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Drawing from calculators
W ill T him bleby
P h D  T hesis, Sw ansea U niversity , 2010

Summary
Two novel interactive systems, a new calculator and a new drawing pro­
gram, are developed. The novel user interfaces derive from the application 
and development of design principles during the software development. It 
is the principles, their relationship to the development process, and their 
potential future role in interactive system development, that form the main 
contributions of the thesis.

Each system was created using an iterative, principle-driven method, in 
which the principles and implementation built on each other. The principle- 
driven design process led to original user interfaces and to refined principles. 
The design, development and underlying principles of each system form two 
complementary parts of the thesis:

• The calculator is designed to work as though it is “paper with an­
swers.” The user can write any mathematical expression by hand, 
and the calculator recognises the written expression, then morphs the 
user’s input to a neat typeset expression, corrects any syntax errors, 
and then provides an answer. The neat typeset expression can then 
be edited freely by direct manipulation or by adding further writing.

• The vector graphics drawing program design follows a similar principle- 
driven approach. It applies the principles developed with the calcula­
tor, but to a very different style of user interface.

Both systems provide substantial examples of user interface design and de­
velopment. Their design and development resulted in four key user interface 
principles: projection, continuity, what you see is what you edit, and declar­
ative interaction. These four flow principles are, it is argued, the main 
reasons the user interfaces are effective.

User studies, qualitative feedback, heuristic, and analytic evidence is pro­
vided for the user interfaces. Both systems have been well received by users 
and are commercially distributed.

The design principles may support future user interface design and develop­
ment. They provide further research opportunities, particularly in exploring 
exactly where they are applicable, and how and when they can be applied 
to future designs.
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Chapter 1

Introduction

This chapter is designed as a complete and self-contained version of the 
larger thesis. The chapter provides a brief summary of the work in the 
entire thesis.

1.1 A bstract

The user interfaces for a novel calculator and a drawing program are de­
scribed. The design and the associated design principles of these systems 
form the two complementary parts of this thesis.

These two systems provide, what will be proposed, are novel user interfaces 
for the conventional tasks of calculating and drawing. It is the user interfaces 
that make the applications distinct and could account for their appeal to 
users and their success in the marketplace of discretionary use.

The novel interfaces have been created using the insights from the applica­
tion and development of certain design principles. During the development 
of the applications these principles helped shape the designs, and they were 
themselves shaped and refined as they were used. It is these diverse princi­
ples, their relationship to the development process, and more generally their 
potential future role in application development, that is the substance of the 
thesis.

This thesis focuses on clarifying and specifying the principles as well as 
describing how they emerged, developed and were used. The purpose will 
be to articulate what these principles are, how they were used and how they 
can be used in future design.

1
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1.2 Introduction

Both drawing and calculation are very old: humans have been drawing and 
calculating for over tens of thousands of years. Unsurprisingly, tools (in 
addition to fingers) which support these activities have existed for almost 
as long.

With the invention of computers, their use as a tool to aid drawing and 
calculation was an obvious step, and thus computer applications to support 
drawing and calculation have been used since the earliest computers. The 
initial primary use of the modern digital computer was mathematical com­
putation. And as early as 1963, Ivan Sutherland’s Sketchpad was one of the 
first interactive drawing applications for a computer.

The calculator and Lineform, a vector graphics drawing program, described 
in this thesis were designed in a principled way with original user interface 
features. These systems have been well received by users: the calculator 
was selected for exhibition at the UK’s top science exhibition, the Royal 
Society’s Summer Science Exhibition; the drawing program was awarded an 
Apple Design Award, an award that recognises the best and most innova­
tive Macintosh software. Although part of a PhD research programme, both 
these systems are robust, commercial-quality pieces of software: the calcu­
lator has been used for teaching in schools; the graphics program has been 
used in professional design. Both are now being distributed and supported 
commercially. They have tens of thousands of active users.

1.2.1 C ontributions, princip les and evaluation

The main contribution of the thesis is the specific novel design and im­
plementation of both systems, and also their principles and argued design 
rationale that may be applied to future user interface design. In summary 
this thesis makes distinctive contributions at several levels:

• The programs, description of the design process, and novel user in­
terfaces axe themselves contributions, and are available to commercial 
standards.

• The principles can be used in other design processes.

• Features of the programs can be used in other systems.

• This thesis opens new research questions and makes suggestions for 
further work (Section 1.5).

• Additionally, there are refereed publications and other forms of com­
petitively reviewed outputs (Section 1.6) arising from the thesis work.

A key question for any contribution is its validity. Conventionally, contri­
butions and claims are evaluated, at least if their value is not self-evident.
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Unfortunately, it is not possible to directly evaluate a principle, only its 
expression in the systems whose design it informed, and even then there 
may be other factors to control for. For example, only one programmer — 
the thesis author — was involved in the software development described in 
this thesis. It is also possible that any reasonable principle would improve 
design, perhaps because of the structure it provides. In an ideal world, one 
might use double-blinded reverse-result experiments (i.e., participants do 
not know the purpose of the principles they are given, but the experimental 
design has also included principles intended to make user interfaces worse), 
however, this is beyond what this thesis attempts.

The principles this thesis explores have not directly been subject to any 
empirical testing outside of their impact on the design of the particular 
applications. Of course, empirical user-based evaluation is only one form 
of evidence that can be recruited to argue successful research, though it 
is one which is very widely used; other methods include expert inspection, 
cognitive walkthrough, and so forth. However, as well as presenting sub­
stantial exploratory evaluation, this thesis will argue that the principles are 
an important aspect of the design of the novel user interfaces described, and 
further, their use in future user interface design has potential to lead to other 
novel and easy to use interfaces. Future studies might provide further eval­
uation of how the principles express themselves in other user interface styles 
(e.g., text-intensive, mobile, walk-up-and-use, CSCW), how the principles 
are used by other programmers, and so on.

1.2.2 Structure o f  th e  th esis

This thesis is split into two parts, which mirror each other. Each part in 
turn describes the context, design and development, principles, user inter­
face, implementation and evaluation of the two different programs. The 
calculator is described first, and Lineform, which builds on some of the cal­
culator’s principles follows. This thesis then concludes with a summary of 
the contributions and the new opportunities for further work.

1.3 Calculators

Imagine writing a calculation down on paper and the paper magically work­
ing out the answers. The paper recognises your handwriting and you write 
naturally, using the ordinary mathematical notation you axe already famil­
iar with. The new calculator works like this and provides a user interface 
for pen-based interaction; or for interactive whiteboard use, for instance in 
lectures or classrooms.

The calculator, first described in [Thimbleby. 2004], provides a natural, dy­
namic method of entering conventional arithmetic expressions using hand­
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3 3x4=12 3x6=18
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Figure 1.1: Using th e  calcu lator

writing. It provides continual feedback showing the calculation and results. 
The user interface adjusts and copes with partial expressions, morphing the 
expressions to the correct position and result. Gestures are also used to edit 
and manipulate calculations. The actual interaction is very fluid, and is 
hard to convey well in a static, non-interactive paper format such as a PhD 
thesis. Video demonstrations of users interacting with the calculator and of 
the user interface are available on-line1.

1.3.1 T y p ica l use

Figures 1.1.1—1.1.6 show a sequence of screen snapshots of the calculator in 
use. In the first screenshot, the user has written 3x4 and the calculator is 
at the moment of the screenshot “catching up" with the user’s handwriting, 
and has just rendered the 3 in a typographically neat font.

In Figure 1.1.2. next, the calculator has morphed all the user’s input, and 
immediately combined it with the output (here, ‘=12’) and displayed it all 
as a typeset equation. The output generated from the calculator is shown in 
red, distinguishing it from the black of the user’s input. The user continues 
to edit the equation and by Figure 1.1.3, they have deleted the 4 and written 
‘ = 18’. Effectively this poses the question “three times what is eighteen?” 
making the calculator compute “3xa: =  18” . Additionally in Figure 1.1.3, 
the user can be seen to continue to edit this solved equation as if it were 
their own input; the user has written underneath of the equation to divide 
the left hand side by 5.

By Figure 1.1.4 the calculator has morphed these changes and combined the 
typeset output and the user’s input into another neatly typeset equation, 
now showing a generated 30.

In Figures 1.1.5 and 1.1.6, the user “drag selects” the “3 x ” from the previous 
screen and drags it below the division line. (This is an “ink edit” , the “3x" 
is not a syntactically nor semantically meaningful unit.) Finally, Figure

1 h ttp ://w w w .cs.sw an .ac.u k /ca lcu la tors/
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1.1.6 shows the result of this edit, and it is mathematically correct — thus 
providing a solution to “x/(3  x 5) =  18” .

1.3.2 C alculator design  principles

The design of the calculator was based on the idea of a natural pen and 
paper user interface. As the calculator was created, principles developed 
that informed the design. As the design was advanced and built on, these 
principles were integrated deeper and refined through use and implemen­
tation, this process is described in Chapter 3. These principles, that both 
guided and evolved through the calculator’s design are described more fully 
in [Thimbleby and Thimbleby, 2005] and in Chapter 4. The main principles 
are summarised here.

• Projection — Changes to the system’s state are immediately visible 
everywhere. This expands on the term projected editors used by [Si- 
monyi et al., 2006] and is similar to tight coupling as described by 
Ahlberg and Shneiderman [1994]. An important aspect of projected 
editing is that the input and output of the user interface can never 
be inconsistent. This means that the display of output data (e.g. the 
answer) has to be correct instantly without further user action.

• Continuity — Continuous feedback and morphing provide the conti­
nuity between state changes. The user is always provided with clear 
feedback [Shneiderman, 1992] about what is happening. For exam­
ple, the user’s hand-written input is morphed into a typeset sum, this 
provides a clearer knowledge of the mathematics being calculated and 
how the output relates to the input.

• What You See is What You Edit (WYSIWYE) — Only what is visible 
in the user interface determines how system can be edited. A user is 
not forced to think syntactically about the structure of the mathemat­
ics, they edit the actual mathematics they see without constraint.

• Declarative interaction — There is no distinction between input and 
output [Runciman and Thimbleby, 1986]. The inputs and outputs of a 
user interface should not be rigid concepts. For example, it is possible 
to change the output (“3x3 : = 18”) to find what input generates it.

The novel user interface the calculator provides is argued to derive from 
these principles. They are expanded and explored further in Chapter 4, 
and potentially open up much possible new, fruitful work in user interface 
design.
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1.3.3 E v a lu a tio n

The results of a pilot user study of nine participants, using national math- 
ematic exam questions for 16 year olds, have shown that users enjoy using 
the calculator and it can be faster at computing more complex sums like 
2f_A • However the most interesting result from this study is that regardless 
of intermediate mistakes no user arrived at any incorrect answers, compared 
with several wrong answers from pocket calculators the users were familiar 
with.

Royal Society calculator survey 2005

1 2 3 4 5

D isliked It E njoym ent L oved  it

Figure 1.2: Royal Society evaluation: Enjoym ent

Several thousand people were also able to see and use the calculator at the 
Royal Society’s 2005 Summer Science Exhibition, a public exhibition of the 
UK’s top science. The 436 evaluation forms completed by users provided 
encouraging results. Figure 1.2 shows how users rated their enjoyment of 
using the calculator on a SMART interactive whiteboard.

The user feedback came from a wide range of occupations, education, back­
grounds, and ages. The average age of the users who returned feedback 
forms was approximately 30, with an even split between male and female. 
34% of respondents said they had problems with their current calculator or 
mathematical method.

1.3.4 C a lc u la to r  s u m m a ry

The calculator provides a novel user interface for a calculator and as an 
interface for enjoying and exploring mathematics. A longitudinal user study 
which would provide insight into the lasting success of the calculator has not 
yet been undertaken. However, the current studies provide good support 
for the calculator’s design, especially aspects like exploring, teaching and 
accuracy. The reaction and enjoyment users get out of the interface is real. 
Many users have laughed, smiled and grinned whilst doing mathematics, 
even if they did not realise it, which is great for mathematics, which most 
people claim to hate! Underlying the calculator’s design are the principles 
that shaped it, these provide useful ideas for future design.
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1.4 Drawing

■

Figure 1.3: L ineform ’s user interface, editing  a draw ing. (D rawing 
(c) Paul Davidson)

Lineform, shown in Figure 1.3. is a novel vector drawing application, similar 
in functionality to, and aimed at providing the capabilities of applications 
such as CorelDraw and Adobe Illustrator. Lineform was initially created 
to provide a drawing and illustration program for the author’s personal use 
and expanded into a commercial product that thousands of people use.

Lineform provides a different example of novel design; it was designed and 
built after the calculator and its design was informed by, and builds on the 
principles that came from the calculator’s development. During develop­
ment, other principles specific to Lineform were also articulated and used to 
guide the design, Chapter 9 describes this process in more detail.

1.4.1 D raw in g  desig n  p rin c ip les

The primary influence from the calculator was the projection principle, but 
other principles also provide other design suggestions. How the calculator 
principles informed Lineform’s design is summarised below.

• Projection — All views of the drawing, whether the drawing itself 
or data in inspectors, are always consistent and always reflect the 
underlying drawing.

• Continuity During any user interaction editing the drawing, the 
whole user interface updates immediately. No state changes are initi­
ated without the user’s control, thus reducing any continuity problems.
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• What You See is What You Edit — Is supported through various 
features that attempt to make the structure of a drawing more visible, 
like an outline mode. WYSIWYE also suggests future features similar 
to those that bitmap editors provide, such as vector based bucket-fills 
and erasers.

• Declarative interaction — All views, when possible, are editable. For 
example, the width in the Transform inspector both shows the selected 
graphics’ width as output and allows editing which enables the exact 
width to be input.

The design and implementation of Lineform also led to some additional 
guiding principles.

• Physical modes — User interface modes should be controlled by what 
the user is physically doing [Sellen et al., 1992]. The reasoning is that 
continuous physical force makes a mode less likely to be forgotten 
(compare using the Shift-key to the Caps-lock key). Other approaches 
providing different forms of feedback [Monk, 1986] are also possible.

• Flexible design — Allow users to delay decisions until they axe ready, 
and to easily change their mind. Lineform is designed so that any 
graphic can be easily repurposed in a different role, instead of being 
rigidly defined by how it was created.

• Appropriate controls — Discrete values should have discrete controls 
and continuous values should have continuous controls. The correct 
use of user interface controls allows both the easy exploration and 
exact setting of a value.

These ideas are described further in Chapter 10.

1.4.2 D raw ing evaluation

Conventional user interface evaluation involves empirical work with users, 
(for instance as was undertaken with the calculator) or in some cases as 
expert evaluation, e.g., heuristic evaluation (though expert evaluation is used 
less often in research). These sorts of evaluation have not been undertaken 
with Lineform. Independent reviews by professional artists and users provide 
the majority of the user evaluation. Lineform also won an international 
design competition, focusing on innovation, user experience and technology, 
indicating that in some sense it can already be considered to provide a good 
user interface.

Lineform won the Mac OS X Student Apple Design Award and is published 
by Freeverse2; it has now been acquired by Apple. Lineform has been very 
well received by thousands of users and reviewers. The following typical 
quotes are provided to illustrate this.

2http: / / www.freeverse.com/lineform/
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Lineform has two other selling points. First, its speed: the 
program launches in a couple of seconds and sham es Illustrator 
throughout in its responsiveness. Second, its ease o f use. The 
simple interface alone makes it easier to  find things.

— MacUser review (Oct 2006, vol 22 issue 22)

There is nothing that even com es close to  this program for ease 
of use, adaptability and creative potential.

— Peter Marino (Amazon user review, May 2007)

1.4.3 D raw ing sum m ary

The development of Lineform drew heavily on the experience and devel­
opment of principles from the calculator, previously described. It provides 
novel user interface concepts that have appealed to users and uses the ideas 
from the calculator in a very different type of user interface. The use of the 
principles in Lineform is an additional confirmation of the claims made of 
their value and of their potential for designing other applications with novel 
interfaces.

1.5 Opening new research questions

These two applications provide novel user interfaces and themselves provide 
many possible future research possibilities, such as extending the current 
designs. They also raise research questions about the principles, where these 
principles are valid or applicable, as well as how they can be applied to 
future user interface design. Obvious open-ended design questions include 
the following:

• How can the fluid correctness of the calculator be extended to more 
complicated maths, from simple algebra to completely different do­
mains?

• Are the principles generally useful and where are they effective?

• How can the contrasting benefits of bitmap drawing be combined with 
vector drawing while retaining the principles such as WYSIWYE?

• How can the calculator be extended to facilitate use by teachers in 
novel and interactive teaching methods?

• How can the calculator encourage exploration and learning?



Chapter 1 Introduction 10

1.6 Publications and outputs related to  th is thesis

Four publications which I have co-authored and which are related to this 
thesis are included as published in Appendix I. These publications cover the 
design, development, and principles of the calculator, and also thoughts on 
the different methods of thinking about interaction design.

The last paper in Appendix I introduces and contrasts internalist and ex­
ternalist design. This thesis adopts a primarily internalist perspective, that 
is, one that broadly emphasises (although by no means exclusively) the de­
sign and principles of a systems rather than external perspectives such as 
user evaluation. The paper discusses the validity of this perspective and its 
relation to the wider interests of successful HCI design.

In addition to refereed papers, the research in this thesis has generated other 
types of output and recognition, including the following.

• The calculator, described in Part I has been exhibited at the Royal 
Society (at the Royal Society Workshop, “Rags to Riches,” 2004, and 
at the Royal Society Summer Science Exhibition 2005), at the Welsh 
National Eistedfodd 2006, at the National Waterfront Museum (2006 
and 2007) and at Techfest 2008 (Bombay, India). It was also exhibited 
at the UK Parliamentary Young Engineers Competition in 2006, where 
it won the Vodaphone Prize.

• The drawing program, Lineform, described in Part II, has been pub­
lished as a successful retail and on-line commercial product by Freev- 
erse. Lineform won the Apple Student Design Award, 2006, and has 
amassed considerable praise from users and reviewers, as described in 
Chapter 13. In 2008 Apple purchased the rights to Lineform.

1.7 Conclusions

Two novel user interfaces have been designed and their design and underly­
ing principles articulated. A large number of people have used both applica­
tions and have provided positive feedback, these and other results support 
the claims of the quality of the design of the applications, and in associa­
tion the utility of the underlying design principles that were used. Thinking 
about the design of a user interface in a principled way has been a successful 
strategy for these two systems. I t’s hoped that the principles described in 
this thesis will be useful for future user interface design.
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Part I

Calculating
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C h a p te r  2

C ontex t

2.1 H istory

Figure 2.1: A Chinese abacus orig inating from around 200 BC

Calculation aids have been in existence for thousands of years. Abacuses, 
shown in Figure 2.1. are thought to have been invented around 200 BC,

15
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and long before that bones and tally marks were used. The oldest known 
mathematical object, the Lebombo bone, a bone marked with tally notches 
is dated circa 35,000 BC. Amazingly, similar aids are still in use today. Tally 
marks are a common way of recording counting in most cultures and abacus 
arithmetic was still being taught in schools as late as the 1990s in Taiwan 
and still finds use in Asia. The virtually limitless precision (perhaps by 
utilising more than one abacus) more than compensates for the lack of more 
advanced features like trigonometric functions.

We have always developed instruments to aid our mental arithmetic and to 
help us with mathematics. A variety of other instruments have been devised 
over the centuries. In 1614 John Napier invented his “bones” and then his 
logarithms, providing tools to multiply and divide easily.

Slide rules were devised shortly afterwards, circa 1630 by Edmund Gunter, 
utilising logarithms to perform multiplication and division by addition and 
subtraction. Slide rules utilise the mathematical rules log(xy) = log(rr) + 
log(y) and log (|)  =  log(x) — log(y). These remained popular until the 
widespread use of electronic calculators.

In 1642, Blaise Pascal invented a mechanical adding machine, and in 1942 
Gottfried Leibnitz constructed the first mechanical calculator capable of 
multiplication and division. Leibnitz’s methods formed the mainstay of 
calculating devices until the late nineteenth century.

Modern electronic calculators were introduced in the 1960s and became pop­
ular in the 1970s. The world’s first “handheld " battery operated calculator 
was the Sharp QT-8B. Figure 2.2, which provided an eight digit display and 
four functions (addition, subtraction, multiplication and division).

Figure 2.2: Sharp QT-8B “micro C om pet” —  F irst handheld  elec­
tronic calculator (1970). Source: V intage C alculators

Over thirty years later as part of the latest state-of-the-art operating system, 
the normal calculator looks much the same! Microsoft’s latest calculator in­
cluded with Vista is shown in its basic mode in Figure 2.3, the user interface 
it provides is not far removed from the Sharp QT-8B.
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Figure 2.3: M icrosoft V is ta ’s C alcu lator (2008)

Of course, this is slightly unfair, modern computers and software can do an 
incredible amount of mathematical calculation and manipulation. Software 
packages like Mathcmatica, Figure 2.4, now provide many different powerful 
mathematical tools and aids.
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Figure 2.4: M athem atica  (2007)

2.2 Pen and paper

A thread that is similar to that of the evolution of mathematical tools run­
ning through history is the thread of mathematical notation. However while 
mathematical notation has changed and its evolution through different ideas 
is fascinating [Cajori, 1993]. the tools that mathematical notation is designed 
for have not changed. Pen and paper, or their equivalents, have been the 
tools of choice for mathematics for thousands of years and still are today.

Pen and paper as mathematical calculating aids, like every calculation aid, 
provide a physical representation of the abstract mathematical thoughts of 
the mind. Written mathematics is a notation that has been developed for 
thousands of years, and something that we are taught from early childhood. 
The discussion of the optimality of standard mathematical notation, in the 
age where computers can provide user interfaces only dreamt of before, is
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Figure 2.5: P lotted expressions from the Symbolic M athematical 
Laboratory [Martin, 1967b]

an interesting one, but beyond the scope of this thesis. We are taught and 
use a two dimensional notation, designed for pen and paper.

Today, the ubiquitous tools of pen and paper are usually augmented with 
additional calculating aids, that actually perform calculations. In contrast 
to calculators, paper is not interactive. Answers to even simple sums have 
to be worked out in the user’s head or using another calculation aid. This is 
the most common way in which basic mathematics are performed: pen and 
paper aided by a handheld calculator. These users of calculators are also 
thus hopefully competent with two dimensional mathematical notation.

2.3 Calculators

Many of the calculator functions that run on bitmapped work­
stations and personal com puters are designed to  sim ulate real hand­
held calculators. Such a design allows rapid transfer o f skill to  an 
otherwise unfamiliar situation. However, such a design is naive, in 
that simulated calculators inherit all o f the problems of real calcu­
lators and fail to  exploit the opportunities for improvement that a 
graphics workstation provides.

— Johnson [1985] on the state of calculators in 1985

Jeff Johnson’s statement above about calculators is for the most part still 
true.

2.4 H istory of com puter user interfaces for m ath­
em atics

Computers have always been used for performing mathematical computa­
tions. Indeed, Ada Lovelace is widely thought of as the first programmer 
[Fuegi and Francis, 2003], having written a program in 1843 to calculate 
Bernoulli numbers for the never-completed Analytical Engine. The first
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“modern” computer system for mathematics ran on batch processing sys­
tems, that took input as punched cards and provided output some time later. 
The use of computer user interfaces for general manipulation of mathemat­
ics developed later. In the 1960s two dimensional output was possible, and 
Magic Paper I [Clapp and .Kain, 1963] was the first system to display two 
dimensional output: it used a typewriter for inputting mathematical ex­
pressions and a display scope or plotter for showing the typeset outputs. 
Minsky’s [1963] Mathscope proposal for manipulating mathematics was one 
of the first handling of mathematics from a user interface point of view. 
This proposal was built on by Martin [1967b], creating the Symbolic Math­
ematical Laboratory, which was capable of displaying normal mathematical 
notation using different fonts and special symbols, Figure 2.5 shows an ex­
ample of the plotter output from the Symbolic Mathematical Laboratory. 
The same display of the mathematics was shown on a scope and basic in­
teraction was possible using a light pen to select variables and operators.

Martin’s work was far ahead of many of the systems that followed. The 
majority of these displayed mathematical expressions using multiline text, 
like that shown in Figure 2.6. Engelman [1965] created MATHLAB in 1964, 
an early computer algebra systems for manipulating symbolic mathematics, 
which was a precursor to the commercial Macsyma [Martin and Fateman, 
1971] and the actively developed open-source Maxima [Joyner, 2006] com­
puter algebraic systems.

The Reduce pretty printer [Leler and Soiffer, 1985] followed in 1985, adding a 
powerful user interface to Reduce [Hearn, 1968] that allowed editing multiple 
expressions, mouse selection and subexpression collapsing. Young [1987] 
created GI/S in 1987: GI/S was the first system to allow the selection 
of mathematics unrelated to the underlying mathematical structure. The 
user could select any rectangular sequence of linear expressions, for example 
selecting a x b+ from the expression a x b +  c — d.

Milo [Avitzur, 1988] was developed for the Macintosh, originally as an aid 
for undergraduate physics homework. Milo combines text, expressions and 
plots within the same document. Milo included only a basic algebraic solver, 
but provided an easier to use interface than most other applications. Parts 
of Milo were embedded in FrameMaker and the original Macintosh graph-
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Figure 2.7: D ragging term s in G raph ing  C alculator

ing calculator, that was included at one point with every Macintosh sold. 
Avitzur [1998] provides a good discussion of the user interface of the Graph­
ing Calculator and of its predecessor. Milo allowed the selection of symbols 
by dragging a box over the subexpressions but 110 selection of operators. 
It maintained the correct mathematical syntax at all times, so that the 
mathematics would never be syntactically incorrect. Milo was also the first 
system to allow the direct manipulation of expressions; subexpressions could 
be dragged left or right and the expression around them was adjusted so that 
the moving of the expression did not alter the equality. This makes use of 
various mathematical laws such as the distributive law of multiplication over 
addition, and uses subtraction or division to move a subexpression across an 
equals sign. Figure 2.7 shows two examples of dragging subexpressions fur­
ther to the left in the Graphing Calculator, as the subexpression is dragged a 
simple rewriting of the whole expression ensures that it maintains the same 
meaning.

Although the pen is naturally suited to mathematical expression input, the 
complexity of recognising handwritten mathematics has meant that develop­
ment of this as a user interface has been slower. Early work in handwriting 
recognition of mathematics was done by Anderson [1968] recognising type­
set mathematics and Martin [1971] provides a good analysis of some of the 
difficulties.

Littin [1993] makes use of a modified 2D LR parser to handle mathematical
expressions. This grammar requires symbols to be written in a particu­
lar sequence, thus restricting input and making editing nearly impossible. 
Grbavec and Blostein [1995] approached the same problem using a graph 
rewriting language. The graph consists of the symbols and their connec­
tions relating to spatial relationships, such as “below” and “left-of.” This is 
matched against templates and reduced into a full parse tree. Blostein and 
Schiierr [1999] and Lavirotte and Pottier [1997] built 011 this concept.

The Freehand Formula Entry System (FFES) is a complete system for for­
mula entry and conversion to DTgX [Smithies et al., 1999. Smithies, 1999]
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that uses the same graph rewriting concept to recognise mathematics. This 
later used Diagram Recognition Application for Computer Understanding 
of Large Algebraic Expressions (DRACULAE) [Zanibbi et ah, 2001, 2002] 
which implements a tree-transformation based approach for recognising the 
syntax and semantics of mathematical expressions.

Eto and Suzuki [2001] use minimal spanning trees to reconstruct the m athe­
matical formula. OpenXM, the Open message eXchange protocol for M ath­
ematics, is a communication protocol for various computer algebra systems, 
which has been used to provide online recognition of handwritten m athe­
matical expressions for various mathematical software [Fujimoto and Suzuki, 
2002],
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F igure 2.8: A sketch in M ath P ad  [LaViola and Zeleznik, 2004] 
exploring dam ped harm onic oscillation

M athPad [LaViola and Zeleznik, 2004] provides a unique approach to m ath­
ematical recognition: it allows the interaction of mathematics with sketches. 
M athPad provides the ability to link equations and drawings, such tha t the 
drawings animate. Figure 2.8 shows a sketch of a spring and mass system, 
the mathematics of the system are linked to the sketch so that it animates 
correctly. An initial evaluation of M athPad [LaViola, 2006] found users re­
ally enjoyed the interactivity and were forgiving of recognition accuracy but 
often failed to use implicit associations correctly.

Interactive pen-based systems like xTliink1 and Microsoft Math are more 
recent visual developments that use pen-based entry of mathematical ex­
pressions. Microsoft Math and its free component the Microsoft Equation 
Writer, shown in Figure 2.9, provide good all-round mathematical equation 
entry.

1 www.xthink.com
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T here are several problems with current com puter  algebra sys­
tem s  (C A Ss) that are interface-related. T h ese  problems include th e  
use o f  an unnatural linear notation to  enter and edit expressions, the  
inherent difficulty o f  se lecting and modifying subexpressions with  
com m an d s,  and the  display o f  large expressions th a t  run off the  
screen.

— Kajler and Soiffer [1998]

Today punched cards are only of historical interest and there are many 
more flexible and powerful graphical user interfaces providing mathematical 
expression entry, manipulation and computation.

2.5 Types of m athem atical user interfaces

User interfaces for mathematical entry and manipulation can be split into 
three main categories: linear, template-based and visual user interfaces. All 
of these user interfaces can be used to provide an interactive calculator; 
however, some are more suitable than others. Kajler and Soiffer [1998] 
provide a useful overview of the whole area of algebra entry concentrating 
on template-based entry systems, although their paper also covers pen and 
voice user interfaces.

• Linear user interfaces are typified by a need for mathematical expres­
sion entry as a linear sequence of commands.

• Template-based user interfaces build up a mathematical expression 
from building blocks.

• Visual user interfaces make use of computer vision technicjues to read 
input as standard mathematical expressions.
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2.5.1 Linear user in terfaces

All cheap and simple pocket calculators require mathematical expressions 
to be entered as a simple linear sequence of digits and symbols or opera­
tors. Many advanced mathematical user interfaces for complex mathemati­
cal packages also rely on this sort of user interface, although programs like 
Mathematica [Wolfram, 1991] and Maple2 have recently added template- 
based expression entry and aspects of visual methods.

The primary disadvantage of linear user interfaces is that mathematical no­
tation is not linear, and users tend to think of, and treat mathematical 
expressions as they would write them on paper, as two-dimensional expres­
sions. These expressions have to be converted from their two dimensional 
form, that the user has conceptually in their mind, to the linear form that 
the computer can understand. This is often done by adding lots of brackets 
and unusual symbols, such as “ which is used for exponentiation. This pro­
cess of linearisation, taking the two-dimensional notation and converting it 
into a linear sequence of button presses, has to be performed by the user and 
is an additional cognitive burden. For example the unbracketed equation, 
Equation 2.1, is written in linear form as (2+3"3)/(1+1/2).

Handheld calculators

In contrast to paper, a typical handheld calculator uses buttons and a small 
display. Some handheld calculators provide a formula and answer format on 
two lines, but even then the formula is written in a one-dimensional textual 
notation. In addition, most handheld calculators, because of the limitations 
of their small screen size, by necessity hide relevant information (such as the 
last number entered), and this makes them harder to use.

The simplest and most common calculators, often found in school class­
rooms, enforce further constraints. These calculators often have no concept 
of precedence or parentheses. These restrictions mean that for simple hand­
held calculators a simple equation such as Equation 2.1 is nearly impossible 
to calculate without the aid of paper. Equation 2.1 would have to be entered 
as ® ( I ) 0 ( 2 ) 0 0 B © ® @ ® 0 ® 0 ( 1 ) @ 0 ® «  which is a con­
voluted and awkward translation that the user is burdened with performing 
themselves, and only works with memory.

Furthermore, the majority of more complicated functions, or notations such 
as log or f , often have unusual and strange input command sequences that 
have to be learnt.

2 http://www.m aplesoft.com /
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Unfortunately the design of common calculating aids, such as Microsoft’s 
and Apple’s calculator applications, has often been to emulate these real 
hand-held calculators and their difficult-to-use and restricted user interfaces.

Reverse Polish Notation

A variation of the linear method of input is Reverse Polish Notation, RPN, 
or postfix notation. RPN is a notation where the operator is entered after 
the operands, RPN thus removes the need for parentheses. For example 
the expression 4 x (2 + 3) would be entered as (T) (Enter) QF) (Enter) (T) (+) fx]. 
Equation 2.1 becomes (T) [ Enter) (T) (Enter] (T) (T) f+1 (T) (Enter) (T) 1 Enter) (T) (T) fT) (T), 
which is shorter but places a larger cognitive burden on the user to convert 
the mathematics to the format the calculator understands.

Proprietary packages

Mathematica [Wolfram, 1991] and Maple each provide their own proprietary 
format for entering expressions.

An example of such a command sequences for calculating the integration 
shown in Equation 2.2 is shown below in the formatted for Maxima (an open 
source mathematical package) Mathematica, and Maple (both commercial 
packages), in this order.

• integrate (4x**3/log(x), x, 0, inf);
• Integrate[4x~3/Log[x],{x,0,Infinity}]
• int(4x~3/ln(x), 0.. inf inity)

Each one is different and the individual syntax of each package has to be 
individually remembered by each user. None of the syntax could be intuited 
from the actual mathematical expression, thus a user needs to learn each 
format.

All three of these programs also provide alternate means of entering ex­
pressions in a linear form, attempting to alleviate some of the complexity 
of entering expressions accurately and quickly. Whether this is a benefit 
overall is hard to say.

Docum ent processing

Unlike template and visual methods, linear user interfaces often provide 
output in a different form to the input. This is most commonly used to

(2 .2)
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convert a linear sequence of commands into a more readable two dimensional 
format. The early computer algebra systems achieved this through multi- 
line text output. Equation 2.1 rendered by Macsyma in this format would 
look like Figure 2.6.

Another common use of linear input for mathematics is document process­
ing. TgX [Knuth, 1984] is commonly used for typesetting mathematical 
documents. In fact Equation 2.1 is typeset using T]eX using the linear input 
\frac{2+ 3~3}{l+ \frac{l}{2>> . Document processing programs are differ­
ent from programs designed to manipulate mathematics, however, as they 
do not provide any mathematical computation and often provide multiple 
ways of typesetting the same formulae.

2.5.2 T em plate-based  user interfaces

Template-based user interfaces are the most common mathematical user in­
terfaces. They are simple to create and extend well to incorporate a wide 
range of mathematical notation without any difficulty. A template editor 
has been a part of Microsoft Word since 1993 [Microsoft, 1993], and many 
computer algebra systems such as Mathematica now provide template in­
terfaces. LyX [Quill, 1999] provides a similar template-based interface for 
mathematical expression entry for DT^X.
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Figure 2.10: Screenshot of M icrosoft’s E quation  E dito r

Template-based editors allow mathematical expressions to be built up. com­
bining basic building blocks together with more complex templates for dif­
ferent mathematical operators.

Figure 2.10 is a screenshot of Microsoft ’s Equation Editor showing a partially
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entered expression. At the top of the window is a toolbar that provides 
the templates for the editor. The remaining part of the window shows 
the current equation. The grey boxes in the equation are the placeholders 
for further templates or simple expressions. In Figure 2.10 the limits for 
the integral, the numerator of the fraction and the exponent of a are all 
placeholders. The cursor can just about be seen in the placeholder for the 
exponent of a, and this is where any new mathematics will be inserted by 
default.

Basic linear operations such as multiplication and addition can be entered 
from the keyboard. Two-dimensional operations like fractions, exponentia­
tion and integration are entered using templates. Templates contain place­
holders for further building blocks. An example is the fraction template 
which has placeholders for a numerator and denominator. A more complex 
template example is a summation that has placeholders for the subscript, 
superscript and the sum, or a matrix template which has n x m  placeholders, 
depending on the size of the matrix.

Templates are usually added from a palette or by menu selection and inserted 
at the current cursor location, which is controlled by the mouse or arrow 
keys. The final complete, expression is built up by adding templates within 
templates. In Microsoft’s Equation Editor the toolbar at the top of the 
window provides access to most of the templates.

These user interfaces rely on the cursor position for adding new mathematics. 
The cursor can be moved by clicking using the mouse to any valid point in 
the mathematical expression. The arrow keys also provide some of this 
functionality but can be confusing to use when the mathematical structure 
being navigated is complex. The mouse can also be used to select portions of 
the expression which enables additional actions such as copying and pasting 
mathematics. This is restricted to either linear textual selection or selection 
of entire templates.

2 .5 .3  V isual m eth od s

Offline recognition has traditionally been used to digitise mathematical doc­
uments that have already been typeset and printed. Digitising mathematical 
documents has been an area of research for some time, Anderson [1968] was 
using syntax-directed recognition in 1968 to recognise typeset mathemat­
ics. Typeset mathematics usually have a far more structured and consistent 
layout than handwritten mathematical expressions. Recognition of typeset 
mathematics therefore tends to be a simpler task and can provide better 
accuracy.

Pen-based user interfaces have now become far more common, in devices 
like tablet-PCs and handhelds. As a result, online pen-based mathematical 
recognition is now a more active area of research.



2.5 Types o f mathematical user interfaces 27

------- N I------------------------- 1

1̂ 4=5

|6o4=2 - -b

2n5=7 r===-----

• •
—

*

Figure 2.11: N in tendo ’s B rain  Age

An advantage of online pen-based user interfaces is their potentially natu­
ral and intuitive interface. The majority of users are accustomed to writ­
ing mathematical expressions on paper with a pen. A pen-based interface 
utilises this familiarity by providing a similar user interface. Users are there­
fore able to use their existing experience, reducing their need to learn new 
user interfaces. The advantage over real paper is obvious, as a computer 
provides the power to compute, manipulate and solve mathematical expres­
sions — while the pen-based user interface provides a natural method for 
entering mathematics.

Pen-based systems also allow a greater flexibility in how mathematics are 
entered. The ability to enter mathematics anywhere, and the lack of a cursor 
makes the user interface simpler. However, pen-based systems are rarely 
foolproof and users will often have to correct recognition errors. Compared 
to typeset mathematics there are lots of inconsistencies in how users write 
mathematical expressions that makes them extremely hard to recognise. A 
handwriting mathematical system has to deal with an arbitrary order of 
entry, the diverse nature of the same symbols, and a rough positioning of 
the various elements of the expression.

The use of visual methods in mathematical expression entry covers a broad 
range of capabilities from simple augmentation of linear or template entry 
to complete expression entry and editing using a pen.

Nintendo’s Brain Age, shown in Figure 2.11, does not calculate mathematics 
but tests your mathematical skills by using a pen to input the answer using 
handwriting. The answer is always a simple symbol.

Maple provides simple character based handwriting recognition. Figure 2.12
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shows Maple’s character recognition palette. The typical use of this feature 
is to draw the symbol with a pen or mouse then click the recognise button; 
the suggested symbols that match the handwriting are then shown below 
the hand-written character for the user to select or to insert into their m ath­
ematics. As can be seen in Figure 2.12 the recognition is fairly basic and 
the utility of this interface, excluding writing rare symbols, is questionable.

▼ Symbol Recognition

♦
V 7  3  )

Figure 2.12: Screenshot of M aple’s handw riting  recognition

F igure 2.13: Screenshot of M athB ox [Kasuya and Y am ana, 2007]

MathBox [Kasuya and Yamana, 2007]. shown in Figure 2.13, provides a 
hybrid visual template-based method. MathBox allows the user to write 
symbols using a pen inside defined boxes, this means MathBox does not 
have to perform syntactic structural analysis, and the recognition problem 
is simpler and therefore more accurate. MathBox trades the user’s flexibility 
for accuracy of recognition; it also does not perform calculations or support 
editing.

xTliink allows entire multiple expression input but provides its output as a 
linear string. It also allows some editing and alteration of expressions and 
adding notes.

FFES [Smit hies et ah, 1999] allows the freeform entry of complex expressions 
and provides some morphing of the handwriting symbol’s position. FFES 
provides T^X output of the handwritten mathematics.

M athPad [LaViola and Zeleznik, 2004] is not designed for mathematical 
manipulation or computation, but links mathematics to sketches, allowing 
the mathematics to animate drawings.

The Microsoft Equation Writer, shown in Figure 2.9, allows input for m ath­
ematics by handwriting or by template. It also provides an imitation of
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a handheld graphing calculator, along with a small screen and multiple 
themes.

2.6 Sum m ary

This chapter has outlined the context of previous research and applications 
of mathematical entry and computation. The three main user interfaces 
for mathematical entry to computers: linear, template and visual cover 
a wide spectrum of user interfaces, and all provide different benefits and 
disadvantages.

Visual methods of expression entry using handwriting would be the most 
natural for the user, however the recognition problems mean that these 
interfaces can be slow or error prone. Interacting with mathematics using 
a pen also provides many new and interesting possibilities for interaction, 
such as MathPad’s linking with sketches and easy input of mathematics on 
small devices.



Chapter 3

Design & development

This chapter describes the principles and development of a handwriting pen- 
based calculator, and how they progressed and built on each other. Neither 
the principles, described more fully in Chapter 4, nor the implementation 
came first, they both developed concurrently. What started as a principle, 
when implemented, was altered, refined and improved. What started as pure 
implementation or design, later was extracted and distilled to be described 
in a principle.

A full description of this calculator is provided in Chapter 5. This chapter 
provides a context for the design decisions and how the user interface was 
created. Figure 3.1 shows a brief snapshot of the calculator’s final user 
interface being used.

The calculator has provided an enjoyable user interface for a calculator and 
an easy interface for enjoying and exploring mathematics. For example, it 
was invited to be exhibited at the Royal Society Summer Science Exhibition 
where it was used by users both to do and explore mathematics. Thou­
sands of people tried it: some people played with it, some did advanced 
mathematics on it.

Success comes in many forms. The calculator is clearly very attractive for 
first time use. This might be because it is novel and innovative, rather than 
really better. Its benefits for, say, long term use in a classroom is unknown 
— what happens when children get bored with its novelty? But the success 
of the reaction and enjoyment users get out of the interface is unmistakable. 
From all walks of life users have laughed, smiled and grinned whilst doing 
mathematics, even if they did not realise it.

Calculators are often not fun or enjoyable and the extent to which users 
enjoyed using the calculator was a surprise. The obvious question that fol­
lows is: Why? Why is the calculator a good interface? Are there principles 
and ideas embodied in the calculator that can be utilised in other applica­
tions, or instead do these ideas only work as part of the greater whole of the

31
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Figure 3.1: W riting 4x in front of |  using the  calculator

calculator?

The calculator was designed and developed in an ad hoc, intuitive way and 
at the same time parallel to its development, principled ideas about the 
user interface interaction were created, refined, and incorporated. Lots of 
ideas and concepts were built into the calculator as part of its design to 
create a good interface. Gradually the ideas were reduced to principles, 
which then informed further development. The concepts and principles that 
were initially intuitively built into the calculator, are now identified in the 
final product. The purpose of this chapter is to rationally reconstruct that 
process of principle-led development.

3.1 The developm ent process

The initial prototypes and pilot studies of the calculator’s design used an 
off-line (not in real-time) recogniser, used to recognise type-set m athemat­
ics which was scanned and digitised as images. The algorithms developed 
further into on-line handwritten mathematical recognition, using a Wacom 
graphic artist’s pad. Finally, the idea of computation for the mathematics, 
in addition to the recognition, was built on top of the recognition system.

3.1.1 Like paper

Iterative design is widely recognised as being essential in interactive systems 
design [Gould and Lewis, 1985] and the same process was employed with the 
calculator. Thus, as the initial stages of the implementation of this calculator
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took shape, the broad principle that guided the developing design became 
“it should work like paper, but with answers” . Here, the iterative design 
identified a principle which emerged through reflection on how to generalise 
and develop an off-line recogniser.

This principle is intended to convey the idea that if you swapped a user’s 
pad of paper and pen for the computer or graphics pad, then the user should 
be able to write mathematics in the same way (regardless of order or style) 
without trouble. The motivation for the principle was the hope that by 
providing an interface that works in a consistent and closely related way to 
that which users are already familiar with, then users will find the new user 
interface easy and intuitive to use. An interface like this also exploits the 
fact that a pen and computer input pad afford the same interaction as pen 
and paper for mathematical entry: they suggest and encourage the same 
style and flexibility of use.

That “the calculator should work like paper, but with answers” is an am­
bitious goal and it is still something that the design and implementation of 
the calculator aspires to, at least when strictly interpreted.

The first place where this principle impacted the actual implementation 
was the character recogniser. A recognition system like Graffiti [Fleetwood 
et al., 2002], where each symbol is written using a single pen stoke, has the 
potential for more accurate symbol recognition but requires users to write 
differently to the way they do normally. In order to work like paper, which 
the principle proposes, the calculator should accept all normal handwriting. 
In Graffiti, symbols are written using a single stroke without lifting the pen 
from the ‘paper’, which involves a special alphabet the user has to learn, 
but makes the recognition problem much easier. For example, the letter F 
is written in Graffiti as T.

The decision to behave like paper affects how the mathematical recognition 
system should be designed and what gestures are appropriate to be used. 
To work like paper the mathematical recognition needed to work without 
any restrictions on the order of input, like FFES [Smithies et al., 1999], or 
on the location of input, like MathPad [LaViola and Zeleznik, 2004].

The calculator was designed so that adding additional symbols is done by 
writing on top of the existing expression in the same way one would add 
symbols to paper. Paper also supports corrections, through the use of an 
eraser, and it was similarly important for the calculator to allow corrections 
so that users could fix or edit mathematics. To support the initial design, 
there were some deviations from the principle’s ideal; one gesture was pro­
vided, a single stroke X shape, which deleted the symbols that it was written 
on-top of. (This gesture can be used on paper of course, where it has a simi­
lar meaning.) Gestures are relatively underused by users [Long et al., 1998], 
and because this gesture is not an obvious part of writing normal mathe­
matics, it was displayed in the bottom-left hand corner of the screen at all 
times to remind the user how to delete.
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3.1 .2  A ffordance

The perceived affordance, as defined by Norman [1988], of an object suggests 
how that object can be used. A useful affordance is one that suggests a valid 
way in which an object can be used. A pull handle on a door that needs to 
be pushed to open it is an example of a false affordance, one that suggests 
the impossible and hinders the user.

Affordance helps refine the guiding principle. The calculator should draw 
on the similarities with the traditional methods of writing mathematics us­
ing pen and paper and two dimensional notation. The calculator is thus 
designed such that these similarities suggest to the user that they can use 
the calculator like a piece of paper, and that it is designed to allow this 
interaction.

3.1 .3  Feedback

The early prototypes of the calculator simply annotated the recognised hand­
written symbol with a box around the user’s pen strokes, and provided an 
overlaid typeset symbol in the corner. This proved in use not to provide 
enough feedback for the user to easily notice when a recognition error had 
occurred. Annotation as a form of symbol recognition feedback was there­
fore superseded by clearer feedback: replacing the user’s strokes by a typeset 
character scaled and positioned to have the same bounding box as the hand­
written character.

Replacing the user’s handwritten symbols, while initially jarring, provides 
very clear feedback of what recognition has actually happened.

The need for feedback that is unambiguous and clear is evident in how 
conventional calculators are used: users trust calculators and often only 
make a cursory check on the what the actual calculation is. It became very 
obvious in the early development that good visual feedback was critical to 
a user’s comprehension and use of the calculator. This became the second 
principle — that “the calculator’s state (effectively what it thinks it is doing) 
is always obvious to the user” .

The second principle implies that the actual mathematical expression, not 
just the symbols, that the calculator is computing is readily apparent to 
the user. To provide this, the expression needs to be shown in a way that 
is obvious to the user. This principle rules out any feedback that is not 
directly or strongly associated with the user’s input.

Other methods of symbol feedback often only provide partial information 
leaving the user unsure about the exact state or computation. Two exam­
ples are: symbol colourisation, which is suggested as feedback for baseline 
information of expression structure [Zeleznik et al., 2007a], and style preserv­
ing morphs that morph the user’s actual handwriting to provide feedback on
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the expression [Zanibbi et al., 2001]. Style-preserving morphs are claimed to 
provide a better form of feedback than typeset symbols, because users prefer 
rough-looking sketches; and typeset input connotes an undesired authority 
and immutability. Neither of these approaches provide clear feedback.

At every point during the recognition process the user is informed by the 
visual and sound feedback of what the calculator is doing.

The principle of continual feedback was later refined to the projection prin­
ciple, which is described in further detail in Chapter 4. Subsequently in 
the design process this principle came to dictate how the dock thumbnails 
should appear and how the undo system would work as well.

There is a tension with recognition times, between recognising symbols 
quickly and providing the user with sufficiently quick feedback, and with 
recognising slowly but providing the user with lots of time to write multiple 
stroke symbols and time to finish their writing. Ultimately it depends on 
the user, of course: a school pupil will have a different requirement to a 
practised adult use. To allow for individual differences, the actual timings 
of recognition were made adjustable for each user.

3.1 .4  M orphing

Another important aspect of feedback is the final recognised expression, 
without clear feedback a user might misunderstand what expression is being 
calculated. The projection principle encouraged the immediate replacement 
of the user’s input with a correct and typeset mathematical expression. 
However this was a very jarring experience and users found it hard to make 
the connection between their input and the resultant expression.

Morphing between the user’s input and the calculator’s result provides this 
continuity and eliminates the harsh and sudden replacement of the user’s 
input. Littin [1993] suggested morphing as a suitable method for retaining 
continuity between an entered expression and a recognised expression. He 
describes a method that replaces the stroke data with a vector font similar 
to handwriting which is then morphed to the correct place.

By using gradual changes, morphing minimises the disruption of the user’s 
mental understanding of the state of the calculator. It allows the user to eas­
ily keep track of what is happening by providing visual continuity. Morphing 
also provides useful feedback on the accuracy of the ongoing interpretation. 
This is summarised in the continuity principle which is more fully explored 
in Chapter 4.

Once the symbols have been recognised the calculator morphs them to the 
correct positions, such that the end result the user sees is a neat typeset 
mathematical expression. This feedback is designed to both provide clear
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understanding of the mathematics and continuity such that the user can 
follow and understand the feedback.

3.1 .5  E diting

The “works like paper” principle implies that editing mathematics should be 
no harder than writing on top of the current expression. From this principle 
the calculator was designed such that new handwriting should be recognised 
and incorporated into the expression being edited.

As users used the calculator it became clear that users expect to be editing 
what they see. Although the mathematical recognition system made mis­
takes the users treated the calculator’s user interface like paper and expected 
their additions to the current expression to be interpreted in the context of 
everything that was visible on screen. The principle, What You See is What 
You Edit, which is described in the next chapter, is this principle of simply 
editing the ink but generalised to a broader range of user interfaces.

Implementing this led to a nice solution that provided both straight forward 
editing and predictability: the mathematical expression is re-recognised ev­
ery time the user edits it. After each edit the current mathematical struc­
ture is thrown away and the previous typeset symbols and the new input are 
treated as a whole. This “ink editing” allows the user to edit in whatever 
way they want.

It was also observed that users would often expect individual symbols to 
be editable, users often attempted to correct symbols by drawing on top of 
them. This results in a new symbol being created, and if the user attempted 
to correct a symbol multiple times, as did happen, this could result in a 
large number of unexpected symbols. Unfortunately the symbol recognition 
system is not able to handle these type of edits. A benefit of not allowing 
symbols to be changed is that it is much easier for the user to add new 
symbols on top of the mathematical expression, without the worry that 
they might by accident end up changing the underlying symbols.

3.1 .6  D rag and drop

Drag and drop fitted neatly into this implementation of editing, rather than 
rearranging the mathematical expression in complex and confusing ways, a 
drag and drop simply moves the selected symbols to the drop location and 
then re-recognises the whole expression again. This leads to straight-forward 
implementation and interaction for the user. Feedback using a colour change 
and sound was added to drag and drop to help distinguish it from normal 
writing in order to clearly distinguish the mode because users would occa­
sionally get confused.
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Drag and drop works well with anything selected, even if what is selected 
is not valid mathematics in and of itself. Chapter 5, section 5.5 provides 
some good examples of how powerful this flexibility is. The implementation 
of drag and drop moves the dragged symbols and shrinks them down to fit 
into the expression where they are being dropped. It is therefore impossible 
to drag an expression, e.g. a square root sign, over the top of an expression 
such that it will contain what it is dropped on-top of. Edits like this need to 
be performed in reverse fashion, such as dragging the expression underneath 
the square root sign. This restriction allows the implementation of drag and 
drop to be very powerful, predictable and understandable.

3.1 .7  Erasing

To reduce the number of gestures and make the calculator simpler the initial 
erase gesture ‘X’ was replaced with a drag and drop to a waste basket, 
utilising the fairly universal computer metaphor. A benefit of this deletion 
method is that the user can be specific about what is erased, they can ensure 
they have the correct parts of the expression before dragging it to the waste 
basket.

An initial observation of how users interacted with the calculator was that 
they liked to start from scratch if they made an error in a simple mathemat­
ical sum, rather than fixing the error. To facilitate this an erase button was 
added in the lower left corner of the screen that wipes the entire expression 
and gives the user a clean sheet to start again from.

The entirety of mathematical editing is provided through two interactions, 
adding new symbols to the mathematical expression by writing on top of 
it and rearranging or deleting symbols by using drag and drop. The What 
You See Is What You Edit nature of both of these means that the user’s 
interaction is simple, predictable and powerful.

3.1 .8  C om puting

When the calculator provides the solution it morphs the user’s input, too 
much change was found to be annoying because it felt like the calculator was 
interfering with the what the user wanted. So the calculator was designed 
to “alter the user’s input as little as possible”.

After recognising and morphing the user’s input to a neat typeset expression 
the calculator provides the correct answer. In order to provide an experience 
like that of paper the answer is provided in context, appended on the right- 
hand side of the user’s input. This appending does not rearrange anything 
the user wrote, it just adds the correct answer to the side.

This provided a clear way to connect what the user wrote to the answer the 
calculator provided. Inserting the answer in-line with the user’s input works
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well because that is where users would write the answer if they performed 
the calculation on paper themselves. The answer provided does not exist, it 
is just temporarily appended to the input to make it mathematically correct 
and changed when the expression changes. Unfortunately this can lead to 
users getting confused when they attempt to drag or delete something that 
is not there in the same way that their input in black is. To mitigate some 
of this confusion as the user begins to draw the current answer is faded out 
to discourage the user from attempting to edit it.

3.1 .9  P artia l expressions

Users often write partial expressions, or mathematics that are incorrect. To 
allow for this the calculator was modified to provide a mathematical solver 
similar to Harold Thimbleby’s [1986, 1996] text based calculator. This calcu­
lator fills in all the missing parts of any expression such that the mathematics 
are always correct, which provides the huge benefit that the mathematics the 
calculator shows are always correct. That is in the mathematical sense, any 
final expression shown is mathematically correct. This fits in very nicely 
with the projection principle, the answer is up to date and correct at all 
times.

When this is combined with the user being able to write equality signs then 
the calculator provides a powerful way of writing half finished expressions 
to get the correct answers filled in for the user. This allows solving lots of 
simple problems like |  =  5 very easily. This powerful interaction is in a 
sense declarative, the calculator corrects everything such that it is always 
correct. The way it is always correct means that even if the sum is not 
what the user expected the mathematics is still correct. By handling partial 
mathematics sensibly the calculator can be used in stages and by provid­
ing an equality sign the user can solve all sorts of interesting and useful 
mathematics very simply. This is described and extended as the principle 
of declarative interaction in Chapter 5.

When the calculator corrects an expression by providing computer ‘answers’ 
in-line with the user’s input it involves some rearrangement of the user’s 
input by necessity. However because it is designed to change the users input 
as little as possible, any computer correction is inserted as much as possible 
as coherent chunks and in predictable places.

Harold Thimbleby’s [1996] text based calculator could calculate missing ex­
ponents and symbols from the user’s input. For example 2~=100 has a 
missing exponent to the right of the caret symbol. However, in a handwrit­
ing, two dimensional calculator there is no obvious way to signify a missing 
exponent because there is no symbol like ~ to indicate a missing operand. 
Originally, therefore, the calculator provided a question mark symbol, which 
signified a missing number: thus a user could write 2- =  100 to solve the 
same equation. However, the question mark symbol is not correct mathe­
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matics and was removed on principle. Without the explicit symbol, the same 
effect can be achieved by using a left open bracket, 2̂  =  100, or by placing 
a decimal point (as in 2- =  100) and so on. While this ability is initially 
fairly obscure, it becomes second nature: it is an idiom for ‘place-holding’ 
an unknown number. In the case of exponents, a user can use the technique 
to solve an exponential equation without resorting to logarithms.

Compare: “tap a dot where you want the answer if you can’t see it already” 
(which is a general instruction that works for any calculation) as opposed to 
“to solve ax = b rewrite it as x = log b/ log a” — which involves rearrange­
ment and only works for this specific class of problem.

3 .1 .10  Storage

As the calculator was developed as a real user interface and could be used 
for mathematics, the core of mathematical manipulation and calculation 
required more user interface support. The two main features that were 
introduced for this supporting role were the dock, which is used for storing 
and recalling multiple expressions, and the clock, which is used to undo 
mistakes or, as it turned out, to review earlier calculations, for which it is 
also well-suited.

A storage mechanism was needed to allow multiple expressions at the same 
time, and to let users save mathematics or numbers, to provide functionality 
much like the memory function on conventional handheld calculators.

The storage user interface started life as simulating the “affordance” of Post- 
it notes, so users could drag mathematics onto a Post-it note, which could 
then be moved and stuck anywhere on the screen. However, even after only 
a few equations were stored in the notes, the screen became very cluttered 
and made the calculator hard to use. This interface feature was therefore 
replaced with the idea of a more organised dock. Compared to Post-its, 
which cluttered the interface both visually and interactively, a dock keeps 
the storage interface consistently in one place, and physically separate from 
the mathematics being edited.

The dock, with any number of items in it, could also be hidden and revealed 
in a single consistent gesture, whereas managing lots of Post-its would have 
required the user to do lots of gestures to organise them.

3.1 .11  U ndo

Undo is one of the major benefits of using a computer. It is easy, if not 
eventually inevitable, for a user to accidentally make an edit or delete or 
add something they did not want to do.
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Most undo and redo systems are discrete, providing steps backwards (or 
forwards) in time. However when conventional undo was piloted in the 
calculator it broke the continuity of flow that morphing and feedback achieve 
so well. In order to provide a smooth interaction that fit the calculator’s 
interface a slider was introduced that scrubbed (i.e., animated) through the 
history like a movie player. As the slider was moved, it animated the creation 
of the current expression.

This approach animated the mathematics smoothly, just like the user was 
winding back time: the typeset mathematics morphs backwards as time is 
rewound, eventually reaching to their original places and eventually disap­
pearing. The morphing provided the user with a clear continuity through all 
their edits and writing. The projection principle meant that the slider had 
to be directly linked to the mathematics, so at no time can it be inconsistent 
with the expression.

However, although a slider is a good interface for this sort of interaction 
it does not scale well. When a user has been using the calculator for a 
while, the distance the slider has to be moved to rewind to some exact place 
becomes too small a target for the user to be able to hit easily. One solution 
to this is to use a non linear slider, but this has its own problems. The 
solution used was to implement the slider as a ‘clock’, and this provides 
lots of additional benefits. Firstly, the appearance of the clock-style control 
associates it with time and thus naturally with ‘going back into the past,’ 
and hence undo. The circular motion of winding a clock scales well and can 
easily be repeated as much as the user wants. The motion also works very 
well for a pen based interface, where drawing circles is very easy for the user. 
The user can also see the time move onwards each time they make an edit, 
and this is very natural behaviour for a clock.

The time shown is linked to the current state, always consistent, so to get 
back to ‘now’ the user only has to rewind till the clock shows the current 
‘time’.

Like many interactive ideas, it is much easier to see it than to understand 
it from a static written description!

3.1 .12  T eaching applications

As an aid for using the calculator for teaching, it was requested by users 
that the calculator had some way of posing mathematical questions. The 
“hide answers” feature was a direct result of this user feedback: this allows 
the answers provided by the computer to be toggled on and off by clicking 
an on-screen button.

When the answers are hidden, the computed output, which is usually shown 
in red typeset mathematics, is replaced by a red empty box. A teacher can 
use this feature, say, using a whiteboard in a classroom, to ask questions like



‘what is two times four?’ or ‘what do I divide 20 by to get five?’ When the 
answer is needed, the teacher can click the on-screen button and the answers 
are toggled on so that all the students can see them. The new feature also 
allows for a student to write in their own answer, and for the calculation to 
be readjusted around the new input.

A large green tick is shown when a user fills in all the blanks such that there 
is no need for any mathematical correction. In fact, the tick makes sense 
even when there are no questions, and for consistency it is always provided. 
When a user provides an answer in a box, the box disappears (for it no 
longer can indicate a missing answer); the screen shows a calculation with 
no box and a tick if the answer is correct. In the normal mode, the result 
is exactly the same.

