWT also makes u, se of Java's interfaces, abstract classes that just specify the functionality 

an object should support, not its implementation. In AWT, for instance, the functionality 

of objects that control the layout and placement of a set of objects is specified through an 
interface. Interfaces can also be inherited, so the interface for layout containers that tile 
their objects would inherit from the general layout interface. 

As an example of AWT in use, Figure 3.1 shows the implementation of a counter button. 
Whenever the button is clicked, AWT invokes the action method of a button, so to have 

the button increment its label value when it is clicked, we create a new class IncButton. It 
inherits from the standard button class, overriding its implementation of action to provide 
the desired behaviour. Apart from action, IncButton reuses the implementation of all the 

methods it inherits., 

Compared to the callback model of the previous section, an object-oriented solution, as 
represented by AWT here, has a number of advantages: 

* The management and access to the counter state is encapsulated within instances of 
the IncButton. 

Implementation inheritance is particularly useful here, requiring the specialisation of 
a single method to implement the counter button. Implementation inheritance makes 
incremental extensions or specialisations of an abstraction relatively straightforward, 
provided the interface of the class has enough functionality to support the change, of 
course. For instance, consider the task of creating a counter button that displayed the 
current number using Roman numerals instead. Since the Button class in Java does 

not provide any direct functionality for having arbitrary graphics as a button's label, 

making such an extension would be non-trivial compared to the implementation of 
IncButton. That is, code re-use through implementation inheritance doesn't come 
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import java. awt. *; 

public class IncButton extends java. awt. Button 

int count = 0; 

IncButtono f 

super(String. value0f(O)); 
I- 

public boolean action(Event ev, Object what) 
if (ev. id == Event. ACTIDN_EVENT) 

count = count + 1; 
this. setButtonText(String. value0f(count)); 
return true; 

else f 

return (super. handleEvent(ev)); 
I 

I 
I 

Figure 3.1 A counter button in Java/AWT. 

for free; classes have to be designed with it in mind. 

User interface elements such as labels, scrollbars and buttons are the primitives out of 

which we can build more user interface applications. However, applications often require 
higher-level support to provide their interactive, graphical surface. For instance, a common 

application pattern is to present some data to the user, which perhaps can also be edited. 
To help maintain the consistency between the application's data and the user's view of it, 

most object-oriented user interface systems provide specific support for this. An object 

can register its interest in changes to another, asking to be notified whenever it changes 

state. The archetypical example of this is the Model-View-Controller (MVC) provided by 

most implementations of Smalltalk [KP88]. The model maintains the abstract data that 

the view will map to some graphical representation, while the controller is responsible for 

relating user interaction on the view back to changes to its model. Apart from its usefulness, 
MVC offers the programmer higher-level glue for connecting together application and user 
interface. 

An example of a system that takes the provision of higher-level application patterns such 

as MVC, further is ET++[NVG94], an object-oriented application framework implemented 
i in the language C++. On top of a standard collection of user interface elements, ET++ 
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Figure 3.2 Functional user interface representations. 

provide frameworks that help in implementing certain classes of applications. For instance, 

one ET++ framework is targeted at browsers, providing the skeleton and infrastructure 

needed to display and manipulate a hierarchical data structure like a file system, say. ET++ 

was originally based on MacApp[Sch86]. Another system that puts extra emphasis on 
providing higher-level user interface abstractions or frameworks is InterViews[LVC89]. 

3.3 Functional user interface representations 

The underlying programming language naturally plays an important part when designing 

a graphical user interface framework. The need to resort to callback procedures and shared 
state to fit the application in around the event loop in a sequential, procedural language, 
has a strong influence on the final solution. Similarly with object-oriented languages and 
the features they provide. 

One emphasis of the object-oriented system Interviews [LVC89] was its use of composition to 
build user interfaces. Starting with a set of basic building blocks, a user interface application 
is constructed by piecing these together. Central to functional programming languages is 

also the use of composition to build bigger parts from smaller, so what would a compositional 
user interface framework in a lazy functional programming language look like? 

A number of graphical user interface systems based in functional languages have already 
been suggested and implemented [GR92, CH93, NR95, Ach96, VTS96]. To better under- 
stand the issues that a functional user interface system has to satisfactorily address, this 
section works through a number of the different solutions that have been proposed and 
discusses their relative advantages and disadvantages. 
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3.3.1 A road map 

To help structure the discussion on the various functional user interface representations, 
Figure 3.2 shows a roadmap. Starting from the left, we start by looking at representing the 

user interface using algebraic data types, and then working our way through a gamut of 
representations. 

3.4 The user interface as a value 

A natural starting point when deciding to use a functional language to program user in- 

terface applications is to model it on how external, mainstream systems do it. As we've 
seen, the prevalent way of writing graphical user interface applications is centred around 
the representation of a user interface component as an object. To create a slider, say, you 
instance an object representing it. To attach interpretation (other than the visual) to the 

movement of the slider thumb, the slider object allows you to attach callbacks/action pro- 

cedures. The slider object then invokes the callback function each time the user moves 
the slider thumb. So if you wanted to use the slider to navigate through a document, the 

callback you'd register with the slider would synchronise, the document display view with 
the relative position of the slider thumb. 

User interface programming then consists of creating and configuring the network of objects 
in your application before handing it over to a centralised system control. The system will 
then repeatedly fetch events from the window system and forward them to the network of 

user interface objects. The state of the application is distributed among the objects, and 
they will in response to the incoming event messages update their state accordingly. For 

instance, if the event from the underlying window system signalled that the user has moved 
the slider thumb, the slider object updates its state to 

' record the new thumb position before 

invoking any of its callback functions to notify the application of the change in state. 

One way of mimicking this style of user interface programming in a functional language is 

to represent the user interface object as a data value, Widget: 

data Widget = 

Values of type Widget are returned by functions that create the different types of user 
interface elements supported. The signature for the function that creates a push button 

might be: 

button :: Picture -> a -> (a -> 10 ()) -> Widget 
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The first two parameters to button specify the label to decorate the button withl, and 
what value the instance should report when it has been clicked. The third argument is the 

callback action the button instance should invoke each time the button is clicked. button 

returns a value of type Widget representing the new instance. 

A Widget value represent a user interface 'thing', a generic value that can be used to describe 
the physical layout of multiple components through the use of functions such as box: 

box :: [Widget] -> Widget 

The box combinator takes a list of Widgets and returns a new component that arranges 
the contained components horizontally, say. 

Note that a Widget value does not reflect in its type what kind of component it is. But 
for describing the physical layout of a user interface this does not matter, as the layout 

combinators are only interested in generic properties of a user interface component such as 
its size, position etc. 

This is similar to th6 model used by Clean[AP94], where algebraic data types are used 
to encode a large collection of standard, user interface components. Data constructors 
representing common user interface components are applied to the callback functions and 
attributes that control the particular behaviour and look of the component. In the Clean 

system, the callback functions have different type signatures to the one given above, each 
callback is passed as argument the state of the user interface and application, which it then 

can modify and return. - 
The Clean system takes care of cI onverting values of the user interface data type into actual 
graphical user applications, translating the data structures corresponding to Widget by 

constructing corresponding UI component instances from some external widget library. The 

collection of user interface components created is then handed over to a centralised event 
dispatch loop, which takes care of forwarding window system events and perhaps invoke a 
callback function for a component to update the application state. This approach has its 

advantages: 

To the (functional) programmer, describing a user interface by just creating a value 
of some algebraic data type, is familiar and intuitive. One good example of this is the 
use of data types to declare the structure of a pull-down menu: 

'To avoid mixing in the issue of how labels and graphical output in general are described by different 
systems, we use the abstract type Picture consistently for all the different systems to represent graphical 
objects. 
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f_menu :: Widget 

-menu = 
Menu (Option "New.. " - New, 

Option "Open File" 
Option "Save" 
Option "Save As.. " 
Separator, 
Option "Print.. " 
Separator, 
Option "Exit" 

Open, 
Save, 
SaveAs, 

Print, 

Exit] 

This is clear and very much to the point, the menu is just a list of options partitioned 
into groups using separators. 

If the intention is to provide a mapping to some external user interface library, the use 

of algebraic data types offers a good fit, as graphical user interface toolkits provide 

a boxed set of standard GUI abstractions. With care, the data type can be used 

with different window systems. The Clean system, for instance, maps the widget data 

structures down to the standard GUI library on the platform you're working on. 

However, a representation based on graphical user interface components being purely func- 

tional values, has some serious drawbacks: 

Using algebraic data types, the constructors tend to quickly become burdened with a 
lot of arguments for controlling every possible property configurable for the compo- 

nent. When creating instances of a component, like the pull-down menu above, the 
initial simplicity tends to get lost as you have to decorate the constructors with a lot 

of default values. 

One way around this is to introduce abstractions that hide the data constructors for 

the different components and all their arguments, plus perhaps a bunch of combinators 
(a monad, say) to take care of basic book-keeping. But the initial simplicity and 
familiarity of just using data constructors would be lost here. 

Writing the graphical user interface application now roughly becomes the construc- 

tion and filling in of a data structure describing its physical layout. This style mimics 

mainstream practice of using callbacks to connect components together, and sub- 

scribes to the belief ý that graphical user interface programming has to be centred 

around an event dispatch loop. As a result, the application is partitioned up into a 

set of callback functions that act on state that encodes the application. 
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Ignoring the issue of whether a state-based approach like this is how you would ideally 

want to express a graphical user interface application in a functional language, there's 

a more serious side to a programming model based on callback functions. The user 
interface suddenly takes control over the application and how you express it, requiring 
the application to be shoe horned to fit into the 'stateful bowl of spaghetti' that is 
the event dispatch Ioop we discussed in Section 3.1. 

In the case of the Clean, one obvious problem 
' 
is the use of a shared global state for the 

whole application. This problem has to some extent been addressed in later versions 
of the Clean system where user interface components can have private state [Ach96]. 

Callbacks provide a way of letting the user interface call upon the application, but it 
does not address the inverse problem of how the application can reference and affect 
parts of the user interface from within the callback functions. To give an example of 
this, consider the counter example consisting of a push button and a label displaying 
the number of, times the button has been clicked. The callback for the button will 
cause the label to update its display, but how do we refer to the label? In an object- 
oriented system, the callback would just use the object reference for the label and 
forward a message that will cause the label to update itself. With algebraic data 
types, there is no way to reference a data constructor, so to solve this problem, the 
Clean system requires the programmer to annotate each constructor with a unique 
id. Apart from burdening the programmer with the generation and book-keeping of 
unique identifiers, this scheme is not type-safe - how do you know the operation on 
'the unique identifier of a component is supported? Earlier work by Dwelly[Dwe89] 

suffered from this same problem. 

Algebraic data types with separate constructors for each component supported is 

not easily extensible. With the range of components fixed in the definition of the 
type, there is no way of creating new abstractions. This may not be of concern if 

you're just interested in providing a mapping to some external widget library, but 
the development of a user interface application often requires the creation of special- 
purpose abstractions, which is not fully supported using an algebraic data type. 

3.5 Adding component identity 

The direct use of an algebraic data type to represent different user interface elements runs 
into several problems, a major one being that there is no direct way for the application 
to refer to other components. For instance, if the callback procedure attached to a push 
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button is intended to cause the data displayed by another component to be updated, the 

callback needs to be able to refer to it. The Clean system solves this problem by requiring 
the programmer to label all constructors of the user interface element data type with a 

unique identifier. The callback routines can then use these unique identifiers to update and 

affect specific paxts of a user interface. 

Instead of using an algebraic data type and forcing the programmer decoration of its con- 

structors with unique identifiers, let's instead represent the various user interface elements 

as abstract types. For instance, the type signature for the function that creates a push 
button could be: 

button :: Picture -> 10 () -> 10 Button 

The button is an 10 action that needs to be supplied with its initial label and a callback 

action to invoke when that happens. It returns a value of type Button, a handle. A handle is 

an explicit reference to the instance of the object, in the case of button the handle returned 

can be used to alter the button's physical properties, e. g., size, position, look etc.: 

setLabel Button Picture JO 

setFg Button Colour JO 

setBg Button Colour ->'Io 

enable Button ID 

disable Button 10 

Given a button handle to operate on, the above actions change various graphical display 

properties. For example, setLabel replaces the current picture label of the button, while 
disable makes the button become unresponsive to user actions, and greys out the button's 

label to indicate so. 

Each type of user interface element would have operations similar to that of button, but 

all of them would return a handle to the instance of the user interface element created. 
For instance, the action for creating a component displaying a string label would return a 
handle that supported a set of operations similar to that of a button. Both handles would 
have operations for changing colours and setting the label etc. To avoid having to give all 

these handle operations unique names, e. g., setButtonLabel and setLabelLabel, we can 

make use of Haskell's qualified names. If needed, each handle operation is prefixed with the 

type of the handle (which coincides with the module name): 

Label. label String 10 Label 

Label. setLabel Label String -> jo 
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sample 10 

sample do 

lab <- Label. label "Start" 

btn <- Button. button (text "Do") 

,, 
(Label. setLabel lab "Done") 

Button. setFg btn blue 

Label. setFg lab blue 

The use of qualified names here requires the programmer to be explicit about what type 

of handle is being accessed and modified, which is not necessarily a Bad Thing. However$ 

representing each user interface element by a separate handle type becomes a burden when 
we want to use the handles to arrange the layout of the components. The best we can 
do is to have a layout function for arranging components with the same handle type. For 

example: 

box :: [Button] -> 10 Button 

This is clearly not desirable; what is really needed here is to be able to relate the different 
handle types, so that we can combine the presentation of them. 

3.5.1 Using type classes 

The. use of qualified names forces the programmer to be explicit about the kind of handle 
being manipulated, even for operations that apply to all user interface components, e. g., 
setting the background colour. To try to relate the different handles, Haskell's type classes 
can be used to introduce operations that are overloaded to work over all kinds of user 
interface components. Here's one possible set of classes for capturing some of the different 
types of handle operations: 

class Widget a where 
resize a Size2 ID 

move a Coord2 10 

getSize a 10 Size2 

quit a 10 () 

setFg a Colour 10 

setBg a Colour 10 
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class Widget a => Display a where 

setLabel :: a -> Picture -> Jo 

getLabel :: a -> 10 Picture 

class Display a => Iactive a where 

enable a 10 

disable a 10 

The Widget type class has all the base operations supported for user interface components, 

such as moving, resizing etc. A slight extension of that type class is Display which in 

addition to the Widget operations, defines operations for setting and getting the picture 
label on a Display instance. The Iactive class extends this further and defines operations 
for enabling and disabling the interaction state of a user interface component. 

For a component like the push button, we now need to declare the appropriate instances 

for it: 

button :: Picture 10 10 Button 

instance Widget Button where 

instance Display Button where 

instance Iactive Button where 

ýI 
With the definition of these instances for the Button type and similarly for the Label 

handle, the handles can now be operated on using the overloaded names: 

sample = do 

lab <- label (text "Start") 

btn <- button (text "Do") action 

setFg btn blue 

setF9 lab blue 

However, Haskell's type classes do enforce certain constraints on their use. For instance, 

the following code is not legal: 

sample = do 

lab <- label (text "Start") 

btn <- button (text "Do") action 

map (\x -> setFg X blue) [btn, lab] 
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Grouping together instances of one type class in a list is not allowed by the Haskell type 

system (unless they all happen to be of the same type, of course). The type Widget a => 
[a] does not represent a list of widget instances, but rather a list of a particular Widget 
instance. For our purposes, this limits the usefulness of type classes since we cannot express 

a simple layout combinator such as: 

hbox :: Widget a => [a] -> Box 

and expect to use it for heterogeneous collections of Widgets. For example, the application 
hbox [lab, btnl is unfortunately not well typed. Of course, you could explicitly coerce 

each Widget instance to be of the same instance type when building the list: 

boxer ::: Widget a -> a -> BoxElt 

instance Widget BoxElt where f.. ) 

beside lab btn ='hbox [boxer lab, boxer btn] 

but this just provides the programmer with functionality to work around the problem, 
requiring the explicit insertion of type coercion functions such as boxer in the right place. 

The Embracing Windows[Tay96] and TkGofer[VTS96] systems make use of type classes 

quite extensively to structure their window system interfaces. The TkGofer system suffers 
from the above limitation, so some of its layout combinators only allow you to arrange 
components of the same instance (e. g., the matrix combinator). Instead, TkGofer primarily 
relies on the use of layout functions of the form: 

above, beside :: (Widget a, Widget b) => a -> b -> Box 

i. e., binary layout functions that group pairs of components together. Arrangement of 
multiple components is then done by repeated applications of these binary operators. 

The Embracing Windows[Tay96] run into similar problems, indeed the type class hierarchy 
introduced for Controls in Chapter 2, is avoided completely when introducing abstractions 
for expressing layout combinators over them in Chapter 3. 

Using type classes is definitely an improvement over having separate types of handles for 

the different user interface components. However, type classes are not as expressive as one 

might have hoped for, which restricts their overall usefulness. 

The handles introduced in this section allow the application to affect user interface com- 
ponents through typed, explicit references. The handles are however only used to commu- 
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nicate from the application to the-user interface component; the communication the other 
way from the user interface to the application is still done through callback functions, e. g., 
the 10 action argument to button. Hence, the inherent problems of a callback-based model 
discussed in Section 3.1 is still present. 

3.6 Making communication implicit 

To summarise briefly, the functional representations based on algebraic data types and 
abstract handle types 

, 
have problems arranging the explicit communication between user 

interface elements and the underlying application code. 

One approach to solving these problems is simply not to make communication explicit, but 
instead handle input and output between components in a more functional manner. That 
is, inputs to a user interface element are just arguments to the function representing it, and 

outputs to others are part of the result that the function returns. Instead of representing 

a component as an object that the event loop can notify and update through its callback 
functions, what if we view the events destined for a component as a stream of input values? 
A user interface component is a stream processor which consumes window system events on, 
its input stream, and produces in return a stream of window system commands: 

type Component = [Event] -> [Command] 

This component definition is similar to the Dialogue type used in earlier 1/0 models in 

Haskell[H+92], accepting user events as input and outputting a stream of commands to the 

underlying window system. The evaluation of a Component applied to its input event stream 
is demand-driven. When its result stream is evaluated, it will in turn force the Component 

to demand and process the events sent to it by the window system. This is identical to 

what would happen in Haskell when you try to print ups in the following example: 

main 
let 

ls 

ups map toUpper ls 

in 

print ups 

Here, the print action forces the evaluation of ups in order to print the list of characters, 
which in turn will force the evaluation of is. 
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However, treating a user interface application as just a stream processor from window 

system events to commands is not modularAn particular, components must communicate 

with each other as well as the window system. To accommodate the interaction of values 

other than window system specific data, another pair of, streams could be added to the 

representation for a component: 

type Component ab= [a] -> [Event] -> (Ebl, [Commandl) 

In addition to the window system input and output streams from the previous version, 
Component now takes an extra input stream as argument carrying input from another 

component. This input stream would emanate from the extra output stream that the 
Component returns. For instance, the type of a push button component would now be: 

button :: String -> Component () Click 

Given the label name, button returns a component that every time the user clicks the 
button, will output a value of type Click on its result stream. 2 

This type of Component is essentially the representation of a user interface component used 
by Fudgets [CH93], where all user interface components have a pair of input and output 
streams. A component, called a Fudget in their system, will in response to input from 

either the application or the window system, output values on the application or window 
system output stream (or both). 

To construct complete applications, Fudget values can be joined up to create bigger ones 
using combinators; as an example, Figure 3.3 shows the implementation of a counter using 
Fudgets. 

A fudget is represented by the F type, parameterised over the values communicated on its 
input and output streams, just like Component. The SP type is used to represent abstract 
fudgets, or stream processors, components with no user interface part. Conceptually, it is 
defined as follows: 

type SP ab= [a] -> [b] 

Returning to the counter example, the counter fudget is built by connecting a push button 

to a fudget displaying the number of times the button has been clicked. The fudgets are 
connected up in-series using the (>==<) function, with the output stream of the button 
being connected to the display fudget's input stream. To get the counting behaviour, an 

2 The type definition given for Component here is its conceptual type. When implemented, the pair of input 
streams would have to be merged in order to make the component deterministic and cheaper to implement. 
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button String F () Click 

absF SP abFab 
intDispF F Int 
(>==<) FabFbc -> Fac 

mapAccumlSP :: (a b -> (a, c)) -> a -> SP bc 

counter F 

counter 
button, "Inc" >==< countF >==< intDispF 

countF Fa Int 

countF 
absF counterSP 
where 

counterSP = mapAccumlSP inc 0 

inc n-= let n' = n+1 in (n', n') 

Figure 3.3 The Fudgets counter 

abstract fudget (countF) is'interpos6d between button and display. It converts a sequence 

of button clicks into a stream of increasing number values - the details of how this is done 

are not important here. 

The (>==<) function is one example of a fudget combinator, an operation which creates new 
fudget values by combining together existing ones. 

Through the representation of a UI component as a pair of input and output streams, Fud- 

gets avoid the problem encountered with the callback-based representations of the previous 

section, i. e., how does the button's callback affect the label displaying the counter value? 
By using operations, or combinators, that sets up the streams of communication between 

the different components/fudgets, the components communicate and affect each other im- 

plicitly. Using streams also avoids the need to explicitly modify the application's state. 
An example of this the definition of countF in Figure 3.3, which implements the stateful 

counting behaviour through the use of an accumulating parameter to hold the current value. 
Encoding state this way has the, benefit that the state is local, and therefore not accessible, 

nor modifiable, by anything other than the stream processor itself. 

However, avoiding the use of explicit references and relying on implicit communication 
between components through streams instead is not without its problems: 
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Parameterising a user interface component over the type of elements transmitted on 
its input and output streams has consequences for the range of combinators that can 
be expressed. A layout combinator such as box has quite restrictive type: 

boxF :: [F a bl -> F (Int, a) (Int, b) 

as the type of both input and output streams have to agree for 'all the fudgets that 
are arranged by boxF. The coupling of the'application part of a component, (Le., ' the 
types of the input and output stream, ) with the user interface side is too strong: the 
layout of the interface dictates how applications streams are plumbed together. By 
definition, the user interface part of a fudget is inseparable from its application part. 

In some cases, fudget programs need to introduce what effectively amounts to explicit 
references themselves. For instance, a fudget that has to communicate with a number 
of other fudgets, ends up having types like the following: 3 

bigF :: F aý(b+b+c) 

That is, the fudget has to internally tag the output to address it to the right recipient. 
This tagging of messages is necessary because fudgets are restricted to having just one 
output stream. Messages can often be tagged on-the-fly via combinators, but apart 
from the run-time overhead of constructing and taking apart of tagged messages, the 
use of one output stream makes it hard to see what and where a fudget is sending its 
output values. 

Just as the callback model forces us to program in a certain style, Fudgets requires 
the application to be expressed as a network of stream processors. For an example 
like the counter, this is very natural, but it is unclear how well Fudgets can be blended 

with the (now'standard) method of expressing 1/0 with the abstract 10 action type. 

3.7 Explicit two-way communication 

With the exception of Fudgets,, the representations we've considered so far have made use of 
callback routinesý to hook the application into the user interface. As discussed in Section 3.1, 
the callback model has its structuring problems. Using a stream-based representation is one 
way to avoid the use of a callback model and many of its problems, but, as we saw in the 
previous section, that, introduces new ones. 

3 The use of (+) in the output type for the fudget indicates a sum type. 
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Another way of getting away from the dominance of the event loop is instead to have the 

user interface and application communicate with each other on typed channels. An example 

of a system that does this is the Gadgets[Nob96] system. With Gadgets, a user interface 

application consists of a set of components that communicate on wires, uni-directional 

channels that have a write end (called the output port) and a read end (the input port). 
The Gadgets type signature for a push button is: 

button :: Picture -> a -> OutPort a -> Gadget 

The button component constructor receives as one of its arguments an output port. The 

button uses this port to emit a value whenever the user clicks the button. 

The Gadgets wire communications operations are: 

newWire (Wire a Gadget) -> Gadget 

outport Wire a (OutPort a Gadget) Gadget 

inport Wire a (InPort a Gadget) Gadget 

tx (OutPort aa Gadget) Gadget transmit 

rx [(InPort aa Gadget)] Gadget receive 

To communicate on a wire, its read or write end has to be selected first using the operators 
inport and outport. 

A consequence of introducing a communication abstraction like a wire as the primary means 

of interaction between user interface elements and the application, is that it relies on some 

notion of a process. The callback model is sequential. Driven by the event loop, an ap- 

plication is repeatedly notified of the occurrence of window system events by invoking its 

callback routines. With the use of channels or ports, the writing of a value into an OutPort 

must somehow cause readers at the other end of the wire to run (or become runnable). 
Similarly, when the actions that listen for button clicks on an InPort are executed, the 

whole application should not block waiting. Instead, you need the ability to create multiple 

evaluation contexts or processes, each of which may engage in communication with others 

on the wires. In Gadgets, new processes are created with the spawn primitive: 4 

spawn :: Gadget -> Gadget -> Gadget 

spawn creates a new evaluation context to concurrently evaluate the first Gadget argument, 

while continuing to work on the second. 

4 This type signature is only approximately correct, a Gadget is just an instance of the more general 
Component type. 
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Before presenting the counter example in Gadgets, it is worth introducing the programming 
style used. Gadget programs are written using a continuation-passing style of programming 

- each operation takes an additional function argument to which its result should be applied. 
For instance; addition would be expressed as follows using continuations: 

plus :: Int -> Int -> (Int -> a) -> a 

plus ab cont = cont (a+b) 

The continuation argument is applied, passing it the sum of the first two arguments. The 

result returned from plus is the type of the value returned from the continuation. An 
important operator whenprogramming with continuations in Haskell is the right-associative 
infix application operator: 

($) :: 

It avoids the excessive use of paxentheses when nesting the applications of -continuations: 

times3 :: Int -: ý-'Int--> (Int -> a) -> a 
times3 ab cont =" 

plus ab$ 
plus ab$ 
plus ab cont 

One programmer benefit of using a continuation-passing style is that it makes the order in 

which operations are performed cleax. 

Returning to Gadgets, ' here's how the counter example could be expressed: 5 

counter Gadget 

counter 

wire $ wirel 

wire $ wire2 
let 

btn = button "Inc" (outport wirel) (+J) 

lab - label "0', Unport wire2) 

in 
spawn (count 0 Unport wirel) (outport wire2)) 

(btn <-> lab) -- lay them out side by side. 
'sThe example code ignores the restrictions Gadgets places on communication on wires and how graphical 

output is expressed, but the programming structure remains intact. 
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where 

count :: Int 

-> InPort (Int -> Int) 

OutPort String 

Gadget 

count nio= 

rx [f rom i$ 

let n' =fn in 

tx op (show n') 

count n' i o] 

The counter Gadget creates three components that communicate on a pair of wires, wirei 

and wirel Both the label and button have a process attached to them (the actual spawning 
is done inside their constructor functions), and the counting behaviour is implemented by a 

separate process. It will in response to input received on the wire, compute a new counter 

value, and output it on the wire which the label is listening to. 

Having explicit communication channels between components solves some of the problems 

of previous representations: 

Through the use of typed channels and concurrency, the limitations and constraints 
imposed by the callback model is overcome. Each process created takes care of small, 

well-defined tasks (e. g., the accumulation of the counter state) and execute indepen- 

dently of other the event dispatch loop and other processes in the system. 

The plumbing problems experienced with Fudgets is addressed through the use of 

multiple, explicit channels between components. In Gadgets, some implementation 

restrictions axe imposed on how you create and access these channels, but the overall 

result is a more modular description of a graphical user interface. That is, the de- 

scription of the user interface is not as intimately tied up to wiring of the application 
(and vice versa), as, the descriptions of the two are separated from each other. 

The use of typed channels does not solve all the problems that-untyped handles introduced 

though. For instance, usable abstractions for components like push buttons or labels may 

need the ability to dynamically modify their appearance at run-time. To accommodate this, 

an extra configuration InPort could be added to their constructor functions: 

labelPlus :: String InPort LabelCmd -> Gadget 

buttonPlus :: String a -> OutPort aIt 
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-> InPort ButtonCmd -> Gadget 

These are (imaginary) Gadget abstractions that allow you to configure the appearance of a 
label and button dynamically through an InPort. The set of commands on the label and 
push button are defined using data types: 

data LabelCmd = LabelJustify Justify I LabelEnable 

data ButtonCmd = ButtonFg Colour I ButtonEnable I ... 

i. e., we end up creating a set of data types with constructors that achieve the same thing, 
both the label and button have constructors in their command data type to change their 

colours, for instance. To avoid the redundancy and the introduction of a collection of rather 
special-purpose data types, type classes. could be put to use (similar to what was done in 
Section 3.5.1), the type classes being defined over different types of ports/channels: 

class Port p => InPort p where 

get :: pa -> (a -> Gadget) -> Gadget 

class InPort p => Label p where 

setFg ::. p Colour -> Gadget -> Gadget 

setBg ::... 

class Label, p => ButtonPort p where 

enable :: p -> Gadget -> Gadget 

This reduces and structures the namespace for operations on the ports for the different 
Gadgets, but the use of type classes suffers from the same problems as the previous use 
did, see Section 3.5.1. ` 

The signature for components such as buttonPlus end up having separate ports for the 
input and output to the component, so it makes good sense to group these two together, as 
is done with Duplex in Gadgets, to create a higher-level communication abstraction than 
the basic one-directional channels used in Gadgets. 

Other systems based on the use of channels as the primary communication medium between 

application and user interface is eXene[GR92] and the Pict[PRT93] widget libraries, both of 
which use Concurrent ML events, or, in the case of Pict, similar concurrency abstractions 
to build higher level abstractions such as channels. 
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The use of explicit concurrency together with channels or wires as the basic communication 

abstraction frees the programmer from the event loop. However, channels provide just 

the primitive mechanism for building grapical user interfaces. Higher-level communication 

abstractions are required. 

3.8 Summary 

We have in this chapter considered a range possible programming representations for a 

user interface component, concentrating on the design alternatives available when using a 
functional language. The representation discussed in the last section had a number of ad- 

vantages over earlier alternatives. However, the use of channels as the main communication 

abstraction between components. made it inconvenient to program the interaction between 

them. The next chapter presents a programming model that builds on the ideas in this 

chapter, introducing a representation where a user interface component is a virtual I10 

device. 
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Chapter 

virtual 1/0 device model 

Graphical user interface programming has gained a reputation for being uncompromising on 
the application. A graphical user interface toolkit often predetermines how an application 
has to be built into the user interface and its control structures. One notorious example 

of this is how the centralised event loop model of Section 3.1 force the application to be 

broken up and distributed into a set of callback procedures. 