3.2 Sum m ary

Many of the features in the final user interface originated from different 
sources. Some features are the result of principled design, others derive 
from the implementation and still others from user observation or sugges­
tions. However despite these disparate origins the process of refinement that 
occurred during the design and implementation was the same.

Many of the concepts and ideas that emerged during the development of the 
calculator were codified into more solid principles. These principles which 
guided the calculator’s design are described in the next chapter.
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Chapter 4

Principles

Milialy Csikszentmihalyi [1990] describes flow as the state in which people 
are most happy, a state in which people are fully absorbed and engaged in 
the task at hand. This characterises the same concept as the colloquial term 
of being in the zone — a state of extreme and natural productivity.

Csikszentmihalyi has identified several factors that can accompany flow:

1. Clear attainable goals with clear rules.

2. A high degree of concentration on a limited field of attention.

3. A loss of self-consciousness, the merging of action and awareness.

4. A distorted sense of time.

5. Direct and immediate feedback so that behaviour can be adjusted as 
needed.

6. Balance between ability level and challenge.

7. A sense of personal control over the situation.

8. An intrinsically rewarding action.

9. Focus of awareness narrowed down to the activity itself.

A system that is designed to allow flow should incorporate some of these as 
design goals. The main principles behind the calculator’s design are in some 
way practical concepts that are meant to direct design, in order to inspire 
user interaction flow.

4.1 Principles

This section provides a methodical description of the more important and 
general principles that shaped the development and design of the calculator. 
It seeks to identify and explain the principles that developed alongside the

43
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calculator and which informed and directed the design of the novel user 
interface.

As described in the preceding chapter, the primary principles of the design 
developed to be:

1. Projection — Changes to the system’s state are immediately visible 
everywhere.

2. Continuity — Continuous feedback and morphing provide the conti­
nuity between state changes.

3. What You See Is What You Edit — Only what is visible in the user 
interface determines how the system can be edited.

4. Declarative interaction — There is no distinction between input and 
output.

Here, the terminology has changed and been refined from the previous chap­
ter; we will describe the principles in more detail in what follows.

Each of these principles relates to an aspect of a user’s interaction with a 
computer system. The idea is best communicated in Figure 4.1, which shows 
the circular interaction cycle of a computer system and a user interacting 
with a user interface. Each of the four principles is focused on a different 
component of the interaction cycle, and together they combine to describe 
a system that as a whole engenders flow.

Each of the four following sections discuss these main principles in turn. 
Finally this chapter finishes by describing other principles that have been a 
useful part of the calculator’s design.

4.2 Projection

The first principle is projection, which could be described as “consistent and 
immediate changes everywhere” .

In the real physical world an object exists in only one place. A cup on my 
desk exists nowhere else. This means that talking about and interacting 
with that cup is simple. There is no ambiguity when talking about it and if 
the cup is moved then it is in a different place.

Simple! The real world works like this, and as residents of the real world it 
is how our brains are wired to work, and perhaps how we expect computers 
to work. Interacting and referring to objects in the real world is easy and 
natural because these simple rules are followed.

Unfortunately computers do not work like this! Computers have none of the 
physical constraints on what they can represent that the physical world has. 
How we use and interact with computers is mostly limited by the designer’s
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imagination and abilities. There is no need for computers to interact in a 
similar way to the real world. Thus it is now possible on a computer to show 
a multitude of different representations of the same thing at the same time. 
On a computer the back and the front of the cup could be visible at the 
same time or there could be a detailed view and an overview of the same 
cup in different windows.

By creating multiple versions of the same object we are creating a potential 
confusion about how to interact and refer to the object. The complex­
ity caused by the existence of various different versions of the same object 
is a problem that occurs in many different situations. It is a well recog­
nised problem in different fields, and there are many guidelines for avoiding 
it. For example, in almost all forms of record keeping the duplication of 
records should be avoided. In database design the well known guideline for 
“minimising the duplication of information” is a part of normalisation. In 
programming the same guideline takes the form “minimising the duplication 
of code” . In mathematics there are very clear rules and in x +  x = 2, the xs 
refer to the same number. Other solutions for avoiding this complexity also 
appear in different forms in many other domains.

The guideline against multiple versions or duplication is common and wide­
spread in many different domains because duplication can cause lots of prob­
lems. Any duplication of information that is not kept up-to-date causes 
information consistency to break down. If one instance of a duplication 
becomes different to another, a database will quickly be corrupted and a 
computer program will start to perform wrongly. And because the infor­
mation is partially correct, this corruption is often very hard to spot. The 
problem with duplicate information is not that the duplication exists but 
that it needs kept up-to-date and is instead more often than not forgotten 
and left to become inconsistent.

Frequently a programmer will replicate a bit of code because it is faster 
than creating a more general abstraction. Then later a fix is added to the 
original code but the programmer forgets to correct the duplicates. The 
program almost works, except when the duplicated code is used. Thus the 
programmer spends many many fruitless hours trying to track down why the 
program occasionally does not work. From personal experience, duplication 
of code is immediately easier, but often very painful later.

4.2.1 U ser interfaces

Unfortunately the duplication of information happens all the time in com­
puter user interfaces, and the duplicated information is often not kept up- 
to-date.

User interfaces provide the user with the output data from the computer. 
This data is often duplicated and it happens in lots of little places where
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it is not always obvious, particularly in the main parts of user interfaces 
where we take it for granted. All this duplication of information in the user 
interface increases the amount users have to remember. Many computer 
systems fail to remember the duplicated information in the user interface so 
users have to remember themselves, and if they do not, the duplication is 
forgotten and things go wrong.

4.2 .2  M u ltip le  v iew s

Yet despite the obvious problems duplication creates, it also provides a lot of 
flexibility and power. A desirable part of this is the ability to have multiple 
views of the same data.

Multiple views of the same data can show different and useful aspects. For 
example, a graph and a best-fit line can be thought of as different views of 
the same data and each provide a different insight. Each view displays a 
different transformation of the underlying data. A graph in a spreadsheet 
complements the raw data. The two different views of the data together 
provide a greater understanding and ability to utilise the data than each 
does individually.

In a similar way both our eyesight and our inner ear canals are very useful for 
balance and both can be thought of as providing different representations of 
the same orientation data to the brain. Their combined information allows 
us to be much more agile than we could with only one source of orientation. 
When the two sources are combined and their duplicate orientation data 
match they provide a greater ability to balance. Yet when the orientation 
data is inconsistent we get dizzy, can’t stand up and can be sick, in a response 
which is thought to be a reaction to what might be hallucinations due to 
poison [Triesman, 1977]. The multiple views of the data, from eye and ear, 
are very useful but only as long as they are consistent (although potentially 
the discord could also be useful, in this case for detecting poisoning).

There are ways of providing different views of a single object without using 
duplication, for example in the physical world it is possible to use mirrors 
to show different views of a single object. These are multiple views of the 
same object yet the object has not been duplicated. When the object is 
manipulated then it changes instantly (for all normal purposes) in all the 
mirrors at the same time. There is no possible way for the mirrors to ever, 
even for a split second, be inconsistent.

This is not duplication: it is providing multiple, consistent and different 
views of the same object. This concept is the principle of projection.
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Figure 4.2: Normal and projected user interfaces

4 .2 .3  P ro jected  user interfaces

This idea of projection is similar that of projecting a film in a cinema. The 
picture is a projection of the film strip in the projector, if the film frame 
changes so does the image, if projector is switched off then the cinema 
screen goes black, without the projector the cinema screen does not contain 
a picture.

A projected view in a user interface is one that is projected outwards from 
the underlying data. That is, separate from the data the view has no form. 
As the data in the system changes, projected views in the user interface 
are automatically updated instantly. This ensures that the user interface is 
always consistent. Figure 4.2 shows how a normal user interface can often 
become inconsistent and how a projected system is always consistent. The 
projected user interface contains no state and thus cannot cause a consistency 
error in the same way.
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4 .2 .4  V isib ility  o f  sy stem  sta tu s

The system should always keep the user informed about what is going on, 
providing appropriate and timely feedback. Changes in the behaviour of 
the user interface should be reflected in the appearance of the program. 
The visibility of the calculator state is encompassed by the projected user 
interface, which ensures that any views of the system state are always up to 
date.

4.2 .5  Sim ilar concepts

The term projection is inspired by the phrase projecting editors [Simonyi 
et al., 2006] which is used to describe a user interface separation of concerns 
as part of an integrated development environment. Simonyi describes his 
Domain Workbench IDE that is designed to provide multiple different views 
of a program in order to allow multiple users with different needs to access 
and edit the program data in different ways.

Shneiderman [1983] outlined some basic guidelines in terms of user inter­
faces, called direct manipulation, a phrase he introduced. Shneiderman’s 
definition of direct manipulation included the “Immediate and continuous 
display of results” which contains aspects of the immediacy of direct manip­
ulation. However this is generally confined to one-way physical interaction, 
usually using the mouse to manipulate a control in two-dimensional space. 
Research into the effect of dynamic updates [Ahlberg et al., 1992], found 
users to be significantly faster, less error prone and tending to enjoy the 
dynamic interface more.

Projection is also similar to a key concept of mathematics, referential trans­
parency which means that a name or expression (a view) and its value (the 
data) are interchangable. For example, in the expression x + x = 2, the 
name x  and the number 1 can be used interchangeably for each other, with­
out altering the value of the expression.

4 .2 .6  E diting

The tricky part of implementing projection is handling editing. A projected 
view has no state of its own, thus edits are performed through the view 
directly on the projected data. This happens immediately and keeps con­
sistency with the data and other views.

For some views of data such as sliders providing immediate editing is easy, 
when the slider is moved the corresponding data is updated live. The slider 
value is always valid. Other views like text-boxes are more difficult because 
they allow partial and invalid data to be entered. This obviously cannot 
be transferred to underlying data-model or translated sensibly to display in
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other views. A consistent and understandable scheme is needed to handle 
invalid input.

The best solution to invalid input is to interpret it intelligently and provide 
the user feedback about the interpretation. For example, a common inter­
pretation of non-numerical input in a text-held would be 0 and the users 
textual input could be replaced with the numerical interpretation.

Another solution to handling invalid input data is to clearly highlight the 
user’s edits as not having been committed to the underlying data, the high­
lighting shows the user that the view is currently inconsistent with the other 
views and that it is currently breaking the projection. A lot of web-based 
forms do this, although only highlighting the problem after the form is sub­
mitted.

Simonyi’s [2006] solution is to make the underlying data model “comfort­
able” with erroneous states, although in practice this seems to be the most 
complicated solution.

Finally a lot of non-projected user interfaces do nothing. The edit might 
not be made or the user might not be able to remove the focus from the 
current control until they have figured out what the problem is. Both are 
cumbersome and frustrating user experiences.

4 .2 .7  K ey concepts

Projection describes how the relationship between views in the user interface 
and the underlying data should work. There are several aspects to this, 
which can be summarised in these key concepts:

• Immediate — Update all views immediately and continuously as the 
underlying data changes.

• Consistent — Ensure multiple views of the same projected data are 
always consistent. Multiple views showing different aspects of the same 
projected data are very useful, but only when consistent.

• Editable — Immediately perform user edits on the underlying data 
and project any changes back to all other views. Feedback in response 
to user input should be immediate.

• Lenient — Handle user input errors leniently providing immediate 
feedback or highlight the edit as not having been made.

4.2 .8  Exam ple: In tern et search

Our meaning of the projection principle can be illustrated with reference to 
internet search, as follows.
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An example screen-shot taken from Firefox performing a search using Google 
is shown in Figure 4.3. The same sort of user interface exists in other web 
browsers such as Internet Explorer and Safari and with other internet search 
engines like MSN and Yahoo, so this is a common user interface example.

The three different views of the same data, the search terms, are highlighted
circled in red. You can edit the search terms in the toolbar (1), in the 
web-page above the search results (2), and you can view the search terms 
that relate to the results just above the search results (3). The search 
results are also another view (albeit a more complex view) of the search 
term data, and these are always consistent with the search terms displayed 
at (3). In a projecting user interface all three versions of the search terms 
should be consistent at all times, but in this case all three different views 
are different. This inconsistency can needlessly confuse the user. Users 
generally do not notice this inconsistency because they have been trained, 
by bad user interfaces, to remember the duplication. User interfaces, such 
as Figure 4.3. place the unnecessary burden of remembering the duplication 
on the user.
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Figure 4.3: Inconsisten t views when searching

A scenario in which this might occur is this: I'm using my web browser 
to browse the internet, I want to look for some fruit so 1 type in ‘apples’ 
into the tool bar (1) and press return. The web browser goes to the search 
engine and shows the web page showing the search results for ‘apples’. 1 
change my mind and want some pears, so I type in ‘pears’ into the main 
large search field (2) in the web page and press return. The web page now 
shows the search results for ‘pears’. I change my mind again and type in 
‘oranges’ into the main search field. At this point the user interface will look 
something like Figure 4.3. As the user I have only used the interface in a 
simple fashion, yet the user interface now has three consistency errors1. If I 
hit return, what should happen?

A projected search user interface would keep all four views (the three views 
of the search terms and the search results) of the same data up-to-date at

'There is also a second editable text field at the bottom  of the web-page. So in fact 
there could be four different and inconsistent views of the sam e data!
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all times. The search terms between the web-page and the toolbar would 
be consistent, so that it would seem like a user was typing in both views 
the same time. The immediacy of projection also implies search-as-you- 
type, because any editing of the search terms is immediately reflected in the 
search results. Only recently computers have been fast enough to implement 
search-as-you-type and the lag and delay of the internet would still make 
this hard. An alternative solution, as previously suggested, would be to 
highlight the search results as out date as soon as the user types, this way it 
is clearer that the results are no longer projecting the current search terms.

4 .2 .9  Exam ple: C alcu lators

The calculator is a projected user interface. It might seem like the calculator 
only has one view of the mathematics, the “paper” that the mathematics is 
written on, but the calculator combines several different aspects of the same 
data into this view.

• The handwriting recognition is immediately reflected in the canvas by 
the replacement of the user’s handwriting with typeset characters.

• The equation recognition is immediately shown by the morphing of 
the characters to their correct locations.

• The result or answer of the calculation is immediately shown as cor­
rections to the mathematics.

At no point are any of these three different aspects of the calculation incon­
sistent. All three are projected, immediately visible and always reflect the 
same underlying data. That the calculator is never inconsistent is a very 
important part of its usability. If the calculator was ever inconsistent then 
the user could be confused or misled (which is worse).

Another example of projection is the calculator’s undo clock which is linked 
to the expression displayed. The “time” the clock shows and the mathemat­
ics are projections of the same underlying data. As the user winds the clock 
forwards or backwards the mathematics similarly morphs, always staying 
consistent with the clock. Conversely, after the user has made an edit the 
symbols morph and the clock ticks forward, remaining consistent. For the 
user the interaction is fun, and it is easy to rewind to a certain point or scrub 
back and forth to view the creation of the mathematical expression. With­
out the immediate response of a projecting user interface the clock would be 
very awkward to use.

4.3 Continuity

Physical objects in everyday experience move in predictable and defined 
ways. As an object moves from one position to another it does so by passing
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through all intermediary positions. A person can visually track an object as 
it moves and interact with it easily.

This movement and transition between states is essential to interacting with 
the real world, without it the world would be a jarring set of unpredictable 
sudden changes. Without any transition or continuity, understanding what 
is happening and predicting what will happen is very hard. A lack of conti­
nuity can be like trying to catch a ball with your eyes closed, you only know 
where the ball is once it has hit you. With your eyes open the continuity 
the visual arc of a ball creates in flight means that it is simple to predict 
the ball’s destination and to catch it.

In contrast to the real world, user interfaces which are free from physical 
constraints often provide instant state change. Visual changes in user inter­
faces are often sudden and unexpected, this provides no way for the user to 
visually track the changes and create a connection between the old state and 
the new state. A user interface without continuity provides no opportunity 
for the user to follow the state changes and relate their actions to the visible 
changes. This is an experience not too different from catching a ball with 
your eyes closed.

For example, opening a file in a file browser often instantly draws a new 
window over the top of the existing windows. There is no connection between 
the two states, in one moment without any indication of why so much of 
the screen has changed. Examples like this are exacerbated by the large and 
multiple display setups users have, if the visual change happens far away 
from the place where the user initiated the action it is even harder for the 
user to connect the two.

4.3 .1  A nim ation

Animation in contrast is extremely successful in engaging its audience and 
providing a connection between the cause and effect of an action. Animation 
or continuity provides the connection between cause and effect, reducing 
the user’s cognitive effort and replacing it with a simple perceptual task. 
Figure 4.4 shows the contrast between a user interface that provides this 
continuity and one that does not.

Modern operating systems like Mac OS X 10.6 use animation to attempt 
to alleviate this sudden disjointed visual change. For example Mac OS X 
animates a folder (or directory) opening by morphing a smooth expansion 
from the icon where the user initiated the opening action to the new window 
location, and animates the opening of a file by expanding the icon in place 
(this is a substitute for animating to the location because that position is 
unknown).

Cartoons offer an exemplary use of animation for providing fun action that 
provides continuity, the principles of cartoon animation are well covered
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User Interface

User Interface with Continuity

Figure 4.4: C ontinuity  in user interfaces

in Disney Animation: The Illusion of Life [Thomas and Johnston, 1981], 
which encompasses ideas like solidity, exaggeration and reinforcement which 
underpin the success of cartoons. John Lasseter [1987] at Disney defines 
principles such as “Squash and stretch" distorting the shape of an object to 
define its rigidity and mass, and “Arcs” the visual path of action for natural 
movement. These principles of cartoon animation have been applied to the 
user interfaces with success [Chang and Ungar, 1993].

Continuous feedback and morphing provide continuity between state changes.

4.3.2 K ey concepts

W ithout continuity, users are surprised and disconnected from a user inter­
face, they need to work out the connections between their action and what 
the resulting effect was. A user interface that provides continuity uses an­
imation and morphing to provide the user with the clues to follow what is 
happening and to join up the state changes. Changes between states should 
provide feedback and continuity such that a user is able to easily follow 
them.

• Animated Use a smooth visual change from one state to the next 
to provide continuity to the user.

• Focused — Start the animation from where the user’s focus is, or from 
where the state change was initiated.

•  Physical Utilise some of the principles of cartoon animation to 
achieve a solidity and an enjoyable physical movement.
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• Instructive — Inform the user about the state change using animation, 
what, why and how.

4 .3 .3  Exam ple: C alculators

To provide the user with continuity when entering a calculation, the calcu­
lator morphs between states. When the calculator’s state changes, the user 
interface catches up by morphing, this provides smooth rearrangements of 
mathematical equations and a seamless connection between different states. 
By using morphing it is easier for the user to understand the state changes 
of the calculator.

Continuous feedback always provides the user with a clear idea about what 
is happening [Shneiderman, 1992]. For example, the user’s hand-written 
input is morphed into a typeset sum, this provides a clearer knowledge of 
the mathematics being calculated and how the output relates to the input.

The smooth morphing of feedback is also very visual and intuitive and is a 
big part of making the calculator visually fun and enjoyable.

4.4 W hat you see is w hat you edit

What You See Is What You Get (WYSIWYG) is a well known principle 
and acronym. WYSIWYG is used to describe an interface that allows the 
user to view the document in a similar way to what the end result would (or 
should) look like. Often this is in reference to what the end result is after 
printing, so what you see on the screen is what you get or should get from 
the printer. As a user interface, then, is not a WYSIWYG interface,
because the source code the user edits looks completely different to the final 
typeset document. In contrast Microsoft Word is more WYSIWYG, because 
the document the user edits in Page Layout mode (and less so in other view 
modes) looks very similar to the document that is printed.

WYSIWYG is now almost taken for granted. It was important new concept 
when computers were usually used through command line programs, as users 
often had little idea what output they were going to produce until they 
saw it. Today most programs that produce some form of output, often via 
a printer, primarily utilise a WYSIWYG user interface. Non-WYSIWYG 
modes, like the source code mode in a HTML editor or the outline mode in 
Word, are still used and provide benefits for more complex tasks.

WYSIWYG is thus narrowly defined to describe the resulting output of a 
program. The corresponding twin of this idea would cover input into a 
program, the user’s input in contrast to printed output, editing what you 
see. Editing what you see could be thought of as (at the cost of inventing 
new acronyms) What You See Is What You Edit, or WYSIWYE. Instead of
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describing, as WYSIWYG does, the process of output, like printing, WYSI- 
WYE describes the process of input, such as creating and editing data. 
This is not to be taken superficially, where every graphical user interface is 
changed or edited through a visible user interface, but the key concept is the 
lack of hidden constraints and surprises as the user edits. In other words, in 
the same way as WYSIWYG is primarily about the lack of surprise when 
printing, WYSIWYE is about the lack of surprise when editing.

Normal User Interface WYSIWYE User Interface

The user makes 
an edit.

The user is 
surprised by the 
resuit of their edit.

B

The user makes 
an edit.

The user sees the 
expected result.

A hidden conversion 
or restriction, alters 
the user's edit.

No hidden change.

State State

Figure 4.5: W Y S I W Y E  in user interfaces

Figure 4.5 shows the difference between normal and WYSIWYE user inter­
faces. The unexpected and hidden constraints in the normal user interface 
causes the result of the user’s action to be unexpected. In contrast the con­
straints on how the user edits are minimised in a WYSIWYE user interface. 
Constraints on the users actions usually have to be inferred from what the 
user can see and their knowledge of the system’s behaviour. The more con­
straints there are the more the user needs to know about the system and 
the less they are just simply editing what they see, but using what they 
know. Any constraint or rule about interaction that the user cannot see is 
something they have to learn or something that trips them up.

Another acronym: Things Are Exactly As They Appear, or TAXATA [Boeve 
et al., 1993] encompasses some of the same ideas about the visibility of the 
underlying model but does not describe the user’s interaction.

4.4 .1  D ifferent m odels

User interfaces often layer a simplified editor user interface over the top 
of a complicated data model. This creates a similar problem to the issue 
of having different user mental models and system models [Norman, 1988, 
1987], which is a conceptual problem when the user understands a different
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model to how the system actually functions, causing unexpected results 
occur in response to their actions. In the case of a simplified user interface, 
the model the user is actually presented and interacts with is different from 
the underlying system model. Thus the user has a much more difficult time 
understanding the underlying model and predicting the correct outcomes 
from the actions.

Paragraph styles in Word are a simple example of when the difference in 
models causes confusion. Normally when text is deleted, the text after the 
deletion is moved upwards, filling in the space left by the deletion, but when 
the preceding text has a paragraph style the text after the deletion is not 
only moved up but also acquires the style of the preceding text. (Word does 
not allow easy forward error recovery from this.) Up to this point, where 
the unexpected happens, there has been nothing to identify the preceding 
text as having a paragraph style or that it will behave differently. What is 
visible to the user as part of the user interface is different to the underlying 
model, which quickly becomes a problem when it affects the result of the 
user’s actions.

Most simple text editors in contrast are WYSIWYE editors, where the user 
interacts and edits with what they see, which is the characters of the text. 
Text editing involves a basic model that includes several simple concepts and 
constraints like characters, lines and selections. Once these are understood 
the user edits what they see and rarely needs to stop and think about these 
concepts because the user interface is consistent, simple and completely 
predictable from what they see. The constraints have been minimised to a 
few concepts and the user’s edits are predictable and expected. No part of 
system model that effects the user’s actions is invisible.

4.4 .2  M odes and h idden  sta te

In a user interface modes are states where the user can interact with the 
interface in different ways depending on the state of the system. A mode 
changes the user’s whole interaction with a program. A hidden mode makes 
it impossible for the user to predict the outcome of an action based on what 
they see breaking WYSIWYE.

It is a good user interface guideline to not use hidden modes [Raskin, 2000]. 
When modes are hidden, or obscured, they create a hard to use and confusing 
user interface. An invisible mode can mean that the results of the user’s 
actions are completely different to what they expect. If the mode is entered 
accidentally the user has no idea to expect the different interaction. If the 
user enters the mode on purpose the user still has the burden of remembering 
the mode. If they forget (or another user interacts with the interface) the 
user has the same problem of unexpected results.
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4 .4 .3  K ey concepts

• Predictable and visible — Present the entire underlying model that 
affects the user to them. Make anything that effects the result of the 
user’s action visible.

• Lack of constraint — Minimise the number of constraints on the user’s 
actions.

• Consistent models — Allow the user to edit in the user interface model 
presented to them without the need for any understanding of the un­
derlying system model.

4 .4 .4  Exam ple: S yn tax-d irected  ed itors

Syntax-directed editors [Teitelbaum and Reps, 1981, Reiss, 1984, Lunney 
and Perrott, 1988] are editors that are designed to keep the syntax of what 
the user is editing correct at all times. Syntax-directed editors were created 
with the aim of aiding and improving the process of writing program code. 
They were once championed by some to be “the great new way” of writing 
computer programs. Syntax-directed editors offered many useful properties 
such as reducing errors, fast refactoring and manipulation, and easier nav­
igation. Unfortunately the editors had very restrictive user interfaces and 
nobody enjoyed using them [Khwaja and Urban, 1993].

Today there are virtually no syntax-directed editors in general use, although 
some of their benefits have been integrated into normal text editors. Exam­
ples are code completion which completes a partially typed term or structure, 
code folding where structures in the code can be hidden or folded out of the 
way, and automatic indentation. These provide some of the benefits that 
syntax-directed editors offered but do not restrict how the document as a 
whole is edited. The lack of constraints these additional features enforce 
mean that the code editors can primarily be WYSIWYE. This allows the 
user to edit the document as if it was plain text, which users have found 
much more appealing than the highly constrained syntax-directed editors.

4.4 .5  Exam ple: T em plate ed itors

Most equation editors use template-based methods that constrain how the 
user edits an equation. Mathematical expression template editors are good 
examples of non WYSIWYE user interfaces. The mathematical expression 
the user edits is stored in a hidden underlying syntactic tree (although the 
tree is implicit in the structure of the mathematics). Edits the user makes 
are not on the actual visible symbols but actually on this underlying tree.

This hidden structure means that the user has to understand the implied 
underlying syntactic structure to be able to edit the mathematical expres­
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sion. Not only does the user have to understand the hidden structure in 
order to edit the expression but they are also restricted, by the structure, in 
how they are able to edit the mathematical expression. Any edits the user 
makes are limited by the hidden syntactic structure.

These limitations 011 the user’s interaction make editing the mathematics in 
simple ways very difficult. For instance if you wanted to change an expression 
from to y ^  it involves at least three cut and pastes, for example:

• The square root outside the fraction s/uj,-

• The fraction inside the square root

• Then finally a into the numerator y^F

4.4 .6  Exam ple: C alculators

A large part of the design aims for the calculator was to make use of the 
user interface’s paper-like similarities. The interface should act as if the user 
is just drawing, deleting or moving ink on a page. The ‘ink’ 011 the screen 
is all the information there is, and there is 110 restriction to how that ink is 
added or moved.

The calculator enforces 110 constraints 011 the order or position of what the 
user writes. By editing the ‘ink’ the user is able to write a mathematical 
expression without any regard for the underlying structure of the m athem at­
ics or computer representation. The calculator interprets the mathematical 
input from what is visible, the same thing the user sees, using expression 
recognition. This permits a very powerful, and natural, interaction style 
called ink editing and plays a large factor in making the calculator easy and 
natural to use. Ink editing is essentially WYSIWYE for a pen based inter­
face. Figure 4.6 shows the single drag and drop using the calculator that 
the same transformation from ^  to y ^  in a template editor requires at 
least three steps.

In the calculator the mathematical expression is always recognised from 
what is seen and the user only edits what they see. There are 110 constraints 
applied to how the user edits the ‘ink’, the mathematical constraints are

Figure 4.6: A 11 unconstrained  single drag  changing



Chapter 4 Principles 60

enforced after an edit is made by fluidly morphing the system into the correct 
state. This means that the user is free to input or edit their expression in 
any way they want and are rarely surprised by the interpretation of their 
action. The calculator’s behaviour is entirely predictable if the user has the 
right conceptual model of its behaviour. That is the calculator is entirely 
predictable without any knowledge of the history of the calculator state.

The principles of ink editing, or WYSIWYE, dictate that the interpreta­
tion of input should be solely determined by what it looks like. Thus, the 
interpretation of the — symbol is determined by its context, and the inter­
pretation can change if the context changes. For example, if the user writes 
—2 it is recognised as a minus sign followed by 2. If the user then continues 
to write a 3 above the minus sign, the minus sign is reinterpreted in the new 
context and becomes a division bar, which results in -2. The ink editing 
of this expression is natural to the user and the result looks very similar to 
what the user wrote. Without ink editing this would be impossible.

The calculator has a few modes of interaction, for example, selection, and 
dragging. Both these modes are directly linked to the users interaction and 
are visible on the screen. The user cannot start dragging without explicitly 
clicking on a selection and cannot finish dragging without removing the 
pen. This makes it much less likely that the user gets confused about how 
to interact with the calculator.

4.5 D eclarative interaction

Often processes and user interfaces make a clear distinction between input 
and output. The user provides input to the computer and then the computer 
responds with some calculation as output, but by blurring the distinction 
between the two, an interface can provide interesting and powerful interac­
tions. That is, letting the user change the output to get the input.

A programming language that works like this is sometimes called a declar­
ative programming language. Languages like this are different to the tra­
ditional imperative languages that describe how to get to the solution. In 
a declarative language the programmer states the relationship between the 
input and output. The computer then works out the details of the individual 
steps to get the output. Which means that just as the computer can logi­
cally work out the steps to go in one direction it is possible for the computer 
to work out the reverse steps to go in the other direction.

Declarative programming is not a popular paradigm for several reasons, but 
partially because it involves a very different way of thinking to how most 
programmers are used to. Prolog is an example of a declarative language 
that has found use in the real world. In Prolog the programmer writes state­
ments, declaring facts, and then Prolog backtracks to solve the equations 
(these are sets of Horn clauses in Prolog).
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Figure 4.7 shows some examples of how the single Prolog function append 
can be used to append lists and how it can also be used in completely 
different ways utilising the lack of an input output distinction. Here append 
is used to test for a prefix of a list, to decompose a list into all the possible 
pairs of sublists, and to test for the existence of a decomposition. That 
is four different and useful possibilities three of which are normally not 
possible! These are all possible because Prolog does not distinguish between 
inputs and outputs to the append function. The append function can also 
be used to test for list membership (append(_, [b|_] , [a,b,c,d,e]) . )  and 
to enumerate the members of a list (append(_, [XI_] , [a,b,c,d,e]) .)!

?- append([a,b],[c,d,e],X). 7« Just append 
X = [a,b,c,d,e]

?- append( [a,b] ,X, [a,b,c,d,e] ) . °/, Testing for a prefix 
X = [c,d,e]

?- append(X, Y, [a,b,c,d,e] ) . 7, Breaking into pairs of sublists 
X -  []
Y = [a,b,c,d,e]
X = [a]
Y = [b,c,d,e]
X = [a,b]
Y = [c,d,e]

?- append( [a,b] , [c,d,e] , [a,b,c,d,e] ) . 7. Testing decomposition 
yes

Figure 4.7: Using the append function in Prolog

4.5.1 U ser interfaces

The problem with making a process declarative is that many processes are 
inherently one way. The same problem occurs in user interfaces, which are at 
the basic level just ways of viewing and interacting with the input or output 
data from processes. A lot of what we see in user interfaces as output data 
would be hard to interpret as input. For example, how would altering a 
best-fit line change the data, or how could changing the search results affect 
the search terms? The usual and simple solution implemented by most user 
interfaces is to provide non-interactive views of this output data.

Despite the difficulty of making some user interfaces declarative, doing so 
can provide a lot of useful interaction potential. One of the most powerful 
and persuasive user interaction possibilities is exploration. By being able to
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change the best-fit line, which is normally just an output only view of the 
underlying statistical data the user can very easily explore the relationship 
between the graph data and the best-fit line. By changing the best-fit line 
the user could explore and experiment with the relationship between the 
line and the data and emerge with a good grasp of the how the line and 
data are linked.

User thought 
needed to change

thought

'Input' A edited by 
user gets 'output' B.

\

System

User can change

thought

Little thought Is

\e=V_Either A or B can 
be edited resulting 
In the other.

Declarative System

Figure 4.8: Declarativeness in user interfaces

Figure 4.8 captures the expanded interaction possibilities a declarative sys­
tem offers. With a normal system the user is restricted to editing the input, 
seeing the result then interpreting it so that they are able to refine the input. 
In contrast, a declarative system allows the user many more possibilities of 
interaction. The user can still interact with it in the same way as a normal 
system but also performing the reverse, interpreting the ‘input’ to refine the 
‘output’. They can also simply refine the input or output without having 
to interpret anything, thus both reducing the cognitive effort and making 
the interaction faster and easier. Figure 4.8 reflects these many options that 
allow a user to work much more flexibly and freely.

4.5 .2  Sim ilar concepts

A user interface that does not distinguishing input from output is declara­
tive, it provides aspects of query by example [McLeod, 1976], programming 
by example [Cypher, 1993] and even macro recording systems [Lieberman, 
1993]. Using a declarative interface, the user, even without any concept of 
the underlying process, is able to show the computer what they want it to 
do and the computer does the rest.

Applying this sort of paradigm to user interfaces has been called ‘equal 
opportunity’ [Runciman and Thimbleby, 1986, Thimbleby, 1990] and has 
been explored as part of other user interfaces. Other systems [Ahlberg 
et al., 1992, Ahlberg and Shneiderman, 1994] also utilise the concept of 
‘equal opportunity’ by building and extending it with their own principles.
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Tight coupling [Ahlberg and Shneiderman, 1994] is an extension of the direct 
manipulation guidelines [Shneiderman, 1983], primarily for visual informa­
tion seeking. A key concept of tight coupling is “query components are 
interrelated in ways that preserve display invariants and support progres­
sive refinement. Specifically, outputs of queries can be easily used as input 
to produce other queries,” which touches on the declarative blurring of input 
and output.

Leogo [Cockburn and Bryant, 1996], a Logo IDE for children, provides three 
distinct programming environments; a direct manipulation of the turtle us­
ing the mouse, a visual programming environment of icons and sliders and 
a standard text based editor. Each of these axe inter-linked and no one 
environment is considered ‘output’, so users can switch between the three 
different representations at ease. The evaluation was not conclusive but the 
authors did observe children often switching between the different environ­
ments for different tasks. Interestingly, a large part of the further work they 
wanted to undertake was to make the system more dynamic, or in other 
words a projected user interface.

4.5 .3  D ifficu lties

A slow or unresponsive declarative user interface does not provide quite the 
same ability or freedom to explore and utilise the underlying relationships. 
In Prolog, the user has to enter a query, correctly written and terminated 
by a special character, until this point, the output (if any) is incorrect and 
it makes experimenting with Prolog code slow and tedious. However by 
combining a declarative user interface with a projected user interface we 
get an interface that is always true all of the time and allows the user the 
flexibility of editing almost anything. This reduces user confusion and makes 
interaction and exploration fast and easy, allowing a user to both have a 
deeper understanding of the underlying relationships and use the interface 
in powerful ways.

A lot of relationships are ‘many to one’ meaning the same output can be 
achieved with many different inputs. A simple example using mathematical 
equality as the relationship is 1+3 and 2+2 which both have the same result. 
Providing the reverse of relationships like this can be difficult, but as long 
as it is predictable it is useful. The most simple solution often works best, 
in the previous example the ‘output’ 4 would simply generate the ‘input’ 4. 
With a predictable two-way relationship the user can easily make use of the 
ability to incrementally build up the desired result by changing which ever 
representation (whether ‘input’ or ‘output’) is easier at the current point.

Since the distinction between input and output is blurred, it is better to 
think of these as multiple representations of underlying data. To allow real 
iterative interaction where the user is able to refine multiple representations 
in turn, the system needs to have a mechanism for changing the users input.
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That is, given two representations, if the user specifies the value of one then 
changes the other, the first needs to be altered to ensure the underlying 
relationship remains valid.

A simple solution is to just override the other representations, replacing 
them with completely new results. A better solution is to adjust the values 
as little as possible such that the underlying relationship remains valid. 
The calculator does this by making the distinction between user input and 
computer ‘corrections’, as either side of an equality is adjusted by the user, 
computer additions are added or altered to ensure the equality remains 
mathematically correct while the user input is left unchanged. In this way 
the calculator provides the user with a powerful way to iteratively build up 
the desired result by adjusting both sides of the equality.

4 .5 .4  K ey  con cep ts

• Exploration — Encourage exploration by allowing a deeper under­
standing of the underlying model.

• Interaction by example — Provide an example of the input needed 
when the user supplies the desired output data.

• Predictable — Always provide the same answer for the same data, 
whether ‘input’ or ‘output.’

• Projection — A projected declarative interface makes exploration and 
incremental change faster and easier.

• Incremental — Allow the user to incrementally construct an answer 
by cycling between editing the ‘input’ or ‘output.’

• Refining — When the user makes any edit alter the ’output’ as little 
as possible to ensure it is correct. This supports gradual editing as 
each edit refines any others.

4 .5 .5  E xam ple: C alcu lators

Harold Thimbleby’s [1996] calculator implements a declarative user inter­
face, which from both informal and empirical evaluations [Cairns et al., 
2004] has been shown to have several advantages. A declarative calculator 
treats output and input equally, such that it can solve any basic mathe­
matical expression by providing the correct input for the answer. Users are 
thus able to solve problems, such as ‘what power of 2 is 56?’ (i.e., 2X = 56) 
directly, that they might have no idea of how to solve otherwise, and which 
would be impossible without circumlocution (e.g. introducing logarithms) 
and impossible without rearrangement and generally losing the initial prob­
lem structure. Typically mathematical problems would be impossible to do



4.5 Declarative interaction 65

correctly without prior experimentation on a calculator, for different calcu­
lators, even within brands, do advanced arithmetic calculations differently!

When combined with WYSIWYE, a declarative calculator makes the exper­
imenting trivial.

The ‘output =  input’ concept works well in a calculator, because the output 
and input are both the same type of data, a mathematical expression or 
number, and can be combined together into one larger expression.

With a declarative calculator, the user can replace the computer output 
with their own and nothing will change. This means that if the user writes 
the correct answer in then the calculator shows no extra work, and it means 
that if the user writes a wrong sum like “3 +  4 =  15” the calculator corrects 
it. When users use it they find that, as one individual put it, their old 
calculators are “nagging and pedestrian fusspots.” More examples of the 
possible ways in which the calculator can correct mathematical expressions 
are found in Chapter 2.

The flexibility of the declarative calculator allows an explorative and playful 
interaction. The calculator makes evident how the underlying mathematics 
operates and it enables easy exploration through play. Users are able to 
change any part of a mathematical expression to see how it is adjusted to 
ensure it is correct, and in doing so the user sees the underlying mathematics 
in action.

4.5 .6  P red ictab le

The corrections to user input and the morphing of the input into the final 
result are always predictable. The same input always yields the same output. 
Thus, once the user understands the calculator’s model they can predict the 
results of any particular edit (visually if not computationally).

4.5 .7  R efin ing

The calculator ensures the expression the user sees is always correct by 
adding corrections to the partial input. These corrections are inserted into 
the user’s own input. An incorrect expression could be corrected in an 
infinite number of ways, and lots of these corrections would cause the user’s 
input to move around or become more complex, thus making it harder to 
follow what the calculator was doing.

Therefore the calculator inserts the least amount of additional corrections 
to ensure the mathematical expression is correct. The calculator always 
corrects 4+ to 4 +  0 =  4 not any of other possibilities like 4 +  10 = 14 or 
4 + 4 =  4 x 2.
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Contiguous blocks of corrections and user input are also preferred, this 
means that the user’s input is broken up as little as possible. Corrections are 
also always placed on the right-hand side of any user input. For example,
2 =  3 is corrected to 2 = 3 -  1 rather than 2 + 1 =  3 or 1 + 2 =  3.

4.6 Synergy

These four principles, projection, continuity, What You See Is What You 
Edit, and declarativeness all work together in an unusually coherent way. 
Yet each principle is distinct and describes how one aspect of a user interface 
should operate. Figure 4.1 shows the four principles applied to the different 
parts of a system:

• Projection— state to user interface relationship

• Continuity — user interface interaction

• W YSIW YE  — user interface to state relationship

• Declarative interaction — state interaction

The interaction flow framework shown in Figure 4.1 enables a user to in­
teract with a user interface with lots of feedback, no discontinuity, clear 
functionality and few restrictions.

4.6.1 F low

These principles match up to several of Csfkszentmihalyi’s factors for en­
abling flow. While not sufficient to “get in the zone” these principles do 
enable a more seamless experience when using a user interface that aids 
flow.

1. Clear attainable goals with clear rules.

W YSIW YE  provides clear rules for attaining the desired goals.

2. A high degree of concentration on a limited field of attention.

Continuity helps ensure concentration by removing jarring discontinu­
ities.

5. Direct and immediate feedback so that behaviour can be adjusted as 
needed.

Projection provides immediate feedback so the user can adjust their 
actions.

7. A sense of personal control over the situation.

Declaration gives the user more control to achieve their results.
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4.6 .2  R educing th e  u ser’s cogn itive w orkload

When using a traditional calculator, before the user can do any calculation 
they have to translate the sum they have in mind into key presses that the 
calculator will understand. The new calculator removes much of this step, 
changing the role of the user and can reduce the user’s cognitive workload. 
This means that the user can spend more effort on the important things and 
are generally less taxed by using the system.

The calculator reduces the user’s workload in several very effective ways:

• Projection means that immediate feedback and partial input let the 
user build an expression up stage by stage, instead of having to enter 
a fully formed complete expression at the start.

• Continuity reduces the amount of effort to keep track of the many 
state changes that happen.

• W YSIW YE  means the user can enter and edit mathematical expres­
sions using standard two dimensional mathematic notation without 
constraints. This reduces the need to translate the desired mathemat­
ics into a linear format or into specific user interface actions.

• Declaration ensures that the user does not have to rearrange expres­
sions to have the answer on the right-hand side.

4.6 .3  Error recovery

Errors will always happen, so a good user interface helps users to easily 
recognise, diagnose, and recover from errors. Errors should be precise, indi­
cating the problem and constructively suggesting a solution.

Errors while using the calculator, either from input or from recognition, will 
happen. However, the calculator’s immediate feedback and visible expres­
sion from Projection helps users immediately recognise errors [Thimbleby, 
2004] and thus correct them. The W YSIW YE  editing abilities of drag, drop 
and deletion allow easy and logical forward error recovery. Undo provides 
simple backwards error recovery.

The calculator avoids any error messages or inconsistent state by supporting 
partial user input. No matter how bad the user input is the declarative 
calculator will form a valid expression and the user can always use forward 
error recovery from the current state or backwards error recovery using the 
undo clock.
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4 .6 .4  Breaking principles

We have claimed that a set of principles improves a user interface design, and 
we have given detailed discussion in the context of a novel, highly interactive 
calculator. This should have been a demanding context to test the ideas. 
However, methodologically it is good practice to explore the “reverse result.” 
If a principle p is claimed to improve an interface, absence of p should make 
an interface worse: just as these principles provide a good user experience, 
the lack of them should cause errors and problems.

We do not have space to give worked examples of the consequences of the 
lack of the principles, but it would be routine to do so. Here is a brief 
“thought experiment” of the problems that would be readily anticipated if 
the principles were flouted:

• Projection consistency errors — “this can’t be reliable.”

• Continuity continuity errors — “how did I get here?”

• W YSIW YE  expectation errors — “that wasn’t what I expected.”

• Declaration editing restrictions — “why can’t I edit this?”

It may be thought of as trivial; that if a good design principle is broken then 
the interaction is also broken. But the sharper insight is that breaking the 
proposed principles would clearly break the user interface in specific ways. 
On the contrary, if the principles were vague (say, “make it nice”) then their 
opposites (say, “make it nasty”) would have an arbitrary effect.

4.7 Sum mary

The calculator’s design has been guided by four precise principles, as piloted 
in the previous chapter and now as refined in this chapter. The four main 
principles described in this chapter: Projection, Continuity, What You See 
Is What You Edit and Declarative interaction are all critical to the design 
and fun interaction that calculator provides. These principles aided the 
design and implementation of a calculator that has a fluid, smooth, easy, 
and powerful user interface, and which is enjoyable to watch and interact 
with.

Together the principles form an interaction flow framework, which is able 
to provide real generative ideas for making innovative and satisfying user 
interfaces.

It remains to substantiate the claims throughout this chapter that the user 
interface is effective. The next chapter reviews the user evaluation for the 
calculator. Then, in subsequent chapters, we will test the higher-level claims 
about the principles by applying them and same generative processes to a



4.7 Summary 69

very different style of user interface and showing that it, too, is remarkably 
effective.



C h a p te r  5

U ser in terface overview

Figure 5.1: Royal Society exhibition. ©  W ill H arw ood

It is very instinctive and fast.  It’s great, I feel like Tom Cruise 
in Minority Report —  Bravo!

a PhD student at the Royal Society’s Summer Science 
Exhibition

5.1 Overview

In the film Minority Report. John Anderton [Tom Cruise] uses a gesture- 
based interface to view and manipulate clips of the future so that he can stop 
murders. The interface is built from several large screens which he interacts 
with by using hand gestures. The interface displays (fictional!) precognitive 
visions of the future, dreams replayed through a computer, on an interface 
similar to that of a timeline or a video editor. Using this interface Anderton

71
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performs panning and zooming and manipulates this ‘video’ using various 
hand gestures.

The interface is typical of film and CGI interfaces, it looks good, it looks 
fun, and it looks like it works. However, it is all faked and none of it is 
real. It probably took many months of computer graphics and prop design 
to achieve. The interface appears to be successful because of how it seems 
to interact. The fluid motion and gestural interaction is persuasive within 
the film. Would the interface, if actually built, be successful? Does the 
perceived usability work in real life, or does it just look good on the big 
screen?

Imagine writing a calculation down on paper, and the paper magically work­
ing out the answers. The calculator works like this, using an approach that 
is ideal for gesture-based user interfaces, from handhelds with pens to in­
teractive whiteboard use in classrooms. The calculator developed resembles 
the interface from Minority Report. The quote at the start of this chap­
ter was from a visitor to the Royal Society’s Summer Science Exhibition, 
where they used the calculator on a 6 foot interactive whiteboard that can 
be interacted with using fingers. The fluid nature of the mathematics and 
the smooth morphing of the symbols that the calculator uses are similar 
to the fluid interface of Minority Report, and are probably what prompted 
the quote. When the calculator is used on an interactive whiteboard, such 
as a SMARTboard, users manipulate the calculator using their hands in a 
natural way using gestures and handwriting, in a similar fashion to the in­
terface of Minority Report. Figure 5.1 shows a user using the calculator on 
an interactive whiteboard at the exhibition.

The calculator is written in Java and runs under Windows, Linux and Mac 
OSX, and it works with standard hardware such as Mimio, SMARTboard, 
or Wacom tablets. It is somewhat difficult to use it with a trackpad or 
mouse, because creating normal handwriting movements, the calculator’s 
normal mode of input, with a mouse is unfamiliar and awkward.

It is fun and engaging, users enjoy using it and it also works as a calculator 
computing mathematics. Fun and mathematics is an unusual combination. 
This raises the questions: Why? Why is it fun? Why is it engaging? Are 
these inherent in a Minority Report-esque interface? Is the fun part the 
gestural interface? Or are there other factors that make the calculator user 
interface successful?

This chapter provides an overview of how the user interface works and func­
tions. It provides an overview of the new calculator’s user interface, and 
how it operates from the user’s perspective.

Describing a user interface in such detail can make it seem quite dull. This 
level of detail is provided for clarity. In reality the calculator’s user inter­
face is not restricted by the medium of five frame cartoon strips (such as 
Figure 5.3) or paragraphs of text, and thus it is much more fluid. To re­
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ally grasp how the calculator works and interacts, it is probably far more 
productive to play with it instead of reading the comparatively dull and 
non-interactive text of this chapter.

5.2 User interface sections

=

Ix 2a 3x 4 x3

1 C ******
\ * /: <-
o

x
Figure 5.2: U ser interface overview

Figure 5.2 shows the entire visible part of the calculator’s user interface, the 
different numbered sections of it are enumerated below:

1. The dock

Equations can be dragged here from the equation editor, which are 
recorded and saved in the dock for later use.

2. Help

The help button brings up a help screen that shows the user what 
symbols are recognised and how the calculator is used and what can 
be achieved with it.

3. Hide/show answers

The button that looks like an eye toggles the showing of answers to 
calculations.

4. History clock

The history clock records the changes made to the mathematics, and 
can lie used to review what has happened or to undo changes.
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5. The mathematical expression

Mathematics are written here as handwriting, which the calculator 
solves. Figure 5.2 shows the calculator in the process of solving 3 x 4 .

6. Clear

Erases the whole screen for a new calculation.

7. Trash

Saved equations in the dock and parts of the mathematical expression 
can be deleted by dragging them to the trash.

*  3
• 3 y.4-
0 3 X 4
° 3x4
e 3x4=12

Figure 5.3: Simple calcu lator use

5.3 Sim ple m athem atics entry

The entry of a simple mathematical expression is shown in Figures 5.3.1 
5.3.5. These show a sequence of screen snapshots of the calculator in use 
as a user enters the simple sum 3 x 4 .  These steps are typical of entering
a straightforward mathematical expression without any mistakes or editing
into the calculator. These interactions and the principles that are the basis 
for them are now described in more detail.
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1. User input

Here the user has written by hand the mathematical expression 3x4 .  
The user’s handwriting appears in blue on the screen as they write, 
creating a rough mathematical expression. There is no special syntax 
or interaction, the user writes the same way of writing they would on 
paper. This is the first part of the original guiding design principle: 
that “it should work like paper, but with answers” .

2. Symbol recognition

After a short time delay, the calculator begins recognising the user’s 
handwriting and replaces the rough hand-written strokes on the screen 
with typeset characters that are stretched to the same size and location 
as the handwriting.

The user wrote 3x4;  the calculator is “catching up” with them and has 
already rendered the 3 in a typographically neat font. This feedback 
is grounded in the projected editing principle, the calculator provides 
direct, timely and clear feedback to the user about the symbol recog­
nition.

3. Finished symbol recognition

In Figure 5.3.3 the calculator has recognised all the user’s input and 
replaced the handwriting with the typeset symbols.

4. Morphing

After all the user’s hand-written symbols have been recognised the 
calculator identifies the mathematical expression and computes what 
is missing to ensure it is mathematically correct. Then the calculator 
begins morphing the distorted typeset symbols into their final positions 
as part of a neat typeset expression. The answer, or corrections, are 
shown in red and fade in during the morphing of the user’s input. In 
this case the answer ‘=12’ is shown.

In Figure 5.3.4, the calculator is in the process of morphing all the 
user’s input and has combined it with the output displaying a nicely 
typeset equation. User input that was written in blue ‘dries’ black, 
this is to help distinguish new user input as it is written with what is 
already on the screen.

The feedback provided by the typeset expression provides direct feed­
back about the equation recognition and is part of projected editing. 
The answer provides the last part of the original goal “...like paper, 
but with answers” .

5. Finished

The final calculator output is shown in Figure 5.3.5. The equation is 
neatly formatted, typeset and the calculated answer is shown in red.
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0 12*

0 12=1728

• Vi?
• Vl?=12

Figure 5.4: E diting  a calculation
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5.4 Editing

The next few sections take individual aspects of interacting with the calcula­
tor in turn and describe them more fully. Editing a mathematical expression 
is a simple as writing on top of it. The What You See Is What You Edit 
(WYSIWYE) principle is core to the editing experience of the calculator, it 
means that users need not be concerned with the hidden structure of the 
mathematics.

Figure 5.4.1-5.4.5 shows the user editing a simple expression, starting with 
12 =  12. Each step shows adding new structure to an already generated 
typeset expression, resulting in the final expression v ^ 3.

1. Starting expression: 12

Once an expression has been recognised, it is possible to write over the 
top of the typeset expression to edit it. Figure 5.4.1 shows new user 
input in blue over the top of the typeset expression. The computer 
generated answers in red are faded out as the user starts to write, 
these answers are only temporary, and the fading out is to stop the 
user from making use of them.

2. New typeset expression: 123

The new expression is then morphed and typeset neatly with the cor­
rect answer.

3. Further editing

The individual steps show how an expression can be built up bit by 
bit while the calculator provides error checking, recognition and the 
answers at every step. Figure 5.4.3 shows the user adding a root on 
top of the original expression.

4. Additional further editing

The user can then continue to add more to the expression. The way in 
which a calculation is edited is flexible, the user could have written the 
3 first before the square-root symbol. As a WYSIWYE user interface 
there is no hidden order or structure the user has to conform to, this 
makes it much easier for the user to edit an expression.

5. Finished: v̂ 123 The final result is typeset neatly incorporating all the 
user’s additions to the original expression.

5.5 Drag and drop

Drag and drop allows users to easily rearrange an expression, any part of 
the expression can be moved anywhere else. Drag and drop is also useful
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o 3x30 = 18 o

B

23=8

© \2^>30 ©

© © 3z=9

©
30

3x5 =2

Figure 5.5: D rag and drop
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for correcting recognition errors, for example when a symbol is positioned 
where the user did not want it to be, they can easily move it to the correct 
position. The ability of the user to select symbols without restriction on 
what or where is selected is driven by the WYSIWYE style of the user 
interface. Without this principle shaping the nature of the interaction, the 
experience would be much more restricted and complex for the user to use. 
Figure 5.5 provides two examples of drag and drop.

A.I. Starting expression:

A.2. Selection

To select part of an expression the user draws round the symbols they 
want to select. A selection is initiated when the user has drawn a 
loop that contains other symbols. The selection mode is signified by a 
“whooop” sound and displayed as a blue transparent filled loop with 
the selected symbols drawn in blue, both providing valuable feedback 
to the user. Figure 5.5A.2 shows a fraction where 3x is selected from 
the numerator.

Note that 3x is not a mathematically complete expression but the user 
can still select in the WYSIWYE user interface and move it however 
they want.

A.3. Dragging

By clicking inside the highlighted blue selection the user can drag the 
selection to wherever they want. While the user is dragging an arrow 
indicates the drag that will happen. Figure 5.5A.3 shows the user 
dragging the selection down into the denominator.

By clicking outside of the highlighted selection the user could also 
cancel a selection and re-select a different portion of the expression or 
continue editing the calculation as normal.

A.4. Finished: ^

When the user finishes a drag the selected portion of the expression is 
inserted at the end point of the drag and the equation is recalculated 
and morphed to a new typeset expression. In Figure 5.5A, moving the 
3 x from the numerator to the denominator has altered the expression 
from lljJB to

The second drag and drop example is shown in Figure 5.5B.

B.l. Starting expression: 23 

B.2. Dragging

The user here is dragging a base into its own exponent. This is not a 
problem for the calculator, the expression is simply re-recognised with 
the dragged components of the expression at their new locations.
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Result

f x 4 2=8 

-Jjr =0.002

—  =212

-422=-1764
Figure 5.6: M ore com plex dragging

B.3. Finished: 32 =  9

The new expression is now morphed into a neat typeset expression, 
swapping the base and its exponent, giving 32. The same result could 
have been achieved by dragging the exponent down and left below the 
base.

Figure 5.6 shows the result of more complex drag operations on the m ath­
ematical expression Notice how versatile the drag operation can be in 
rearranging the mathematical expression, there are very few limitations and 
a single drag can move and rearrange complete or partial expression. The 
calculator reinterprets the new expression after the drag, making sense of 
whatever the user did. To understand how the resulting expression was 
arrived at, thinking about what the drag and drop achieves is useful. For 
example in last case of Figure 5.6, which may seem to have a counter intu­
itive result, the drag and drop changes 4r to — 4, which is interpreted in a 
sensible way as — 422.

Drag

£
2
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5.6 D eletion

Deletion is performed in much the same way as drag and drop. Figure 5.7 
shows how part of an equation can be deleted by dragging it to the trash. 
The selected part of the equation is removed and the equation is re-recognised 
without the deleted section. A cloud of smoke is used to provide feedback 
to the user that they have deleted part of the expression. By utilising the 
same gesture and metaphor of drag and drop for deletion the calculator 
makes economical use of the few gestures the calculator supports, the user 
interface is less complex and the user has fewer gestures to learn.

o

©

0

o

Figure 5.7: D eleting p a r t of a calculation

1. Starting expression: 3 2

2. Dragging to the trash

To delete a selection the user simply circles part of the equation and 
drags it to the trash in the bottom  right of the screen

3. Deleted

The user is provided with a smoke cloud and a “poof” sound as feed­
back from the deletion.

32=9

3=3

4. Finished: 3
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The final expression is recalculated and morphed after the deletion.

There is also a clear button (shown as a cloud of smoke) in the bottom- 
left corner of the user interface that clears the whole current expression, 
resulting in a completely clear screen.

5.7 Partial expressions

Part of what allows the calculator to compute answers as the user enters 
the expression, is the ability of the calculator to handle partial expressions 
smoothly. When a mathematical expression is recognised, missing compo­
nents are filled in with placeholders, which appear in the user interface in red. 
These placeholders are then adjusted intelligently so that the mathematical 
expression is correct . This ability is a part of the declarative interaction the 
calculator provides, which blurs the distinction between input and output 
and allows the user to utilise this potential for ease of use, like completing 
simple incomplete expressions, and for more powerful solving capabilities.

. 3x1=3

« y=0.5

e (—+2)=6

° -2-x4=6
Figure 5.8: Simple p artia l com pletion

Figure 5.8 shows some simple examples of partial completion. In each case 
the red symbols have been added to the black mathematics written by the 
user to ensure that what the user sees is mathematically correct. An an­
swer on the right-hand side is also added ensuring the entire expression is 
mathematically correct.
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1. The multiplication is completed with its identity, converting 3x into 
3 x 1 .

2. The incomplete fraction is completed with an added numerator, con­
verting 2 into

3. Both the denominator and the missing closing bracket are added to 
the user’s input.

4. A multiplication symbol is added to disambiguate a fraction followed 
by another symbol. This is for consistency so that |4  and |7r are both 
clearly multiplications. This stops |4  being confused with |  +  4, which 
is how it is sometimes written.

This facility of handling partial expressions is extended by allowing the user 
to write an equals sign. By writing an equals sign, the user is able to add 
mathematics on both sides of the equality and get the calculator to correct 
the partial expressions, providing answers to mathematic calculations that 
would otherwise need to be rearranged.

The calculator in a declarative fashion (i.e. a lack of distinction between in­
put and output) completes all the expressions such that the user can easily 
compute the answer to questions like “what power of 2 is 100?”. Figure 5.9 
shows some examples of how this ability can be used to compute more com­
plex sums very easily without rearranging the expressions. These examples 
are described below.

1. A simple multiplication is completed to correct the mathematical ex­
pression. The user wrote 3x = 12 which is then corrected to 3x4 = 12.

2. In the same fashion, an incomplete fraction that is missing a numerator 
is completed. This is an example of a common problem “what divided 
by x is y?” that users can solve without rearranging.

3. An exponent is completed, without the user knowing the correct log­
arithm rules to get the answer. In this example the fact that there 
is a missing exponent needs to be indicated (in this case by using a 
bracket). Without any symbol in the exponent the calculator assumes 
there is no exponent. Thus 2̂  =  100 and 2 =  100 are completed very 
differently. The latter is completed as 2 = 100 -  98, and the former as 
a solution to “what power of 2 is 100?”.

4. An incorrect sum 3 =  5 is corrected with the addition of a —2 on the 
right-hand side. All similar corrections happen on the far right-hand 
side to minimise confusion about where corrections appear.

5. Some mathematics with unknowns can be completed in an infinite 
number of ways. The calculator always picks a “simple” answer. In 
this case a multiplication is completed using an identity.

6. A factorial is completed as close as it can get to the answer and the 
remainder is added in. The user could be trying to solve “What fac-
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• 3x4=12

•  f  =9

•  2 ,6'64J =  100 

0 3=5-2

• 12=12x1

• 50=4!+26 

o V81=9
Figure 5.9: M ore com plex partia l com pletions



5.8 Hiding the answers 85

torial is equal to 50?” , the calculator provides as close as it can get, 
and the mathematics the user sees is still correct.

7. The inverse of a square root is calculated to correct the input. The 
calculator also handles the similar expression \/? =  - 9  in a sensible 
way correcting it to \/T = — 9 +  10.

5.8 Hiding the answers

As a teaching aid the calculator allows the user to hide the answers. This 
allows a teacher to pose questions and to get responses to a mathematical 
problem before the answer is shown. It can also be used to allow users to 
enter possible answers to see if they are correct.

° 3x4=

® — =9
Figure 5.10: H idden answers

Figure 5.10 shows two examples of how this appears to the user. The red 
numeric corrections are replaced with dashed red boxes. By clicking the 
toggle in the top-left corner of the user interface the user can quickly switch 
between this mode and the standard display.

If the user writes an answer in, the expression it is recalculated as usual, 
any new corrections are then displayed in the same style with a red outline 
box. If an equation is written that does not need any corrections, then this 
is highlighted by a big green tick, shown in Figure 5.11. This happens, for 
example, when the user fills in the correct answer for a hidden correction.

For teaching and group-use the ability to hide the answers until required 
provides a richer interaction both with the calculator and the class. A 
teacher can use the calculator to show a mathematical relation and then
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by hiding the answers can pose questions like “W hat happens if I alter this 
number?” A missing number is rendered as a box, prompting the user to 
enter a number in it. When this is combined with the ability to undo, it 
allows users to try an answer, rewind and try a different one, providing a 
useful tool for a teacher using it with a class or group.

3x4=12 y?
Figure 5.11: A correct answ er

5.9 The dock

The dock gives the user the ability to save and reuse and work on multiple 
mathematical expressions. It contains the thumbnails of the calculator’s 
stored expressions that the user can access and edit. The dock sits on the 
left hand side of the user interface and can be grown, shrunk or hidden to 
the user’s liking.

Each expression stored in the dock is selectable by clicking on the tile in 
the dock. The current main expression is then switched to the one that 
was selected in the dock. Each expression in the dock is self-contained and 
has its own data and history. As an expression is edited, the corresponding 
dock thumbnail is updated in real time in keeping with projection, ensuring 
that there is no inconsistency between the dock thumbnail and the current 
expression.

Figure 5.12 shows how mathematics are stored in and used from the dock.

1. The dock user interface is shown on the left of the screen. The current 
expression is edited and interacted with on the right, a thumbnail of 
this larger mathematical expression is shown highlighted inside a white 
tile in the dock.

2. The user saves part of an expression by dragging the selection in the 
current mathematics to the dock, creating a new tile in the dock cor­
responding to the saved expression.

3. In the dock the new saved expression is shown with a grey background, 
differentiating it from the current expression being edited. The answer 
shown in the thumbnail has already been automatically calculated and 
filled in, meaning the mathematics even within the dock thumbnails
are consistent or projected.
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-̂ -x4 =8

o =8

^-v4:=8
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0
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4=16 ^ x 42=128

Figure 5.12: Using th e  dock
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Saving parts of an expression to the dock is as simple as finishing a 
drag and drop action in the dock. The selected part of an expression 
will be copied and inserted into a new saved expression.

4. Saved expressions can be dragged back into the current expression or 
be deleted by dragging them to the trash.

5. When a saved expression is dragged into the current expression being 
edited, it is inserted as an immutable box with the value of the con­
tained expression. The main expression is recalculated and the dock
tile is also kept up-to date. The final sum with the inserted saved

. 1 x[42] *2expression is — 14'

5.10 H istory

Instead of providing a discrete undo similar to most modern user interfaces, 
the calculator provides an undo that is continuous and smooth. The interac­
tion with the undo system provides feedback that is similar to the morphing 
feedback used to provide continuity between the user’s writing and the type­
set calculation. The interface is presented as a clock (seen in the top-right 
corner of the user interface) that allows the user to manually “set the time.” 
As the user edits the expression the “time” ticks forward, about a quarter 
“hour” for each edit. More recent versions of the clock have been made more 
abstract in order to not be mistaken with an actual clock.

To undo, or go back, the user grabs the clock and rotates the hands back­
wards. The clock “time” and the calculator state are linked, providing a 
projected user interface. To undo to a previous point the user only has to 
remember the “time” they want to go back to and rotate the clock’s hands 
back or forward to get to that time, or the user can scrub back and forth 
reviewing the history of the mathematics until they find the point they want.

As the hands of the clock are turned in either direction the equations morph 
from state to state, backwards and forwards in time. The fluid morphing of 
the equation as this happens provides a continuity through time and through 
the history of the equation that is easy to follow. The morphing contains 
all the edits, drags and deletions that have happened to the expression, 
including some of the effects like the “poof” of smoke for deletion. (Imagine 
Figure 5.3 but animated and scrubbable through like a movie.)

Scrubbing backwards and forwards in time allows the user to undo or review 
their previous work. If the user rewinds the clock this undoes previous 
edits and the user can continue editing from the current visible state. The 
user is able to review all their previous work without undoing by rewinding 
backwards and then winding forwards to the most recent state.
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5.11 U ser interface concepts

5.11.1 H andw riting

Handwriting is an important component of meeting the “it should work 
like paper” guiding principle. By providing a user interface that works like 
paper, users are able to make use of their existing knowledge and skills for 
manipulating mathematics on paper.

The calculator provides a modeless interface, which resembles a sheet of 
paper. Any writing causes “ink” to be drawn on the screen. The user is 
able to write everywhere. The handwriting recognition works with standard 
handwriting as written on paper, thus there is no need to learn a special set 
of gestures or to learn a different method of handwriting, such as a simplified 
alphabet would require.

The user can write on-top of and over current typeset mathematics which 
allows for easy insertion into and modification of the mathematics. A selec­
tion is created when the user’s gesture forms a loop around several symbols. 
This selection can then be dragged using the pen to anywhere on the screen. 
Other than this selection gesture every pen stroke and touch of the screen 
is assumed to be writing.

Cursor manipulation can be the most tedious aspect of editing an equation 
in 2D equation-editing systems. A benefit of a pen-based system is that 
there is no cursor, therefore the user can write anywhere without awkward 
cursor movement or placement. This is especially useful for mathematics 
where editing and writing happens in lots of different places and often not 
sequentially.

5.11.2 M orphing

Providing continuity to the user with continuous feedback, is a key part of 
the user interface, this is encapsulated by the continuity principle. Feed­
back is provided through typeset annotation and animated morphing of the 
mathematical expressions. This feedback provides the user with continuity 
as the calculator’s state changes and makes it clear what the calculator is 
doing and how it relates to the user’s input.

Annotation provides immediate feedback about the success of the character 
recognition, replacing the hand-written characters with typeset characters 
stretched to the same size and bounding box. Animated morphing pro­
vides the continuity between what the user has written and the final typeset 
expression. After the characters have been recognised and replaced with 
typeset versions they are still in the rough position and shape that the user 
wrote them. The calculator then smoothly morphs these characters into 
neat positions to form the final neat typeset expression.
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5.11.3  Feedback

Immediate feedback is continually provided to the user so that they are al­
ways aware of what is happening and what mathematics is being calculated. 
The calculator performs several state changes based on timers, that provide 
the user time to finish any edits they make. All state changes are projected 
and provide immediate feedback. Projection also means that the user in­
terface is never inconsistent, as soon as the user edits the mathematics the 
current answer disappears, and as soon as the user finishes editing a new 
answer fades in.

Without the projected feedback and the continuity of morphing the user 
would face sudden state changes and an often inconsistent and confusing 
user interface.

5.11.4  Freeform  ed itin g

The calculator provides a very flexible way of editing mathematics. Adding 
new, deleting, or rearranging symbols is performed in an unrestricted and 
natural way. Editing is not restricted and any part of the expression can be 
changed. Once the user has selected something, they can move it wherever 
they want, without having to worry about any constraints on their interac­
tion. This is the result of the W YSIW YE  principle, because of the lack of 
restrictions the user interface is both easier to use and more powerful. Many 
of the examples of editing mathematics earlier in this chapter would not be 
possible in a non- W YSIW YE  user interface.

5.11.5 C alcu lation

The mathematics of the calculator are based on the declarative interaction 
principle. The central idea being that the input and output are treated 
with equality. The calculator non-destructively completes the user’s work, 
simultaneously correcting or solving any arithmetic mistakes or omissions. 
Thus ensuring that the expression the user sees is always mathematically 
correct.

The calculator provides a sensible answer at any point in time for any input: 
partial, complete or wrong. This allows the calculator to provide immediate 
projected feedback to the user without delay. Thus the user is continually 
kept informed of what the calculator is doing and the current mathematical 
solution to what they have entered.

The user is also able to utilise the declarative nature of the calculation to 
do mathematics in a more natural way. They are able to solve simple sums, 
such as - =  27, without having to rearrange the sum. Not only are they able
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to solve simple sums more easily, but they can also solve complex expressions 
that they would not have otherwise been able to do.

5.11.6  E xploration

There are many different aspects of the calculator that encourage exploration 
and play. All of the flow principles engender a fluid and playful user inter­
face. Projection ensures that what the user sees is always correct and can 
quickly and easily respond to the results. Continuity means that the user 
rarely loses track of what is happening and does not lose their flow. WYSI­
WYE  allows the user to change anything as they see it, without the extra 
cognitive effort of dealing with constraints. Finally a declarative interface 
makes the underlying mathematics more immediate and concrete. These all 
contribute to a user interface that is great for exploring and learning about 
mathematics.

Undo is controlled through an interface that is linear and smooth, this pro­
vides continuity so that when undoing or redoing, the user does not ex­
perience any jarring transitions between the different states. The smooth 
undo is similar to the morphing feedback that is used to provide continuity 
between the user’s writing and the typeset calculation.

5.12 Sum m ary

The user interface of the calculator has been described in a step-by-step 
manner, showing how the pen-based user interface can be used in flexible and 
powerful ways. These descriptions, though comprehensive, do not convey 
the fluid, interactive nature of the calculator. Video demonstrations of users 
interacting with the calculator and of the user interface are available online1 
are more persuasive. However, nothing compares to the experience and 
enjoyment of using the user interface yourself, preferably with a pen or 
finger user interface.

The combination of the simplicity of the pen interface, the projected im­
mediacy and visibility of what is being computed, the continuity and fluid 
morphing between states, the W YSIW YE  ease of editing, the declarative 
correctness of incomplete mathematics transforms the way users interact 
with the calculator. The new calculator enables mathematics to be explored 
in a highly forgiving and experimental interface that is fun to use.

1 http: / / www.cs.swan.ac.uk/calculators/
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Figure 6.1: “R ealC alc la calcu le tte  du fu tu r” (c) J . A. D eledda

This chapter provides an overview of the implementation of the calculator. 
For the actual implementation, the Java source code and data files as well 
as a version ready to run and use as compiled Java JAR file, are available 
online at h t t p : / /www. cs . swan. ac . u k /c a lc u la to r s / .

A short literature overview of the specific components of the calculator’s 
implementation is provided. However this thesis is not intended to primarily 
contribute in these areas and the literature overviews have been shortened.

6.1 Tools

The calculator was programmed in Java, an object orientated language 
which produces cross-platform runable applications. However, originally 
the calculator also made use of Cocoa, a specific Mac OS X technology,

93



Chapter 6 Implementation 94

as this provided a simpler and more familiar way for the author to create 
graphical user interfaces. This has been removed to make the calculator 
completely cross-platform. The calculator is now written solely in Java. By 
programming the calculator in a cross-platform language, it was hoped that 
the system may find wider usefulness, beyond a research project. Indeed the 
calculator is now published by Promethean.

Effort was made to keep the design of the whole system well structured using 
object orientated techniques. As such, part of this the code uses the Model- 
View-Controller pattern [Gamma et al., 1995] extensively, which keeps the 
user interface separate from the model. The use of this pattern meant that 
the replacement of the Cocoa user interface with a Java user interface was a 
straight forward task, because the interface between the user interface and 
the core structure had already been abstracted.

6.2 Overview

The core of the calculator is summarised in the remainder of this chapter. 
The calculator consists of pen-based interaction with a single mathematical 
expression. Omitted in this description of the calculator’s implementation is 
the majority of the actual code-level or Java-specific implementation details. 
This core of pen-based interaction with mathematics consists of four distinct 
processes, shown in Figure 6.2. Processes A to C are stages within the 
mathematical engine and occur sequentially. The user interface, process D, 
is layered on-top of these core stages and provided continuous interaction 
and feedback with the core processes.

These processes are:

A. Symbol Recognition — A symbol recogniser that reads the strokes 
written by the user on a pen-based device and determines which sym­
bols have been written.

B. Expression Recognition — An expression processor that takes the sym­
bols with their relative positioning and size and recognises the math­
ematical expressions they represent.

C. Calculation — A calculator that provides the completed mathemati­
cally correct expressions.

D. User Interface — A user interface that provides seamless user inter­
action, from the initial handwriting input to displaying the result, 
including providing the feedback during this process to the user, so 
they can understand what is being computed.

The remainder of this chapter is divided into four sections that each discuss 
the individual stages of the process described above.
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Figure 6.2: T h e  calculation process
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6.3 Sym bol recognition

The first stage of any calculation using the calculator is handwriting or 
symbol recognition. This is the process where the user’s writing, which is 
provided to the calculator as vector data from pen movement, is recognised 
as individual symbols. These symbols are then passed onto the next stage 
which recognises mathematical expressions. During this recognition process, 
the user interface provides immediate feedback by replacing the handwritten 
strokes with typeset symbols.

Handwriting recognition is a well-researched area. Many implementations 
provide very good recognition rates and there are lots of different approaches 
to the symbol recognition problem. Plamondon and Srihari [2000] provide 
a comprehensive overview of the area. Some of the different approaches to 
the handwriting recognition problem are highlighted below.

Persoon and Fu [1977] uses signal processing, viewing symbols as a signal 
processing problem, where the closed contour of a pattern is considered as 
a periodic signal. Odata et al. [1982] describe a simple statistical method 
for online character recognition. Starner et al. [1994] use hidden markov 
models, used for recognising continuous speech to recognise online cursive 
handwriting. Shaw [1969] uses a syntactic method or Picture Description 
Language. PDL uses straight line segments as primitives and grammar rules 
to describe how line segments can join together. Chan and Yeung [1998] use 
a structural method in which the unknown pattern is repeatedly deformed 
if it does not match any of the classes. Pavlidis et al. [1996] use a physics- 
based shape metamorphism method and casts the problem as an energy 
minimization problem. Tappert [1984] uses elastic matching and dynamic 
programming.

Instead of using a handwriting recognition library the calculator implements 
its own system for symbol recognition. There are several reasons for this, 
not least that mathematical symbol recognition is a different problem to 
textual handwriting recognition (handwriting recognition for mathematics 
has several special features that mean it is a different problem than normal 
handwriting recognition). The main reasons are summarised below:

• A bespoke system is free of restrictions, whether legal or technical, 
that hinder other libraries.

• Mathematics is not typically written in a joined-up cursive style. There­
fore the recogniser does not need to address the more difficult problem 
of recognising cursive writing.

• Mathematical writing contains many odd symbols, including symbols 
that vary in scale and shape, like the V  symbol. Mathematics also 
uses a restricted character set, which makes the recognition problem 
simpler. A specialised recogniser can be tweaked specifically for math­
ematics.
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• The relative location of symbols and sizes vary greatly in mathematics, 
whereas text is generally uniform and written in a line.

• In order to provide better affordance with paper, the symbol recogniser 
recognises handwriting as written, instead of using a single pen stoke 
based system like Graffiti [Fleetwood et al., 2002].

• Technical reasons of integration. Using my own system, as opposed to 
say Microsoft’s handwriting recognition engine, means that the entire 
calculator is cross-platform.

Handwriting recognition has been a usability issue for the calculator. If the 
handwriting recognition fails then the whole user experience is undermined. 
Currently the handwriting recognition has an accuracy of 90-95% depending 
on the user. Unfortunately this is still the largest cause of users not finding 
the calculator easy to use. It is a shame that such a critical component of the 
user experience is not part of the whole positive experience. In retrospect 
relying on a third party library might have been better, despite all the valid 
reasons for not doing so.

However, the symbol recogniser is simple, fast, and fairly accurate. It uses 
a simple model matching method, where sets of strokes are recognised by 
comparing them to models.

Model matching is based on the assumption that hand-written characters 
are distorted realisations of ideal models. At the training stage, templates or 
ideal models are recorded. Then at the recognition stage these are compared 
to the data to be recognised. A distance measure is then generated between 
the data and the template, using features from the data. This distance 
metric is used to generate a likelihood value indicating the closeness of the 
match.

6.3.1 C haracter m odels

Each symbol has many different models. The character models are stored 
as stroke data, each model possibly containing several strokes. For model 
matching to work well, the ideal models are critical. The clearer and more 
distinct the models are, the better the recognition works.

The calculator currently uses a total of 237 models that cover the 22 different 
symbols the calculator recognises. Most models are made from one or two 
strokes. The maximum number of strokes per model is 3 (which is for the 
7r model). Figure 6.3 shows the 23 models used to recognise the symbol ‘4’. 
The dots show the start of the individual strokes, and the numbers bottom- 
left of the model show the number of strokes used. As can be seen the 
symbol ‘4’ can be written in several different ways using one or two strokes.

All the models are normalised to make the matching algorithms faster. The 
data points along the strokes of the models are resampled so that they are
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spaced evenly in distance instead of time.

When hand-written input data is matched against a model, the input data 
is scaled uniformly so that the largest dimension of the template is matched 
by the size of the same dimension of the input data. Note that normalising 
to a specified height or width as Tappert [1984] suggests causes problems 
with symbols like —, 1 and •.

Normalising in this way for matching does not solve all problems, for example 
small dots still cause problems (any symbol can be scaled to a small dot and 
still match with a low distance metric). Dots are therefore treated as a 
special case and solved by recognising any stroke drawn under a certain size 
as a dot (or semantically as a decimal point).

Figure 6.3: The models used for the character ‘4 ’

6 .3 .2  Segm entation

The majority of symbols a user writes are single stroke symbols like 6 and 
—, but some symbols like 4 and =  can be composed of two separate strokes 
of the pen. Segmenting these strokes into separate characters is the first 
part of recognising a symbol.

The segmentation stage of the symbol recognition is a brute-force exhaustive 
search through all combinations of grouping the input strokes into symbols. 
Symbols are assumed to be composed of sequential strokes: that is, strokes 
are only combined into a symbol if they are temporally consecutive, thus 
a user cannot go back and add an extra stroke to a previous symbol (for 
example to dot an i).

To segment the strokes, a combination of temporal ordering segmentation 
and a simple spatial check are used. The symbol segmenter holds a queue 
of the strokes entered by the user. As a new stroke is written by the user it 
is added to the end of the queue of strokes to be segmented. When the size 
of the queue of unrecognised strokes reaches twice the number of maximum 
strokes in any symbol model, it is in principle possible for the segmenter 
to segment the first two symbols without error as there is no combination 
of two symbols that could require more strokes. When this condition is
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reached, or if a time delay triggers first, the initial symbol is segmented and
recognised.

To do this, the segmenter recursively tests all possible combinations of 
strokes in the queue that can be segmented to create two symbols. The 
segmented combination with the lowest total sum of distances between seg­
mented symbols and models is chosen. The strokes used for the first symbol 
are then removed from the queue and are visually replaced in the user in­
terface with the recognised symbol, appropriately positioned and scaled.

This is a limited version of brute force temporal ordering, but by restricting 
the segmenter to two symbols, the symbols can be recognised as the user 
enters them, providing valuable feedback while the user is writing.

Figure 6.4: In p u t strokes for segm entation

Figure 6.5 shows the debug output from the segmentation and recognition 
of the strokes l432' from Figure 6.4. The recursive test of all possibilities for 
the first two symbols is shown, segmenting up to a maximum of two strokes 
per symbol.

The lowest total sum for recognising two symbols is for the symbols 4 and 
3 (a total combined distance of 162 + 919 =  1081). These symbols are the 
most likely combination of two symbols from any segmentation of the first 
four strokes. This segmentation groups the first two strokes into one symbol 
and the third stroke into a second symbol. A different, segmentation (the 
first segmentation tried) of one stroke per symbol would provide the symbols 
0 and 1 (a total combined distance of 5653 + 64 =  5717).

In the debug output the best symbol and its cost for each segmentation is 
shown on the right side of the output. As an example, 0 is the most likely 
symbol that matches the first stroke with a cost of 5653, this is shown on 
the first line of the output.

Once recognised as t he initial symbol, the symbol is displayed on the screen 
and the strokes that are part of the symbol are removed from the list of 
strokes to be recognised. In this case the first two strokes, which are recog­
nised as a 4, are removed and a typeset 4 replaces the strokes in the user 
interface.

Once a symbol has been recognised, the stroke data is discarded and the
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1st Symbol: 1 strokes best: 0 (5653.3955)
2nd Symbol: 1 strokes best: 1 (64.828865)
2nd Symbol: 2 strokes best: 4 (7712.3564)

1st Symbol: 2 strokes best: 4 (162.56503)
2nd Symbol: 1 strokes best: 3 (919.0894)
2nd Symbol: 2 strokes best: 4 (8252.45)

♦♦Recognised: 4 (162.56503)

delay

Figure 6.5: Segmenter debug ouput

symbol is immutable. The symbol cannot be edited or altered in anyway, 
but it can be moved or deleted.

From the user’s perspective, the only restriction they have to conform to 
is that any symbol must be written in one go. That is, i symbols must be 
dotted and all + symbols crossed before the next symbol is started. The 
symbol segmenter has one adjustable parameter, the time delay between 
drawing a stroke and when the recognition is started. The longer this time 
is, the more time the user has to enter multi-stroke symbols like =  and 4. 
However, the longer the delay is the longer the system will take in providing 
feedback from the symbol recognition. After the time delay, the segmenter 
recognises the first symbol on the queue regardless of the number of strokes 
the user has written. A long delay is more suitable for children and slower 
writers, but slows the calculator down, the actual parameter can be adjusted 
as a personal preference.

Composite symbols +  and =

The segmentation of symbols is generally good, however the composite sym­
bols + and = pose a specific recognition problem. These symbols can both 
be accurately recognised in two different ways. The decomposed strokes of 
these composite symbols are themselves symbols. For example strokes of a 
+ symbol can also match the two symbols, — and 1. In fact the recognition 
of the decomposed versions of these symbols are usually more likely, because 
the spatial relationship between the two strokes is more flexible.

The solution used for this problem is to provide a set of symbols that each 
composite symbol overrides. Thus if a segmentation of two strokes best 
matches an =  symbol but can also be recognised separately as two — sym­
bols, the cost of the = symbol is adjusted to make the =  more likely than 
two separate — symbols. This method is possible because of the restricted 
character set of the calculator. This problem and solution are unique to
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mathematics recognition, as the extra structure and context of text allows 
easier recognition.

6.3 .3  R ecogn ition

Simple model matching is used to recognise all written symbols. Experi­
mentation with training data showed that for the set of symbols the cal­
culator needed to recognise, simple model matching provided comparable 
recognition results for the same number of models as other more compli­
cated matching methods like elastic matching. With good models and the 
restricted character set, simple model matching provides a good recognition 
rate for writing mathematics. The simplicity and speed of simple model 
matching also allows more models to be used in symbol recognition with 
much less overhead.

The models and the pattern to be matched are vector path data. These 
paths are matched comparing each point in the path of the pattern with its 
equivalent point on the model. The matching distance between two points 
on a stroke is based on the point’s spatial position and gradient in the path. 
After experimentation, the distance equation shown in Equation 6.1 was 
decided on. Matching further path information (such as curvature) did not 
substantially improve the model matching accuracy.

d(i, j) = am in{|0i -  f a |, 2tt -  fa -  fa} + £((£* -  xj)2 +  (fa -  fa)2) (6.1)

where fa is the slope angle of the curve, and X j , f a  are the normalised coor­
dinates.

a  and were adjusted programmatically once all the models have been 
entered so that the distance between different symbols is maximised whilst 
the distance between the same symbols is minimised. The values for a  and 
(3 used to provide the best recognition for the models used by the calculator 
are 10 and 1 respectively when the models are scaled so that they have a 
maximum dimension of 1.

The symbol recogniser provides a single symbol to the expression recognition 
stage. It does not pass any additional information, such as probability in­
formation. The expression recognition stage therefore does not and can not 
provide any backtracking in order to choose different symbols using different 
probabilities based on context of the symbol in the expression.

6.4 Expression recognition

The purpose of expression recognition is to determine the meaning of the 
expression given the symbols and their relative placement and sizes. This is
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the second stage in recognising a mathematical expression.

6.4 .1  Som e difficulties

Mathematical expressions can be hard to understand. Mathematical nota­
tion is often very subtle, and continually makes use of the relative sizes and 
placements of symbols. Without the context of the mathematical expres­
sion it is sometimes hard, even for practised humans, to comprehend some 
layouts of mathematical notation.

Some of the difficulties that occur are:

• Ambiguous symbols — A dot can represent a decimal point, a multi­
plication or an annotation (3.4, a ■ b, x)\ a horizontal line can be an 
infix subtraction operator, a prefix negation, a fraction bar or part of 
a more complicated symbol such as ‘= ’ or

• Ambiguous spatial relationships — Implied operations axe hard to 
determine as the meaning is implied by a rough spatial positioning, as 
shown in Figure 6.6.

a * .

Figure 6.6: Ambiguous powers

• Ambiguous expressions — Sometimes even simple mathematics can 
be misinterpreted as a result of implicit operators or knowledge of the 
context. Equation 6.2 shows a simple example of how a simple sum 
could be misinterpreted.

Does 2\/4 mean 2 +  \/4 , 2 x \/4 or ? (6.2)

Zhao et al. [1996] discuss more determinable and indeterminable parse 
trees, and Martin [1971] provides several examples of ambiguities and 
indeterminable expressions; one of his examples is shown in Equa­
tion 6.3.

10 10 /  10 \
Does ^  i +  Y  mean (i +  Y)  or | ^  i j +  Y  ? (6.3)

i=5 i = 5  \ z = 5  /

6.4 .2  A ltern ative  so lu tions

Blostein and Grbavec [1996] and Chan and Yeung [2000] all provide good 
comprehensive overviews of the different approaches to mathematical ex­
pression parsers. There is a wide variety of different solutions and a brief
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overview of the approaches with brief summaries of some of the key contri­
butions to this field is now provided.

Littin [1993] uses a SLR(l) parser with additional tests on the geometric 
relationship of the symbols. Anderson [1977] uses coordinate grammars for 
both arithmetic and matrix mathematical notation recognition. In 1967, 
one of the earliest recognition systems, Martin [1967a], uses concatenation 
operators that offer a geometric approach. Chang [1970] uses structural 
specification schemes, based on operators that divide the pattern into one 
or more sub-patterns. Lee and Wan [1995] and Twaakyondo and Okamoto 
[1995] use a procedurally coded system that has no explicit grammar or 
structure. Chou [1989] uses a stochastic grammar to recognise noisy typeset 
equations. Graph rewriting is used by Grbavec and Blostein [1995], Blostein 
and Schiierr [1999]. Faure and Wang [1990] use a top-down data driven 
segmentation. Zanibbi et al. [2002] outline an implementation that makes 
extensive use of trees, tree transformations and the directionality of notation. 
Eto and Suzuki [2001] use minimal spanning trees to reconstruct the formula.

6.4.3 T he so lu tion

The expression recognition algorithm described here is based on a struc­
ture specification scheme similar to that of Chang’s [1970]. It uses a struc­
tural specification scheme for special operators (such as division and roots) 
that divide the expression into sub-expressions, then uses a recursive de­
scent parser to handle linear expressions when there are no more special 
structurally dividing symbols. The algorithm also provides a new way of al­
lowing one operator to dominate another and a special method of handling 
non-explicit operators such as exponentiation.

6.4 .4  S tructure specification  schem es

Chang [1970] uses a structure specification scheme to recognise the struc­
ture of mathematical expressions. The scheme- could be thought of as a two- 
dimensional grammar allowing the specification of certain two-dimensional 
patterns. Each grammar rule or pattern can be composed much like tem­
plates are composed in a template-based editor but the composition happens 
automatically. The recognition time for this pure structural scheme is 0 ( n 2) 
for an input expression of n symbols.

Structural specification schemes are based on operators that divide the pat­
tern into one or more sub-patterns. Figure 6.7 shows two different operators 
and their sub-patterns as shaded areas. According to Chang, the structural 
specification scheme is based upon the assumption that some or all primitive 
components of a collection of patterns are operators, and that the structure 
of a pattern can be constructed by analysis and comparison of these opera-
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HP PP
+ ihp (

m k JIB
Figure 6.7: Example operators and applicable ranges

tors. Each operator has a division rule and applicable ranges. For example, 
the + operator in Figure 6.7 has ranges A  and B  as its operands.

1. Parse non­
dominated highest 
priority operator 
(multiplication)

2. Parse non­
dominated highest 
priority operator 
(division)

3. Parse non­
dominated highest 
priority operator 
(addition)

4. Parse non­
dominated highest 
priority operator 
(numbers)

Figure 6.8: An example of how Chang’s algorithm parses 3 x

2+I6

Chang uses the concept of operator domination, where an operator domi­
nates another if and only if the latter is in the range of the former and the 
converse is false. Therefore ‘+ ’ dominates ‘ — ’ in the pattern a +  p  whereas 

’ dominates ‘+ ’ in the pattern pjp. Thus a combination of dominance 
and precedence can be used to define an ordering relation on the operators. 
Any non-dominated operator has precedence over a dominated one.
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6.4.5 T he algorithm

The expression recognition algorithm is implemented in two parts: the first 
as a top-down structural specification scheme, the second as a handcrafted 
recursive descent parser. The majority of written mathematics is still lin­
ear, and a traditional recursive descent parser handles all of the mathematics 
that could be written without any two-dimensional positioning. The lim­
ited vocabulary of the calculator means that with the exception of roots, 
exponentiation and fractions, all the mathematics is handled by this parser. 
The operator precedence is implicit in the structure of the recursive descent 
parser, either an operator is found and the pattern split into the appropriate 
sub-patterns, or the parser attempts to find the next operator.

In order to correctly prioritise two-dimensional operators the algorithm pre­
parses the sub-patterns of dominating operators. This is a simplified notion 
of dominating operators that uses structural matching for only a few opera­
tors; Chang’s method, while more powerful, requires a more complex parsing 
strategy. Correctly identifying dominated symbols allows a simple recursive 
descent parser to be used for the majority of the expression. Unlike Chang’s 
method our algorithm does not need to prioritise and keep track of operators 
and sub-patterns in a queue, which makes the algorithm much simpler and 
faster.

This pre-parsing syntactic stage thus takes a two-dimensional dominating 
operator and removes its sub-patterns from the expression before any re­
cursive descent parsing starts. Essentially, it can be thought of as cutting 
out the dominated symbols and parsing them separately. For example, a 
division operator parses its numerator and denominator first, removing the 
numerator or denominator from the main expression. Once all dominated 
symbols are removed from the main expression this leaves a simple expres­
sion which can be parsed by recursive descent. Only operators that make 
use of the two-dimensional nature of expressions can dominate others.

Figure 6.9 shows how the new algorithm parses 3 x . First the dominating 
two-dimensional operators (such as division are pre-parsed), the dominated 
sub-expressions (2 +  6 and 4) are separated out, and are then fully parsed 
using recursive descent. Finally with no dominating operators left the algo­
rithm performs a normal recursive descent on the main expression. Compare 
this with figure 6.8, that shows Chang’s method which has to maintain a 
queue of operators ready to be parsed.

Division is handled by pre-parsing because its syntax (the shape of the sym­
bol) defines the range of the operands or sub-patterns explicitly. Thus divi­
sion can be easily computed first before the rest of the expression is parsed. 
Horizontal line and square root symbols are sorted in order of width, as an 
estimate of priority, then each symbol from longest to shortest is parsed. 
Square roots encapsulate the symbols below the root sign, and horizontal 
lines capture the symbols above and below into a numerator and denomi-
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1. Extract division 
dom inatad sub­
expressions first

2. Recursive descent 
parse  sub-expressions

3. Recursive descent 
parse  main expression

Figure 6.9: An example of how the new algorithm parses 3 x

nator. Horizontal line symbols without any numerator or denominator are 
treated as subtraction or negation signs. This process makes use of the as­
sumption (that is generally correct) that the fraction bar or root symbol are 
ordered in mathematical priority by their width.

Unfortunately the other two-dimensional operator the calculator supports, 
exponentiation, cannot be treated in this way. Although an exponent is 
explicitly defined by the baseline structure of the mathematical expression, 
the baseline of an exponent is dependent on the rest of the structure of the 
parsed expression. Thus exponents cannot be determined before any parsing 
has happened.

6.4 .6  E xp on en tia tion

Exponentiation causes more problems for syntax directed mathematical ex­
pression recognition than for other methods such as graph rewriting. This 
is because exponentiation provides no explicit syntax for the parser to be 
directed by. So the top-down syntax direction struggles to extract powers 
in order to handle them first.

Chang attempts to solve this problem by limiting the area in which pow­
ers can be written. His two-dimensional division rule can be seen in Fig­
ure 6.10. However, completely structural approaches, such as Chang’s, fail 
with even simple mathematical expressions containing exponents. The rule 
in Figure 6.10 assumes that only whole syntactic units are parsed and not 
numbers composed of multiple digits. Chang’s pure structural specification 
scheme is incapable of parsing simple expressions like: ^ or 1234.

To solve this problem, the baseline structure is parsed left to right, once 
dominating operators have been calculated but before any recursive descent 
parsing of the expressions.

3x

3x 2+6

O w 2+6j  X 4
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Figure 6.10: Chang’s [1970] division rule for exponentiation

Exponentiation is best parsed bottom-up; 2^ can be understood correctly 
only after the fraction has been parsed and its baseline determined. The 
recursive descent is in order of mathematical priority, but the syntactic pre- 
parsing is in syntactic order. Thus divisions have a higher syntactic priority 
than exponentiation, and are pre-parsed first. The pre-parser is, in a sense, 
a bottom-up syntactic parser.

Exponent pre-parsing is done by grouping symbols by baseline into a tree 
structure. Each exponentiation level is then recursively parsed further. Fig­
ure 6.11 shows the exponentiation levels of the expression 234+567. This 
expression is parsed from left to right. Symbols are grouped along the same 
baseline: if the baseline of the symbols is higher than a threshold (75% of the 
current symbol height) then another exponent parse is recursively started 
at this point with a new higher starting baseline. When the baseline drops 
the parsing exits.

Figure 6.11 shows the final tree generated from parsing the expression. This 
is generated left to right, as the baseline moves up, (after the 2, 3 and 6) 
a new sub-tree is started, after the baseline drops (after the 4 and 5) the 
recursion moves back down the structure tree.

This tree provides the final expressions used in the recursive descent parser. 
Exponent operators are added into the expression where complete sub­
expressions provide the base for the exponent, and are ignored when the 
base of the exponent is illegal, for example + 2 is parsed as +2.

2a 3

3 ^ + 5

2b

< P \

Figure 6.11: Exponentiation ordering

6.4 .7  M issing  com ponents

When parts of an expression are not provided but which are syntactically 
required, these are replaced with placeholders. Examples of missing com­
ponents would be a missing numerator in a fraction, digits before or after 
a decimal point, or a matching bracket. These are required to make the
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mathematical expression valid and placeholders are added automatically 
when there is no user input. The calculation described in the next section 
then adjusts the values of these placeholders to ensure the expression is 
mathematically correct.

6.5 Calculation

Lots of work and research has gone into providing computers with more 
and more powerful mathematical capabilities, from algebraic manipulations 
of complex formulae to signal processing. However in contrast, very little 
research has been done in novel methods of providing calculation.

Harold Thimbleby [1996] outlines a new declarative design of a calculator. 
This design was an attempt to correct some of the mistakes he found in 
existing calculator design and the main premise of this design was to show 
the user a correct equation all the time. The primary design components of 
this system are:

1. to take equations from the user, not instructions to calculate

2. to display exactly what the user has entered

3. to permit the equation to be edited

4. to fill in any missing numbers or symbols

5. to correct all mistakes, and ensure the result is numerically correct

6. and to do so at all times not requiring any “terminators”

This design for a calculator uses a linear entry of expressions, similar to that 
of a text editor, the user can add and edit at any point in the calculation.

The central idea of showing the user a mathematically correct display all 
the time is that the calculator non-destructively completes the user’s work, 
simultaneously correcting or solving any arithmetic mistakes or omissions. 
By doing this the calculator ensures that everything the user sees is always 
numerically correct. Figure 6.12 shows a screenshot of this calculator; the 
user has entered 9 x c =  1.5 and the calculator has filled in additions, in an 
outline font what is needed to make this mathematically correct.

A conventional calculator works out 3 +  4 when the user instructs it to by 
pressing the (=) after (T) (T) (T). The design described requires the output 
of the calculator to be an equation, such that ‘4 + 5’ and ‘3 x 2 = ’ are 
strictly incomplete. The completions, ‘= 9’ and ‘6’ that are needed for a 
correct equation are provided automatically by the calculator to complete 
the mathematical expression and are shown in a different colour. These 
completions, hopefully intrinsically, provide the answer the user wants. In 
fact the answer is available before the user even presses [=).



6.5 Calculation 109

If the user enters an invalid expression such as 7 =  3, the calculator corrects 
this by balancing the equation with a ‘+ 4 ’ on the right-hand side.

Untitled Calculation

Figure 6.12: H arold T him bleby’s [1996] calcu lator

The completions ensure that at every point in a calculation the calculators 
shows a mathematically correct display. The initial ‘blank’ expression is not 
‘O’, as on an ordinary calculator, but ‘0= 0’. A correct expression, such as 
'4 =  2 + 2’, requires no completion and is not adjusted in any way. An 
important part of this process is that the calculation of the completions is 
consistent, that is, the same calculation always has the same completion. A 
completion never depends on previous calculations nor on how the calcula­
tion has been edited; it depends only on the actual text of the incomplete 
expression. Thus for the user, the calculator’s interaction is completely pre­
dictable, there is no hidden state that determines how the calculator works.

The incomplete expressions are corrected intelligently, often providing use­
ful feedback or even answers before the user has finished entering the whole 
equation. The intelligent completion also allows a user to carry out “re­
versible” calculations, for example calculating the answers to equations like 
4x? =  36 and 2? =  100.

This declarative design for a calculator works well for a pen-based system 
and allows many powerful interaction possibilities. The primary benefit of 
this design is the ability of the calculator to provide immediate feedback 
as the user writes a mathematical expression. There is no need to wait for 
a complete expression before calculating the answer because the calculator 
handles incomplete equations smoothly and unobtrusively.

6.5.1 Im plem entation

The implementation of the calculator uses a novel method of performing 
multiple traversals of the final parse tree. Before the calculation takes place, 
the final parse tree is built with two considerations, firstly unknown place­
holders are inserted where user input is missing, and secondly if the parse 
tree is missing an equality, it is added at the root level with an unknown 
placeholder on the right-hand side.

Once the parse tree has been built, it is traversed up to three times:
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1. An upwards traversal from the leaves, calculates known values and 
guesses. After this pass each node in the tree has either a known or 
guessed value. Operators with unknown operands guess sensible and 
predictable values for the operands.

2. A downwards traversal computing unknowns that are not fixed. This 
starts from the root of the tree and using the mathematical inverse of 
each operator forces values down the tree into the unknown leafs.

3. A second downward traversal happens to ensure that the mathematical 
expression is balanced where unknown values have extra restrictions 
on their value, for example roots and factorials.

3+=9 i=> ©  ®  c=> (+)'3?<© ^
(3) (?) ©  ©

User Input P arse  Tree Calculation Up Fixing Down

Figure 6.13: Correcting a user’s expression

Figure 6.13 shows a simple example of this process for the unfinished expres­
sion ‘3+=9’. Once the parse tree has been constructed any gaps are filled 
in so that any missing leafs on the parse tree are replaced with computer­
generated unknowns, whose value the computer will fill in when completing 
the tree. In this case the right-hand-side of the addition is filled in with 
an unknown. Then, in the calculation pass, the value of the expression is 
recursively calculated upwards. The value of each node is composed of a 
numerical value and a flag stating whether or not that value is fixed. An 
unfixed node’s value is a guess and can be changed by future passes. Nodes 
that are not fixed include computer-generated unknown nodes and most 
nodes with an unfixed child.

An equality, the root node in this tree, chooses its value to be the value of 
its fixed child (if both children of an equality are fixed the left-hand-side is 
chosen for predictability). In Figure 6.13 the right-hand side of the equality 
is the only fixed side (the left-hand side is an unfixed ‘guess’ of 3), therefore 
the equality takes the value of the right-hand side. The second traversal 
pushes the value of the root node down the parse tree. This alters unfixed 
values as necessary to make the tree mathematically correct. In Figure 6.13 
the value of the addition is corrected to be 9, which in turn changes the 
unfixed left-hand-side of the addition to 6. The parse tree is now complete 
and mathematically correct, 3 +  6 =  9, and there is no need for a third 
traversal.

Figure 6.14 shows a more complex example of completing !+ =  30, which
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!+=30 i=>

User Input Parse T ree Calculation Up

(closest match)4

© ©
Fixing Down Fixing Down 2

Figure 6.14: Correcting a more complex expression

requires three traversals. The initial creation of the parse tree and the 
calculation of the values in the tree happens as normal. The value 30 is 
chosen as the only fixed child for the value of the equality. The + operator 
attempts to set its unknown operands to 30 and 0 (the default behaviour 
for the + operator with two unknown operands), this attempts to set the 
value of the factorial to be corrected to 30. This is an impossible value for a 
factorial (4! =  24 and 5! =  120), so in this case the inverse factorial function 
chooses the nearest value it can get to, in this case 4!.

This leaves the operands of the + not actually summing to 30, so a second 
correction of the right-hand side of the +  is attempted with the left-hand 
side fixed at 24, this pushes the value 6 down into the right operand of the 
addition. This third traversal finally leaves the tree correct mathematically 
with the solution 4! +  6 =  30.

Parsing of a complete expression, 7 =  5 that contains no unknowns, is shown 
in Figure 6.15. The calculation of the value leaves an equality mismatch: 
the left-hand side of the equality is 7, the right side is 5 and both sides 
are fixed. This situation is corrected by choosing the left-hand value of the 
equality and adding in an extra operator to the root of the right-hand side 
of the equality, this is either an addition or a subtraction depending on 
which side is greater. Always choosing the left-hand side value means that 
the correction of an inequality is always and consistently positioned on the 
far right of the mathematical expression. The third and last traversal then
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7=5 c=>

User Input Parse Tree Calculation Up

Equality mismatch Fixing Down

Figure 6.15: C orrecting  a com plete expression

corrects this new parse tree, correcting the addition to have a value of 7, 
resulting in the solution of 7 =  5 -f 2.

This multiple pass correction works well for correcting most expressions and 
can sensibly be used to correct more complicated equations like 2 =  100 
which gets corrected to 2'5! =  100 — 36 and — = —10 which gets corrected 
to ^  =  -10 .

The calculator also handles complex arithmetic easily. It is not only able to 
calculate eI7r and 1 but also to correct complex expressions like 2( =  -6 4  
correctly using complex arithmetic to 2̂ 6+4 = —64

6.6 User Interface

4x2=8

Figure 6.16: T he calcu la to r’s user interface

The main portion of the user interface is the central white canvas, which
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21-4

Figure 6.17: An expression being m orphed

shows the current equation and handwriting. Figure 6.16 shows the equation 
4 x 2  being modified to 4 x 2~\ The interaction of the calculator’s user inter­
face is described more fully in Chapter 2 , this section provides an overview 
of the implementation and how it interacts with the underlying processes.

In terms of implementation, the user interface provides a rendering of the 
current calculation and handles user input by passing the user’s handwriting 
to the symbol recogniser.

6.6.1 Interaction

The user interface provides continuous projected feedback of the state of the 
calculator and it provides continuity linking between the user’s hand-written 
input and the calculator’s output by morphing between the two. How the 
different stages in the calculation process are handled bv the user interface 
are listed below. This process is also shown in Figure 6.17.

A. Symbol Recognition The user interface replaces the user’s hand­
written symbols with typeset characters as the user writes them. A 
small delay allows the user to finish writing composite symbols. This 
approach provides immediate projected feedback about the recognition 
process and does not leave any doubt as to the symbols recognised.

B. Expression Recognition After a small delay once the symbols have 
been recognised the calculator recognises the equation. The user in­
terface morphs the now typeset characters from where the user wrote 
them into a neat typeset equation. The morphing provides a smooth 
continuous linking between what the user wrote and the filial equa­
tion. Using a typeset equation provides a clear representation of what 
equation the calculator is computing.

C. Calculation — The ‘blanks’ in the calculation are filled in as the equa­
tion is morphed to make the equation mathematically correct. These 
show the answers in-place and provides immediate feedback of what 
the calculator has declai'atively computed.
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6.6 .2  P en-based  in teraction

The majority of potential users for the calculator will already be competent 
with writing using a pen on paper and also writing mathematics down on 
paper. The primary advantage of a pen-based system is the similarity or 
perceived affordance [Norman, 1988] of the pen-based interface with that of 
pen and paper.

The advantage of an affordance with paper is especially powerful with math­
ematical expressions, because a lot of sums and mathematical work is still 
done on paper with a pen or pencil. A pen-based system that works in the 
same fashion as pen and paper, means that anyone familiar with writing 
mathematical notation should be able to enter expressions with little or no 
training. There need be no restrictions on how an equation is written. Ide­
ally if a mathematician writes an equation neatly in exactly the same way 
as they would on paper, it will be recognised.

Another advantage of pen-based user interfaces is there is no need for any 
other interface. Pens are capable of replicating the complete functionality 
of both the keyboard and the mouse. There is no need switch between two 
input devices, as the pen can be used for both. This and the ability of pens 
to be used on small screens are some of the prime reasons that are driving 
research in pen-based mobile devices.

The actual input data to the calculator software is mouse movement, pen 
or finger based input is solely dependent on the user input hardware. While 
the calculator is usable with a mouse, writing smooth symbols with it is 
very hard.

6.6 .3  E xpressions and ink ed iting

The system allows users to enter expressions as they would on paper, without 
any unnatural restrictions in a W YSIW YE  way. For example, the user is 
not forced to enter the expression in a linear fashion as some expression 
recognition methods require [Littin, 1993].

Although there are small timing constraints to allow multiple stroke symbols 
to be written, these are rarely intrusive, so the user should not have to alter 
their way of writing by much, if at all, to use the calculator.

Edits can be made to an expression by adding new symbols, deleting parts 
of the expression or moving parts of the expression from one location to 
another. After each edit the current parsed mathematical expression tree 
is thrown away and completely recalculated from scratch using the new 
symbols and locations. This means that an edit, insertion, move or deletion 
is performed on the “ink” not on the expression tree. From the user’s point 
of view this is what they see and expect.
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6.6 .4  S election

In the user interface, the user is required to select symbols before they can 
be deleted or dragged elsewhere. A selection is created by drawing round the 
symbols the user wants selected. This gesture is recognised automatically 
from the context and does not make use of explicit user mode switching for 
gestures which limits the user’s interaction [Li et al., 2005].

All other drawing on the calculator ends up as ink as part of a new symbol. 
The only gesture the calculator supports is the circle-drag-drop gesture. 
This gesture is initiated by encircling symbols in a loop, where a loop is one 
which is closed or one that comes within a small distance of being closed.

The creation of a selection is highlighted to the user by several visual and 
audible notifications: a “whooop” sound is played, the inner part of the loop 
turns light blue, and the symbols contained in the loop turning bright blue.

Once symbols have been encircled, the selection stays visible. When a selec­
tion is visible on the screen the calculator does not accept new drawing as 
normal. Drawing on the screen does not create new strokes but removes the 
selection. By dragging from any location inside the selection, the selected 
symbols can be moved anywhere within the mathematical expression. While 
the user is dragging, the user interface draws an arrow from the selection to 
the current drop point.

Dragging a selection to the bin provides a similar user interface metaphor 
for deletion to deleting files in Windows Explorer or the Mac OS X Finder. 
This combination of selection and deletion removes the need for an additional 
deletion gesture. When the deletion happens an animated smoke cloud is 
placed over the symbols and a “poof” sound is played. The symbols are 
removed and the expression is re-parsed without out the deleted symbols.

The single encircling selection gesture and the ability to dragging the selec­
tion within the equation, to the bin or even to the dock supports all editing 
possibilities. Only having a single gesture makes the user interface simpler 
and easier to learn or use.

6.6 .5  D rag and drop

Dragging symbols utilises this concept of “ink editing” to provide dragging 
for ink rather than syntax or structure. Dragging is implemented by moving 
the selected symbols to the end point of the drag and drop and shrinking the 
symbols down to tiny proportions so they take up no room but still retain 
their relative positions. Once the symbols have been reinserted and moved, 
the expression is re-parsed and the symbols morphed into their new correct 
locations for the new expression.

A side-effect of the way this drag and drop process interacts with the ex­
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pression parser is that it is impossible to drag and drop symbols on-top of 
the existing expression so that the existing expression is contained inside 
the dragged symbols. This is because the dragged symbols are reinserted 
as tiny symbols at the drop point so you can drop them into an existing 
expression but the symbols are too small to be recognised as containing any 
symbols they are dropped on-top of. For example, it is not possible to drag 
a square root symbol over the top of a number, but it is possible to drag the 
number underneath the square root.

Performing operations on the “ink” of an equation also means that edits can 
be made that do not make sense to perform on the expression tree. Exam­
ples would be dragging non-contiguous symbols or syntactically meaningless 
groups of symbols. Figure 5.6 in the previous chapter shows several drag 
and drop ink-edits that make no sense when thought of syntactically.

6.6 .6  U ndo

The user interface provides an undo ability, shown in Figure 6.18, in the 
form of a ‘clock’, positioned in the top-right hand corner of the screen. The 
clock hands show the current ‘time’ of the equation. Every time a user 
writes something or edits the equation, as the equation morphs the clock 
moves on a “quarter of a hour.”

Figure 6.18: The undo ‘clock’

A user can grab the clock hands and rewind the hands by moving in anti­
clockwise circle around the clock. As the clock is rewound, the equation 
displayed is the equation that was shown in the past when the clock was 
previously at that time. The undo clock allows users to undo mistakes and 
to rewind and scrub through the past to get an overview of how the current 
(or any previous) equation was achieved.

The undo system is implemented as a keyframe animation of everything the 
calculator has shown. The undo system records everything that happens as 
an animation except for the pen movement of user input. So when rewinding 
the calculator will display symbols morphing from location to location but 
no handwriting. No semantic information is kept only the sizes and positions 
of symbols.
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Each symbol keeps a record of its creation time, all the keyframes of position 
and size that it was morphed through during editing and a deletion time if 
it was removed. Each time the equation is re-parsed and the symbols move, 
the keyframes for all the symbols are recorded for the current position. 
Keyframes are also recorded for the smoke deletion animation and for the 
computer answers fading in and out.

As time is wound forward or back, the symbols are morphed between these 
keyframes without any additional semantic information. Once the user has 
finished and begins to write on-top of the mathematics shown, the expression 
is re-parsed from what the user sees. By beginning to write in the past, the 
future equations are lost and the clock cannot be wound forward again to 
retrieve them.

The parsing is flexible enough that any state between the original input and 
the typeset result is always recognised as the same expression, this means 
that stopping the clock at a point halfway through a morph does not cause 
any problems.

6 .6 .7  T he dock

The dock is provided so that a user can work on multiple equations at the 
same time. The dock sits at the left side of the screen and can be shown or 
hidden by the user by dragging on the dock handle. Expressions stored in 
the dock are shown as small, scaled-down, versions of what they would look 
like when edited.

Each expression stored in the dock lives in its own world and encapsulates 
its own data and undo history, similar to multiple open text documents in 
an text editor.

The dock is initialised from a text file which stores the inital expressions in 
a layout (ink) based syntax, and can be customised to a user’s needs. The 
dock text file and its syntax is available in Appendix G. The dock is not 
saved after each session, but there is no technical reason why it need not be. 
Saving the dock could provide a useful memory store over multiple sessions 
of using the calculator. However, the calculator is currently not designed for 
multiple sessions. These choices were made to make it robust in multiuser 
situations such as exhibitions.

New calculations can be created in the dock by dragging expressions or por­
tions of expressions from the current expression into the dock. Expressions 
in the dock can be rearranged by drag and drop or deleted by dragging to 
the bin. Selecting an expression stored in the dock is done by clicking on 
the expression. When an expression is selected the main expression being 
edited changes to the one stored in the dock.

It also possible to drag expressions stored in the dock out into the cur­
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rent expression being edited. These dragged dock expressions appear as 
boxed expressions that are immutable, but which can be dragged around 
and deleted like all symbols.

6.7 Sum m ary

The mathematical recognition the calculator is based on uses simple model 
matching of symbols combined with a hybrid structural specification scheme 
and recursive descent expression recognition. These provided decent recog­
nition for the subset of mathematics the calculator handles.

The answers to the user’s input are provided sensibly, using a declarative 
approach, regardless of how incomplete the user input is. The user inter­
face provides flexibility to the user and allows additions and edits to the 
expression without the constraint of the mathematical structure. This “ink 
editing” underlies most of the implementation and computational approach 
to editing mathematical expressions.

The combination of flexible editing and sensible interpretation of incomplete 
input, combine to provide a compelling user experience even when the math­
ematical recognition is completely wrong. Indeed, quick and easy recovery 
from errors, whether human or computer, makes the calculator fun to use.



Chapter 7 

Evaluation

This chapter begins with a brief discussion of evaluation in HCI as used in 
this thesis. Previous research both providing a comparative evaluation of 
a 2D version of the calculator and evaluation of pen-based mathematical 
interfaces in general are described.

The calculator and the principles described in this thesis are evaluated in a 
variety of different ways using different techniques:

• Comparative task-based and quantitative user testing of the pen-based 
calculator using exam questions.

• Feedback from unguided user interaction from a large range and num­
ber of people at the Royal Society exhibition.

• Comparative evaluation with xThink, a pen-based calculator that was 
designed without the using the flow principles.

• Heuristic evaluation using Green’s [1989] cognitive dimensions.

Evaluating the calculator with different methods yields different insights and 
useful information about the design and principles. Each different technique 
lends its own complementary support to the design of the calculator and 
the principles underlying it. The difference the underlying principles make 
is highlighted by the comparative evaluation with xThink which provides a 
great comparison because although it is superficially similar to the calculator 
it lacks most of the flow principles. The culmination of these different 
strands of evaluation is then tied up at the end of this chapter.

7.1 Evaluation in HCI

Readings in HCI [Baecker et al., 1995] concludes “Given [design’s] complex­
ity, and its mystery, how are we to proceed? The answer is implicit in the 
process of iterative design — evaluation.” Many main HCI undergraduate

119
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text books [Preece et al., 1994, Dix et al., 1997, Shneiderman, 1997] similarly 
cite evaluation as a major part of HCI design.

Evaluation is important. Many techniques, with different approaches, have 
been developed to provide evaluation of computer systems and user inter­
faces. Examples include: User testing [Nielsen and Mack, 1994] which is 
probably the most widely used technique. Typical users are brought into a 
lab and use a prototype. Various data collection methods like observation, 
thinking aloud, tasks and questionnaires are then used to elicit data. Partic­
ipatory design techniques [Schuler and Namioka, 1993] attempt to identify 
user design requirements. Analytic techniques like, GOMS [Card et al., 
1983], cognitive walkthrough [Wharton et al., 1992] and heuristic evalua­
tion [Nielsen and Mack, 1994] offer an evaluation without users or proto­
type. More recently, laboratory studies have been questioned, and there is 
a greater emphasis on field and ecological methods.

In Trouble with Computers, Landauer [1995] states the case that insufficient 
evaluation of computer systems and user interfaces with respect to their 
usefulness and usability is a major problem and part of the “productivity 
puzzle” . Although evaluation only address the usability half of this puzzle, 
Greenberg and Buxton [2008] point out that usefulness is much more difficult 
to evaluate.

7.1.1 C reating or iteratin g

While refining a design through user evaluation and iterative design is a suc­
cessful and productive process, these methods are potentially less successful 
when it comes to creating a novel user interface design [Buxton, 2007].

When the HCI was a young field much of the literature was principle- 
orientated. Books like Tognazzini’s popular and much-cited Tog on Interface 
[Tognazzini, 1991], published as late as 1991, are primarily guidelines and 
principles. Here are two examples of different principles from Tog’s book:

“Do not attempt a 3D look in one-bit graphics.”

“Make the response time snappy. The more rapid-fire and more 
closely coupled the dialog, the more the user will feel and be in 
control.”

A simple example of this trend towards evaluation is that, while evaluation 
is a strong part of both the 1987 version of Readings in HCI [Baecker and 
Buxton, 1987] and its 1995 second edition [Baecker et al., 1995], the sec­
ond edition spends much less time focusing on principles and more time on 
evaluation. The focus in HCI literature has increasingly been to focus on 
evaluation: quantitative evaluation (about 70% of publications) and quali­
tative evaluation (about 25%) [Barkhuus and Rode, 2007]. Arguably, this 
has been to the detriment of other forms of verification such as analyti­
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cal evaluation and principled or principle-led design. Barkhuus and Rode 
[2007] suggest that this domination of HCI evaluation by a few methods 
undermines novel and ground-breaking research that does not fit into the 
“correct” mould.

Perhaps the HCI field was initially concerned with creating new user in­
terfaces, and as designs and user interfaces have proliferated, much of HCI 
has rightly become about refinement instead of the initial focus on creation. 
The focus has changed from creating new user interfaces to iterating and 
improving existing interfaces.

7.2 Evaluation in this thesis

It is not the aim of this thesis to evaluate the calculator, or Lineform de­
scribed in Part II, with methods that measure error rates or task completion 
times. The contribution of this thesis is primarily the principles and ideas of 
user interface design that are incorporated in these applications, not an in­
cremental and measured improvement of solving a calculation, or drawing a 
picture. The appropriate methodology for the evaluation of these principles 
is reasoning and argument, which this thesis provides effectively. In many 
ways the principles could be valuable but a conventional evaluation of them 
turn out negative, for example when evaluating the principles incorporated 
in a poorly implemented prototype. The purpose is not to dismiss evalua­
tion as a useful and important tool but to position the main contribution of 
this thesis as primarily situated in the design and principle space.

This thesis does not stress the traditional evaluation of the calculator or 
Lineform and their respective design principles. These are primarily design 
and conceptual innovations, and as Greenberg and Buxton [2008] suggest, 
traditional evaluation stresses measurable contribution at the expense of 
design and engineering innovations. While this thesis does not avoid eval­
uation it attempts to escape the “tyranny of evaluation” [Lieberman, 2003] 
by focusing on the principles and design innovation.

Despite the lack of extensive formal evaluation, the designs in this thesis 
have been tested and used by thousands of users. The majority of evalu­
ation in HCI is formative iterative evaluation. Just as the feedback from 
users of successive versions of Lineform has helped guide its design, iterative 
evaluation is part of a process of improving a design.

Both designs, of the calculator and Lineform, are also comparatively eval­
uated, by analytical comparison with similar user interfaces. Formal com­
parative user testing is neither needed nor productive, given the nature of 
the user interface designs. Section 7.7 compares the calculator with a su­
perficially similar user interface and shows how the principled design of the 
calculator avoids many design problems.
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7.3 D eclarative calculators

The mathematical engine the calculator uses is based on the declarative 
calculator first described by Harold Thimbleby [1986, 1996]. Harold Thim- 
bleby’s calculator used a simpler “traditional” one-dimensional input like a 
text editor but provided partial expression handling and completion that is 
similar to the calculator described here.

Cairns et al. [2004] evaluated this calculator comparing it with a software 
simulation of the Casio HS-8 V. The Casio HS-8 V is a standard four function 
calculator, which was simulated to provide control over the implementation 
and to remove the difference between physical and computer-mediated in­
teraction.

Twelve subjects took part, each using only one of the declarative calculator 
or the HS-8 V. The subjects were then asked to answer five GCSE math­
ematics exam questions (i.e., exam questions for 16 year olds), chosen to 
avoid the strengths or weaknesses of either interface.

The result of this study was that the declarative calculator took on average a 
third longer to use. They did see reduced error rates with the new calculator, 
and concluded that user familiarity with traditional calculator user interfaces 
and that the new user interface was so different that it left room to be 
optimistic about the new calculator’s performance.

7.4 Pen-based m athem atics

Studies have found pen-based user interfaces to be slower than typing [Brown, 
1988], although compared with soft-keyboards on small screens, handwriting 
may have the advantage [Lewis, 1999].

Nevertheless there are several reasons why mathematics may benefit from 
pen-based user interfaces. Mathematics makes use of higher dimensional 
layouts, for example exponentiation, that are directly accessible from a pen- 
based user interface. Template based user interfaces do provide higher di­
mensional representations but these have to be constructed from templates 
in a top-down manner. Published comparisons with handwriting have fo­
cused on paragraphs of English text, but mathematics, in comparison, is 
more structured and contains many symbols like ^  and Yh that are not 
directly accessible from the standard keyboard.