Instead of focusing on the needs of the user interface and later start worrying about how 

we can fit the code that will be using the user interface elements into them, let's turn the 

tables: What is a convenient. and flexible way for non-user interface code to interact with 

the collection of components that make up the user interface? 

The previous chapter looked at a number of different user interface representations and com- 

pared their relative advantages and disadvantages. Towards the end, a representation that 

emerged as promising and unexplored was one based on the use of processes and explicit, 
high level, communication between user interface components. This chapter introduces a 

user interface representation which treats the user interface component as a virtual I10 de- 

vice. It builds on the experiences made with expressing 1/0 in Haskell, so before introducing 

the user interface model, the next section introduces how to program 1/0 in Haskell. 

4.1 Programming 1/0 with actions 

Before considering how to represent a user interface component as a virtual 1/0 device, 

it is important that we understand how 1/0 is currently programmed in the underlying 
language, Haskell. 

In Haskell, you express interaction with the outside world by a series of 1/0 actions. An 

65 
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1/0 action is represented by a value of type 10 a, that, when performed, may interact and 
affect the outside world before returning a value of type a. For instance, the Haskell prelude 
library provides a pair of actions for reading and writing characters to and from standard 
input and output: 

getChar 10 Char 

putChar Char -> 10 

getChar is an action'that, when performed, reads, the next character from the standard 
input and returns it. Similarly, putCha'r is a function that will output the character it is 

given as argument to standard output, before returning. ' 

ID actions can be sequenced together to build bigger ones. For instance, the composite 
action echo first reads a character and then echoes it: 

echo :: 10 0- 

echo, = do 

ch <- getChar 

putChar ch 

The first line performs the getChar action and binds the character it returns to ch. The 

scope of this variable extends to the end of the echo action, so putChar uses it to output 
the character just read. The echo is now a building block that can be used to build more 
complex 1/0 actions. 

,-ý,, 

4.1.1 Handling 1/0 

To manipUlate the contents of files Haskell provides an action for opening files: 

openFile Fileýath FileMode -> 10 Handle 

Given a filename and an access mode, e. g., for reading or writing, openFile tries to open 
the file. Should openFile succeed it returns a handle to the opened file. 2 The handle is the 
programmer's interface to the opened file, and all access to the file is mediated through it. 
For instance, operations such as hGetChar and hPutChar take the handle to perform 1/0 

on as an argument: 

'The unit type, represented by 0, indicates that the putChar action doesn't return any value of interest. 
21f the attempt to open the file fails for some reason, an exception is flagged. See Appendix B for how 

exceptions can be caught and handled. 
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hGetChar :: Handle -> 10 Char 

hPutChar :: Handle -> Char -> 10 () 

Assuming the handle has been opened for reading, hGetChar returns the next character 
from the file; similarly hPutChar writes a character. Using these handle operations, here is 
an example of an action that copies the contents of a file: 3 

I 

copyFile :: FilePath -> FilePath 7> 10 () 

copyFile from to = do 

hTo <- openFile to WriteMode 

hFrom. <- openFile from ReadMode 

copyBytes hFrom hTo 

'catch' (\ err -> 
if isEOFError err, then do 

hClose hTo 
hClose hFrom 

else 
f ail err) 

where 
copyBytes hFrom hTo = do 

ch <- hGetChar hFrom 

liputChar hTo ch 

copyBytes hFrom hTo 

The workings of the copyFile action is straightforward; using a pair of handles we copy 
the contents of one file to another. This is similar to how you would express file copying in 

any imperative language, so there's nothing particularly unique about the above solution. 
The Handle type provides an abstract interface to character streams and files, which the 

application can interact with and manipulate without being concerned with how and when 
the data gets transferred to and from the underlying files. Indeed, the input 'file' that we 
copy from could be any character stream, e. g., it could be represented by a text input field 

on the user's screen. The same holds for the output file. 

13 The catch action is used to handle exceptions, see Appendix B. 
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4.1.2 Concurrency 

The file copying example above demonstrates the sequential nature of an 1/0 performing 
program: read a character from the input file, then write it to the output file, then .. etc. 
What if we wanted to change the file copying program to instead of echoing the input from 

one input handle to an output file, copy the input from any number of input handles to one 
output handle? Since the 10 actions are sequential, 'listening' and reacting to simultaneous 
input on multiple input handles is at odds with this. 

Concurrent Haskell [PJGF96] extends the Haskell 1/0 model with an operation for creating 
new processes, f orkID: 

forkIO :: 10 () -> 10 () 

A new process is created to perform the 10 action passed as argument to f orkIO, the 

evaluation of it proceeding concurrently with the process that created it. With the help of 
f orkID listening to multiple input handles is not a problem; just create processes to listen 

to them. 

The primitives and the programming model provided by Concurrent Haskell is presented in 
depth in Appendix C. 

4.1.3 Building on 10 

After considerable evolution, 1/0 in Haskell is performed using the monadic framework 

outlined in this section, where a Handle is used to identify an 1/0 device. The obvious 
question is now this: could we build a user interface framework in which graphical interface 

components ar 
-e 

virtua. 1 I10 devices - that is, they are identified by a handle, and are accessed 
through monadic actions just like 'conventional' 1/0 devices. 

tý, 

4.2 Virtual 1/0 devices 

The Handle type provides a uniform way to access any character-based device or file from 

within Haskell, representing these devices by a common abstract type. The application is 
free to interact with these devices at its own pace, and in whatever order. Extending this 

style of programming to cover devices that represent graphical user interface components 
has some interesting consequences. Just as a file is opened for reading, a graphical user 
interface could be opened or realised and a handle could be returned for the application 
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to use. The returned handle would be the medium through which the application and the 

user interface interacts. A simple example of this could be the creation of a window on 
the user's screen containing a text entry field. When this input field virtual 1/0 device is 

created, a handle representing it could be returned. The application will then use it to get 

at the string that the user (eventually) will enter. In the case of an input field, there is 

little or no difference between its handle and the handle for a text file opened for reading, 
both representing character-based input devices. 

One advantage of fitting both 'conventional' 1/0 devices and these new, virtual 1/0 devices 

into the same programming framework, is that the programmer is now able to apply the 

same programming techniques to them both. An important advantage of a handle-based 

programming view of input/output is that the application is clearly in control of the way 
in which the interaction with the outside world progresses; e. g., if the application requires 
the current value of the input field, it will ask for it, noCbefore. This is the complete 

opposite to what a callback based system would do, where user actions on the input field 

are communicated as events to the event dispatcher. The dispatcher invokes a callback 

procedure or forwards a message to an object, so that the application can update its state 
to reflect the occurrence of the event. 

A virtual 1/0 device representing a user interface component differs from a character-based 
file or device, because the type returned is often not a character. To support the creation 

of user-defined virtual 1/0 devices representing user interface components, it must also be 

easy for the programmer to create new virtual 1/0 device types/instances. 

However, there are a number of problems that needs to be addressed if the treatment of 

graphical user interfaces as virtual 1/0 devices is going to be practical for anything but 

the simplest of examples. One important problem is how the'user interface surface can still 

appear responsive to the user if the application is in control of the interaction between it 

and the user interface. Another is how can the application 'listen' to many sources of input 

simultaneously? 

These problems are addressed by the use of Concurrent Haskell introduced in Section 4.1.2, 

which provides the basic mechanisms for creating processes to simultaneously interact with 

multiple input sources. Indeed, the work on Concurrent Haskell was directly motivated 
by the need for a concurrency substrate to model graphical user interface components as 

virtual 1/0 devices. 

With concurrency support added, the question then becomes: what's a convenient program- 

ming interface to the virtual 1/0 devices representing the various graphical user interface 

components? 
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4.3 Application handles 

Using a two-way communication abstraction such as a channel as a lead, let's attempt to'' 
develop a representation of a user interface component as a virtual 1/0 device. To do this, 

we introduce application handles, handles to a user interface component that can be used by 
the programmer to interact and manipulate user interface components. A new application 
handle is created with the newAppHandle action: 

newAppHandle :: ID a -> (a -> 10 0) -> 10 (AppHandle a) 1, 

Given a receive and a send operation as arguments, the newAppHandle action returns a new 
value of type AppHandle. The application handle is parameterised over the type of values., 
that can be communicated along it. For instance, to create an AppHandle interface to a 
channel, the following would do: 

newHandle IO. (AppHandle a) 

newHandle do 

ch <- newChan 
ýewAppHandle (readChan ch) (writeChan ch) 

The AppHandle returned by newHandle contains as its receive and send operations the, 

corresponding ch annel operations. To actually receive and send values along an AppHandle, 

the AppHandle interface provides the following set of functions: 

hGet AppHandle a ID a 
hPut AppHandle-a a -> 10 

The hGet action is used for input, and hPut to output values to a handle. Their implemen-' 
tation is simple; projecting out the send and receive actions given as arguments when the 
application handle was created. 

The actions that creaýe user interface components will now return application handles repre- 
senting a newly created instance of the component. For example, the good old push button 
has the following construction action: 4 

button Picture -> a -> 10 (AppHandle a) 

'Ignoring the details of how the user interface part of the component and its interaction with the window 
system is done here. 
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With each click a value of type a will be reported on the AppHandle for the button, which 
the application can then listen to with hGet and appropriately respond to. For example, 
the counter example now becomes: 

counter :: 10 () 

counter = do 

btn <- button (text "Inc") 

lab <- label (text 11011) 

wopen (hbox [btn, labD 

forkID (count 0 btn lab) 

return 0 

where 
count n btn lab = do 

f <- hGet btn 

let n' =fn 
hPut lab (text $ show n) 

count n' btn lab 

The counter action creates the user interface components, both the label and the button 

returning application handles. The counting behaviour is implemented in almost identical 

fashion to how it was done with Gadgets. When clicks are returned from the button's 

application handle, the count loop's local state is 
, 
changed and the string label updated. 

To have the label updates happen immediately in response to a click, we create a process 
to monitor the button handle with Concurrent Haskell's f orkIO: 

forkIO :: 10 a -> 10 () 

The count loop runs in a separate process, so it is able to react and respond to button 

clicks independently from the rest of the application. 

On top of the basic send and receive operations on application handles, there are a number 

of other useful combinators that can be defined: 

hCombine (AppHandle a] -> IQ (AppHandle a) 
hFilter (a Bool) -> AppHandle a -> AppHandle a 
hMap (a b) -> (b -> a) -> AppHandle a -> AppHandle b 

The hCombine combinator is used to create a multiplexed handle, such that when values 

are received on any of the handles it is combining, they are echoed on the new handle that 

hCombine returns. This operation allows you to listen to multiple handles at the same time. 
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For example, if you added another button to the counter example for decrementing, the 

pair of button handles could then simply be combined and then the combined handle could 
then be passed to count. 

hFilter and hMap changes the view of a component, filtering what values that can be sent 

or received, or mapping the values reported on handle to a different type. 5 

Application handles do have some advantages over the representations introduced earlier, 
including the channel based representations of Gadgets[Nob96] and eXene[GR93]: 

An application handle can either be bi-directional, or moded, operations exist for 

creating uni-directional handles 

newInHandle 10 a -> 10 (AppHandle a) 

newOutHandle (a -> 10 0) -> 10 (AppHandle a) 

Note that the AppHandles created with newInHandle and newOutHandle differ from 

the ports in Gadgets, since the directionality of an AppHandle is not captured by type. 
Instead, an exception is raised if you should try to write to a read-only AppHandle. 
One reason for not using types here, is the hCombine combinator, you want to be able 
to merge handles that are both bi-directional and read-only. 

An application handle can be viewed as a polymorphic extension to the Haskell 1.3 
handles used for file and terminal 1/0, intuitively: 

type Handle = AppHandle Char 

Having an application handle be just an extension of the existing ways of expressing 
1/0, allows you to blend in and freely mix interaction with virtual 1/0 devices (i. e., 
user interface components) and interaction 'normal' devices. 6 

Operations for reading and writing to a channel works fine for 'discrete' user interface 

components such as push buttons or menus, where the 'result' of a user interaction 
(e. g., button click) will cause a value to be output on the component's application 
handle. Not all user interactions fall into this pattern though; an application using 
a slider may want to catch transient movement of the slider thumb or just want to 
be told when the thumb has been moved to d new position and released. To support 
this, AppHandles need to have a more general input operation: 

5It is somewhat unfortunate that we have to give mapping functions both ways here. 
6For this story to hold we assume that the underlying 1/0 library is multi-threaded, so, for instance, 

when a process tries to read from a handle representing a socket, say, it should not block the whole system. 
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data Transient a= Final aI Transient a 

hGetTransient :: AppHandle a -> ID (Transient a) 

Components such as sliders would then report Transient values during the period 
the thumb is moved, and a Final value when the user let the thumb go. Handles 
for discrete change components such as buttons will always report Final values. The 

hGet operation is then really just an efficient version of hGetTransient, filtering out 

any transient values and returning the next Final value it sees. 

It is sometimes useful to be able to enable or disable a user interface component. For 
instance, you want to disable the Save option in a pulldown menu until a change 
has been made to a document. This capability could easily be added to application 
handles, providing the following two operations: 

hEnable AppHandle a 10 

hDisable AppHandle a 10 

AppHandles unifies the representation of different user interface components, all components 

are represented by an abstract type encoding the common properties of an interactive user 

interface component. 

However, application handles fall a little bit short of being the ideal representation for a 

virtual 1/0 device: 

For bi-directional application handles, the assumption is made that the type of values 
being input on a handle is the same as the values being output. This is not always the 

case; consider the case of a slider again. There you may want to provide an interface 

with the following extra operations on top of the standard AppHandle ones: 

type Slider a- AppHandle a 

setInterval Num a => Slider a (a, a) -> ID 

setPageDelta Num a => Slider aa -> Jo 

setPosition Slider a -> a -> 10 () 

The standard hPut operation on AppHandles will change the position of the thumb, 

but what about an operation like setPageDelta for changing how much to move the 
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thumb by when clicking on the slider background? The AppHandle type defines a 
fixed number of operations, and is not easily extensible. 

One way around this would be to define a data type describing the'input language for 

sliders: 

data SliderCmd-a 

= NewVal a I'SetPageDelta aI Interval aa.. 

type Slider a= AppHandle (SliderCmd a) 

but then what about outputting values on the AppHandle? The operations on a handle 

for a slider may very well be richer than just having hGet: 

getInterval Slider a 10 (a, a) 

getPageDelta Slider a 10 a 

these operations could be accommodated by extending the SliderCmd data type: 

data SliderCmd a 
NewVal a GetVal I CurrentVal a 

I GetInterval I CurrentInterval aa 

getInterval h =ýdo 
hPut h GetInterval 

v <- hGet h 

case v, of f CurrentInterval aa -> return (a, a) 

, 
But this is not a very robust solution, with the SliderCmd data type mixing both 

input and output commands. 

Forcing all user interface elements to be an instance of a common handle type, 

AppHandle, leads to a number of 'holes' for certain instances. An example of this is 

performing an hGetTransient operation on an output-only abstraction like a string 
label; what should the behaviour of it be? 

An earlier version of the user interface framework presented in this thesis used a represen- 
tation akin to AppHandles for graphical user interface components [FPJ 96). Building on the 

experiences made with it, the next section presents the user interface representation we opt 
for. 
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4.4 Virtual 1/0 device handles 

Representing graphical user interfaces as virtual 1/0 devices makes them similar to 'conven- 

tional' 1/0 devices such as a terminal or a file stored on a disk. A user interface appearing 
in a window is represented as a handle through which the application can interact with it in 

the same way as the application transfers data to and from the handle of an opened file or 

a network connection. One difference though is that the types of values transmitted along 

via these handles differ. For instance, a user interface component displaying the Picture 

values of Chapter 2, could provide a handle for accessing its picture: 

data PictureHandle 

getpicture PictureHandle 10 Picture 

setPicture PictureHandle Picture -> 10 

Operations for querying and setting the picture to display 
' 
is provided. This interface 

looks adequate, but it turns out that a number of other components have identical sets of 

operations over their handles. For instance, a component displaying string labels would also 

provide its own handle and operations over it: 

data LabelHandle = 

getLabel LabelHandle ID String 

setLabel LabelHandle String -> 10 

The read and write operations for the Labe lHandle, perform the same task as those for 

the pictureHandle. It makes good sense to see if we can unify the two handle types, 

since having operations specific to each type of handle quickly leads to a cumbersome 

programming interface. Instead of having separate types, we can define one handle type 

that is parameterised over the type of values that can be read from and written to it: 

data StateH a=... -- abstract 

hRead StateH a 10 a 

hWrite StateH aa -> 10 

The StateH type defines an abstract stateful handle, which represent an object or virtual 
1/0 device that maintains some state. The stateful handle is polymorphic in the values it 

communicates, so the picture and label handles axe now just instances of it: 
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type PictureHandle = StateH Picture 

type LabelHandle = StateH String 

By defining a pair of generic operations for, reading and writing to any stateful handleý' 

the operations defined earlier over the picture and label handle become superfluous. By 

using parametric polymorphism to abstract over the type of values that stateful handles 

communicates, the programmer landscape is made simpler and more uniform. 

An additional benefit of using parametric polymorphism is that it helps us to relate different 

handles. The handles for the components displaying a picture and a string are both instances 

of StateH, supporting the same operations over them. 

4.5 Virtual 1/0 device types 

What about the handles to user interface components that support not just operations like 

hRead and hWrite, but others as well? For instance, the handle representing a toggle button 

has operations for setting and getting the up or down status of the toggle plus an operation 
that waits until the'next time the toggle changes state. It clearly cannot be fitted into a 
StateH handle. One solution to this problem is simply to define a new handle type along 
the lines of StateH, but augmented with the extra toggle operation: 7 

data ToggleH a=... --abstract 

hReadToggle ToggleH a 10 a 
hWriteToggle ToggleH aa -> 10 

hWaitToggle ToggleH a'-> 10 a 

But, this reintroduces the very problem we sought to eliminate with the introduction Of 
StateH; unifying different types of stateful handles and operations over them! To distinguisl, 

the read operation on a toggle from that on a stateful handle, we append Toggle to the 

name of the toggle operation. This is tedious, apart from forcing the programmer to use 
long winded function names, syntactically distinguishing identical operations on toggles and 
stateful handles hides the close relationships between these two handle types. 

The solution is to overload the read and write operations. This is done using Haskell's tYpe 
classes, defining a class Statef ul: 

'To uniquely name the toggle operations we append Toggle. An alternative solution would be to use 
qualified names in Haskell. 
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class Stateful h where 
hRead :: ha -> ID a 
hWrite :: ha -> a -> 10 () 

The Stateful type class overloads the read and write operations, Mead and hWrite can 
be used on all type constructors that have been defined to be a Stateful instance. Two 
instances of Stateful are StateH and ToggleH: 8 

instance Stateful StateH where 
hRead = hReadState 

hWrite = hWriteState 

instance Stateful ToggleH where 
hRead = hReadToggle 

hWrite = hWriteToggle 

A number of type classes is used to structure the different. types of handles in Haggis, 
Figure 4.1 summarises them. Here is an overview of the functionality provided by the 
different classes: 

Stateful 

An instance of the Statef ul type class is a virtual 1/0 device that allows you to 
sample and update the state of the device. An example of a Statef ul instance is a 
string label display. 

o InputHandle 

The InputHandle class supports the operation hGet for getting the next input value 
from the handle, perhaps blocking to wait for it to become available. An example of 
a InputHandle is a push button, where the hGet method blocks waiting for the next 
button click. 

o outputHandle 

The dual of InputHandle, OutputHandle, provides hPut, a method for outputting a 
value on a handle. If the handle is also an instance of InputHandle, an application 
of hPut will cause any blocked hGet to wake up and see the value just output. An 
example of an OutputHandle instance is a push button that allows the application to 
click the button synthetically. 

8Since hRead and Write are now overloaded operations, we append State to theoperationsdefined 
earlier over stateful handles. 
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class Stateful h where class InputHandle h where 
hRead ha 10 a hGet ha -> IC a 
hWrite haa -> 10 () 

class OutputHandle h where class'ActiveHandle h where 
hPut ha -ý> a -> 10 ''hEnable :: ha -> Bool -> ID 

hIsEnabled :: ha -> 10 Bool 

class TrackHandle h where 
hPutTransient haa -> ID 
hGetTransient ha 10 (Transient a) 

class (InputHandle h, OutputHandle h) => AppHandle h 

class (AppHandle h, ActiveHandle h) => InteractiveHandle h 

class (InteractiveHandle h, Stateful h) => ControlHandle h 

class (ControlHandle h, TrackHandle h) => SliderHandle h 

Figure 4.1 Type class structure for Haggis handles. 

o AppHandle 

The , AppHandle, type class is the combination of the InputHandl-, e 
and OutputHandle classes. It doesn't overload any operations on its own. 

o ActiveHandle 

The Act iveHandle class defines operations for enabling or disabling a handle. Whell 

handle is disabled it is unresponsive to user interaction. An example of an ActiveHand: Le 
instance is an element of a pulldown menu that allows the application to it grey out. -, 

o InteractiveHandle 

The InteractiveHandle class is the join between AppHandle 

and ActiveHandle. It doesn't overload any operations on its own. 

e ControlHandle. 

The ControlHandle class is the join between InteractiveHandle 

and Statef ul. It doesn't overload any operations on its own. 

9 TrackHandle 
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The TrackHandle class defines a pair of operations for setting and getting transitory 

values that a virtual 1/0 device may take on. For instance, a scrollbar allows the 

user to pick up the scrollbar thumb and drag it to a new position and release it. 

With hGetTransient7 it is possible to catch and listen to the intermediate values the 

scrollbar takes on before the thumb is released, and hPutTransient allows you to set 
the intermediate value of a device. The Transient type distinguishes between such 
intermediate values and final ones: 

data Transient a= Transient aI Final a 

o SliderHandle 

The SliderHandle is the join between the TrackHandle and 
ControlHandle. It doesn't overload any operations on its own. 

Through the use of type classes the problem encountered with application handles of having 

to define all handle operations over the one common type, AppHandle, is avoided. By 

layering the different types of operations into separate classes, the concrete type of a handle 

can be made instances of just the classes it supports. For example, the ToggleH type would 
be an instance of the Statef ul and InputHandle classes. 

4.6 Virtual user interface handles 

The handle type classes introduced in the previous section organises the different operations 

supported on abstract handles. The classes are not user interface specific, as the classes 

just capture abstract input/output operations on a handle. 

We build on this type class framework and represent the user interface nature of a component 
handle through the type class Widget: ' 

class Widget h where 

getDH ha DH 

setDH ha DH -> ha 

The Widget class has two operations: one for setting and the other for getting at the display 

handle of a component. The display handle is a concrete handle type that is used to set 

up communication between the external window system and the component. The display 

handle's capabilities is covered in detail in Chapters 5 and 6, suffice to say here that the 

Widget class abstracts away the detail of whether a particular handle type supports the 

display handle interface. 
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4.7 New handles from old 

The type class framework organises the functionality provided by the different handles 

- but how do we create them in the first place? The actions'that create user interface 

components return a handle to their component: for example, the string display label is 

created by label: 

label :: String -> 10 Label 

where Label is an instance of the Statef ul class. In addition to the actions that create 
handles to common user interface components, it is also possible to create new user interface 
handles: 

mkStatefulH :: Widget h 

hb 

10 a read action 
(a -> 10 0) write action 
StatefulH a 

where Statef u1H is similar to the StateH type introduced earlier, but it is also an instance 

of the Widget class: 

data StatefulH a=... --abstract 
instance Stateful StatefulH where 
instance Widget StatefulH where 

The mkStatef u1H function constructs a new Statef u1H handle given a pair of actions that 
implements its read and write operations. The Statef u1H handle gets its user interface 

part from the Widget value it is passed as argument. A simple example of the use of 
mkStatef u1H is the creation of an integer display label using the string display label: 

type IntLabel - StatefulH Int 

intLabel :: Int -> 10 IntLabel 

intLabel init-val - do 

lab <- label (show init-val) 

ref <- newVar init-val 

let 

readILab, - readVar ref 
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writeILab v= do 

-- change the value displayed. 
hWrite lab (show v) 
writeVar ref v 

return (mkStatefulH lab (readILab) (writeILab)) 

The integer display abstraction is created in terms of the string display, using mkStatef u1H 
to create the handle that the programmer can use to query and change the integer currently 
displayed. 

Each of the classes in Figure 4.1 have a corresponding function for creating a handle that is 
an instance of that class. These handle constructor functions are shown in Figure 4.2 and 
Figure 4.3. 

The handle constructors make the creation of user-defined handles quite easy to do, perhaps 
making use of a collection of library provided handle operators. For instance, 

hMap InputHandle h => (a b) ha InputH b 

hFilter InputHandle h => (a Bool) ha InputH a 
hCombine InputHandle h => [h a] -> InputH a 

I, Map creates a new input handle that applies a mapping function to all values reported on 
an existing input handle. The hCombine operator is particularly useful, combining a list 

of input handles into one; values reported on any of the input handles are reported on the 
handle returned by hCombine 

4.7.1 Example: radio group 

To demonstrate how the handle constructors can be used to create user. defined handle 

abstractions, consider the common radio group user interface abstraction. A collection 
of toggle buttons are grouped together in such a way that when a button is toggled, the 

previously selected button is turned off. 

Ignoring the issuse of how the radio group is presented to the user, implementing its inter. 

active behaviour is quite straightforwaxd: 

mkRadioGroup :: (Stateful h, InputHandle h) 

=> Ch Booll 

-> ControlH Int 

mkRadioGroup elts = do 
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h <- hCombine (zipWith (\ xh -> hMap (\flg -> (x, flg)) h) 
[0.. ] elts) 

hWrite (head elts) True 

var <- mkVar 0 

ch <- newChan 
let 

getSelection - readVar var 

setSelection v= do 

oldv <- readVar var 
hWrite (elts! 1oldv) False -- turn off old. 

writeVar var v 
hWrite (eltsliv) True -- turn on new. 
hWrite ch v 

handle = mkControlH nullWidget 
(getSelection) (setSelection) 

(hGet ch) (setSelection) 

(return True) return 
forkIO (listen elts var ch h) 

return handle 

The mkRadioGroup action takes a list of input handles to combine as argument, and returns 
a ControlH handle in return. The implementation uses hCombine to combine these handles 
into one, taking care of tagging them so that just by looking at the value coming from the 

combined handle, we can determine what input handle that the input occurred on. 

Since the radio group handle also needs to support the read and write operations of the 
Statef ul class, it internally maintains a variable holding the current value. To respond to 
the user clicking on any of the members of the radio group, a process is created to monitor 
the combined handle and update the internal state in response: 

listen :: (Stateful h, InputHandle h) 

=> [h Booll 

-> MutVar Int 

-> Channel Int 

InputH (Int, Bool) 

ID () 
listen elts current-v ch h= loop 

where 
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loop = do 

(v, flg) <- hGet h 

oldv <- readVar current-v 
if not flg 11 v- oldv 
then loop 

else do 

oldv <- readVar current-v 
hWrite (elts!! oldv) False -- turn off old. 
writeVar current-v v 
hWrite (elts!! v) True -- turn on new. 
hWrite ch v 
loop 

4.8 Summary 

To summarise, we have in this chapter introduced the representation of graphical user 
interface components as virtual 1/0 devices. These virtual devices are accessed via handles, 

abstract types with a set of 1/0 operations defined over them. To structure the set of 
operations that different handle types support we made use of Haskell's type classes, defining 

a collection of abstract handle types. 

In order to make it easy for the programmer to define new virtual 1/0 device instances, 

Section 4.7 presented the range of constructors for creating new handles from old. 

The use of virtual 1/0 devices in the context of user interface systems is not new; the virtual 
1/0 devices of Pike's Newsqueak [Pik89] and earlier work by Anson(AnS82] and Rosenthal 

et al. [RMP+82] on logical input devices are two examples. Compared to these, the virtual 
1/0 devices presented in this chapter places greater emphasises on user-defined composition 

of devices, providing functions like hCombine and hMap to make the creation of new devices 

easier. 

At a higher level, the virtual 1/0 device model share many similarities with Paterno's 

Interactors [Pat931 and Garnet's Interactors [Mye90], both of which provide a set of abstract 
interaction objects/devices that represent a wide range of common user interface objects. 

In the next chapter we will see how the representation of user interface components presented 
here is put to use when we introduce the Haggis user interface framework. 

I 
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data StatefulH a-... --abstract 
instance Stateful StatefulH where 
instance Widget StatefulH where 
mkStatefulH :: Widget h 

=> hb 
(10 a) -- read action 
(a -> 10 0) -- write action 
StatefulH a 

data InputH a=... --abstract 
instance InputHandle InputH where f.. 

instance Widget InputH where f 

mkInputH Widget h 
hb 
UO a) -- get action 
InputH a 

data OutputH a=... --abstract 
instance OutputHandle OutputH where 
instance Widget OutputH where 
mkOutputH Widget h 

hb 
(a -> 10 0) -- put action 
OutputH a 

data AppH a=... --abstract 
instance AppHandle AppH where 
instance InputHandle AppH where 
instance OutputHandle APpH where 
instance Widget AppH where 
mkInputH Widget h 

hb 
(10 a) -- get action 
(a -> 10 0) -- put action 
AppH a 

instance ActiveHandle ActiveH where 
instance Widget ActiveH where 
mkActiveH Widget h 

hb 
(Bool -> ID enable action 
(10 Bool) isEnabled action 
ActiveH a 

Figure 4.2 Standard handle constructors, part 1 
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data TrackH a=... --abstract 
instance TrackHandle TrackH where 
instance Widget TrackH where 
mkTrackH :: Widget h 

=> hb 
(10 (Transient a)) get-transient action 
(a -> ID 0) put-transient action 
TrackH a 

data InteractiveH a=... --abstract 
instance of: InteractiveHandle, AppHandle, InputHandle, 

OutputHandle, ActiveHandle, Widget 
mkInteractiveH :: Widget h 

=> hb 
(10 a) get action 
(a -> 10 put action 
(10 Bool) enabled action 
(Bool -> 10 0) -- is-enabled action 
InteractiveH a 

data ControlH a=... --abstract 
instance of: ControlHandle, InteractiveHandle, AppHandle, 

InputHandle, OutputHandle, ActiveHandle, Widget 

mkControlH :: Widget h 
=> hb 

(10 a) (a 10 0) read&write actions 
(10 a) (a 10 ()) get&put actions 
(10 Bool) enabled action 
(Bool -> 10 0) is-enabled action 
ControlH a 

data SliderH a=... --abstract 
instance of: ControlHandle, TrackHandle, 

InteractiveHandle, AppHandle, InputHandle, 
OutputHandle, ActiveHandle, Widget 

mkControlH :: Widget h 

=> hb 
(10 a) (a 10 0) read&write actions 

> (10 a) (a 10 0) get&put actions 
(10 (Transient a)) -> (a -> 10 0) -- get&put transient 
(ID Bool) enabled action 
(Bool -> ID is-enabled action 
ControlH a 

Figure 4.3 Standard handle constructors, part 2 
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t-I 11 
uhapter 

Composing Haggis 

The previous chapter presented a virtual 1/0 device programming model for user inter- 
face components. This chapter puts that model to real use, introducing a user interface 
framework called Haggis, which allows the programmer to build and Compose virtual user 
interface devices. 