An evaluation of pen and speech input for mathematics, [Anthony et al., 
2005], compared the entry of mathematical equations of varying complex­
ity using the keyboard and mouse with Microsoft Equation Editor, pen- 
based handwriting, speech, and handwriting plus speech. Having empirically 
tested 48 participants the conclusion was that handwriting was significantly 
faster, less error prone and more preferred than using the keyboard and
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Figure 7.1: W acom G raphire2  tab le t

mouse with Microsoft Equation Editor. In addition, they found that the 
more complex an equation (e.g., longer and including special symbols) the 
more the keyboard entry slowed down, while handwriting did not see such a 
sharp decline. Speech was also found to be a good method but worse than 
handwriting.

7.5 Initial evaluation

The calculator described in this thesis combines aspects of both the declar­
ative calculator’s mathematics [Cairns et al., 2004] and the pen-based hand­
writing interaction which was evaluated by Anthony et al. [2005].

An evaluation of an early version of the new calculator was first published 
by Will Thimbleby [2004]. This initial evaluation was performed with an 
early prototype of the calculator and later studies in this thesis have been 
performed with a much more capable and complete program.

The initial prototype was primarily hindered both by poor handwriting 
recognition and an unfamiliar user input device that users had some prob­
lems with. Despite this, the results were favourable and provide interesting 
data.

The accuracy of the prototype’s handwriting recognition was 81.1%. That 
is, on average one in five characters were miss-recognised. This significantly 
lowered the usability of the overall system, as users repeatedly had to correct 
the handwriting recognition.

The user interface was based on a Wacom Graphire2 tablet (shown in Fig­
ure 7.1). Graphics tablets have to be used by looking at the screen and 
drawing on the tablet with the pen, and are typically usually used by artists. 
The disparity between where the user is writing and where they are looking
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•  Practice calculations:

— Calculate 3 + 62

— Calculate 7 x 4

— Calculate |

— Calculate 9 — =  5

— Calculate 32

— Calculate 3? =  64

•  Simple calculations:

1 . Calculate 2 x 3  +  4

2. Calculate 5 ^ 14

3. Calculate 9 — 2 /3

•  Mathematical problems:

4. W hat is the average of 21. 34 and 56?

5. W hat multiple of 32 equals 50?

6 . W hat power of two is 28?

Figure 7.2: Tasks used for the prototype evaluation

is unusual and it can take a while before users are comfortable with this 
kind of interaction. None of the users in the usability study were familiar 
with using a tablet, and they predictably found using an artist’s graphics 
tablet awkward.

7.5.1 U ser stud ies

A total of nine participants took part in the testing (2 female, 7 male under­
graduate students). All the participants had used standard calculators at 
school, and were studying a wide range of subjects including mathematics 
and art history.

Before the test began, users were allowed to familiarise themselves with 
the pen and tablet. This involved suggesting that they try to write words, 
numbers and draw pictures with the pen and tablet interface. The observer 
then gave a short demonstration of the calculator, showing how an example 
sum would be entered. When the user announced that they were ready, the 
observer started the test by giving the user a list of tasks on a piece of paper 
(see Figure 7.2). Some of these tasks were based on old GCSE mathematics 
papers.

The tasks were split into six practice questions, three simple mathematical 
questions, and three worded mathematical problems.
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The thinking aloud protocol was used [Lewis and Rieman, 1993]. Partici­
pants undertook the tasks in Figure 7.2 while the observer watched them 
and helped when they had problems. On conclusion of the test, the observer 
discussed any issues that arose during testing. These were supplemented by 
an anonymous questionnaire (shown in Appendix A). The tests were also 
recorded as a live video of the user’s interaction and the interaction on screen 
was recorded using screen-capturing software.

The anonymous questionnaire was used in addition to the think aloud and 
discussion so that participants could freely express their thoughts about the 
system. Providing a discussion afterwards also allowed the observer to ask 
additional questions resulting from issues that arose during the testing.

After discussing the calculating system with the observer, users were asked 
to perform the same calculations again on either their own pocket calculator 
or a calculator provided for them (a Sharp EL-531GH DAL). These tests 
were also recorded.

Sharp’s DAL technology means:

Until the introduction of SH A RP’S D.A.L., keying in equations had 
been a com plicated process making scientific calculators difficult 
to  use. Introduced in 1992 and an industry-first, SH A RP’S D.A.L. 
allows sym bols and numbers of an equation to  be entered as they are 
written. Instead o f w asting energy on difficult calculator operations, 
users are free to  concentrate on m athem atical concepts.

— Sharp D.A.L. marketing1

For example, the Sharp web site gives 10 + 2 sin 30 being keyed as CQQD0 
GO ®  [sin] (T) QT) 0 .  This would contrast to calculators where sin is a postfix 
operator, which confuses users as 10 +  2 x 30 sin would almost certainly find 
sin 60, etc.

7.5.2 R esu lts

Upon completion of the test, the video recordings were reviewed and infor­
mation on error rates and time on task was extracted and logged.

In general, participants found the interface and concepts of the new calcu­
lator easy to learn and use, despite many users struggling with handwriting 
recognition problems.

When asked to rate the system in terms of ease of use compared to other 
systems they had used, on a scale of 0 (worse) to 5 (better), all the answers 
were above 3 and had an average of 4.1.

1 http: /  /  sharp-world.com /  contents /  calculator /  features /  standard/dal/index.html 
(viewed Feb 27, 2010)
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1 2 3 4  5 6

E quation

Figure 7.3: A verage tim e for users to  com plete tasks

The results presented here were extracted from the video tapes of the user 
tests and from the questionnaires. Comprehensive results from the anony­
mous questionnaire, and some of the discussions, are in Appendix B.

7.5.3 T im e on task

Figure 7.3 shows the average time for the users to complete each of the tasks 
in Figure 7.2. This figure shows a comparison in seconds of the average time 
for the users to complete each task using this system and using their own 
calculator. The last two tasks were left incomplete by several users when 
using a normal calculator, so these results are averages of those users that 
completed the tasks successfully.

The last two tasks that users struggled to complete were:

5. What multiple of 32 equals 50?

6 . What power of two is 28?

Both of these problems require some rearranging to find the result using an 
ordinary calculator. Only three users knew enough mathematics to find the 
answer to task six, using to find the power of 2 equal to 28. However, 
all of the users successfully managed to arrive at the solutions using the new 
system.

For the simpler sums, like 9 x 2 /3 , the handheld calculator was much faster 
than the new system. This was expected. All users were familiar with their 
own handheld calculators. Handwriting and handwriting recognition also 
slows down the new calculator. However two of the tasks were actually 
faster on the new system.

*
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Task 2: ^ ^ 4  was almost certainly performed faster because users could en­
ter it “as they saw it,” as one participant described it, rather than having 
to search for buttons and to think about brackets on a handheld calcula­
tor. Secondly, task 6 : “What power of two is 28?” was performed faster; 
again users could write the problem with minimal rearrangement or use of 
equations.

■  C orrec ting  
□  Ente rin g

o  j — ,— csss— ,—
1 2 3 4  5 6

E quation

Figure 7.4: A verage percentage tim e en tering  or correcting  tasks

Figure 7.4 shows the average percentage time spent by users entering a 
formula and correcting mistakes when using the new system. For each task 
the percentage of time spent correcting is large, 011 average 42% of the time 
users were using the calculator was spent correcting errors. Several users 
had trouble entering task two, often because of bad segmentation errors (an 
implementation problem), these users spent a long time trying to correct the 
expression, often restarting from scratch when a symbol was miss-recognised. 
The timing results here reflect more on, or at the least are obscured by, the 
accuracy of the handwriting recognition of the prototype and the interaction 
problems of users unaccustomed to an artists tablet input device.

7.5.4 Ease o f use

In general, all of the users expressed their enjoyment of using the system at 
the end of the tests. After the quick demonstration of a simple mathematical 
expression, not a single user asked a question regarding the use of the system, 
excluding problems with the handwriting recognition. Every user found that 
the system worked as they expected it to.

Feedback in Appendix B from the questionnaires reflects this. Comments
were made by all participants praising the simple and intuitive user interface.
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Users liked the lack of buttons and that they did not need to think about 
extra things like brackets.

However, several users also expressed some frustration with the symbol 
recognition, especially when the system repeatedly miss-recognised certain 
symbols. Most users also commented that they found the Wacom pen and 
tablet awkward to use. This was primarily due to the fact that writing 
happens in a different place to the screen. This is in contrast to later devel­
opments which provided much more accurate symbol recognition and touch 
based user interface of tablets or SMARTboards.

Every user liked the morphing, and they particularly liked the fact that they 
could instantly see what the calculator was calculating.

X
delete

Figure 7.5: D elete gesture from early prototype

The initial prototype tested here used only one additional feature to hand­
writing recognition. This was a delete gesture, similar to a joined up X, as 
shown in Figure 7.5. This gesture has since been replaced with dragging to 
the trash.

Some users found that the delete gesture was difficult to use over a large 
area and several users suggested the addition of a [Clear) button, which has 
now been added and is in the current version of the calculator.

7.5.5 A ccuracy

The large amount of time spent correcting errors suggests that better hand­
writing and expression recognition could dramatically reduce the time on 
task. A large part of the time taken to complete the tasks with the pro­
totype calculator was taken up with specifically recovering from symbol 
recognition errors. There is a significant correlation (r — 0.78 p < 0.05) 
between the time spent correcting symbol recognition errors and the time 
taken, which suggests that improving the recognition will improve the time 
spent entering mathematics. The poor average symbol recognition accuracy 
percentage of 81.1%, was a significant factor in the input error rate and did 
not aid the overall usability of the system.

However, when calculating mathematics, input accuracy is not the most
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important consideration as these errors can be corrected; the accuracy of 
the output is often far more important.

With the new calculator no user got the wrong answer for any question. 
That is, although there were a high number of errors in the input, these 
were all intermediate errors, errors that were noticed and corrected before 
the user finished. Errors that are unnoticed or uncorrected are a far bigger 
problem. Users never arrived at an incorrect answer with the new calculator, 
but when using a handheld calculator they made several simple mistakes that 
went unnoticed, resulting in a final value that the user thought was correct 
but was in fact wrong.

Crucially, by displaying the computed mathematics in an easily understand­
able two-dimensional format, the calculator provides the feedback necessary 
for the user to understand what is being computed. Users knew if and when 
their calculations were wrong and when they had to be corrected. This is 
an aspect of WYSIWYE, by making the user interface predictable and visi­
ble the calculator provides enough information for the user to show exactly 
what expression resulted in the answer and for the result of any action to 
be completely predictable.

Handheld calculators, on the other hand, usually do not provide this feed­
back. Several users got some of the answers wrong and did not realise that 
they were wrong until prompted. Some of the users even got some of the 
simpler sums wrong (like 9 — 2/3) without noticing their mistakes. This 
inaccuracy in the expected output is far more concerning than poor input 
accuracy, especially when most users trust calculator answers implicitly over 
their own judgement.

7.5 .6  Sum m ary

Users found the new calculator more intuitive and easier to use than tradi­
tional calculators. The new system was also faster in some cases and allowed 
users to complete problems they could not otherwise complete.

The new calculator was faster for some mathematical problems even though 
users were unfamiliar with both the system and the graphics tablet input 
device.

Of the two tasks that were faster, task 6  is an unfair time-on-task compari­
son: it was specifically added as a task to see if the new calculator enabled 
users to compute answers that they were unable to with a standard calcu­
lator. In the study, six users were able to complete the task with the new 
calculator that they failed to do on their own calculator. Thus the new cal­
culator enables users to perform mathematics that they could not do before, 
which is enabled by its declarative interaction.

Typesetting and feedback through morphing successfully allowed the user
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to understand what the calculator was doing. Importantly, users never ar­
rived at an incorrect answer with the new calculator, however long it took, 
compared to several simple mistakes that went unnoticed using conventional 
handheld calculators. The immediate feedback of projection and the con­
tinuity of the user interface were key part of the user’s comprehension of 
what was happening.

The new calculator provides an improved system that users produce less 
errors with and therefore can place more trust in. With practice users 
should be able to use it faster, without having to recheck their formulae. It 
is clear that the two-dimensional typesetting, and morphing provide good 
feedback that communicates what is happening to the user very effectively. 
The WYSIWYE nature of the user interface was central to making the 
interaction and result from the calculator obvious in how the user got to the 
current result and how to change it.

When viewed in the context of the unfamiliarity and symbol recognition 
problems these results are surprisingly good. The new calculator was faster 
for some problems, let users solve mathematics they could not have done 
otherwise and produced fewer errors. The concepts and ideas implemented 
in the new calculator were shown to be a success.

7.6 Royal Society evaluation

The calculator was exhibited at the Royal Society’s Summer Science Exhi­
bition, 2005. This exhibition is held to showcase top UK science annually 
at the London premises of the Royal Society, the UK’s national academy 
of science. The calculator was one of 24 exhibits that were competitively 
selected from universities and companies throughout the UK. The purpose 
of each exhibit was to present science, engineering or technology, through 
visually engaging and interactive displays to the public.

The Royal Society’s exhibit normally runs for 5 days, and with several 
evening events tailored to teachers, business leaders, politicians, royalty and 
others. Unfortunately the week included July 7, 2005, with its acts of ter­
rorism across London, which had very unfortunate direct effects as well as 
a reduction in travel and visitor numbers to the Royal Society, so there 
were fewer respondents than hoped for. In particular, our planned video 
evaluations had to be cancelled.

The calculator presented in this thesis was one of these exhibits. Which was 
humorously titled with the bad pun: “Weapons of Maths Construction.” 
The exhibit was large, covering over 6  by 3 meters of floor space in the Li­
brary of the Royal Society, which contained only our exhibit. This included 
aspects of historical calculators, from abacuses and slide rules to mechanical 
calculators of the 1960s. A large collection of modern calculators from var­
ious manufacturers including Sharp, Casio and HP were also available. To
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Figure 7.6: Royal Society Sum m er Science E xhib it

aid their use, GCSE revision notes were available explaining how calcula­
tors should and should not be used, how to ensure mistakes were not made 
and how to work round their inconsistencies. A photograph of our crowded 
exhibit is shown in Figure 7.6.

The main part of the exhibit, visible in Figure 7.6, was taken up with a 6  

foot diagonal interactive white board, a SMARTboard 2000i. This board 
is a rear projection touch screen, that users can interact with using their 
fingers (or indeed anything else). This board was running the calculator 
continuously for the four days of the exhibit. Visitors to the exhibit were 
encouraged to walk up and use the SMARTboard with their fingers or, a 
pen. Often one of the exhibitors would provide a short demonstration and 
encourage the visitors to have a go themselves and experiment. Throughout 
the exhibition the demonstrators remained on hand as visitors played with 
the calculator, answering any questions that arose and prompting the visi­
tors to try different things out. The guidelines provided for exhibitors are 
included in Appendix C.

The exhibit was very popular, and due to overcrowding around our event, 
we sometimes had health and safety staff remove our evaluation desk and 
facilities to encourage people to move on.

7.6.1 Visitors

The visitors came from vastly different backgrounds, ages, cultures, educa­
tion and occupation, from 6  year old primary school pupils to retired 80 
year olds, from GCSEs to PhDs and professors, from students to teachers
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to accountants to civil servants and builders

The whole enormous range and variety of visitors from shy teenage girls to 
Fellows of the Royal Society enjoyed using the calculator; seeing everybody 
and especially teenagers and school pupils getting involved and excited by 
the mathematics was very rewarding.

More than 4,000 people came through the doors of the Royal Society over 
the four days of the exhibition. From those visitors that viewed our exhibit, 
roughly a quarter used the calculator. After visitors had used the calculator 
the demonstrators encouraged them to fill in a feedback form. The feedback 
form used is included in Appendix D.

Visitors were further encouraged to fill in forms by providing prizes of an 
iPod Nano each day for the most interesting/useful feedback.

In total, 436 evaluation forms were filled in and handed in during the course 
of the exhibition.

The results from the feedback forms provide a reasonable estimate for the 
demographics of the visitors. The average age of the users who returned 
feedback forms was roughly 30, with half the users under 20. These were 
evenly split between male and female. The largest group of users was stu­
dents who were either studying GCSEs or A-Levels. Teaching was the most 
common occupation after students but only by a small margin; there was a 
very broad range of other occupations represented.

7.6.2 R e su lts

The raw anonymised data from the Royal Society’s Summer Science Exhi­
bition is available in Appendix E. The results from the feedback forms are 
summarised here.

Figure 7.7 shows the percentage of respondents that used different methods 
for calculating mathematics. The majority of the respondents used calcula­
tors for doing mathematics and most people used several different methods 
of doing mathematics. Just 15% of the respondents used calculators or 
spreadsheets as their sole method for doing mathematics, about the same 
as the number of people who only used paper or mental arithmetic.

Users were asked to rate the calculator on a scale from one to five for both en­
joyment (disliked-it to loved-it) and helpfulness (unhelpful to very-helpful). 
The summary of the results from these two questions are shown in Figure 7.8 
and Figure 7.9.

Over 90% of people returning feedback forms either liked it or loved it. Put 
another way, they liked or loved a calculator, something that users only 
usually tolerate. These results suggest that there is something about this 
new calculator that works better, and is more enjoyable.
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Figure 7.7: Royal Society evaluation: Usage

Users filling in the feedback forms were also asked three other specific ques­
tions on their use of calculators. The results are summarised below.

92% of respondents thought the new calculator was better

27% of respondents said they had previous problems when using cal­
culators

34% of respondents said in retrospect they had problems doing math­
ematics

Part of the exhibit was about current handheld calculat ors and some of their 
problems [Thimbleby, 2000, 1996]. The last two statistics above were from 
two questions about problems with calculators were designed to find out 
if the exhibit had changed or informed visitors opinions about calculators. 
From a subjective point of view, it was successful, one Nuclear Engineer 
wrote in their feedback “[the] exhibition helped me realise how cumbersome 
(mentally) calculators/spreadsheets are.” However the statistical difference 
between the answers for the before/after questions is not significant (though 
we did not do a controlled before/after evaluation, as this would have been 
infeasible in the exhibition environment).

7.6.3 Quotes

Users were provided with several opportunities for providing feedback on the 
different aspects of the calculator. Some selected quotes are repeated here. 
Other quotes are available in Appendix E. Hopefully the quotes provide

80%
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Figure 7.8: Royal Society evaluation: Enjoym ent

another dimension to the results presented here, showing the enjoyment 
users got from the calculator.

Positive feedback came from students, who often do mathematics daily in 
classes and could quickly see the opportunities for using the calculator:

It stops you making mistakes. Student

It is better because  you can work out the  equation  very quickly, it takes  
less t ime to  get  the  answer, you should provide it to  all s tu d en ts  at co lleges  
and university. GCSE Student

I loved it. A-Level Student

T he exhibition is amazing, I love it it ge ts  m e exited. Better than anything  
I’ve seen before. —  A-Level Student

T he most fun I’ve probably ever had doing Maths! A g o o d  mix of paper  
and calculator, more interactive and easier to  learn. —  A-Level Student

Calculators seem  clum sy and hard to  use —  the new m ethod  is genius!  
—  when can I buy one  in the  sh o p s  (If I had had one I would have d one  
A level m aths).  A-Level Student

It’s great!! It’s brilliant, better than pen and paper. University Stu­
dent

Lots of teachers and lecturers were also very positive about using the calcu­
lator both as a teaching aid in education and for use engaging students:
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Figure 7.9: Royal Society evaluation: H elpful

It visualises the  internal workings o f  abstract calculations, fun, as it is 
wonderful! Fun! Engaging and importantly visible! University Pro­
fessor

I believe this could be o f  real value for the education  o f  groups o f  children 
in Maths, gett in g  them  to  really interact with the  equations in front o f  
them . —  RSC Higher education award winner

I used to  teach with white  boards and calculators. It was amazing.
78yr old, retired teacher

E ngagem ent,  exc item ent,  interactivity, seam less ,  more visually appealing  
and easier to  use! —  Teacher

It o p en s up endless m athem atica l explorations. —  Teacher

It makes m aths engaging  and allows one  to  reason about th e  process, 
m aths can co m e  across as s tatic  but this enlivens things. —- Senior 
Lecturer

Many other users from many different occupations and experiences also re­
ally enjoyed using the calculator. The whole range of users from artists to 
engineers all were mostly positive:

Great fun —  o f  course it is better. Musician

I’ve never seen anything th at 's  brought a smile to  my face while doing  
addition, but this has. For that reason alone, I want one! Artist

GUI is fantastically  intuitive. - Engineer
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I didn’t think there was an easier way till now, the possibilities are endless..
— Grant Officer

Showed me som e lim itations o f other calculators. — Actuary

Very few users had negative comments about the calculator and those that 
did were often commenting on only specific aspects of the calculator:

Calculator is faster, good for teaching but not on a daily basis. —  IT
Manager

Clunky but potentially brilliant, it leads to  more questions which is great.
— Research Manager

Probably better for school kids. — AS Student 

Will kids think even less? — Science Communicator

I'm not sure whether it would be suitable for large quantities of data.
— Accountant

There are limited functions available. — Physics Teacher

These are just a small selection of some of the more interesting comments 
from users. In Appendix E the comments from all the feedback forms are 
listed. Additional interesting feedback is highlighted there.

7.6 .4  M um bai, India

As part of one of the popular exhibits of the Royal Society exhibition we were 
invited to also exhibit at Mumbai Institute of Technology’s TechFest in 2008. 
An estimated 50,000 people came to the festival and thousands of students 
and parents visited our exhibit, which was constantly surrounded all day, 
everyday. Much of the feedback from this exhibit was their enjoyment of it 
and also highlighted the calculator’s lack of support for higher mathematical 
functions, such as logarithms, integrals and trigonometric functions. This 
observation perhaps sheds more light on India’s education system or, more 
specifically, on the educational attainment levels of the students visiting the 
TechFest exhibition than on the calculator itself.

7.6.5 Sum m ary

While the Royal Society exhibition was not a controlled user study, it did 
provide an opportunity to test the calculator with a huge range of people. 
The results from this exhibition might not be indicative of a longitudinal 
study, but they do provide a good representation of how the calculator 
functions in an environment similar to the exhibition and how easy people 
find the calculator to use without any prior experience.
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Figure 7.10: D em onstra ting  a t TechFest, M ubai

The feedback was overwhelmingly positive. A large majority of the visitors 
who used the calculator thought it was better, enjoyed using it, and thought 
the calculator was helpful.

Certainly whether the enjoyment of using the calculator is sustained over 
long use or whether users find the calculator easier to use in day-to-day 
situations are unanswered by this study. Indeed the form-factor of the user 
interface used in the exhibition (a 6 foot whiteboard) limits the situations 
where this sort of interaction could be representative of how users might use a 
calculator. However, it is reasonable to assume this kind of interaction would 
happen in a school classroom, where large screen interactive whiteboards are 
now common and the short group interaction is often typical of whiteboard 
use with a class.

Frequently during the exhibition demonstrators used the calculator as a 
teaching tool, to show users how it could be used, by explaining mathe­
matical concepts like roots or fractions. In fact one of the comments from 
a student about a demonstrator was that he was “a nice ‘teacher' he was 
very entertaining and whatever he was demonstrating was easy to enjoy” . 
Many teachers themselves were very enthusiastic about the calculator with 
comments like “a fantastic teaching aid” , “get it in schools” and “When can 
we have it?”

As a teaching aid, the new calculator on an interactive whiteboard obviously 
lias many advantages over static whiteboards or handheld calculators. The 
success of the calculator in the exhibit setting suggests that there might be 
different uses for which the calculator might be more applicable. The use 
of the calculator in an exhibition or classroom is strongly supported by the
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feedback from the Royal Society exhibit.

These positive results cannot be used to claim that the existence of the flow 
principles are the critical reason for the good reception of the calculator in 
the exhibit. However the flow principles are so integral to the entire user 
interface of the calculator, that the success of the calculator is by association 
also a success of the underlying principles.

7.7 A  com parison w ith  x T h i n k

xThink2 is a commercial pen-based calculator that recognises handwritten 
mathematical expressions and provides the answers to the calculations.

xThink provides a good comparison for the new calculator because, super­
ficially, it appears to provide the same user interaction and capabilities as 
the calculator yet xThink does not implement any of the flow principles. 
xThink provides an interface that interacts in a very similar way to that of 
the calculator using a pen-based system and as a commercial system it po­
tentially has the better mathematical recognition engine and mathematical 
functions. However, it is missing some of the principles described in this 
chapter, which means that the contrast in the experience of using xThink 
and the calculator can provide a useful focus on the difference the principles 
make. This section provides a heuristic evaluation of the flow principles by 
utilising a comparison of these two systems.

Some of the aspects of both xThink and Mathematical as a comparison 
to the new calculator described in this thesis, are described more fully by 
Thimbleby and Thimbleby [2007]. Parts of this section are based on this 
paper.

A typical ‘page’ from xThink is shown in Figure 7.11. The advantage of this 
interface over other approaches, is the ease and simplicity of entering mathe­
matics, however its interaction style retains some of the same problems that 
handheld calculators exhibit. There is no guarantee the ‘answers’ are in fact 
answers to the adjacent formulae, and furthermore xThink has introduced 
new handwriting recognition problems; that is, the formula evaluated may 
not ever be the one that was thought to have been written down.

xThink like the new calculator recognises user’s handwriting in the standard 
notational format and the computed answer is displayed adjacent to the 
hand-written sum.

2www.xthink.com
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xT h in k 's  web site.

7.7.1 Specific differences

Both the calculator and xThink , from first glance, appear to do the same 
things. In fact xThink seems to be more powerful as it can handle annota­
tion, multiple sums, and more complex mathematics. Yet ignoring a bullet 
point comparison and the superficial similarity of the two programs, they 
are in fact very different.

Both calculators provide a user interface based on handwriting recognition. 
But this is where the similarity ends.

The new calculator, was designed using the flow user interface principles 
of projection, continuity. WYSIWYE and declaration, in contrast, xThink 
seems to merely add the idea of utilising the affordance of pen and paper 
without escaping some of the typical problems that calculators have.

H andw riting  recognition

With the new calculator, recognition of the handwritten symbols is pro­
jected into the user interface. As a symbol is recognised the user interface 
is immediately updated replacing the hand drawn symbol with the typeset 
recognised symbol. The replacement of the user’s handwriting with typeset 
symbols not only provides an immediately neat and tidy (and correct) equa­
tion but also provides immediate visible feedback of what was recognised.

The recognised equation is projected as a neatly formatted equation in the 
user interface. This provides the user immediate feedback about the ex­
pression recognition. The displayed typeset equation is the equation that
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the answer is calculated for. This in-place visibility removes confusion and 
miss-understanding over what the calculator is doing, and whether it bad 
handwriting recognition has occured as the user is entering symbols.

The projected recognition means the user’s view and the computer’s inter­
pretation are identical. There is no separate user data used to generate the 
display, thus the user sees exactly what is happening and has confidence 
in the answer. The projection of what equation the user is trying to solve 
makes any errors obvious as they are writing. This immediacy and clarifi­
cation of the user’s desired result (and any deviation from it) is one of the 
primary reasons that intermediate errors are quickly noticed and the lack of 
final errors.

Unlike the new calculator where the symbol and expression recognition are 
projected, in xThink, the handwriting is not replaced with typeset symbols 
and the mathematical expression is not typeset. This means that the user 
actually has little confidence that the recognised expression is the correct 
one. A handwriting or expression recognition error is not easily visible to 
the user and the answer given could be the answer for a different expression 
to the one the user believes they wrote.

Continuity from input to output

The new calculator provides continuity between the user’s input and the 
typeset output. This allows the user to easily understand how the resulting 
mathematical expression corresponds to the one they wrote.

In xThink there is only minimal feedback about the mathematical recogni­
tion and no continuity or even linking is provided between the input and 
that result. The feedback is a linear representation of the mathematics in a 
unconnected part of the user interface. If the user even notices the feedback 
there is no feedback providing the link or relationship of it to the user’s 
input.

Getting answers

The xThink user also has to be aware that once they have finished an equa­
tion they still have to press the [Enter] button, this time switching mental 
modes from “entering” to “getting the answer.” In the new calculator the 
answer is a projection of the recognised mathematical expression and ap­
pears as soon as the expression has been recognised.

Partial input

As part of the projected user interface, the new calculator supports partial 
input of mathematical expressions. This allows the user to easily form an
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expression over time and provides simple feedback to the user about any 
incompletion. xThink throws obscure error messages when the user enters 
an incomplete expression.

Declarative interaction

The new calculator allows users to edit both sides of a mathematical expres­
sion, giving more flexibility and power. xThink does not provide anything 
similar; to get the same results users will have to rearrange even simple 
sums.

Flexible editing

Editing in the new calculator is simple and easy, the user can edit the ‘ink’ 
they see by dragging, adding and deleting in a WYSIWYE way. Editing 
user input directly in xThink is impossible! xThink only lets the user create 
new expressions which are grouped and recognised when the user presses 
the (Enter) button. If the user does not carefully erase old expressions in 
xThink the user interface quickly becomes cluttered and new answers end 
up appearing on-top of old answers making any interaction confusing.

Once some mathematics is recognised in xThink by pressing Enter it is no 
longer editable. xThink provides a much poorer experience when entering 
any mathematical expression unless it is written and recognised perfectly 
the first time.

M odelessness

In xThink the user has to switch both mental and physical modes many 
times. To erase or move parts of the equation the user has to select different 
tools at the bottom of the screen, then when they have finished the user has 
to remember they are in a special mode and reselect the original tool. The 
xThink interaction style makes this cumbersome approach unavoidable in 
principle.

With the new calculator there are no modes, and no user context switching. 
Not only are there no multiple different tools or modes but (obviously) 
there is no need to switch mental modes or to pause and press an (Enter) 

button. This greatly simplifies the user’s mental model and reduces the effort 
required to use the calculator. There is also no synchronisation problem 
where the user’s model can become out of step with the system model.
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Rearranging

In xThink it is possible to delete things or move them around, but it is always 
an awkward process involving several mode changes and it is fairly limited 
in what it achieves. Moreover, any editing in xThink breaks the relation 
between written input and calculated output.

In the new calculator the ability to drag and drop, using WYSIWYE, an 
arbitrary part of the equation elsewhere is synchronised by the calculator’s 
ability to provide continuity by morphing the result into a new typeset 
equation. It is therefore possible to move parts of the equation around 
without regard for their size or shape, and the user always sees a fully 
correct equation.

7.7.2 W orked exam ple

To better illustrate the differences between these two superficially similar 
interfaces, the interaction the user employs to solve a simple sum, along 
with the potential pitfalls is described in this section. This also provides 
a more concrete example of the differences between the two user interfaces 
by providing a step-by-step walk through of an example calculation in both 
user interfaces.

Initial input

In both user interfaces the user starts by writing the sum on the screen, using 
a pen (or using their fingers on suitable touch-sensitive screens). Rom then 
on the user interaction is different.

• In xThink, the handwriting is recognised in a separate location, which 
the user must read to check the accuracy of the handwriting recog­
nition. If the handwriting is misrecognised by xThink then, without 
checking the small text at the bottom of the screen the user can easily 
be fooled into thinking they have the correct answer. The text at the 
bottom of the screen is both small and linearised, losing the benefit of 
the handwritten two-dimensional notation — for example Figure 7.11 
shows the cube root of twelve cubed being calculated, it is printed as 
12~3~(1/3)=12.

• In the new calculator, as the user writes, the hand-written characters 
and numbers are converted to typeset symbols and immediately pro­
jected without any further user action. The user feels as if they are 
writing typeset characters and confirming recognition is as natural as 
checking that your own handwriting is legible.

• xThink's lack of projected recognition hinders the interaction. The 
visible hand-written equation and the parsed equation that the com­
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puter understands are different. Without checking and making sure 
that the hand-written equation is the same as the computer’s inter­
pretation it is extremely easy for the user to be confused and misled. 
The two views of the equation, the handwriting and linearised math­
ematics are separate, distinct and different. xThink also provides no 
continuity between the input and output thus making it harder for the 
user to follow what has been computed.

Incom plete input

During entering a complete mathematical expression the user’s input is 
rarely complete or mathematically correct.

• In xThink, to determine the answer, the user’s input must be syntac­
tically complete (an expression). For example, to find the value of 
the user must write exactly this (and it must be recognised correctly). 
Anything else results in an error.

• In the new calculator, answers are provided even from incomplete ex­
pressions, as well as with expression. For example, to find the value of

the user can also write the incomplete faction is completed for 
the user. The user can then leave it as is, or correct the expression to 
exactly what they want. Answers for incomplete input are displayed 
as the user writes so that the user is provided with feedback as they 
construct a complete mathematical expression.

• By providing answers for partial and incomplete input the new cal­
culator allows for a projected almost instant update of the answers 
whilst retaining sensible and useful answers. Without this ability the 
immediacy of the user interface is reduced.

G etting the answer

Once the user has finished entering a mathematical expression they want 
the answer.

• In xThink, to determine the answer, the user must press another but­
ton, and the answer is displayed somewhere nearby the handwriting 
on the screen. In Figure 7.11 all such answers have been positioned 
under their respective formulae.

• In the new calculator, the typesetting includes solving the equation. 
When entering pjp, the user interface will show a typeset p p  =  3 
— the user wrote p p  and the computer inserted =  3 in the correct 
position automatically.

• The answers and the input are inconsistent in xThink until the user 
presses the [enter] button. This lack of immediacy further confuses and
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misleads the user, especially when old answers are still shown on the 
screen and can be located near the user’s new handwriting. The new 
calculator is never inconsistent because the user interface is projected.

Editing

To correct an expression or to modify it to a new expression the user needs 
to be able to edit.

• In xThink, the user’s handwriting can be altered, but the answer is 
not updated, thus making the answer invalid. There is no easy way 
to edit mathematics other than erasing and starting again. What the 
user assumes are edits or corrections are treated as new expressions 
and additional answers are added to the already cluttered screen. It 
is possible for several answers to accumulate when the user evaluates 
formulae and old answers are not removed, confusing the expression 
even further.

• In the new calculator, the editing of the user’s input is integrated into 
its evaluation. Thus the user can then continue to write over the top 
of this morphed equation, adding in bits that are missing.

It is possible to edit by inserting, overwriting and by drag-and-dropping 
symbols to a bin to delete them, or to other parts of the equation to 
move them, WYSIWYE. In all cases, the equation preserves its mathe­
matical truth with continuity, as the new calculator continually revises 
it. A full undo function is also available, which animates forwards and 
backwards in time — also showing correct equations.

In the new calculator editing happens naturally as the user sees it. 
Using a WYSIWYE approach any edit is immediately projected and 
incorporated into the mathematical expression and the new expression 
morphed providing continuity and the answer given. This makes edit­
ing to alter or correct the expressions fast and easy. Combined with 
handling incomplete answers this means an expression can be built up 
easily from its component parts. For example, \/4 could be entered as 
%/ then 4, or 4 then y/, and the user could write =  if they wish. In 
any case, the value = 2  or 2  is also displayed.

• Editing is not easy in xThink and it is compounded by the way an­
swers accumulate which is very confusing. This is avoided in the new 
calculator because of the projected user interface, old answers are im­
mediately updated as the input changes.

The comparison to xThink, which looks the same but lacks the flow prin­
ciples used in the design of the new calculator shows that the principles 
provide real benefits. The main differentiating factor between xThink and 
the new calculator are the flow principles, the remainder of the interface is
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Cognitive Dimension Handhelds xThink New calculator
Viscosity high high low
Visibility low medium high
Premature commitment high medium low
Hidden dependencies medium medium none
Role-expressiveness none high high
Error-proneness high medium low
Abstraction medium none none

Table 7.1: A comparison of calculators using Green’s Cognitive 
Dimensions framework

very similar. The comparative failure of xThink's user experience strongly 
suggests that the flow principles axe the key reasons that the calculator’s 
user interface is enjoyable and successful.

7.8 C ognitive D im ensions evaluation

Green [1989] proposed cognitive dimensions as a vocabulary for discussion 
and tools for usability evaluation or heuristics for guiding design. They are 
useful for discussing the calculator and allow for a heuristic evaluation of its 
usability.

Green’s [1989, 2000] cognitive activities and cognitive dimensions (CDs) 
provide a way of critiquing and comparing interfaces and their uses. They 
provide both a set of discussion tools, an “analytical vocabulary for design 
discussion” and tools for heuristic evaluation.

The table above exhibits Green’s original cognitive dimensions, comparing 
the new calculator with standard handheld calculators and with xThink. 
These dimensions are not consistently good attributes, for example Green’s 
viscosity is a bad attributes, whereas visibility is a good attribute.

Viscous interfaces make change difficult and hard to achieve. Changing 
anything on handheld calculators is usually hard. Often this is a result of 
having very simple user interfaces, many of them lack any ability to change 
any input — requiring a complete restart of the user’s actions and a loss of 
all intermediate work. xThink also makes change very hard by offering very 
few editing capabilities and often requiring the user to start over again. The 
new calculator, using ink editing, allows a very fluid (as opposed to viscous) 
user interface that flexibly supports editing and change, through add new 
symbols, deletions and drag and drop. The fluidity of the user interface is 
a direct consequence of the WYSIWYE principle and the ease of editing 
mathematics as they are seen.

Visibility was one of the driving design principles of the calculator stemming
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from projection. The whole expression is visible all of the time and this seems 
to lead to users having more confidence in the results and being able to use 
the calculator faster. Compared to current calculators that are often only 
visible to the extent of the last numeric value squeezed into their display, the 
improvement is dramatic. xThink shows the whole mathematical expression 
but only provides direct feedback about recognition in a linear text string, 
it also does not provide any visible linking between the user input and the 
result.

Premature commitment is a problem that most handheld calculators exhibit: 
rarely if ever is the user allowed to undo or alter what they have calculated. 
Even in template editors and some pen-baaed entry the mathematical ex­
pression has to be built top-down in a rigid ordering. xThink allows parts 
of the expression to be erased or moved, but only before the mathematics 
is computed, this means that the user has to unnecessarily ‘commit’ to the 
expression before they can get the result. In the new calculator a mathe­
matical expression can be constructed in any order and ink can be dragged 
arbitrarily, anything the user has done can be altered and is not prema­
ture. This is in part enforced by WYSIWYE, because the user is able to 
edit any part of the mathematics at any time, no part is ever committed or 
unchangeable.

Hidden dependencies hide the links between entities, such that a user cannot 
easily discern what the behaviour of the user interface will be. Standard 
handheld calculators often have several modes which determine how they 
operate, these are hidden and can confuse the user. xThink has hidden 
dependencies between input and output, it is never clear what is linked to 
what. This makes it tricky for the user to know how xThink will react to 
their input. The new calculator is contrast has no hidden dependencies, the 
WYSIWYE user interface means that any dependencies do not affect the 
user’s interaction.

Role-expressiveness should merely be a simple matter of doing mathematics 
right! However calculators disturbingly fail to do this [Thimbleby, 1996], 
in particular their failures to properly provide proper syntax or referen­
tial transparency are obvious (and surprising) failures of design. The new 
calculator and xThink both do mathematics correctly without unusual or 
confusing syntax, for example using ~ for exponentiation.

Error-proneness is a problem for any calculator. Users depend on calcu­
lators to perform calculations they could not do otherwise and therefore 
often put misplaced trust in the answer. Errors arising in use are rarely, 
if ever noticed, whether they are caused by the user or by design. Current 
calculators exacerbate this problem by failing to provide a visible history 
or even error messages. xThink hinders the user and encourages errors by 
providing very little feedback about what mathematics was computed. In 
comparison the initial evaluation showed the new calculator was successful 
at reducing errors, certainly making users less error-prone. Both projection
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and continuity are key to providing feedback and reducing errors.

Abstraction provides additional layers of complexity on top of the user inter­
face that the user has to learn. Handheld calculators often abstract math­
ematical input to entering a linear sequential button presses, putting the 
burden on the user of converting their mathematics into button presses. 
Neither xThink nor the new calculator abstract mathematics, they both 
provide pen-based user interfaces that work like paper.

Green also uses more general terms for describing the type of interaction a 
user interface supports, these are: incrementation, transcription, modifica­
tion, exploratory design, searching and exploratory understanding. Using 
Green’s terms, most handheld calculators provide trivial incrementation and 
partial modification. A standard calculator’s (c) and (a c ]  keys provide very 
crude modification and the changes the user can effect are almost entirely 
incremental. More flexible calculators do provide modification allowing the 
user to edit the mathematical expression. The same types of interaction are 
supported by xThink. In contrast, the new calculator is very flexible pro­
viding both modification and incrementation, and it provides more complex 
activities like exploratory understanding which is encouraged by all four of 
the flow principles. Making it is very easy to discover the underlying math­
ematical structure by using the calculator to do sums and to play.

Using cognitive dimensions within the context of activities provides us with 
an interesting picture. Both standard handheld calculators and new cal­
culator provide simple incrementation and partial modification, but the 
new calculator supports further cognitive activities: exploratory understand­
ing and unrestricted modification. This suggests that handheld calculators 
could provide a better interface for accountancy and summing numbers (e.g., 
123+3454-435.98+123+...) when exploration and unrestricted modification 
are undesirable. However for performing arbitrary calculations, especially 
exploring and learning, the new calculator supports much more flexible and 
powerful activities.

The design of the new calculator is supported by a heuristic evaluation using 
cognitive dimensions. For all of the relevant dimensions the calculator has 
been evaluated against it comes out overwhelmingly positively. The heuristic 
evaluation substantiates both the design of the calculator and the underlying 
principles that informed the design.

7.9 A note on the philosophy of science

One might like evaluations to confirm certain design principles, but this 
would be poor science.

Empirical evaluations can only provide confirming instances of the hypothe­
sis that certain principles are effective for design; strictly, experimental eval­
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uation (when undertaken appropriately) can only refute hypotheses [Popper, 
1963], since confirming instances might have been caused by other factors 
that were not controlled for. In this case, there is the possibility that the re­
sults are caused by, among other things, the relative quality of programming, 
which is not a factor that this thesis explores.

The calculator only exists as a confirming instance of the utility of the 
design principles, rather than proof of their validity. This is perhaps an 
insurmountable issue, it is impossible to evaluate these principles directly, 
except through their implementation which may be skewed by other factors. 
Thus any justification of the principles in this thesis also relies on appeal to 
argument rather than by evaluation alone.

7.10 Sum mary

Both the underlying mathematical engine was evaluated by Cairns et al. 
[2004] and pen-based mathematical entry by Anthony et al. [2005]; each 
was found to be successful.

The new calculator was evaluated with user tests, performing timed tasks. 
This evaluation found that the new calculator was faster for some problems, 
let users solve mathematics they could not have done otherwise, and pro­
duced fewer errors. The fact no user got an answer wrong using the new 
calculator is especially pertinent, as getting the correct answer is the critical 
part of using any calculator.

A large amount of user data was collected from the Royal Society exhibi­
tion which provided numerical data stating users found the calculator more 
enjoyable and more helpful. The exhibition also provided a large amount of 
user feedback, the majority of which was very positive and supports both the 
numerical data and the novel design of the new calculator’s user interface.

A direct comparison with xThink provided a point-by-point contrast of two 
similar user interfaces where the flow principles were the main differentiator. 
These comparisons substantiate the arguments for both the design of the 
new calculator and the flow principles.

Finally a heuristic evaluation using Green’s Cognitive Dimensions supplied 
a more analytic discussion of the differences between calculators and what 
the flow principles achieve. This suggestes that the new calculator is more 
suited to exploration and learning than to tasks such as accountancy.

In summary, the new calculator has been evaluated in many different and 
complementary ways. Each of the evaluations has provided different sup­
porting evidence for the success of the calculator and of the underpinning 
flow principles. Collectively, the evaluations provide a compelling case for 
the design principles used in the calculator.
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C ontex t

Figure 8.1: Cave pain tings in Lascaux, France (circa 15,000BC)

8.1 History

Along with calculation, drawing also has a long history. The earliest known 
rock paintings have been dated to 40,000 years ago and cave paintings to
32,000 years ago. Figure 8.1 shows the famous Lascaux cave paintings from 
France that have been dated to 17,000 years ago.

Modern drawing aids such as paper and pens have their origins in Egypt 
with papyrus and inks. Other drawing tools like erasers, slate boards, rulers, 
drafting tools and correcting fluid have all been invented for different pur­
poses and provide different capabilities that support drawing.

Computers have always been used to generate graphics, but it was not until 
the 1960s with Sketchpad that they were used as a user interface for drawing. 
Sketchpad developed by Ivan Sutherland [1964] as his doctoral thesis, pro­
vided a graphically interactive user interface for drawing. Sketchpad used a

151
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Figure 8.2: Sketchpad (1963). Source: Sun M icrosystem s

light-pen to point and a bank of switches to control operations like ‘move’ 
and ‘draw’. It is generally thought of as the pre-cursor to modern com­
puter drawing. Since then computers have begun to be increasingly used 
to provide support for drawing activities. A large factor in the early use of 
computers for drawing was Computer Aided Design (CAD). The accuracy 
of the drawings and the ability to alter the drawing easily were the primary 
reasons why CAD took off commercially.

The first computer painting program was probably Dick Shoup’s ‘‘Super- 
paint” at PARC (1974 75). Superpaint introduced the distinction between 
vector graphics and raster graphics, this is a distinction created by how com­
puters store images, as either mathematical vectors or as a grid of pixels.

Drawing programs were first widely used on the Macintosh in 1984. which 
came with both MacDraw and MacPaint, providing both vector and pixel 
drawing tools respectively. Since then many commercial programs have been 
in wide use, for example, Adobe Illustrator, which was first developed in 
1986. Illustrator is currently the main professional vector drawing program 
and is widely used by designers and graphics professionals.

. « - MMfM •  *

Figure 8.3: A dobe Illu s tra to r CS3 (2007)
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8.2 Drawing applications

In contrast to calculating, Chapter 2, there has been relatively little research 
on user interfaces for drawing. After Sketchpad broke ground early on, there 
has not been much focus on general drawing user interfaces. Instead the 
majority of drawing research has been focused on different areas such as: 
the underlying algorithms [Hsu et al., 1993], sketching for 2D and 3D input 
[Arvo and Novins, 2000, Zeleznik et al., 2007b], morphing vector shapes 
[Vronay and Wang, 2004] and more esoteric ideas such as novel user input 
devices for curves [Grossman et al., 2003] and representations of gradients 
using vector partitions of space [Orzan et al., 2008].

User interfaces for the majority of vector drawing have remained untouched 
by research since the early days of Postscript in 1982. In fact the back­
bone of vector graphics editing applications, cubic Bezier splines and their 
corresponding user interfaces have remained mostly unchanged for over 2 0  

years.

Although more general user interface research is applicable such as direct 
manipulation [Shneiderman, 1983] and WYSIWYG.

Thus this context is by necessity defined by the successful commercial appli­
cations that have defined this domain. Those applications primarily being 
Adobe Illustrator, CorelDraw and Inkscape.

8.3 Drawing in vector applications

This section provides a discussion of the purpose of a drawing program 
and what features and interactions are required. In this context the term 
“drawing program” is used to refer to programs whose primary purpose is 
to create vector graphics.

8.3.1 W h at are vector graphics?

Two-dimensional vector graphics are graphics that are composed mostly 
from geometrical data, where the data usually forms a kind of “recipe” 
for generating a final image. A simple example of what could be a vector 
graphics recipe is “draw a red circle on top of a blue square” . This tells the 
computer how to arrive at the final image. Real vector graphics are much 
more specific and describe the exact shape, positioning and styling of the 
different components. Vector graphics are used widely in different domains 
and some common file formats are: DXF, SVG, PDF, and PS.

Almost all vector graphics are composed from a few basic “ingredients” ; 
shapes and the instructions about how to draw them. While there are few
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basic component types, vector graphic pictures can contain thousands of 
components and can be very complex.

Most graphics on computers are not vector but instead are raster graphics 
which are constructed from an area of lots of coloured pixels. Compared 
to vector graphics, uncompressed raster graphics are relatively simple for a 
program to draw. Adobe Photoshop and Microsoft Paint are examples of 
programs that edit raster graphics.

Raster graphics often originate from input devices such as digital cameras, 
which take pictures that are raster graphics. The majority of graphical input 
and output devices including scanners, cameras, screens and printers are all 
raster based. Graph plotters are one of the few examples of an output device 
that uses vector data.

In contrast, most vector graphics are created from scratch by hand. The 
differences in how raster and vector graphics are created dictates the fo­
cus of the respective applications for manipulating them. Raster graphic 
applications are often focused on editing and adjusting input like photos, 
vector graphic drawing programs are usually focused on the creation of vec­
tor graphics.

8.3.2 W hy use vector graphics?

Creating vector graphics on a computer provides many advantages over both 
raster graphics and the traditional methods of drawing using pens and paper. 
Vector graphics are far more flexible and are very versatile in how they are 
edited and manipulated. Every aspect and component of a vector image is 
adjustable. Raster graphics and to a greater extent paper lack this versatility 
and changes made to the graphic are rarely later adjustable. Although the 
description of editing vector graphics in future sections makes creating vector 
graphics seem complex, this is in part because of their flexibility.

A pen and paper interface provides two basic interactions, drawing on the 
paper and erasing part of the drawing on the paper. Raster editing pro­
grams provide a few more interactions, but they are still not as flexible as 
vector drawing applications. A drawing program additionally provides the 
ability to rearrange, move, reorder, change, delete, stylise and adjust each 
individual component of the drawing in hundreds of different ways.

It is this extensive amount of possible interactions that make vector graphics 
editors a powerful tool for a designer and at the same time means that the 
respective user interface is often complex.
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8.3 .3  Technical reasons

Raster graphics and vector graphics have different benefits. Generally raster 
graphics are best for photographs and vector graphics are better for text or 
diagrams.

One of the main advantages of vector graphics is that because they are a 
recipe for creating an image, the recipe can be adjusted to create the best 
image for the device they are to be recreated on. For example a printer has 
a much higher resolution than a screen, and thus by using a recipe it can 
generate an image that will look as shaxp as possible. If instead a raster 
graphic was being printed, the image cannot be altered and it is printed at 
the fixed resolution of the image. Vector graphics are therefore often used 
in the print industry.

Another advantage of vector graphics is that it is possible to alter the dif­
ferent steps of the recipe very easily. This means that for an artist creating 
a graphic, vectors provide a huge benefit because every single part of the 
graphic can be altered without any problems.

8 .3 .4  W here do th ey  com e from?

The main source of vector graphics is from people using drawing and illus­
tration applications to create images in graphical user interfaces. Almost all 
vector graphics originate from the user in such a fashion. They are also often 
generated automatically as a visualisation, for example creating graphs in 
Microsoft Excel generates vector graphics.

8.3 .5  Sem antic requ irem ents

There are many different types of recipes for vector graphics, and each can 
have different abstractions. One recipe might simply specify drawing a star, 
another recipe could specify the same star as a polygon of individual points.

Despite there being a large number of different types of vector graphics, the 
basic components of vector graphics are fairly simple and consistent, these 
are: shapes, styles and rules of composition. Shapes are described using 
polygons, Bezier curves, circles, or text. Styles provide the method with 
which to draw the shapes utilising information like fill, stroke, colour, gra­
dients and transparency. The individual shapes are then composed together 
for the final result using composition rules, including clipping and Z-order 
rules (what is on top of what).

Almost all vector graphics are built from these basic components, how­
ever very few vector graphic representations stop there. Many representa­
tions provide more complex ways of describing drawings, for example using
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Gouraud shading, vector effects and raster filters are more complex aspects 
of different vector graphic formats.

8.4 User interface requirem ents

It is possible to create vector graphics by hand in a text editor, for example 
using PostScript, but the nature of the data that is being edited makes this 
very difficult. Very few people create vector graphics this way — most users 
make use of a graphical drawing program such as Lineform.

Using a vector graphics user interface, the user edits and manipulates the 
underlying recipe through a graphical representation. This involves user 
interaction to create and edit shapes, style and compositing information. 
This interaction should happen in a way that is as logical and as direct as 
possible. Building on the principles discussed in Chapter 4, the interface 
should also incorporate the ideas of projection, continuity, W YSIW YE  and 
declarativeness.

This section summarises the main requirement for a drawing program. Some 
aspects of this section are based on the absolute requirements of drawing 
applications and others are more based on the cultural expectations and 
desires of users.

8.4.1 G raphics

Allowing the direct manipulation of graphics is very important because the 
raw numeric data that the shapes are created from is generally very hard to 
understand and edit. Direct manipulation means the user can change and 
alter the drawing directly using an input device such as a mouse. There are 
no widely used modern graphical drawing programs that do not provide a 
direct manipulation of the drawing.

A WYSIWYG view of the drawing is essential in both providing a view of 
the drawing as intended and allowing the user to interact with the graphics 
to achieve their desired result. Without WYSIWYG, editing even simple 
drawings is hard to achieve. Non-WYSIWYG graphical editing is still useful 
for diagram specification, eg. dot files, and graph generation.

8.4 .2  B ezier sp lines

Cubic Bezier splines [Bezier, 1972] are the most general shape description 
which many vector editing applications provide. These are composed of 
multiple cubic spline segments which have start and end nodes and two 
intermediate control points. A larger shape or path is composed of many 
segments combined together to make up the final shape.
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F igure 8.4: A cubic Bezier segm ent

B(t) =  (1 -  t)3P 0 + 3(1 -  Q2fP , +  3(1 -  t)t2P 2 + f3P 3 , t E [0,1] (8.1)

Figure 8.4 shows a single cubic Bezier segment, the start and end points 
are highlighted in orange, the two control points in blue. The control points 
describe the curve’s tangent at the start and end but do not lie on the actual 
curve segment itself. The thicker spline in between the start and end points 
is described by Equation 8.1 which is a parametric cubic equation in t.

Several other spline types are also used in drawing applications, most notably 
B-splines and quadratic Bezier splines. B-splines have better smoothness 
properties and are thus used more frequently in CAD software, but they are 
often harder to use. Quadratic Bezier splines are simpler to use but not as 
flexible as the cubic Bezier spline. Cubic Bezier splines have become popular 
because they occupy a good middle ground; they are relatively easy to use 
and provide good flexibility.

8.4.3 Tools

Due to complexity and the many different tasks the user can be trying to
accomplish in a drawing application, there are too many ways of interacting 
without using different modes of interaction. This is generally accomplished
by a set of tools that can be selected one at a time, these provide a modal 
interaction experience focused on one task, when the user needs to perform 
another task they have to switch tools.

Examples of tools are: rectangle, oval, pen, selection, node editing, zoom 
and text. These tools are used to provide interaction modes for creating 
shapes and editing the drawing.
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8 .4 .4  S election

Many operations and much of the editing is performed on a small portion 
of the whole drawing. To do this there needs to be a means of specifying 
a portion of the drawing that will then be affected by the user’s actions. 
Specifying a selection is usually performed through direct clicking or drag­
ging a selection marquee over graphics when using a selection tool. The 
selection should be clearly visible so that the user has the visible feedback 
about which objects are being affected.

Selection is also important within different modes for more detailed edit­
ing. Both text editing and Bezier path editing involve their own concept of 
selection, allowing the selection of characters or Bezier nodes respectively.

8.4 .5  E diting

Different shapes require different editing interactions; paths, text, rectangles 
and groups all have various properties and need to provide differing methods 
of editing. To edit Cubic Bezier spline paths, the user needs to be able to 
create, delete, move and position the nodes and control points of each spline 
segment. Editing paths is often the single most complex part of creating 
vector graphics.

Editing text needs all the standard text interaction providing: fonts, sizes, 
styling, colouring, and paragraphs. Other standard text tools such as finding 
and spelling improve the interaction. From the user’s point of view the closer 
editing text is to the word-processor they are familiar with the better.

Special shapes such as circles, rectangles, spirals and polygons, all have 
different specific attributes such as corner radius or the number of points. 
The user has to be able to edit these attributes, the more direct the editing 
is, the better.

The ability to group graphics together provides coherence in a drawing and 
allows certain effects. A group links graphics together, for example a face 
composed of eyes and a nose on a background, allowing the user to interact 
with the group as a whole rather than as separate components. Editing 
groups requires a distinction between editing the group and editing its con­
tents, the ability to do both is important.

All shapes should be manipulatable on the canvas. Positioning, rotation 
and scaling are generally provided by affine transformations. In addition to 
the many ways of editing and manipulating shapes directly on the canvas, 
there are also many other actions or operations, for example alignment and 
Boolean composition, that provide useful capabilities to modify shapes.
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8 .4 .6  N avigatin g

The ability to navigate the document is necessary for the user to be able to 
view larger documents than fit on the screen or edit small details too small 
or awkward to edit at the document’s natural size. The common navigation 
operations are panning the document to view different sections of it and 
zooming in to work on detailed parts of the drawing or zooming out to work 
on larger overviews.

8 .4 .7  S ty le

Once the component shapes of a drawing have been created, what they 
look like needs to be specified. Most vector graphics provide two main 
components to style: the stroke and the fill. The stroke of a shape is how 
the line around the outside of the shape is drawn and the fill specifies how 
the interior of a shape is drawn.

A stroke style can have attributes such as: width, colour, opacity, dashes, 
and end cap shape. Some of these, like width and dashes, specify the shape 
of the stroke, others like colour, specify how to draw it.

A fill style generally has fewer attributes, the fill of a shape can usually only 
be drawn as solid colours, potentially with an opacity. More complex fills 
are often provided through a clipping shape that contains other drawing 
components that are only drawn inside the clipping shape, for example a 
clipping shape could contain more shapes, an image, or a gradient.

8.4 .8  C om positin g

The ordering in which objects are drawn, the Z-order, affects the final out­
put. There needs to be a user interface to rearrange objects in this dimen­
sion. Standard ordering actions are: bring forward, bring to front, send to 
back, send backward.

Also to help manage the Z-order of the drawing, programs often provide lay­
ers that contain many objects. Layers provide a coarse grouping of graphics 
and can be rearranged themselves and often allow the toggling of visibility 
and locked status. These enable better management of complex documents.

Most modern drawing programs also support colour blend modes, which 
describe how the colours of graphics are composited together.

8.4 .9  F ilters

Many modern vector drawing programs also now support raster effects. 
These convert the vector shapes into a raster image and then apply a raster
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effect, this allows effects to be created that are nearly impossible with only 
pure vectors. Examples of raster effects are Gaussian blur, solar flare and 
crystallise. Raster effects can also be layered so that, for example a blurred 
flare is possible.

8 .4 .10 D ocu m en ts

Documents contain whole drawings, the user needs to be provided with some 
document management, to allow different sizes of documents, multiple pages 
and possibly features like markers and grids.

8.5 Poor user interface design

This section describes the bad user interface design of products similar to 
Lineform, which played a large part in inspiring Lineform’s design. The 
aspects of these interfaces that have seemed to provide bad user interaction 
design are highlighted and individual examples are used to demonstrate 
different aspects of poor user interface design. The interaction design that 
is highlighted in these examples is not exclusive to the individual drawing 
applications used as examples. The same user interface design flaw is found 
in many other drawing applications.

In many cases there are legitimate reasons for the designer’s choice. For 
example, Illustrator comes with the legacy of 20 years of features and was 
originally designed to work on hardware much slower than today’s. However 
while these reasons might provide good excuses, they are now unimportant 
to the design issues discussed; as such these decisions will not be more than 
cursorily defended.

There are many aspects of the design of the various drawing programs that 
are basic and obvious bad user interface design. Examples are inconsistent 
and cluttered user interfaces, obscure user interaction, non-standard user 
interface controls and slow and even buggy interaction. Describing these 
issues does not provide any insight into the development of new user in­
terfaces and are ignored for the purposes of this section. The examples of 
interaction design described in this section have been chosen to highlight 
aspects of design that axe common to drawing programs. These include the 
lack of direct manipulation, unclear use of modes, over-rigid design and the 
lack of immediacy of interaction.

8.5.1 D irect m an ipu lation

Drawing programs provide an essentially visual interaction; the primary user 
interaction is through manipulating the visual drawing on the canvas. Direct
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manipulation [Shneiderman, 1983]. which captures the concept of directly 
interacting with the object of interest, is especially apt when applied to 
these user interfaces. Some of the advantages of this kind of interaction are 
the ease of learning, exploration, avoidance of errors and user satisfaction 
[Shneiderman, 1997].

A real pen or paintbrush provide a very direct interaction when drawing, 
in comparison a mouse and keyboard provide much more indirect control. 
Thus they are harder and less intuitive to use. The further interaction is 
removed from manipulating the drawing directly, the less obvious and easy 
it is to interact with the drawing.

©  O  ©  Untitled l_>
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Figure 8.5: Ind irec t ro ta tio n  controls in iDraw

Several programs have an indirect approach to some manipulations of the 
drawing. This is often because it is easier to create indirect user interface 
controls, that can be abstracted from the ‘physical’ graphics they are ma­
nipulating, than to provide a method of directly manipulating the graphics. 
One example of an indirect user interface controls in drawing programs is 
rotation controls that are located in palettes. When using these the user has 
to manipulate a small control that is not directly linked to the graphics they 
are trying to rotate. Interacting with a small control rather than  directly 
with the graphics is awkward because the user has to link their interaction 
to the results. The user also cannot both look at the control and the graph­
ics at the same time and thus has to switch their attention back and forth, 
making it awkward to get the right value. Figure 8.5 shows the rotation 
control in iDraw, the circular-slider rotation control in the palette is small 
and fiddly and the graphic being manipulated is visually separate from the 
user interface control.

A different situation where user interfaces lack direct manipulation is when 
they force the user to edit an object through an interface that has a different
form to that of the object. In this case the object can be edited directly but
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Figure 8 .6 : Ind irec t stroke weight in A dobe Illu s tra to r

the interaction is not natural. Figure 8.6 shows Adobe Illustrator’s stroke 
palette, to change the stroke weight in Illustrator, the user either has to type 
a weight in, select one from the pop-up menu, or use the stepper controls 
to the left of the text field. All of these interactions with the user interface 
to change the stroke weight provide a discrete interaction, that is, they do 
not allow the user to continuously change the value. (A slider is an example 
of a user interface that allows continuous interaction.) The problem is that 
these controls provide a discrete way of interacting with a continuous value, 
forcing the user to interact with the data in a way that is not natural for the 
underlying data. Discrete interaction like this can be very useful, but it is 
less natural and can be a very awkward way of exploring a range of values.

8.5.2 M o d es

User interface modes are the various states that a user interface can be in 
which determine how it reacts to the user’s input. User interface modes 
make it possible for user interaction to make use of the same actions to do 
many things, instead of requiring new user interactions for each task. A 
simple example of a mode is the current tool selection in a drawing pro­
gram. A brush tool mode draws a smooth curve when the user drags with 
the mouse in the document, compared to a rectangle tool mode which will 
draw a rectangle or a selection tool which selects graphics. Modes are often 
necessary for complex user interfaces but they can easily be abused.

Many of the drawing applications have many more modes than needed. 
Some modes are needed to enable the interface to provide enough function­
ality with the limited user input devices of the keyboard and mouse, but 
unnecessary modes are often added because creating modes is simpler than 
utilising different interactions. Modes can cause a lot of confusion and er­
rors. The more modes a user interface has, the more interactions a single 
action can have and the more effort the user has to make to remember the 
individual functions of all the modes.

Modes fail to work when the user forgets which mode the system is in and 
expects their interaction to have a different effect than the one the current 
mode provides. This could be a completely different reaction than expected.
Invisible user interface modes are bad design [Raskin, 2000].
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Figure 8.7: A dobe I llu s tra to r CS2’s list of tools

Many programs like Adobe Illustrator, shown in Figure 8.7, have lots of 
tools and thus lots of modes. EazyDraw has 170 tools for different shapes 
and functions. In Adobe Illustrator’s case many of these tools are probably 
included because of backward support causing the inevitable feature bloat 
that comes from being widely used by lots of people for different tasks for 
over 20 years.

Another approach to the task of rotating graphics is to have a specific ro­
tation tool. Applications like Intaglio, EazyDraw and Adobe Illustrator all 
have rotation tools. While this method is better than a distinct user inter­
face control, a separate tool means that the user interface has more modes 
and is more complex. In Adobe Illustrator it is possible to rotate graphics 
with several different interactions by:

1. Dragging near a corner of the shape with the selection tool.

2. Dragging near a corner of the shape with the free-transform tool.

3. Dragging anywhere with the rotation tool (this tool has several other 
modes as well).

4. Use the Object > Transform > Rotate menu to get a dialog box to 
type an exact rotation in.

5. Enter an exact value in the Transform palette.

In Illustrator's case the three individual tools (selection, free-transform, and 
rotation) duplicate a lot of the rotation functionality and can confuse the 
user simply by the number of options. Another problem of using a specific
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rotation tool is that to rotate a graphic the user first has to select the rotation 
tool, then rotate the graphic, then select the tool they were originally using 
to continue. The unnecessary mode change slows the interaction down and 
can cause further errors.

8.5 .3  R igid  design

When designing or drawing, artists often repurpose different parts of the 
drawing, using them for something different to what they originally started 
out as. During the creation of a drawing, solid coloured boxes can become 
text boxes, or text shapes turn into gradient filled shapes. In conflict with 
this flexible repurposing, most drawing programs are quite rigid in how 
they let the user interact with different graphics. Often there are several 
specialised types of graphics that each perform different functions. This 
specialisation means that graphics are prematurely specialised from creation 
and it is awkward to repurpose them for other uses.

In almost every other drawing program, individual concepts such as text 
boxes, images and text-on-a-line are separate concepts and rigidly distinct. 
These unnecessary distinctions between objects provide no usability benefit. 
They make the programmer’s (not the user’s) life easier because the distinc­
tions between types of graphics usually mirror the underlying structure of 
the classes and objects in the implementation, which means that the user 
interface can be less complicated to create because it simply exposes the 
data structures of the program.

The increase in specialised types of graphics also affects the rest of the inter­
face. Each kind of shape can be interacted with in a different way and thus 
more kinds of shape create more user interface interactions and controls. 
For example, Adobe Illustrator has a specialised graphic type for symbols, 
to interact with symbols Illustrator has extra palettes and eight additional 
tools. Instead of adding functionality through additional specialised tools 
and shapes, the same effect can be achieved by providing more generalised 
tools and shapes. A user interface with fewer specialisations has fewer com­
ponents and is simpler.

In fact, the symbols graphic type in Illustrator provides very little extra 
functionality over using groups for the same purpose. The specialised symbol 
tools allow the user to do things like pushing, rotating, scaling symbols, 
these tools are only useful for using on symbols. If these tools were instead 
generalised to work on all graphical shapes then the tools would be more 
flexible, more consistent in their use, and the entire concept of symbols could 
be removed from Illustrator. This simple change would make Illustrator’s 
user interface more simple and more powerful.
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8.5 .4  Over com plication

Adobe Illustrator has nine different graph tools, including a column graph
and a stacked-column graph. It also has 65 other tools that do everything 
from ‘symbol scrunching’ to drawing polar grids. Illustrator’s whole interface 
has grown with feature bloat, it includes lots of different tools that all offer 
very similar functionality. As a consequence it seems that Illustrator’s design 
now lacks a lot of coherence. There are lots of different types of objects 
and styles, and most of them have a different method of interaction and a 
corresponding different tool.

8.5.5 Lack o f im m ediacy

When drawing, the ability to immediately see what changes are happening is 
a large part of being able to create drawings quickly. If changes to graphics 
only become visible after the user has finished interacting with them then 
the user can be forced into a slow iterative, almost trial and error style of 
interaction.

A simple example of the lack of immediacy is the proliferation of modal 
dialog boxes in Adobe Illustrator that do not provide live updates. These 
force the user to interact solely with the dialog box, restricting the user’s 
interaction, and also to repeatedly perform the same action using the dialog 
box, undo and try again when they are not sure what the result will be.

Setting the position of a gradient fill for a graphic is another example of a
lack of immediacy. In Intaglio and Adobe Illustrator (prior to CS4, October 
2008) setting the gradient position does not provide any real-time feedback. 
To set the position the user drags a line using a gradient tool across the 
graphics, the gradient is updated once the user stops dragging. As the user 
drags the gradient tool on-top of the graphics there is no visual update of 
the gradient other than a single line showing the dragging. This makes it 
very hard to tweak or adjust gradients, as well as making it hard to get the 
gradients right in the first place.

Figure 8 .8 : G host resize outlines in A dobe I llu s tra to r

Figure 8.8 shows another example of an interface that does not provide im­
mediate feedback. Here Illustrator uses ghost outlines rather than redrawing 
the graphics as the graphics are scaled. This works in a similar fashion to 
how dragging windows used to work in most operating systems since com­
puters were not fast enough to provide immediate feedback for this style of
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interaction 20 years ago. This lack of immediacy also makes it hard for the 
user to know what the result of their interaction will be.

8.6 Sum mary

This chapter has outlined the context of drawing applications. The research 
within the area of vector drawing user interfaces is fairly limited and this 
context is primarily shaped by commercial drawing applications, specifically 
Adobe Illustrator.

What vector drawing applications should provide has been outlined, these 
factors provide the context for what any drawing application needs to sup­
port. Conversely the user interface design flaws of commercial drawing ap­
plications provide the context for what a drawing application should avoid.
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D esign &; developm ent

Lineforin is a vector drawing application, similar in functionality to appli­
cations such as CorelDraw and Adobe Illustrator. The purpose of Lineform 
is to enable users to draw, design and edit two dimensional vector drawings.

Lineform was init ially designed and programmed as a hobby project intended 
as a drawing program for the author’s personal use. After a few months of 
development and design it was decided to develop and polish Lineform fur­
ther with the aim of releasing it commercially to the public. The remainder 
of the development of Lineform happened over a period of approximately a 
year and a half before it was released to the public for sale online, costing 
$80. After the initial release, it continued to be developed as a product, 
and it has been through seven minor updates providing small bug fixes and 
four major releases providing extra features. Lineform is now published by 
Freeverse Ltd both in retail and online; and separately the rights have been 
bought by Apple. The following list is a summary of the major releases of 
Lineform.

167
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1.0 — 4th April 2006, Initial release

1.1 — 16th June 2006, SVG support and raster filters

1.2 — 11th September 2006, Published with Freeverse

1.3 — 23rd February 2007, PDF editing support

1.5 — 23rd February 2008, Pressure support and new Layer and Transform 
inspectors

The calculator, described in Part 1, provides a good example of novel user 
interface design and of the principles that were critical to its design. This 
chapter describes the design and development of Lineform, which is a differ­
ent example of a novel design and application. Lineform was designed and 
built after the calculator and its design builds on the principles and ideas 
that emerged from the calculator’s development.

9.1 M otivation

The motivation for designing Lineform was slightly different to the moti­
vation that conceived the calculator. Lineform was originally created out 
of frustration with existing drawing applications with regards to features, 
usability and price. Lineform’s design is therefore partially motivated by 
solving the user interface problems and copying the good ideas from ex­
isting applications. The calculator was designed to be a completely new 
and better approach to mathematics. Lineform was designed to be a fa­
miliar but streamlined, focused and much easier to use approach to vector 
drawing, using some of the principles from the calculator.
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Figure 9.1: Exam ple draw ings and diagram s crea ted  in Lineform

Drawings and diagrams, such as those in Figure 9.1 are examples of the
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type of graphic that Lineform was created to help produce. There are nu­
merous vector drawing and illustration applications including EazyDraw, 
Corel Draw, Adobe Illustrator. OmniGraffle, Intaglio, iDraw and Inkscape, 
but none of these programs satisfied either in terms of their user interface 
or value-for-money. Some of the programs were too basic for general needs 
(iDraw), others seemed to have appalling user interfaces (most of them) and 
others were too expensive (Adobe Illustrator). Many drawing applications 
also lacked important features. Most problematic were the lack of function­
ality like Boolean operations, flexible and capable Bezier path editing, and 
the inability to interact and transform more than one shape at a time.

Lineform’s design was both born out of the user interface design flaws vis­
ible in existing products and also in the novel user interface design of the 
calculator. Lineform is designed for today’s computers with the knowledge 
of Illustrator’s success and failures. By starting from scratch with Lineform, 
rather than 20 years of legacy, its design was streamlined and focused on 
the user interface.

Like the calculator, Lineform developed in a fluid way from these starting 
inspirations. The main principles and lessons from the design of the calcu­
lator were part of the original design of Lineform. which provided a very 
different type of user interface for their expression. And just like the calcu­
lator some original principles also evolved out of the Lineform’s design and 
development process.

9.2 Initial design

Lineform was designed to be a simple, straight-forward and streamlined vec­
tor drawing application. While this design was not fancy or hugely different 
to other drawing applications it built on the four flow-principles from the 
calculator: projection, continuity, W YS1WYE  and declaration. These prin­
ciples were used in different ways to how they were used in the calculator.

Figure 9.2: Some of th e  first draw ings done w ith  Lineform  (Spring 
2004)
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The design and creation of Lineform lasted about 2 years. The initial appli­
cation was functional from the start and was used for various projects early 
on. Some of the first drawings done in Lineform are shown in Figure 9.2, 
these were created for a racing game and Lineform, although only a couple 
of months old, was used for all of the stylised drawings in the game.

Lineform was created over the course of the next 2 years, finally being re­
leased after a short beta period on the 4th April 2006. The initial feature 
list included:

• Easy simple powerful interface

• Powerful Bezier editing tools

• Boolean operations

• Great typesetting

• Artistic strokes

• Bitmap and vector import/export

Initially Lineform was called Inform, however this was changed to with the 
release of version 1.1 so as to not conflict with the existing Inform program­
ming language.

9.3 Continued developm ent

After the initial release, Lineform was developed further, incorporating the 
feedback from many users. Initially the design and development was spurred 
onwards to meet user needs and in order to be submitted to the Apple Design 
Awards which celebrate “technical excellence, innovation, and outstanding 
achievement” and are the Mac software’s equivalent to the Oscars.

9.3.1 A pple D esign  A w ards

Applications submitted to the design awards are judged in several different 
categories including: technology adoption, user interface design and innova­
tion. In order to have a strong chance of winning, for the first three months 
after release Lineform’s development focused on incremental features or bug 
fixes in response to user feedback and a major version 1 . 1  which incorporated 
many Mac OS X technologies.

The main features that were specifically implemented and were aimed at 
winning these awards were: Core Image raster based filters, AppleScript 
support and Spotlight support. All these were specific Apple technologies 
that would improve Lineform’s success with the judges, and in fact these 
were all mentioned at the awards ceremony when Lineform won.



9.3 Continued development 171

Figure 9.3: iPod N ano (K aren H ughes, M ay 2006)

Drawings were also solicited from all the early users to submit to the design 
awards. One of the drawings of an iPod Nano by Karen Hughes, Figure 9.3, 
was used to demo Lineform at the awards ceremony.

9.3.2 Initial user feedback

The initial feedback included many bug reports but was overwhelmingly 
positive. Here are a couple of examples:

But d o n ’t let all th o se  bug reports fool you. I’m still deliriously 
happy with th e  program.

Uli Kusterer (pril 2006)

I just dow nloaded Inform today and must say I'm impressed with 
your app. It’s exactly  w hat I’ve been looking for to  help with som e  
o f  my work.

— Jeff Hester (April 2006)

The incremental changes involved several bug fixes and performance im­
provements, but also several important features such as an outline view 
which enables non-WYSIWYG but easier editing of complex drawings and 
many more keyboard shortcuts.

Single-pixel horizontal or vertical lines drawn on a per-pixel grid 
suffer from being anti-aliased into two-pixel wide “blurry line” when  
exported (this is a big blocker for m e) this looks like a rendering 
bug

Dave Balmer (April 2006)

One of the mistakes made at this point, in order to please initial customers 
was implementing pixel aligned grids. Dave Balmer‘s feedback about a spe­
cific issue with anti-aliasing prompted the creation of the specific solution 
of a toggle that adjusted the grid position by half a pixel. This feature is
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rarely useful and its use is obscure. Lineform’s user interface would be sim­
pler without it, using a different solution to anti-aliasing would be a better 
approach.

A status bar that provided contextual help and information was one of the 
main features that were implemented in version 1 . 1  in response to user feed­
back. Lineform makes use of several modifier keys to change the interaction 
mode, these physical modes, described further in Chapter 10, are used for 
many different interactions but they are invisible to the user. Users often 
needed the functionality but were confused about how to achieve what they 
wanted. The status bar provided feedback to the user about what modifier 
keys and modes axe available, this allowed users to discover the functionality 
without reading the manual. An additional physical mode was also added 
to allow the user to control the scaling of the stroke size when scaling a 
drawing.

The initial method of rotating a shape was copied from CorelDraw. To toggle 
the rotation or transform modes the user clicked on a selected shape. To 
rotate a shape a user would select it, then click on it to toggle the mode then 
use the visible rotation handles to rotate the shape in place. This interaction 
was found to confuse users and was replaced with an alternate physical mode 
using the control key to toggle the rotation or transform mode. This made 
it quicker and easier to rotate shapes.

Other improvements such as group editing, clipping, SVG import and export 
were also added. SVG support was in response to the frequent requests for 
easier ways to get vector data in and out of the application.

Tools in version 1.0 had two modes: locked and unlocked, a locked tool 
would stay selected after use, an unlocked tool would switch back to the 
selection tool after use. The idea behind this was to enable a user to quickly 
draw a shape with one tool and to not be stuck in it, but also to allow a user 
to double click a tool to lock it so that they could also draw many shapes. 
After user feedback it was decided that this was additional complexity that 
did not lend the user interface any benefit, and it was removed and tools 
always locked for simplicity.

9.3 .3  C om m ercialisation

Freeverse Inc who had expressed an interest in publishing Lineform acquired 
the publishing rights after version 1.1 was released. Freeverse did not change 
the development or design process of Lineform, they handled support and 
raised its profile by creating a drawing competition and selling boxed copies 
in retail stores. To provide a good release for them, several fixes and small 
improvements were fitted into the time before their release. A new transform 
inspector was added which allowed users to specify the exact dimensions of 
shapes. This was a feature that was requested often from users creating
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exact drawings. This inspector was also designed to be projected, such that 
it provided live feedback as the user transformed shapes on the canvas.

Some user interface aspects which were not entirely projected were updated, 
for example the stroke width in an inspector now changed when transforming 
a shape on the canvas.

A new physical mode was also used for toggling the scaling of shapes when 
transformed on the canvas. This might seem slightly contrary but this al­
lows some handy, if infrequently used interaction. For example dragging 
a shape with a image fill and toggling off the shape transformation means 
that the image fill is transformed and not the shape, this allows the fill to 
be positioned inside the containing shape.

9.3 .4  U ser feedback

The remainder of Lineform’s development focused on adding features, often 
in response to user feedback. This section provides examples of user feedback 
and the features that came from it.

Implemented features

"I often have to  manipulate elem ents of existing PDFs, such as 
graphs created by scientific programs like Matlab. Is it possible to  
do this in Inform?

— Arjun Raj (April 2006)

Some user feedback was directly helpful in prioritising features for Lineform. 
Several users requested PDF editing, both as a way to import graphics into 
Lineform and to edit existing graphics. PDF import as images was a feature 
from the start, PDF editing was added later after several requests.

The type tool doesn't seem  to  offer kerning and spacing adjust­
ment.

— Roger Harris (April 2006)

Some users had problems kerning, or wrongly assumed that Lineform did 
not support kerning. The standard OS location for kerning was buried in a 
menu and it was decided that it would be easier to use and provide a better 
experience to add a specialised text inspector. This inspector provides con­
tinuous control using sliders of character spacing and other text attributes. 
The continuous interaction allows for much easier exploration and use.

Unimplemented features

Some features that users requested were just too complex and did not fit the 
goals for Lineform, these were features like animation or bitmap editing.
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Is Lineform a potential replacement for the vector and bitmap  
creation /editing functions o f Canvas?

— Bob (October 2006)

Other applications

Many users wanted Lineform to work like their favourite drawing applica­
tion. These desires were often in contention with each other and with the 
goal of making Lineform a streamlined and good vector drawing app. Here 
are a couple of examples:

I really hope that Lineform can becom e the new 'Canvas’ and 
better.

— Vikingz (February 2007)

[I want Lineform to:] 1. look like Adobe Illustrator CS3.
2. feel like Adobe Illustrator CS3.
3. read Adobe Illustrator CS3 files natively.
— Lucius Kwok (August 2006)

I urge the developers to  adopt the best conventions o f CorelDraw
— Stokestack (October 2006)

The main response to these requests was to politely say that Lineform had 
it’s own design goals.

9.4 Flow principles

Lineform was designed within a context shaped by the calculator’s design. 
From the very beginning, the calculator’s flow-principles outlined in Chap­
ter 4 affected the design of Lineform and were a continued source of guidance 
and inspiration. This section describes how these principles affected Line­
form’s design.

9.4.1 P rojection

Chapter 8  mentioned the lack of immediacy that some drawing programs 
have, this is in direct opposition to the projection principle. A projected 
user interface is one which is always up-to-date and immediate. Situations 
like that of Figure 8 . 8  are caused by user interfaces that are not projected 
and provide many problems for users.

The lack of projection is especially a problem for drawing applications, be­
cause it severely hampers exploration and experimentation, which are crit­
ical components of most artistic creation. A non-projected user interface
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forces a trial and error approach to exploration which is slow and error 
prone.

The flow principle of projection asserts that the user interface controls and 
the rendered drawing are different views of the same data. A lack of immedi­
acy in updating the drawing, for whatever reason, creates an inconsistency 
between the user interface controls and the drawing in the canvas. Line­
form keeps the user interface and the drawing in sync at all times. There 
is no inconsistency between the drawing and the user interface controls in 
the inspectors whether the user is modifying a control in an inspector or 
modifying the drawing on the canvas with direct manipulation.

Lineform was developed with the immediacy of projection in mind from the 
very beginning. The first release of Lineform (then called Inform) listed this 
immediacy as a selling point when describing the gradient feature: “Unlike 
some awkward interfaces for gradients, Inform provides excellent interactive 
tools. You can interactively set gradient stops from the inspectors including 
transparency. And from the document you can drag and alter the gradients 
in interactive real time.” This feature means that when the user changes a 
gradient, the user sees the result of their change immediately. This makes 
Lineform much faster to use than other applications where the user has to 
finish interacting before updates occur.

All visual updates happen immediately when interacting with the drawing 
in Lineform. Every change to a user interface control is immediate reflected 
in the drawing, there are no modal or delayed operations. Everything in 
Lineform is always up-to-date, everything the user does provides immediate 
feedback. There is not a single modal dialog box, which hinders the experi­
ence of projection, in the entire application. Modal dialog boxes often break 
projection and force the user to wait until the dialog box is closed before 
any action is taken and the user can see what they have actually done.

Not only does projection reduce the number of possibilities for confusing 
the user but it allows faster interaction and decisions about the creation of 
a drawing. Projection means that the user interface provides very useful 
feedback whilst manipulating the graphics. For example, when changing 
the line width of a stroke in an inspector it is possible to see the drawing 
updated immediately in the canvas. This allows the user to quickly get the 
exact value they want in one continuous interaction, without resorting to 
repeatedly trying different values.

Exploration is a critical component of drawing. The combination of pro­
jected editing and providing continuous interaction with user interface con­
trols, are large factors in making it easy for the user to easily explore and 
enjoy drawing. These principles as part of Lineform’s design allow the user 
to very quickly see and explore the effect of a entire range of values and 
their effect on the drawing.
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9.4 .2  C ontinuity

Lineform provides a very different user interface to calculator. While the 
calculator often made state changes independent of the user, causing com­
ponents of the mathematical expression to move around; Lineform does not 
make any state changes without the user initiating and controlling them.

As the user changes aspects of their drawing in Lineform they are directly 
manipulating the drawing and the feedback from that manipulation is pro­
jected and immediate. There are no real state changes made by computer, 
and thus no unexpected continuity errors. The immediate feedback which is 
smooth and fast provides the continuity or ‘morphing’ as the user interacts.

9.4 .3  W h at Y ou See Is W h at You E dit

With respect to how the user edits drawings, Lineform again provides a 
different sort of interaction to the calculator. As a drawing program the 
majority of user interaction is a direct interaction with the visible objects. 
Thus almost all drawing programs are WYSIWYE by default. They have 
no hidden state; the drawing is what the user edits.

There are cases of drawing programs ignoring this, for example Bezier nodes 
can be selected while they are not visible in Adobe Illustrator. The direct 
selection tool for editing Bezier nodes can be used to select invisible nodes on 
an unselected shape, the nodes appear as the user hovers over them. This is 
a case of the designers choosing a potential speed benefit over the visibility 
and clarity of what is editable. A user interaction where you interact on 
something that is unseen is by definition not WYSIWYE, and can be very 
confusing for users.

Vector graphic based drawings can also get very complicated. In fact there 
are innumerable ways in which the same drawing could be composed or 
created. Thus editing what you see can be complex, because what you see 
is not a one-to-one match with the underlying vector model. The user can 
not know what the underlying structure of shapes are from looking at the 
resulting image. A potential approach to this problem, one which Lineform 
does not use, is planar maps which provide a completely different but more 
WYSIWYE experience Baudelaire and Gangnet [1989].

For a drawing program both seeing what you get when you export or print 
the drawing (WYSIWYG) and editing what you see (WYSIWYE) axe both 
very important. In order to aid both of these purposes Lineform provides a 
soft proof and outline view of the drawing. Soft proof supports WYSIWYG 
by rendering the drawing in the colour space of the printer, usually CMYK, 
this shows the colours and contrast of the drawing as they will be when 
printed. The outline view supports WYSIWYE by drawing every shape as 
a thin outline, this allows the user to better see the individual shapes and
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Figure 9.4: T he outline view of a flyer

how they overlap. Figure 9.4 shows the drawing and outline view of the 
same flyer.

Features such as the outline view, the object tree in the Layers inspector 
and focus/isolation mode are designed to allow the user to more easily see 
and understand the vector data. These are designed to support a more 
WYSIWYE user interaction.

9.4 .4  D eclarative in teraction

The calculator provides a declarative interface to mathematical calculations. 
It is possible to write on both sides of the equality. The calculator then 
enforces the equality by correcting the side or sides of the expression that 
are not completely specified.

Lineform is declarative because there no distinction between ‘input’ and 
‘output’ in part because of the nature of drawing programs. Any visible 
data is editable whether it is by direct manipulation on the canvas or by 
interacting with user interface controls in the inspectors. None of these 
representations are considered ‘ou tpu t’ and cannot be edited.

Lineform allows the graphics to be edited from many different views. While 
there are no semantic “declarations'’ that Lineform enforces, it has very 
little distinction between input and output, which is what makes declarative 
interfaces easy to use.

The Transform inspector in Lineform is an example of a user interface con­
trol that could be considered primarily for input but supports both input 
and output equally. The Transform inspector can be used to enter exact 
dimensions for the selected graphics, and conversely when changing the size 
or position of graphics in the canvas it is possible to see the exact numerical 
values in the inspector updated continuously. This allows the user to use 
the Transform inspector as guidance when they are manipulating graphics.
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9.5 Lineform principles

The calculator’s flow principles provided an initial starting point and further 
refinements or new principles were developed alongside these as Lineform 
was created.

9 .5 .1  P hysical m odes

As the design got more complex, additional modes were needed and physical 
modes were used repeatedly. Physical modes provide quick and simple mode 
switching that reduces the user’s cognitive burden and allows for a very fast 
exploration of what each mode achieves. As the design of Lineform evolved, 
physical modes were used in many different situations especially when short 
term modes that benefited from quick toggling were needed.

The rotation interaction started off as a non-physical mode that was toggled 
by clicking on the selection. After user feedback and continued use, this 
additional mode seemed to cause confusion and slowed users down. Here is 
one example of user feedback on the initial rotation interaction:

Make it easier to  toggle between th e square “grippies” and the 
oddly-shaped ones for rotating. I find m yself clicking several tim es 
until I'm finally rid o f the rotation grippies so I can resize an object.
W hat about having a dedicated "resize" tool or menu item instead?
Or you could also just have the regular grippies, and in som e spots  
a special “rotate” grippie next to  it or so.

— Uli Kusterer (April 2006)

While none of the user’s suggestions were taken, the underlying problem was 
solved in a way that streamlined the user interface and removed a confusing 
non-physical mode.

9.5 .2  F lex ib le  design

Lineform’s flexible design was directly inspired by the rigid design of other 
drawing applications. Instead of providing rigid specialisations, such as a 
specific text or image object, Lineform was designed from the start to allow 
objects to be reused for different purposes. In Lineform there is no over 
specification, the original marketing blurb explained this as: “Fit text inside 
any odd shape. Inform does not constrain you to special text objects, but 
lets you put text inside any shape. Text is then flowed through the shape 
to create the designs you want.”

An example of this in action is how groups and layers which perform similar 
roles evolved to provide the same capabilities and in fact are now exactly the 
same. The original 1.0 release of Inform had a completely distinct concepts
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of groups and layers. Layers could be named, locked and made invisible 
from the Layers inspector; groups 011 the other hand could be resized and 
directly manipulated on the canvas.
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Figure 9.5: T he evolution of the  Layers inspector

Figure 9.5 shows the evolution of the Layers inspector from left to right. 
The latest layers inspector allows every graphic to be manipulated just as 
the layers were in version 1.0. they can all be named, locked and made 
invisible. Groups and layers became identical and removed the arbitrary 
restrictions the distinction placed 011 the user. The new version, without 
the distinction, allows users to: apply an opacity or filters to layers, to 
select and resize layers, to name, move and lock groups or other graphics, to 
drag rearrange groups, layers and graphics (including dragging ‘layers’ into 
groups or groups out of ‘layers’).

9.5.3 A ppropriate controls

Appropriate controls sums up the idea that continuous values should be 
controlled through continuous interaction. For example the width of a line 
is controlled using a slider. Combined with projected editing this allows the 
user to quickly and easily explore a range of values.

This was a core principle from the very start of Lineform’s design. Almost 
every continuous value is controlled through either direct manipulation or 
through a continuous control such as a slider. Both user feedback and con­
tinued use refined this initial principle into ensuring that continuous values 
have both a continuous control for exploration and quickly setting rough 
values easily, and a discrete control for setting exact values and adjusting 
rough values.

Later in version 1.5, Lineform added a Transform inspector that provided the 
discrete, exact controls to complement the continuous direct manipulation 
of transforming graphics 011 the canvas. The Transform inspector provides 
discrete numerical value entry for the size, shape and rotation of graphics 
which are extremely useful for setting the size of graphics to exact values.
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Version 1.5 also added a Text inspector that provided continuous controls 
for aspects of text layout that were originally controlled through discrete 
menu items. The Text inspector provides continuous setting of character 
and line spacing and baseline position, these are projected and allow much 
easier exploration and setting of values than the discrete menus did.

9.6 Sum mary

Lineform was dually inspired by the success of the calculator and the failings 
of the existing drawing applications. The problems seen with other applica­
tions outlined in the previous chapter include a lack of direct manipulation, 
lots of modes, rigid design, over complication, lack of immediacy and a lack 
of features. Lineform was designed specifically avoiding these flaws seen in 
other programs and building on the principles that developed along with the 
calculator.

The design of Lineform once publicly available stretched to meet the needs 
of the many users while also attempting to retain the core goal of being 
a streamlined, focused and much easier to use approach to vector draw­
ing. Since its initial release Lineform has continued to be developed and 
incorporates user feedback when it meets the core goal.

The calculator flow principles: projection, continuity, WYSIWYE and declar­
ative interaction; are also an important part of Lineform’s design. The im­
mediacy of projected editing means that exploration, a large part of drawing, 
is much faster. Continuity is maintained through no state changes that the 
user is not directly controlling and the speed and immediacy of the interac­
tion. WYSIWYE is partially supported by providing different views of the 
drawing, like focusing and the outline view, that provide a clearer view of 
the underlying data. Declarative two-way editing on the canvas and in in­
spectors allows users to switch repeatedly and iterate between the different 
views, so they can edit in the view that best suits their purpose.
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Principles

This chapter mirrors in part, Chapter 8 ’s criticism of bad vector graphics 
drawing user interfaces. The areas of bad user interface design that were 
identified are used to show how Lineform avoids the same failings. How the 
flow principles from the calculator affected Lineform design was discussed 
in Chapter 9. This chapter describes the new concepts and principles that 
were important and solidified during Lineform’s design.

10.1 Physical m odes

Mode errors [Norman, 1981], such as drawing with the wrong tool, originally 
defined as what happen when the user misclassifies a situation resulting in 
actions which are appropriate for the user’s interpretation but not the true 
situation.

Studies [Sellen et al., 1992] have shown that both visual and kinaesthetic (by 
physically pressing a key or a foot pedal) feedback can significantly reduce 
mode errors. Kinaesthetic feedback has been shown to be more effective 
than other forms of feedback (e.g. visual or audible) in reducing errors and 
reducing the cognitive load of mode changes. Kinaesthetic user-maintained 
modes, that is modes which are maintained by a continuous physical user 
action such as holding a key down, provide feedback to the user that is hard 
to ignore or forget. Raskin [2000] uses the phrase quasimode to label the 
same concept.

There is a limit on the number of different interactions that a user interface 
can provide without overloading the interface and the user with different 
methods of interaction, so using modes allows a user interface to provide 
more functionality by allowing single interactions to have multiple functions 
in different modes. This often leads to a profusion of modes in complex user 
interfaces like drawing applications and the numerous modes and tools of 
drawing applications was one of the design flaws outlined in Chapter 8 .

181
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The primary problem with modes in a user interface is their virtuality. That 
is, the current mode is often forgotten by the user, even if it is visually 
represented on the screen. Modes have a large impact on what the user’s 
interaction does, but they rarely have a high visibility or awareness. This 
leads to mode errors, where the user expects a different result from their 
interaction than the current mode provides.

Instead of “kinaesthetically user-maintained” , physical modes is the term 
used here to describe the concept of the user controlling interaction modes by 
physical action. Most human sensory inputs operate such that the awareness 
of constant stimulus decreases over time, which continues until there is no 
awareness of the stimulus at all. In comparison the awareness of muscle 
action to produce a force does not fade with time [Raskin, 2000]. This helps 
explain the greater awareness of modes caused by muscle action and the 
corresponding reduction of mode errors. It is much harder to forget what 
the current mode is if body is physically part of the interaction that causes 
the mode. This sense of the body’s location and positioning is also called 
proprioception.

Use of physical modes is not a new concept, for example many user interface 
use the Shift key to toggle a mode where typed letters are capitalised or 
objects are added to a selection and the Alt key on a Mac is often used 
to toggle the copying of dragged items. Consider how natural these modes 
become, even though there is no other representation of the mode except 
for the physical act of holding down a key, there is very little confusion 
over which mode the user interface is in. Capitalising letters using the Shift 
key comes very naturally to computer users, however the Caps-lock key 
which provides the same functionality, the same mode, but in a different 
form causes confusion. Because the Caps-lock key is not user-maintained, 
or physical, the awareness of the mode is reduced, and even though the 
Caps-lock key has its own toggle light on the keyboard Caps-lock sometimes 
cause even experienced users confusion. Most experienced computer users 
rarely use the Caps-lock key because of the increased cognitive and physical 
effort of using it.

Of course for long term modes, interaction modes that a user interface is 
used in for extended periods of time, a physical mode does not always make 
sense. Holding down the Shift key to type a paragraph or even a heading in 
capital letters could get physically tiring.

Some user interfaces such as SMARTboards and Wacom tablets provide real 
physical modes, where different physical tools perform different functions. 
For example a SMARTboard has three different coloured pens and an eraser. 
The SMARTboard recognises when these are removed from their holding 
trays and triggers interaction modes that draw the correct colour on the 
screen or erase parts of the drawing. Which tool the user is using is physically 
dependant on which tool they are holding.
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10.1.1 Lineform

The primary interaction with Lineform is through the mouse, but Lineform 
makes widespread use of physical modes to alter the effect of this interaction. 
Lineform uses several modifier keys: Shift, Control, Alt, Command, Z, and 
~ . Each of these keys when held down affects how the user interface interacts 
at the moment.

b h b ♦ . ♦

Scale Rotate/Skew

Figure 10.1: R o ta tion  m odes in Lineform , toggled by th e  control
key

Figure 10.1 shows two modes for modifying shapes in Lineform: when the 
Control key is held down the current control handles that surround a se­
lection change from resizing to rotation handles. Here the mode provides 
both visual feedback, the handles change appearance, and physical (or ki­
naesthetic) feedback of the user physically holding down the Control key. 
Because of the physicality of the mode it is almost impossible to forget that 
the system is in the rotation mode.

The modifier keys augment the current tool mode in Lineform, affecting 
the action the user is currently performing. Different modifier keys are 
valid in different situations but their function is consistent, for example the 
Shift key toggles the restriction of transforms, when rotating a restriction of 
15° angles, when scaling a restriction of a constant aspect ratio and when 
dragging a restriction to horizontal or vertical movement. Table 10.1 shows 
a summary of the physical modes used in Lineform and a description of their 
function.

Figure 11.5 in Chapter 11 shows how toggling the fill and the stroke mode 
affects the scaling of an image in a box. These two modes, scaling the 
fill and the stroke, are physical modes, and they are toggled by holding 
down the Command and Z key respectively. These modes can be toggled 
independently of each other and the user’s actions. As the user transforms a 
graphic they can toggle these modes off and on, instantly seeing the changes 
each mode affects.



Chapter 10 Principles 184

Physical key Mode function
Shift Constrains modifications to a restricted set of values,

like 15deg angles or rational fraction scales.
Control Toggles between scaling and rotation

Alt Transforms the centre of the modification to the cen­
tre of the selection.

Command Toggles whether the fill style of the selection will be
modified.

Z Toggles whether the stroke style of the selection will
be modified.
Toggles whether the shape of the selection will be
modified.

Table 10.1: The physical modes used in Lineform

10.1.2 R ecall

Physical modes such as using the Shift key to capitalise letters becomes very 
natural and are remembered because they are used consistently across most 
user interfaces. In this way they also utilise “muscle memory” and become 
almost automatic.

However, in a new user interface, such as Lineform; where the modes are 
different, knowing which keys do what is not obvious. Therefore to provide 
the user with a clear knowledge of the currently applicable modes and keys 
Lineform provides a status bar just below the toolbar in each document 
window. The status bar for various different tools is shown in Figure 10.2, 
the highlighted status bar is shown when using the selection tool. This 
status bar shows the current scale of the selection and the current modifier 
keys that affect the transform, such as Shift to constrain the transform. 
The changes to how the shapes are modified are immediately shown when 
any modifier keys are pressed, this projection allows very quick correction 
of mistakes and a comprehension of what each mode does.

I  Scale: 114.5Opt x t0 .39pt <50.44* x 50.44JQ O constrain X from center z static stroke K static fill esc: cancel 1

|  Drag to select graphics. O add to selection \  Inside box 1

|  Rotate: 15.00* O constrain X static fill esc: cancel 1

j  Creating: S6.00pt x S€.00pt O constrain X from center esc: cancel ' }

j Clkk to create lines. Drag to  create curves. O constrain «  delete last segment finish esc: cancel !
O kk/drag to select graphics. O toggle X underneath I

Figure 10.2: The status bar in Lineform
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10.1.3 D isadvantages

A disadvantage of using modifier keys for physical modes is that the user 
usually needs two hands, this is especially true when using the mouse as the 
main tool of interaction, which Lineform does. Users that are unable to use 
both hands are unable to access these modes. This is a common problem 
and Mac OS X provides a universal access feature called sticky keys that can 
treat the standard modifier keys as toggles. One press of a modifier key and 
it is temporarily held down until a different key is pressed, if the modifier 
key is pressed twice then the modifier key is kept held down, a third press 
and the modifier key is toggled off. These different modes are accompanied 
by both a typewriter sound and an on screen depiction of which keys are 
held down.

e o e
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These modes are accompanied by both a typewriter sound and 
an on screen depiction of what keys are held down. This 
enables users with problems holding down multiple keys at 
once to perform the needed interaction with a user into
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Figure 10.3: Sticky keys in M ac OS X

Figure 10.3 shows the on-screen visual reminder of the current modifier key 
mode provided by sticky keys, in the figure the Shift key is permanently 
held down and the Command key is temporarily held down. The next non­
modifier key press will be typed with the Shift and Command modifier keys, 
after that non-modifier keys will be typed with just the Shift modifier key. 
Sticky keys enables users that have difficulty holding down multiple keys 
at once to perform interaction with a user interface as if they were holding 
down all the keys at the same time. However despite both the audible and 
visual reminder of the current mode it can be very confusing.

10.1.4 K ey concepts

Physical modes offer a very simple and effective way of providing short term
modes in a user interface. They allow very quick toggling and are very hard 
to forget .

• Quick Modes that are short term or need to be toggled quickly 
should be physical.

• Complementary Physical modes complement another interaction, 
they should be secondary in effect and simple to toggle, not distracting 
from the main interaction.
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• Projected — The changes a mode affects should be immediately visi­
ble.

10.2 F lexible design

Green’s [1989] cognitive dimensions describe several heuristics which can be 
used for design or evaluation. Two of these related to flexibility: viscosity 
and premature commitment, are useful for describing flexible design. Vis­
cosity describes how much effort is required to affect change in a program 
and premature commitment is when the user is forced to make unreversable 
decisions before they want to.

A design goal for Lineform was to provide a user interface that was both 
flexible and that did not constrain the user by over-specialising certain types 
of graphics. In Lineform there are very few different types of graphic and 
it is very easy to convert between them. This was directly inspired by the 
rigid and restricting design of some drawing applications, such as Adobe 
Illustrator.

Lineform does not have specialised graphics types like: text-boxes, text-on- 
a-line, images, spirals or graphs. The more complex shapes such as graphs 
or spirals can be constructed from the simpler shapes, and the other graphic 
types like text or images are provided as styles which can be applied to any 
shape.

In Lineform it is possible to draw any shape and fill it with text or an image. 
In contrast, in most drawing programs, images and text are provided by us­
ing specialised types of graphic. Both approaches allow the same drawings to 
be created. However, Lineform’s approach does not pre-specify a graphic’s 
function at its creation, they can easily be used for any kind of purpose. Ap­
plications such as Illustrator, that provide lots of specialised graphic types, 
make changing the function of a graphic awkward, and often have different 
user interfaces for each different specialisation. Additionally the extra con­
trols and inspectors that that these require can make the applications both 
harder to learn and use.

Groups are also used for both layers and on canvas groups, there is no spe­
cialised layer class. This means that layers provide all the same powerful 
operations as groups, for example, just like a group, layers can have trans­
parency, raster effects, or be edited in isolation mode (this hides the rest of 
the document so the user can focus on a group).

Thus there are fewer special concepts in Lineform’s user interface and it is 
therefore simpler and more coherent. This design also means that the user is 
more free to work with their preferred process, fewer aspects of the drawing 
are pre-specified unnecessarily restricting the user.

One aspect of WYSIWYE is that what things look like should determine
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what they are and how they can be interacted with. In many drawing 
programs there are specialised object types that look identical but have a 
specific role that is fixed and unchangeable. The over-specification of the 
role of an object not only forces the user to make a decision before they 
want to, but also hinders WYSIWYE by treating objects that look similar 
in vastly different ways.

10.2.1 K ey  con cep ts

Viscous or rigid user interfaces increase the amount of barriers a user has to 
overcome in order to affect change. In contrast flexible user interfaces allow 
users to delay decisions until they are ready and to easily change their mind, 
providing a much more enjoyable user experience.

• Flexible — Allow the user to change their mind whenever they want. 
Enabling change facilitates exploration.

• Deferred — Do not force the user to decide anything before they need 
to. Unnecessary, early or premature specification restricts the user 
needlessly.

10.3 A ppropriate controls

The underlying values in a user interface, the user interface control types 
and the user’s interaction can all be discrete or continuous. Matching the 
correct control, value and interaction is important for providing the right 
experience.

Discrete values are those that are individually distinct, they do not have an 
ordering or have a finite number of states between two values. Examples of 
discrete values are integers or types of fruit. Continuous values are those 
where there is a smooth and unbroken progression between any two values. 
Examples of continuous values are real numbers or temperature.

Correspondingly, user interfaces have controls for discrete and continuous 
values. Check-boxes, pop-up menus and selection in tables are all discrete, 
whereas sliders and directly manipulatable two dimensional position con­
trols are continuous. Some controls such as text boxes can specify both 
discrete or continuous values. However both types of user interface con­
trol can still offer discrete or continuous interaction. Discrete interaction 
is a stop-start affair where the value is only set once the user has finished 
editing. Continuous interaction is a smooth projected experience where the 
value is continually adjusted whilst the user interacts. Without projection or 
continuous interaction even a continuous control exhibits discrete behaviour 
and hinders the user exploration and ease of use.
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Figure 10.4: U ser interface controls in L ineform ’s Effects inspec­
to r.

The user interface in Lineform is primarily composed of the canvas and the 
inspectors. The inspectors are mostly made up from standard user interface 
controls. Although interaction with the graphics is indirect, the interaction 
with the controls is direct. Figure 10.4 shows Lineform's Effects inspector 
which controls the opacity, blend mode and the drop shadow of the selected 
graphics. The continuous variables (opacity and drop shadow radius) are 
controlled through sliders which are continuous user interface controls. The 
position of the drop shadow is similarly controlled through the custom user 
interface control that looks like a white box. where dragging on the box 
changes the offset of the drop shadow as a continuous interaction. The 
discrete attributes, such as blend mode and shadow, are controlled through 
the check-box and pop-up button which are discrete controls.

This is a result of a principle informing the design in an unanticipated way. 
Only in retrospect, in clarifying the principle, does the potential improve­
ment to Lineform’s design become apparent.

A continuous discrete user interface control is possible when there is a live 
preview of the result during the interaction. An example would be if the 
blend mode pop-up menu showed the results of the selection whilst the user 
scrolled through the menu. Although Lineform does not do this now for 
any discrete controls, it would be a big improvement especially for the blend 
modes. Lineform has 13 different blend modes, some of which can have 
unusual results, therefore it is often the case in the current implementation 
for the user to repeatedly click on the pop-up menu and select the modes in 
turn  in order find the right blend mode. In a continuous implementation the 
user could click the pop-up menu then just scroll down through the items 
seeing the results as each item is hovered over in turn, this would result in 
a vastly faster and easier interaction.

Providing continuous interaction and control for a continuous attribute makes 
it easier and more natural to change the attributes. A continuous control 
that is projected and provides live updates allows the user to quickly explore 
a large range of possible values. Of course, being able to specify the exact 
values for these attributes is still valuable, so Lineform often provides both 
types of cont rol and interaction. In Figure 10.4 both a slider and a text-box



10.4 Other principles 189

are provided for the opacity attribute of the graphics.

10.3.1 K ey  con cep ts

The correct user interface controls for the right values makes a huge differ­
ence. The right control can enable the user to manipulate it’s value quickly 
and easily.

• Discrete — Discrete values should be controlled through discrete con­
trols.

• Continuous — Continuous values should be controlled through con­
tinuous controls.

• Exact — Continuous values should also have an exact way of setting 
values.

• Continuous interaction — Every control should, where possible, pro­
vide continuous projected interaction.

10.4 Other principles

These are some of the other principles that were important during Lineform’s 
development.

10.4.1 D irect m an ipu lation

Direct manipulation [Shneiderman, 1983] is a standard user interface design 
principle, but one that is also critical to Lineform’s user interface. Lineform 
provides manipulation controls on the actual shapes as often as possible, 
instead of in other distinct user interface components. For example it is 
possible to directly grab the corner of a selection and rotate the selected 
graphics. Manipulating the graphics is done by ‘interacting’ with the graph­
ics, this provides a much easier and natural control of the graphics than a 
separate user interface control.

Unfortunately there are many complex aspects to vector drawings that do 
not easily allow for an obvious direct manipulation. For example, it is not 
obvious how to directly specify the stroke dashes of a graphic by interacting 
with the graphic on the canvas. In fact most of the attributes of the visual 
style of graphics have the same problem. In general the geometric shape 
and position of graphics lend themselves to direct manipulation, but their 
visual style and appearance do not. Lineform manipulates the shape and 
appearance of objects in different user interfaces that best control those 
aspects, this is further described in Section 10.4.3.
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10.4 .2  S im plicity

Lineform seem s simple, but the more you look, the more features 
there are. T h at’s a nice feat that Adobe and others don’t seem  to  
be able to  pull off.

— Dylan (April 2007)

Part of the motivation for having few specialised graphical types in Lineform 
is the motivation of keeping it simple. This desire was driven by the over 
complication of user interfaces. The fewer concepts and the more coherent 
those concepts are; the easier and simpler the user interface should be to 
learn and use.

The design of Lineform tries to minimise the number of specialised tools, 
modes and concepts. The aim was not to overload individual modes of 
operation but to reduce the complexity of Lineform’s user interface.

Lineform lacks many of the numerous “complex” features of programs such 
as Adobe Illustrator. However the feature set of Lineform probably pro­
vides almost all of what novice users require and a large proportion of what 
professional and amateur users want.

Many of the complex features of Illustrator can be replicated with a couple 
of extra steps in Lineform. The benefit of a simpler and streamlined user 
interface outweighs the cost of needing extra steps to achieve complex effects.

10.4.3 W ell defined roles

Lineform provides a clear distinction between the function of different as­
pects of its user interface. The main two components of this are the docu­
ment canvas and the inspectors. The inspectors always and instantly show 
the current state of the selection, the document always and instantly shows 
the current drawing. They do not do anything else. The well defined roles 
of the different parts of the user interface contribute to Lineform’s ease of 
use.

There are no dialog boxes or other modal user interface components in Line­
form. All the different aspects of a drawing are presented to the user through 
the inspectors which can be visible all the time and are always up-to-date, 
providing projected editing. The inspectors have a single function, which is 
showing and modifying aspects of the current selection or document. The 
inspectors do not provide any non-reversible actions, undo is never needed 
to change a value in an inspector back to i t ’s original value.

Manipulating the shape of graphics is performed on the canvas and addi­
tional actions such as Boolean operations and aligning graphics are available 
through menus, short-cut keys and toolbar buttons.



10.5 Summary 191

10.5 Sum m ary

Lineform avoids many of the issues described in Chapter 8  by providing 
a straightforward, flexible user interface to drawing. The consistency and 
overall simplicity of the user interface design are one of the key qualities of 
Lineform.

The primary principles that are important to Lineform’s user interface de­
sign include: physical modes, having a flexible design and using appropriate 
controls. The use of physical modes simplifies and makes mode switching 
within tools simpler and quicker. By using physical modes the user can very 
quickly switch modes within a tool whilst they are performing any interac­
tion. Lineform’s flexible design allows users to not worry about restrictions 
from premature commitments, this allows users to not worry about future 
changes of mind while they want to be creative. Using the appropriate con­
trols for the right underlying values means that the values are both easy to 
set and to explore using continuous projected interaction.

Other principles such as direct manipulation and the simplicity of the user 
interface also were important during Lineform’s development.
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U ser in terface overview

11.1 The interface

Lineform’s interface revolves around a document window that displays the 
canvas and objects being edited. Objects 011 the canvas are manipulated by 
the mouse or keyboard and can be altered from the inspectors that float in 
front of the document window.

11.1.1 T he toolbar

C rea tio n  Style

' e o e U n titled CD
* <o□o

^  Jtf / G A
C l i c k / d r a g  t o  s e l e c t  g r a p h i c s .  0 :  t o g g l e  X  u n d e r n e a t h

Transform , se lec tion  an d  editing N avigation

Figure 11.1: T he too lbar

Each document in Lineform has its own toolbar at the top of the window. 
This toolbar shows which tool is currently being used and allows quick access 
to other tools. These are:

• Selection Selects and moves objects.

• Editing — Alters curves and lines.

• Brush — Draws smooth lines.

• Pen — Draws lines and Bezier curves.

• Rectangle — Draws rectangles and squares.

• Oval — Draws ovals and circles.

• Text — Draws text boxes.

193
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• Zoom — Zooms in and out of the canvas.

• Drag — Moves around in the canvas.

• Dropper — Picks up styles from objects in the canvas.

The tools can also be selected by pressing the digits 0-9 or their correspond­
ing shortcut keys. The toolbar can be customised to contain several handy 
functions, such as combining and Boolean operations. To customise the 
toolbar, choose Customise Toolbar... from the View menu.

11.1 .2  T he sta tu s bar

Click/drag to select graphics, ft: toggle X: underneath

Figure 11.2: The status bar

Below the toolbar is the status bar. This shows hints and information about 
what action the user is currently performing. It shows the possible modifier 
keys for any action in blue and it shows the current size or state of any 
transformation of objects being modified.

11.1.3 Inspectors

Lineform uses inspectors that float above all the other windows. These 
provide access to object and canvas properties. The inspectors can be min­
imised or hidden and snap to each other. Inspectors can be toggled on and 
off in the Inspectors menu.

The Fill, Stroke, and Effects inspectors affect the appearance of objects in 
the document. The Grid, Layout, and Layers inspectors affect the canvas 
itself. Finally, the Filters inspector provides advanced options to apply 
effects to objects.

11.1 .4  T he m edia brow ser

The media browser is accessed from the Inspectors menu. It provides access 
to images and pictures stored in iPhoto or elsewhere on the user’s computer. 
The user can also drag images into any Lineform document.

11.1.5 K eyboard

Several keyboard shortcuts and modifiers are used in Lineform, many of the
shortcut keys were copied from Adobe Illustrator for consistency. These are
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Figure 11.3: T he m edia brow ser

mentioned in this chapter where they are relevant. The Shift, Alt, and Com­
mand keys affect most operations and the Escape key cancels the current 
action.

11.2 M anipulating the canvas

11.2.1 Zoom

Clicking with the zoom tool magnifies the canvas by 200%, and Alt-clicking
zooms back out by 50%. The user can zoom in on a particular area of the 
canvas by clicking and dragging the zoom tool around the area of interest.

The canvas can also be magnified to a specific zoom level by selecting a 
level from the pop-up menu in the bottom right of the document window, 
or zoomed to fit the current graphics from the View menu.

Pressing Control-Space once selects the zoom tool temporarily, allowing the 
user to zoom in quickly on part of the canvas. After zooming, the tool 
reverts to the previously selected tool.

11.2.2 Drag

The drag tool is used to move around the canvas. To move the visible part 
of the canvas, click and drag with this tool.

The drag tool can also be temporarily selected by holding down the Space 
bar.
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11.3 C reating graphics

The brush, pen, rectangle, oval and text tools are used to create line and 
shape graphics. When one of these tools is selected, clicking and dragging 
on the canvas creates new shapes. Newly created graphics use the current 
style from the inspectors.

11.3.1 T he brush to o l

The brush tool is used to draw smooth curves and paths and is ideal for 
drawing smooth arbitrary shapes and tracing pictures. The paths the brush 
tool generates are automatically smoothed and if a more accurate path is 
required the Alt key can be held to limit the smoothing.

11.3 .2  T he p en  to o l

The pen (Bezier) tool creates a sharp node for each click, building an ar­
bitrary shape out of a series of nodes. Clicking and dragging with the pen 
tool create smooth nodes and curves. Clicking creates a node at the initial 
click point then dragging specifies the control point positions. The curve is 
updated live as the user draws ensuring it is easy to see what the result of 
the action will be.

Double-clicking on the canvas or on a node completes the current path, and 
Escape cancels it. Pressing the Delete key cancels the last segment of an 
unfinished line allowing the user to go back and redo parts of the path being 
drawn. The Shift key limits the line and curve drawing to 15 ° angles.

Clicking on the initial node closes the path being drawn, creating a closed 
shape.

Both the pen tool and the brush tool allow new paths to be drawn starting 
from either the beginning or end of existing paths. When either tool is 
selected, nodes appear at the ends of selected paths that are available to 
append to. Drawing from one of these nodes automatically appends the 
new path to the existing path. This allows both tools to be used to draw 
different parts of the same shape.

11.3.3 T he rectangle and oval to o l

The rectangle and oval tools draw their respective shapes. Holding the Shift 
key restricts the new shape to a 1 : 1  aspect ratio, thus creating either squares 
or circles. The Alt key allows the creation of shapes from the centre. These 
modifier keys are exactly the same as the modifier keys for resizing shapes.
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11.3 .4  T h e te x t  to o l

The text tool can be used in two modes: it can be dragged to create a 
text region, or used by simply clicking and then typing, the region created 
will be the same size as the text typed. The text tool does not create a 
special object: it is just a handy shortcut, the same effect can be achieved 
by creating a rectangle with a text fill style.

11.4 M anipulating graphics

11.4.1 S electin g  graphics

Graphics are selected using the selection tool to click on them. Multiple 
graphics can be selected by Shift-clicking or by dragging a selection around 
several graphics. The selection tool starts a drag-selection when clicking and 
holding down the mouse button in an empty part of the canvas. Graphics 
are added to the current selection by holding the Shift key while selecting 
more graphics. Graphics can be deselected by Shift-clicking on them after 
they have been selected.

Graphics with no fill can be selected by clicking on the stroke line or by 
drag-selecting them.

Selected graphics are drawn with a highlighted thin line around them. The 
primary object is drawn with a green highlight and all other selected graphics 
are drawn with a blue highlight. Pressing the Tab key changes the primary 
graphic cycling through all the currently selected graphics.

The primary graphic is the graphic displayed in the inspectors when more 
than one graphic is selected. Operations such as Boolean subtract or align, 
are performed relative to the primary graphic. For example, aligning left 
edges will always align the edges of the selected graphics to the left edge of 
the primary graphic.

By holding down the Alt key, only graphics that are entirely within the 
selection region whilst dragging are selected. This is useful for selecting 
small graphics or graphics that are on top of each other.

All the graphics on the canvas can be selected with Select All from the Edit 
menu, or deselected with Select None.

Often one graphic will obscure other graphics hidden below, these are nor­
mally tricky to select. Clicking with the Command key held down selects 
the next graphic beneath the click and can be used to select an obscured 
graphic by repeatedly clicking on top until the desired graphic is selected. 
The first Command-click selects the top object like a regular click, then each 
subsequent Command-click will select the object below the current selection.
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Several Command-clicks will cycle through the objects below the mouse in 
order, eventually returning to the topmost object.

11.4 .2  M oving, scaling and rotating

Once some graphics have been selected, nine handles appear around the se­
lection. These handles manipulate the selection allowing resizing and scal­
ing. The Control key toggles the mode from scale to rotate/skew, the handles 
change appearance to reflect their use, this is shown in Figure 11.4.

B B S  ♦ ♦

■  B  ■  ♦  ^  ♦

Scale Rotate/Skew

F igure 11.4: Resize and ro ta te  m odes in Lineform , toggled by the 
contro l key

Using the resize handles it is possible to:

• Move graphics by dragging on them or by dragging the white centre 
drag handle. Constrain the movement vertically or horizontally by 
holding the Shift key.

• Create a copy of the graphics by holding the Alt key while dragging.

• Scale the graphics by dragging any of the blue and green edge han­
dles. The blue corner handles scale the graphics both horizontally and 
vertically. The green edge handles scale only in one axis. The Shift 
key constrains the corner scaling to preserve the original height/width 
aspect ratio. The Alt key transforms the graphics from the centre.

The Control key changes the handles of the selected graphics so that it is 
now possible to:

• Rotate the graphics by dragging the orange corner handles. Holding 
the Shift key down constrains the rotation to 15 angles.

• Skew the graphics by dragging the yellow edge handles. Holding the 
Shift key down constrains the skewing to 15 angles.

While manipulating objects, holding down the Command key stops their fill
from changing. This allows the user to clip pictures easily because resizing 
scales the shape but not the picture. Command-dragging also allows the 
size of a text box to be increased without changing the size of the text.
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In a similar manner, holding the Z key down while manipulating objects 
stops the stroke style of the objects from changing size. By default when 
resizing graphics the stroke width changes correspondingly, the Z key toggles 
this so that graphics can be resized whilst retaining their original stroke 
width.

Original

Scaled Stroke 
(default) Unsealed Stroke

Scaled Fill 
(default)

Unsealed Fill

Figure 11.5: Scale modes in Lineform

Figure 11.5 shows the difference between scaling the fill or stroke, these can 
be toggled live whilst the user is resizing the graphics.

11.4.3 Transform  inspector
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Figure 11.6: T he transfo rm  inspector

The Transform inspector, shown in Figure 11.6. makes it easy to manipulate 
the width, height, layout, rotation and skew of graphics. The grid control 
in the upper left of the inspector sets the origin of the transformation. The 
Shape, Stroke and Fill checkboxes enable or disable transformations for the
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graphic’s respective components. The Transform inspector can also be used 
to rotate or skew graphics.

11.4 .4  Transform ing w ith  th e  keyboard

The arrow keys can be used to nudge objects. Graphics are moved 1  pixel 
by default or 10 pixels if the Shift key is held down. Graphics can also be 
nudged at the current zoom level by holding down the Alt key.

11.4.5 A lign  and d istrib u te

A graphic can be aligned both horizontally and vertically with the edges 
and centres of other graphics. Commands for alignment can be found in 
the Objects menu. The selected graphics are aligned relative to the primary 
selected object.

Graphics can also be distributed horizontally and vertically from the Objects 
menu. The distribute commands space the selected graphics out so that the 
size of the gaps between the graphics are the same.

11.4 .6  Flip

Graphics can be flipped around their centre horizontally or vertically by 
using Flip from the Objects menu.

11.5 Layers and Z-order

Z-order refers to the order in which objects are drawn, i.e., which objects 
are drawn on top of others. The ordering of objects can be changed with the 
Bring to Front and Send to Back commands in the Objects menu. These 
move the selected objects all the way to the bottom or top of the stack.