5.1 Chapter overview 

The Haggis user interface framework tries to provide the programmer with a compositional 
programming model. What does that really mean? It is compositional in the sense that it 

provides support for combining virtual user interface devices together to build new compo- 

nents. The support provided by Haggis for building user interfaces compositionally can be 
divided up into five different kinds: 

Graphical output. Using the Picture model of Chapter 2 as basis, Haggis provides 
rich support for building graphical output abstractions. 

e Spatial composition. Haggis has support for describing the layout of a set of user 
interface components. 

Behavioural composition. As well as allowing you to combine the presentation of 
a set of components, the interactive behaviour of components can be combined or 
augmented. 

Concurrency. A natural consequence of treating user interface components as virtual 
1/0 devices is the reliance on concurrency. Using concurrency, an application can 
conveniently interact with multiple virtual 1/0 devices simultaneously. 

87 
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Hi, there! 

Figure 5.1 II(Ilo, world cxamplc in Ilaggis. 

Rcalisation. I'll(! user interface frainework provides the programmer with actions for 

i-calising N, iilual 1/0 devices. Haggis frees the application from most system level 

interact loll With the Window system. 

This chapter introduces Haggis along these five different, dimensions, presenting the func- 

tionality provided and giving a nuinher of examples of new abstractions that can be creat(, (l 

on top of the primitives. Before starting a detailed presentation of each of these different 

(Illnellsions, We first, give a Short overview of each of them, starting with how to create a 
simple user interface application and how to realise it in a window. 

5.1.1 A simple graphical user interface 

I lies of the user interface fi-ainework liaggis, To introdme, solne of the fundamental propei 
jj(,,, (ý is the liello, world' example: 

hello Component Label 

hello label "Hi, there! " 

main : 10 () 

main do f wopen hello; return 

As showii hi Figure 5.1, this prograni creates a whidow disphtyiiig the hibel Hi, there! iii a 
willdow. I low is this dolle? By defiiiitioii, the eiftry I)oiiit to a Haskell prograiii is the main 

witf, type I0. (See Appowlix B for aii overview of how to prograiii Nvith 10 actions 
hi Ilwskell. ) The main actioii here perfornis wopen, aii actioii which takes care of opeiiing 
III) a will(low to disphy the label hiside.. As its arguineiit, wopen receives a value of type 
Component Label, which describes the user iiiterface conipoiwiit to create iiiside the new 
whidow. The main actiou could just as easily create a pair of windows: 

main = do f wopen hello ; wopen hello ; return 

mwlhý 
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Invoking wopen twice. The type signature for wopen is 

wopen :: Widget h => Component (h a) -> 10 (h a) 

wopen is an an 10 action that takes one argument, a value of type Component (h a). The 
Widget h part of the type signature is the type class context, specifying that the type 
constructor h must be an instance of the Widget class. That is, we can only display user 
interface components within a window. The argument to wopen represents the user interface 

component to realise inside a window. As a convenience, the Component type is a synonym 
for the following: 

type Component a= DC -> 10 a 

The Component type abstracts away the display context, an environment represented by the 
type DC. It contains various system data structures that is important when creating a user 
interface component. Information such as the window that the user interface component is 

going to be realised within. Since all functions that create user interface components need 
this environment, we introduce a type abbreviation. Section 6.2 present display contexts 
and the Component type in more detail. 

The result expected from the Component action by wopen is a handle that has to be an 
instance of the Widget type class. The reason for this is that wopen must be able to 

communicate with the user interface component it is displaying inside the window. The 
Widget type class, introduced in Section 4.6, is used here to identify the user interface 

'nature' of a handle. It is defined as follows: 

class Widget h where 

getDH ha DH 

setDH DH ha -> ha 

An instance of Widget has to provide a pair of methods for setting and getting at the 
display handle of a component. The display handle is the system-level view of a user 
interface component, and through it wopen is able to set up the communication between 

the window system and the component. For instance, whenever the user resizes the window 
the component appears in, the component will be told via its display handle that the 
dimensions have changed and that it should modify its output accordingly. 

Display handles represent the common interface that all user interface components im. 

plement, and is outside the programmer view most of the time. Section 6.1 defines the 
properties of display handles. 
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Returning to the initial example, we can now see that the label created by hello has the 
type expected by wopen: 

hello Component Label 

hello label "hi, there! " 

label :: String -> Component Label 

instance Widget Label where f ... 

The label is the actual user interface component used for displaying strings, with the 
hello definition supplying it with the initial string to use. The Label handle returned by 
the label component is an instance of the Widget class, hence applying wopen'is legal. 
With it, wopen opens up a window that displays the label and returns the Label handle it 
has realised. 

5.1.2 Adding graphics 

For graphical output, Haggis supports the display of the Picture values from Chapter 2. 
Here's the display of a spiral: 

spiral Picture 

spiral 
noverlay 

withColour (hsl n 1.0 0.5) 

rotate n$ 
centre $ 

square (n 'div' 3) 1n <- [0,4.. 36011 

main :: 10 () 

main - do 

wopen (glyph spiral) 

return 0 

The window created by wopen is shown in Figure 5.2. The primitive abstraction used to 
display a Picture is called a glyph. New glyphs are created using the glyph action: 

glyph :: Picture -> Component Glyph 
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Figure 5.2 Displaying pichires with a glYph. 

91 

It takes a picture wilue as argument and returns a Glyph handle. The glYph cmi be t hought 

of as a virtual 1/0 device, with the Glyph limidle being used to cmninunic; ite Nvith this 

OtItplit only device. 

Glyphs are presented in Section 5.2. 

5.1.3 Creating virtual 1/0 devices 

The 91NIPII is a primitive compo"Nit in Haggis, but the handle returned bY glyph IS ;I 

s- the al StatefulH handle: 
Y1,011VII, fol more gener, 

type Glyph = StatefulH Picture 

i. (, Ype introdliced ill Section To recap, 
-, tll(, l glyph is represented by the StatefulH tN I 

Statefulf-I is an abstract handle tYpe representing stateful virtual 1/0 devices. It is ; ill 

instance of the Stateful class, 

instance Stateful StatefulH where II 
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class Stateful, h where 

hRead ha 10 a 
hWrite haa -> 10 

which defines operations for reading the current value associated with a handle and for 

updating it with a new'value. In the case of glyph handles, hWrite is then used to change 

the Picture displayed by a glyph, while hRead returns the picture currently being displayed 

by a glyph. 

To ease the creation of new stateful handles, Section 4.7 also provided 

mkStatefulH: 

mkStatefulH :: Widget h 

h 

10 b hRead 

(b -> 10 hWrite 

StatefulH b 

Given the actions to use when either hRead or hWrite is invoked together with a handle to 

a user interface component, mkStatef u1H returns a new Statef u1H handle, as discussed in 
Section 4.7. 

With the help of mkStatef u1H, it is possible to build new glyph abstractions. Here is one 
that rotates its Picture value: 

rotGlyph :: Picture -> Component Glyph 

rotGlyph pic env = do 

gl <- glyph (rotate 90 pic) env 

lot 

rot-gl - 
mkStatefulH gl (hRead gi) 

(\ p -> hWrite gl (rotate 90 p)) 

in 

return rot-gl 

The rotGlyph component is implemented in terms of a primitive glyph: using the handle 

returned from glyph, it returns a new handle that takes care of rotating its pictures by go 
degrees. This user defined handle has the same type as the 'primitive' handle returned by 
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glyph, and they are also treated on equal terms by the underlying user interface framework. 

Having this ability to create new handle values on-the-fly plays an important part in Haggis. 
For example, a string label component is very similar to a glyph, instead of showing arbitrary 
picture values, it displays character strings. Creating a label abstraction in terms of the 
glyph is actually not that much work: 

type Label = StatefulH String 

label :: String -> Component Label 

label str env = do 

gi <- glyph (text str) env 

v <- newVar str 
let 

lab = 

mkStatefulH 
(readVar v) 
(\ str -> 

hWrite gl (text str) 
writeVar str) 

return lab 

Section 5.2.4 shows how you can create abstractions on top of a glyph for displaying arbitrary 
application values. 

5.1.4 Adding concurrency 

So far, the examples have consisted of the display of static picture values. Here's an example 
that adds animation: 

animator :: [picture] -> Component (StatefulH [Picture]) 

animator frames env = do 

gl <- glyph firstFr env 

var <- newVar frames 

let 

anim-h 
mkStatefulH gl (readVar var) (writeVar var) 

forkIO (animLOOP var 91) 



94 CHAPTER 5. COMPOSING HAGGIS 

return anim-h 

where 
firstFr Picture 
firstFr 

case frames of 
11 -> empty 

The details are not too important at this stage, but the animator component creates a 
glyph and implements animation by repeatedly cycling through the frames that make up 
the animation sequence. Since we want the animation to progress independently from the 
rest of the application, concurrency is used. 

In a sense, the process created with f orkIO takes care of the interaction and communication 
with the user on the virtual 1/0 device that is the animated glyph. The rest of the applica- 
tion is free to independently interact with the user via other virtual 1/0 devices. Section 5.3 

shows how concurrency is used in Haggis to structure user interface applications. 

5.1.5 Adding interaction 

To input and not just output, Haggis has support for catching and handling of user actions 
on user interface components. For instance, as part of the standard collection of user 
interface elements supplied with Haggis, the push button can be used to catch buttoll 

clicks: 

button :: Picture -> a -> Component (Button a) 
instance InputHandle Button where 

shutdown :: ID () 

main - do 
btn <- wopen (button (text "Click mel") 
hGet btn 

shutdown 

Here a window containing a solitary button is created. As seen from button's type signature) 
it returns a Button handle. Thb Button handle is an instance of the InputHandle type 
class presented in Section 4.4. Hence, the hGet operation can be applied to a button to 
wait for user button clicks. Once the user clicks the button, this is reported on the button's 



'5.1. CHAPTER OVERVIEW 95 

handle and hGet returns. For the above example, we call shutdown upon receiving a click, 
which closes the button's window and quits the application. 

Section 5.4 presents the primitives that allow you to catch and interpret user actions such 
as mouse clicks. 

5.1.6 Adding layout 

Applications do not consist of single components within a window, but of the combined 
presentation of a collection of them. Haggis provides support for expressing the geometric 
arrangment of user interface components in a number of ways. Here's how to tile a pair of 
components horizontally: 

counter Component DH 

counter env = do 

lab <- label "011 env 
btn <- button (text "Inc") 0 env 

let 

countLoop n= do 

hGet btn 
hWrite lab (show n) 

countLoop (n+l) 

forkIO (countLoop 1) 

return (hbox [getDH btn, getDH lab]) 

main - do 

wopen counter 

return 0 

Section 5.5 presents the primitives and a number of useful abstractions for describing the 
layout of user interface components in Haggis. 

5.1.7 Summary 

We have in this section presented a quick overview of the compositional features of Haggis. 
Based on the representation of user interface components as virtual 1/0 devices, examples 
of the different ways in which devices can be combined together, was presented. 
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It is now time to look at the features of Haggis in more detail, starting with the support 
for displaying pictures. 

5.2 Displaying graphical output 

To do anything of interest with graphical user interfaces, we most certainly need to be 

able to display graphical content conveniently. Equipped with the picture language for 
describing graphical content presented in Chapter 2, we introduce the following primitive 
for displaying Picture values: 

glyph :: Picture -> Component Glyph 

The user interface abstraction glyph is an action that given a Picture value, creates a 
component for converting the description of graphical content into actual output inside a 
window on your screen. The glyph primitive takes care of all the system-level interactions 

required to display the graphical content, and as an example, here is the traffic light of 
Section 2.2.1 displayed using a glyph: 

wopen :: Widget h => Component (h a) -> 10 (h a) 

main = do f wopen (glyph trafficLight) ; return () I 

Figure 5.3 shows what appears in a window when the application is run. 

The wopen action creates a window with initial size just big enough for displaying the traffic 
light. In addition, wopen is also responsible for setting up the communication between the 
glyph and the underlying window system. Having done that, the wopen action returns. The 

glyph continues to interact independently with the window system, so when the user resizes 
the window, the glyph will respond by resizing the traffic light and redisplaying with its 

new dimensions. 

As mentioned at the start of the chapter, the glyph is represented by a stateful handle: 

type Glyph = StatefulH Picture 

As presented in Section 4.4, a Statef u1H handle is an instance of the Statef ul type class, 
which overloads operations for setting and getting the current value of a stateful handle. 11, 
addition to these two operators, in Section 4.7, the, following constructor was introduced: 

mkStatefulH :: Widget h 
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Figm-e 5.3 Displaying Picture values wit li a glYpIl. 

=> hb 

10 a -- read action 
(a -> 10 0) -- write action 
StatefulH a 

w1licli creates a new StatefulH handle. 

5.2.1 Changing the glyph's picture 

97 

Si, ic(,. the glyph handle is defined as a type synom, 11, foi- a StatefulH Ilmidle, hWrite cmi 
be Use(I to dynamically modify the Picture vahie that a g]N, 1)11 is (jispjjN, ijjg: 

pic :: Picture 

Pic = centre (square 40) 

main -= do 

gl <- wopen (glyph pic) 

rotLoop 91 

rotLoop :: 10 0 

rotLoop 91 -= do 

putStr "Rotate(deg. ): 

is <- getLine 

case reads is of 
[(deg, 

-)] -> do 

hWrite gl (overlay (centre $ text (show deg)) 
(rotate (degToRad deg) pic)) 

rotLoop gl 
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Figure 5.4 Changing the Picture displ; ýNvd by a glYph. 

-> return () 

Notice that, we here do not, ignore the handle returned as result from wopen, but instead 

pa, ss it to the rotLoop action. Depending on the rotation aniount read in froin the. standard 
inpia, the rotLoop action rotates the square displayed by the glyph accordingly, Figure. 5.4 

shows a screen shot, of the application. 

The code above is very much similar to that of the file copying example presented ill 

Section 4.1.1. Instead of opening a file, a user interface component is realised inside a 

", ijj(low. The open operation (wopen) returns to the created glyph., just like openFile. 
%ýIjjejj 111)(lating the picture displayed, the glyph handle is used in inuch the same way as 
the file handle Was used to Write additional characters to a file. 

5.2.2 Creating "(! w 91YPI's 

Using Ole plifilitive glyph, NVC (All StMl to build new graphical abstractions. Ifelv's a simpl(, 

example of olle that (111plicates the Picture values it, is being tol(I to (Jisj&ýV: 

doubleGlyph :: Picture -> Component Glyph 

doubleGlyph pic env = do 

gl <- glyph (dup pic) env 
let 

double-gl = 
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Figure 5.5 Dtiplicating the contents of ;I glYpIl. 

mkStatefulH gl (hRead gl) 
(\ pic -> hWrite (dup pic)) 

return double-gl 

where 
dup p= beside pp 

main = do I gl <- wopen (doubleGlyph pic) ; rotLoop gl I 

99 

The new glyph handle in terms of an existing one. The Nvrit, eact ion SlIPplied to mkStatef ulH 

above, updates die existing glyph by first (1111)li('; Itillg the Picture valm, it Is 

result can be seen in Figure 5.5. 

Notice again that the type of the handles returned frmn doubleGlyph mi(I ille pl-11111t I%v 

glyph are the saine, so rotLoop (-; in be Ils('d ý%'itl'Ollt ('11,1119(' to the ncw Glyph 

abstractioll. 

The above code illustrates how new Glyph abstnictions cill be (, (I, tising mkStatef u1H 
to create new handle values with different, behaviour alld content. Ill this c; 1"'e, the new 
handle value was built oil top of a basic Glyph handle, reusing its disphy Imn(Ile, silice 
doubleGlyph has the same output area. The change ill 'be1mviour' th ; it we Nvallied for the 

til)(1ýitingapi(! tiircisiiiil)leiii(, ilte(II)Nlslll)l)IN, iiig, thWrite 111(ýtIl()d t1lit 

glypll to draw a pair of the new Picture value. 

To make it a bit more generally applicable, Nve can abstract awty the function dup lis(, (l f'()I, 

doubleGlyph, and instead pass the picture transformation filly-tioll j() Is(,: 

transformGlyph (Picture -> Picture) 

Picture 

-> Component Glyph 
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transformGlyph picTr 
, 
ans pic env = do 

gl <- glyph (picTrans pic) env 
let 

tr-gl = mkStatefulH gl (hRead gl) 

pic -> hWrite (picTrans pic)) 

return tr-gl 

The transf ormGlyph is an abstraction that allows You to specify which picture transforrner 

to apply to a picture when displaying it. The extra argument to transformGlyph is 
function for transforming'picture values into the form we want to present them. Both tly"e 
initial picture and all subsequent picture values are transformed using it, so expressiha, 
doubleGlyph in terms of transf ormGlyph is straightforward, passing dup as argument: 

doubleGlyph = transformGlyph (dup) 

where 
dup p= beside pp 

Notice that the view transforma 
' 
tion which this glyph applies is not hidden from the appli- 

cation: a hWrite followed by a hRead will not return the Picture value just set, but'i-ts 
transformed, form. To be able to hide the view transformation, the transf ormGlyph needs 
to remember the current picture value it is transforming. A convenient way of doing this is 
to use state, which we introduce next. 

5.2.3 Adding, state 

Quite often, a user interface component handle needs to maintain some state. For instance 

the glyph primitive has to keep track of the picture value it is currently displaying tc) 
be able to redisplay and return meaningful values via hRead. The use of state extends 
to user-defined abstractions. A simple example is that of a picture book, a glyph'that 
remembers and displays the last n pictures. To be able to express such an abstraction, -we 

need operations for creating an updating pieces of mutable state. Assuming we've got that,, 
here's what the picture book abstraction might look like: 

bookGlyph :: (Picture] -> Component Glyph 
bookGlyph ls env = do 

gl <- glyph (showPics ls) env 
var <- newVar ls 

let 
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book-h = 

mkStatefulH 

gi (readBook var) (writeBook var gl) 
in 

return book-h 

The code for bookGlyph is more or less the same as that for transf ormGlyph. A primitive 
glyph is created and using it, a new glyph handle is created. However, to record the current 
set of pictures, a mutable variable is created to hold it. The variable is created with the 
action newVar, which is part of the non-standard interface MutVar: 

data MutVar a=... 

newVar a -> 10 (MutVar a) 

readVar MutVar a 10 a 

writeVar MutVar aa -> 10 

The type MutVar a is an abstract type representing mutable variables of some type a, 
with operations defined over it for reading and updating their contents. Notice that the 
operations for creating and accessing mutable variables are all 10 actions, so the order of 
the operations on a mutable variable has to be sequentialised by the programmer. 

In the case of bookGlyph, a mutable variable is created to hold the current set of pictures, a 
variable that is accessed by the action that implements the hRead for a bookGlyph handle: 

readBook :: MutVar [Picture] -> ID Picture I 
readBook v-= do 

is <- readVar v 

return (showPics is) 

which reads the current contents out of the variable, and converts the list of pictures into 

a single one with showPics (see below. ) 

The hWrite action is responsible for updating the variable and displaying a new picture 
book: 

writeBook :: MutVar [Picture] -> Glyph -> Picture -> ID 

writeBook v gl pic = do 

is <- readVar v 

let new-ls = pic: init is 

writeVar v new-ls 
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hWrite gl (showPics new_ls) 

The new set of pictures is stored in the mutable variable, adding a new picture at the 
expense of the 'oldest' picture. To draw the new picture book, the writeBook calls upon 
the help of the hWrite action of the primitive glyph, passing it a Picture that is constructed 
with showPics: 

showPics :: [Picture] -> Picture 

showPics ls 
let 

middle = length ls 'div' 2 
(bef, aft) - splitAt middle ls 

in 

above (besides bef) (besides aft) 

which arranges the set of pictures in a pair of rows. The bookGlyph abstraction is show,, 
in its entirety in Figure 5.6 

With the help of mutable vaxiables, the bookGlyph abstraction was capable of holding onto 
and displaying a bounded history of pictures. The use of state could also be used to improve 
the transf omGlyph of the previous section, having it remember the current picture it is 
transforming so that the Mead can return the appropriate, non-transformed value: 

applyPicTransform :: (Picture -> Picture) -> Glyph -> 10 Glyph 

applyPicTransform f gl - do 

pic <- hRead gl 

var <- newVar pic 
hWrite gl (f pic) 
let 

tr-glyph - 
mkStatefulH 

gi (readVar var) (writePic var gi) 

writePic Pic = do 

writeVar var Pic 
hWrite gl (f Pic) 

in 

return tr-glyph 
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bookGlyph :: (Picture] -> Component Glyph 
bookGlyph ls env = do 

gi <- glyph (showPics ls) env 
var <- newVar ls 
let 
book-h 

mkStatefulH 
gi (readBook var) (writeBook var gl) 

in 
return book-h 
where 
middle length ls Idiv' 2 

readBook :: MutVar [Picture] -> 10 Picture 
readBook v-= do 

ls <- readVar v 
return (showPics ls) 

writeBook :: MutVar [Picture] Glyph -> Picture -> ID 
writeBook v gl Pic = do 

ls <- readVar v 
let new-ls = pic: init ls 

writeVar v new-ls 
hWrite gl (showPics new-1s) 

showPics :: (Picture] -> Picture 

showpics ls 
let ' 

(bef, aft) splitAt middle ls 
in 

above (besides bef) (besides aft) 

Figure 5.6 Picture book abstraction 

The abstraction is expressed slightly differently, instead of 
' 
creating a primitive glyph, 

applyPicTransf orni expects a glyph handle as argument. By recording the current pic- 
ture value in a mutable variable, performing hRead on a applyftcTransf orm handle will 
return the non-transformed picture value. 

One example of a use of applyPicTransf orm is doubleView, a glyph transformer that given 
a glyph handle, returns a new one that displays the contents of the old one, but double in 
size. 



104 , P'ý'CHAPTER 5. COMPOSING HAGGIS 

doubleView :: Picture -> Component Glyph 

doubleView Pic env = do 

gl <- glyph Pic env 

mkDoubleView gl- 

mkDoubleView Glyph -> 10 Glyph 

mkDoubleView applyPicTransform (uscale 2) 

uscale :: Int -> Picture -> Picture 

Nested applications of applyPicTransf orm are also possible. 

To recap, this section introduced the use of state via mutable variables, and how user 
interface abstractions could make use of it internally. The range of abstractions expressible 
is increased, abstractions that record their state can now be created on top of the primitive 
glyph, an example of this being the picture book. 

Normally though we really want to work at a higher-level than Picture values. The ap- 
plication manipulates and performs input and output with values that are 'closer to home' 

than Picture values, e. g., strings, integers etc., so let's create some abstractions that cater 
for this. 

5.2.4 Displaying values 

To create abstractions for displaying values of types other than Picture, we continue make 
use Statef u1H handles. To recap, the glyph handle has the following type: 

type Glyph - StatefulH Picture 

The Statef u1H handle type is parameterised over what type of value to transmit and receive 
over it, so user interface abstractions that display other types of values than Picture can 
be created quite easily. To demonstrate, here is the string label abstraction used in the the 
introductory 'hello, world' example: 

type Label - StatefulH String 

label :: String -> Component Label 

label str env - do 

gl <- glyph (text str) env 
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mkLabel str gl 

mkLabel :: String -> Glyph -> 10 Label 

mkLabel str gl = do 

-var <- newVar str 
let 

label-h 

mkStatefulH 
gl (readVar var) (\ str -> hWrite gl (text str)) 

return label-h 

The label action returns a Label handle, a synonym for a Statef ulH handle for reading 
and writing strings to. The label is constructed out of a primitive glyph that takes care of a 
displaying the actual label contents. The label handle is created as before with mkStatef ulH, 
building a new handle that when updating the label with a new string value, the string will 
be converted into a picture and the glyph will be updated. 

To conveniently read back the current label string, a variable is used to record it, which the 
hRead operation just reads from. 

The mkLabel action creates a new handle by setting up the mapping from the external 
interface it is providing, an abstraction for dynamically displaying string labels, to the 
component it is implemented in terms of, the primitive, Picture displaying glyph. This is 

really just the same as was done for the picture book example earlier,, the only difference 
being that the type of values being communicated on the handle returned by mkLabel are 
now character strings. 

The label abstraction itself can be used to create a more general display component capable 
of showing any Haskell type that can be mapped to a character string. 

type GenLabel a= StatefulH a 

display :: Show a => a -> Component (GenLabel a) 
display v env = do 

lab <- label (show v) env 

; mkDisplay v lab 

MkDisplay :: Show a => a -> Label -> 10 (GenLabel a) 

MkDisplay v lab = do 

var <- newVar v 
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let 

disp-h 

mkStatefulH 
lab (readVar var) 
(\ v -> do 

writeVar var v 
hWrite lab (show v)) 

return disp-h 

This time the display is built on top of a label, returning a handle that can display any 
type that is an instance of the standard type class Show, i. e., a value of this type can be 

converted to a character string. 

5.2.5 A simple framework for visUalising data 

With the display of the previous section, any type that could be converted into a character 
string could be displayed in a label. For some types such as Int, this probably what we 
want, but more complex data structures could have more effective graphical representations 
than a string. For instance, a tree data type could be presented by drawing the tree rather 
than displaying a, textual description of it. Creating an abstraction that allows this is 

straightforward: 

presenter (a Picture) -> a Component (StatefulH a) 
presenter present-f v env = do 

gl <- glyph (present-f v) env 
mkPresenter present-fýv glý 

mkPresenter :: (a Picture) -> a 10 (StatefulH a) 
mkPresenter pres-f v gl - do 

var <- newVar v 
let 

pres-h = 
mkStatefulH 

gl (readVar var) 
(\ new-v -> do 

writeVar var new-v 
hWrite gl (pres-f new-v)) 

return pres-h 
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Instead of converting the value into a string and displaying it, presenter takes an extra 
function argument for converting a value into a Picture directly. One example of how 
presenter could be used, is a basic pie-chart display: 

type Fraction = Double 

, pieChart Fraction -> Component (StatefulH Fraction) 

pieChart presenter mkPieý 

where 
mkPie frac 

overlay 
(circle 30) 
(withFill $ 

arc (size 30 30) half-pi (2*pi*fracl)) 

where 
fracl = min 1.0 (max frac 0.0) 

The pie chart is just a specialised call to presenter, 'supplying the function for converting 
.a fraction into a picture. 

With the help of Haskell's type classes, a more systematic conversion of values into their 
picture representation is possible: 

class Visualise a where 

present :: a -> Picture 

The type class defines an overloaded operation, present, for Converting a value into a 
picture. The instance for Int could then be defined as follows: 

I- 
instance Visualise Int where 

present v- text (show v) 

I "i. e. 'Just draw a string representing it. A more visually interesting mapping can be defined 
"for lists of values: 

instance Visualise a => Visualise [a] where 

present ls u 
let 

pics - map (circleAround . present) ls 

in 
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besides (intersperse (rightArrow) (pics ++ terminator)) 

terminator :: Picture 

terminator = 

For a list containing elements that can be converted into Pictures, the picture returned 
for the list puts a circle around each element and connects a list cell to the next by pointing 

an arrow. Using the Visualise class, the definition of presenter can be modified to use 
it: 

presenter :: Visualise a => a -> Component (StatefulH a) 

presenter v env = do 

gl <- glyph (present v) env 

mkPresenter (present) v 91 

The change from the initial version of presenter is that the conversion function is now 
implicit, i. e., only types that are known to be instances of the Visualise class can be 

presented. There's a price to pay for this apparent simplification though, you now have 

to define a Visualise instance for the type you want to display. Apart from the minor 
inconvenience 

, 
of having to declare the instance, a type class is too general a device here, 

since Haskell does not allow the definition of an instance for the pie chart example: 

instance Visualise [Fraction] where (I 

the instance type not being legal. 

5.3 Adding concurrency 

Another graphical extension that we would like to add is the ability to define abstractions 
that display animations. Independently from the progress of the rest of application, the 

abstraction would display and update the animation. One common way of doing this is to 

specify the animation as a sequence of frames, and leave it to the animation abstraction to 

step through the sequence. To express this, the picture book abstraction can be re-used: 

animator :: [Picture] -> Component (StatefulH [Picture]) 

animator frames env = do 

gl <- glyph firstFr env 

mkAnimator frames gl 
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, where 
f irstFr = 

case frames of 
emptyPic 

(X: -) -> x 

mkAnimator :: [Picture] -> Glyph -> 10 (StatefulH [Picture]) 

mkAnimator frames gl do 

var <- newVar frames 

let 

anim-h 
mkStatefulH 

gi (readVar var) (writeVar var) 

forkIO (animLoop var gl) 

return anim-h 

The animation abstraction is created on top of a primitive glyph, and 
mkAnimator creates a new Statef u1H handle that provides the programmer interface to the 
animation. Using the handle, what animation to play can be dynamically changed. 

To have the animation progress independently from the rest of the application, the sequence 
of actions needed to perform the animation must be performed concurrently to the other 
tasks. To do this, we introduce the primitive f orkIO: 

forkIO :: Io () -: 1 10 () 

f orkIO proc is an action that, when performed, will create a new evaluation context to 
evaluate the 10 action proc, concurrently with the process that performed the f orkIO 
action. The f orkID construct is part of Concurrent Haskell[PJGF96], a concurrent substrate 
which is presented in Appendix C. 

In the case of the frame animation abstraction, the process will execute the following loop: 
i-- 

animLoop :: MutVar (Picture] -> Glyph -> ID 

animLoop var gl = loop D, 

ý -where 
'-s-loop do 

readVar var pics < 

loop pics 
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loop (f: fs) -, do 

waitFor 100 

hWrite gl f 
loop fs 

waitFor :: Int(-millisecs-I -> ID () 

The loop iterates through the frame sequence, using the primitive waitFor to stagger the 

rate at which the frames are rendered. At the end of the sequence, the variable holding the 

current frame sequence to use is consulted before starting all over again. 

The animLoop is performed concurrently to the other tasks of an application, the details 

of how the animation is implemented is completely hidden from view. The animation 
abstraction is an example of the use of concurrency to abstract away control, where a 
separate process is created to take caxe of maintaining the animation. The application is 
freed from somehow having to interleave the management of the animation with whatever 
else the application is up to, i. e., separation of concerns is achieved. 

As we will see, concurrency is used throughout to structure a user interface application. 
New abstractions are created that internally, create processes to manage their behaviour 

and interaction with the Haggis components they are built out oL 

To demonstrate the use of animator, here's a slide show abstraction that uses it: 

slideShow :: [Picture] -> Component (StatefulH [Picture]) 

slideShow p, ics env = do 

gi <- glyph firstPic env 

gis <- mkDoubleView gl 

mkAnimator pics gl' 

where 
f irstPic 

case pics of 
emptyPic 

(f f 

The pictures in the slide show are scaled by a factor of two, using the 
mkDoubleView combining form introduced earlier to do this. 

So far the abstractions built have been variations on how to present graphical output, 
constructing more and more sophisticated abstractions on top of a primitive glyph. The next 
natural step is to add the user to the mix, supporting interaction with the user employing 
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the graphical abstractions that we have now built. 

5.4 Adding interaction 

To deal with user interaction, actions performed by the user via some physical input device 
such as a mouse must be caught by the application and interpreted, e. g., when the user 
wiggles the mouse, the drawing application should see this and draw wiggly lines in response. 
The primitive that allows the application to catch user interaction is catchDeviceEv: 

catchDeviceEv :: Widget h => ha -> 10 InputDevice 

type InputDevice - AppH DeviceEvent 

The catchDeviceEv action fakes a handle to a user interface component as argument and 
returns an InputDevice handle. All user events directed at the on-screen area occupied 
by the component handle passed to catchDeviceEv will be caught and redirected to the 
InputDevice handle. The returned InputDevice handle also contains the user interface 

part (i. e., the display handle) of the component it is encapsulating. 

. 
The InputDevice handle is a type synonym for the application handle, a virtual 1/0 device 

introduced in Section 4.4: 

class (InputHandle h, OutputHandle h) => AppHandle h 

class InputHandle h where 

hGet :: ha -> 10 a 

class outputHandle h where 

hput :: ha -> a -> 10 () 

The AppHandle type class is a join between the InputHandle and Output'Handle type 
classes, having operations for both sending and receiving data along the handle. The AppH 
is a type constructor that is an instance of AppHandle, see Section 4.7. 

Through the handle returned by catchDeviceEv, we can listen for user events such as, key 

presses and mouse button clicks, using the hGet operation. The interpretation of performing 
the . hput action on an InputDevice handle is to forward events to the component that 
catchDeviceEv encapsulates. 
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The values being communicated via the InputDevice handle are of 
type DeviceEvent, a data type specifying the nature of the user event, Figure 5.7 has 

the complete definition. ' 

To make uses of this type a bit more convenient, defining some predicates and selector 
functions over this type is quite useful: 

evCoord ::, DeviceEvent Coord2- 

evCoord (DevEv 
- x-y, - -Y, P7, coord xy 

isMouseDown DeviceEvent Bool 

isMouseDown (DevEv 
---- 

(MouseButton Down True 

isMouseDown (DevEv 
-----)= 

True 

keyDown-maybe :: DeviceEvent -> Maybe KeyValue 

keyDown-maybe (DevEv 
---- 

(Key Down kv)) = Just kv 

keyDown-maybe (DevEv Nothing 

getKeyValue,,.: DeviceEvent KeyValue 

getKeyValue (DevEv 
- --- - 

(Key 
- 

kv)) =, kv 

With all the types and' definitions associated with the handling of interaction out of the way, 
it is finally time to start creating some abstractions using the catchDeviceEv combining 
form. Here is a simple abstraction that displays the last key pressed: 

echoKey :: Component (AppH Char) 

echoKey env - do 

gi <- glyph (text "None") env 
ip <- catchDeviceEv gl 

ch <- newChan 
forkIO (echoer gl ip ch) 

return (mkAppH ip (readChan ch) (updDisp gl ch)) 

where 

echoer gl ip ch do 

ev <- hGet ip 

case map keyValToChar (keyDown-maybe ev) of 

'By using a data type, there is a problem when it comes to extension in functionality: modifications 
would require a complete recompilation of all sources that use the type. We do not currently consider that 
to be a major problem; the number of devices and their repertoire of events is more or less stable. 
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data DeviceEvent 
DeviceEvent 

mods :: ModState, 

pos :: Coord2, 
tstamp TimeStamp, 

evt EventType 
I 

modifiers 
position of mouse pointer 

data EventType 
MouseButton PressedState MouseButton 
MouseClick MouseButton 
MultiClick MouseButton Inti-no of clicks-I 
MouseDrag MouseButton Coord2 
Key PressedState KeyValue 
Motion I Leave I Enter 

data PressedState = Down I Up 
type MouseButton = Int 

Figure 5.7 The DeviceEvent data type 

Nothing -> do -- false alarm, pass on event. 
hPut ip ev 

echoer gl ip ch 
Just c -> 

updDisp gl ch 

echoer gl ip ch 

updDisp :: Glyph -> Channel Char -> Char -> JO 

updDisp 91 ch c= do 

hWrite 91 (text [c]) 

hput ch c 

Whenever the mouse pointer is inside the area of the echo area, each hit of a key corre- 
sponding to a printable character will be echoed. As usual, the echoing is done via a glyph, 
and to catch the keyboard events, catchDeviceEv is used to intercept, user events destined 
for the glyph handle. 

To interpret the keyboard events, echoKey creates a separate process to monitor the InputDevice 
handle returned by catchDeviceEv. The process will perform the echoer action, looping 

around looking for keyboard events coming from keys that correspond to printable charac- 
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data Channel a=.. -- abstract 

newChan 10 (Channel a) 
readChan Channel a, -> 10 a, 
writeChan Channel a -> a -> 10 

instance InputHandle Channel where 
hGet = readChan 

instance OutputHandle Channel where 
hPut = writeChan 

instance AppHandle Channel 

Figure 5.8 The Channel interface 

ters. 

The application interface to the basic echoKey abstraction is a application handle that can 
be used to both write characters to the echo area and listen for what characters are being 
typed. To pass back the characters being typed, we need a medium to communicate thern 
through. For this purpose, a channel is created using newChan. Channel is a standard Con- 

current Haskell abstraction [PJGF96], and the programmer interface is shown in Figure 5.8. 
By doing an hGet on the handle returned by echoKey, the application can listen to what's 
being typed. 

The ability to catch keyboard events is useful in other contexts, so creating a separate 
abstraction for it makes sense., To help building this abstraction, let's first define a pair of 
auxillary operations on AppH handles: 

mapAppH :: AppHandle h 

=> (a -> b) -> (b -> a) 

-> 
AppH b 

mapAppH a2b b2a h= mkAppH h get' put; 

where 
put' b= hPut h (b2a b) 

get I- do 

a <- hGet h 

return (a2b a) 
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filterAppH :: AppHandle h => (a -> Bool) -> ha -> AppH a 
filterAppH pred h= mkAppH h get' put' 
where 
get I= do 

x <- hGet h 

if pred x then 

return x 

else 
do fhPut hx; get' 

put) x= do 

if pred x then 
hPut x 

else 
return silently ignore. 

The mapAppH creates a new application handle by mapping to (and from) the values commu- 
nicated by an existing one, while f ilterAppH creates a handle that will only pass through 
values that satisfy a supplied predicate. With these two in hand, defining a combining form 
that only intercepts keyboard events then simply becomes: 

catchKeyboardEv :: Widget h => ha -> ID (AppH KeyValue) 

catchKeyboardEv h= do 

-ip <- catchDeviceEv h 

return ( 

mapAppH getKeyValue mkKeyboardEv 
filterAppH isKBEvent ip) 

-- manufacture a keypress event. 

mkKeyboardEv :: Char -> DeviceEvent 

isKBEvent :: DeviceEvent ->-Bool 

The derived combining form specialises catchDeviceEv, returning a handle that intercepts 
keyboard events, but passes on all other user events to the component being encapsulated. It 
is implemented by first filtering out all but the keyboard events reported on an InputDevice, 

and then converting these keyboard-only into KeyValues, a type that encodes what type of 
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key was hit on the keyboard. 

Defining a similar abstraction for the mouse pointer is even easier: 

catchMouseEv :: Widget h => ha -> 10 (AppH DeviceEvent) 

catchMouseEv h= do 

ip <- catchDeviceEv h 

return (filterAppH isMouseEv ip) 

Using catchMouseEv, implementing a button abstraction now becomes possible: 

button :: Picture -> Component (AppH 

button Pic env = do 

gl <- glyph pic env 

ch <- newChan 
mouse <- catchMouseEv gl 
forkID (btnTrack mouse gl ch pic (invert pic)) 
let btn-h = mkAppH ip (hGet ch) (hPut ch) 

return btn-h 

The button action takes as argument the picture label to use and returns an application 
handle representing the button. The application handle is used to listen for 'clicks' via 
hGet. 

The button uses a glyph as its output area, catching all mouse events destined for it with 
catchMouseEv. To ensure that user interaction is responded to, a process is create&whose 

sole purpose in life is to listen for mouse events and react to mouse button clicks by changing 
the label displayed by the glyph. The following loop is executed by the process: 

btnTrack Mouse -> Glyph -> Channel 

Picture -> Picture -> 10 

btnTrack ip gl ch picA picB - track 

where 
track = do 

ev <- hGet (filterAppH isButtonDown ip) 
hWrite gl picB 

ev <- hGet (filterAppH (\x -> isButtonUp x 11 isLeaveEv x) ip) 
if isLeaveEv ev -- aborted. 
then do 

hWrite gl picA 
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track 

else do -- interaction finished. 

hWrite gl picA 
hPut ch 
track 

It waits for events to be reported via the application handle and depending on whether the 
event is mouse button event or not, the label is changed. It is worth noting that the process 
will be mostly blocked, only waking up whenever a new mouse event is reported. 

On top of basic interaction events such as mouse button clicks and keyboard presses, we 
can define some derived events such as double clicking of a mouse button. Depending on 
the underlying window system, such synthetic events may not be supported directly, but 
defining an abstraction that manufactures them is straightforward: 

doubleClick :: Widget h => Int -> ha 10 (h a) 
doubleClick msecs h= do 

mouse <- catchMouseEv h 

forkIO (clickTracker Nothing mouse) 

return (setDH (getDH mouse) h) 

where 
clickTracker :: Maybe (TimeStamp, ButtonNO) -> Mouse -> ID 

clickTracker last-click mouse = do 

ev <- hGet mouse 
if isMouseDown ev then 

case last-click of 
Nothing 

do 

hPut mouse ev 

clickTracker (Just (getTimeStamp ev, 
getButtonNo ev)) 

mouse 
Just (ts, b-no) 

if (getButtonNo ev == b-no) 
(getTimeStamp ev - ts <= msecs) then 

do 

hPut mouse (mkDoubleClickEv ev) 

clickTracker (Just (getTimeStamp ev, 
getButtonNo ev)) 
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mouse 

else 
clickTracker Nothing mouse 

else 
clickTracker Nothing mouse 

mkDou bleClickEv : -: 'DeviceEvent DeviceEvent 

The doubleClick abstraction is following a, by-now familiar pattern, intercepting mouse 

events with catchMouseEv, and creating a separate process to monitor these. Whenever a 

mouse button event is caught, the clickTracker will compare it with the time stamp of 
the previous mouse, click. If they're- close enough in time, the mouse click will be treated as 

a double click, and , communicate this to the user interface component being encapsulated 
by doubleClick. 

Another example of what can be done using the combining forms for catching user events) 
is keyboard accelerators, transforming the interpretation of key presses. Here is a button 

extended with keyboard shortcuts, pressing u is interpreted as a mouse button down event: 

accelButton :: Picture -> Component (AppH 0) 

accelButton Pic env = do 

btn <- button Pic env 
ip <- catchDeviceEv btn 

forkID (accelTrack ip) 

let accBtn-h - mkAppH ip (hGet btn)(hPut btn) 

return accBtn-h 

accelTrack ip a- do 

ev <- hGet ip 

(if isKBEvent ev then 

case toLower (keyValueToChar (getKeyValue ev)) of 
lul hPut ip (mkMouseButtonEv Down ev) 
Idl hPut ip (mkMouseButtonEv Up ev) 

- -> hput ip ev 

else 
hPut ip ev) 

accelTrack ip 

mkMouseButtonEv :: PressedState -> DeviceEvent -> DeviceEvent 
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The accelButton action encapsulates a push button with catchDeviceEv, creating a pro- 
cess to listen for events being transmitted to the button. Upon seeing keyboard events 
representing hits on keys u and d, these events are transformed into button click events. 

Notice that the nested application of catchDeviceEv being performed here, once at the 
keyboard acceleration level, and another inside the button abstraction for catching mouse 
clicks. The distribution of events is top-down, so the outermost event filter (the accelerator 
in this case) will see the events first. This filter gets to decide whether to interpret, transform 
or pass on the user events to the handle it is encapsulating. A top-down distribution of 
user events has benefits over the more conventional bottom-up style used in many user 
interface toolkits, as behaviour can now be overridden and transformed at will, without the 
cooperation of the component being encapsulated. 

5.5 Adding layout 

Up until now, a primitive graphical output abstraction, the glyph, has been used as a 
basis to create a collection of user interface abstractions, ranging from a simple output-only 
label to components that respond and interact with the user. Normally, a user interface 

application consists of more than one component, so we need a mechanism for combining 
the presentation of multiple components together. 

In the introductory example of this chapter of a counter we avoided the question of how to 
describe the physical laýout of the label and the button. The user had to arrange the two 

separate windows. Clearly, this is not a viable strategy in general, and in this section we 
look at how to create and use abstractions for presenting a collection of components. 

5.5.1 Pairwise tiling 

A simple and effective way of arranging a set of components is to tile them either horizontally 

or vertically. For instance, here is the introductory counter example re-done, the button 

and label appearing next to each other in a window: 

beside :: (Widget, ht, Widget h2) => hl a h2 b -> DH 

counter :: Component DH 

counter env = do 

lab <- label "Oil env 
btn <- button (text "Inc") (+I) env 
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Figure 5.9 Using beside to 1; ýyoiit components. 

forkIO (countLoop 0 lab btn) 

return (btn 'beside' lab) 

main = do f wopen counter ; return () I 

The counter component creates a label and a button component, as before, with tile 

comiting behaviour defined as expected. As seen on the screen shot in Figure 5.9, tile 

beside combinhig form arranges the two components horizontally. 

The beside laýyout operator takes a pair of handles as arguments and returns a display 

11,11ldle Omt, when realised, takes care of arranging the two components next to vad, other. 
'J'o I-ecap, heing an instance of the Widget type class signals that a handle represents a i1ser 
inted"Ice component, i. e., that it, is possible to get at its display handle: 

class Widget h where 

getDH :: ha -> DH 

setDH :: DH -> ha -> ha 

A display is t, he sYste'll-level represeirt, ation of a user int, erface component- Amongst, 

oj, jj(ýJ. thiligs, it, provides all interface for setting and querying the geometric properties of a 

coulponent- And, since beside is only concerned with presentation, its only constraint oil 
Hie argument handles is that it is possible to get at the 'user interface part', ix, their displav 

11,111(Ijes, t, o cont, rol the size and imsition of' the components. The combining forin does 

return ;I (IiSI)1; 1. v 11,111div that Inallages the horizontal arrangement of the two componeilts. 
For inst'ance, whenever 1-he beside display handle is asked to change its size, the new sizes 
for its (. 1111(ji-ell are computed and resize commands forwarded. The det. ails of how this is 

dolle are explained ill Section 6.1. 

Ret m-ning to beside, it is also possible to nest applications to it: 
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fours :: Widget h => Eh a] -> DH 

fours Ehl, h2, h3, h4l - 
beside (beside hl h2) 

(beside h3 h4) 

where f ours aligns four components horizontally. A variation on this layout is quad, which 
uses above, the tiling dual to beside: 

above :: (Widget hl, Widget h2) => hl a -> h2 b -> DH 

quad :: Widget h => [h a] -> DH 

quad [hl, h2, h3, h4l = 

above 
(beside hl h2) 

(beside h3 h4) 

quad Is = error (showString "quad: expected 4 elements, not 
shows (length Is) 'An") 

quad takes four handles of identical type and arranges them in a rectangle: 

labels :: String -> Component DH 

labels str env - do 

cs <- mapM (\ v -> label v env) (words str) 

return (quad cs) 

main 10 

main do 

wopen (labels "A nested layout example") 

return 0 

Figure 5.10 shows the screenshot when running the above application. Notice the restriction 
on quad's type:, only handles of the same type can be grouped together in a list. Hence, it 
is not possible to group together labels and buttons like this, 

layout btnl btn2 labl lab2 = quad [btnll, btn2, labi, lab2l 

since the list would not be well-typed. Instead, the handles passed to quad must be coerced 
1ý1 i explicitly to the same handle type: 

layout btnl btn2 labl lab2 =- -I 
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Figure 5.10 Nested applications of above. 

quad ((EgetDH btnl, getDH btn2, 

getDH labl, getDH lab2l) :: [DHI) 

All handles to iiser interface components have a disphty handle embedded inside theiii, so 
bY applYing getDH when constructing quad's argument list, different types of user iilt(, rfa, (-(, 
c(miponents can be presented together. This explicit coercion of arguments is not ail ideal 

solution, but, there doesn't, seem to be a way around with Haskell's type system. 

The tiling layout forms call be generalised to handle a list of handles: 

besides, aboves :: Widget h => [h a] -> DH 

besides ls = foldr (beside) nullDH ls 

aboves ls = foldr (above) nullDH ls 

nullDH :: DH 

The aboves fuliCtiol, is 1), Issed a list Of ('0111ponelits, which will be tiled vertically from top 

tO bottmn. The nu11DH is a display handle representing the simplest possible user interface, 

with no extent, appearall(T 11or interactive behaviour. 

The ; 119()"it III" fol, (*()"'I)lltillg 1101A' Inuch space, cither child is allOCated is very simple, 
ba. sed ()I] thv natural sizes Of t1W two col"Imnents, the proportion allocated ill the tiling 

staý, s cmistant (hiring resizes: 

beside_size :: Size2 -> Size2 -> (Ratio, Ratio, Size2) 

beside-size (Size2 wl hl) (Size2 w2 h2) 

let 

wl+w2 

pi = wi/w -- prop. of width allocated to left 
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p2 = I-pl -- prop. of width allocated to right 
in 
(pl, p2s 
Size2 w (max hi h2)) -- size of tile box 

beside-resize Ratio Int Ratio Int 
Size2 (Size2, Size2) 

beside-resize pi p2 (Size2 w h) 

(Size2 (toInt (pl fromInt w)) h, 

Size2 (toInt (p2 fromInt w)) h) 

The beside-size function computes the natural width and height of the tiling box together 
with how large a proportion of the widýh is going to be allocated to either component. The 

proportions are used by beside-resize to compute the new widths whenever the box 

occupied by beside is told to change its size. 

In addition to managing the position and size of its two components, the beside combining 
form is also responsible for distributing user events to the appropriate component, i. e., for 

each interaction event, the event coordinate is used to decide which of the two children the 

event should be forwarded to. 

5.5.2 Boxing it up 

The layout abstractions beside and above provides a convenient way of tiling a set of 
components. However, the level of control of how the components should adapt to changes 
in size to the overall box is limited. There are several cases where the additional control is 

needed. For instance, some components may have a minimum size that their output area 
should not be pushed beyond, as there is no way of faithfully reproducing their content 
at sizes smaller than this, e. g., a glyph displaying a bitmap may not be able to shrink it 
faithfully. The be side and above combinators allocate a proportion of the size of the overall 
bI ox to its components, regardless of any minimum sizes. 

A: ýother example of where we would like to have additional control over resize behaviour, 
is that sometimes, some components may be more willing to resize than others, e. g., for a 
drawing editor, an increase in window size for the editor should result in the drawing area 
becoming larger, but the control panels should stay at their constant sizes. To be able to 

express this, we need something beyond above and beside. , 

common and well-tried model for expressing more flexible tiling layouts is the TFX model 
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type GLength = Unit 
type WillOrder = Int 
type Willingness = Int 

data GHint 
GHint f 

nat-size GLength, 

min-size GLength, 

stretch (WillOrder, Willingness), 

squash (WillOrder, Willingness) 

data Geo 
=Geo 

GHint 
GHint 

Space GHint 

Figure 5.11 Geometric attributes of a user interface component 

of boxes-and-glue. In addition to natural size, each component has a set of geometric re- 
quirements or attributes that a layout function will take into consideration when computing 
the size and position of its children. Attributes such as how willing is the component to 

change size from the natural dimensions specified, or the minimum size of the component. 
To represent these attributes in Haggis, the Geometry type in Figure 5.11 is used. 

A value of type Geometry represent the geometric requirements of a user interface conj- 
ponent, and specifies the geometric 'hints' in either one or two dimensions. Except for 

components repres 
, 
enting space, a user interface component specifies its geometric hints 

both horizontally and vertically. The attributes specify: 

o Natural size. 
A component will be displayed at its natural size in one direction unless it exceeds 
some external constraint, e. g., the maximum size of the window you're displaying it 
in. 

o Minimum size. 
A component should not be displayed at sizes smaller than this. If it is, the content 
cannot be displayed, or if it can, not faithfully so. 

o Stretch- and squashiness. 
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How willing the component is to change from its natural size. The will is represented 
as a two-dimensional quantity, the willingness order and the will within that order. 
When computing the layout,, the layout algorithms may sort the components according 
to their willingness, and allocate size based on it. 

The stretching properties are treated separately from squashing, as components might 
be very willing to expand, but not to contract. I 

In Haggis, all display handles can be queried for their Geometry attribute, something the 
following layout 'boxing' abstractions make good use of. , 

hbox, vbox :: Widget h => [h a] -> DH 

The hbox function takes a list of user interface handles, and returns a new display handle 

that, when realised, will arrange the list of components horizontally from left to right. This 
display handle has a Geometry value attached to it 

' 
that describes the geometric attributes 

-of 
the resulting box. Using hbox, creating an beside-like abstraction is straightforward: 

beside :: (Widget hl, Widget h2) => hl a -> hl b -> DH 

beside hl h2 = hbox [getDH hi, getDH h2l 

Since hbox expects a list of user interface handles, all of the same type, the two different 

user interface handles passed to beside axe coerced to display handles first. 

This implementation of beside is more flexible than the one presented in the previous 

chapter, and is only intended as an illustration of the basic kinds of abstractions that can 
be created with hbox. When an hbox is told to change size, it recomputes the new sizes of 
its children by taking into consideration the Geometry values of its components, whereas 

.,, the basic beside combinator outlined eaxlier just used the natural sizes of its children when 

computing their new sizes. 

To make any use of the Geometry attributes, we need some way of setting the value attached 

to a user interface component. To do this, the transf ormGeo combining form is provided: 

transformGeo :: Widget h 

=> (Geometry -> Geometry) 
h 

-> 

attributes of a component by applying a function that transforms -It changes the geometric 

the current Geometry value into a new one. The handle returned by transf ormGeo has tile 
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transformed geometric attribute attached to it. 

The transf ormGeo abstraction is the most general abstraction for changing'the Geometry 

value of a component. Several, more specialised abstractions for setting the geometric 
attributes can be created using it - Figure 5.12 shows some of them. 

These abstractions can now be used to control the resize behaviour of components: 

pair :: Component DH 

pair env - do 
btnl <- button (text "Left") env 
btn2 <- button (text "Right") env 

return ( 

hbox [btnl, 

fixedW btn2l) 

The pair action creates a pair of buttons, arranging them next to each other, as seen in 
Figure 5.13. The width of the second button is fixed with the help of f ixedW. As a result, 
whenever the size of the box occupied by pair is told to change, changes in width affect 
the left component only. Normal to the tiling direction, both components' height axe equal 
to the height of the hbox bounding box. 

By tuning the geometry attributes of the components presented, better control can be had 

over how components should adapt to changes in size. Sometimes it is useful to mix the 

presentation of 'real' user interface component with components that just occupy space. 
This is provided with the help of space: 

space :: GLength -> DH 

The space function creates a display handle with no output, but with extent of fixed width 
or height (depending on the context in which it is used. ) Using it, an abstraction that left 
justifies the output from a component, becomes just: 

justifyLeft Widget h => ha -> ha 
justifyLeft h 

setDH h$ 
hbox [withStretch (0,1) (getDH h), 

withStretch (1,1) (space 1)] 

The space used inside the hbox is made stretchier than the component, so when the width 
of the hbox changes, the space component on the right will soak up the change. 
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A variation of justif yLef t is an abstraction for centring the output of a component: 

centreDir :: Widget h => UDHI -> DH) -> ha -> ha 

centreDir fh= 

setDH h$ 

f [withStretch (1,1) (space 1), 

withStretch (0,1), (getDH h), 

withStretch (1,1) (space 1)] 

centreV, centreH :: Widget h -> ha -> ha 

centreV = centreDir (hbox) 

centreH = centreDir (vbox) 

centre:: Widget h => ha -> ha 

centre = centreV . centreH 

The implementation is analogous to that of justif yLef t, this time the centred component 
is padded with more stretchy space on both sides. The centre abstraction arranges a 
component in the middle in both directions, applying the horizontal and vertical centreing 
functions in turn, nesting the application of hbox inside a use of vbox. Figure 5.14 shows 
the centre abstraction in use. 

Another example of nested applications of the boxing layout abstractions, is when creating 
a two dimensional table layout: 

table :: Widget h => [Eh all -> DH 

table lss - 
let rows = map (hbox) lss in 

vbox rows 

The table takes a list of list of user interface handles as argument, a list of user interface 

handles representing a row. After having constructed each row, the rows are placed on top 

of each other vertically. 

5.5.3 Constrained boxing 

The hbox and vbox abstractions create a bounding box big enough to hold the contents of the 
box, computing their Geometry based on the geometries of their children. An alternative 
approach is to instead pass the boxing combinator the Geometry it should assume, and 
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instead it will have to fit the children it is presenting within that from the start. This is 
done by the 'parbox' abstractions, which are patterned on 7ý-, X parboxes: 

phbox, pvbox :: Widget h -> Geometry -> Eh a] -> DH 

The extra Geometry argument allows you to specify boxes that should have fixed widths 
and heights, and layout the components within the box accordingly. Figure 5.15 shows the 

phbox in action. 

5.5.4 Computing the box layout 

To compute the initial size and positions of components within a box and subsequent resizes, 
the boxing layout abstractions use the following two functions: 

compute-box BoxType [BoxInfol -> (BoxInfo, [BoxInfol) 

resize-box BoxType BoxInfo -> (BoxInfo] -> [BoxInfo] 

type BoxInfo 

(Rectangle, position and size within parent coord. system. 
f Geometry) geometric hints 

data BoxType 

- VBOX 
HBox 
PHBox Geometry 

PVBox Geometry 

Given the geometric attributes and current size and position, compute-box computes the 
Geometry for the whole box and the initial size and position of its children. Similarly, 

whenever the box is resized, resize-box implements the boxes-and-glue layout algorithm, 
and will compute the new configurations for the children within the box. 

The implementation of box is then 'just' responsible for gathering together the BoxInf o for 

each child and invoke the resize-box whenever the box itself is resized. But how do we 
actually implement these boxing abstractions? That is the topic of the next section, where 
the basic abstraction for implementing tiling layouts is presented. 
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5.5.5 Building layout abstractions 

The hbox layout operator isn't primitive. It is built using the basic layout abstraction Tiler. 

The Tiler takes care of the lower-level interaction with the tiled components, allowing you 
to simply instantiate the appropriate tiling layout. A Tiler is created with mkTiler: 

mkTiler :: TilerMethods -> Component Tiler 

type Tiler = Tiler-t Void 

instance Widget Tiler-t where fI 

Given a record of tiling methods that collectively implement the physical layout of a set 
of tiled components, mkTiler returns a Tiler handle which implements and manages the 
layout abstraction. The methods contained in the TilerMethods dictionary are: 

data TilerMethods 

TilerMetods ( 

compute-geo":: 10 (Size2, Geometry, [TileInfol), 

resize :: Size2 -> Geometry -> 10 [TileInfol 

I 

data TileInfo 

TileInfo f 

bbox Rectangle, 

geo Geometry, 

dh DH 

I 

Notice that the Tiler does not itself keep track of the components being tiled, that is the 

responsibility of whoever creates calls mkTiler. One reason for this decision is that it avoids 
fixing on a particular data structure to use for the Tiler, which then every use of it must 

adapt to. Instead, the methods in the TilerMethods record will internally share access to 

the set of components, using whatever data structures that is appropriate. 

The TilerMethods dictionary contain methods for computing the initial size and resizing 

the Tiler contents. The compute-geo method returns the initial size and geometry for both 

the tiling bounding box and the children. The TileInf o type records the per-component 
information required, holding the current size, geometry and display handle of a component. 



130 CHAPTER 5. COMPOSING HAGGIS 

Using the list of TileInf os returned by compute-geo, mkTiler takes care of communicating 
to each component their initial size and position. Similarly, the resize method computes 
the new arrangement of its children at a given size, and returns an updated set of TileInf o 
values. 

To illustrate how the Tiler abstraction'can be used to create new layout abstractions, Fig- 

ure 5.16 gives the implementation of bordered, which adds a border around a component. 
The example program in Figure 5.17 shows how this new abstraction can be put to use. 

Some notes on the implementation bordered: it makes use of onRealise to create the 
display handle returned from the abstraction. It takes a pair of arguments, 

onRealise :: DH -> (DH -> 10 DH) -> DH 

an existing display handle, and an action for c' rea ting a new display handle. The second 
argument is given the realised representation of the display handle given as first argument. 
Display handles have a 'phase' distinction, being either realised or not. Section 6.1 presents 
display handles in some detail and explains why the distinction between being realised and 
not is needed. It is only when a display handle is realised that it can be queried for its 
geometry, which we need to do for bordered in order to work with TileInf o values. 

The implementation also makes use of the function expandGeo for changing the size of the 
natural and minimum size of a component: 

expandGeo :: Size2 -> Geometry -> Geometry 

which is provided as part of the Haggis library. 

5.5.6 Embedding a component 

The bordered abstraction is an instance of a more general class of layout abstractions that 
decorate a component, embedding it inside a container. The generic abstraction for this 
sort of layout is the container: 

container :: Widget h 
(Size2 (Size2, Rectangle)) -- initial size 
(Size2 Rectangle -> Rectangle)-- resize 
Maybe DH background 

-> -- embeddee 

-> 
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Given functions for dealing with change in size, and perhaps a component to use as back- 

ground, container embeds a component. One layout abstraction that is implemented in 

terms of container, is the framing combinator: 

frame :: Widget h => Unit -> Size2 -> Relief -> ha -> ha 

data Relief = Raised I Sunken I Ridge I Groove I Flat 

The f rame abstraction is useful whenever you want to put some spacing between compo- 

nents, Figure 5.18 shows what it looks like when used. 