Objects can also be raised and lowered one step at a time with the Bring 
Forward and Send Backward commands. These will move objects up or 
down, respectively, as long as the next layer is visible and unlocked.

Each layer contains its own graphics. The layers also have their own z-order, 
and can be rearranged in the Layer inspector by dragging. Each layer can 
be toggled visible/invisible and locked/unlocked using the checkboxes in the 
last two columns. Hiding individual layers sometimes makes it easier to 
concentrate on the remaining visible layers. Locked layers are visible but 
not editable, which is useful when editing objects stacked on top of each 
other.
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Figure 11.7: The layer inspector

The third column from the right, represented with a pencil, shows the editing 
status. A black circle highlights the currently active layer; all new objects 
will be created in this layer. To make a layer the active layer, double-click in 
editing status column of that layer. Selected shapes are shown by a square, 
the primary selection is shown by a double square and groups or layers with 
selected shapes inside them are shown as dashed squares.

Graphics are selected in the layer inspector by clicking in the editing status 
column of the graphic. The same modifier keys used on the canvas affect 
selection in the inspector: Shift adds graphics to the selection and Command 
toggles the selection of specific graphics.

Layers are created and deleted by the + and -  buttons, and can be merged 
together with the Merge button in the Layers inspector. Layers are named 
by double clicking their names and editing.

11.5.1 Isolation  m ode

Isolation mode is a mode which dims out all graphics that are outside of the 
current group when editing a group. This allows the user to concentrate on 
the graphics inside the group without any other graphics getting in the way.

When editing groups, isolation mode is the default, but it can be toggled

D S C□ 8 . .

. v
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on and off from the View menu. In isolation mode only graphics inside the
current group can be edited and all other graphics are drawn dimmed out 
behind the current group. If isolation mode is off, then what the user sees 
is the same as if they were not editing a group and the user can select any 
graphic. Editing layers works by default with isolation mode off, but it is
possible to switch it 011 to focus only on one layer.

11.6 Groups and com bining

Several graphics can be grouped into a single group which behaves like a 
single graphic when it is manipulated. Grouping graphics is a useful way 
to keep graphics together, for example keeping text positioned over a back­
ground image.

Graphics can be grouped together with the Group command in the Object 
menu. This creates a new group from the selected objects. The Ungroup 
command reverses the grouping of selected groups, separating out their com­
ponents.

■  i 1

Figure 11.8: A drop  shadow applied to  individual shapes and a 
group

A group can be edited easily by double-clicking the group or clicking the 
Edit Group... button in the Fill inspector. When a group is being edited, 
double-click outside the group or select a layer to finish editing the group. 
When a group is being edited it is displayed without any effects applied to 
it and everything else is dimmed out.

Groups do not have stroke or fill styles as with other objects but they can 
have effects. Thus it is possible to use a group to combine several objects 
together before a drop shadow or applying a transparency. The left of Fig­
ure 11.8 show's two objects that have a drop shadow effect, and the result 
looks ugly because the drop shadow's are draw'll separately 011 top of each 
other. On the right of Figure 11.8 the objects are grouped together and the 
group has a drop shadow effect, this results in one single drop shadow for 
the combined objects.
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11.6.1 C lipping

Groups are also useful for clipping graphics, clipped graphics are only drawn 
inside the clipping region. Graphics are clipped by enabling Clip to Top Path 
in the Fill inspector. W ith this enabled all the graphics inside a group are 
clipped to the topmost path in the group. If the topmost object has a text 
fill then the group is clipped to the bounds of the text.

I

i i i i m
Figure 11.9: Using te x t to  clip a group

Clipping to text in this way enables complex fills on text that is still editable.
For example Figure 11.9 shows how grouping some text with a gradient and 
transparent squiggle beneath it, then clipping the group results in a complex 
logo where the text remains editable within the group.

11.6.2 C om bining

Graphics within groups retain their separate styles and shapes. A differ­
ent way of combining graphics together is to use the Combine command. 
Graphics combined together are merged into a single graphic, losing their 
separate style.

In Figure 11.10 two rectangles are combined together. The resulting shape 
takes on the style of the primary selected graphic in this case the larger blue 
rectangle. This is useful for creating shapes with holes or making bigger 
shapes where the different parts of the shape have the same style.

Sepai'ate Paths splits the parts of composite shapes out again. Split out 
graphics will always be Bezier paths, so rectangles that are combined then 
separated lose the ability to change their corner radius.

11.7 Style

The style of a graphic determines how it is drawn. Each graphic can have 
its own style specifying fill, stroke and effects. Fill specifies how the centre
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Figure 11.10: C om bining two shapes to  crea te  a single shape w ith 
a hole

of the graphic is drawn, the stroke specifies how the outline of the graphic 
is drawn, and effects specify shadowing and how the object is composited 
onto the page.

When there are no graphics selected, the stroke, fill, and effect inspectors 
show the current tool style. This is the style used when creating new graph­
ics, this can be used to create many graphic with the same style.

The dropper tool transfers styles between graphics. Clicking on a graphic 
with the dropper tool picks up that particular graphic’s style. The style is 
applied to the currently selected graphics or to the tool style. The individual 
components of the style can be picked up with the dropper tool by holding 
the Shift, Alt, and Command keys, which pick up the fill, stroke, and effects 
respectively.

11.7.1 Fill

In Lineform there are five fill styles that can be applied to graphics from the 
Fill inspector: None, Solid, Image, Gradient, and Text. These are selected 
from the pop-up menu in the top-left of the inspector.

The fill of a graphic, image, gradient or text is usually transformed with the 
object when it is resized or changed. Sometimes this is not the behaviour 
wanted, holding the Command key during resizing or altering the shape 
allows the fill to remain unaltered. With this technique, pictures can be 
cropped or size of a text box expanded without altering the text.

To reset the fill, use the Beset Fill Transform command in the Objects menu. 
This will reset any alteration that has been applied to the fill, such as the
rotation of an image.

The content of the inspector is dependent on the type of fill that is selected. 
Selecting None simply does not fill the graphic, leaving the centre of the
graphic completely transparent.
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Figure 11.11: Solid fills

11 .7 .2  S o lid

Solid fills the graphic with a solid colour. This colour can have an opacity 
setting, allowing both opaque and transparent graphics as extremes.

11 .7 .3  Im a g e
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Figure 11.12: Im age fills

An Image fill draws an image inside the graphic. The image is clipped to the 
graphic’s outline and can be clipped to arbitrary shapes. The slider in the 
inspector controls the opacity of the image. The Choose... button provides 
an open file dialog for picking an image and images can also be dragged onto 
the image preview in the inspector.

Images can be easily clipped by holding the Command key whilst dragging 
a scale handle.

11 .7 .4  G r a d ie n t

A Gradient fill creates a linear or radial smooth transition between two or
more colours. The inspector provides a horizontal preview and a sequence 
of colour swatches. Colour swatches are edited by clicking on them and can 
be dragged around by clicking above the swatches on the gradient preview. 
Additional colours are added by clicking underneath the gradient preview 
and removed by dragging the swatches from t he gradient preview.
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Figure 11.13: G rad ien t fills

The Position button provides ail interactive way to change the location 
and direction of a gradient. Clicking the Position button begins editing the 
gradient, this enables direct manipulation of the gradient inside the graphic. 
While positioning clicking elsewhere on the canvas or pressing any key exits 
the positioning mode. The gradient handles can also be dragged around to 
alter the gradient position.

Holding the Shift key whilst dragging limits the angle of the gradient to 15°, 
the Alt key allows the setting of the individual position of radial gradient 
handles without affecting the other handles.

11.7.5 T ex t

P a d d i n g :
Hyphenation

0  B a c k g r o u n d

Figure 11.14: Text fills

A Text fill allows any shape to contain text. The padding and hyphenation 
of each text fill is set from the inspector. Text is edited by double-clicking
the object and simply typing. Resizing the text graphic without resizing the 
text is achieved by holding down the Command key whilst resizing.

The background fill check box fills the graphic with a plain background 
colour. Padding insets the text inside a graphic and hyphenation controls 
how text is wrapped. In Figure 11.15 the ‘8’s shows text accurately filling
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Figure 11.15: U nhyphenated  and hyphenated  te x t fills

a complex shape, also styled with a blue background fill, an artistic stroke 
and a drop shadow. The text is fully justified: the left-hand 8 shows the 
unhyphenated text, while the right hand 8 shows the text fill with maximum 
hyphenation.

11 .7 .6  T h e  t e x t  in s p e c to r

t h e  l i n e  s p a c i n g  T h e  t e x t  i n s p e c t o r  
a l s o  p r o v i d e s  q u i c k  a c c e s s  t o  a l l  t n e  
r e c e n t l y  u s e d  f o n t s  a n d  s e v e r a l  o f  
t n e  o t h e r  s y s t e m  f o n t  o r  t e x t  
i n s p e c t o r s

T h e  l e x t  i n s p e c t o r  p r o v i d e s  
c o n t i n u o u s  s l i d e r  a n d  e a s y  a c c e s s  
t o  t h e  s p a c i n g  a n d  p o s i t i o n i n g  
v a l u e s  l o r  t e x t  C h a r a c t e r  s p a c n g  
c o n t r o l s  t h e  s p a c i n g  o l t e x t  
h o r i z o n t a l l y  a l l o w i n g  t n e  
u s e r  t o  s p e c i f y  t h e  k e r n i n g  o f  
c h a r a c t e r s  B a s e l i n e  s h i f t s

Figure 11.16: The tex t inspector

The text inspector, shown in Figure 11.16 provides a continuous slider and 
quick access to the spacing and positioning values for text. Character spac­
ing controls t he spacing of text horizontally allowing the user to specify t he 
kerning of characters. Baseline shifts characters up or down. Line controls 
the line spacing. The text inspector also provides quick access to all the re­
cently used fonts and several of the system inspectors which allow advanced 
typography.

11.8 Stroke

Strokes are applied to graphics in the Stroke inspector, it is similar to the 
Fill inspector but applies to the outline of the shapes. There are four options 
for strokes: None, Solid. Artistic, and Text.
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A

Strokes

Solid applies a solid colour to the line drawn and the inspector allows the 
colour, thickness, and style of the line can be set.

■ a I AAA
Figure 11.18: Stroke ends and corners

Figure 11.18 shows the ends of strokes which can be (left to right) B utt, 
Round or Square and the corners which can be set to Mitre, Round or 
Bevel.

Lines can also be dashed and this can be set from the Dashes pop-up menu.

11 .8 .1  A rro w s

o~

Figure 11.19: Arrows

Arrows can be placed at the beginning or end of any line. This is useful for 
drawing diagrams and charts. Each arrowhead can be sized relative to the 
line size and can be morphed to the line shape.

Notice how some of the arrows are morphed in Figure 11.19. Morphing can

Q  T  Stroke

Solid ■■ i ) 

Thickness: B
. V ...........................................

E n d s  Comers D a s h e s

0  2 8  i n

■ • ; !  *  -------- - » )

Arrows Size:

. -------M ”  ....................... 1 0 0 %

-------* 1  'V T"
Morph _  Start End

,  ,  1 0 0 %

Figure 11.17:
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be applied to the start or end arrow and can make the arrows look much 
more natural and professional.

1 1 .8 . 2  A rtis tic  s tro k es

artistic I j j j  

Thickness

Default

Daub

Figure 11.20: B rush  strokes

Artistic strokes are an expressive way to draw vector objects. The strokes 
remain fully editable, and provide a richness in appearance that vector ob­
jects often lack. Figure 11.21 shows a single brush stroke being edited, the 
actual path of the shape is visible as a dashed blue, the fat red brush stroke 
is the result of an artistic brush applied to this path.

Figure 11.21: An artis tic  b rush  stroke

Figure 11.22: An artis tic  snail and  its “skeleton”

Artistic strokes also provide a great way to create entire stylised drawings. 
This quick sketch of a snail in Figure 11.22 was drawn with a graphics tablet, 
making use of the brush tool. Layers were used to build up the snail using 
different artistic strokes with transparency to achieve the final image. On 
the right hand side of Figure 11.22 the “skeleton” of the snail is shown, this 
is what it looks like without artistic strokes.
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11.8 .3  P re s s u re

C*Uigrapti 

Ctefc 

C fiat. 2

Figure 11.23: Identical strokes w ith  different pressure profiles

Artistic strokes support varying pressure along the stroke, Figure 11.23 
shows a custom banner stroke applied to the same path but with differing 
pressure profiles. The pressure of a stroke can be set in the stroke inspector 
by clicking to add nodes, dragging nodes or by deleting nodes by dragging 
them out of the profile. The pressure can also be reset using the ‘— ’ button 
and can also be toggled on and off. Pressure is also recorded when a path is 
drawn using a graphics tablet, this provides a easy way to draw thick, thin 
or varying strokes.

11.8 .4  C u s to m  a r t is t ic  s tro k es

O  * Oocum«m
info Grid -  IraUi -)

Colonzatwn method [ Hue shift I

K*Y color

_  A (UtUff bMV WUit llktd Irt 
L i - iT ) f c jo p o i /L > n « l o 'r r » l r u » f » » /

F igure 11.24: A custom  banner stroke

Custom strokes such as the banner stroke in Figure 11.24 can be used to 
extend the default set of strokes. Custom strokes are created by saving 
Lineform documents in “Library/Application Support/Lineform/Brushes” , 
these documents are used to create the custom brushes.

Documents tha t are used as brushes distort the across the entire document 
size such that the vertical mid-point of the document will follow the path 
exactly. Figure 11.24 shows the banner document and the document in­
spector. The ‘Colorization method’ controls how the document is coloured 
when drawn as an artistic stroke and the ‘Key color’ specifies the colour 
from which a hue shift will occur, this should usually be the primary colour 
of a custom brush.
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The different options for the brush colourisation are:

• None — No colourisation occurs.

•  Tints — The brush stroke is colourised so that black becomes the 
stroke colour, white remains white and everything in between is a 
shade of the stroke colour going to white.

• Tints and shades — The brush stroke is colourised so that black and 
white remain the same, and everything in between is a blend from 
black to white through the stroke colour. The midpoint grey becomes 
the stroke colour.

• Hue shift The brush stroke is colourised so the key colour becomes 
the stroke colour, and everything else is hue shifted relative to the key 
colour. Greys, black and white remain the same. This is a good choice 
for strokes that have multiple colours in them.

Text strokes allow placing text on a path which can be any shape or size. 
The text is edited inside the Stroke inspector and typeset as the user types 
out along the path from beginning to end. and paths that contain multiple 
segments have text typeset along each segment in turn. Text is scaled with 
the line thickness and a baseline offset can be specified to move the text 
perpendicular to the line.

11.8.5 T ex t

Thicfcntii

tiMh Com*'* fcttot

Figure 11.25: A te x t stroke

F igure 11.26: Bad kerning a t a tigh t corner

By using kerning, or character spacing in the text inspector, it is possible
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to correct the compression and extension of the text that happens at sharp 
corners. Changing the text baseline alters the text layout. A baseline that 
centres the text over the line can eliminate some of the compression and 
extension.

Effects change how an object is drawn or composited onto the canvas. It 
is possible to control the object’s opacity, blend mode and shadow through 
the Effects inspector.

Opacity controls how transparent an object is. The ability to control the 
opacity of groups is useful as it controls the opacity of the group as a whole.

Blend modes specify how the colours of objects should be mixed. Blend 
modes allow for powerful compositing modes but are also fairly complex. 
To understand how blend modes work, it is probably best to experiment 
with them. Figure 11.27 shows a brush blended with different modes. From 
top to bottom  the blend modes are: Normal, Lighten and Difference. Blend 
inodes are very effective when combined with artistic strokes to add extra 
depth to an object or image.

Drop shadows are a simple effect that add a lot of depth to graphics, these 
can be applied to any object in Lineform. Shadows are added to graphics in 
the Effects inspector. The radius (how fuzzy the shadow is) of the shadow 
and its colour and position are also set from the inspector.

Filters allow more complex effects, ranging from blurring and colour ad­
justm ent to halftones, which can be easily applied to graphics whilst the 
graphics remain editable.

11.9 Effects

Effects

B i e n c  m o d e  L i g h t e n

Q  Has Shadow 

Radius F—1W ' "

Figure 11.27: Blend modes

11.10 F ilters
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Lineform provides a powerful set of filters based on Apple’s Core Image 
technology. Using Core Image allows many effects to be achieved which 
would not be possible with pure vector objects. For example, filters make it 
simple to create a Gaussian blur of a graphic, as shown below in Figure 11.28. 
The same graphics are shown on the left without filters applied and on the 
right with filters.

blUKlamzblUHtallize

Figure 11.28: F ilters on some tex t

Filters are controlled through the Filter inspector, shown in Figure 11.29. 
At the top of the Filters inspector are three controls, from left to right: 
whether filters are enabled, the resolution at which the filters are applied 
and an action button to add new filters. Below these controls is the stack 
of currently applied filters which can be individually minimised, disabled, 
deleted and re-ordered. Each filter also has its own parameters that can be 
set.

O  ▼ Filters

M  Enabled 72 dpi (lx) | : j  + .

▼ W Crystallize 0 1
----- 4.81

Center 150 ISO ( Set...

▼ S  Hue Adjust O
Angle .-------44-------------- -1 0 4

▼ M Bloom 0
— -  10.00

Inteniity . 1

Figure 11.29: T he filter inspecto r

Many filters are available, and it is worth spending some time experimenting 
and exploring the possibilities. The filters are categorised by type as: Geom­
etry Adjustment, Distortion Effect. Blur, Sharpen. Color Adjustment, Color 
Effect, Stylize, Halftone Effect, Tile Effect, Generator, Gradient, Compos­
ite and Transition. To add new filters, click the top-right button in the 
inspector. To delete filters once they have been added, click the X button 
in the right of the filter title-bar. The filters are applied in order from top 
to bottom and can be re-ordered by dragging the grey title bar up or down 
to move the filter above or below other filters. The order of the filters can 
often have a large impact on the final result.
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11.10.1 F ilter resolu tion

Because filters are, by necessity, bitmap operations that work at the pixel 
level, the resolution at which the filters are applied makes a difference to 
how they look. Lineform endeavours to keep the filters as independent 
of resolution as possible, however it does not provide complete resolution 
independence.

Each object can be set to have a resolution of 72, 144 or 300dpi, the lowest 
being screen resolution and the highest being good for printing. For print 
it is usually best to make use of higher resolution filters, but it is worth 
experimenting, as some filters with very gradual transitions, such as the 
Gaussian blur, often work well at low resolutions. Low-resolution filters are 
faster to draw and take up much less memory.

Bitmap images included in Lineform are optimised to have filters applied at 
their native resolution. This is only the case when the filters themselves are 
resolution-independent, such as colour adjustment, and the image graphic 
does not have a stroke. This allows filters such as colour adjustment to be 
applied to images at their native resolution and at faster speeds.

11.11 Editing graphics in depth

Graphics can be edited and altered in different ways. The most flexible and 
useful way to edit graphics is to use the Edit tool. This allows shapes to 
be changed and altered in any fashion. Once the edit tool is selected, nodes 
appear on the graphics being edited. The type of nodes depends on the type 
of graphic — rectangle, oval shapes and paths have different nodes.

Lineform provides several different ways to begin editing graphics. The 
simplest is to select the edit tool from the toolbar, any graphics that are 
selected will become editable. The Return or Enter keys also toggle between 
the selection tool and the edit tool, it is possible to hit Return repeatedly 
to switch modes.

Lastly, it is also possible to double-click to start editing. A double-click acts 
like a normal selection click, except that it starts editing, thus a double-click 
can select objects to add and remove them from editing, just as clicking does 
with the selection tool. A double-click-drag selects multiple graphics for 
editing and the same modifiers affect the double-click selection as normal 
selection. The Shift key allows graphics to be added and removed from 
editing, the Alt key selects only graphics that are fully within the selection, 
and the Command key allows the selection of graphics below the top object. 
All these shortcuts are effective both in and out of edit mode.

The double-click selection provides a simple mirror of the standard selection 
tool and is a very effective way of quickly editing graphics.
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Text objects have a slightly different default behaviour. Double-clicking a
text object or pressing Return when one is selected will begin editing its 
text. The object itself can be edited by selecting the edit tool or by editing 
it at the same time as other objects.

11.11.1 R e c ta n g le s  a n d  ovals

Rectangles and ovals are editable in additional ways, they provide easy meth­
ods to alter the specific attributes of the shape. If further editing is needed, 
these shapes can be converted into Bezier shapes. This is done with the To 
Bezier menu command. Once a rectangle or oval is converted to a Bezier 
shape it is editable in any way.

Editing a rectangle allows a rounded corner to be set and the rectangle to 
be scaled on its original axes. The cyan nodes in Figure 11.30 are used to 
scale the rectangle along its width and height. The small purple node sets 
the radius of the rounded corner.

An oval is edited in a similar fashion; two small control nodes allow the oval 
to be changed into an arc, the nodes control the start and end angles of 
the arc. If the mouse is dragged inside the oval when dragging a control 
node, the oval becomes a pie, if the mouse is dragged outside the oval, it 
becomes an arc. Holding the Shift key forces the angles to be constrained 
to 15° intervals. Ovals are drawn when the two control nodes are close, this 
behaviour can be prevented by holding the Alt key.

11.11.2 B ezier p a th s

The shape in Figure 11.31 is being edited, and the squares and circles rep­
resent the nodes of the shape, these control the shape of the graphic. In 
Figure 11.31 there are two blue unselected nodes and three pink selected 
nodes.

Square nodes represent a line segment and the circle nodes represent curved 
segments. The smaller purple circles connected to some of the nodes are 
control handles that affect the shape of the curve. These control handles 
only appear on selected nodes that are adjacent to a curved segment of the

Figure 11.30: R ectangle and oval special shapes



Chapter 11 User interface overview 216

Figure 11.31: A Bezier shape being edited

Selecting nodes work in a similar fashion to objects. Clicking on nodes or 
dragging around them selects the nodes. Holding the Shift key adds or 
removes nodes from the selection and the Command key selects nodes from 
underneath, allowing access to nodes on top of one another.

Once nodes are selected they also act in a similar way to graphics. Dragging 
moves them and holding the Shift key limits the movement to horizontal or 
vertical. Nodes can also be nudged using the arrow keys in the same fashion 
as objects.

Control handles can be dragged but not selected. Each curve node has two 
control handles, which are automatically aligned. The Alt key allows the 
handles to move independently, the Shift key constrain the handles to 15° 
angles and the Command key keeps the control handles at a constant angle 
while dragging.

The selected nodes can be deleted by pressing the Delete key. Deleting 
nodes removes them from the shape; the shape is joined up between where 
the nodes were removed.

Changing nodes to lines, shown in Figure 11.33 on the left, alters the shape 
so that the nodes selected are now lines and not curves. This and the other 
editing functions can be accessed from the Objects menu or the contextual 
pop-up menu. The reverse (Figure 11.33 right), changing nodes to curves,

Figure 11.32: D eleting nodes in a Bezier shape
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Figure 11.33: Changing node types in a Bezier shape

converts any selected nodes to curve nodes. Initially this will look the same 
until the control handles are moved.

To add a node at any point in a Bezier path without altering its shape, 
Alt-Command-click at the point in the path to place the new node. New 
nodes are added without changing the shape of the path.

There are three extra editing commands: duplicate, connect, and cut. Du­
plicate creates two nodes on top of one another, this is useful for adding in 
extra nodes and detail into shapes. Connect joins nodes together within the 
same object. Finally, cut breaks the shape at the nodes selected, creating 
multiple segments.

11.11.3 B oo lean  o p e ra tio n s

Boolean operations are a way of combining two or more graphics together. 
The resulting graphic is created from a Boolean (yes/no) combination of the 
selected graphics and takes the style of the primary graphic. Figure 11.34 
shows the results of the four boolean operations: union, subtract, intersect 
and XOR.

The Union Boolean operation combines two or more overlapping shapes into 
one larger shape, consisting of the outer contour of those shapes.

Union Subtract Intersect XOR

Figure 11.34: Boolean operations

The Subtract Boolean operation removes or subtracts the shape of the se­
lected graphics from the primary graphic. In Figure 11.34 the orange rect­
angle is the primary graphic. If the circle were the primary graphic, the
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resulting graphic would be a blue pie shape missing the top-left quadrant.

Using the Intersection Boolean operation results in a shape that consists 
of the overlapping area(s) of the selected graphics. If the graphics do not 
overlap, an Intersection is the same as deletion.

The XOR Boolean operation creates a shape where an odd (one but not 
two) number of graphics overlap. The same effect can be achieved by simply 
combining the graphics together. However, XOR creates a new shape with 
new control points that allow further editing.

11.11.4  O u tlin e

Outline converts the outline of the text or graphics into a path. This creates 
an outline that can then be edited, filled, and manipulated.

Figure 11.35: O utlining a shape

Figure 11.35 shows a rounded rectangle with a gradient fill (left) and the 
result of outlining the rectangle with the same fill applied (right). W ithout 
outlining the path, a gradient stroke is impossible.

There are many other possible uses of outlining, such as drawing walls in a 
floor plan, creating logos out of text, and using Boolean operations on the 
outlines of artistic strokes. Outlining text is an important step in lots of 
workflows because it allows the text characters to be manipulated, joined, 
and edited as Bezier paths, creating logos and designs which are visually 
interesting.

11.12 The canvas in depth and exporting

11.12.1 R u le rs , g u id es  an d  g rid

Lineform provides several methods of aiding accurate positioning of graphics. 
Rulers allow accurate measurement of distance, horizontally and vertically. 
Guides can be added to both rulers, these draw pink lines across the drawing 
area that graphics automatically snap to.

Guides can be easily used to align objects, size objects and create objects 
with accurate sizes. Guides can be hidden or cleared from the View menu.
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Figure 11.36: G uides
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Figure 11.37: G rid inspector

A grid provides a uniform set of guides that graphics can snap to through­
out the document. The grid size, steps and colour are all set from the Grid 
inspector. A grid is useful for drawing many different things including tech­
nical drawings, floor plans and typesetting layout. The grid can be set to 
any major spacing size with minor spacing or steps. The colour and draw­
ing properties of the grid can also be altered from the Grid inspector. Pixel 
Align aligns the grid lines in the centre of pixels so that bitmap drawings 
along grid lines are not anti-aliased.

11.12.2 P ag e  lay o u t

The Layout inspector sets the size of the canvas in number of pages. Chang­
ing the actual page size, for example to A3, is done in the page setup dialog 
box. This is accessed from either Page Setup... in File menu or by clicking 
the button in the Layout inspector.

The layout panel also allows the canvas margins to be changed, which is 
useful if the drawing should reach to the exact size of the paper, however 
most printers will not print to the edge of paper. A specific document size 
can be specified by unchecking the “Size in pages’ option, the document 
size can then be entered as an exact size.
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Figure 11.38: Layout inspector

11.12.3 C M Y K  p rev iew

Printers and screens use different methods of creating colour. Screens use 
an additive combination of red, green, and blue (RGB); printers mostly use 
a subtractive combination of cyan, magenta, yellow, and black (CMYK). 
Because of the difference in how colours are created, it is possible to show 
colours on screen that cannot usually be printed. This often creates unex­
pected and disappointing results for the user, who has often spent a long 
time getting the colours exactly right.

Figure 11.39: RGB and CM Y K  preview  (note: these images will 
appear the  sam e in a p rin ted  version of th is thesis)

To avoid this problem Lineform provides a soft proof mode which is toggled 
on and off from the View menu. This draws the current document using 
a different colour space. This is by default a generic CMYK colour space 
but can bo set to a number of different options, such as grayscale, in the 
preferences. The soft proof provides a clearer idea of how the drawing will 
appear when drawn in that colour space. Figure 11.39 shows two screen 
shots of a composition, the left hand screenshot is the normal view of the 
document, the right hand shows the CMYK soft proof of the same document. 
Notice how the bright blues and reds and are more muted in the CMYK 
soft proof. This is closer to what will be printed on a CMYK printer.

11.12.4 O u tlin e  view

An outline view renders all shapes as outlines, allowing easier selection and 
editing of overlapping and complex drawings. Like the soft proof it is toggled
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Figure 11.40: O utline m ode

on and off from the View menu. In outline mode, shapes are rendered as 
outlines, without any effects or fill. A composition of a logo can be seen in 
Figure 11.40. The artistic strokes composited using blend modes on top of 
the hands, which cannot be seen normally, can be seen as outlines.

11.12.5 E x p o r t

It is possible to export graphics from a document to both vector and bitmap 
file formats. To export graphics, select the objects then use Export... com­
mand in the File menu. Graphics can be exported to BMP, EPS, JPEG, 
PDF, PNG and TIFF file formats. When exporting the exported trans­
parency and resolution can be specified in the export dialog.

EPS, PDF and SVG are vector formats and are resolution-independent. 
These formats should be used if the exported file will be printed.

PNG and TIFF are the only bitmap formats that support transparency.

11.12.6 SVG

SVG is a modern XML-based standard for vector-based artwork that is 
independent of resolution. Lineform supports SVG as both an import and 
export format. SVG support is growing in many places such as web browsers, 
and also provides a good intermediary format between Lineform and other 
programs. Lineform provides comprehensive support for the basic SVG 
standard.



Chapter 11 User interface overview 222

11 .12 .7  A ppleScrip t

AppleScript support is built into Lineform. If the user needs to extend 
or compliment Lineform’s abilities with additional features or automation, 
then it is simple to do so using AppleScript.

11.13 Sum m ary

This chapter has provided a comprehensive overview of Lineform’s many fea­
tures. Vector graphics have many different aspects and are complex to create 
and edit. A graphics editor mirrors this complexity and itself requires many 
different features and abilities to provide full editing capabilities. However 
with good design this does not mean that the user interface needs to be 
complex. Lineform manages to provide a simple and elegant user interface 
for the complex task of vector graphics editing.



Chapter 12

Im plem entation

This chapter provides an overview of the implementation of Lineform. To 
provide a sense of the scale of the implementation, Lineform now comprises 
of 67 classes and over 12000 lines of code written in both C ++ and Objective 
C. The majority of the code is written in Objective C and makes extensive 
use of the core Mac OS X libraries including: Cocoa, Quartz and Core 
Image.

This chapter describes the three main aspects of Lineform’s design and im­
plementation. Firstly, the document model structure that contains the vec­
tor drawing and drawing model is described; secondly, the user interface 
and interaction structure is examined and finally the vector file format and 
representations supported are described.

12.1 D ocum ent m odel structure

A Lineform document contains all the information about a single vector 
drawing. The drawing is composed from a small number of classes, which 
provide the methods to draw the document using Quartz, serialise it in both 
Lineform’s own proprietary format and in the SVG format and support the 
modification and editing of the document structure.

Figure 12.1 shows a simplified version of Lineform’s class structure for repre­
senting documents and the contained vector graphic drawings. Each docu­
ment can contain many graphics, such as groups, Bezier graphics, rectangles 
or ovals. Each graphic has a fill and a stroke style that is used to draw the 
graphic. These few classes provide the basis for the construction of every 
drawing.

223
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Figure 1 2 .1 : L ineform ’s docum ent s tru c tu re

12.1.1 D raw in g  m odel

All of the vector drawing in Lineform utilises the Quartz 2D library in Mac 
OS X. Quartz’s drawing model is based on PDF's model, which provides the 
simple concept of compositing paint on-top of selected areas of a drawing 
to produce the final output. Summarised, the model provides three main 
capabilities:

• Shapes can be in the form of character shapes (glyphs), geometric 
Bezier shapes or polygon lines.

• These shapes may be outlined or filled with a paint or used for clipping 
other shapes. The paint may be any colour and have transparency, or 
may also take the form of a repeating pattern or a smooth gradient 
between colours.

• Sampled images such as digital representations of photographs can be 
drawn.

1 2 . 1 . 2  T h e  d o c u m e n t

The document’s primary purpose is to manage the collection of graphic 
objects that make up the drawing. The document class encapsulates various 
properties such as the paper size, printer information, grid resolution and 
rulers; it also handles high level resource management for resources such as 
images and external files.

Finally the document class provides general file management for saving and 
loading. The document can be saved as vector graphics in EPS, PDF, SVG 
and Lineform’s own format. The document can also be saved as various 
raster formats, at different resolutions, the formats supported include the 
PNG, .JPG, BMP and TIFF formats. The EPS, PDF and raster format 
support is primarily provided by the Quartz drawing library.

The basic structure of a drawing contained within a document object is
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an array of groups that provide the main layers of the document and which 
contain all the graphics that make up the drawing. Creating the final output 
of a document, whether raster or vector, is done by drawing each of these 
layers or groups in sequence from back to front.

12.1.3 G ra p h ic s

The graphic class provides the encapsulation of all the properties of the 
graphic’s shape, including how to composite and draw the graphic. It also 
provides support for the user interaction of creation, editing and transfor­
mation.

The individual subclasses of the graphic class: rectangles, ovals and Bezier 
graphics provide specific editing capabilities for each subtype. For example, 
the rectangle class encapsulates the roundedness of its corners and imple­
ments the user interaction for modifying them.

The Bezier graphic has the most complex interaction, it provides exten­
sive node based editing such as node transformations, connect, join, node 
selection, hit testing and path creation using different interactions.

12.1.4 G ro u p s

Groups provide a different function to the other graphic types, the distinc­
tion is similar to the difference between a folder and a file in a disk hierarchy. 
Instead of providing a shape that is drawn, groups contain other graphics 
and draw all of the objects it contains from back to front. Groups provide 
the Z-ordering and organisation of individual graphics and also subgroups. 
The group class provides the functionality to rearrange, insert and delete 
its contained graphics. All object organisation in Lineform is performed by 
groups. They also allow effects, such as transparency and clipping to be 
applied to a collection of graphics. Layers used to be a separate concept but 
were merged with groups providing simpler code and a more powerful user 
interface.

Groups also provide the the ability for the user to manipulate multiple graph­
ics as if they were a single graphic and the ability to apply composition 
effects, such as opacity, to several graphics at once.

12.1.5 F ill

The Fill class implements the functionality that draws the insides of a 
graphic. Lineform provides five different types of fill shown in Figure 12.2: 
None, Solid, Image, Gradient and Text.
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Figure 12.2: L ineform ’s different fill styles

The Fill class provides the drawing functionality for all these different types 
of fill. The Solid and Image fills provide simple colour and image contents for 
a graphic. The Gradient fill provides smooth transitions of colours that can 
be adjusted both in the inspector and on the canvas. The Text fill provides 
a rich-text container that flows text inside the shape, the text can be edited 
using the standard text editing components by double clicking the graphic.

12.1.6 S tro k e

' S t r o k e

•t^and

F igure 12.3: Some of L ineform ’s different stroke styles

The Stroke class provides similar functionality to the Fill class, but for the 
outline of a shape. There are four different types illustrated in Figure 12.3: 
None, Solid, Artistic and Text.

A Solid stroke is drawn with a simple fixed width brush of solid colour along
the outline of the shape, a Solid stroke also has properties for end-cap shape 
and dash pattern. An Artistic stroke warps a vector drawing or brush so 
that the X-axis of the brush is distorted to follow the outline of the shape. 
The resulting effect is a vector distortion tha t can create powerful effects, 
like those of natural media, just by using vector graphics.

The idea is similar to that of skeletal strokes [Hsu et al., 1993], but the 
implementation is different. Skeletal strokes are generated by cutting the 
brush into lots of small sections with more frequent cuts at locations of high 
curvature on the shape the brush is drawn along. Lineform’s implementa­
tion recursively subdivides the distorted Bezier segments until the distorted 
segment is accurate enough. Figure 12.4 shows the result of a ‘S’ shape 
drawn using a skeletal stroke which uses a high density polygon and Line­
form’s recursive subdivision brush stroke which uses a smaller number cubic 
Bezier segments to achieve the same effect, the blue nodes show the polygon 
or Bezier control points.
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Art it ttc brush Stroked chape Skeletal stroke Uneiorm brush stroke

Figure 12.4: An a rtis tic  brush  using skeletal strokes and recursive 
subdivision

The Text stroke warps text along the outside of the shape outline by placing 
each character such that its baseline lies along the path. The text is edited 
in the Stroke inspector and can be made up of multiple different styles and 
fonts and the result on the canvas is updated live.

12.2 User interface

Figure 12.5 shows the basic class structure of Lineform’s user interface 
model. The structuring of the implementation of the user interface is based 
on the Model-View-Controller (MVC) architectural pattern [Reenskaug. 1979] 
The MVC pattern de-couples the user interface and the data structures or 
model of a system by introducing an intermediary controller. The benefit of 
this architectural pattern is that both the user interface and the model can 
be changed and reorganised without changing the other. In this case, the 
Model is the graphics contained in the document and document state, the 
View is the visible user interface (the graphics view, inspectors and toolbar) 
and the Controller that provides the interfacing between these is primarily 
the Document class (shown centrally in Figure 12.5). Although there are 
more classes that are not shown in Figure 12.5, this is an accurate but sim­
plified structural view. For example, in Lineform there is more than one 
controller class, as each of the different aspects of the user interface have 
different individual controller classes.

The document as the primary controller, takes central place in the structure 
of the user interface message passing. When an attribute is changed in an 
inspector, the selected graphics are altered by passing the message through 
the document. The altered graphics inform the document what area of the 
drawing has changed, the document then tells the graphic view which area 
needs updating. The document is an intermediary for most user interface
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Figure 12.5: L ineform ’s user in terface s tru c tu re

changes. A similar process takes place when graphics are edited in the 
main graphic view. The changes that are made to the document, which 
then informs all the different views of the graphics data (the graphic view, 
inspectors and toolbar) ensuring that they are always up-to-date (projected 
editing).

12.3 R epresentations

Vector graphics can be represented in many different formats. All of the 
different representations support different sets of semantic data. The main 
vector representations Lineform supports are: its own specialised ‘.lineform’ 
format, SVG and PDF. These formats are summarised below:

• Scalable Vector Graphics (SVG) [W3C, 2003] is a XML based open 
standard developed by the World Wide Web Consortium for both 
static and animated two dimensional vector graphics.

• Portable Document Format (PDF) [Adobe. 2008] is a file format cre­
ated by Adobe Systems, for representing two dimensional documents 
in a device and resolution independent format. It is also the ISO 32000 
standard. Adobe’s development of PDF was motivated by the need 
to extend PostScript, a page description language, to encapsulate all 
the necessary data needed for page rendering, for example images and 
fonts.

• Lineform’s own format provides much of the same functionality as PDF 
and SVG. The vector data format is primarily a binary serialisation of 
the graphics object graph that a document consists of. The file format 
is a bundle that contains the binary vector data and any imported 
images used in the document saved as PNG files. (A bundle is a 
folder or directory in Mac OS X that looks and acts like a file but has 
arbitrary content.)

Lineform’s format was originally stored in the YAML format [Ben-Kiki et al., 
2004], because of YAML’s readability and ease of editing while the format
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specification was being developed. However version 1.1 of Lineform switched 
to using a binary format, this was primarily because the speed of loading 
the binary documents was many times faster (in some cases 1 0  times faster). 
Parsing large text based “human-readable” formats like XML and YAML 
was found to often be very time consuming compared to binary storage, 
storing documents as binary data also meant that they took up much less 
disk space. Switching to a binary storage had some drawbacks in the code 
complexity needed to handle both formats but provided a huge improvement 
in user experience, especially when handling large documents.

An advantage of using a bundle and separating the vector data from the 
image data, is that hie access can be optimised. Saving document changes 
can be optimised because writing changes to the vector data does not mean 
that the images, which are potentially very large, also need to be written 
to the disk. Similarly adding or removing images does not mean that the 
vector data needs to be rewritten. Bundles also provide a simple process 
to access the images used in a Lineform document, the individual image 
files can be accessed by selecting the “Show Package Contents” item in the 
Finder.

12.3.1 Sem antics

It is possible to represent nearly all vector graphics drawings in the three 
different hie formats. The final output will look identical, however semantic 
information is often lost in translation between two of the formats. An ex­
ample is text on a path like the example in Figure 12.3, this is represented in 
SVG as a tex tP ath  element that retains the semantic data but can can only 
be represented in a PDF hie as lots of individual characters with different 
transformation matrices. They look identical, but the PDF version lacks 
the extra semantic information, which makes it much harder to edit.

Often this semantic data is unnecessary, for instance when printing, only 
the appearance of the vector graphics is of interest. However for editing, 
importing and changing the vector graphics the semantic data is important. 
Editing a string that was attached to a path and is now composed of single 
unattached characters is almost impossible, because the editor does not 
recognise the characters as a string but as many separate objects.

Adobe Illustrator CS2 uses a PDF file format that is augmented to contain 
extra proprietary semantic data. This provides semantic data, like the path 
data in the previous example, to allow easier editing. Inkscape, an open 
source vector graphics editor, uses an augmented SVG format as its native 
file format. Both Illustrator and Inkscape modify the respective standard 
file formats but in a way that remains compatible with the standards. This 
allows each to extend their chosen format, whilst maintaining a native format 
that is a useful export.
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Illustrator also exports vector graphics as SVG and Inkscape (with some 
modifications) also exports PDF.

Lineform uses a different approach: it uses its own file format that can then 
be exported as both PDF or SVG. The advantage is that the file format and 
data structures are designed specifically for the semantic constructs Lineform 
supports. This means the files can be smaller and the user interface and
graphical objects the user interacts with are separated and abstracted from 
the specifics of a target format, whether PDF or SVG.

Feature Lineform SVG PDF
Solid strokes yes yes yes

Text on a line yes yes no
Arrows yes partially no

Artistic strokes yes no no

The above table shows some of the features of line drawing styles the different
formats support. Lineform provides the most options, although all formats 
are capable of the same visual output. Lineform’s features such as artistic 
strokes which are unsupported in PDF and SVG have to be converted to 
simpler vector graphics when exported to these formats.

12.3.2 C om parisons

1 2  3

F igure  12.6: T hree  Lineform  docum ents

The following Table shows the different files sizes for the documents in Fig­
ure 12.6. Document 1 is a simple vector image with gradients, Document 2 
is a complex vector image with hundreds of paths and artistic strokes, and 
Document 3 is a simple diagram.

Document Lineform Lineform (XML) SVG PDF
1 49KB 245KB 49KB 127KB
2 393KB 2,252KB 4,300KB 2,355KB
3 33KB 224KB 56KB 304KB

Lineform contains some semantic data that was ignored for these compar­
isons.
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• Although further compression (for example zip) is possible for all the 
document formats; in all three examples Lineform’s file format size is 
the smallest.

• Lineform’s raw format is always a lot smaller than Lineform (XML) 
which is the XML equivalent to the binary Lineform file.

• Document 2 is very complex, and contains over 1600 artistic strokes. 
The use of artistic strokes provides Lineform a large advantage over 
the other formats, due to the semantic compression of storing a single 
path and a reference to a brush instead of the complex stroked outline 
of the brush along the path. This semantic compression is sufficient 
that the Lineform (XML) version is still smaller than PDF, which is 
a binary format.

• PDF has an overhead that increases the file size for small documents 
but for drawings with lots of stroke data, such as document 2 , it is 
half the size of the respective SVG document.

12.4 O ther features

12.4.1 L inkback

Document 3 in Figure 12.6 contains LinkBack1 data so that the equations 
in the document can be double clicked in order to edit them in the original 
editor outside of Lineform. LinkBack is a library for Mac OS X that provides 
a method of embedding semantic data and providing a link to the originating 
application. Lineform itself does not use this data but stores it so that 
objects can remain externally editable in the original linked application. 
The DTgXequations in document 3 remain editable in the original equation 
editor even though Lineform does not handle DT ĵX. When these objects 
have been edited externally and saved, the new objects are passed back to 
Lineform which updates its document with their new appearance.

12.4 .2  Scrip ting

Lineform provides scripting support through AppleScript. Scripting allows 
Lineform to be extended beyond the tools it provides by allowing an external 
program to manipulate the graphics in a document. Scripting provides a 
powerful addition to what Lineform can do, because it allows users to write 
scripts that change Lineform to meet their needs, in ways it could never 
have originally been designed for. Scripting also means that Lineform can 
be controlled from other applications, which allows Lineform to be part 
of extended workflows. For example, Lineform could be used as part of

1 http://www.linkbackproject.org/
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a workflow to generate a PDF contact sheet from a collection of images 
downloaded from the web.

Listing 12.1 shows an AppleScript script that prompts the user for a number 
of sides and generates a regular polygon or star in Lineform. Lineform does 
not provide the tools to create stars and regular polygons and scripting can 
provide this ability as a useful extension to Lineform.

Listing 12.1: Polygon generation script
— A simple scr ip t  to provide Lineform with star and 

polygon shapes

te ll  ap p lic a tio n  ’’Lineform” 
te ll  first document 

a c tiv a te

— Get parameters from the user
disp lay  dialog ” P lease ..en ter..the ..o rder^o f^ the ..po lygon . ” 

defaul t  answer ”5” but tons {’’Next” } defaul t  button 
’’Next”

set order to text  returned of r esu l t  as i nteger  
display dialog ” If..you ..want ..a ..star , ..p lease ..en ter..a ., 

ra t i o  wfor^ the^poin t ^r ad ius . ” defaul t  answer ”0.5” 
but tons  {’’S t a r ” , ’’Polygon” } defaul t  button ’’Polygon” 

if but ton returned of resu l t  = ’’S t a r ” then
set radiusRat io to text  returned of r esul t  as real 
set order to order * 2 

else
set radiusRat io to 1 

end i f

— Defaul t  s e t t ings  
set radius to 100 
set xcenter  to 200
set ycenter  to 200

— Generate path data
set pathlnfo to ”1VL” & xcenter  & ” & ycenter  — radius 
repeat with i from 1 to order

set angle to i /  order * 360 + 90
set myRadius to radius 
if  i mod 2 is not 0 then

set myRadius to radius * radiusRat io 
end if
set pathlnfo to pathlnfo & ” ..LJ’ & xcenter  + myRadius 

* (my cos ine .of  ( angle )) & ” ..” & ycenter  + 
myRadius * —(my sine_of ( angle ) ) 

end repeat

— Create path
make new path at end with proper t i es  {d a t a : pa t h l n fo} 

end tel l
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end t e l l

12.4.3 C ore Im age

Core Image is Apple’s framework for image manipulation, which provides 
raster operations such as Gaussian blur, crystallise, and sepia tone. These 
operations are calculated with 32-bit floating point math, so there is little 
loss of image quality or precision throughout the image processing pipeline. 
The filters are compiled down and lazily run across multiple CPUs and 
GPUs. Core Image also provides a plug-in style architecture for accessing 
filters, transitions and effects packages called Image Units. This means that 
filters and image manipulations can provide real-time, interactive respon­
siveness as you apply and adjust them.

Core Image fits in well with Lineform’s approach to interactivity. There are 
no progress bars or delays between selecting or changing filters and seeing the 
results because it is fast. Shapes and graphics can have Core Image filters 
applied to them with the filter palette. The underlying graphics remain 
vector based, and are still completely editable.

12.5 Sum m ary

Lineform is implemented with a straight forward object oriented model- 
view-controller model using a small number of core classes.

Although the implementation is not a restriction on user interface princi­
ples, by using a good flexible design the implementation supports the same 
flexibility that Lineform’s user interface provides. For example, in Lineform 
text is available as both a fill and a stroke type for any graphic, these provide 
text-on-a-path and arbitrary text fills, this is a different user experience to 
using specialised graphic types which needlessly restrict a user in how they 
are used. Lineform’s implementation and class design, which provide text as 
a fill or stroke, enable this flexible user interface directly through the class 
model design.
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Evaluation

This chapter provides an evaluation of Lineform, which is primarily pro­
vided through expert reviews. A cognitive evaluation using Green’s cogni­
tive dimensions supplies a different approach using a heuristic evaluation to 
compare Lineform and Adobe Illustrator.

13.1 W hy expert reviews?

The evaluation of Lineform in this thesis is primarily provided through pro­
fessional expert reviews. The purpose of this method of evaluation of Line­
form is to examine and highlight the differences the principles make.

Simply creating two different versions of Lineform, one using the principles 
of continuity, projection etc. and one without them would, at its best, 
be a highly biased evaluation. A particular problem is that Lineform’s user 
interface was designed with its principles as core design concepts. To remove 
the principles from Lineform would be to neuter the design and weight any 
comparison heavily in favour of the success of the principles. To create a 
drawing application without the same principles would require starting from 
scratch and building an application with a different philosophy.

Thus perhaps the best comparisons for evaluation are drawing applications 
such as Adobe Illustrator and Corel Draw, which while they have had many 
thousands of design hours put into them were not designed explicitly using 
flow or other Lineform principles.

User and comparative evaluations are difficult for a large program such as 
Lineform. Lineform is used by professionals and its main competition and 
comparison is Adobe Illustrator, a major application with over 20 years of 
development. Both programs take weeks (and possibly months for Illustra­
tor) to learn and few users have the time to be familiar with both. Also 
the very fact that they are creative programs where the output is often 
subjectively good makes empirical comparison very hard.

235
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Expert reviews are a good tool because unlike users, they are unbiased 
through voluntary choice and unlike usability study participants, experts 
have an expertise in drawing and a wider experience of comparative prod­
ucts. Their unsolicited reviews and comments are made with the knowledge 
and skills of drawing.

Users provide useful feedback, but often their comparative feedback is statis­
tically flawed, they are self selecting and have already decided that Lineform 
is a suitable solution for them. Several of the examples of user feedback in 
Chapter 9 also highlight the desire of users that Lineform would work exactly 
like other applications. Thus this chapter is focused on expert reviews by 
unbiased professionals. While the reviewers are not necessarily user interface 
experts (in the sense of being HCI professionals) they do have considerable 
expertise in illustration, vector drawing and knowledge of similar programs. 
Their views are arguably better than the usual “n students in my depart­
ment” approach to evaluation!

13.2 U ser reaction

Lots of users evidently really like Lineform. Here is a short selection of some 
of their quotes. Chapter 9 also provides more user feedback that helped 
shape Lineform’s design.

Ostensibly a competitor to Adobe Illustrator, Lineform is a vec­
tor drawing program that's almost completely different: it’s small, 
efficient and reasonably priced. Revolutionary, right? Lineform pro­
vides ninety percent of Illustrator's crucial functionality in just one- 
tenth of the disk space; it claims just 7.1MB on your hard drive and 
US$79.95 from your wallet to use and own this program, and it’s a 
thing of beauty.

— Khol Vinh, Director of NYTimes.com. (Oct 2006)

This is probably one of the best software products I’ve ever seen 
for the creative artist or business person. I had been trying the 30 
day free trial and after a week, I had created so many logos and 
animated characters for my business that I couldn’t wait to get the 
whole program. I’ve been able to use it in conjunction with other 
programs like Comic Life and even word processing programs. This 
program is one of the reasons I am always trying to sell my friends 
on Mac and why I will never use anything else. There is nothing that 
even comes close to this program for ease of use, adaptability and 
creative potential. And I can say this now that I have the program, 
but at twice the price, it would still be cheap for what you get. I 
suggest you go to their website and download the trial version first.
I think you’ll see what I’m saying is true.

— Peter Marino (Amazon user review, May 2007)
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F ig u re  13.1: C lockw ise (c) M a rtin  H ow ard , R o ry  P r io r , Bill
R o g ers , J o n a th a n  L e av itt, A arn i H eiskanen , M a tt  G ibson

I'm a pretty heavy Illustrator user and I love it. I bought a copy  
of  Lineform to  see  if th ere ’s an alternative for use at home. T h e  
learning curve was really low and features like the bitmaps as fill are
great (w hy d o e s n ’t Illustrator have this?).

Alan Brown (Amazon UK user review, Nov 2007)

Lineform users also initiated a group on Flickr (h ttp ://w w w .f lic k r.c o m ) 
for sharing images created with Lineform. Many users have shared their 
Lineform designs, pictures and creations. A small selection of these and 
other user images are shown in Figure 13.1.

13.3 Expert reviews

Lineform has received much praise for providing a simple, effective and en­
joyable user interface for drawing vector graphics. It has been well received 
by both users and the press.

To provide the flavour of both user and press opinions, some quotes taken
from reviews of Lineform are included below. These show a selection of 
different users’ reactions to Lineform. These quotes, from both professionals
and am ateur users, support Lineform’s successful design.
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It is perhaps worth pointing out that professional reviewers rarely pub­
lish negative reviews: they simply don’t get published often. One would 
therefore expect a bias towards positive reviews in any selection of reviews. 
However, in citing the reviews as contributing towards Lineform’s evalua­
tion, we are not using the scores the reviewers used, but their words and 
understanding. This use of the reviewers is very similar to expert usability 
evaluation, where trained usability professionals (rather than participants 
selected as representative of the target user population) are used to evaluate 
a system.

After years of messing around with Illustrator, then moving on 
to Freehand, then bouncing back to Illustrator, I was never able 
to do more than the most basic of tasks, and even then only with 
the help of a manual. Lineform has addressed this complexity issue 
with a simple interface that actually behaves the way you would 
expect it to, for the most part. If the Illustrator developers were 
concerned about how to make a certain function work, Thimbleby 
seemed more concerned with how the user would want it to work.

— Applelinks. (July 2007)

Lineform from Freeverse Software claims to be the solution for 
modern drawing and illustration. It is. Winner of a 2006 Apple 
Design Award, Lineform is not only easy to use, but the interface 
design makes the application so intuitive, Mac users need no expla­
nation to start illustrating. Not only is it easy to use, it produces 
professional illustrations for less than $80.

— CreativeMac (February 2007)

It’s not often that you find a product you literally have to gush 
over... but Lineform, for me at least, is that product. I'm a graphic 
designer, t-shirt designs mostly, and I use Adobe Illustrator daily.
I’ve never loved Illustrator, and I've REALLY never loved the $499 
price tag for i t . ..  but it has been necessary to do my job.

— AppleGazette (January 2007)

David Karlins reviewed Lineform for MacWorld, he is an author of half a 
dozen vector graphics books [Karlins and Hopkins, 2005a,b] and teaches 
Illustrating for San Francisco State University.

If youre looking for an easy-to-use, affordable vector drawing 
package that can create EPS and PDF files, its hard to imagine a 
better deal than Lineform 1.3.2.

— David Karlins, MacWorld (May 2007)

Lineform has two other selling points. First, its speed: the 
program launches in a couple of seconds and shames Illustrator 
throughout in its responsiveness. Second, its ease of use. The 
simple interface alone makes it easier to find things.

— MacUser (October 2006, volume 22, issue 22)
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When I say that Lineform offers a simplistic interface, or takes 
the easy route to giving me the tools to do the job in hand, this is 
really a positive. For many years now I have used Freehand instead 
of Illustrator, because the interface is a lot simpler to find your
way around. Lineform is very similar to this, the interface is very
clean and allows you to get on with what you are trying to achieve, 
but when you need more powerful tools, they are on tap too, but 
without being over-complicated (unlike some very expensive apps).

— Geekanoids (October 2006)

Darren Rolfe reviewed Lineform for MacReviewCast, he works as freelance 
artworker, designer and illustrator and in his own words is a “fully paid 
up member of the Adobe Illustrator Fan Club”. His review written from
the view point of a heavy duty Illustrator user is full of comments such as
“compared to Illustrator its an absolute joy to use”.

And the goodies just kept coming. Little things that have so 
obviously had some serious thinking time spent on them. I was 
pleasantly surprised!

[ . . . ]

This is a stunning piece of software. And if you are in the market 
for an viable alternative to the heavyweight option this is it!

Darren Rolfe, MacReviewCast (Dec 2007)

I found completing the necessary tasks to be surprisingly easy 
with Lineform. It took me approximately 45 minutes to learn the 
program (without any previous knowledge), find the tools I was 
looking for, and use them how I intended.

[ . . . ]

The program has a small learning curve. It’s clear that Lineform 
programmers put in a great deal of effort to  make it as simple and 
user-friendly as possible.

Epoch Times (July 2009)

13.4 A pple D esign  Award

Lineform won a 2006 Apple Design Award, the most prestigious awards for 
Mac software, recognising the best, most innovative Mac products, technical 
excellence and outstanding achievement on Mac OS X.

Thousands of applications are submitted each year and they are rigorously 
examined by a large number of judges. To win an award is a testament to 
Lineform’s design, user interface and its underlying design principles.
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13.5 Com m ercial success

Lineform has also been a commercial success, it is now available as a retail 
product, published by Freeverse Inc. It has sold over 10,000 copies since it 
was released in 2006.

Apple bought the rights to Lineform in 2008 and elements of Lineform are 
now a part of iWork which is Apple’s suite of office applications. iWork in­
cludes presentation, word processing and spreadsheet applications: Keynote, 
Pages and Numbers. Lineform’s users (from amateurs to professionals) and 
Apple (a big multinational corporation) bought Lineform for completely dif­
ferent reasons, but were motivated by the same high quality of design and 
implementation that Lineform represents.

13.6 C ognitive evaluation

Green’s [1989, 2000] cognitive activities and cognitive dimensions allow a 
heuristic evaluation, similar to the one that was performed on the calculator. 
The table below exhibits Greens original cognitive dimensions, using them 
to compare Lineform and Adobe Illustrator.

Cognitive Dimension Illustrator Lineform
Viscosity medium low
Visibility medium high
Premature commitment high none
Hidden dependencies none none
Role-expressiveness medium medium
Error-proneness low low
Abstraction medium none

Table 13.1: A comparison of drawing applications using Green’s 
cognitive dimensions framework

Change is how drawings are created, a viscous drawing application that 
makes change hard would be a complete failure. Thus both Adobe Illus­
trator and Lineform provide many different ways and tools to change and 
interact with the drawing. Neither user interface is viscous, they are both 
fluid interfaces that allow and encourage change. Although Illustrator does 
not have the same principle of appropriate controls and sometimes provides 
awkward discrete controls for continuous values. This can be seen in Illus­
trator’s stroke palette, shown in Figure 13.2, which only provides discrete 
stepper controls or pop-up menu for the stroke width which is a continuous 
value. These inappropriate controls detract from the fluidity of the user 
interface, making it harder for the user to change the stroke width value 
and explore the results. Illustrator’s prem ature com m itm ent also reduces
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Figure 13.2: Adobe Illustrator CS3’s stroke palette 

the fluidity of its user interface.

Visibility describes how well a user interface makes the information a user 
needs available. Lineform and Illustrator are both graphical applications 
and provide a WYSIWYG interactive view of the document as well as fur­
ther outline modes and layer palettes. However Illustrator does not provide 
projected feedback for several interactions and this severely reduces visibility 
whilst the user is interacting and thus makes it much harder for the user 
to get the desired result. Examples of this are the outline resizing, shown 
in Chapter 8 Figure 8.8, and the gradient tool which draws a single line as 
feedback instead of drawing the result of the gradient.

Premature commitment was one aspect of drawing applications that Line­
form specifically avoids and is codified in the flexible design principle. Il­
lustrator often determines the role of an object at the point of creation, for 
example whether an object is a text-box, image, stamp, shape or mesh is de­
termined by the tool that created it. Later if the user changes their mind it 
is nearly impossible to change the role of these objects. In contrast Lineform 
lets the user change the role of any object freely without restriction.

Hidden dependencies occur when important links between entities are not 
visible. Neither application has any dependencies, each shape or object on 
the canvas is independent of any other shape.

The direct manipulation graphical WYSIWYG user interfaces mean that 
both applications provide a role expressive interface on the canvas. However 
the tools and concepts of a drawing application are fairly specialised and for 
a novice the role of many tools like the Bezier pen or eye-dropper might 
not be immediately discernible. These concepts that the user has to learn 
reduces the role expressiveness of both user interfaces,

Error proneness is not a big problem for either application. The visual and 
direct manipulation user interfaces means that mistakes are rarely made. 
However Illustrator’s lack of projection when using certain tools means that 
temporary mistakes are made as the user attem pts to achieve a desired 
effect by a trial and error exploration. Lineform instead provides a projected 
exploration that presents immediate and continuous feedback which reduces 
any intermediate errors.
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Figure 13.3: Several examples of my use of Lineform

Illustrator’s multiple shapes and tools that operate only on a specific class
are complex layers of abstraction which can confuse users. Lineform’s lack 
of specialised classes of shapes or tools removes the potential for confusion.

13.7 Summary

Lineform is now used by thousands of people, from professionals to home 
users, in order to fulfil a huge variety of different needs.

Figure 13.3 shows some more drawings that Lineform has been used to 
create. It is the creation of these sort of drawings that motivated the creation 
and design of Lineform. Figure 13.3 includes examples of diagrams, flyers, 
buttons, logos and the help graphics for the calculator. Almost all diagrams 
and drawings in this thesis were created using Lineform.