5.5.7 Free-form layout 

The most general of all layout abstractions is the composite container, which provides an 

rectangular surface where components can be placed, freely moved around and interacted 

with: 

compositeContainer':: Maybe Size -> Component CompositeContainer 

Given an initial size, compositeContainer returns a CompositeContainer handle whicli 
can be used to place user interface components onto the surface that it manages: 

placeComponent :: Widget h 

=> CompositeContainer 

-> Coord2 

-> 

-> ID CompositeContainerElt 

The placeComponent adds a component to the container, returning 

a CompositeContainerElt handle that can then be used to move and resize the component. 
Figure 5.19 shows a selection of the supported functions over CompositeContainerElt 

handles. 

The CompositeContainer takes care of managing event distribution and the redisplay of 
the components it contains. No assumptions are made about the layout and arrangement 

of the components present inside the container. Figure 5.20 shows a screen shot of a set of 

overlapping buttons within a composite container. 
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5.6 Summary 

We have in this chapter introduced the main features of the Haggis user interface framework. 
Haggis represent user interface components as virtual 1/0 devices which can be combined 
together in a number of different ways to build new abstractions. The support for building 

composable user interfaces covered the description of the physical appearance of the user 
interface, how new interactive behaviour could be constructed and the creation of new 
application behaviour in terms of existing ones. 

This chapter's presentation of Haggis differs from the ones in [FPJ95a, FPJ96, Fin96] in its 

use of type classes to organise the programmer interface to virtual 1/0 devices. 

The presentation of how Haggis supports three types of composition, presentational, be- 
havioural and application or semantic composition, highlights similarities that Haggis shares 
with other user interface systems. Took's UMA architecture [Too9Oa] structures a user in- 
terface application into an application and a user interface surface part, which can be 
broken up into a medium part (presentational) and a user part (behavioural. ) Similar splits 
in functionality can be found in various variations on a Model-View-Controller pattern 
[KP88, Hi186, Cou87, HBP+93]. 

The next chapter goes under the hood, and considers some of the infrastructure that un- 
derlies the programmer interface to Haggis presented here. 
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withGeo :: Widget h => Geometry ha -> ha 
withGeo geo = transformGeo (\ 

- geo) 

withSquashX, 
withSquashY, 
withStretchX, 
withStretchY Widget h 

(WillOrder, Willingness) 
ha 
ha 

withSquashX squ = transformGeo f 

where 
f (Geo ghx ghy) = Geo ghxfsquash=squl ghy 
f (Space gh) = Space ghfsquash=squl 

withMinSize :: Widget h 
Size2 
ha 
ha 

withMinSize (Size2 w h) - transformGeo f 

where 
f (Geo ghx ghy) = Geo ghxfmin-size=wl ghy(min-size=hl 
f (Space gh) = Space gh 

fixedW Widget h => ha -> ha 
fixedW transformGeo f 
where 
not-willing = (0,0) 

:f (Geo ghx ghy) = 
Geo ghx(min-size = nat-size ghx, 

stretch = not-willing, 
squash = not-willingl 

ghy 
f (Space h) = Space hfmin-size = nat-size h, 

stretch = not-willing, 
squash - not-willingl 

--similarly for fixedH 
fixedSize Widget h => ha -> ha 
fixedSize fixedH - fixedW 

Figure 5.12 Geometry attribute abstractions 
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Left Right 

Figtire 5.13 Nlakhig a component rofiiso to resize. 

Fo- IxII 

Middle 

Figure 5.14 Centreing a component. 

Button-1 

Button-2 

Button-1 Piittnn-9 

Figure 5.15 Constrained boxing in action. 
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bordered :: Widget h => Size2 ha -> ha 
bordered (Size2 w h) wdgt 

setDH wdgt $ 
onRealise (getDH wdgt) wdgt-dh 

let 
g- getGeo wdgt-dh 
mkTileInfo r= TileInfo ( g=geo, bbox-r, dh-wdgt_dhl 

sz-var <- newVar (Size2 0 0) 
let 

resize sz@(Size2 cw ch) - do 
let 

cwl = cw - 2*w 
chl = ch - 2*h 

writeVar sz-var (size cwl chl) 
return (mkTileInfo (rect wh cwl chl)) 

compute-geo = do 
let (Size2 nw nh) = natSize g 
return (rect 00 nw nh, 

expandGeo (size (2*w) (2*h)) g, 
wdgt-dh) 

tiler <- mkTiler (TilerMethods resize compute-geo) 
return (getDH tiler)) 

Figure 5.16 Putting a border around a component. 
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main = do 

wopen 
env -> do 
btn <- button (text "Bordered") () env 
return (bordered (size 20 10) btn)) 

return 0 

Bordered 

Figure 5.17 Adding border to a button 

Figure 5.18 Framing a component. 
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type ContElt = CompositeContainerElt -- shorthand 
moveContainerElt ContElt Coord2 10 
translateContainerElt ContElt Translation 10 
scaleContainerElt ContElt Scaling 10 Scaling 

deleteContainerElt ContElt 10 () 

inContainerElt ContElt Coord2 -> 10 Bool 

raiseContainerElt ContElt 10 
lowerContainerElt ContElt 10 

getContainerEltBBox ContElt 10 Rectangle 

getContainerEltGeo ContElt 10 Geometry 

Figure 5.19 CompositeContainerElt opci-at ions. 

Figure 5.20 'I'lic conilmsitc contamer at w()rk. 
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/-III 
ý,,. L. Lapter 

The implementation of Haggis 

Haggis has so far been presented as consisting of a set of primitive types and building blocks 

on top of which we've seen how a large set of user interface abstractions can be constructed. 
This chapter looks at how these primitives are actually implemented in the underlying lan- 

guagq Haskell. The goal of the chapter is to give an overview of the implementation work 

required to provide the user interface framework we've used so far. An exhaustive presen- 
tation of the programming abstractions provided by Haggis can be found in its reference 

manual [Fin96]. 

6.1 Display handles 

The display of the graphical surface of a user interface is conveniently structured as a 
hierarchy. At each level of the hierarchy, a layout container is in charge of the placement 

and size of a set of components, some of which may themselves be containers that manage 
their own set of components. In the case of Haggis, the hierarchy does not just control 
the presentation of the interactive graphical surface. The container (the parent) is in full 

control of its children, controlling its display and general interaction with the external 

window system. For instance, the container is responsible for forwarding keyboard and 

mouse events to its children. Commands and events are distributed from the top down; at 

the top, commands and events are fed in from the external window system, being filtered 

and transformed down the hierarchy until consumed by a component. 

In Haggis, this hierarchy is built out of display handles. The user interface nature of 

a component is represented by a display handle, it provides an interface through which 
the graphical surface of the component can be managed. At the programmer level, we 

represented the user interface nature of a handle by membership of the Widget type class: 

139 
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class Widget h where 

getDH :: ha -> DH 

setDH :: ha -> DH -> ha 

A display handle is represented by the abstract type DH, and the Widget class provides 
overloaded operations for getting and setting the display handle associated with a user 
interface component handle. 

The display handle type is abstract, but new display handle values are created using mkDH: 

mkDH :: (SystemCmd 10 0) 
(DeviceEvent -> 10 
UO Size2) 
(10 Geometry) 

->, DH 

It takes four separate 10 actions that collectively implement the behaviour and look of a 
'7- ''" 

user interface component. The first action handles all the system commands. It takes an 
argument of type SystemCmd, a data type that ranges over the different commands that 

can be sent to a component. Figure 6.1 gives the complete definition of the type, but it is 
instructive to look at what the individual commands do: 

9 Resize newWidth newHeight trans 

A component does not control its own size nor position, but is told its dimensions 

via the Resize command. Whenever the output area allocated to a user interface is 

changed, the'layout is recomputed and the children of a layout container will be told 
their new sizes. 

The transformation matrix trans, transforms the local coordinate system of the con, - 
ponent to the 

' global coordinate system in which the component is to be displayed. It 
is merely recorded when the Resize command happens, but used when the component 
subsequently needs to redisplay itself. 

9 DrawWith painter 

The DrawWith command changes the painter that a component should use when'it 
displays its contents. All display handles have associated with them a current painter$ 
the DrawWith command replacing the current one. The painter argument is identical 
to the data structure used in Section 2.10 to render Picture values. It is a dictionary 

of methods implementing the various drawing operations needed to render a Picture 

on a particular graphics device. 
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One typical use of the DrawWith command is to temporarily replace the painter, e. g., 
by temporarily attaching a PostScript painter to a display handle, the appearance of 

a user interface can be captured in a readily printable form. 

4P Repair damage 

The repair command tells the user interface component that part of its output area 
has been damaged and needs to be redisplayed as quickly as possible. When receiving 
this command, the user interface component will redraw the damaged region using its 

current painter. 

* ClipRegion region 

A user interface component might be partially obscured by other user interface coln- 
ponents, and the MpRegion command informs a component what part of its output 
area is currently obscured. The component is obliged to take the clipping region into 

consideration when rendering. 

o CloseDown 

This command is issued when you want to close a component down. When a compo- 
nent receives Shutdown it is required to quit, unconditionally. 

Focus takeft 

A user interface component can ask to become the focus of input device events such as 
keyboard presses or mouse movement. It does so by requesting focus from its parent, 

as explained in a later Section 6.1.1. 

Input device event distribution is normally based on mouse pointer coordinates, but 

by acquiring input focus, device events will be forwarded indiscriminately to a selected 

component. When a component receives the Focus command, it is notified whether 
it has gained or lost focus. The component should then inform the user about the 

change in focus, e. g., when a text input field gains input focus, it will perhaps dra%v a 
highlighting frame around the input field. 

9 ParentContext upHandler 

The ParentContext command registers a communication link from the child back up 
to the parent. By using the up handler supplied, the child can send requests to the 

parent., The range of requests possible together with the type of upHandler is shown 
in Figure 6.2 and presented separately in Section 6.1.1 below. 

Parental control is the default for the hierarchy of display handles, with the layout 

container ordering its children to redisplay, assume a particular size and position etc. 
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data SystemCmd 
Resize Int Int Transform Draw Painter 
Repair (Portion Region) CloseDown 
Focus Bool ParentContext UpHandler 
ClipRegion (Portion Region) 

Figure 6.1 User interface component system commands 

type UpHandler = SystemReq -> 10 () 

data SystemReq 
RedisplayReq 
ResizeReq Size2 CompassDirection 
GeoChanged 
FocusReq DeviceHandler 
UnFocusReq 
DieReq 

Figure 6.2 System requests 

H, owever, the upHandler provides the child with a sink to forward requests in the 

other direction. For instance, suppose we're implementing a text input field and have 

to cope with the situation where the user types in a text string that won't fit the 

current size allocated to the field. The ResizeReq sz dir request can be used to ask 
the parent of the field for some more space. The parent is not obliged to honour the 
request, " or if it does, allocate the exact increase in size that was asked for. Hence, the 
input field cannot take on a new size until it is told so via a Resize command. 

Returning to the definition of mkDH, the second action deals with interaction from the user, 

receiving device events of type DeviceEvent forwarded from the parent. The DeviceEvent 

type is defined in Figure 6.3. It is a record type, holding information that is shared by all 
input device event together with an EventType value that more precisely records what kind 

of user interaction event it is. 

Notice that the device events could have been made part of the SystemCmd by includ- 
ing the DeviceEvent record as a constructor. The reasons for having them separate is 
that in the case of abstractions such as catchDeviceEv, it is only interested in intercept- 
ing device events, so by separating the handling of device event from system commands, 
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data DeviceEvent 
DeviceEvent ( 

, mods :: ModState, 

pos :: Coord2, 
tstamp TimeStamp, 

evt EventType 
I 

modifiers 
position of mouse pointer 

data EventType 
MouseButton PressedState MouseButton 
MouseClick MouseButton 
MultiClick MouseButton Int(-no of clicks-I 
MouseDrag MouseButton Coord2 
Key PressedState KeyValue 
Motion I Leave I Enter 

data PressedState = Down I Up 
type MouseButton = Int 

Figure 6.3 The DeviceEvent data type 

catchDeviceEv does not have to manually forward all the system commands. 

The EventType type has constructors for common types of low-level mouse and keyboard 

interaction events. The use of a data type restricts extensibility of the range of input devices 

and events supported by Haggis. Adding new ones would require changing the data type 

and recompiling all abstractions that use DeviceEvents. 

The last two actions passed to mkDH return the current size and geometry of the output 

area of a component. These two could have been combined into one action, returning the 
information as a pair. 

6.1.1 System requests 

The ParentContext command provides a child with an up handler through which a com- 

ponent can request its parent to change its size, for instance. The type of the up handler 

is 

type UpHandler = SystemReq -> ID () 
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with the SystemReq data type defining the set of requests the child can issue. The type is 

defined in Figure 6.2, with the requests performing the following functions: 

9 RedisplayReq 

This request is used to redisplay a component. When a parent receives a RedisplayReq, 

it tries to issue a redisplay command to the child that issued the request. 

9 ResizeReq sz dir 

Request the parent if 

9 GeoChanged 

Whenever the geometry attribute of a component is changed, 
the GeoChanged notification is issued. It tells the parent to update the 
Geometry information it may have cached for the child. 

o FocusReq 

Ask the parent for input focus, supplying the device handler dh, it should forward the 
device events if the parent decides to grant focus to the child. If the focus is granted, 
the child will be sent the Focus True command. 

UnFocusReq 

Ask the parent if a child can have its input focus dropped. If it is granted, the child 
will be sent the Focus False command. 

9 DieReq ,-ý 
This request informs the parent that the child wants to shut down. If the child is 

allowed to shut down, the CloseDown command is sent to the child. 

6.2 Display contexts 

When a user interface component is created, it needs access to information from the windoW 
system it will appear in and other pieces of setup information. This information is passed 
to all actions that create components through a display context environment. It consists of 
two different pieces, a Window and a Style: 

createDC Window -> Style -> DC 

getStyle DC Style 

getWindow DC Window 
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Since all actions that create a user interface component, take a display context as argument, 
we create a type synonym to capture this: 

type Component a= DC -> 10 a 

It could be argued that the passing of the display context should be done implicitly, using 
monadic programming techniques [Wad92], instead of relying on the programmer plumbing 
this environment around explicitly. The reason for not doing so in Haggis is that graphical 
user interfaces are treated as virtual 1/0 devices and interacted with just like any other 
1/0 device in Haskell. Programming 1/0 in Haskell means the use of the Ic monad, and 
it is unclear how to combine the ID monad with a monad that passed a display context 
environment in a programmer transparent and extensible manner. 

6.3 Accessing the window system 

The components do at various times have to access the external window system. Through 

the window handle that each component is passed in via its display context, the properties of 
the window system can be accessed. The Window interface'defines a set of abstract window 

system operations. Type signatures for a selection of them are given in Figure 6.4. 

One attribute of a window is that it has a painter. When used, the painter will render into 

the window, using whatever low-level graphics calls necessary. 

The operation setWindowHandle provides the interface between the display handles and 

a window system. It sets the display handle that is to appear within that window, and 
the display handle supplied is normally a hierarchy of handles. The window takes care of 
interfacing with the window system, and will convert and forward all the events it receives 
from the system to its display handle. In the case where the receiving display handle is a 
layout container, say, the latter will then take over and correctly distribute and forward the 

incoming events. The processing and delivery of events happens concurrently to the rest of 
the application, relieving the application from having to listen for external system events. 

6.4 Custornising components 

A user interface component can be configured in many ways, e. g., to ensure consistency of 
look, the combination of colours used in an application has to be consistent throughout. 
User interface components can have a number of attributes controlling the appearance and 
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getWindowPainter :: Window ID Painter 

getWindowSize Window 10 Size2 

getWindowPos Window 10 Coord2 

moveWindow Window Coord2 10 

resizeWindow Window Size2 10 

IredisplayWindow :: Window -> 10 () 

getWindowCursor 
setWindowCursor 

iconifyWindow 
getWindowIcon 
setWindowIcon 

Window ID Cursor 
Window Cursor -> ID 

Window 10 () i 
Window 10 Icon 
Window Icon -> 10 

getWindowTitle Window 10 String 

setWindowTitle Window String 10 

getWindowHandle Window ID DH 

setWindowHandle Window DH -> 10 

Figure 6.4 Window operations 

behaviour of their graphical surface. The simplest solution to customisation is to rebuild 
the application each time a change in appearance of the components is needed. This is 

clearly not practical f6r anything but the smallest of applications. 1 

Another problem of expressing the customisation of components using the same prograrn- 

ming language is that the wealth of options that can be set for a component, runs the 

risk of drowning the application in tedious detail. For example, the label action could be 

parameterised over all the options it supports: 

label :: Colour J-fg-I -> Colour f-bg-j 

-> Font 
BorderType 
Size2 

'Depending on the language and programming environment used, the pain threshold for the programmer 
will differ by quite a margin, i. e., making incremental changes such as modifying the background colour for 
all components in a programming environment that supports rapid prototyping, is not as onerous as doing 
the same operation with a batch compilation system. 
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->-Justification 
String 
Component Label 

Clearly, this is not a viable solution; the large number of arguments makes for hard reading 
(and use) of invocations of label. In Haggis, the problem of customisation of components 
is dealt with by the introduction of style environments. A style environment is a database 

of style attributes that can be queried when a component is created. For each of the 

options that a particular component supports, the style environment is consulted for what 

value to use. Based on the results of the queries, the component is created. To make this 

work, this assumes that all actions that create user interface components are passed a style 

environment, via the display contexts presented in Section 6.2. 

A style environment can either be created by reading it from a file or by supplying the style 

attributes in a list: 
I 

MkStyle [StyleValuel Style 

loadStyle String ID Style 

type StyleName = String 

type StyleValue = (StyleName, String) 

An entry in a style environment is called a StyleValue, a pair holding the name of the at- 
tribute and its corresponding value, both specified using character strings. The syntax used 
for StyleName is identical to that used by the X11 resource manager abstraction (Xrm) [S G 92]. 
Once having decided upon using style environments to deal with customisation, opting for 

the Xrm syntax was the sensible choice as it doesn't force the end-user to learn any new 

notation when using Haggis compiled programs. 

To query the contents of the environment, lookupStyle is used: 

lookupStyle :: Style -> String'-> ID (Maybe String) 

Given the style environment and the complete name of tile attribute we're interested in, 

lookupStyle returns a possible match. The names used are hierarchical, reflecting the 

context in which an attribute is needed, Le, for a label, the following name could be used 

when looking up the foreground colour to use, 

Counter. HBox. Label. foreground 
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The hierarchy levels are separated by dots, and in this case, the foreground attribute is 

prepended with the name of the component (Label), and the layout abstraction that con- 

trols the label (HBox. ) Counter is the name of the application. 

To specify the contents of a style environment, a StyleValue can give the name of the 

attribute together with its value, i. e., 

("Counter. HBox. Label. foreground", "blue") 

Wildcards can'also be used to match against parts that are either unknown or simply not 

of interest: 

("*. Label. foreground", "blue") 

("*. foreground", "Yellow") 

The first StyleValue will match against the foreground colour attributes of all labels, 

while the second matches against all foreground attributes. Asterisks denote zero or more 

name levels, and the matching algorithm used by lookupStyle gives these wildcards lower 

precedence than a string. This means that when querying with the string, 

Counter. HBox-Label. foreground 

the first entry will match rather than the second. 2 

'Style environments can be joined together with concatftyle: 

concatStyle, Style Style -> Style 

appendStyleValues-,::, [StyleValueI -> Style -> Style 

The expression concatStyle sl s2 creates a new style environment, where lookups are 
resolved by first trying s I, and if no match is found, s2 is used. 

Being able to combine style environments allow parts of an application to enforce the style 
defaults that should apply for it. For instance, the implementation of a push button appends 
its defaults to the style environment it is passed via the display context. 

AppendStyleValues augments a style environment, i. e., appendStyleValues vals (concaLtstyles 

sl s2) augments s2 with the vals style attributes. 

In addition to style attributes, the Style environment also accumulates the name and aliases 
to use when looking up style values: 

2 Assuming these are the only two entries in the environment matching a label's foreground, of course. 
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setStyleName StyleName Style Style 

addStyleName StyleName Style Style 

- addStyleAlias :: - StyleName -> Style -> Style 

The addStyleNarae combinator appends a name to the name, that is if the current name of 
sty is 

puzzle. board 

the expression addStyleName "piece" sty returns a style with the following name 

puzzle. board. piece 

A style name is a sequence of strings separated by periods. Additionally, a style can be 

associated with a set of aliases, which are useful when setting the defaults for a class of 
user interface components. To see why, the following pair of style attributes control tile 
background and foreground colour of a specific button: 

*. ok-button. background: midnightBlue 

*. ok-button. foreground: yellow 

However, sometimes it is useful to distinguish between a particular instance of a user in- 

terface component and its type or the group it belongs to, e. g., instead of setting the 
background colour of a specific button, we want to set it for all buttons: 

*. Button. *. background: blue 

Here, Button is the alias given to all components created from the function button. A 

user interface component can have multiple aliases together with a name. When looking 

up the style name takes priority over aliases, so the button named ok-button would have 

a midnightBlue background colour. 

To integrate the use of Style together with user interface components, the following func- 

tions are provided: 

withStyle [StyleValuel Component a Component a 

withStyleName StyleName Component a Component a 

withStyleAlias StyleName Component a Component a 

getstyle Component Style 
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lookupStyle :: Style -> StyleName -> 10 (Maybe String) 

The withStyle adds a set of style attributes to the Style environment passed via the 
Component type. The lookupStyle action does the lookup using the attribute name sup- 
plied and the style name accumulated by the Style. 

The Style type presented here draws upon ideas from the Style interface in Fresco[Fre94], 

and the older X11 resource manager abstraction xrm[SG92]. 

Wily use styles? 

The style environment was introduced to aid in the customisation of a component, but why 
opt for the solution just presented? There's a couple of motivations for doing so: 

Easier to prototype. 

The use of a separate resource mechanism to control the look and sometimes the feel 

of an application, is common in user interface systems with longer turnaround times. 
That is, user interface systems that rely on a compilation system with sufficiently high 

overhead to discourage tweaking and the experimentation with the configuration of a 
component. 

A style environment is separate from the application. For instance, an application's 
style attributes can be specified separately in a file. 

* Customisation via programming is hard. 

A component may have a wealth of configuration options that is supports. Using the 
abstraction mechanisms provided by the application's programming language, it is 
hard to come up with a solution for configuring a component without overloading the 
program with a lot of configuration specific information. 

Having a separate "language" for specifying the configuration attributes has the ben- 

efit of separating the application from the detailed listings of what style attributes to 
use. 

s User customisation. 

Style attributes can be specified in a file or on the command line, and provide a limited 
form of end-user programming. By modifying or adding to the style environment used, 
an application can be modified by a non-programmer. 
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It is worth noting that the Style environment relies on representing attribute values as 

character strings. This does introduce overheads of converting values to and from strings, 
but the relative ease by which attributes can specified/modified does make up for this. 

6.5 Realisation 

To easily and conveniently realise a user interface on your screen, Haggis provides a small 

collection of operations. The most common of them being wopen, 

wopen Widget h -> Component (h a) 10 (h a) 

mkDC StyleAttrs -> 10 DC 

realise Widget h => DC -> ha -> 10 

which takes care of creating a window to display a user interface within before attaching 
the display handle representing it to that window. 

A more flexible form of realisation is possible with the mkDC and realise pair, which 

separate the creation of a window and the subsequent realisation of a user interface within 
it. mkDC creates a display context containing a window and a toplevel style environment. 
The realise action then takes a handle from a component created using this display context 

and opens up the window and starts to forward commands and events from the external 

window system. 

The latter form of realisation is useful when you want to specify an initial style environment 
that contains information relevant to the creation of the window itself, i. e., in the case of 

an X Window System implementation, what display to create the window on: 

main = do 

env <- mkDC ["*. display: foo: 0.0111 

btn <- button (text "Greetings to foo") 0 env 

realise env btn 

6.6 Summary 

This chapter has given a quick overview of some of the important pieces of the implemen- 

tation underlying the programmer eye view of the user interface framework Haggis. The 

interface between this implementation and the Haggis programmer is display handles, and 
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the primitive abstractions that create display handles were presented. Additionally, the 

underlying protocol that display handles implemented were presented in some detail. 
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Evaluating Haggis 

The last two chapters have presented the features of the Haggis user interface framework 

in some detail. Prior to this, we explored in Chapter 3a number of user interface systems 

and their relative advantages and disadvantages from a programming point of view. So, 

how does Haggis compare to these? 

To try to highlight how the programming model that Haggis offers differ from that of other 

systems, this chapter presents the implementation of an example application. in Haggis 

and compares it to how the same application is expressed in two mainstream user inter- 

face frameworks, Java's Abstract Windowing Toolkit[GY+96] and the Tk toolkit of Tcl 

[Ous94]. Using these example implementations as a basis, we discuss how the different 

systems compare along a number of different dimensions. The goal here is not to try to 

answer conclusively whether Haggis is 'worse' or 'better' for writing graphical user interface 

applications, but to present an indicative evaluation of its relative strengths and weaknesses 

compared to other systems. 

7.1 Example: 15 puzzle 

The example used to compare the different systems is the fifteen puzzle, a board game that 

is small enough for the purpose of presentation here, but which highlights many features of 

a graphical user interface framework. 

The game consists of a four by four board with fifteen labelled pieces occupying all but one 

of the sixteen positions. The goal of the game is to arrange these pieces. Assuming the 

pieces have numbers in the range one to fifteen on them, the puzzle is solved by ordering 

the pieces in ascending order, left to right, top to bottom, i. e., the piece labelled one in 

the top lefthand corner, and the piece in the fifteen in the bottom row, third column. The 

153 
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Pieces 

Figure 7.1 The architecture of Haggis puzzle. 

empty hole occupies the bottom righthand corner. 

Only pieces immediately next to the unoccupied position on the board can be moved, 

vertically or horizontally, leaving a hole behind. 

7.2 The Haggis solution 

The short description of the, game presented above states the rules without mentioning user 
interface iss 

, 
ues such as what the pieces would look like and how the user can move then, 

about. Achieving this separation between the game ('the application') and its user interface 
falls quite naturally here, but it is worth trying to mirror it in an implementation. 

Starting with the Haggis version of the puzzle, Figure 7.2 shows the architecture of the 

solution., The middle component, Puzzle, takes care of the game control and is implemented 
by the puzzle action: 

puzzle :: Board Piece Pos 

-> Pos 
[Piece] 

ID () 

It accepts three arguments; the first argument is a board abstraction that given a value 
identifying a piece, returns its position on the board. The second argument is the current 
position of the hole on the board, and the last argument is a stream of values representing 
the sequence of moves performed by the user. 

The puzzle action checks each move to see if it is valid or not. If the piece the user wants 
to move is next to the hole, the piece is moved by updating the Board abstraction with its 
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new position, and the next move is considered with the piece's old position being the new 
hole. Illegal moves are simply ignored. 

The implementation of puzzle is as follows: 

puzzle board hole moves = 

case moves of 
0 return finished, no more moves. 
(m: ms) do 

pos <- pieceAt board m 
if pos 'nextTo' hole then do 

movePiece board m hole 

puzzle board pos ms 

else 
puzzle board hole ms 

The puzzle action is recursive, examining all the moves in the list it is passed before 

returning. 

The test for whether a move is valid or not is performed by the nextTo predicate: 

nextTo :: Pos -> Pos -> Bool 

nextTo (ax, ay) (bx, by) = (abs (ax-bx) + abs (ay-by» -- 1 

type Pos = (Int, Int) 

It checks to see if a pair of positions are adjacent to one another either horizontally or 

vertically. The representation used for positions is a pair of integers representing the x and 

y positions on the board. 

The association between puzzle piece and its position on the board is maintained by the 

Board abstraction, having the interface presented in Figure 7.2. It provides operations for 

moving a piece to a new position and querying the current position of a piece. 

The puzzle action describes 
' 
the game control logic, but how can we attach a graphical 

user interface to it? Looking at Figure 7.2 again, the Puzzle component is attached to the 
puzzle board component, which implements the graphical representation of the board. For 

the pieces, buttons with numeric labels are used: 
, 

piece :: Int -> Component (Button Int) 

piece val = button (text (show val)) val 
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data Board piece pos f- abstract type -1 

pieceAt Board piece pos piece 10 pos 
movePiece Board piece pos piece pos -> 10 

mkBoard (piece IG pos) pieceAt action 
(piece pos -> 10 0) movePiece action 
Board piece pos , 

Figure 7.2 The Board interface 

board :: Size2 -> Component (Button Int, Table) 
board szQ(Size2 w h) env = do 

pieces <- mkPieces 
let 
table-elts E(Pos, Button Int)] 
table-elts zip posns pieces 

in 
tab <- mkFixedTable (w, h) (1, I) table-elts env 
btn <- hCombine pieces 
return (btn, tab) 
where 

labels - 
mkPieces = mapM (\ x -> piece x env) labels 

posns = Ux, y) Iy <- [I.. hl, x <- [I.. wl I 

Figure 7.3 The 15-puzzle game board in Haggis. 

where button creates a push button with the first argument as label. When the button is 

clicked, the integer val is reported on the Button handle returned. 

To arrange the pieces, a fixed table layout abstraction is used. It takes care of displaying a 
set of user ' 

interface components in a two-dimensional grid. The width of each cell is equal 
to the maximum natural width of all the components; ditto for the height. 

Using the fixed table, the action for creating the puzzle board is shown in Figure 7.3. 

Given the board size, the board action constructs a table filled up with puzzle pieces. ý All 

but the cell in the lower righthand corner of the table is initially allocated a piece. 

The board action returns the handle to the fixed table along with a button handle re pre- 
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senting the join of all the pieces. The hCombine action takes a list of button handles and 
returns a new combined handle which reports a button click whenever any of the buttons 
it represents are clicked. 

To join the board presentation together with the part implementing the rules, the user 
interface needs to be dressed up as the Board representation of Figure 7.2 for thel puzzle 
action to use. The boardSetup action takes care of this: 

boardSetup :: Size2 -> Component (Button Int, Board Piece Pos) 

boardSetup (Size2 w h) env = do 
(btn, tab) <- board (size w h) env 
board-array ' <- newArray (1, (w*h-1)) undefined 

sequence (zipWith (writeArray board-array) [I.. (w*h-1)] posns) 
let 

board - mkBoard 
(readArray board-array) 
(\ Piece pos -> do 

old-pos <- readArray board-array piece 
writeArray board-array piece pos 

swapTableElts tab old-pos pos) 
in .I 
return (btn, board) 

where 
posns Ux, y) Iyx 

It creates the board of the right proportions, before setting up an array which maps piece 
labels to their position on the board. Using this array, a Board is created. Since the array 
maintains the mapping from labels to board positions, the first argument to mkBoard just 

indexes the array. Moving a piece is little more work, updating the array and moving 
the button to a new position in the fixed table. The boardSetup action return the Board 

together with the button handle representing all the pieces on the board. 