Vector graphics are fairly complex, and vector drawing applications require 
many different abilities or features so that users can create and edit graphics. 
Well designed drawing applications tha t meet these requirements can allow 
powerful and complex drawings to be created easily. Lineform succeeds in 
doing so, its user interface incorporates all the required features that were 
previously identified, and does so in a way that is evidently clear and easy to 
use. The quotes of users and reviewers, and indeed its commercial success 
with thousands of users, testify to Lineform’s user interface design, and in 
turn to the design principles that guided its development.
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Chapter 14

Conclusions

The user interfaces, designs, and design principles of two new systems has 
been described. Both systems are effective, as evidenced by a variety of 
empirical evaluation including expert reviews, as well as argument and ap­
peal to the literature. They are now both successful commercial products. 
Both were designed using a similar principle-driven processes. Both have 
produced novel user interface ideas. And both now open up interesting 
opportunities for future research.

This chapter concludes the thesis with a summary of the primary principles 
that are the key components of the designs of these user interfaces, followed 
by an overview of further research, which could extend and build on the 
novel contributions of the thesis.

If we intend a science of human-computer interaction, it is es­
sential that we have principles from which to derive the manner 
of the interaction between person and computer. It is easy to de­
vise experiments to test this idea or that, to compare and contrast 
alternatives, or to evaluate the quality of the latest technological 
offering. But we must aspire to more than responsiveness to  the 
current need. The technology upon which the human-computer 
interface is built changes rapidly relative to the time with which 
psychological experimentation yields answers. If we do not take 
care, today’s answers apply only to yesterday’s concerns.

— Donald Norman [1983]

14.1 C ontributions

While the programs, description of the design process, and novel user inter­
faces are themselves contributions and axe valuable for future design, it is 
the principles, their relationship to the development process, and their po­
tential future role in interactive system development, that form the lasting
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contributions of the thesis.

Norman [1983] states that principles are essential, in order to apply todays’s 
answers to tomorrow’s problems. The principles which resulted in the novel 
and effective interfaces of the calculator and of Lineform, also allow the same 
constructive user interface design ideas to be applied to future designs.

Although principles in general are essential, that does not mean the princi­
ples described in this thesis are. Nor that they are uniquely important or 
special. They were however a major factor in the design of both systems 
and the four flow  principles were key components in both designs. Crucially, 
the two different applications, the calculator and Lineform, allow us to talk 
about the principles and their consequences on design in a concrete way.

14.1.1 U tility

While the principles were not followed unthinkingly, they were utilised al­
most without exception, Chapters 3 and 9 describe how they were used and 
when they were ignored. The designs of the systems are consistent and log­
ical in their approach to problems; without implementation the principles 
consistenly the resulting designs would not be as coherent nor work as well. 
For users, this consistency might not be immediately apparent but (we have 
argued) it leads to an ease of use that would otherwise have been missing.

Although the conception of these principles has been illustrated in specific 
designs, their application and utility is general and extensive. The principles 
described in this thesis are not only important for these two user interfaces, 
but can provide relevant guidelines and ideas for future user interface design. 
The underlying design process is also an important factor of consideration. 
To fully utilise these principles, it is key to have a design process that ensures 
their consistent and pervasive application.

The use of the flow  principles when designing Lineform highlights their 
utility in a contrasting type of user interface to the calculator. The principles 
need not be used in the same way as how they were used in the designs in 
this thesis. Each principle may vary in relevance to a particular design but 
still be useful to consider — just as continuity is less relevant to Lineform’s 
design but it still provides useful insight. Also in the same way as Lineform’s 
design generated new principles, more applicable to its purposes, so to would 
future principle-driven designs. The discussion and insights that principles 
focus, may be as useful as the principles themselves.

14.1.2 V alid ity

User studies, qualitative feedback, heuristic, and analytic evidence of the 
effectiveness of both user interfaces is found in Chapters 7 and 13. The 
principles themselves have not directly been subject to any empirical testing
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outside of their impact on the design of those specific applications. How­
ever, the principles are an important aspect of the design of the novel user 
interfaces described, and this thesis has argued that they are the primary 
reason that both user interfaces have been effective.

The design and development of each application built on the synergy that 
formed between the principles and the application designs. The applications 
and principles developed together, to such an extent that they are insepa­
rable. This makes evaluation complex, because without the principles the 
applications are incomplete husks. The principles provide the core structure 
of how the user interfaces of both applications work.

14.2 Principles

Principles were developed during the design and development process of 
both the calculator and Lineform, and each main principle is summarised in 
this section.

The calculator was designed using the flow  principles of projection , continu­
ity , W Y S IW Y E  and declarative interaction. Each of these principles relates 
to an aspect of the user’s interaction with an interactive computer system. 
Each of the four flow  principles is focused on a different component of in­
teraction and together they combine to describe a system that as a whole 
engenders flow.

Lineform’s development incorporated these principles in a manner that was 
more appropriate to its domain, and built up some more narrowly-focused 
principles of its own. These principles of physical m odes, flexible design and 
appropriate controls developed during the implementation of Lineform.

All these principles axe described fully in Chapters 4 and 10.

14.2.1 P ro jectio n

P rojection  could be described as “consistent and immediate changes every­
where." Inconsistency in a user interface requires a cognitive effort to keep 
track of, and can cause users problems when it is not clear which values are 
valid.

A projected  view  is a view that is projected outwards from the data and 
has no state of its own; as the data changes so does the view. Projected 
views axe updated immediately and continuously as the underlying data 
being projected changes, thus multiple projected views of the same data 
will always be consistent. Similarly, editing a projected view immediately 
changes the underlying data, and provides an immediate response to the 
user’s edits in other views of the data. This can make a user interface
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easier and faster to use because the user is not burdened with remembering 
inconsistencies and is provided with immediate feedback of any edits.

The calculator provides projected editing of mathematical expressions. It 
always updates and accommodates new input as the user writes new sym­
bols. The handwriting recognition is immediately reflected in the canvas, 
there is no need to press a button to get the answer, and the answer is 
updated immediately to reflect the new input. What the user sees is always 
mathematically consistent. Lineform also projects all its data ensuring that 
no part of the user interface is ever inconsistent.

Another example of projection  is “search as you type.” In these user inter­
faces, the search box and search result are multiple views of the same data. 
As the user types, these different views are always kept consistent, and the 
results are immediately updated as the user edits search terms. A normal 
search box provides old and inconsistent search results for different search 
terms, until the user presses return.

14.2.2 C ontinuity

When a user interface changes state without continuity there is a sudden 
visual change that can confuse or mislead a user. A user interface that 
provides continuity uses animation and morphing to provide the user with 
the clues to follow what is happening and to enable them to mentally join 
up the state changes.

Morphing and continuity form a large part of the user’s experience of the 
calculator. Every time symbol or expression recognition occurs the user 
interface morphs the current input into a typeset expression and displays 
an answer. This morphing not only provides continuity but also enjoyable 
physical movement. The continuous feedback and smooth morphing the 
calculator uses provides the user with a clear idea about what is happening 
and a consistent linking between input and output. Continuity enhances the 
user’s appreciation of the calculator’s use of projection , because they see it 
working.

For example, the user’s hand-written input is morphed into a typeset sum, 
which provides a clear link between mathematics being calculated and how 
it relates to the user’s hand-written input. This morphing not only makes 
the calculator easier to use but is also very visual and enjoyable.

14.2.3 W Y S IW Y E  —  W h at you  see is w hat you  ed it

Users should only interact with what they can see. Hidden state and struc­
ture means that user input can have unexpected consequences, thus causing 
a frustrating experience and causing the user trouble. A What You See
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Is What You Edit (WYSIWYE) user interface is one in which there is no 
hidden state or constraints that affect how the user interacts with it.

A WYSIWYE user interface is predictable, the entire underlying model 
that affects the user is visible to them. The user can see anything that 
affects the result of an action and therefore can (after learning the user 
interface) predict what any action will do. A WYSIWYE interface has very 
few constraints on how the user can edit, and those that do exist, axe visually 
obvious to the user.

The calculator is a good example: what the user sees — digits and symbols 
— is exactly what they can edit. The user can edit any expression by 
dragging, adding, or deleting the symbols, without being concerned about 
unexpected results or modes or constraints. In contrast, most other two- 
dimensional mathematical editors restrict the user’s actions to the implicit, 
but invisible, underlying application structure.

14.2 .4  D eclarative in teraction

Declarative interfaces blur the distinction between input and output. Often 
input and output in a user interface are entirely and conceptually separate, 
which means that if a user wants to change the output in a certain way they 
have to work out how to change the input to affect the desired result.

A declarative user interface aims to allow the user to edit most views of 
the data, whether ‘input’ or ‘output’ views. By not distinguishing between 
input and output, the user interface can allow for more powerful and intuitive 
interactions. An example of this is how a user can, by providing the desired 
output data discover an example of the input needed, a sort of in teraction  by 
example. The user is able to incrementally explore or construct an answer 
by cycling between ‘input’ and ‘output,’ adding changes in whichever way 
makes most sense. Declarative interfaces also facilitate exploration of the 
underlying process and allow users to gain a deeper understanding of the 
input-output relationship.

A declarative calculator treats input and output equally, such that the user 
can change either, and the other will be altered to ensure the expression is 
mathematical correct. This means the user can solve simple mathematical 
expressions by editing both sides of the equality, including the output. Ex­
amples of expressions the user could solve directly are ‘2 + 3’, ‘4x? = 24’ and 
‘\/? = 100’. Both sides of the equality are treated equally and the calculator 
solves the expression so that it is mathematically correct.

In Lineform, the user can drag out a shape to roughly the right size in the 
canvas, then tweak the exact measurements by entering or editing numbers 
in the Transform inspector, then the user can reposition the shape in a better 
location on the canvas. Each view, the inspector and the canvas, lends itself 
to a different style of use, and neither view need be used solely for output
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or input. The combination of both is powerful and gives the user flexibility. 
In Lineform, the views axe also projected, thus the different views are never 
inconsistent or confusing.

14.2.5 P h ysica l m odes

Modes in user interfaces alter what a single action achieves. Mode confusion, 
where the user is unaware of what mode they are in, can cause problems 
when an interaction gets an unexpected result. We define physical modes as 
modes that are maintained by some continuous physical action, for example 
holding down the Shift key to type capital letters. There is a mode (upper 
or lower case shifting of letters, in this case), but the user has to be engaged 
in a particular physical action to be in a particular mode.

Physical m odes provides a much better reminder and awareness of the cur­
rent action being performed than a state or action that is indicated outside 
of the user’s body. Using a physical mode instead of ‘virtual’ visible or au­
dible mode identifiers, such as icons on the screen, reduces the possibility of 
mode confusion.

Lineform makes extensive use of physical modes throughout to control the 
action of different tools. These make it easy to switch modes quickly without 
any confusion. Furthermore, if the user takes their hands off the keyboard, 
all modes reset without the user having to know which mode was which or 
what state the user interface was in. This is a significant simplification over 
non-physical mode approaches.

14.2 .6  F lex ib le  design

Flexible user interfaces allow users to delay decisions until they are ready 
to make them and then to easily change their mind. Compared to rigid 
interfaces this provides a much more enjoyable user experience. Rigid user 
interfaces enforce unnecessary premature specification that often needlessly 
restrict the user.

Lineform provides a flexible user interface where any shape or object can 
be repurposed for any use at any time. This is in contrast to (for example) 
Adobe Illustrator that provides specialised shapes, that once created are 
very hard to change. Lineform’s flexible design allows users to be free to 
draw and design without the fear of future constraints based on the initial 
choices.

14.2 .7  A ppropriate controls

Using right user interface controls for the right values makes a huge differ­
ence. The right control can enable the user to easily and quickly manipulate
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the underlying values.

Discrete values should be controlled through discrete controls and continuous 
values should be controlled through continuous controls. Continuous values 
should also have an exact discrete way of being set. Every control should 
also provide continuous projected interaction.

If a user interface provides a discrete control for a continuous value, then the 
user’s interaction when changing that value is limited. By always provid­
ing continuous controls for continuous values, the user’s interaction is not 
restricted. Discrete controls are important for discrete values and also for 
continuous values where setting an exact value is important.

Lineform provides sliders, which are a continuous control, for its continuous 
values. Most of these values can also be set to exact values using a discrete 
control, like a text input box. Further, in Lineform, these controls are 
projected and they allow the user to explore the range of possible values 
quickly, because the user can immediately see the effect of the range of 
possible values on the canvas.

14.3 Further work

The flow  principles of the calculator and the principles drawn out from 
Lineform’s design suggest many new and interesting ideas for further devel­
opment.

Instead of going into great detail about possible further research, the re­
mainder of this chapter is structured to provide short sections of potential 
further research, organised by research area. The next sections cover various 
aspects of the research and how the ideas could be built on and extended in 
each research domain.

14.3.1 C om puter science

Using the principles of projection  and declarative in teraction , the calculator 
corrects any input so that it is mathematically correct. It attempts to do this 
in a manner that causes the least disruption to the user. There are however 
many possible ways that calculations can be corrected. Questioning the 
calculator’s particular implementation that attempt to show a valid equation 
at all times raises interesting questions.

• How can ambiguous equations with multiple unknowns be corrected 
to valid equations?

• What are the least disruptive corrections that can be made to equa­
tions?
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The calculator’s approach could also be applied to other domains, for in­
stance, Boolean logic. In general, extending the mathematics of the calcula­
tor poses both interesting problems algorithmically and in the appropriate 
styles of user interaction.

• How can the fluid correctness of the calculator be extended to more 
complicated maths, from simple algebra to completely different do­
mains?

• Is it possible to provide the same principle-based correcting mechanism 
consistently in these areas?

The current calculator can be put in a mode to conceal an answer, as in 
4 + □ = 14, with the box not automatically filled in. This idea raises further 
design tradeoffs, which still offer interesting exploration; for example, if the 
user wrote 4 + 1 = 14, should the display become 4 + 1 + □ = 14 or should 
it be 4 + !□ = 14?

There are also other mathematical problems, such as what should the cal­
culator do with g. It is not clear what the best solution is.

• How should the grammar be extended to other domains, and what 
applications are there that could exploit the user interface?

One of the potential ways in which the principles could be explored is embed­
ding the calculator in other user interfaces: whereever a number is needed, 
it could be entered or manipulated with a calculator-style user interface, 
applying the combination of the flexibility of editing and the automatic cor­
rections to user interfaces.

Another approach is generalising the syntax correction. For example, a 
possible use is in code editing, where the approach could provide some of 
the benefits of syntax directed editing without the major disadvantages in 
how editing code is restricted.

• In what other user interfaces does automatic correction (e.g., projec­
tion) in a constrained environment work?

• How could different forms of input (for example, diagrams) be cor­
rected?

WYSIWYE is a powerful way of interacting, but in this thesis there were 
limitations in how it was implemented: Lineform provides a very structured 
interaction and the calculator editing operates only at the symbol level. The 
WYSIWYE nature of both applications could be taken further.

• How could WYSIWYE editing work at the sub-symbol level (e.g., 
drawing over a 3 to change it into an 8, or drawing over a — so it 
can be changed to + which can then be changed to 4)?

• How can the benefits of bitmap drawing (with its easy WYSIWYE) 
be combined with vector drawing (flexibility and editability)?
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• The current calculator is numeric; how can it be extended to symbolic 
maths. Is there a continuum?

A solution to this last question would help those users who very quickly 
create calculations like lO1010" or 100000! that cause overflow. Such expres­
sions are currently evaluated numerically in Java floating point numbers, 
and then fail due to overflow. Instead, they could be retained symbolically 
and hence avoid any interruption in the user interface flow. Potentially, 
symbolic solutions would also permit 1/0 and other ‘errors’ to be handled 
gracefully.

14.3.2 H um an com puter in teraction

The main area in which this thesis could be extended by usability researchers 
would be further evaluation and user studies. In particular, longitudinal 
studies in primary schools could provide many useful and interesting in­
sights, and there are a lot of useful questions that could be answered by 
such studies ...

• Does the novelty of the morphing user interface wear off?

• Would students enjoy using the calculator every day, for the maths 
they do in class? (Maths in class is ‘work’ whereas all evaluation in 
this thesis might be accused of evaluating ‘play.’)

• Does a pen-based user interface improve with practice or is it awkward 
and slow compared to keypad entry?

• Do users begin to make use of the declarative aspects of the calculator 
rather than rearranging equations before they enter them?

Users certainly enjoy using the calculator. Children like the calculator, and 
it is certainly more powerful, easier and more reliable to use than any other. 
The appeal of proprioception, gesture and affordance all potentially play a 
part. A key part of learning is exploration, by surfacing the rules so that a 
user can interact with them a declarative interface can potentially support 
easier exploration. However, longer-term (longitudinal) experiments will be 
needed to see whether the fun and other benefits persist.

• Is the user’s “fun” a surprise due to the unfamiliar nature of the user 
interface, or is it durable?

• How can declarative user interfaces, such as the calculator, encourage 
exploration and learning?

• Subsequently, how can experiments and user studies rigorously exam­
ine the process of exploration?

Carefully constructed user studies could better inform us of the utility of 
the different principles developed both in the calculator’s and in Lineform’s
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design.

• Are the principles generally useful, and, if so, where are they effective?

• What are the best ways to provide continuity to the user?

• How do the principles work in other user interfaces?

There are still many interesting questions to be answered in the domain of 
drawing and specifically in vector graphics.

• Are there easier ways to draw curves than the ubiquitous Bezier curve? 
Can the Bezier curve control points be simplified in some way?

• What are useful interactions and operations for drawing?

• How can we provide an experience that has the preciseness of computer 
vectors and the ease of sketching with a pencil?

14.3 .3  In teractive ed itin g

This thesis explores in detail just two applications and their relation to the 
design principles. In fact, a third application was also developed: Recdit is 
an example of an application that was inspired by the design of the calcu­
lator, specifically its ‘undo: clock (see Appendix H). Recdit is a text editor 
that records the entire history of a document, and provides a timeline-like 
interface for scrubbing through the creation process of the document. The 
majority of this thesis was written using Recdit, and the graphs describing 
the creation of this thesis, generated by Recdit, are provided in Appendix H, 
along with a draft paper on the editor.

14.3 .4  Teaching

Currently the calculator provides the ability to hide and show calculated 
answers. These let a teacher write an equation on an interactive board for 
a class to see, whilst hiding the answer. Teachers have mentioned that it 
helps to have the answer calculated for them: it means that where if math 
skills are often rusty they are more prepared and more confident to answer 
questions and explore the answers with the students.

• How is the calculator used by teachers to provide richer teaching of 
mathematics?

• How can its features lead to richer teaching of mathematics? And how 
effective would it be?

• How can it be extended to facilitate use by teachers in novel and 
interactive teaching methods?
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The calculator was designed purely as a calculator, to do arithmetic sums. 
In this sense, the goal was to make it natural and easy to use. Those 
positive attributes have led teachers to strongly encourage us to make it more 
effective in the educational setting. In this context, children are learning 
not just arithmetic but the mathematical notation itself — for example 
children may be learning Arabic numerals. Typically, an educational device 
is wanted, not a calculator. For example, teachers have wanted ‘drills’ of 
various kinds, rather than an open-ended tool.

• How can the calculator, or similar user interfaces, be developed to 
support disabilities?

A further-developed calculator might provide or support numerical games; it 
might do tests and provide assessment; it might provide features for children 
with specific learning difficulties; and so on.

Many fun exercises are of the form “only use fives to make the number 30” 
(some answers are 5x (5+5/5), 55 —5x5, 5x5+5 and so on). The calculator 
could show a legitimate calculation in green (say), and any ‘cheating’ (in this 
case, using other digits) in blue. The user’s goal is now to make 30 with an 
all-green calculation.

14.3 .5  Learning

The calculator poses interesting questions about how to enable the ability 
to explore mathematics whilst the visible calculation remains mathemati­
cally correct affects learning. The ability to explore different mathematical 
expressions while the calculator ensures correctness is potentially one of the 
most effective tools for learning. Exploring this in use, and the potential 
of this approach in the calculator and other user interfaces, offers a lot of 
potential, both for understanding mathematical skills and for developing or 
extending the calculator.

• Is allowing students to explore mathematics beyond the level that they 
have been taught a good idea?

• Does the ability of the calculator to ensure correct mathematics all 
the time help in exploration, for instance in enhancing confidence?

• How can the calculator encourage exploration and learning?

14.4 Sum m ary

The development of novel user interfaces, a new calculator and Lineform 
using a principle-driven process, has generated and refined useful principles 
as well as raising many interesting questions for further work. These under­
lying design principles have been key to the design of these systems. The



same principles now provide the opportunity for their use in future user 
interface design.

There axe many examples of worthwhile further work that extends the work 
done in this thesis. In particular more thorough evaluations of both the sys­
tems in longitudinal studies and of the principles’ efficacy would be valuable. 
Although much further work now seems useful, arguably little of it would 
have been considered but for the critical development of principles and the 
development of the calculator and the drawing program.

It is hoped that the design of new user interfaces can use and build on 
the work of the flow  principles, and in doing so extend and validate them 
further, as well as raise even more interesting questions.
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A ppendix A

Anonymous questionnaire

The following pages show the anonymous questionnaire used for usability 
testing. The results from these questionnaires are shown in Appendix B
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Thank you for taking part in my usability testing. During or after your use 
of the system please answer the following questions by either circling the 
appropriate answer or writing in the space provided.

Answers you give here are completely confidential, and will not be looked at 
till all the user-testing is finished and all questionnaires have been grouped 
together.

Questions
Have you seen the system before?

How much do you normally use computers?

What is your occupation?

What is your overall impression of the system?

What did you feel to be the best parts of the system?

What did you feel to be the w orst parts of the system?

How accurate was the system at recognising your handwriting and mathe­
matics?

What do you use to normally calculate mathematics?



Which aspects make it better than how you normally calculate mathemat 
ics?

Which aspects make it worse than how you normally calculate mathemat 
ics?

What did you think about the user interface? Feedback and editing?

Did you enjoy using the system and what could be improved?

Comments
Are there any other comments you would like to make?
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A ppendix B

Initial results

How much do you normally use computers?

• Not very often - for essays mainly

• lots

• Everyday for about 7 hours

• Lots

• Lots and Lots

• Only when I need to

• 1-4 hours a day

• 2 or 3 times a week

• Not much

What is your occupation?

• Student

• Placement officer

• Computer science student

• Student

• Doorsafe manager

• International student

• Handyman

• Mathematics student

What is your overall impression of the system?

• Its really good when you get the hang of it
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• sleek styly +  I want to use it

• very good

• very cool user friendly concept — got a few niggles that need ironing 
out

• new — interesting

• a lot of potential — needs to recognise my 5’s

• very good and highly intuitive

• It works very well — sometimes the recogniser seems to be a bit slug­
gish. I t’s easy to be confident of what I’m calculating because it dis­
plays it on screen.

What did you feel to be the best parts of the system?

• Is fairly easy to use when you get the hang of it — you can write what 
you know of the sum and it works the rest out.

• sound effects — clean look — idea!

• much more natural than having to type equations in

• when the computer would fill in the blanks even if you hadn’t finished 
the sum

• add and change elements in the calculation

• it’s simplicity, use of ’’question mark” — also the ability of people with 
poor handwriting to produce clear equations

• the ease with which sums could be written in to the system having 
been copied direct from ‘printed’ notation

• Easy to edit equations — adding and removing parts — it works out 
the answer for me — understood nearly all of my handwriting

What did you feel to be the worst parts of the system?

• It didn’t always recognise my numbers/signs

• got confused when it didn’t understand my writing — actually I have 
an idea, decrease the size of the numbers when its a

• simple equation so you can sneak nos in

• Had to adjust how I wrote =  to get it to work

• hand recognition (not working that well)

• The time used to clean the window

• the tablet takes a bit of getting used to and it didn’t like my number 
8 s which I though were inoffensive
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• Interpreted = as two fraction bars creating a big mess to clean up from 
a small error

How accurate was the system at recognising your handwriting and mathe­
matics?

• Generally very good but didn’t recognise some.

• good for all numbers — except 4/5 had to make it recognise

• good, had problems with =  and 5’s

• had trouble with some numbers + signs — but possibility of updating 
the system on my scribbling was good

• problem with getting it to delete properly and struggled to recognise 
my 5’s

• almost flawless 4 is almost + but other wise no mistakes at all 

What do you use to normally calculate mathematics?

• Calculator

• head -  i only do simple stuff

• My head

• fingers, other people

• my head — paper or pencil — not complicated stuff

• a graphical calculator and computer programs

• an abacus (I don’t ‘do’ maths)

• pencil and paper — a calculator if I really need one — often computers

Which aspects make it better than how you normally calculate mathemat­
ics?

• You don’t have to find/understand all the buttons as you do on a 
scientific calculator

• I am more comfortable using comps these days so I’m not scared of 
using it. Also, it’s a dream come true, someone giving me the answer 
just by writing the equation

• 2  to power of what =  28 are made much easier as you don’t have to 
rearrange anything to do the calculation

• I can see how the sum is working and edit it at will. I can draw how 
I see the sum in my head

• the possibility to change the calculation without starting all over again

• the way you use it is much more intuitive and saves you time in terms 
of writing the answer down
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• the problem does not have to be converted by me into a format compre­
hensible by a calculator and can do stuff I couldn’t do on a calculator

• it requires an input method I am not familiar with

• no thinking about brackets or trying to find numerical keys on a key­
board — can see the computation taht it’s done. — can edit it, or add 
more steps to the computation, (in the middle of the expression!)

Which aspects make it worse than how you normally calculate mathemat­
ics?

• You have to cross out things when you’ve finished with it rather than 
just simply pressing cancel, you have to be careful about where you 
write numbers and signs, can be a bit confusing

• not as quick for simple calculations

• takes the fun out of using your head

• you can spend more time writing perfectly than doing the sum

• it didn’t recognise my numbers frequently

• learn to recognise 8 ’s and = signs. Maybe it easier to delete stuff - 
maybe somewhere on screen to press to clear the screen

• slow to recognise after input — can end up making the same error 
several times in a row as I try to enter something and it gets it wrong

What did you think about the user interface? Feedback and editing?

• excellent — didn’t notice it that much

• v. good I found it hard to use the pen

• easy to use, edit, impressed

• I’ve always liked pens better than buttons

• very simple, really intuitive (esp. the delete gesture) nice how it adds 
in and calculates placeholders

Did you enjoy using the system and what could be improved?

• Yes but I got a bit confused at first.

• Include letters rather than ? ie. 2X rather than 2?

• Yes — the handwriting recognition could be better — if it were able to 
distinguish similar symbols and throw up a warning — the user could 
re-input the symbols

• Yes, and clean the window — a possibility for deleting everything on 
the screen

• the method of deleting



• yes — a lot — could do with delete all — clear page — or equivalent 
— extend it to cope with multiple expressions — want to see several 
results at once

Are there any other comments you would like to make?

• get a good degree dude!

• from a teachers point of view: would be great fun to try this out on 
pupils

• i like the explosions — Maths teachers would love it

• it works really well
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Team briefing notes
Resources you should read
http://www.cs.swansea.ac.uk/calculators/
http://www.cs.swansea.ac.uk/calculators/timetable.html

Meet at the Strand Palace Hotel on Sunday evening 3 July at 6pm for a briefing 
meeting and to have some fun — we’ll meet in the bar! See 
http://www.strandpalacehotel.co.uk/

For those of you travelling, we will pay your expenses; so keep hold of all those the 
receipts. The hotel is booked from Sunday to Friday for you (Harold Thimbleby, Will 
Thimbleby, Will Harwood, Andy Gimlett, Matt Jones, Adam Powell).

At the meeting we’ll go over all details, and hopefully we’ll have photographs of our 
mock up so we can see how everything fits together.

Our contact mobile phone numbers are

07747790414 Harold

07818038777 Will

What is the Royal Society Exhibit?
The Royal Society Summer Science Exhibition is a four-day exhibit of the U K ’s top 
science and technology research. The researchers exhibit their research. There will 
be 24 different exhibits from a wide range o f different sciences, all exhibiting at 
the RS in London.

What does it involve?
Talking to the public, discussing science, talking about calculators, and demoing the 
interactive gesture calculator.

There will be about 4,000 people over the course of the week, these will range from 16+ 
school kids to pensioners, to engineers, scientists, politicians and teachers, thus covering 
a whole range of people, most of who will be motivated and interested in what we are 
doing.

It will be very busy!

Key objectives

First, it is really important that you have fun and enjoy the event. It will be exciting and 
very busy, and your excitement and fun will be infectious. We don’t know all the 
answers, and listening to people will be part o f the science — and this is a point worth 
emphasising.
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We would like you to bear in mind the following secondary objectives:

■ Communicating the fun of computer science.
■ Evaluation, both as a science project.
■ Evaluation, as a ‘public understanding’ project.

■ There is an evaluation form (with prizes!) for evaluation.
■ Possibilities of research or development funding.
■ Corporate contacts (we have a patent).
■ Educational contacts, either for funding or for teachers.
■ People who want to do PhDs.
■ Museums who want to work with us to ‘ruggedise’ the display.
■ Opportunities for further talks or exhibitions.
■ Opportunities for articles.
■ Opportunities for press coverage.
■ New ideas.
■ We have a letter to be given to ‘good’ contacts we want to see again!

We will have one (or more) ideas books, so either you or visitors can write down new 
ideas about any aspect of the work. Note that the ideas book is different from the 
evaluation form.

We’ll give you briefing papers etc on Sunday.

What will be demonstrated
The main thing being demonstrated is the gesture-based calculator running on white 
boards (ours are SMARTboards). However the principles, the science and getting people 
to think, are important. Instead of getting people just to use the whiteboards try and get 
them to suggest ways that calculators could be improved or to point out problems they 
currently have. Then show them our solution.

We want to get across that we are doing real science; we don’t know all the answers; the 
work is not finished. We want feedback from visitors. We have got an evaluation form 
and a competition for the best suggestion each day — with a prize of an iPod. We would 
really like to get lots of feedback.

Also, if you have a visitor who is ‘prestigious’ we would like to collect testimonials from 
them and/or get permission to get testimonials from them later.

The exhibition stand will have a suggestions box to return these forms.

Good examples to show 
Mathematics
Simple things like 4x3 or 6+12 just to give the idea of handwritten mathematics 

The ability to overwrite and correct a simple example eg. 4x3 —> 4x32
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The two-dimensional nature of the mathematics eg. 2/3 34

The ability to drag bits of the equation around eg. 12x3/4 -»  I2/4x3 (moving the x3) or 23 -»  
32 in one movement.

The fact that it is declarative eg. 4x3=20 and how it is corrected.

The ability to solve for unknowns eg. 4x=20 even deeply inside equations.

You don’t need =, or it can be on the left or right (=3+5, or 3+5, or 3+5=) and even you 
can have several, as in 2x=3x=4x=12

Complex Mathematics

Square roots, factorials and powers eg. V l2 ,4!, solving for unknowns V = 25,!=124, 
2(=64

Complex numbers V-4, e,3t, 2(=-64 

Multiple equals signs 2(=2'/=-64 or 3x4=/2=

1
It can handle factorials (eg, !=5040) and continued fractions (eg 1 + --------- -̂----) nicely.

More Interaction

Using the clock to undo and revise what has already been done

Using the number toggle to hide and show what solutions are, eg for classrooms or 
teachers, can also get people to guess and enter a number, rewind for another go.

Using the dock to store parts of equations, and dragging in equations from the dock into 
equations you are editing.

Tips (some obvious and others not so)
Two of the comments made frequently at past RS Exhibitions have been 

“Exhibitors should be more forthcoming ”
and

“More enthusiasm from exhibitors. ”

Please be enthusiastic and open; if you are tired take a break. Most people want to be 
talked to and won’t start a conversation themselves.
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Make sure you get to play with the exhibit yourself. Play with the mechanical calculators, 
and the other exhibit stuff. The gesture based calculator does have some quirks, so 
practice writing on it and learn how to reset it — touching the cloud on the bottom left.

Try to pull people in when talking about the exhibit. Start with a question like “What 
problems have you had when using calculators?” or “Who’s got a calculator on their 
mobile phone?” We will have a display with several problems for calculators, and a pile 
of cacluators for folk to try.

Getting people to try to do sums on mobiles is a great way to show some of the problems 
with calculators. Even simple sums like 4x-5 tie people in knots, and it leads great into 
talking further about the problems or our solutions.

Do not eat, sit down or get tied up using the calculator yourself whilst you are on the 
stand.

Try to involve everyone and if someone is taking up a lot of time, try to get them to fill in 
a feedback form, leave contact details, come back later. You do not have to demonstrate 
everything to everybody. Have fun!

Any immediate queries — please email Will will@thimbleby.net before the exhibition! 
Or give us a ring on our mobiles!

See you Sunday!
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Hfjn an iPod 
h u f f l e every 
taothe best 
gestions

Weapons of Maths Construction 
Feedback

*11
A g e  D <16 □  16-18 □  18-25' D  25-45 0  45+'
S e x  D m 0 f

H ig h e s t  m a th em a tica l q u a lifica tio n  _________________
O c c u p a t i o n ____________________________________
C o n ta c t d e ta ils   _____________________________
(required for prize d r a w ) __________________________

n  Can we contact you? All data will be anonymised and treated in confidence.

HOW d o  yOU d o  m a th e m a tic s  /  s u m s ?  0  Calculators 0  Spreadsheets 0  In my head 0  Paper
details . . .

Do y o u  h a v e  p r o b le m s  w ith  th e  cu rren t m a th em atica l m e th o d  y o u  u s e ?  □  Y O N  

Would y o u  h a v e  s a id  ‘ y e s ’b e fo re  v is it in g  ou r  e x h ib it?  □  Y 0 N
detai l s . . . .

Is it b etter  o r  w o r s e  th an  y o u  cu rrent m eth o d ? 0  Better 0  Worse
deta i l s . . . .

I en joyed  u s in g  it 

I th ou ght it w a s  h elp fu l

(disliked it — loved it) 0 1  0 2  0 3  0 4  0 5  

(unhelpful — very helpful) 0 1  0 2  0 3  0 4 0 5
detai l s . . . .

How c o u ld  it b e  im p ro v ed ?  A ny o th er  s u g g e s t io n s ?
deta i l s . . . .

Would you like to write something supporting 
our work, which we could acknowledge and 
quote in e.g. articles or for research proposals?

out of space? you can use the back of this form ...

—th a n k y o u Please fill in this form, and hand it back to one of the Weapons of 
Maths Construction exhibitors, drop it off in the suggestions box, or 
mail it to us at Will Thimbleby, Department of Computer Science, 
Swansea University, Swansea, SA2 8PP
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Royal Society —  Results

The following results table contains all the data from the Royal Society 
Feedback Form (Appendix D). In the results table on the following pages 
the keys in the table header have the meanings listed in the table below. 
Interesting feedback from comments or other data are highlighted in the 
results table in grey.
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Key Meaning
Age Age (1-5) <16, 16-18, 18-25, 25-45, 45+
M /F Gender

Qualification Highest mathematical qualification
Occupation Occupation

How How do you do mathematics /  sums? (1/0) 
Calculators, Spreadsheets, In my head, Paper

? Do you have problems with the current math­
ematical method you use. (y/n)

< Would you have said yes before visiting our 
exhibit, (y/n)

B Is it better than you current method, (y/n)
E Enjoyment (1-5)
H Helpfulness (1-5)

Comments Comments from any part of the feedback form
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Ê ft 6b g I

■s 'fi
a  3 2, +>.
© o

8  a.5 0 • Xi
G ©

<■> «  
2  m .

JS §

3 ♦> "C
f s  *
oj «2 «

3  o o" S t

• -  c  
■8 "5  d  
c  § 3

J U

3  £  a* A J53 :S IS 
2  2  B

o M O S

31 i l
a  g )-h ^

s  9

I s9 © 
„ bO

<
:J8
g *

3  E 
w S

g  .2
^ S
u ©' ©> T> 
© G 
X -

I I

1 1  ft s
| . s
Em o
S o 

B  a  

S  »:o o

MlO^ 10 10 CO 5 5 5 4 4 4 Tj« J/5 lO 5 5 3 4 5 4 3 5 5 5 5 5 4 1C lO m

 ̂*o 10 }̂* irt CO 4  B 5 4 5 Tf lOLO ao IO lO 5 5 5 4 5 4 4 5 5 4 4 5 5 m 10 m

>s >. >> >» >» a >>  ̂ ^ G X G >> >» >> >> "̂1 >» >> >* a >> >. >»

c ,>» fs'o c c c >> c >> >> c a c g a G >» >> c a >» X a a >»

>, G G >V G Gc ' >o >> c >> >» a a c G >> G >> *  >> a c >» a c '>» >» n n n n >» a

rH 0 i-<-f 0 f-f O2 S 2 8  0 2 H S rH O 3 § 'g OrH O HHOO•*H rH O ^ W O O »«H tH
h h Oh O f-H .H O ft O f-H f“H «-*W H>-H O -

^ JrH OmM *-< rH O O f-H iH’"I ^ -1 rH O W O .OHHH H O H H H O O O rl rH

S T3 "O
^ “ 2  2  
ft, GO W

3 3  .  .a 5̂ • S I  -o |  § S I  8 .  g•S-S 2 c*o = -g -B a 2 -c S |J i  5
2 2  o ! 8 g i 3 Q « 3 .> -5 § 2 'g 8wco Dcoffl ̂E-<SISc5<OwOPhC5 iJ

S C C‘2 -2 '2  5  GCGCSC4S © © © © 3̂ ©
^  Q  X  T3 • -  2  -H © > > 'U T 3 T J T 3  © T 3j 2 “ 3 2 3 S 3 S i 3 =3 2 £ 3wOPdtomffiO«B.2 McoMwnw

W H H 0) a  a W
CO CO
0 0 CO "S m Q CO

M ■a co co
| o o y *3 CO

O
< 0 0 <1 M <  O 0  C O P C O O f t ,  <  «t, < Q S O O  0 D3 Q <  C O

£ g  g  u- om a s -  s  g

CN M  H  M Tji 10 CO <N ■



289

0 s
p  £3 o 
13 x

4  o
G 
0  <

-p3
*

C 3
«o t,  
$  £  
E . o

Ua j s  
£  i

i m *«

? =.i
§c  to 4  

fl 3  W ;« O 0 2 
i f l  *3 ** 3  
*  a  q  .2

j s  w *5 >
l i e "'E a - ft :« < "a l  a  - * " *s: TJ 0
S.H 5 -*T rt y

is g « £
a  >  g  -u . O o  ^S S.J s.
I * 'I ®, ® £  Jtle 3 » TJ R - P eP  C

5  S  S

■ s i  I S CD
V «fl

io) g  -■u <6 i-o u 11 .  P-
•6 *4 •* ® 0-  2  O

® 3  (S oS ft ®3  7  o  S  t.
55 8 «  a  o‘See £!.§

bO 0
c-S

u  «*® flkA ®bO ©

5*5

£  >>?  rt g-°
>>8 £ 5  

°  g  ® 

e S’- ■- S" -  s
“t  O p

«  > 4 ~
J3 0
P  -r» In.. C a)4) Q) p

S ? s

ft ' s
£|

O ,0  u  -n  p
n  *“  71 .4? St*3

s  >. °
o  P  p.w &> hfi

3 « . 2  
e  ■*> S  a  S a*2 as <u

£ 2 >

2  e

al 3

' ft 5

|  JS

_  2
a  3

2  JeW £
S> -o fr

^ SI* -  E
g  flj o  

!*&-
i sE l l a•a -g f 3 $ -s.® u " "O « .2 fe 0 o g - -a

V P  £  0  P  ^*5 *, 2 tox "3 
® a  £  >,  i f  a  

J> a  3  o•S'? 2 5(0 —*ft- £ 3  j> '

O 4> 
p  ^
u  5  
£  £  

*3 •-

j s  : ^ t 3
y  c  p  c
3 S5 b 3
E 5  «) P

£ > 3 - 3
0 3  ?+J
_, -o
S  s  .2 <

i m  £  a  a

» £  a  °  i  ^
. ■° 3 no g «

f t ^

3  .t; i  9

£ 2 3 3
**■* a3 «3
9 2  9 2
^  S,

« £ £ £  O (d (fl

lO LO lO to to i/) >c to iO »o ^  TJ* lO kO ^  CS «5  kO f  lO

to kO to ^  lO lO kO kO to to kO kO kO ^^'kO^COkO^'iOCOIO'^'kOlOkOkOkO'^' lOkO lO to to LO kO kO V) kO IO kO

' ^  4̂ 4̂ 4̂ 4̂ ^4^>^4^4 4̂ 4̂ 4̂ 4̂ 4̂ 4̂ 4̂ 4̂

C C C  ^ C C C C ^ C C C C C  C C ^ > 4 ^ > 4 > > C > 4  > > C > » C > 4 > > B > 4  ^  C  C >-, >4 >4 C C B c  f l  c

[a G >> ^G^^CG^GGGG >>G>*>>>i>>GG>> >̂,CC>4>4>>>>C >tBC>4>4 >4GGBCCC
P i  p  O  C P O O O O O P t - t Q i H  O O O P P P P O O P O P O O P P P P P  h h h h O  p p O O p O p
O  H W  P P P O P P P P P O P  r - < O O P P « P P P P p P P P P P O P P C 5  P P  p  p  p  p  p  P  P  O  O  p
O  P  O  C O O P O O O O P O P  O O P P O P O O O P P O O O O O O P C  © © O O P  P O O O O O O
p  p p  p p p o p p O p p p p  O p p p p p p p p p O p p p p p p p O  p p p p p  p p O O O p p

G G G G G G G G

0 ■-m aim wwwwwwmw Dhtn3 3 3 3 3 3 3 3

■ga“ aB®aeaaOeeeaaaa  —
■2 -o 3 ’C 'O  O ’O ' B ' C ’O £ rO * O T 3 7 3 ' 0 ’CT3 2  tS3®33a3333^33333335ĉofficocoHcocococoQwwcocowcocoO
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Calculator manual
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TrueCalculator Manual

The interf

P re fe re n c e s  Edit

H M L 6 1 8
13x3+4x4=5x5

7 + 1 =511
1 "¥i5.444- 

2

-

1. The equation editor
Equations are written here, which the calculator solves. Figure 1 shows the 
calculator in the process of solving 3x4.

2. The equation dock.
Equations can be dragged here from the equation editor. These are recorded 
and saved.

3. Hide/show numbers.
This button toggles whether computed results are shown.

4. History.
The clock records the changes made in the equation editor. It can be used to 
review what has happened and to undo changes.

5. Trash.
By dragging to the trash saved equations in the dock and parts of the equation 
editing can be deleted.



Solving an equation
To solve an equation write it in the equation editor, just as it is written on paper. 
TrueCalculator uses handwriting and expression recognition to understand what you have 
written. It then morphs your input into typeset output with the answer inserted for you.

n=3J42 
3+ 4= 5  2

I (18
3x3+4k4=5x5
BSSSEii
1+4

As a user enters an equation, typeset characters replace digits and symbols. This enables 
the user to recognise when a character has been misrecognised and stop to undo the error. 
Once the user has finished entering the equation or pauses the calculator morphs the 
annotated, typeset, input into a neatly formatted equation.

c W
3*4=5,.

2 .

4
c’'«-iu;3+4=5,;

ifaV+oe

Z2.

4
i- e*=-i 

a=ilA2s p a
ĵ =l4l8 1= 2.286Sl ■

4
7 7 ft ■

The calculator recognises these symbols and mathematical operations:
Digits
E, pi and i
Plus, times, minus, divide
Brackets
Equality
Square root
Exponents
Factorial

Incomplete equations
The calculator automatically completes equations for the user so that they are 
automatically correct. This means that the calculator can morph and display a meaningful 
equation before the user has completely finished. It also shows the user where they are 
missing operands and gives the user time to think about what they want to write.



e"=-l 
fc3JA2 
S+4=5+2 2

,ol8 
3x3+4x4-5x?
EsSiEs. —=16
g = ! 6

Editing an equation 

W riting
Once an equation has been recognised and morphed it is still editable. A user can 
continue to write on top of the typeset equation. The altered equation is reparsed to 
recognise the new equation.

e
t e i l £ 2
3+4=5-.

j
I.)'.:-'..'..

41
2

erVi-l.C
3+4=5
p i 618

*=8
f= 8

c =-1a=iI42 
3+4=5 r.
*5̂=1.61*

Z
2

4!
2

c
st=j.l42 
3+4=5 .
* 4  l ei'-

f=2.828

The computer added corrections in red are removed as soon as a user starts editing. A 
user can therefore write over the top of the computer’s correction. By editing the equation 
in this fashion a user can build up a mathematical expression in stages, checking at each 
point that the correct expression is recognised.

Drag and  drop
An equation is also edited in the equation editor by drag and drop. Selection is done 
syntactically; a user can select non-semantic or non-meaningful parts of an equation. For 
example a user can select the first and last digits of a number, or the numerator and 
denominator but not the divisor line.

31- lil
3+4=5-..

• ' e’ k l  ’ 0  e*’= -i ’E ns
3+4=5+: 3+4=5+.
fiSZ" k *f ioix A2 - . * 4

b Z  ' I
*  *

To drag and drop parts of an equation, first part of the equation is circled. The calculator 
automatically highlights the area and symbols you are selecting. Once part of the



equation is selected the pen or finger is lifted, then dragged from within the selected area 
to where the user wants to drop the selected part of the equation. When let go the selected 
contents are cut from the equation and pasted at the drop point as if they were very small.

Thus with this method parts of the equation can be moved around easily. Mathematics 
can be dropped underneath square roots or divisors, or placed as exponents. However a 
divisor bar cannot be dragged on top of an expression because the calculator does not 
know how large you want the bar to be. The solution is to drag the expression underneath 
the divisor bar.

Deleting
Part of an equation can be deleted by dragging it to the trash. The selected part of the 
equation is removed and the equation is reparsed. A cloud of smoke is used to show that 
you have deleted part of the equation.



Equal opportunity
The calculator uses a method, of solving partially complete equations, called equal 
opportunity. This allows both incomplete equations to be parsed sensibly, as described in 
the section Incomplete equations, and allows the calculator to compute more complicated 
results in a way which is simple and makes sense to the user.

With a normal expression entered by the user, the calculator adds an equality followed by 
the answer. If the user enters an equals sign then it is possible to write on both sides of 
the equality. This is where equal opportunity is useful. The computer corrects incomplete 
equations so that the least amount of change takes place.

1n ie
14?

3*JS5¥2
618 

3x3*4 *4-3x3 1 8 — c )3 iS «7 +1

2  >
f = 9

i

Thus simple problems are solved without any rearrangement for the calculator. And more 
complex problems can be solved without an understanding of the mathematics.

Hi i_

S=3442 
3+4=5 _
"r3x3i4*4»5Kf
KSfflEa 

2 '  =100

In the above example a bracket is used to indicate that the calculator should put a number 
here. Without the bracket a simple addition or subtraction on the right hand side is used 
to ensure the equation is correct. In this way the calculator is declarative, no equation 
ever shown to the user is mathematically incorrect.

(6 644)
2 =100



p §  2=100 98
2=100  .

If

Multiple missing values are sensibly filled in, for example rational numbers are used for 
divisors.(Note: it is necessary to indicate that a horizontal line is a divisor by placing a 
bracket or decimal point above or below it)

Using the dock
The equation dock on the left hand side of the screen can be used to store and retrieve 
equations. The equation editor always shows the contents of one of the equations stored 
in the dock. This equation has a white background, the rest of the equations have grey 
backgrounds.

To retrieve an equation from the dock, you simply click on it. The equation editor will 
then switch to that equation.

Dragging to the dock saves the selection creating a new item in the dock. The selection 
can be either an equation or part of an equation. The selection is copied to the dock and 
the equation being edited remains unchanged.

&fe3_L42 
3+4=52

5
«

In the dock clicking and dragging on the equations drags the equations around. To delete 
the equations these equations can be dragged to the trash.
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An equation can also be inserted into the currently editing equation by drag and drop. It 
appears as it does in the dock, and is immutable. More than one copy of the same 
equation can be inserted into the editing equation.

Using the history
By rotating the hand of the history clock, the entire equation history can be viewed. This 
is similar to a “scrubber” or slider on a movie player. The smooth morphing and 
movement of the symbols and expression can be played backwards and forwards at any 
speed.

In this fashion a user can review the entire working to arrive at a solution. A user can also 
use the clock to undo mistakes, once they have released the clock and started writing the 
backwards “time-travel” is made permanent and the future recording is erased.

Hiding the answers
The numbers shown button, toggles the computer-generated numbers on and off. When 
the numbers are not shown they are drawn as empty dashed boxes. This enables a teacher 
or presenter to pose questions about the mathematical formulae without revealing the 
answers.

JT I -;N
e ' •
ft=Xi4i
3+ 4= 5  .

fcU.618
3x3+4~x4=3x5
tr+3:«7f 41V, 

12= -

Whilst the computer-generated numbers are hidden, the calculator remains usable. This 
enables a user to attempt to enter the answer to find out if it correct. If it is not correct the 
calculator has to add in a correction, which is also hidden. When the user gets the correct 
answer no correction is added and the whole equation is black.

12=3



b =3.142 
3 + 4 -5  .

fx": 1-618
3x3f4x4=JxJ 12=f+



A ppendix G 

Dock equations

The dock text file syntax is solely a positional syntax. Each character repre­
sents a symbol added to the mathematical expression at the current cursor. 
Every symbol moves the cursor right except curly or square brackets which 
shift the cursor up or down respectively. Any symbols written within these 
special brackets take up a single symbols width.

Thus, {12} [3] -  is recognised as the symbols 12 raised, the symbol 3 lowered 
and a -  symbol, all horizontally aligned with the same width. Which when 
parsed becomes

The initial dock equations text file is:
3+4=5
3*3+4*4=5*5=
32+{9}[5]-*=
=2.54*(+12*)
1+{1>[1+{1>[1+{1>[1 + 1 ]-]-]-={1+R>[2] -=
P=/
!=1*2*3*4*5 
0=e{iP}
( 1+ [100] -  [ ) { 12> =(1+[100] -  [ ) { !} ] ]

309



Which gives the resulting mathematical expressions:

• 3 + 4 =  5

• 3 x 3  +  4 x 4  = 5 x 5 = ?

• 32 +  §x? =?

• ? =  2.54 x (? + 12x?)

• 1 + 1+ *i =  ^  = ?
1+5 S

•  7r = ? /?

•  ?! =  1 x 2 x 3 x 4 x 5

.  (1 + rto)12 =  (! +  iSo)1



A ppendix H

Recdit draft paper & 
tim eline of chapters

This section includes a draft paper on Recdit, a novel text editor inspired 
by some aspects of the calculator. The majority of this thesis was written 
in this editor, and following the draft paper are the timelines generated by 
Recdit for the creation of each of the chapters of this thesis.
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ABSTRACT
A novel text editor, Recdit, provides a complete character 
by character history of text documents is introduced and dis­
cussed. Recdit provides the ability to see an entire docu­
ment’s history and to “scrub” through it like a movie.

Recdit also provides highlighting and graphs that tracks and 
shows overviews o f a document’s edits and changes. The 
ability to do this provides many novel uses. These features 
are discussed and are useful for both single and multiple au­
thors, both of which Recdit supports.

ACM Classification H5.2 [Information interfaces and pre­
sentation]: User Interfaces. - Graphical user interfaces.

General Terms Design, Experimentation

KEYWORDS: Undo, history, versioning, track changes, col­
laborative writing

INTRODUCTION
Tracking the changes in text documents is an essential task 
[3], especially when multiple users are editing the same doc­
ument. Recdit provides a character by character recording of 
the entire history of text documents. This history provides 
the ability to extensively track changes in text documents.

The primary' contribution o f this paper is the combination o f a 
complete edit history, its visualisation and a controlling user 
interface. These provide novel ways of tracking document 
changes and interacting with them.

Some of the features of Recdit provides are:

•  Multiple concurrent authors
•  A complete edit history
•  A slider user interface to control viewing the history
•  Trails which highlight the last few edits
•  Graphs providing an overview o f the entire history
•  Sideways text layout that provides more structure for the 

text

Recdit is a fully working text editor designed for Mac OS X. 
This paper was written in Recdit of which every edit can be 
reviewed. The application and paper are available to down­
load from http://will.thimbleby.net/truetext/

INSPIRATION
This text editor was inspired primarily by seeing users en­
joying the undo-clock in the pen-based interactive calculator 
presented in [6 , 7],

The calculator instead o f providing a discrete step-based 
undo similar to most modem user interfaces, provides an 
undo that is linear and smooth. The undo user interface of 
the calculator is presented to the user as an analogue clock 
that allows the user to manually set the time by rotating the 
clock’s hands.

Users really enjoyed interacting with the undo-clock when 
using the calculator. Like most undo systems, users did not 
often use the undo feature, but they still liked to play with it 
and enjoyed the interaction.

This success led to the original design question for Recdit: 
“What would a text editor look like if it had a similar undo-
clock?”

Figure 1: Recdit’s user interface.

Time-machine computing |5idcscribcs a whole system con­
taining multiple applications which can be navigated in time, 
Recdit provides the same navigation in a more focused and 
refined user interface specifically for textual documents.



DESIGN
Implementation
To provide the similar ability to rewind the edits to a text 
document as the calculator provides for equations, Recdit 

. records every single event as the user type. The recorded 
event data includes a timestamp, the current user, and the edit 
data itself. As a user types, each modification, the document 

i records an event, every single character press is recorded as 
a individual event.

The edit history of a document is recorded in the saved files 
so that the history o f a document is not lost between editing 
sessions.

When a document is opened in Recdit the document replays 
its creation from the start. This allows keyframes of the doc­
ument’s state to be recorded throughout the its creation. To 
jump to a location in history the document is “wound” for­
ward from the nearest keyframe by replaying the edits made 
between the keyframe to the new location. The keyframes 
that are stored every couple hundred edits allow jumping to 
any location in the document’s history to be very fast and 
allow scrubbing through the history to be immediate and in­
teractive.

User Interface
A screenshot o f editing this paper in Recdit is shown in Fig­
ure 1. The text is laid out sideways in individual pages with 
page numbers at the top. Some highlighting o f this text is vis­
ible showing the last few edits made to this paper when the 
screenshot was taken. At the top of the window is a graph of 
the documents state throughout its creation and a slider that 
controls the currently displayed version o f the document in 
history.

If the user does not interact with the history features o f the 
editor then the editor interacts identically to a simple text 
editor.

The main user interface for interacting with the history o f the 
document is provided by the slider at the top o f the docu­
ment window. Using this slider it is possible to jump to any 
point in the document’s history and to scrub back and forth to 
see the changes as they were made. Dragging the slider left 
moves the document back in history, up-to the beginning of 
the document, and dragging it right forward in history. This 
works like scrubbing through a movie. As the slider is moved 
the document is updated instantly, the state o f the document 
and the slider are never inconsistent.

A slider is used instead of the undo-clock used by the cal­
culator because it provides instant interaction for moving to 
specific points. Another benefit of a slider is that it can be 
overlaid on-top o f graphs showing the state o f the document 
at any time. A disadvantage o f a slider is that as the docu­
ment has a history in the thousands or tens of thousands edits 
the slider becomes more inaccurate, each pixel o f the slider’s 
position representing many edits.

Using the slider to scrub back and forth in the history o f the 
document shows the edits that created the document. This 
can help a user to understand the process of the document’s 
creation.

By replaying a document’s creation when it is opened, the 
user sees the document recreated from the beginning charac­
ter by character. This provides the user with a fast-forwarded 
reminder of how the current state of the document was reached.

MULTIPLE USERS
Group editing documents with multiple authors even with 
version control systems or concurrent group editors is not 
a simple task. Other than the technical problem o f pro­
viding distributed access to the same document, one o f the 
main problems o f multi-user editing is keeping track of the 
changes made by other users [3]. Simple versioning is often 
used to provide a basic tracking o f changes.

Recdit provides networked multi-user concurrent editing ca­
pabilities. A document can be served from a server to mul­
tiple individual users that connect to the document. This al­
lows multiple users to concurrently edit the document at the 
same time.

By recording the history of a document Recdit creates the 
potential to review other user’s changes. Allowing a user to 
potentially rescue paragraphs deleted by other users and to 
“see” their changes, to see how and what they wrote, cor­
rected and deleted.

UNDO vs. HISTORY
Most undo systems create a tree o f edits, usually each branch 
of the tree except the main current branch is lost. Several 
interesting undo frameworks have been proposed like US&R 
[9] and multi-user undo systems like [1]. Recdit is not fo­
cused on implementing an undo system. The history and 
undo are distinct, which makes both simpler to interact with.

The history records all the undo and redo changes, because 
the undo system is external to the history o f  a document. 
Moving back in time it is possible to see mistakes made and 
undone.

Unlike undo the history of a document is immutable, once 
an edit has been made it is recorded forever. Although it is 
possible to view the history o f a document it is not possible 
edit the document in the past.

The history o f the document can be represented as a sequence 
of states on a time based axis. The version o f a document 
that existed at any point in time can be retrieved. No state 
the document was previously in is irretrievable, at no point is 
any data ever lost.

TRAILS
As the user types in Recdit a coloured trail is left behind. 
This appears as a light background colour behind the text, 
which can be seen in Figure 1. As the a continues to type 
this colour fades out over time until it disappears after one 
thousand edits. This means that at any point in the documents 
history the highlighted trail provides a overview of what the 
last one thousand edits are. Deletions are not highlighted 
because they do not leave behind any text.

A benefit of only colouring the last few edits is that the ma­
jority o f the document looks normal, and the gradual fading 
of the highlighting provides a good overview o f what edits



were made and when they were made.

Edits by different users are highlighted with different colours, 
so it is easy to see who wrote what in the last one thousand 
changes in a group authored document.

SIDEWAYS LAYOUT
Recdit lays the document out sideways, splitting the docu­
ment into pages. The pages are laid out sideways in order 
to make best use o f current widescreens which are becoming 
more popular and to provide additional structure to the text. 
This is to provide more structure to the document, such that 
it is easier to find where a part or page o f the document is.

The pages the text is spilt into are sized so that they are a good 
size for reading and editing. Page-breaks between sections 
means that modifying one section will not affect the page 
layout o f another section.

The document can also be zoomed in and out smoothly using 
another slider. This allows Recdit to provide a overview of 
the whole document, which is useful to show where edits are 
being made located in the document as changes are replayed. 
This is shown in Figure 2.

!*_ . ' ja ... UI ,, jig' ■l,» _  *?' *' ‘

*- r r r r f  "‘" I - P S  f t .  S S S U r

Figure 2: An overview of this entire paper, as a user 
can zoom  it.

LATEX
Recdit does not support rich text. All edits and the history of 
the document are recorded as plain text. Recdit instead pro­
vides inbuilt I5TgX syntax colouring and built in PDF gen­
eration. This provides any rich text support. Using DTgX 
means that the architecture of Recdit is simpler, because it 
only needs to work with plain text. It also means that the 
typesetting and layout capabilities can be very powerful.

To provide network based editing support for images, with­
out including the images in the plain text, Recdit provides a 
geturl (http: / / . . . }  macro that retrieves a file from a 
URL and saves it as a file in the /tmp directory. This allows 
images to be handled by Recdit over a network without ex­
tending by handling and recording images. (Cached URLs 
are used to ensure that the same image is not downloaded 
more than once.)

GRAPHS
Recdit provides graphs o f the document size and time o f ed­
its. The purpose o f these graphs is to allow quick overviews 
o f how' the document has changed. For example when large 
scale edits, insertions or deletions are made the graph o f the 
document size shows large jumps. The graphs can be high­
lighted to show over what time periods the document was 
edited and which user performed the edits. Edit wear and 
read wear [4] introduced graphs that answer different ques­
tions based on edit location instead of time. Combinations of 
these visualisations could be interesting.
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Figure 3: A graph of this paper's creation.

Figure 3 shows two graphs that are drawn of the editing his­
tory o f this paper. The same graphs can be seen underneath 
the slider in Figure 1. The horizontal axis on this graph is 
not linear in time but linear in edits. The top line that travels 
from bottom left to top right is the size o f the document in 
characters. A steady increase in this line represents typing, 
jumps in this line represent insertions or deletions, edits that 
create large changes in the character count. In Figure 3 this 
line tails off towards the end, as more o f the edits made were 
correcting.

The lower line is the edit location in the document. The start 
of the document is represented by the top line, the end o f the 
document is the x-axis. When this line is near the bottom of 
the graph the edits are being made at the end of the document. 
Flat areas in the edit line are periods o f continuous typing, 
sharp spikes are often small corrections. A downward slope 
is often seen when a user is editing the document from start 
to end. Repeated edits like this create a sawtooth graph, like 
that in Figure 3.

ALTERNATIVES
There are tools that currently provide some capabilities for 
tracking changes in text documents. These tools provide sim­
ple functionality, they are not capable of Recdit’s character 
history or able to “scrub” through history.

•  Microsoft Word provides a feature called track changes. 
Additions are highlighted and deletions are scored out. 
Track changes can be tedious to use, it does not show the 
actual edits and it creates documents that when the changes 
are shown, are increasingly hard to read.