Finally, to hook the puzzle up to its graphical surface, nnPuzzle creates a window to display 

the board in and then starts playing: 

nnpuzzle :: Size2 -> 10 0 

nnpuzzle szQ(Size2 w h) - do 
(btn, board) <- wopen (boardSetup sz) 

cs <- toStream (hGet btn) 
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puzzle board (w, h) cs 

Since the puzzle action expects the sequence of moves to be represented via a list, the 

toStream helper function is used: 
7 

toStream :: ID a 10 [a] 

which, on demand, constructs a list of values by repeatedly performing the 10 action it is 

passed. The stream consists here of values coming from the user clicks on the puzzle pieces. 
When the puzzle action sees a legal move, it moves the piece via the movePiece action on 
the Board action. This has the effect of updating both the mapping of piece label to board 

position and moving the piece on the screen, but the details of how that is done is hidden 
from the view of the puzzle action. 

That completes the implementation of the fifteen puzzle for Haggis, Figure 7.6 shows a 
screen dump of the application running, and the code to implement is presented in its 

entirety in Figure 7.4 and Figure 7.5. 

7.3 The Java/AWT solution 

The Java programming language [AG96] comes with a standard set of class libraries for 
implementing graphical user interface applications, the Abstract Window Toolkit (AWT) 
[GY+96]. The Java version of the fifteen puzzle uses AWT to implement the interactive 

graphical surface of the puzzle. 1 

Before considering any user interface issues, the representation of a board is packaged up 
in a Board class: ýý 

public class Board 

private Object[][] board; 

public int width, height; 

boardo f this(4,4); 

board (int w, int h) I 
board - new Object [w] [h] ; 

'The solution presented here uses the version of AWT that was shipped with the Java Development Kit 
(JDK), version 1.0.1. At the time of writing, the current version of the JDK is 1.1.1, which changes AWT 
somewhat. 
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width - w; 
height = h; 

I 

public void setPos(int x, int y, Object on-off) ( 

board [xl [y] = on-of f; I 

public Object atPos(IInt x, int y) ( 

return board[xl[y]; I 

I 

It hides the representation of the two-dimensional board, providing methods for accessing 
and updating the board plus variables holding its size. Internally, the board uses an Obj e ct 
array to hold the'pieces, the Object class being the base class that all Java objects inherit 
from. Notice the parallel here with the use of type variables and parametric polymorphism 
for the Board Haskell abstraction in Figure 7.2. A type variable ranges over all possible 
values, just like Object. However, whereas the Board type in Haskell is parameterised over 
the type of its elements, the Board class is not. 

As in the Haggis version, the pieces of the puzzle are represented by push buttons. We 
factor out this choice of representation by creating a Piece class, which subclasses from the 

standard Button7 as shown in Figure 7.8. 

In addition to a pair of constructors, the Piece class overrides the push button's handleEvent 

method. This method controls how events are interpreted by a user interface component, 

and in the case of Piece, each event corresponding to a button click are caught. Tile 

handleEvent method returns a boolean indicating whether or not it handled the event. If 

the component didn't, the event is passed up to its parent in the display hierarchy. Tile 

reasons for doing this will become clearer after having looked at how the presentation of 
the game board is implemented. 

The implementation of the puzzle and game board is packaged up as an Applet, mak- 
ing it easy to embed inside a web browser. Figures 7.9 and 7.10 shows the code for the 

Fif teenPuzzle class, and Figure 7.11 has a picture of the applet running. 

The Fif teenPuzzle class implements both the puzzle control logic and the graphical inter- 

face for the puzzle. Its constructor shows some of the concerns of this class: 

gameBoard (int w, int h) ( 

Board = new board(w, h); 
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hole - new Dimension(w-l, h-1); 

setLayout(this); 

setupo; 
I 

It initialises the puzzle state, creating an abstract board of the right dimensions and 
a two-dimensional value holding the board position that is currently unoccupied. The 
Fif teenPuzzle class implements its own layout management, and setLayout registers the 

manager. In AWT, the interface LayoutManager specifies the methods and functional- 
ity of an object that wants to control the placement of a set of objects. In the case of 
Fif teenPuzzle, it takes care of the layout of the pieces on the board. The method at the 

core of the layout management is layout Container: 

public void layoutContainer (Container parent) 
for(int x=O; x< Board. width; x++) ( 

for(int, y7O; y< Board. height; y++) 
if (x hole. width 11 y != hole. height 

Component foo = (Component)Board. atPos(x, y); 
foo. reshape(x*50, y*50,50,50); 

} I 

It maps the position of a piece on the abstract board that the Fif teenPuzzle maintains to a 
position ý and siz e inside the display area maintained by a 
Fif teenPuzzle object. 

To implement the user interaction, the class also overrides the handleEvent: 

public boolean handleEvent (Event ev) 
if (ev. id - Event. ACTION-EVENT) f 

return (mouseUp(ev, ev. x, ev. y)); 
I else f 

return (super. handleEvent(ev)); 

I 

The puzzle pieces and the board cooperate here. Each time a piece is clicked on by the 
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user, it passes the event that signals this up to its parent in the display hierarchy, see 
Figure 7.8. The above handleEvent method catches these events, passing them to MouseUp 

which checks whether the button click indicated a valid move. The implementation of 
the mouseUp method is shown in Figure 7.10. If the move is a valid one, the abstract 
representation of the board is updated. To force the puzzle display to reflect the change, 
the contents of the container is invalidated. As a result, the layoutContainer method will 
eventually be called upon to reposition the pieces. 

7.4 The Tcl/Tk solution 

The next version of the fifteen puzzle is implemented in the language Tcl[Ous94] using its 

user interface toolkit Tk. Tel is a scripting language, where the emphasis is on making it 

easy to prototype or 'glue together' components of an application. These applications are 
often graphical, and the Tk toolkit provides a good fit for the kind of scripting that Tel is 

used for. 

The- solution to the 15 puzzle presented here is taken from a demo application included 

with the Tcl/Tk distribution. The implementation is split up and formatted into three 

parts, Figure 7.12 shows the code that creates the puzzle board. User interface elements 
are created with Tcl/Tk using the following syntax: 

ui-type instance-id [-optionl valll* 

That is, apart from giving the type of user interface element you want to create, you have 

to give the instance you're creating a name. This name is the handle by which you later can 
access and modify the properties of a user interface component. In addition to name, you 
can also set a number of configuration options, e. g., the -text option to a push button sets 
the button label. User interface components are wired into the application using callback 

procedures, specified via the comand option. For instance, the dismiss button, 

button $w. buttons. dismiss -text Dismiss -command "destroy $wIl 

has a callback procedure that destroys the toplevel. window of the puzzle when it is clicked. 2 

Figure 7.14 shows the code that creates and places the individual pieces on the board. 
Each piece is represented by a button, and the layout is explicit, placing each piece within 

2 Tcl has a number of mechanisms for delaying and controlling when an expression is evaluated. Enclosing 
a string within double quotes is one of them, delaying the interpretation of its contents. Hence, the destroy 
command is executed when the button is clicked, not when the button is created, which is clearly the 
behaviour we want here. 
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a display frame. Each piece has a callback procedure that calls puzzleSwitch, whose 
implementation is shown in Figure 7.15. The puzzleSwitch procedure implements the 

puzzle control, checking to see if a button click constitutes a valid move. If so, the piece is 

moved into the position of the current hole and the (global) data structure that holds the 

state of the board is updated. 

A screen shot of the Tcl/Tk version of the 15 puzzle is pictured in Figure 7.13. 

7.5 Evaluation 

Having gone through 
, 
three implementations of the fifteen puzzle in some detail, what dif- 

ferences do we see between them? To help structure the discussion of their differences, we 
evaluate the solutions along a number of different dimensions. The dimensions are based 

on some of 
, 
Green's cognitive dimensions[GP96] plus a selection of properties that are con- 

sidered desirable in user interface software. They are: 

Ease of changelviscosity. Pinning down a priori what is a convenient and effective 
graphical user interface for a particular application is hard. Commonly, this is an 
iterative process. As the overall design, implementation and testing of the application 
progresses, the interactive and presentational parts of it will also have to be changed 
and modified through a process of experimentation. A programming system that is 
less viscous will make it easier to perform such incremental local changes. 

Another positive aspect with a low viscosity programming system is that it promotes 
reuse; if it. is convenient for the programmer to incrementally modify and specialise 
an existing abstraction, that will be the preferred option rather than starting fron, 

scratch. However, the creation of an abstraction that can be reused doesn't come'for 
free. If the possibility of reuse is not taken into account when working on a design, any 
subsequent reuse is likely to be accidental, no matter how viscous the programming 
system is. 

Separation. Does the user interface system conveniently allow the programmer to 
separate distinct implementation concerns? A long and much sought after property 
for graphical user interface systems is the ability to separate the implementation of 
the interactive graphical surface from the rest of the application [ABD+89, Coc88, 
Too90b]. The components that are part of a separable user interface design are weakly 
co4; ed, the dependencies between them are kept to a minimum. By keeping the 
dependencies low and well defined, separation aids the dimension of viscosity. 
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9'Premature commitment. Does the programming system force you to make decisions 

on issues before you want to or have the information available? e. g., when designing 

the puzzle board, did the system force you to consider details of how each piece would 

communicate information to its parent? 

*., Abstraction. How well does the programming system support the creation of new user 
interface abstractions? In the case of the fifteen puzzle, did the different systems lead 

you to create any new abstractions? 

Other dimensions, such as viscosity and separation, are in part the result of how 

well a system supports user defined abstraction, but it is interesting to consider this 
dimension on its own. 

UI influence. How large an impact does the presence of a graphical user interface have 

on the overall solution? This dimension is related to that of separation, but differs in 
that it considers the logical separation between the components. 

Abstraction gradient. How well does the programming system scale? Implementing 

the simplest of programs in a system will require the programmer understanding of 
a base set of concepts and abstractions. The abstraction gradient dimension tries 
to gauge how the programmer abstraction load increases as the applications become 
larger and more diverse. For instance, an application that needs to organise its pre- 
sentation in a way that isn't supported by existing abstractions, may force the pro- 
grammer to have to learn and implement an additional set of abstractions. 

Rapid Prototyping How well does the system lend itself to the prototyping of user 
interface applications? This dimension touches upon characteristics of the system 
implementation, such as, is the time it takes between making a source code change and 
seeing the effect of it in a running application short enough for rapid prototyping to 
be feasible? Also, how much help does the programming language offer the prototype 

programmer? 

The cognitive dimensions of Green and Petre form a framework for performing broad-brush 

evaluation of programming notations. For our purposes here, only a selection of the cognitive 
dimensions is used, leaving out the ones that touch upon aspects of the programming 

environment and notational details. 

A summary of the dimensions is given in Figure 7.16, and with those in mind, it is time to 

evaluate the different solutions: 

o Separation 
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The fifteen puzzle does provide the opportunity for creating a solution where the 

concerns of the user interface is separated from that of the application (what there is 

of it here. ) The rules of how the puzzle pieces can be moved and the effects of a move 
are independent of what the pieces or board look like or behave. 

The, Haggis solution factors out the control of the puzzle into a separate piece, see 
the Puzzle module in Figure 7.4. The, function implementing the puzzle is defined 

as taking as input a stream of user moves, all of which are checked for validity before 

updating an abstract board. No mention is made of how the stream of moves map 
to the interaction performed by the user, nor how an update of the abstract board 

causes its graphical representation to be updated. 
At the user interface level, the pieces are combined together in two ways. First, 
the layout of the pieces is done through the use of a standard table abstraction and 
secondly the handles for the pieces are all combined together into one. The combined 
handle reports a value whenever a value is reported on any of the piece handles. 
Hence, the Haggis solution manages to separate the construction (and maintenance) 
of the display hierarchy from the handling of how user actions on puzzle pieces are 
communicated to the underlying application. This can be seen from the type signature 
of board in Figure 7.5, which returns a pair of handles, one representing the application 
view of the pieces, the other representing their physical layout. 

The Java solution in Section 7.3 does not have as clear a modular structure. The 

abstract representation of the puzzle board and the individual pieces is factored out 
into separate code chunks, but the main class Fif teenPuzzle has the responsibility of 
managing the physical presentation, puzzle logic and the handling of user interaction. 

Unlike the Haggis solution and its use of fixed tables, the Java version cannot directly 

make use of any of the standard AWT layout containers, and is forced to implement 
its own. 

' 
The FifteenPuzzle class implements the LayoutManager AWT interface 

and the code required to do so is not particularly complex, see Figure 7.9. Since the 
tabular layout used needs to keep track of its contents, the implementation has access 
to the Board object that holds the pieces. When the mouseUp method has validated a 
user move as valid, the Board object is updated to reflect the move and the contents of 
the layout container is invalidated, so that its layout is recomputed and redisplayed. 

The Tcl/Tk solution does not factor out any parts of the puzzle. 

* Premature commitment 
The Java solution forced the issue of how interaction on the puzzle piece had to be 
communicated to the board. In the version of the JDK used here, the progarnmer was 
forced to understand the event distribution model and how to implement a method 
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that overrides the default behaviour. Also, since the Fif teenPuzzle class implements 

both the concerns of the user interface and the application, you had to commit to a 

specific layout and had to learn the details of how to implement it. Only after the 
implementation of the layout container, could the puzzle control logic be implemented. 

In comparison, the Haggis solution had a top-down structure. The rule of the puzzle 
could be expressed abstractly without regard to how the board was going to be pre- 
sented to the user. Details of how to do the physical layout was tackled independently 
from how it connected into the puzzle, but requiring the programmer to combine the 
handles of each individual piece into one so that the board could then be glued to- 

gether with the part implementing the puzzle rules. Overall, the fifteen puzzle could 
be implemented without Haggis forcing your approach to solving the problem. 

The Tcl/Tk solution is dictated by the steps you have to follow to create a window 
displaying a collection of buttons. To create the individual pieces, the system requires 
you to come up with a unique label together with the callback function to invoke when 
the piece is clicked. 

* Abstraction 

The fifteen puzzle is a small example, and consequently there's not a lot of reusable 
abstractions that could be created. For the Haggis version, the puzzle function in 
Figure 7.4 almost provides a general abstraction for controlling board games, but since 
the test of a valid move is hard-wired to use one suited for the fifteen puzzle, it falls 

just short. However, this can be fixed easily by adding a parameter to puzzle holding 

the (higher-order) function that checks for valid moves. 

Apart from the Board class which is a simple two-dimensional board abstraction, the 
Java solution does not have any readily reusable abstractions. Notice that inheritance 
is used in a number places to create abstractions that specialise existing classes, e. g., 
the Piece class adapts a standard button for use in the puzzle. The class mechanism 

and inheritance is very well suited for this, overriding and specialising select pieces of 

;, a component's behaviour and functionality. 

do UI influence 

The AWT does impose itself on the Java solution in a number of places, for instance, 

the distribution of events influences how the user interaction was structured. Another 

place is the use of Java interfaces to specify how layout abstractions are done. It made 
it convenient to group the layout abstraction with the implementation of the puzzle 
rules. 
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An example of non-influence is the Haggis puzzle action which abstracts away from 

the details of any user interface system. 

It could be argued that the Java solution could be expressed differently; instead of 
bunching the layout of the puzzle pieces together with the puzzle rules, both these 

parts could have shared and interacted with an abstract representation of the puzzle. 
However, since layout management is expressed as an interface in AWT, this made it 

convenient and to some extent natural to group the two together. The same didn't 
happen in the Haggis version, where'a natural starting point was to express the puzzle 
without regard of what the user interface might look like. 

Rapid Prototyping 

Both the Java and Haggis systems relied on a compiler to convert the programs into 

an executable format. In the case of Java, the turnaround times were acceptable3 I 
but for Haggis they were not. A compile and link turnaround time of at least 40 

seconds is too long when prototyping and making small, incremental changes to the 
user interface. Tcl/Tk is an interpretive scripting language, and hence supports a 
much quicker turnaround cycle. 

A programming system's support for prototyping goes beyond the duration of time it 
takes between making a code change and seeing the effects of it in a running appli- 
cation. The programming language determines how easy it is for the programmer to 
make simplifying assumptions when implementing a prototype, modelling the parts 
of a user interface applications that are of interest. 

In the case of the fifteen puzzle example, there's little need to prototype the game itself, 
as the rules of the game are simple and well understood. However, as we've seen, the 
Haggis solution had a clear separation between implementation of the game itself and 
the interactive surface presented to the user. Making the separation was natural and 
didn't come at a great cost in terms of the amount code that had to be written to set it 
up. This is an indication of a system that is suitable for prototyping, as it shows that 
the creation of a design which clearly separates between its constituent components 
can be done without too heavy an investment in terms of implementation work. A 
case study of the applicabililty of functional programming languages to prototyping 
can be found in [JH94]. 

9 Performance 

Both Haggis and AWT share the property of being built on top of programming 
languages that rely on automatic garbage collection. A concern often levelled at 

3 The development environment used was Microsoft's Visual J++, version 1.1. 
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the use of such languages to implement interactive systems is that this will result in 

applications that at arbitrary moments will appear unresponsive while the garbage 

collector is running. However, experience with the implementation and use of the 
fifteen puzzle and other graphical user interface applications does not show that the use 
of a garbage collector is in conflict with having responsive user interface applications. 

In the case of the fifteen puzzle, the overall speed and performance of all versions were 
satisfactory. 

7.6 Concluding remarks 

We have in this chapter presented the solution of an example user interface application in 
Haggis together with two mainstream user interface systems, Java's Abstract Windowing 

Toolkit and Tcl/Tk. On the basis of one example, we should be wary of drawing any 
definite conclusions, but the different solutions displayed quite different ways of structuring 

and expressing the fifteen puzzle. --- 

on the basis of this example, one thing that stands out is the ability to easily create new 

abstractions with Haggis. Sealing up parts of the puzzle as separate components resulted 
in a solution that had a clearer and better defined architecture. 

The Tcl/Tk version didn't define any abstractions, creating the user interface components 

and gluing them together using a callback procedure that had access to shared state. 

The AWT solution in Java displayed the use of implementation inheritance to create special- 
isations of standard user interface classes in a straightforward manner. The AWT solution 
did not have a clear separation between the concerns of the puzzle and the layout man- 

agement of the puzzle board itself. The framework made it convenient to group the two 

together. 
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module Board 

Board, 
mkBoard, 
pieceAt, 
movePiece 

where 

data Board piece pos 
= Board 

(piece 10 pos) 
(piece pos -> 10 

mkBoard (piece 10 pos) 
(piece pos -> 10 
Board piece pos 

mkBoard rd wr = Board rd wr 

pieceAt :: Board piece pos -> piece -> ID pos 
pieceAt (Board rd rd 

movePiece :: Board piece pos -> piece -> pos -> ID 
movePiece (Board 

- wr) = wr 

module Puzzle where 

puzzle :: Board Piece Pos 

-> Pos 
[Piece] 
ID 

puzzle board hole moves 
case moves of 

11 -> return no more moves 
(m: ms) -> do 

pos <- pieceAt board m 
if pos 'nextTo' hole then do 

movePiece board m hole 

puzzle board pos ms 
else 

puzzle board hole ms 

nextTo :: Pos -> Pos -> Bool 
nextTo (ax, ay) (bx, by) = (abs (ax-bx) + abs (ay-by» 

Figure 7.4 The Board and Puzzle in Haggis. 
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module FifteenPuzzle where 
import Haggis 
import Board 

piece :: Int -> Component (Button Int) 
piece val - button (text (show val)) val 

board :: Size2 -> Component (Button Int, Table) 
board szQ(Size2 w h) env = do 

pieces <- mkPieces 
let 

table-elts UPos, Button Int)] 
table-elts zip posns pieces 

in 
tab <- mkFixedTable (w, h) (1,1) table_elts env 
btn <- combineButtons pieces 
return (btn, tab) 
where 

labels = [I.. (w*h-1)] 

mkPieces = mapM (\ x -> piece x env) labels 

posns = E(x, y) Iy <- [I - hl ,x <- El.. w] ] 

boardSetup :: Size2 -> Component (Button Int, Board Piece Pos) 
boardSetup (Size2 w h) env = do 

(btn, tab) <- board (size w h) env 
board-array <- newArray (1, (w*h-1)) undefined 
sequence (zipWith (writeArray board-array) [I.. (w*h-1)] posns) 
let 

board = mkBoard 
(readArray board-array) 

piece pos -> do 
old-pos <- readArray board-array piece 
writeArray board-array piece pos 
swapTableElts tab old-pos pos) 

in 

return (btn, board) 

where 
posns = Ux, y) Iy <- [I.. hl, x <- [I.. wl I 

Figure 7.5 The graphical user interface to the puzzle in Haggis 
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module Main(main) where 

import System (getArgs) 
import Haggis 

import Board 
import Puzzle 
import FifteenPuzzle 

nnPuzzle :: Size2 -> 10 0 

nnPuzzle sz@(Size2 w h) do 
(btn, board) <- wopen (boardSetup sz) 
cs <- toStream (hGet btn) 
puzzle board (w, h) cs 

main 10 0 

main do 
(a: b: 

-) 
<- getArgs 

nnPuzzle (read a, read b) 

Figure 7.7 Toplevel control 
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import java. awt. *; 

public 
class Piece extends java. awt. Button 

Piece (String v) ý 

this(v, new Font("Arial", Font. BOLD, 16)); 
I 

Piece (String v, Font f) 

super(v); 
this. setFont(f); 

public boolean handleEvent (Event ev) 
// pass click notifications upwards. 
if (ev. id == Event. ACTION-EVENT) 

return false; 

else f 

return (super. handleEvent(ev)); 

I 

Figure 7.8 The Piece class. 
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import java. awt. *; 
import java. applet. *; 
import java. util. *; 
import board; 
import Piece; 

public class FifteenPuzzle 
extends Applet 
implements java-awt. LayoutManager 

static int xoff, yoff; 
static Dimension hole; 

static board Board; 

// Applet initialisation. 
public void inito f 

this. setBackground(Color. red); 
I 

gameBoard () f this(4,4); 

gameBoard (int w, int h) 
Board = new board(w, h); 

setLayout(this); 
hole = new Dimension(w-l, h-1); 

setupo; 

public void addLayoutComponent (String name, 
Component c) fl 

public void layoutContainer (Container parent) 
for(int x=O; x< Board. width; x++) f 

for(int y=O; y< Board. height; y++) I 
if (x != hole. width 11 y != hole. height 

Component foo = (Component)Board. atPos(x, y); 
foo. reshape(x*50, Y*50,50,50); 

IM 

public Dimension minimumLayoutSize(Container parent) 
return (new Dimension(200,200)); 

I 

public Dimension preferredLayoutSize (Container parent) 
return (new Dimension(200,200)); 

I 

Figure 7.9 'Flw 15 puzzl(, in Java, part I 
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public void removeLayoutComponent (Component comp) fj 
predicate for checking if a click should 
result in the hole moving. 

static boolean nextToHole(int x, int y) 
return ((Math. abs(hole. width x) + 

Math. abs(hole. height y)) 
protected void setupo J 

for (int y=O; y< Board. height; y++) 
for Unt x=O; x< Board. width; x++ 

if (x != hole. width 11 y != hole. height 
Piece 1= new Piece(String. value0f(l+x+ 

y*Board. height)); 
Board. setPos(x, y, l); 
add(l); 

IM 

public boolean handleEvent (Event ev) 
catch action events (from the pieces), 
and see if the click was relevant. 

if (ev. id == Event. ACTION-EVENT) f 
return (mouseUp(ev, ev. x, ev. y)); 

else f 

return (super. handleEvent(ev)); 
11 

public boolean mouseUp(Event evt, int x, int y) 
if clickBoard(x, y) )f 

recompute layout and redisplay. 
this. invalidateo; 
this. validateo; 

I 

return true; 
I 

public boolean clickBoard(int x, int y) 
int px =x xoff ; 
int py =y yoff ; 
if nextToHole(px, py) 

swap hole and piece clicked. 
Board. setPos(hole. width, hole. height, Board. atPos(px, py)); 
hole = new Dimension(px, py); 
return true; // repaint. 

else f 

return false; 
11 

public String getAppletInfoo ýreturn "15 puzzle"; j 
I 

Figure 7.10 The 15 puzzle iii, Java, part 2 
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Figure 7.11 Snapshot of 15 Imizzle In Jýtva. 
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set v puzzle 
catch (destroy $wj 
toplevel $w 

wm title $w "15-Puzzle Demonstration" 

wm iconname $w "15-Puzzle" 

positionWindow $w 

label $w. msg -font $font -wraplength 4i -justify left 
-text "A 15-puzzle appears below as a collection 

of buttons. Click on any of the pieces next \ 
to the space, and that piece will slide over \ 
the space. Continue this until the pieces 
are arranged in numerical order from 
upper-left to lower-right. " 

pack $w. msg -side top 

frame $w. buttons 

pack $w. buttons -side bottom -fill x -pady 2m 
button $w. buttons. dismiss -text Dismiss -command "destroy $w" 
button $w. buttons. code -text "See Code" -command I'showCode $wI, 

pack $w. buttons. dismiss $w. buttons. code -side left -expand I 

# Special trick: select a darker color for the 
# space by creating a scrollbar widget and 
# using its trough color. 

scrollbar $w. s 
frame $w. frame -width 120 -height 120 

-borderwidth 2 -relief sunken 
-bg [$w. s cget, -troughcolorl 

pack $w. frame -side top -pady Ic -padx Ic 

destroy $w. s 

Figure 7.12 Building the puzzle board in Tcl/Tk 
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A 15-puzzle appears below as a collection of 
buttons. Click on any of the pieces next to the 
space, and that piece will slide over the space, 
Continue this until the pieces are arranged in 
numerical order from upper-left to lower-right. 

Dismiss See Code 

Figure 7.13 Snapshot of 15 ptizzle in TcI/Tk. 

set order f3 16257 15 13 4 11 89 14 10 121 
for fset i 01 f$i < 151 fset i [expr $i+111 f 

set num [lindex $order $i] 

set xpos($num) [expr ($i%4)*. 251 

set ypos($num) [expr ($i/4)*. 251 
button $w. frame. $num -relief raised -text $num 

-highlightthickness 0\ 

-command "puzzleSwitch $w $num" 

place $w. frame. $num -relx $xpos($num) 

-rely $ypos($num) \ 

-relwidth . 25 -relheight . 25 

set xpos(space) . 75 

set ypos(space) . 75 

Figure 7.14 Initialisation of thc 15 I)iizzl(, in TcI/Tk. 
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# puzzleSwitch -- 
# This procedure is invoked when the user clicks 
# on a particular button; if the button is next 
# to the empty space, it moves the button into 
# the empty space. 

proc puzzleSwitch fw numl f 

global xpos ypos 
if f(($ypos($nilm) >= ($ypos(space) - . 01)) 

($ypos($nilm) <= ($ypos(space) + . 01)) 
($xpos($nilm) >= ($xpos(space) - . 26)) 

&& ($xpos($num) <= ($xpos(space) + . 26))) 
11 (($xpos($nilm) >= ($xpos(space) - . 01)) 
&& ($xpos($num) <= ($xpos(space) + . 01)) 
&& ($ypos($w1m) >= ($ypos(space) - . 26)) 
&& ($ypos($nilm) <= ($ypos(space) + . 26)W f 

set tmp $xpos(space) 

set xpos(space) $xpos($nilm) 

set Xpos Mum) $tmp 

set tmp $ypos(space) 

set ypos(space) $ypos($num) 

set ypos($num) $tmp 

place $w. frame. $num -relx $xpos($nilm) -rely $ypos($num) 

I 

Figure 7.15 Checking for valid move and updating board. 

" Separation. The weak coupling between components of a user interface application 

" Viscosity. The ease by which local changes can be made. 

" Premature commitment. Does the programming system impose or influence the order 
in which parts are designed and implemented? 

Abstraction. How well is the creation of user defined abstraction supported? 

UI influence. How large an impact does the user interface parts have on the organi- 
sation and implementation of the rest of the application? 

" Abstraction gradient. 

" Rapid prototyping. Is the programming system suited for prototyping? 

Figure 7.16 Evaluation dimensions 
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Conclusion 

8.1 Summary 

This thesis has presented the Haggis user interface framework and its programming model. 
It emphasised the use of compositional programming techniques for building graphical user 
interface applications. On top of the declarative Picture model for describing static graph- 
ical scenes presented in Chapter 2, a representation of user interface components as virtual 
1/0 devices was introduced in Chapter 4. The programming representation of these vir- 
tual 1/0 devices could be combined together and specialised, to create new user interface 

abstractions. This was demonstrated by showing how a variation of different user intcr- 

face abstractions could be constructed by combining together existing abstractions to build 

'bigger' ones in Chapter 5. 

To assess how this compositional view of building graphical user interfaces compared to 

mainstream user interface systems, Chapter 7 evaluated Haggis against Java's AWT and 
the Tcl/Tk toolkit. The result of the evaluation was a programming model that compared 
favourably with these systems. 

The programming model that Haggis introduced relied crucially on the support for con- 

currency, and Haggis is built using the concurrent extensions to Haskell introduced by 

Concurrent Haskell. 

8.2 Future work 

The work presented in this thesis'has through its exploration of the design space for pro- 

gramming graphical applications opened up and exposed areas for future work: 

179 
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o Virtual I10 devices 

The representation of user interfaces as virtual 1/0 devices could be improved in a 

number of ways. One unsatisfactory feature of the representation presented in this 

thesis was that virtual 1/0 device handles are linear. For example, the following code 
is not correct: 

main = wopen (\ env -> do 

gl <- glyph pic 

mouse <- catchMouseEv gl 
keyb <- catchKeyboardEv 91 

The calls to catchKeyboardEv and catchMouseEv share the glyph handle, both trying 
to catch interaction events on its graphical surface. Sharing the user interface part of 
a handle (i. e., its display handle) is not possible in Haggis, and will lead to run-time 
failure. Handles have to be used in a linear manner, and thus cannot be shared. 

A representation of a user interface component that either allowed the sharing of 
handles or statically caught any sharing of handles, would be an obvious area for 
improvement. 

9 Being more declarative 

The work presented here does make use of a number of imperative features of Haskell. 
For example, several of the components make use of internal mutable state and ex- 
plicit concurrency. It could be argued that the result is a system that loses a lot of 
the declarative features of the underlying language Haskell, so an avenue of further 
investigation would be to try to formulate a more declarative programming model 
for graphical user interfaces. Potential benefits of a more 'functional' formulation 

would be that traditional reasoning techniques could be applied to user interface ap- 
plications. The problem of proving properties of an interactive application could also 
become more tractable. 

9 Joining presentation and interaction 

One feature of Haggis is that it has the simple Picture model for describing graphical 
content, and a different, but very similar, model for describing the composition of 
user interface components. Combining the two would be preferable, and one starting 
point for this would be to explore if we could apply to the domain of user interfaces 
the reactive programming models that have been developed to describe multimedia 
animations in a functional manner [E1197, Sch96]. By making values time-varying, a 
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declarative model for describing animations is introduced in a way that doesn't make 
use of explicit state nor concurrency. Whether this model can be successfully applied 
to graphical user interface applications is an open question. 

* Extending the scope 

All the examples presented in this thesis have been examples of single-user user inter- 
face applications. One natural extension of Haggis would be to augment it to support 
the programming of multi-user applications. Extending the scope of Haggis in this 

way would provide a good stress test of the compositional programming model it pro- 
motes, since additional interaction sources would increase the need for support for 

abstraction. 

* Completeness of graphics model 

The Picture model in Chapter 2 presented a graphical model that supported a set 
of graphical primitives and combining forms that was geared towards expressing two 
dimensional graphical user interfaces. This model could be extended in a couple of 
ways: firstly, more general graphical primitives could be provided (e. g., nonuniform, 
rational B-splines), and secondly, the compositional operators could be extended, 
perhaps by providing more TIDX, -like operators at the Picture level. 

9 Integrating external toolkits1frameworks 

The components used in this thesis were all built in terms of Haggis primitive compo- 
nents such as a glyph. One obvious extension to the user interface framework would 
be to allow the use of 'foreign' user interface components. The programmer would 
access these components via a virtual 1/0 device handle, just like the native ones, 
preserving the handle-based programming model. 
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Appendix A 

Picture definition 

This appendix contains the programmer interface to the Picture abstract type presented 
in Chapter 2. To make the definition of the interface self-contained, we start by presenting 
various auxiliary types and operations over them. 

A. 1 Basic geometric types 

Figure A. 1 defines a number of basic geometric types: 

e Unit is the default unit at which sized quantities are expressed. The default interpre- 
tation of a Unit value is as an (integral) number of printer's points. 

* Size2 -a two dimensional vector type. Operations for selecting the width and height 

are provided. 

e Coord2 -a two dimensional, discrete Cartesian point type. Selectors for picking the 
X and Y component of the Point are provided. 

e Transf om2 -a two dimensional, (uniform) transformation. Operations for construct- 
ing and combining transformation values are provided to the programmer. 

A. 2 Picture elements 

The function provided for constructing basic graphical shapes using the Picture type are 

presented in Figure A-2. 
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newtype Unit = Unit Int 

-- integral number of printers' points 

data Size2 - Size2 Unit Unit -- 2d vector 
size :: Unit Unit Size2 

width, height Size2 Unit 

data Coord2 = Coord2 Unit Unit -- 2d point 
coord Unit -> Unit -> Coord2 

x0y Coord2 -> Unit 

type Radians Double 
data Angles Angles Radians RadiansDelta 

start angle plus delta radians to turn 
to reach final angle. 

data Transform2 = -- 2d transform, abstract type. 
idTr Transform2 
transTr Size2 Transform2 

rotateTr Radians Transform2 

scaleTr Double -> Double -> Transform2 

combineTr Transform2 -> Transform2 -> Transform2 

Figure Ad Basic geometric types. 

empty Picture 

point Picture 
line Size2 Picture 

polyrline [Size2l Picture 

rectangle ::, Size2 Picture 
text String Picture 

arc Size2 Angles Picture 

ellipse Size2 Picture 

raster Raster Picture 

curve Point2 Point2 Point2 -> Picture 

Figure A. 2 Picture primitives. 

0 A. 3 Picture operations 

With the Picture values returned from the functions of the previous Section as basic 
building blocks, Figure A. 3 contains the primitive operators for building new Pictures out 
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withPen Pen Picture Picture 

move Offset Picture Picture 
transform Transform2 Picture Picture 
overlay Picture Picture Picture 
clip Picture Picture Picture 
combinePic RelSize RelSize Picture 

Picture Picture 

Figure A. 3 Picture combinators. 

type Pen = [PenAttr] 

data PenAttr 
Width BrushWidth 
LineStyle LineStyle 
JoinStyle JoinStyle 
CapStyle CapStyle 
Fill Bool 
FillStyle FillStyle 
ArcMode ArcMode 
Font (FontAttr] 
Invisible 
Function Function 
Foreground Colour 
Background Colour 

dashed lines or not? 
for polyline joints 
end point caps. 
fill picture or not? 
how 

what font to use. 
should the picture be drawn? 
blit op, to eventually apply 

Figure A. 4 Pen attribute type. 

of old ones. 

A. 4 Graphical attributes 

The Pen constructor associates a set of graphical attribute-value pairs with a picture. The 

attributes currently supported are shown in Figure A. 4. 
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data LineStyle 
LineSolid 
LineOnOffDash Int Int length of on and off dash,. resp. 
LineDoubleDash Int. Int off dash rendered with bg. colour. 

data JoinStyle = JoinMiter I JoinRound I JoinBevel 

data CapStyle = CapButt I CapRound I CapProjecting 

data ArcMode = ArcSlice I ArcChord 

data Function = Xor I Or I And I Nor I Copy I Clear 

Figure A. 5 Pen attribute specific settings. 

A. 4.1 Pen attribute styles 

The definition of the Pen type in Figure AA has a number of attribute constructors with 
attribute specific settings/styles. The collection of these style types are presented in Fig- 

ure A. 5. 

A. 5 The Painter type 

As discussed in Section 2.10, the Painter type contains the functionality. a device inde- 

pendent renderer needs to render to a particular graphical output device. The complete 
definition for this type is presented in Figure A. 6. 
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data Painter 
Painter 

lockPainter ID 0 
unlockPainter ID 0 
pushPen PenModifier 
popPen 10 0 
setBBox Rectangle -> 10 
getBBox 10 (Maybe Rectangle) 
setClipRegion Region -> 10 () 
startClipMask Rectangle -> 10 
endClipMask Coord2 10 0 
clipWithMask 10 () 
pushTag PicTag Coord2 Rectangle 10 
popTag 10 0 
drawPoint Transform -> 10 Rectangle 
computeBBox String 10 Rectangle 
drawText String Transform -> 10 Rectangle 
drawRPolyLine [Translation] -> Transform -> 10 Rectangle 
drawPolyLine [Coord2l -> Transform -> 10 Rectangle 
drawSegments [(Coord2, Coord2)] 

Transform -> ID Rectangle 

, drawArc Size2 -> Angles 
Transform -> 10 Rectangle 

, drawEllipse Size2 Transform -> 10 Rectangle 

, drawRaster Raster Transform -> 10 Rectangle 

, drawRectangle Size2 Transform -> 10 Rectangle 
drawBezier Point2 Point2 -> Point2 

Transform -> 10 Rectangle 

Figure AX The Painter dictionary type. 
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Appendix B 

1/0 in Haskell 

In'a non-strict language it is completely impractical to perform input/output using side- 

effecting "functions", because the order in which sub-expressions are evaluated - and 
indeed whether they are evaluated at all - is determined by the context in which the result 

of the expression is used, and hence is hard to predict. This difficulty can be addressed 
by treating an I/0-performing computation as a state transformer; that is, a function that 

transforms the current state of the world to a new state. In addition, we need the ability 
for an I/0-performing computation to return a result. This reasoning leads to the following 

type definition: 

type 10 a= World -> (a, World) 

That is, a value of type 10 t takes a world state as input, and delivers a modified world 

state together with a value of type t. Of course, the implementation performs the 1/0 right 
away - thereby modifying the state of the world "in place". 

We call a value of type 10 t an action. Here are two useful ones: 

hGetChar :: Handle -> ID Char 

hPutChar :: Handle -> Char -> Io () 

The action hGetChar reads a character from the specified handle (which identifies some 
file or other byte stream), and returns it as the result of the action. hPutChar takes a 
handle and a character and returns an action that writes the character to the specified file 

or stream. 

Actions can be combined in sequence using the infix combinators >> and 

10 a -> 10 b -> 10 b 
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10 a -> (a -> 10 b) -> 10 b 

For example, here is an action that reads a character from the standard input, and then 

prints it twice to the standard output: 

hGetChar stdin >>= \c -> 
hPutChar stdout c 
hPutChar stdout c 

(The notation \c->E, for some expression E, denotes a lambda abstraction. In Haskell, the 
scope of a lambda abstraction extends as far to the right as possible; in this example the 
body of the \c-abstraction includes everything after the \c. ) The sequencing combinators, 
>> and >>=, feed the result state of their left hand argument to the input of their right 
hand argument, thereby forcing the two actions (via the data dependency) to be performed 
in the correct order. The combinator >> throws away the result of its first argument, 
while >>= takes the result of its first argument and passes it on to its second argument. 
The similarity of monadic I/0-performing programs to imperative programs is no surprise: 
when performing 1/0 we specifically want to impose a total order on 1/0 operations. 

It is often also useful to have an action that performs no 1/0, and immediately returns 
specified value: 

return :: a -> 10 a 

For example, an echo action that reads a character, prints it, and returns the character 
read, might look like this: 

echo :: 10 Char 

echo = hGetChar stdin >>= \C -> 
hPutChar stdout 

return c 

echo is an action on equal footing with hGetChar stdin but built by stringing together 
a collection of simpler actions. Another example of how actions can be strung together is 
hGetLine, which reads a line of input from a handle: 

hGetLine :: Handle -> 10 String 

hGetLine hndl = 

catch 
(hGetChar hndl >>= \ ch 



191 

if ch == '\n' then 

return 0 

else 
hGetLine hndl >>= \ ls 

return (ch: ls)) 

-> return [1) 

In order to catch errors such as end-of-file etc., hGetLine uses the catch to add a handler 
for catching 1/0 exceptions: 

catch :: 10 a -> (IOError -> 10 a) -> 10 a 

It is a parameterised action that tries to execute its first action. If it fails with an error, 
the exception handler will be invoked. If not, catch just returns the value from the first 

action. 

'As well as performing input/output, we also provide actions to create new mutable variables, 
and operations to read and write from them. The relevant primitives are': 

newMutVar 10 (MutVar a) 

readMutVar MutVar a -> Io a 
writeMutVar MutVar a -> a -> Io 

A value of type MutVar t can be thought of as the name of, or reference to, a mutable 
location in the World state that holds a value of type t. This location can then be modified 
with writeMutVar and read with readMutVar. 

So far we have shown how to build larger actions out of smaller ones, but how do actions 
ever get performed - that is, applied to the real world? Every program defines a value 
main that has type 10 (). The program can then be run by applying main to the state of 
the world. For example, a complete program that reads and echoes its input is: 

main ID 0- 

main 
hGetLine stdin >>= \ln 

if ln == "" then 

return 
else 

'In reality the types are a little more general than these, allowing state-manipulating computations to 
be encapsulated, but we omit these details here. They can be found in [LPJ94a] 
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hPutStr stdout ln 

main 

In principle, then, a program is just a state transformer that is applied to the real world 
to give a new world. In practice, however, it is crucial that the side-effects the program 
specifies axe performed incrementally, and not all at once when the program finishes. A 

state-transformer semantics for 1/0 is therefore, alas, unsatisfactory, and becomes untenable 
when concurrency is introduced. 

More details of monadic 1/0 and state transformers can be found in [Gor94, PJW93, 
LPJ94a]. Other 1/0 mechanisms for purely-functional languages are surveyed by [Gor93]. 

B. 1 Syntactic support 

The monadic style of programming may seem foreign to a programmer accustomed to the 
syntax of procedural languages, with the values of actions being bound to variable names on 
the right of the action rather than the conventional left hand side. With the introduction 

of Haskell version 1.3 [P+96], syntactic support for monadic programming was added with 
the do notation. The above main can then instead be formulated as follows: 

main 10 

main 
do 

ln <- hGetLine stdin 
if ln - I'll then 

return 
else 

do 

hPutStr stdout In 

main 

In a do expression, values returned from actions are now bound to variable names or patterns 
to the left of action with <-. The complete translation of a do expression into 'de-sugared' 

code that uses >> and >>= can be found in [P+97]. 

hk 
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Concurrent Haskell 

This appendix contains in its entirety the Concurrent Haskell paper presented at POPL 196, 
St. Petersburg Beach, FL. /PJGF96] 

Concurrent Haskell is a concurrent extension to the lazy functional language Haskell. Our 

principal motivation is to provide a more expressive substrate upon which to build sophis- 
ticated I/0-performing programs, notably ones that support graphical user interfaces for 

which the usefulness of concurrency is well established. Our earlier work showed how to 

use monads to express 1/0, [PJW93, Gor94] and how the same idea could be generalised to 

accommodate securely encapsulated mutable state [LPJ94a, LPJ94b]. Concurrent Haskell 

represents the next step in this research programme, which aims to build a bridge between 

the tidy world of purely functional programming and the gory mess of of I/0-intensive 

progams. 

This paper makes the following contributions: 

We show how concurrency can be smoothly integrated into a lazy purely-functional 
language, using only four new primitive operations and no new language constructs 
(Section C. 1). Perhaps surprisingly, choice is not one of these primitive operations 
(Section CA). 

4, We give numerous examples of useful abstractions that can readily be built in Con- 

current Haskell (Sections C. 2 and C. 3). 

We give a semantics for Concurrent Haskell that is clearly stratified into a deter- 

ministic layer and a concurrency layer (Section C. 5). Existing reasoning techniques 
can be retained unmodified; for example, program transformations that preserve the 
correctness of a sequential Haskell program also preserve correctness of a Concurrent 
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Haskell program. This is an unusual feature: more commonly, the non-determinism 
that arises from concurrency pervades the entire language. 

Concurrent Haskell is implemented, freely available, and is the substrate upon which we are 
building the Haggis graphical user interface toolkit. 

This paper is not at all about concurrency as a means of increasing performance by ex- 
ploiting multiprocessors. Our approach to that goal uses implicit, semantically transparent, 

parallelism; but that is another story. Rather, this paper concerns the use of explicit, se- 
mantically visible, concurrent I/0-performing processes. Our goal is to extend Haskell's 

usefulness into a new class of applications. 

CA The basic ideas 

Concurrent Haskell adds two main new ingredients to Haskell: 

* processes, and a mechanism for process initiation (Section C. 1.2); and 

atomically-mutable state, to support inter-process communication and cooperation 
(Section C. 1.3). 

Before we disc 
' 
uss either of these, though, it is necessary to review the monadic approach 

to 1/0 introduced by [PJW93], and adopted by the Haskell language in Haskell 1.3. 

The semantics of Concurrent Haskell is discussed later, in Section C. 5. 

A review of monadic 1/0 

In a non-strict language it is completely impractical to perform input/output using side- 
effecting "functions", because the order in which sub-expressions are evaluated - and 
indeed whether they are evaluated at all - is determined by the context in which the result 
of the expression is used, and hence is hard to predict. This difficulty can be addressed 
by treating an I/0-performing computation as a state transformer; that is, a function that 
transforms the current state of the world to a new state. In addition, we need the ability 
for an I/0-performing computation to return a result. This reasoning leads to the following 
type definition: 

type 10 a= World -> (a, World) 
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That is, 'a value of type ID t takes a world state as input, and delivers a modified world 

state together with a value of type t. Of course, the implementation performs the 1/0 right 

away - thereby modifying the state of the world "in place. 

We call a value of type 10 t an action. Here are two useful actions: 

hGetChar :: Handle -> ID Char 

hPutChar :: Handle -> Char -> ID () 

The action hGetChar reads a character from the specified handle (which identifies some 
file or other byte stream), and returns it as the result of the action. hPutChar takes a 
handle and a character and returns an action that writes the character to the specified file 

or stream. 

Actions can be combined in sequence using the infix combinators >> and 

>> ::, 
_IO 

a 10 b -> 10 b 

10 a (a -> 10 b) -> 10 b 

For example, here is an action that reads a character from the standard input, and then 

prints it twice to the standard output: 

hGetChar stdin >>= \c -> 
hPutChar stdout c 
hPutChar stdout c 

(The notation \c->E, for some expression E, denotes a lambda abstraction. In Haskell, the 

scope of a lambda abstraction extends as far to the right as possible; in this example the 

body of the \c-abstraction includes everything after the \c. ) The sequencing combinators, 

>> and >>=, feed the result state of their left hand argument to the input of their right 
hand argument, thereby forcing'the two actions (via the data dependency) to be performed 
in the correct order. The combinator >> throws away the result of its first argument, 

while >>= takes the result of its first argument and passes it on to its second argument. 
The similarity of monadic I/0-performing programs to imperative programs is no surprise: 

when performing 1/0 we specifically want to impose a total order on 1/0 operations. 

It is often also useful to have an action that performs no 1/0, and immediately returns a 

specified value: 

return :: a -> 10 a 
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For example, an echo action that reads a character, prints it, and returns the character 

read, might look like this: 

echo ID Char 

echo hGetChar stdin >>= \c 

hPutChar stdout 

return c 

As well as performing input/output, we also provide actions to create new mutable variables, 

and then to read and write them. The relevant primitives are 1: 

newMutVar :: MutVar a 

readMutVar :: MutVar a -> 10 a 

writeMutVar :: MutVar a 

A value of type MutVar t can be thought of as the name of, or reference to, a mutable 
location in the state that holds a value of type t. This location can be modified with 

writeMutVar and read with readMutVar. 

So far we have shown how to build larger actions out of smaller ones, but how do actions 

ever get performed - that is, applied to the real world? Every program defines a value 

main that has type 10 (). The program can then be run by applying main to the state of 
the world. For example, a complete program that reads and echos a single line of input is: 

main :: ID () 

main - echo >>= \C 

if c == '\n' 

then return 

else main 

In principle, then, a program is just a state transformer that is applied to the real world 
to give a new world. In practice, however, it is crucial that the side-effects the prograna 

specifies are performed incrementally, and not all at once when the program finishes. A 

state-transformer semantics for 1/0 is therefore, alas, unsatisfactory, and becomes untenable 

when concurrency is introduced, a matter to which we return in Section C. 5. 

More details of monadic 1/0 and state transformers can be found in [Gor94, PJW93, 
LPJ94a]. Other 1/0 mechanisms for purely-functional languages are surveyed by [Gor93]. 

'In reality the types a little more general than these, allowing state-manipulating computations to be 
encapsulated, but we omit these details here. They can be found in [LPJ94a] 

k 
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C. 1.2 Processes 

Conc'urrent Haskell provides a new primitive f orkIO, which starts a concurrent proCeSS2: 

forkIO :: 10 () -> Io () 

f orkIO a is an action which takes an action, a, as its argument and spawns a concurrent 
process to perform that action. The 1/0 and other side effects performed by a are interleaved 
in an unspecified fashion with those that follow the f orkIO. Here's an example: 

let 

-- loop ch prints an infinite sequence of ch's 
loop ch = hPutChar stdout ch >> loop ch 

in 

forkIO (loop 'a, ) 

loop Iz, 

The f orkIO spawns a process which performs the action loop Iaý. Meanwhile, the "par- 

ent" process continues on to perform loop Iz1. The result is that an infinite sequence of 
interleaved IaIs and Izs appears on the screen; the exact interleaving is unspecified (but 

see Section C-5.3). 

As a more realistic example of f orkIO in action, a mail tool might incorporate the following 
loop: 

mailLoop :: 10 () 

mailLoop 
- getButtonPress b >>= 

case v of 
Compose -> forkID doCompose >> 

mailLoop 

... other things 

doCompose 10 Pop up and manage 
doCompose composition window 

2 We use the term process to distinguish explicit concurrency from implicit parallelism, for which we use 
the term threads. A process is managed by the Haskell runtime system, and certainly does not correspond 
to a Unix process. 



198 APPENDIX C. CONCURRENT HASKELL 

Here, getButtonPress is very like hGetChar; it awaits the next button press on button b, 

and then delivers a value indicating which button was pressed. This value is then scrutinised 
by the case expression. If its value is Compose, then the action doCompose is forked to 
handle an independent composition window, while the main process continues with the 

next getButtonPress. 

The following features of f orkIO are worth noting: 

(1) Because our implementation of Haskell uses lazy evaluation, f orkIO immediately re- 
quires that the underlying implementation supports inter-process synchronisation. 
Why? Because a process might try to evaluate a thunk (or suspension) that is al- 
ready being evaluated by another process, in which case the former must be blocked 

until the latter completes the evaluation and overwrites the thunk with its value. 

(2) Since the parent and child processes may both mutate (parts of) the same shared state 
(namely, the world), f orkIO immediately introduces non-determinism. For example, 
if one process decides to read a file, and the other deletes it, the effect of running 
the program will be unpredictable. Whilst this non-determinism is not desirable, it 
is not avoidable; indeed, every concurrent language is non-deterministic. The only 
way to enforce determinism would be by somehow constraining the two processes to 
work on separate paxts of the state (different files, in our example). The trouble is 
that essentially all the interesting applications of concurrency involve the deliberate 

and controlled mutation of shared state, such as screen real estate, the file systern, 
or the internal data structures of the program. The right solution, therefore, is to 
provide mechanisms which allow (though alas they cannot enforce) the safe mutation 
of shared state, a matter to which we return in the next subsection. 

(3) f orkID is asymmetrical: when a process executes af orkIO, it spawns a child process 
that executes concurrently with the continued execution of the parent. It would have 
been possible to design a symmetrical fork, an approach taken by [JH931: 

symFork :: 10 a -> 10 b -> Io (a, b) 

The idea here is symFork pi p2 is an action that forks two processes, pl and p2. 
When both complete, the symFork pairs their results together and returns this pair 
as its result. We rejected this approach because it forces us to synchronise on the 
termination of the forked process. If the desired behaviour is that the forked process 
lives as long as it desires, then we have to provide the whole of the rest of the parent 
as the other argument to symFork, which is extremely inconvenient. 
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(4) In common with most process calculi, but unlike Unix, the forked process has no 

name. We cannot, therefore, provide operators to wait for its termination or to kill 

it. The former is easily simulated (using an MVar, introduced next), while the latter 

introduces a host of new difficulties (what if the process is in the middle of an atomic 
action? ). 

C. 1.3 Synchronisation and communication 

At first we believed that f orkIO alone would be sufficient to support concurrent program- 
ming in Haskell, provided that the underlying implementation correctly handled the syn- 
chronisation between two processes that try to evaluate the same thunk. Our belief was 
based on the idea that two processes could communicate via lazily-evaluated streams, pro- 
duced by one and consumed by the other [KM77]. Whilst processes can indeed communicate 
in this way, we found at least three distinct reasons to introduce additional mechanisms for 

synchronisation and communication between processes: 

Processes may need exclusive access to real-world objects such as files. The straightfor- 
ward way to implement such exclusive access requires a shared, mutable lock variable 
or semaphore. 

(2) How can a server process read a stream of values produced by more than one client 

process? One way to solve this is to provide a non-deterministic merge operation, 
but that is quite a sophisticated operation to provide as a primitive. Worse, it is 

far from clear that the quest ends there; for example, one might also want several 
server processes to service a single stream of requests, which seems to require a non- 
deterministic split primitive. We wanted to find some very simple truly-primitive 

operations that can be used to implement non-deterministic merge, and split, and 

anything else we might desire. 

(3) Writing stream-processing programs is throughly awkward, especially if a function 

consumes several streams and produces several others, as well as performing in- 

put/output. One of the reasons that monadic 1/0 has become so popular is precisely 
because stream-style 1/0 is so tiresome to program with. It would be ironic if Con- 

current Haskell re-introduced stream processing for inter-process communication just 

as monadic 1/0 abolished it for input/output! We wanted to find a way to make com- 

munication'between" processes look just as convenient as 1/0; indeed, from the point 

of view of any particular process the other processes might just as well be considered 

part of the external world. 
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Our solution is to combine our work on mutable state [LPJ94a] with the I-structures and M- 

structures of the dataflow language Id [AN89, BNA91]. First of all we have a new primitive 
type: 

type MVar a 

A value of type War t, for some type t, is the name of a mutable location that is either 
empty or contains a value of type t. We provide the following primitive operations on MVars: 

newMVar :: 10 Mar a) creates anew Mr. 

takeMVar :: MVar a -> 10 a blocks until the location is non-empty, then reads and 
returns the value, leaving the location empty. 

putMVar :: MVar a -> a -> ID 0 writes a value into the specified location. If there 
are one or more processes blocked in takeMVar on that location, one is thereby allowed 
to proceed. It is an error to perform putMVar on a location which already contains a 
value. (See Section C. 8 for a discussion of other possible design choices for pumar. ) 

The tYpe MVar can be seen in three different ways: 

e It can be seen as a synchronised version of the type MutVar introduced in Section C. 1.1. 

* It can be seen as the type of channels, with takeMVar and putMVar playing the role 
of receive and send. 

A value of type War () can be seen as a binary semaphore, with the signal and wait 
operations implemented by putMVar and takeMVar respectively. 

MVars are also somewhat reminiscent of ML's ref types, which require quite a bit of work 
in the type system to preserve soundness. It turns out that this type-soundness problem 
does not arise for us, because values of type MVar t can only be lambda-bound, and hence 

must be monomorphic. 

C. 2 A standard abstraction: buffering 

A good way to understand a concurrency construct is by means of examples. The following 
sections describe how to implement a number of standard abstractions using Mrs: using 
standard examples (such as buffering) allows easy comparison with the literature. 
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The first example is usually a memory cell, but of course an Mar implements that directly. 
Another common example is a semaphore, but an MVar implements that directly too. 

C. 2.1 A buffer variable 

An MVar can very nearly be used to mediate a producer/consumer connection: the producer 
puts items into the MVar and the consumer takes them out. The fly in the ointment is, of 
course, that there is nothing to stop the producer over-running, and writing a second value 
before the consumer has removed the first. 

This problem is easily solved, by using a second MVar to handle acknowledgements from 

the consumer to the producer. We call the resulting abstraction a CVar (short for channel 
variable). 

type CVar a= War a, Producer consumer 
MVar 0) Consumer producer 

newCVar :: 10 Mar a) 

newCVar 
= newMVar 

newMVar 

data-var 

ack-var 

putMVar ack-var () >> 

return (data_var, ack-var) 

putCVar :: CVar a -> a -> 10 () 

putCVar (data-var, ack_var) val 
- takeMVar ack-var >> 

putMVar data-var val 

getCVar Var a -> ID a 

getCVar (data-var, ack_var) 
takeMVar data-var >>= \ val 
putMVar ack-var >> 

return val 
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Channel 

Item Item 

Read end "'rite end 

First value Second value 

Figure CA A channel with unbounded buffering 

C. 2.2 A buffered channel 

A CVar can contain but a single value. Next, we show how to implement a channel Nvith 

unbounded buffering, along with some variants. Its interface is as follows: 

data Channel a 

newChan :: 10 (Channel a) 

putChan Channel aa -> 10 

getChan Channel a 10 a 

The channel should permit multiple processes to write to it, and read from it, safely. 

The implementation is illustrated in Figure C. I. The channel is represented by a pair of 
MVars (drawn as small boxes with thick borders), that hold the read end and write end of 
the buffer: 

type Channel a= Mar (Stream a), Read 

MVar (Stream a)) Write 

The MVars ill a Channel are required so that channel put and get operations (-all atoinically 

inodify the write and read end of the channels respectively. The data ill the buffer is lield 
ill a Stream; that is, all MVar which is either ellipty (ill which case there is 110 dat'a ill tile 
Stream), or holds all Item: 

type Stream a= MVar (Item a) 
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An Item is just a pair of the first element of the Stream together with a Stream holding 

the rest of the data: 

data Item a= Item a (Stream a) 

A Stream can therefore be thought of as a list, consisting of alternating Items and full 
MVars, terminated with a "hole" consisting of an empty MVar. The write end of the channel 
points to this hole. 

Creating a new channel is now just a matter of creating the read and write Mrs, plus one 
(empty) MVar for the stream itself- 

newChan = newMVar >>= Vead -> 
newMVar >>= Write -> 
newMVar >>= \hole -> 
putMVar read hole >> 

putMVar write hole >> 

return (read, write) 

Putting into the channel entails creating a new empty Stream to become the hole, extracting 
the old hole and replacing it with the new hole, and then putting an Item in the old hole. 

putChan (read, write) val - 
newMVar >>= \new-hole 

takeMVar write >>= \old-hole 

putMVar write new-hole >> 

putMVar old-hole (Item val new-hole) 

Getting an item from the channel is similar. Notice that getChan may block at the second 
takeMVar if the channel is empty, until some other process does a putChan. 

getChan (read, write) 

= takeMVar read >>= \Cts 

takeMVar cts >>= VItem val new) 
putMVar read new >> 

return val 

It is worth noting that any number of processes can safely write into the channel and read 
from it. The'' values written will be merged in (non-deterministic, scheduling-dependent) 

arrival order, and each value read will go to exactly, one process. 
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Other variants are readily programmed. For example, consider a multi-cast channel, in 

which there are multiple readers, each of which should see all the values written to the 
channel. All that is required is to add a new operation: 

dupChan :: Channel a -> 10 (Channel a) 

The idea is that the channel returned by dupChan can be'read independently of the orig- 
inal, and sees all (and only) the data written to the channel after the dupChan call. The 
implementation is simple, since it amounts to setting up a separate read pointer, initialised 
to the current write pointer: 

dupChan (read, write) 
= newMVar 

takeMVar write 
putMVar write hole 

putMVar new-read hole 

return (new_read, write) 

new-read 
hole 

» 

Another easy modification, left as an exercise for the reader, is to add an inverse to getChan: 

unGetChan :: Channel a -> a -> 10 () 

C. 2.3 Skip channels 

As a final example, Figure C. 2 implements a skip channel, a useful abstraction that we have 
not seen elsewhere in the literature. A skip channel is useful when an intermittent source 
of high-bandwidth information (mouse-movement events, for example) is to be coupled to 
a process that may only be able to deal with events at a lower rate (scrolling a window, 
for example). A read operation on a skip channel either returns the most-recently-written 
value (skipping any values written previously), or else blocks if no write has been performed 
since the last read. To make it more interesting, a dupSkipChan operation is also provided 
that allows multiple independent readers, each with the above semantics. 

A skip channel is implemented as a pair of Mrs. The second is a semaphore; it is full if 
the skip channel contains a value as yet unread by this reader, and empty otherwise. The 
first contains a pair consisting of the current contents of the channel and a list of the empty 
semaphores of the readers that have already read the channel's current contents. With this 
in mind the implementation of the skip channel's operations should be easy to follow. 
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type SkipChan a= War (a, (MVar 01), MVar 0) 

newSkipChan :: 10 (SkipChan a) 
newSkipChan 

newMVar >>= main 
newMVar >>= sem 
putMVar main (bottom, [seml) >> 
return (main, sem) 

putSkipChan :: SkipChan a -> a -> 10 
putSkipChan (main, sem) v 

takeMVar main >>= \ (-, sems) 
putMVar main (v, >> 
mapIO free sems >> 
return 

where 
free sem = putMVar sem 

getSkipChan :: SkipChan a -> Io a 
getSkipChan (main, sem) 

takeMVar main >>= \ (v, sems) 
putMVar main (v, sem: sems) >> 
return v 

dupSkipChan :: SkipChan a -> 10 (SkipChan a) 
dupSkipChan (main, 

-) 
newMVar >>= sem 
takeMVar main >>= (v'sems) 

putMVar main (v, sem: sems) >> 
return (main, sem) 

Figure C. 2 The skip-channel abstraction 

C. 3 Control over scheduling 

Next we study some examples that demonstrate how it is possible to "reify" scheduling de- 

cisions, allowing the programmer to take control of them. Suppose we wanted to implement 

a channel with bounded buffering; that is, one in which the writer would block if there were 

more than a certain number of unread elements in the buffer. A straightforward way to 
implement a bounded channel would be as a pair of an unbounded channel and a quantity 
semaphore: 
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type BChannel a (Channel a, QSem) 

A quantity semaphore is an abstraction with the following interface: 

type Qsem 
newQSem 10 QSem 
waitQSem QSem 10 

signalQSem QSem 10 

A QSem holds an integer, initially set to zero. waitQSem decrements this number, blocking 
if it is already zero. signalQSem increments the number unless there are blocked processes, 
in which case it frees one of them. 

The QSem in a BChannel records how many available slots there are in the buffer, so it is 
initialised with N calls to signalQSem, where N is the desired maximum buffer size. Then 

every attempt to write into the channel calls waitQSem to gain permission to write, and 
similarly every successful read calls signalWem 

C. 3.1 Implementing quantity semaphores 

It is possible to implement a quantity semaphore using only binary semaphores, but it is 

surprisingly difficult, and correct solutions are not well known [Bar83]. However, because 

we can freely allocate new Mrs, we can give a perfectly straightforward implementation: 

type QSem = MVar (Int, [MVar ()]) 

A QSem is an MVar holding a pair (so that access to the whole pair is indivisible). The Int 
plays the same role as before. The second component of the pair is a list of Mrs, on each 
of which precisely one process is blocked. It is an invariant of QSeMs that if the quantity is 
non-zero then the list is empty. 

If a waitQSem finds a zero count in the QSem, it creates a new, private, MVar, adds it to the 
list, puts the resulting pair back in the QSem's MVar, and then blocks on its private MVar: 

waitQSem sem 
= takeMVar sem >>= Vavail, blkd) 

if avail >0 then 

putMVar (avail-1, [1) 

else 
newMVar >>= \blk -> 
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putMVar (0, blk: blkd) 

takeHVar blk 

The implementation of signalQSem is equally easy. It simply frees one blocked process if 
there are any, and increments the count otherwise: 

signalQSem sem 
= takeMVar sem >>= \(avail, blkd) 

case blkd of 
0 -> putMVar (avail+l, 
(blk: blkdl) -> putMVar (0, blkdl) 

putMVar blk () 

C. 3.2 Variable-munch quantity semaphores 

An obvious generalisation of quantity semaphores is for waitQSem and 

signalQSem to specify how much of the resource they claim or return respectively: 

waitQSemN QSem Int 10 

signalQSemN QSem Int 10 

Now, (signalQSemN s n) is equivalent to n successive calls to signalQSem, but if waitQSemN 

were to be implemented in this way, deadlock might easily result. Why? Because two pro- 

cesses'executing a waitQSeraN might each claim part, but not all, of the resource they require, 
thereby depleting it to zero and deadlocking. So vaitQSemN must grab all its requirement 
at once; if not enough is available, it must block without grabbing any. 

The new problem that this raises it that we may have a set of blocked processes, each with 
a different resource requirement. It is easy to record this information, and use it to release 

only the appropriate ones: 

type QSem = MVar (Int, [(Int, MVar 

The implementation of waitWemN is essentially identical to 

waitQSem. signalQSemN is a bit more interesting, because it may free zero or more blocked 

processes: 

signalQSemN sem n 
takeMVar sem >>= \(avail, blkd) -> , 
free (avail+n) blkd ->>= Vavail', ' blkdI)-> 
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putMVar sem (avail', blkdl) 

free :: Int -> War M -> 10 Unt, Mar ()1) 

free avail 0= return (availj]) 

free avail ((req, blk): blkd) 

= if avail >= req then 

putMVar blk () >> 

free (avail-req) blkd 

else 
free avail blkd >>= \(avail', blkdl) 

return (avail', (req, blk): blkdl) 

The function f ree walks down the list of blocked processes, freeing any it can, and returning 
the depleted resource supply and remaining blocked processes. 

C. 3.3 Priority 

Suppose that many processes, some important and some less important, are blocked on a 
single, empty Mr. Concurrent Haskell does not specify which of these processes will be 

awakened when the MVar is written. How can we arrange that it'is the more important 

ones that are awakened? It would be possible to add some sort of priority mechanism to 
the language, but it turns out that there is no need: exactly the same trick as we used 
for the quantity semaphore will work here. All that is necessary is to build an abstraction 
that maintains a list of blocked processes (in the form of private Mrs on which they are 
blocked), each paired with its priority. 

C. 3.4 Summary 

This section has demonstrated that we can readily "reify" scheduling decisions, allowing 
them to be performed (when desired) in the language itself. The key idea is to represent 
a blocked process as an empty MVar, so that scheduling the process, -can 

be achieved by 
writing to the MVar. Much the same trick is used in the Pict language. [PRT93] 
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CA Choice 

Most process languages provide a choice construct - ALT in Occam, select in Concurrent 

ML, + in the 7r-calculus - that allows a process to determine what to do next based on 

which of a number of communications are ready to proceed. For example, in the 7r-calculus 
the process 

x(v). P + Y(W) 

will either read a value v from channel x and then behave like P, or read a value w from 

channel y and then behave like Q, but not both. We say that x(v) is the guard for the first 

alternative, and similarly y(w) guaxds the second. 

We do not provide a choice construct in Concurrent Haskell, for several reasons: 

(1) Most languages that provide choice restrict it in the following way: alternatives can 
only be guarded with single primitive actions. As Reppy persuasively argues, such a 
restriction interacts very badly with abstraction [Rep88]. For example, we might want 
to guard an alternative with a call to getChan, without knowing anything about how 

getChan is implemented. 

Of course, lifting this restriction is not straightforward. For example, it is no good 
synchronising on the first primitive action performed by the guard: just because the 
first primitive operation (doing a take on the read-end MVar) succeeds does not mean 
that the getChan succeeds! Furthermore, if the guard can be a compound action, as 

getChan certainly is, what should be done with partially completed actions from the 

non-chosen alternatives? 

(2) In our experience, the generality of choice is rarely if ever used. 

(3) Implementing a general choice construct can be costly, especially in a distributed 

setting, and especially if guards can contain both read and write operations. 

(4) Mrs already provide non-determinism, as we have seen in the case of channels with 

multiple writers, and can be used to build application-specific choice constructs. 

In short, contrary to initial impressions, choice is expensive to implement, rarely used in its 

full generality, and limits abstraction. 

In the rest of this section we describe how we live without choice. In common with the 

programming language Pict, we distinguish singular choice from iterated choice, the latter 

being by far the most common in practice. 
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C. 4.1 Iterated choice 

A very common paradigm is for a process to service several distinct sources of work. On 

each iteration the server chooses one of its clients, services the request, and then returns to 
select a new client. Such a server would be understood by the concurrent object-oriented 
programming community as a concurrent object. 

The important thing about iterated choice is that partially-executed guards of the alterna- 
tives that "lose" - that is, are not selected - do not need to be undone, because they can 
simply await the next iteration of the server. 

As an example, suppose that the server is dealing with network traffic arriving from two dis- 
tinct sources. The functions get I and get2 get a packet from the two sources respectively; 
processPacket does whatever the server does to the packet: 

getl, get2 ::.. 10 Packet 

processPacket :: Packet -> 10 

Of course, get I and get2 can be as complicated as necessary. They might consist of a large 

series of 1/0 interactions, not just one primitive operation. 

We can program the server by using a CVar as a rendezvous buffer. The server simply reads 
packets from this buffer. Before it does so, it forks a process for each packet source that 
simply reads a packet from its source and tries to write it into the buffer. 

server :: 10 () 

server 

-- Create empty buffer and full token 

newCVar >>= \buf -> 

, -- 
Create "sucking" processes 

forkIO (suck getl buf) >> 

forkID (suck get2 buf) >> 

server-loop buf 

server-loop :: CVar Packet -> ID 

server-loop buf 

= getCVar buf >>= \pkt 

processPacket pkt 
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server-loop buf 

suck :: 10 a -> Var a -> 10 () 

suck get-op buf 

get-op >>- \pkt 

putCVar buf pkt >> 
suck get buf 

Of course, if the clients can be "told" how to write to the server the "suck" processes are 
not necessary. In practice we find that this approach, which is strongly reminiscent of call- 
backs, loses a degree of modularity - for example, the client would have to be informed if 
the server changes - so we normally use the formulation given above. 

C. 4.2 Singular choice 

On those occasions when we want to make a "one-off" choice among competing alternatives, 
we put the obligation on the programmer to make the alternatives abortable. The way we 
choose to express this obligation is by making the alternatives have type 3 

type Alternative a= Commitment a 10 
type Commitment a= 10 (Maybe (a 10 
data Maybe a= Nothing 

I Just a 

An alternative takes an 1/0 action, of type Commitment, as an argument, which it performs 
exactly when it wants to commit. This Commitment returns either Nothing, indicating 

that some other alternative got there first and the alternative should abort, or Just reply 
where reply is an action that should be applied to the result of the alternative. Exactly 

one alternative will receive Just reply when it reaches its commitment point; the others 

will all receive Nothing, whereupon they carry out any necessary abort actions and then 
die quietly. 

It is now simple to define select: 

select :: [Alternative a] -> 10 a 

3The Maybe type is standard in Haskell, and corresponds to option in Standard ML. A value of type 
Maybe t is either Nothing or is of the form Just v, where v has type t. Maybe types are useful for encoding 
values which may or may not be there. 
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select arms 

newMVar >>= result-var 

newMVar >>= commit-var 

putMVar commit-var 
(Just (putMVar result-var)) 

let 

commit = takeMVar commit-var >>= \ res 

putMVar commit-var 
Nothing 

return res 
do-arm arm = forkIO (arm commit) 

in 

mapIO do-arm arms 
takeMVar result-var 

Here, mapIO is an analogue in the 10 monad of the familiar map function: 

mapIO :: (a -> 10 b) -> [a] -> 10 [b] 

(mapIo f xs) applies f to each element of xs, producing an 10 action in each case. It 

performs these actions in sequence, and returns the list of their results. 

C. 5 Semantics 

We have already hinted that regarding a program as a purely-functional state transformer 

gives an inadequate semantics for input/output behaviour. For example, a program that 

goes into an infinite loop printing IaI repeatedly, would just have the value I, even though 
its behaviour is quite different to one that goes into an infinite loop performing no in- 

put/output. 

The situation worsens when concurrency is introduced, since now multiple concurrent pro- 
cesses are simultaneously mutating a single 
state. The purely-functional state-transformer semantics becomes untenable. 

Instead we adopt an operational semantics, the standard approach to giving the semantics 
of a concurrent language. 
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C. 5.1 Deterministic Reduction 

Suppose we already have an operational semantics for a purely functional fragment of 
Haskell. [Gor94] presents a suitable operational semantics for a small fragment of Haskell, 

and the approach could be extended to the full language. 

We shall show how to incorporate our concurrency primitives into such a semantics. Suppose 
A and B stand for types and a and b stand for programs, that is, closed, well-typed expres- 
sions, and that the operational semantics consists of a deterministic, small-step reduction 
relation, a F-+ b. We extend the grammar of types by 

A :: = ... I MVarA I IDA 

and allow the following new constants as expressions. 

return 
forkIO newMVar 

putMVar takeMVar 

A name, n, is drawn from an infinite set of tags, and uniquely identifies a particular Mr. 
We extend the reduction relation to reduce the first argument of (>>=) and of putMVar and 
takeMVar, and with the following axiom scheme 

return a >>= b ý-4 b(a) 

but we do not provide any reductions for f orkID, newMVar, putMVar 
and takeMVar. It follows that a value - that is, a fully reduced program of type 10 A- 
is either return a where a:: A or of the form M[vjO] where 

vjo :: = forkIOalnewMVarlputMVarnaltakeMVarn 

M[I :: = 

In a value M [vjo], the expression vio represents the next concurrent action, and the context 
MDrepresents the continuation that consumes the result of that action. This mild extension 

preserves determinacy of ýý. 

C. 5.2 Concurrent Reaction 

To model the concurrent aspects of Concurrent Haskell we need to consider systems of 
interacting monadic processes. We use P and Q to stand for processes. 
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pa 
PIQ 
(vn)P 
(a)n 

I On 

I ABORT 

if a:: IO () 

parallel composition 
restriction of name n to P 
full MVar named n holding program a 
empty MVar named n 
erroneous process 

The only binding construct for names is (vn)P. We write fn(P) for the set of names free 
in process P, and P[m/n] for the outcome of substituting m for each occurrence of name n 
free in process P. 

We adapt the 'chemical abstract machine' presentation of polyadic 7r-calculus [Mil9l]. First, 

we formalise the idea of a 'solution' of programs and Mrs waiting to react by defining a 
structural congruence relation. Second, we specify the reaction of programs and MVars by 

simple reaction rules. 

Let structural congruence, =-, be the least congruence (that is, an equivalence relation 
preserved by all process contexts) to include alpha-conversion of bound variables and names, 
plus the following two collections of rules. The first group says that a process solution is 

roughly a multiset: 

(1) P1 IAI P3) (PI I PQ I P3 

PIQ QIP 
The second group are the standard rules for restriction from 7r-calculus. Restriction repre- 
sents the locality of access of MVars. 

(2) (vn)(vm)P (vm)(vn)P 

(vn) (P I Q) PI (vn) Q, if ný fn (P) 

Secondly, we extend the deterministic reduction relation, ý-*, on programs to a nondeter- 

ministic reaction relation, -+, on processes, identified up to structural congruence. The first 

two rules specify the interaction of programs and Mrs: 

(put) On IM [putMVar n a] (a)njM[returno] 
(Take) (a)njM[takeMVarn] OnIM[returna] 
(Abort) (a)nIMýuMarnb] ABORT 

The (Abort) rule deals with the erroneous situation of a putMVar on a full Mr. We also 
need two rules to deal with the propagation of ABORT. 
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(AbortPar) ABORT IP ABORT 
(AbortNu) (vn)ABORT ABORT 

The operations f orkIO and newMVar turn into process restriction and composition: 

(Fork) M[forkIOa] aIM[returno] 
(New) M[newMVar] (vn) ((),, I M [return n]) 

if ný fn(M) 

These two structural rules allow reactions within compositions and beneath restrictions: 

(Pax) PIQ 
(Res) (vn) P 

P, IQ 
(vn)P' 

if P -+ 
if P -+ 

The final reaction rule turns a reduction of a program into a reaction of that program 
considered, as a process: 

(Reduce) a -+ b if a ý-+ b 

Since processes are identified up to -=, we may freely use the rules of =- to bring together 

partner programs and Mrs for (Put) or (Take) interactions, and to enlarge the scope of 
an MVar allocated by (New). 

Our semantics is intentionally minimal but nonetheless it does support at least the following 

result. Say that a process P passes a test R iff 3Q(P IR -+* done I Q), where done is a new 
process constant allowed only in test processes such as R. Then two processes are testing 

equivalent iff they pass the same tests. This is a standard definition from concurrency 
theory [dNH83]. 

Theorem. If two programs a and b are denotationally equivalent as functional 

programs, they are testing equivalent when considered as processes. 

Our denotational semantics is a standard denotational semantics for a lazy functional Ian- 

guage, with the JO type modelled as if it were an algebraic type with a constructor corre- 
sponding to each of the constants putMVar, takeMVar, f orkID, newMVar and return. These 

constants and >>= are ' modelled by functions acting on this algebraic type. To model the 

values held by MVar's we use dynamic types. We omit the details but this is a generalisation 
of constructions [Gor94]. In effect we model a program of 10 type as a potentially infinite 
tree, where each node represents an instruction to be interpreted at runtime. The nodes 
representing f orkID's have two successors, to be interpreted in parallel; all the others have 

one or none. We omit the proof of the theorem, but intuitively it holds because as far as 
passing a test is concerned, all that matters about a program of 10 type is the sequence of 
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instructions it issues. If two programs are denotationally equivalent, they issue the same 

sequence of instructions, so they axe testing equivalent. 

This is not a particularly abstract denotational semantics, since it explicitly represents 

the instructions issued by a program, rather than their observable effect. However, it 

shares with standard denotational semantics of lazy functional languages the property that 

a program of any type either equals a value of that type, or denotes 
-L. 

This fact makes it 

straightforward to validate conventional reasoning about functional programs, such as P77- 

equivalence. In particular, the theorem asserts that any compiler optimisation that depends 

on such conventional reasoning will not invalidate testing equivalence. 

The Concurrent Haskell type system restricts the possibility of side-effects, so we have been 

able to put all the work of explaining side-effects into explaining 10 types. A denotational. 

semantics for a language with unrestricted side-effects - see [CG94], for instance - would 

need to account for side-effects at every type, and hence in general 877-equivalence (for 

example) is unsound. 

C. 5.3 Fairness 

In any real system the programmer is likely to want some fairness guarantees. What, 

precisely, does "fairness" mean? At least, it must imply that no runnable process will be 

indefinitely delayed. 

Is that enough? No, it is not. Consider a situation in which several processes are competing 
for access to a single Mr. Assuming that no process holds the MVar indefinitely, it should 

not be possible for any of the competing processes to be denied access indefinitely. One 

way to avoid such indefinite denial would be to specify a FIFO order for processes blocked 

on an MVar, but that is perhaps too strong. It would be sufficient to specify that no process 

can be blocked indefinitely on an MVar unless another process holds that MVar indefinitely. 

C. 5.4 Summary 

There have been several previous semantics for concurrent functional languages [Ho183, 

Rep9l, Jef95, Sch95]. Scholz' set-based semantics is closest, but nothing in his semantics 

corresponds to our restriction, (vn)-, which captures locality of MVars. 

A notable feature of our semantics is its stratification into a deterministic reduction relation 

ý-*, and a non-deterministic reaction relation -+. We might consider -+ as specifying an 
imperative coordination language, and ý-+ as specifying a functional computation language. 
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Our semantics is sufficient to show that the nondeterministic, concurrent computation (-+) 

at 10 types does not affect the deterministic, functional computation (ý-+) at non-ID types. 
We sought the simplest semantics that would do so. We have not gone further - for 
instance, by seeking to approximate testing equivalence using a labelled transition system 
and bisimilaxity'- because the presence of both higher-order functions and local names 
is known to make bisimilarity problematic. Jeffrey [Jef95] studies weak bisimilarity for a 
monadic concurrent language similar in spirit to Concurrent Haskell but does not consider 
the problems of local names. Although an adaptation of Jeffrey's work to Concurrent 
Haskellwould be a worthwhile research project, our minimal semantics suffices for many 
practical purposes. It provides a simple, precise and abstract specification of the operational 
behaviour of Concurrent Haskell programs. 

C. 6 Implementation 

We have implemented Concurrent Haskell as a small extension to the Glasgow Haskell 
Compiler (GHC), a highly-optimising compiler for Haskell. 

Concurrent Haskell runs as a single Unix process, performing its own scheduling internally. 
Each use of f orkIO creates a new process, with its own (heap-allocated) stack. Tile scheduler 

can be told to run either pre-emptively (time-slicing among runnable processes) or non-pre- 
emptively (running each process until it blocks). The scheduler only switches processes 
at well-defined points at the beginning of basic blocks; at these points there are no half- 

modified heap objects, and the liveness of all registers (notably pointers) is known. 

A thunk is represented by a heap-allocated object containing a code pointer and the values 

of the thunk's free variables. A thunk is evaluated by loading a pointer to it into a defined 

register and jumping to its code. When a process begins the evaluation of a thunk, it replaces 
the thunk's code pointer with a special "under-evaluation" code pointer. Accordingly, 

any other process that attempts to evaluate that thunk while it is under evaluation will 

automatically jump to the "under-evaluation" code, which queues the process on the thunk. 
When the original process completes evaluation of the thunk it overwrites the thunk with 
its final value, and frees any blocked processes. 

An MVar is represented by a pointer to a mutable, heap-allocated, location. This location 

includes a flag to indicate whether the MVar is full or empty, together with either the value 
itself, or a queue of blocked processes. 
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C. 6.1 Other primitives 

One tiresome aspect is that a process performing ordinaxy Unix 1/0 might block the whole 
Concurrent Haskell program, rather than just that process, which is obviously wrong. There 

seems to be no easy way around this. We provide a primitive that enables a solution to be 
built, however: 

waitInputFD :: Int -> ID 

waitInputFD blocks the process until the specified Unix file descriptor has input available. 

The final useful primitive we have added allows a process to go to sleep for specified number 
of milliseconds: 

delay :: Int -> 10 () 

C. 6.2 Garbage collection 

An interesting question is the following: is it ever possible to garbage-collect a process? 
At first its seems that the answer might be quite complicated: after all, process garbage 
collection is a notoriously tricky business (see, for example, [Hud86]. ) 

Fortunately, it turns out to be rather easy in Concurrent Haskell. The principle is as follows: 

a process can be garbage- collected only if it can perform no further side effects. Here are 
two immediate consequences: 

(1) A runnable process cannot be garbage collected, because it might perform more 1/0. 

(2) A process blocked on an MVar can be garbage-collected if that MVar is not accessible 
from another non-garbage process. Why? Because the blocked process can only be 

released if another process puts a value into the blocking MVar, and that certainly 
can't happen if the MVar is unreachable from any non-garbage process. 

This leads us to a very simple modification to the garbage collector: 

When tracing accessible heap objects, treat all runnable processes as roots. 

9 When an MVar is identified as reachable, identify all the processes blocked on that 
MVar as reachable too (and hence anything reachable from them). 
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Like any system, this one is not perfect; for example, an MVar might be reachable even 
though no further writes to it will take place. It does, however, do as well as can be 

reasonably expected, and it succeeds in some common cases. For example, a server with no 
possibility of future clients will be garbage-collected, since it is blocked on its input MVar 

and no other process now has that Mr. 

C. 6.3 Distributed implementation 

We are working on a distributed implementation of Concurrent Haskell. One nice property 
of Wars is that they seem relatively easy to implement in a distributed setting, compared 
to generalised choice for example. 

Each MVar resides in one place, and a putMVar or getMVar operation on a remote MVar is 
implemented with a message send. The message for a getMVar carries with it the identity 

of the sending process, and may be blocked indefinitely at the far end, on an empty Mr. 
When the MVar is written to, the blocked getMVar message is returned to the sender, now 
carrying the value written to the Mr. On arrival at the original sender, the reply awakens 

,. the process whose identity it carries. 

A putMVar'message is simpler, since it requires no reply. Either it succeeds in writing to an 
empty MVar, or it finds a full MVar, which is a run-time error (but see Section C. 8). 

C. 7 Related work 

We originally borrowed the idea of Mrs directly from Id, where they are called M- 

structures. Id's motivation is rather different to ours: M-structures are used to allow certain 
highly-parallel algorithms to be expressed that are difficult or impossible to express without 
them. [BNA91] However the basic problem they solve is identical: convenient synchronisa- 
tion between parallel processes. We also share with Id the expectation that programmers 
should rarely, if ever, encounter Wars. Rather, Mrs are the "raw iroiP from which more 
friendly abstractions can be built. 

One big difference between Concurrent Haskell and Id is that in Concurrent Haskell oper- 
ations on Mrs can only be done in the 1/0 monad, and cannot be performed in purely- 
functional contexts. In Id, since everything is eventually evaluated, side effects axe permitted 
everywhere. 

It is interesting to compare MVars with ordinary semaphores, when each are used to provide 

mutual exclusion. Using semaphores (or mutex locks in ML-threads) one must remember 
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to claim the, lock before side-effecting the data it protects; that is, the mutex implicitly 

protects the data. With an MVar, the protected data is explicitly inside the MVar, which 
means that one cannot possibly forget to claim the lock before side-effecting it! Not only 
that, but the connection between the lock and the data it protects is more explicit: MVar 
t rather than (t, mutex). Lastly, mutual exclusion using a semaphore requires at least 
two mutable locations: the semaphore and the data. Using an MVar usually collapses these 
two locations into one, and thereby also reduces the number of side-effecting operations. 
In complex situations implicit locking may still be unavoidable, but Mrs simplify the 
common case. 

C. 7.1 Concurrent functional languages 

Two of the first functional languages providing concurrency were PFL [Hol83] and Am- 
ber [Car86]. Both supported concurrency with communication along synchronous, typed 

channels. 

Reppy's Concurrent ML is, as the name suggests, the ML predecessor of Concurrent Haskell. [Rep9l] 
CML is an influential synchronous concurrent language whose war-cry is "choice without 
loss of abstractiore'. It achieves this goal using a new abstract data type of events, (a 

subset of) whose signature is: 

type 'a chan 
type 'a event 

val receive : 'a chan -> 'a event 

val transmit : 'a chan -> 'a -> unit event 

val guard (unit -> 'a event) -> 'a event 

val wrap ('a event * ('a -> lb)) -> lb event 

val choose : 'a event list -> 'a event 

val sync : )a event -> )a 

receive and transmit are the primitive events, guard and wrap add pre-synchronisation 
and post-synchronisation actions respectively to 

an event, choose combines a list of events into a single event, and sync actually synchronises 
on an event., In many ways, a CML value of type event t is rather like a Haskell 1/0 action 
of type 10 t. Both are first-class values that can be synchronised on (resp. performed) 
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repeatedly. 

An important difference is that CML events contain an implicit "synchronisation point" 
that is a single primitive action, encapsulated in pre- and post-synchronisation actions. 
Haskell 1/0 actions have no such structure. The corresponding disadvantage is that one 
writes different CML code to perform a protocol depending on whether the result is simply 
a unit-valued function that is called to perform side effects, or an event-valued function that 
is activated by sync. The latter are not as easy to write as the former, and the mere fact 

of the difference might be considered as a blow to abstraction. 

FACILE is another extension of ML with concurrency, [GMP89] though one which is quite 
a bit more complex than either CML or Concurrent Haskell. Like CML, FACILE employs 
synchronous communication. 

ML-threads is a concurrency package for ML developed by [CM90]. It provides threads, 
together with mutex locks and condition variables to manage thread interaction. Concurrent 
Haskell has a similar flavour, although it seems somewhat simpler: for example, Concurrent 
Haskell provides only MVars rather than both mutexes and condition variables. 

Using Gofer, [JH93] have recently explored issues similar to Concurrent Haskell, introducing 

a (symmetric) fork primitive and synchronous channels into a mona-dic setting. This work 
differs from ours in that the emphasis is on expressing parallel algorithms succinctly rather 
than writing concurrent programs that engage in messy interaction with the outside world. 
Evaluating two monadic sub-computations in parallel, by 'sparking' them using a symmetric 
fork primitive is convenient for many parallel algorithms, but this synchronous view of 

process is not appropriate in the concurrent case (see Section C. 1.2). Communication 
between these 'sparked' processes is done on exclusive, synchronous channels, considering 
it an error when more than one send occurs on a channel without a matching receive. This 

restriction is quite severe in a concurrent setting, as resource managers such as a window 
system that encapsulate and provide controlled access to some shared resource, cannot be 

readily expressed. 

It goes without saying that we share with all of these languages the benefits of higher-order 

functions, polymorphic typing, the ability to pass any value along a channel (including 

functions, channels, and as-yet-unevaluated suspensions). 

C. 7.2 Functional operating systems 

The early 1980s saw a great deal of work done on functional operating systems. Typical 

was the work of Jones and Henderson, [Hen82b, Jon83, Jon84] and Stoye's "sorting office" 
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[Sto84]. All of this work was based on the idea of processes communicating through streams 
of messages, with a non-deterministic merge primitive, or in Stoye's case an external sorting 
office, that provided a choice construct. Programming using streams is not particularly easy, 
however, requiring a great deal of tagging and untagging to keep the plumbing straight. 

Cupitt's made an advance over stream processing by introducing a form of monadic 1/0 (ac- 
tually presented using continuations), with explicit process forking much like f orkIC. [Cup92] 
Communication between processes was solely by sending messages to the process; that is, 

every process had but a single input port through which it had to multiplex all its commu- 
nication. 

C. 7.3 Concurrent object-oriented languages 

Much the largest group of asynchronous concurrent languages is the that of actor languages, [Agh86] 

and concurrent object-oriented languages [Agh90] such as ABCL [Yon90]. It would be in- 
teresting to undertake a systematic comparison of them with Concurrent Haskell, but we 
have not yet done so 

C-7.4 Synchronous vs asynchronous 

We are convinced that an asynchronous model of communication gives a simpler, cleaner 
design than a synchronous one. Briefly, our reasons are as follows: 

e The asynchronous model allows one to think either in terms of messages or in terms of 
shared memory. The synchronous model makes the former much easier than the latter, 
by requiring a shared memory location to be modelled by a process and associated 
communication protocol. 

The asynchronous model seems to be much less profligate with process creation, by 

substituting "passive" Mrs for active processes. 

A synchronous model absolutely requires choice, with the difficulties discussed earlier, 
while the asynchronous model does not. 

In a distributed system, the underlying infrastructure directly supports asynchronous 
messages, while synchronous ones have to be programmed on top. In this sense, 
asynchronous communication is more primitive. 
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C. 8 Conclusions and further work 

We have described a small and simple extension to Haskell that allows concurrent programs 
to be written. Using this substrate we are now well advanced in the construction of a 
graphical user interface toolkit, Haggis. Indeed this application has been the driving force 
for Concurrent Haskell throughout, just as eXene was used as a test case for CML. Despite 
the apparently primitive nature of our single synchronisation mechanism, Mrs, we have 
found the language surprisingly expressive. 

The current semantics of MVars specify that a putMVar that finds a full MVar is an error 
that aborts the whole program. Several other design choices are also reasonable: 

* Make an MVar hold a multiset of values, as in Pict channels. 

e Make an MVar hold a sequence of values. 

* Make an MVar hold a single value, but specify that a putMVar on a full MVar should 
block, rather than cause an error. 

We are undecided whether any of these choices are "better" than our current semantics. 
The semantics of each is fairly easy to describe, and their implementations are not hard 

either. 

One obvious topic for further work is further development of the formal semantics of Con- 

current Haskell. On the implementation side we are actively working on a distributed, 

multiprocessor implementation. 

Concurrent Haskell is freely available by FTP. (Connect to 
f tp. dcs. glasgov. ac. uk, look in pub/haskell/glasgow, and grab any version of Glasgow 
Haskell from 0.24 or later. ) 
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