•  Various web based editors, like EditLive and Google Docs, 
provide similar tracking changes functionality to Microsoft 
Word. These editors often provide good group authoring 
support.

•  d iff  is a typical file comparison utility that is used to show 
the changes between two documents, d iff  is often used 
to provide change tracking when combined with version 
management systems, like subversion. The results o f d iff 
can be confusing when there are large edits or even simple



rearranging. Other similar tools are more capable [2].
•  Wikis provide web based multi-user authored pages, some 

o f these provide the ability to tracks the changes between 
versions. The history o f these pages can contain thousands 
o f edits and users and can provide interesting insights into 
the authoring of the pages [8].

•  Ad hoc emails and conversation provide the majority of 
change tracking for most co-authored documents. The 
change information is usually passed between authors in 
an unstructured form, with multiple versions o f the same 
file in different places.

ANECDOTAL EXPERIENCES 
Single User
As a single-user tool I have been using Recdit for over a year 
to write my PhD thesis. Over this period of time over 30,000 
words have been entered into many different documents (in­
cluding this paper) and almost 200,000 individual edits have 
been recorded.

It has been my experience that I have not often used the abil­
ity to review the history o f a document. On a few occasions it 
has been useful to rewind to locate and recover a paragraph 
from the past that I had previously deleted. The process is 
to rewind the history until the section that was deleted is lo­
cated, select and copy that section, then fast forward to the 
current state o f the document and paste the copied section. 
These paragraphs would have been lost completely if  I was 
only using a simple undo system.

The biggest benefit o f a recorded history I have found is 
the coloured trails that show the last one thousand edits that 
make it easy to review the last few edits. I have found this 
to be most useful when opening a document after having not 
looked at the document for even a day or so, because after 
even such a short time I find it takes some time to pick-up 
the flow o f editing the document from where I left off. Hav­
ing an overview of the last few edits means that, as a user, I 
can start back where I left o ff with an understanding o f what 
I was just doing, regardless o f how long ago I was last editing 
the document.

Multiple Users
I have also used Recdit to author several multi-user docu­
ments. These were mostly not concurrently edited but edited 
using ad-hoc versions emailed between authors, this has been 
partially necessary because o f the need to edit documents 
off-line. In these cases I have found the ability to not only 
see other user’s changes but to review the actual process of 
what they did, very useful. Firstly being able to see exactly 
what the other user has changed (and deleted) is useful, and 
secondly I have found that being able to see the process of 
editing has provided a good idea of what the other user was 
trying to achieve. These are both impossible by only showing 
the textual changes made to a document.

CONCLUSION
This paper has described a text editor that provides a novel 
history recording feature and user interface for interacting 
with this history. The history combined with trails and graphs 
that provide overviews o f the document history. These al­
lowed several possible benefits both for single and multi-user

editing and reviewing changes.

My experiences o f using this editor have suggested that track­
ing edit changes in a text document is both valuable for a sin­
gle user and also extremely valuable in a multi-user context.

I believe these experiences suggest that using Recdit to fur­
ther study collaborative document editing, specifically look­
ing at versioning, tracking changes and history for different 
domains, will be very valuable.

AVAILABILITY
The Recdit application, this paper and a movie o f its interac­
tion are available at http://will.thimbleby.net/truetext/
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A Novel Pen-Based Calculator and Its Evaluation
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ABSTRACT
A novel calculator, ideal for interactive whiteboards and 
pen-based devices, is introduced and evaluated. The calcu­
lator provides a natural, dynamic method o f  entering con­
ventional expressions by handwriting and provides contin­
ual feedback showing the calculation and results. The user 
interface adjusts and copes with partial expressions, 
morphing the expressions to correct position and syntax. 
Gestures are also used to edit and manipulate calculations. 
The user interface is declarative, in that all displays, even 
with partial user input, are o f  correct calculations.

The new calculator is faster for more complex expressions 
and importantly, gives users more confidence in its use. The 
majority o f users said that they would prefer to use this cal­
culator rather than their conventional calculator.

Author Keywords
Handheld calculators, gesture input, novel interfaces.

ACM Classification Keywords
H5.2. Information interfaces and presentation (e.g., HCI): 
User Interfaces.

INTRODUCTION
Imagine writing a calculation down on paper, and the paper 
magically working out the answers. We have built a calcu­
lator that works like this, which is ideal for pen based user 
interfaces, or for interactive whiteboard use in classrooms. 
This paper discusses the design and its evaluation. (It will 
be demonstrated in the conference.)

Overview
Refer to Figure 1 at the top o f  the next page, which shows 
screen snapshots o f the new calculator in use. We first show 
a user doing the sum 3+6. In the first screen shot, they have 
written 3+6, in the next the calculator is catching up with 
them and has already rendered the 3 and + in a printed font. 
In screenshot 3 the calculator has morphed the input into a

Paper presented at the ACM NordiCHI Conference 
2004, the biannual Nordic HCI conference, held in 
Tampere, Finland. Cite as W. Thimbleby, “A Novel 
Pen-Based Calculator and Its Evaluation,” Proceed­
ings of the third Nordic conference on Human- 
computer interaction, pp 445-448, 2004.

nicely typeset equation. The user then clears the screen, 
screenshot 4, using a cross-out, X, gesture; the feedback 
from deletion, the ‘smoke’ feedback is also visible. The 
final two, 5 and 6, screenshots show the user entering 
2/3x=4, the declarative calculator ensures the answer is 
correct, and the interface morphs the answer into a nicely 
typeset and readable equation.

History and Motivation
We have always used instruments to aid our mental arith­
metic and to help us with mathematics. Somewhere around 
200AD, the abacus was invented, and in the 1970s with the 
development o f  electronics, electronic calculators became 
popular. For the most part their design copied earlier me­
chanical calculators. Now, thirty years later, when desktop 
and handheld computers can do almost anything, today’s 
calculators merely imitate early electronic calculators. The 
calculator provided in the Start menu by Microsoft is less 
powerful, and less expressive, than a 10 year old handheld 
calculator! Yet computers today could do a lot better than 
just simple imitations o f mechanical calculators.

The majority o f  current research on expression recognition 
has been directed towards that o f expression entry [1,2,3], 
although there have been attempts to marry expression en­
try with calculation (for example, the PenCalc project [4] 
Yet, none o f  the existing implementations have attempted 
to use expression recognition itself as a user interface for a 
calculator.

The calculator presented here, and its design extend the 
domain o f calculator user interfaces into the 21st century. 
Rather than relying on obsolete metaphors that dictate 
awkward and unnatural mathematical entry, this calculator 
provides a natural interface that is designed to (and does) 
function like pen and paper —  or, rather, paper that does 
mathematics magically.

PEN-BASED USER INTERFACES
The main advantage o f  a pen-based system is the familiarity 
o f the interface. The majority o f  users are already compe­
tent at writing with a pen. This advantage is greater with 
mathematical expressions, because the majority o f  mathe­
matical work is still done on paper with a pen or pencil. 
Using a pen-based system to enter expressions is a natural 
progression, as it means that anyone can use it with little or 
no training. Pens can replicate the complete functionality o f 
both keyboard and mouse, enabling computers with a sole 
input device.

1



3 + 3+6
1 ____________________________ 2 ____________________    3

3+6-9 f-x •’ • -1
S^- ^

4 5 6

Figure 1. Screenshots o f the calculator's progress com puting, 3+6 and then 2/3x?=4.

Meyer [6 ] gives a good detailed overview o f  the whole 
technology, including both a history o f pen based comput­
ing and more technical aspects o f  the hardware and soft­
ware.

IMPLEMENTATION
The implementation is written in Java, and is spilt into two 
modules. The first provides basic symbol recognition using 
a model-matching algorithm. The second recognises the 
equations using a recursive descent algorithm based on 
Chang [5]. The interaction and user-interface are layered on 
top o f these tw o modules

USER INTERFACE REQUIREMENTS
Ideally a user interface for mathematical input should pro­
vide a superset o f paper's functionality, allowing a user to 
use the interface in the exact way they would use paper. 
The key features o f the paper metaphor are outlined below.

Sketching
Ideally a user could draw rough sketches. Often when 
solving a problem a user will not jump straight onto their 
computer and solve it, but jots down diagrams or figures 
first. The system presented does not implement sketching, 
however a solution is to specify areas for diagrams and 
mathematics.

Expressions
The system should allow' the user to enter expressions as 
they would on paper, without unnatural restrictions. For 
instance, the user should not be forced to enter the expres­
sion in a strict fashion.

Editing
It should be possible to edit expressions at any time. Both 
input and output expressions (that is. an expression just 
entered, and one that has been computed) should be treated 
in the same manner. High-level editing, such as rearrang­

ing, insertion and deletion should be possible. To imple­
ment these with a pen-based interface, without leaving the 
paradigm o f  pen and paper, requires special gestures that 
are assigned to each o f the editing functions. For example, a 
scribble is used for deletion. Character editing is different 
and involves correcting the computer guess at the semantics 
o f  a set o f strokes.

Feedback
The system should always keep the user informed about 
what is going on. providing appropriate timely feedback.

THE DESIGN
Our new calculator uses a single canvas for mathematical 
expressions, which enables us to create a completely  
modeless interface that is intuitive and natural. The user 
interface is shown in Figure 1. The operation o f  the user 
interface was developed from Thimbleby [7],

The one adornment o f the interface is a delete gesture re­
minder in the bottom right comer.

Expressions
The system imposes small timing constraints. It requires the 
strokes o f  contiguous symbols to be written sequentially 
w'ithin a small amount o f time. This allows the interface to 
recognise the user's input on-line as they enter it. These 
small restrictions were found to be unobtrusive, and not to 
affect the user's writing style.

Editing
After testing several different ways o f  editing expressions, 
it was found that for the majority o f  mathematical expres­
sions. the easiest wav to edit them was to delete and rewrite 
portions o f  the expression. This keeps the interface very 
simple. (Dragging or pop-up menus would create areas of 
the screen that function differently from each other.) By 
allowing only a simple delete gesture, no mode changes are

2



necessary. Every part o f  the screen or virtual paper acts like 
paper: every click and drag draws.

22
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Feedback
The visibility o f the system’s status is provided through two 
kinds o f  feedback: annotation and morphing. As the user is 
writing, the system can process in the background. A s a 
symbol is recognised the user is informed o f  this recogni­
tion by visual feedback: a typeset character stretched to the 
stroke’s bounding box replaces the written strokes.

Morphing starts after a short time delay from when the user 
stop writing. This halts when the user starts writing stop­
ping it from distracting the user and from rearranging ex­
pressions as they are trying to enter them. The morph for­
mats the entered expression into a correctly typeset 
equation by moving the symbols as little as possible from 
the user’s writing. The morph provides continuity between 
the user’s input and the typeset equation that allows them to 
continue to edit and use it.

EVALUATION
A total o f  nine participants, 5 students and 4 members o f  
the public, took part in the usability testing. These ranged in 
ability from a mathematics student to people who rarely use 
mathematics. The testing comprised o f  a number o f  mathe­
matics questions based on old GCSE papers. Users were 
given time to familiarize themselves with the interface. 
When they were happy, they were observed and recorded 
whilst attempting to complete the questions using the new 
system and their own pocket calculator or one provided (a 
Sharp EL-531GH DAL).

An observer was present and users were encouraged to dis­
cuss problems with them, afterwards the users filled in a 
short anonymous questionnaire.

Measurements were recorded o f  the time taken and the 
number o f errors or problems encountered entering expres­
sions. The questionnaires provided a better general impres­
sion o f  the ease o f  use.

RESULTS 

Time on Task
For the simpler sums, like 9x2/3, a handheld calculator was 
much faster than the new system. An average o f  24 seconds 
for the new system compared to 10 seconds for the tradi­
tional handheld calculator. This was expected. The majority 
o f users were familiar with handheld calculators, and had 
used them over many years.

Two o f  the tasks were actually faster on the new system. 
Calculating Figure 2, was faster (an average o f  49s to 79s) 
because users could enter it “as they saw it” rather than 
having to search for buttons on a calculator.

Figure 2. A simple equation.

For the task “What power o f  two is 28?” every  user was 
able to complete the task on the new system, yet most 
struggled to solve it on a handheld calculator. Solving it is 
easy, in a similar way to Figure 1 picture 6, using the novel 
declarative approach from [7].

Thus this new calculator enables users to perform mathe­
matics that they could not do before. Furthermore, it is 
faster for more complicated expressions because users did 
not have to rearrange the expression in their head. This was 
the not even the case for those who knew the rearrangement 
log 28-Hog 2.

Accuracy
A large part o f  the time taken to complete the tasks was 
taken up with recovering from symbol recognition errors. 
Currently the accuracy percentage in this prototype (81.1%) 
is poor, but easily improved. This significantly lowers the 
usability o f  the system. Expression recognition caused only 
a very few errors, mostly caused by short divisor bars.

However, when calculating mathematics, input accuracy is 
not the most important consideration; output accuracy is. 
No user got the wrong answer for any question with the 
new system. In contrast several unnoticed mistakes were 
made with the traditional calculators.

By displaying the computed equation in an easily under­
standable two-dimensional format, it provided the feedback 
necessary to understand what was being computed. Thus 
users knew when their calculations were wrong with the 
new calculator.

Ease of Use
The overall impression from users was that the new calcu­
lator was e a sy  to use. Typesetting and feedback though 
morphing successfully allowed the user to understand what 
the calculator was doing.

N o user had trouble editing expressions using the delete 
gesture. Other editing functions like cut and paste were 
never missed and users liked the modeless interface and the 
simplicity o f  one function.

Fun
Several users wanted to carry on playing with the system 
and asked when they could get their own copy.

FURTHER WORK
During both testing and design many ideas were developed 
that provide possible avenues for further development. The 
more interesting are outlined here.

3



Extended Vocabulary
Expanding the number o f symbols recognised to include 
symbols like it, letters, and other Greek characters, would 
enable the system to handle more complex expressions.

Additionally, extra functional vocabulary would allow the 
system more power and expressiveness. For instance trigo­
nometric functions, user defined constants, logarithms, and 
factorials.

The User Interface
Further additional features of paper (for instance, sketching) 
would add to the usability.

Users specifically requested two additional features. A clear 
button clears the whole screen, a similar metaphor to start­
ing a new page. This could be provided as a simple gesture 
or an external button.

Secondly, users found that there sometimes was not enough 
room to enter their additional symbols into an existing ex­
pression. Two solutions for further work would be, the ad­
dition of an insert space gesture that adds in a gap into an 
expression and the re-morphing of an expression as a user 
writes to accommodate the user’s input.

CONCLUSION
At its most abstract, this paper described a novel pen based 
interface for any application. This paper described and 
evaluated the pen-based interface for a dynamic, on-line 
mathematical calculator.

New user interface concepts for the computation of mathe­
matics were introduced, including:
• The combination of pen user interface with an on-line 

calculator.

• Extra space added to calculations, like longer division 
bars, to aid the addition of more symbols.

• The use of a single delete gesture to edit expressions, 
making the calculator completely modeless and providing 
the user with an extremely simple interface.

The comparative user testing comparing the new system 
with traditional calculators showed that:

• Answers produced by the new calculator were more accu­
rate. In contrast, users failed to notice when a traditional 
calculator gave them a wrong answer —  errors that they 
noticed when using the new calculator.

• Users were able to calculate the answer to problems using 
the new calculator that they could not solve using tradi­
tional calculators.

• Users are able to obtain accurate answers and have 
greater confidence in those answers compared to results 
from traditional calculators.

• A pen based calculator is more intuitive, fun, and easy to 
use than traditional calculators.

• The pen is a suitable device for entering and editing 
mathematical expressions. Additionally, more complex 
editing operations than delete are neither necessary nor 
missed.

• For complex calculations, the new design was faster than 
using traditional calculators.

It is hoped that the creation o f this new calculator will 
prompt people to rethink the methods by which we do 
mathematics. (The calculator is available on the web for 
others to build on.) Calculators are currently restricted by 
obsolete metaphors, as the testing and creation o f this new 
calculator has shown.

Ultimately, the calculator should be ported to and tested on 
pen based, handheld computers and tablet PCs, as well as in 
school classrooms (e.g., using projectors and touch- 
sensitive whiteboards) where they would be an ideal way of 
teaching mathematics to children.

We are confident that the prototype described in this paper 
charts a course in the right direction.

AVAILABILITY
A movie o f the calculator and the Java application are 
available at http://www.uclic.ucl.ac.uk/usr/will/
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A novel calculator, designed primarily for interactive whiteboards and pen-based devices, provides a 
better task fit than conventional approaches. The calculator provides a natural, dynamic method of 
doing calculations by handwriting using conventional notation. This paper d iscusses the calculator's 
underlying design principles, which collectively create a coherent and innovative look  and feel.’ The 
principle se t could be used to help improve user interfaces for other domains.

Calculators, Design principles, Gesture based interfaces, Equal opportunity, Whiteboard interaction.

1. INTRODUCTION

There is evidence that handheld calculators are difficult to u se and are fundamentally non-mathematical [2, 5], A 
simple exam ple is that operators often have to b e transposed by the user (consider a sum  like calculating 4 x -5 , 
which has to be entered a s  4x5±= on most calculators). Although user interfaces for calculators are constrained by 
ergonom ics (screen legibility, button size), their implementing technology has no such  restrictions. This is 
particularly true when handheld calculators are simulated on PCs —  and the technology has moved on 
considerably sin ce the 1970s, which w as the determining era for handheld calculators.

We have developed a new  calculator with improved task fit with m athem atics, and thus w e have broken out of the 
traditional design approach. Pleasingly, the calculator is very engaging to u se  —  where a s  another paper [7] 
d iscu sse s  its evaluation, this paper presents its new  design principles. The su c c e ss  of the new  design su ggests  
that the principles, in their particular combinations, might be usefully applied in other dom ains.

1.1 Overview of the interface
Imagine writing a calculation down on paper, and the paper magically working out the an sw ers. Our calculator 
works like this, using an approach that is ideal for gesture-based  user interfaces, for handhelds with p en s to 
interactive whiteboard u se  in classroom s. The calculator is written in pure Java and runs under Windows, Linux 
and MacOSX, and it works with standard hardware such as Mimio, SMARTboard, or W acom  tablets —  it is 
som ew hat tedious to u se  it with a trackpad or m ouse, a s  it u ses  normal handwriting a s  its m ode of input. It can be 
downloaded from http://www.cs.swansea.ac.uk/calculators/, where a m ovie of it in u se  is a lso  available.

A different approach can be seen  in [8], which includes som e useful background this short paper d o es  not have 
sp a ce  for. No calculator known to us is a s  versatile and interactive a s  ours; indeed, our calculator w as se lected  as  
an exhibit at the UK Royal Society Sum mer S cien ce Exhibition in July 2005, and w e hope at the conference to 
report on further insights from evaluation based  on its exposure to 4000+  users.

1.2 Evaluation
Without exception everyone (100s of people) who has used  the new  calculator has liked using it, and many users 
have found it easier to u se  than their own handheld calculators. U sers find it fun and enjoy using it. U sers with little 
mathematical skill enjoy using our new calculator, and som e have grinned when getting it to change, for exam ple, 
2 3=8 to 32=9. Sophisticated mathematical users have also enjoyed exploring issu e s  such a s  why 6!+9! is divisible 
by 100, or pushing the calculator’s  arithmetic (e.g ., finding t t  from e /x?= -1).

It is important to look at why the design forms such a successfu l user interface. The principles presented in this 
paper sum m arise our principle-led design of the calculator, and are informed by the user testing and evaluation of 
the prototype. W e have reported elsew here on an empirical evaluation [7].

2. HOW IT WORKS

It is very hard to capture the look and feel of an interactive program, especially an innovative one, in a static 
medium like paper. This section therefore merely g ives a hint of the calculator’s  capabilities. Figures 1 .1 -1 .6  show  
a seq u en ce  of screen  sn apsh ots of it in u se . They first show  a user doing the sum 3x4; in the first screen  shot, the 
user has written 3x4 and the calculator is “catching up” with their handwriting and has just rendered the 3 in a



typographically neat font. User input is handwritten blue and ‘dries’ black, thus it is never confused  with what is 
already on the screen  a s it is written.

3 3X4 12 3x6=18
O  ©  0

^ = 1 8  ^ = 1 8  3 5̂ = 1 8
0 6 0

FIGURE 1: A se q u en ce  of six consecutive  screen  sh ots of the calculator solving various equations. The thin ‘sk etch y’ text (e.g., 
s e e  Figure 1.1) w as written by hand, and a s  the calculator recogn ises the handwriting, it is morphed into typ eset m athem atics 
(compare Figure 1.1 and 1.2).

FIGURE 2: Using the calculator on a back-projection SMARTboard (6’ diagonal) that permits writing using the tip of a finger.

In Figure 1.2, next, the calculator has morphed all the user’s  input, and immediately com bined it with the output 
(here, - 1 2 ’) and displayed it all a s  a typeset equation. The output generated from the calculator is shown in grey in 
this paper (though typically it is a colour like red in real use). The user continues to edit the equation and by the 
time of Figure 1.3, they have deleted the 4 and written - 1 8 ’. Effectively this p o ses  the question “three times what 
is eighteen?” making the calculator com pute “3x?=18”. Additionally in Figure 1.3, w e can also s e e  the user 
continuing to edit this solved equation as if it w ere their own input; they are starting to divide the left hand side by 5.

By Figure 1.4 the calculator has morphed th ese  ch an ges and the combined the typeset output and the user’s  input 
into another neatly typeset equation, now showing a generated 30. Had a user wished to perform this calculation 
on a conventional calculator, they would have had to have entered it in a particular order and with a final = sign, 
such as 18x5/3=.

In Figures 1.5 and 1.6, the user “drag se lec ts” the “3x” from the previous screen  and drags it below  the division 
line. (This is an “ink” edit, the “3x” is not a syntactically nor semantically meaningful unit —  s e e  below.) Finally, 
Figure 1.6 show s the result of this edit, and it is mathematically instantly correct —  thus providing a solution to 
?/(3x5)=18. What has been  done in one gestural operation on the new calculator would have n eed ed  around 14 
keystrokes on a conventional calculator that permitted last-calculation editing (e.g., so-called  twin line display 
calculators); moreover, at every step except the last, on a conventional calculator, the expression  would be wrong, 
w hereas on the new  calculator every intermediate step is a valid calculation.

The calculator has other features, which are not the concern of this paper; for exam ple, there is a w astebasket to 
delete anything by conventional drag & drop; a dock (visible in Figure 2 on the left) can be used  for selecting, 
storing equations and values; there are som e features used  for teaching purposes; and there is an ‘analogue clock’ 
that is used  for undo.



3. PRINCIPLES

The basic style o f interaction is called equal opportunity, and it certainly lends itself to arithmetic calculations [5] 
and other applications [3]. What is new here is the effective combination of two dimensional, WYSIWYG, gesture  
based, instant behaviour, and morphing, that taken collectively  make a coherent se t of features that com bine 
extremely well for the task domain (and perhaps for other domains, unfortunately beyond the sc o p e  of a short 
paper). But, further, the design  introduces new design principles: ink editing  and (non-trivial) instantly declarative  
interfaces.

3.1 Standard HCI principles
The calculator w as designed  bearing in mind a range of important but conventional HCI principles: it should fit the 
task domain (and all that that implies) and reduce the user’s short-term memory workload; etc. Conventional 

I calculators do very much w orse in supporting th ese  principles. Additionally, our new  calculator design  draws on 
! standard concepts such a s undo, affordance, m od elessn ess , and avoiding error m e ssa g e s  (by invariantly ensuring 

correct partial evaluation).

WYSIWYG usually m eans that when you print, you get what you have on the screen. For interaction, what you  s e e  
| is what you h ave  got is more important [6] (i.e., WYSIWYH), a variation that is a principle for interaction, not for 
i quality display or printing, for exam ple. For calculators the interaction problem is w orse, if som ething is calculated  

based  on a hidden preference of an implicit operator, will the user ever realise?

Our calculator always u se s  explicit operators where there could be a misunderstanding over the implicit annotation 
or operator, for exam ple, it inserts an explicit multiplication between a ")" and a “(”. Rather than leave the user with 
their hand-written input, the calculator converts everything to a typeset, well laid-out mathematical expression, and 
this allows the users to know with certainty what is being com puted, instead of wondering whether they have  
entered it correctly, whether the computer is recognising their handwriting correctly, or w hether there is som e  
invisible m ode or data affecting the result.

In short, there is no hidden information or state, and all visible information is used. The calculator sh ow s exactly  
what is being com puted, thus there is no confusion for the user. Although th ese  and other familiar principles (e.g. 
undo) have been  consciously combined in an unusually coherent way, sp ace  precludes a full d iscussion  of their 
application.

3.2 Ink editing — not syntactic editing
Instead of forcing a user to think syntactically about the structure of how the m athem atics works to edit an 
expression (even if the average user knows what that m eans!), the new calculator lets a user interact flexibly with 
the actual ink used . Of course, conventional calculators very  severely limit what editing is —  it is limited to 
appending characters or deleting the last number or the entire calculation.

ii
! The new calculator d o es  not restrict what is se lected  to be adjacent or to have any particular syntactic structure; it 
| is easy , for instance, to se lect alternate digits out of a number and m ove them elsew here in an equation. Although 
i that se e m s contrived, the e a s e  and naturalness is important: consider editing 31 .416 to 3 .1416, which can be done 

directly by moving either the decimal point or the secon d  digit. (In contrast th ese  two operations would, if permitted, 
be very difficult in a syntactically constrained editor.) On conventional editing calculators, what is a single operation  
here has to be broken down into a more tedious seq u en ce  of operations like delete-m ove-insert or equivalent.

Although the two-dimensional notation of m athem atics implies many syntactic relations, the new  calculator d oes  
not im pose any. Instead, ink editing allows the user to edit their work naturally a s  a picture, in a way that is 
im possible with any one-dim ensional (conventional) representations. This flexible ink editing of two-dimensional 
notation allows the user to rearrange and edit m athem atics semantically or syntactically, in a way that can be very 
c lo se  to how the user thinks about the abstract m athematics. The advantages of picture editing w ere forcefully 
described in [1].

WYSIWYH m eans that the sem antics of any expression is directly linked to the syntactic “ink.” For exam ple, 
drawing a horizontal line might mean either a division sign or a subtraction, depending on what the user m eans. 
The calculator disam biguates, by allowing either interpretation, which can b e  ch an ged  at an y time. If num bers are 
written above or below a subtraction line, the line b ecom es a division symbol; and if they are both deleted, it 
reverts to subtraction.

3.3 Instantly declarative
The e s se n c e  of an instantly declarative  interface is that it cannot show  the user som ething that is false, ever . For 
exam ple, an instantly declarative calculator could never show  “3+4=15.” The display has to be correct without any 
further user action; and instantly. The benefits for the user are obvious: there is no confusion for the user, the input 
and output a lw ays  correspond. The interface fee ls natural and immediately responsive to user input.

This approach m ean s that “= ,” “Go” (and similar) buttons are redundant; they only slow  the user down (som etim es  
users get stuck, waiting for things that will not happen until they do som ething which they don’t know they are



supposed  to do). An instantly declarative interface has to cop e with partial and incomplete input and respond fully 
in a timely fashion. Using equ al opportunity [3] en ab les u s to handle incomplete input or partially com plete 
equations. Requiring com plete input can lead to a very modal user interaction. This may be suitable in som e  
domains (e.g ., with safety related issu es), but it is in principle unnecessary. Conventional calculator d esign s never 
escap ed  this unnecessary modality of requiring com plete input.

3.4 Output = input = everything
A declarative calculator, both from our informal and empirical evaluations, is superior. But the power of a  
declarative interface is only fully realised when com bined with a two-way equivalence betw een the user’s  input 
actions and the system ’s  output. This added to the equ al opportunity that treats output and input equally, creates a  
uniquely usable interface. U sers are suddenly able to so lve problems, such a s  ‘what power of 2 is 56 ? ’ (i.e., 2X=56)

| directly that they might have no idea of how to so lve otherwise, and which would be im possible without 
| circumlocution —  and would be im possible to do correctly without prior experimentation on a calculator, for even  

within-brands do advanced arithmetic calculations differently!

The 'output = input’ concept works smoothly with a calculator, b ecau se  the output and input are the sam e format 
: and can be com bined in the sam e expression. With our calculator, a user can replace the computer output with 

their own, and nothing will change. This m eans that if the user writes the correct answer in then the calculator 
sh ow s no extra work, and it m eans that if the user writes a wrong sum  like “3+4=15’’ the calculator corrects it. 
W hen users u se it they find that a s  one user put it their old calculators are “nagging and pedestrian fussp ots.”

3.5 Continuous feedback
The visibility of the system ’s  status is provided through two kinds of feedback: annotation  and morphing. T h ese  
together provide clear feedback about exactly what is happening with the user’s  input and the calculation. 
Throughout the calculation the calculator morphs the input into a neatly typeset output equation. Without this 
linking of the output to the input the user has a jarring experience that leaves them wondering where the output 
cam e from. The morphing provides continuity betw een the user’s  input and the typeset equation that allows them  
to continue to edit and u se it. Certainly, the animation in the morphing is visually seductive.

4 CONCLUSIONS
Although the new calculator furnishes a very simple user interface to a boring application (who is really interested  
in calculators?) it is very engaging —  and this is true despite the calculator’s  prototype implementation’s  
shortcomings, particularly its imperfect handwriting recognition.

W e started with a principle-led design, but ended up with a user interface that is surprisingly effective, one that is 
fun and engaging to u se, and one that u ses  and d evelops a new style of interaction. Whether the new  style of 
interaction can be successfu lly  generalised into other domains remains to be seen , but certainly the individual 
principles that led the design  can be used  to their benefit.
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A bstract. Taking Mathematica and xThink as representatives of the 
state of the art in interactive mathematics, we argue conventional math­
ematical user interfaces leave much to be desired, because they separate 
the mathematics from the context of the user interface, which remains 
as unmathematical as ever. We put the usability of such systems into 
mathematical perspective, and compare the conventional approach with 
a novel declarative, gesture-based approach, exemplified by TruCalc, a 
novel calculator we have developed.

1 In trodu ction

TruCalc is a new calculator, with a gesture-based handwriting recognition user 
interface. This paper reviews its design principles and relates them to the re­
quirements of mathematical user interfaces.

2 T h e D evelopm ent o f M athem atica l U ser Interfaces

For thousands of years, we’ve been doing maths by using pencil and paper (or 
equivalent: quill and scroll, stick and sand—whatever). When calculating devices 
were invented, this helped us do calculations faster and more reliably, but we 
still did maths on paper. Comparatively recently, computers were invented, and 
for the first time we could replace pencils with typed text and get results written 
down automatically, and then, later, we replaced paper with screens. M athemat­
ics displayed on screens can be manipulated more freely than ever before, yet 
most calculators running on computers emulate mechanical devices.

Turing famously presented a formal analysis of what doing mathematics en­
tailed [17]. He argued any pencil and paper workings could be reduced, without 
loss of generality, to changing symbols one at a time from a fixed alphabet 
stored on an unbounded one dimensional tape. Symbols are changed according 
to the current state of the device, the current symbol on the tape, and elemen­
tary rules. The Turing Machine, which can be defined rigorously (and in various 
equivalent forms), was a landmark of mathematics and computing. Indeed, the 
Church-Turing Thesis essentially claims that all forms of computing, and hence 
mathematics, can be ‘done’ by a Turing Machine in principle.

Turing introduced his machine with the following discussion:

“Computing is normally done by writing certain symbols on paper. In el­
ementary arithmetic the two-dimensional character of the paper is some­
times used. But such a use is always avoidable, and I think that it will

J. Gulliksen et al. (Eds.): EIS 2007, LNCS 4940, pp. 519-535, 2008.
©  IFIP International Federation for Information Processing 2008
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be agreed that the two-dimensional character of paper is no essential 
of computation. I assume then that the computation is carried out on
one-dimensional paper.” . , ,  m .

A. M. Turing

Here, Turing’s use of the term ‘computing’ is historical; he is referring to 
human computation on paper.

While Turing is formally correct, good choice of notation is crucial to clear and 
efficient reasoning. Moreover, almost all notations (for example, subscripts) are 
two dimensional, as suits pencil and paper— and the human visual system. One 
view of the present paper is that the power— the ‘Turing equivalence’— of typical 
mathematical user interfaces has blinded us to the importance of notation and 
interactive notation properly integrated with the way the user interface works. 
Users put up with one-dimensional and other limitations to interaction because 
the deeper ideas appear sufficiently well supported. A very interesting discussion 
of Turing Machines and interaction is [3], but the focus of this paper now turns 
to the design of interactive mathematical systems.

2.1 Conventional Mathematical Interaction
W ithout loss of generality, mathematicians use pencil, paper and optionally 
erasers. Pencils are used to draw forms, or to cross them out. Typically, adjacent 
forms are related by a refinement. Harder to capture formally, the m athemati­
cian’s brain stores additional material, which is typically less organised than 
the representation on paper. One might argue that much of the mathem atician’s 
work is to find a relation between what is in their head and marks on paper. This 
is an iterative process. Finally, the concepts and previously unstated thoughts 
are mapped to some representation such as DT)<jX, so that the organised and 
checked thoughts can be communicated effectively to other brains.

When this process is computerised, the forms are linearised into some charac­
ter sequence. A string, typed onto ‘paper’ or a VDU left to right, is transformed 
by the computer inserting the values of designated expressions. A typical hand­
held calculator is an example of this style of interaction, though most only display 
numbers and not the operators— one of their limitations is that the user does 
not know whether the display is the current number being entered or a result 
from a previous computation.

Around the 1970s, the sequential constraint became relaxed: the underlying 
model remained incremental as before, but the user could ‘scroll back’ and edit 
any string. Now the values computed may have no relation to the preceding 
strings, because the user may have changed them: the old output may be incor­
rect relative to the current string.

More recently, from the late 1980s on, the user interface supported multi­
ple windows, each separately scrollable and editable, each with an independent 
user interface much like a typographically tidied up 1970s VDU. Of course, this 
gives enormous flexibility for managing various objects of mathematical concern 
(proofs, tactics, n o te s .. .)  [10], especially when supplemented with menus and 
keyboard commands, but the generality and power should not distract us from
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Fig. 1. Example of problematic interaction in Mathematica

the relation of the user interface to doing the mathematics itself. Normally we 
focus on the maths, and ignore the interface; it is just a tool to do the maths, 
not of particular mathematical interest itself.

Consider M athem atica  [18]. A M athem atica  notebook is a scrollable, editable 
document representing the string. Certain substrings in the notebook are iden­
tified, though the user can edit them at any time and in any order. A set of 
commands, typed or through menu selection, cause M athem atica  to evaluate the 
identified substrings, and to insert the output of their evaluations. It is trivial 
to create M athem atica  notebooks with confusing text like that shown Figure 1, 
which illustrates the inconsistency problem (is x 5 or 8?) as M athem atica  sep­
arates the order of the visible document from the historical order of editing 
and evaluation. In the example above, the x = 5 may have been edited from 
an earlier x = 8 ; the P r in t  may have been evaluated after an assignment x = 
8 evaluated anywhere else in the notebook; or the P r in t may have been edited 
from something equivalent to P r in t  ["x i s  8 "]— and this is not an exhaustive 
list. In short, to use M athem atica  a user needs to  remember what sequence of 
actions were performed. (In fact, M athem atica  helps somewhat as it can show 
when a result is possibly invalid.)

Although the presentation can be confusing, the flexibility is alluring. While 
the mathematician can keep the editing and dependencies clear in their head, 
the notebook (or some subset of it) will make sense.

M athem atica  and many other system s add notational features so they can 
present results in conventional 2D notation. Instead of writing a linearised string, 
such as 1 /2 , the user selects a tem plate -J- from a palette of many 2D forms. The 
■ symbols can then be over-typed by 1 and 2 , to achieve (in this example), 
Such mechanisms allow the entry of forms such as

fJo
sin x 2 e x d x  and 1 +

1 + i+-

as shown with relative ease. However, a problem is that the tem plate continues 
to exist even though the user cannot see it. A simple example illustrates the
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problem: editing -7- to 12 is difficult, because the initially hidden template will 
reappear explicitly in intermediate steps such as 77 or -f-2 .

In M athematica  a function T radition alF orm  achieves the inverse: presenting 
evaluations using standard 2D notation. W hile these 2D notations look attrac­
tive (and indeed are considerably clearer for complex formulae, especially for 
matrices, tensors and other such structures), they do not alter the semantics or 
basic style of interaction.

Padovani and Solmi [5] provide a good review of the interaction issues of using 
2D notations, such as M athematica  and other systems use. They argue that 2D 
notation requires a model, namely the internal representation of the structure, 
which is not visible in the user interface. Hence, for the user to manipulate the 2D 
model new operations are required. The model itself is not visible, so inevitably 
2D notation introduces modes and other complexities. That is, it looks good, 
but is hard to use. Editing operations are performed on non-linear structures 
(e.g., trees), but the displayed information does not uniquely identify the struc­
ture. Like the criticisms of M athem atica  above, to use a 2D structure requires 
a user to remember how they built it; worse, what the user has to remember 
(Padovani and Solmi argue) does not correspond with the user’s mental image 
of the mathematics being edited.

xT h ink  is a different mathematical system  [19], and its model is directly based 
on a 2D representation. xT h ink  recognises the user’s handwriting in standard no- 
tational format, and can compute the answer which is displayed adjacent to the 
hand-written sum. Provided xT h ink  recognises the user’s writing reliably, the in­
ternal model of the formula is exactly what the user wrote. Nothing is hidden. In 
this sense, xT h ink  solves the problems Padovani and Solmi elaborate, though not 
all of the problems we attributed to M athem atica  (as we shall see below).

A typical “page” from xT h ink  is shown in Figure 2. Its advantage over M ath­
em a tic a l  template-based approach is the ease and simplicity of entering math­
ematics, however its interaction style retains the problems of M athematica l —  
there is no guarantee the ‘answers’ are in fact answers to the adjacent formulae, 
and furthermore xT h ink  has introduced new handwriting recognition problems; 
that is, the formula evaluated may not ever be one that was thought to have 
been written down!

xT h ink  and M athematica  are only two examples, selected from a wide range of 
systems. Maple [2], for example, is closer to M athem atica  in its computer algebra 
features, but closer to xT h ink  in its handwriting recognition. However, Maple 
uses handwriting recognition to recognise isolated symbols which are written in 
a special writing pad—whereas xT h ink  allows writing anywhere, but the writing 
has to be selected (by drawing a lasso around it) before it can be recognised. 
x T h in k , M athem atica  and Maple are PC-based systems, and there are also many 
handheld mathematics systems, such as Casio’s ClassPad [1], which allow pen- 
based input. However, rather than review individual systems, this paper now 
turns to principles underlying mathematical interaction.
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Fig. 2. Example of xThink, showing natural handwriting notation combined with cal­
culated output. Picture from xThink's web site [19]; the original is in several colours, 
making the input/output distinctions clearer than can be shown in grey levels. In the 
picture, xThink has just parsed a handwritten v ^123 , shown its interpretation at the 
bottom of the screen (as 12A3A(1/3)=12), and has inserted a result in a handwriting­
like font below the formula.

2 .2  P r in c ip le s  for M a th e m a tic a l In te ra c tio n

With such a long and successful history of procedural interaction it is hard to think 
that it could be improved; systems like M athem atica  are Turing Complete (upto 
memory limitations). Interactive mathematical systems, such as M athem atica  and 
xT h ink , are clearly very powerful and have a very general user interface. The book 
A  = B  [6] gives some substantial examples of what can be achieved.

It is interesting to observe that the representations these mathematical system  
work with are not referentially transparent nor are they declarative. That is they  
only do mathematics that is ‘delimited’ in special ways, and the user has to ‘suspend 
disbelief’ outside of the theatre that is so delimited. As a case in point, we gave 
the example above of x not having the value it appeared to have (see Figure 1); 
even allowing for the semantics of assignment, there is no model like lvalues and 
rvalues that maintains referential transparency [9], without some subterfuge such 
as having a hidden subscript on all names— which, of course, must exist in the users’ 
mind (if at all) if users are to do reliable mathematical reasoning.

Such Fregean properties as referential transparency1 are key to reliable math­
ematical reasoning. Another is his idea of ‘concept’ that has no mental content, 
that is, a concept is not subjective. Most interactive systems require the user to  
conceptualise (i.e., make a mental model of) the interaction; they have modes, 
hidden state dependencies, delays, separated input and output and so on.

1 Quine introduces the term referential opacity but attributes the idea to Frege [7].
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It is ironic that modern mathematical systems are so flexible that they compro­
mise the core Fregean principles— though [12] shows, under broad assumptions, 
any string-based (i.e., Turing equivalent) user interface interaction properties such 
as modelessness and undo are incompatible. Modelessness is, of course, an HCI 
term covering issues such as side effects, referential transparency, declarativeness, 
substitutivity, etc. Essentially, a purely functional interface is modeless; if one can­
not have modelessness and undo (under the assumptions of [12]), any such user 
interface must be compromised for mathematical purposes. Such observations beg 
questions: is it possible to modify the style of interaction to preserve the core m ath­
ematical properties— and what would be gained by doing so?

3 M odern  M athem atical In teraction

We will use xT h ink  below to make a side by side comparison with our novel 
interface, TruCalc, to highlight the difference between a truly mathematical 
system and one that is not.

N o te .  xT h ink  is a commercial application available from [19] (PC only), 
and TruCalc from [16] (Mac, PC, Linux).

Both our calculator and xT h in k 's calculator from first, glance appear to do 
the same things. In fact xT h in k 's  calculator seems to be more powerful, it can 
handle annotation, multiple sums, more complex mathematics. Yet ignoring a 
bullet point comparison and the superficial similarity of the two programs, they  
are in fact very different.

Both calculators provide a user interface based on handwriting recognition. 
But this is where the similarity ends!

Our calculator, TruCalc, was designed from generative user interface prin­
ciples [12]; in contrast, xT h ink  seems to merely add the idea of utilising the 
affordance [4] of pen and paper without escaping M athem atica-style problems.

To better illustrate the differences between these two superficially similar 
interfaces we will describe the interaction a user employs to solve a simple sum, 
along with the potential pitfalls.

3 .1  x T h in k  vs. T ru C a lc

A first example problem we compare finding the value of “(4 +  5 ) /3 ” in xT h ink  
and in our calculator, TruCalc. In both, the user starts by writing the sum on the 
screen, using a pen (or using their fingers on suitable touch-sensitive screens).

l a  In xT h ink , the user must press a button to change xT h ink  into selection  
mode. The user can then select what they have written. They must now press 
another button to get the selected handwriting recognised. The handwriting 
is recognised and represented in a separate window, which the user must read 
to check the accuracy of the handwriting recognition. If the handwriting 
is misrecognised by xT h ink  then without checking the small text at the
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bottom  of the screen the user can easily be fooled into thinking they have 
the correct answer. The text at the bottom  of the screen is both small and 
linearised, losing the benefit of the handwritten 2D notation— for example 
Figure 2 shows the cube root of twelve cubed being calculated, it is printed 
as 12~3~(1 /3 )= 12 .

l b  In TruCalc, as the user writes, the hand-written characters and numbers are 
converted to typeset symbols without any fu rther user action. The user feels 
as if they are writing in typeset characters, and confirming recognition is as 
natural as checking your own handwriting is legible.

2a In xT h ink , to determine the answer, the user must now press another but­
ton to evaluate the recognised formula, and the answer is then displayed 
somewhere on the screen. In Figure 2 all such answers have been positioned  
under their respective formulae.

2b  In TruCalc, the typesetting includes solving the equation. In this case, the 
screen will show a typeset =  3— the user wrote and the computer 
inserted =  3 in the correct position.

3a In xT hink, to determine the answer, the user’s input must be syntactically  
complete (an expression). For example, to find the value of y f i  the user must 
write exactly this (and it must be recognised correctly).

3b  In TruCalc, answers are provided even with incomplete expressions, as well 
as with equations. For example, to find the value of y/4 the user can write 
y j  then 4, or 4 then y/, and they can write =  if they wish. In any case, the 
value 2 or = 2  is also displayed. Furthermore, if the user wrote yj  =  2. then 
TruCalc would insert 4 appropriately, thus solving a type of equation where 
xT h ink  would require the user to write 22 (which is notationally different).

4a  In xThink, the user’s handwriting can be altered and hence make the an­
swer (here, 3) invalid— and it will remain invalid until the handwriting is 
re-selected, recognised and re-evaluated (and the old answer removed). Or 
several answers may accummulate if the user evaluates formulae and does 
not remove old answers.

4b  In TruCalc, as typesetting includes solving the equation, the user could con­
tinue and write =  or =  3 themselves. In particular, if they wrote an equation, 
such as ^  =  3, TruCalc would solve it, and insert (in this case) 5.

5a  xT h ink  provides no other relevant features for the purposes of this paper.
5b  In TruCalc, the editing of the user’s input is integrated into its evaluation. 

Thus the user can then continue to write over the top of this morphed 
equation, adding in bits that they consider are missing. For example, if the 
RHS 3 is changed to 30, the display would morph to =  30.
It is possible to edit by inserting, overwriting and by drag-and-drop to a 
bin to delete a selection, or to other parts of the equation to move it. In all 
cases, the equation preserves its mathematical truth, as TruCalc continu­
ally revises it. TruCalc also provides a full undo function, which animates 
forwards and backwards in time— also showing correct equations.



526 H. Thimbleby and W. Thimbleby

3.2 In-Place Visibility

W ith TruCalc the replacement of the user’s handwriting with typeset symbols 
not only provides an immediately neat and tidy (and correct) equation but 
also provides immediate visible feedback of what was recognised. The displayed 
typeset equation is the equation that the answer is shown. This in-place visibility 
removes confusion and misunderstanding over what the calculator is doing, and 
whether it has misrecognised bad handwriting.

In our experiments with TruCalc [14], one of the outstanding results was that 
whilst users made intermediate errors, no user stopped on a wrong answer. We 
believe this was because the calculation they were performing was entirely visible 
and unambiguous to them in an in-place 2D notation.

W ithout in-place visibility, the user may be unsure which results correspond 
with which inputs. This compromises mathematical reliability; the user has to 
rely on their head knowledge.

3.3 N o  Hidden State; Modelessness

Hidden state and modes compromise mathematical reasoning. Hidden state af­
fects how to interpret input and output; specifically, modes are hidden state 
(e.g., knowledge of history) in the user’s head that is needed to know how to 
control the user interface predictably.

Typically, a system does not show what mode it is in. but the mathematical 
interpretation of its display depends on the user knowing some hidden state. 
For example, in xT h ink  to erase or move parts of the equation the user has to 
select different tools at the bottom  of the screen, then when they have finished 
they have to remember they are in a special mode and reselect the pen tool. 
The xT h ink  interaction style makes this cumbersome approach unavoidable in 
principle. The relative meanings of displayed results obviously changes when 
other images are modified; simply, they may become wrong.

The xT h ink  user also has to be aware that once they have finished an equa­
tion they have to do more (press several buttons, select their text) this time 
switching mental modes from “entering” to “getting the answer.” If they don’t 
change modes (or of they don’t change through the modes appropriately, or 
select inaccurately), there is either a wrong result or no result for the problem.

With TruCalc there are no  hidden modes or state, and no user context switch­
ing. Not only is there no menu of different tools but there is no need to switch 
mental modes or to pause and press an lEnterl button to make things work. This 
greatly simplifies the user’s mental model and reduces the effort required to use 
the calculator. TruCalc does have a few modes, for example a dragging mode, 
but these are clearly visible and they are directly initiated and controlled by 
the user.

Note that in-place visibility and modelessness together give a very strong—  
and easy to use— interpretation of WYSIWYG (what you see is what you get), 
as proposed in [11].
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3.4 Instant Declarativeness
A system  may show the mathematically right answer when the user asks for 
it; but until they ask for computation, the mathematics is strictly incorrect (or 
possibly shows a representation of a meta-‘undefined’). In TruCalc the results 
are ‘instantly’ correct, with no user action required.

Declarative programming was popularised through Prolog. Essentially, the 
programmer writes true statements, ‘declaring’ them, and Prolog backtracks to 
solve the equations (sets of Horn clauses in Prolog). Prolog is thus a declarative 
language— though its user interface isn’t.

Likewise, TruCalc is declarative. The user writes equations (or partial equa­
tions, taking advantage of the automatic syntax correction), and these are dec­
larations that TruCalc solves (by numerical relaxation).

In Prolog, the user has to enter a query, typically terminated by a special 
character. Until that character is pressed, the output (if any) is incorrect. This 
inconsistency within the interface is what we are used to, even to the extent of 
accepting the sort of inconsistencies illustrated in Figure 1. But it requires the 
user to remember the past; they haven’t pressed return or some other special 
character or menu selection yet. If they forget confusion happens.

TruCalc extends declarativeness to instant declarativeness, that is, an inter­
face that is always true all of the time. No matter what the user writes the 
answer shown is always correct.

An instantly declarative interface implies that the calculator has to be showing 
something that is correct even if the user has not finished entering everything, or 
has a currently incorrect edit. Thus the calculator also has to cope intelligently 
with partial expressions like + 3 + 2 . In our case the calculator fills in place holders 
that alter the expression as little as possible. There are also problems like 1 /0  or 
overflow like 1010 — these too can be handled by correction (such as showing
1 /0  as 1 / ( 0 +  1); see [13]), or by changing the algebra implemented by TruCalc.

This instant declarativeness removes the disparity between the input and the 
output, removing an enormous potential for user confusion and it also removes 
the need for the user remembering having to press the “equals” button (or some 
other change mode button) to get an answer.

The implementation of instant declarative user interfaces is only slightly more 
complex than conventional user interfaces; at least two threads are required, one 
for the user input, one for processing. Processing restarts every time the user 
extends or changes the input; in TruCalc there is a short delay, which allows 
the user to write an expression fluidly without visual interference from it being 
morphed into recognised text until they finish or pause.

3.5 Equal Opportunity
The power of ThiCalc's implementation of instant declarativeness combines pow­
erfully with equal opportunity [8]. Unlike xThink. TruCalc does not distinguish 
in principle between the user’s input and its own output. Each has ‘equal op­
portunity’ in the equation. This makes it possible to write on both sides of an 
equality.
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Fig. 3. Example of drag and drop interaction in TruCalc. shown as three consecutive 
screen-shots. Initially, the user has written —■ =  7; next, the user drags the 3x nu­
merator to the denominator; finally, TruCalc provides the correct numerator. The only 
user interaction to achieve this transformation is to draw the loop (shown in the middle 
figure) and drag it. Had the user had dragged the 3x to the wastebasket, it would have 
been deleted, and the equation would be corrected to ^  = 7. (If a loop is drawn not 
containing anything to select, it is recognised as a zero).

The ability to  change either the answer or the  question lets a user solve prob­
lems sim ply th a t they would have struggled w ith otherwise. For exam ple, “w hat 
power of 2 is 100” can be solved directly w ithout logarithm s. (For exam ple, the 
user w rites 2 =  100, which is corrected to  2 =  100 — 98, then w rites a decimal 
point as the exponent of 2. which is where they want, the answer. 2 =  100 -  98 
then m orphs to  2(l (,4J856 =  100.)

Equal opportun ity  is not in itself a feature th a t is required for a highly m athe­
m atical user interface, but it is a na tu ra l generalisation (from expressions to  equa­
tions) th a t significantly increases t he power of the user interface for the user.

3 .6  R ea rra n g in g

In xT h in k 's calculator it is possible to  delete things or move them  around bu t 
it is always an awkward process involving m any mode changes and it is fairly 
lim ited in what it achieves. Moreover, any editing in xT h ink  breaks the  relation 
between w ritten  input and calculated ou tp u t, and the user has to  rem em ber to  
re-evaluate an edited formula. Hence, in xT h ink  the ability rearrange introduces 
modes and hidden state .

In TruCalc the ability to  drag and drop an a rb itra ry  part of the equation else­
where is synchronised by ThiC alc 's ability to  m orph the result into a new typeset, 
equation. It is therefore possible to move parts  of the equation around w ithout 
regard for their size or shape, and the user always sees a fully correct equation.

More specifically, in xT h ink  d rag-and-drop is achieved bv choosing the selec­
tion tool, draw ing around the object, then  dragging, then choosing the next tool 
to  use; however, once moved, the formula typically needs explicitly selecting, 
recognising, and evaluating, as fu rther steps for the user. In TruCalc drag-and- 
drop is achieved by draw ing around an object, and moving it,. No mode change is 
required, and no action needs to  be taken to evaluate the new formula. F igure 3 
illustrates some simple examples.
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1Q=| 

12=12 

12=1728

TruCalc has just recognised a handwritten 1, and shown the (at this mo­
ment) correct equation 1 = 1; the user is now writing 2 by hand.

TruCalc has recognised the 2; the user is writing 3 as an exponent.

TruCalc has recognised the 3, and updated the RHS of the equation.

/ ! ? = ]  72 !7 The user is writing a y f  around the 123. Of course, the user could equally 
have started by writing the y/~, and then writing inside it.

The \T  is recognised, the RHS is updated, and the user has started to 
write 3.

Fig. 4. A step-by-step, broken-down example of using TruCalc on the sum that xThink 
is shown solving in Figure 2, showing how a single equation changes as the user writes 
on it. This brief example does not show drag-and-drop, nor equational calculations. 
However, notice that TruCalc provides continual correct feedback; there are no hidden 
modes, no special commands— TruCalc just ‘goes ahead’ and provides in-place answers. 
The user feels as if they are writing in a formal typeface (here, Times Roman). This 
brief example does not show how TruCalc would handle solving equations, for instance 
if the user dragged the 12 onto the RHS. Had the user written an =  themselves on the 
left of their formula, then the answers would have been shown on the LHS.

4 A  D em on stration  o f TruCalc

Because xThink is not highly interactive, ironically, its screen shots (such as 
Figure 2) make it easier to understand than screen shots of TruCalc\ xThink-1 s 
screen shots show handwriting input, the recognised input (shown in the bottom  
pane), and the result. Figure 2 shows several such examples. It looks straight 
forward— except, as we showed in Section 3.1, constructing the interesting dis­
play of Figure 2 requires transitions between many modes, and hence possible 
user errors. Figure 4 shows TruCalc solving the problem that xThink is shown 
solving in Figure 2; however, xThink solves the equation in one step and re­
quires changing modes, whereas TruCalc solves continually, in place, and needs 
no modes at all. (In this short paper we do not illustrate how TruCalc can solve 
equations more powerfully than xThink— by combining rearranging with equal 
opportunity; see [13] for examples.)

5 O ther Features o f  TruCalc

TruCalc provides other features that make it more powerful and easier to use. 
These features support, but are semantically unrelated to the highly interactive
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way it does mathematics. Further discussion of TruCalc, beyond the scope of 
the present paper, can be found in [14] and [15].

5.1 Ink Editing

In xThink, the user writes a formula then asks for it to be recognised. In TruCalc, 
the formula being written is continually being recognised. This permits a very 
powerful, and natural, interaction style we call ink editing.

If the user writes ’ it is recognised as a minus sign. If they write 2 above it, 
the minus sign becomes a division bar. If they cross it out by a vertical stroke, 
it becomes a +  sign.2 None of these natural ink editing operations makes sense 
in a batch recogniser.

5.2 Dock

TruCalc provides a dock, with functionality similar to the dock in Mac OS X. 
That is, a whole or partial equation can be dragged to the dock, and it will be 
stored as an item. Conversely, any item in the dock can be clicked on, and it 
will replace the current equation. If an item is dragged out, it ‘comes out’ as a 
picture representing its value. Hence an equation such as 1 +  2 =  3 might be 
dragged out of the dock and used, say, as an exponent, as in

2U+ 2.= 3J = 8

(the subequation is boxed, as it cannot be edited except by recalling it from the 
dock); such dock items can be used in many places in any other equation. The 
dock serves as a convenient declarative memory for the user.

The dock would be a very natural way to extend TruCalc to have variables, 
at least if entries in the dock could be named. Indeed, dock entries might be 
associated with URLs, and be able to represent internet resources— such as the 
current dollar/euro conversion rate, or standard numbers and equations, and 
so on.

5.3 Optionally Hidden Answers

TruCalc shows correct answers at all times, just as we have described it. However, 
for use in teaching, it is possible to hide the answer, and show an empty box. 
This indicates to a student that their answer is wrong or incomplete, and some 
correction is still required. Here is an example:

2 +  0  =  3

where normally it would show 2 + 1  =  3.

2 The current implementation of ink editing is not complete; for example you cannot
edit — to 4, or edit . to ! in the obvious ways yet.
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5.4 Undo
TruCalc provides the ability to undo edits and alterations by means of a clock 
metaphor. A user grabs the clock hands and can ‘rewind the tim e,’ and as they 
do so the symbols and numbers animate back through time exactly as they were 
morphed. The morphing provides a temporal continuity between the different 
steps of the calculation, and it can be played backwards and forwards (i.e., undo 
and redo).

5.5 Possible Extensions to TruCalc

TruCalc can be extended in many ways. We give a few examples:

1. The dock could be on a web site, and made multiuser so several people can 
collaborate. The dock could also have a palette of functions (log, sin etc) 
that, like the current equations, could be dragged into the working equation.

2. The back-end could be replaced with (for example) the Mathematica ker­
nel so it was extensible. Currently, TruCalc only does complex numerical 
arithmetic; it could provide an interface to anything Mathematica etc can 
do.

3. Unlike xThink, TruCalc currently provides no way for a user to write things 
that are not recognised; formulae cannot be annotated, arrows cannot be 
drawn, and so on. A teacher would probably like another colour which can 
be used to draw freely with but which TruCalc does not interpret.

There are many obvious developments: complete handwriting recognition, to 
extend TruCalc to standard function notation (such as log); restrictions for 
teaching purposes ( TruCalc uses complex arithmetic); multiple equations on 
the screen, like xThink. And so on.

However, what TruCalc does is show how effective— both reliable and indeed 
enjoyable (see §6 .1)— a user interface for mathematics can be when the interac­
tion, the user interface, itself respects the principles of mathematics.

6 M athem atica l M athem atica l Interfaces Lead into H CI

HCI is the science and art of making user interfaces more effective (and enjoy­
able) for humans (though HCI techniques have also been used to improve user 
interfaces for farm animals!).

TruCalc allows the user to write an equation e involving complex numbers 
from C and elementary arithmetic operators. TruCalc has no variable names, 
but uses slots; thus, in conventional terms, the equations can contain variables 
without repetition— future versions of TruCalc may include variable names as 
they are of course useful for many purposes, not least in providing mnemonics 
for the slots as currently used.

The variety of solutions S of e is intended to be S(e, C), except the current 
version implements C by C j, the obvious approximate representation of C using 
pairs of Java double precision floating point numbers.
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W ith these clarifications, we can express some important HCI issues:

1. W hat should TruCalc do when S(e,Cj) does not determine a unique so­
lution? Currently TruCalc uses heuristics to try to find solutions that are 
principal values, identities of operators, and so on. For example x =  10 will 
be solved by 10 x 1 =  10, using the right identity of x. On the other hand, 
10? x 10? =  10 has no solution as currently implemented, because TruCalc 
effectively tries to solve l /x  =  0 .

2. W hat should TruCalc do when S(e, Cj ) =  0? TruCalc's solution is to show ? 
symbols (or ?+?i); however, an earlier version [13] modified the equation so 
that at least one solution could be found. Neither solution, we feel, is entirely 
satisfactory, since S^ejC j) =  0 can occur as a transient step in entering a 
solvable equation— for example, to enter 1/ 0.1 either requires contortions or 
the intermediate step 1/ 0 .

3. What should TruCalc do when there is a humanly-obvious algebraic solution, 
but S(e,Cj) =  0? For example, the very easily entered LHS

i f  = ? + ? i

fails because it is a 19,729 digit decimal number, which is in C but not in 
C j — but the equation could be solved as

, 2 2
22 =  265536

or in many other equivalent symbolic ways. Which is best? Should the user 
have choices, and if so, how? A symbolic approach would also be a good way 
to solve equations the user enters containing 1 /0  terms.

4. Can users choose S(e, R), S(e, Q), S(e, Z), S(e, N), for instance for elemen­
tary teaching? W hat about 5 (e ,Z  12) for clock numbers, or S(e,Fp), and 
other interesting domains, say predicate logic or even chess?

5. Improving the handwriting recognition would allow the solution of larger 
classes of equations, for instance that include transcendental functions.

6 . TruCalc uses =  as an operator over C j ,  not C. This can result in (apparently) 
peculiar results such as the following:3

7r =  335/113  

7r =  3.142 

3.142 =  1571/500
7T =  3.142 -  4.073 x 10“ 4

Perhaps TruCalc should use an operator ~  when the equality is approxi­
mate? (Although results that are approximate in C j may be exact in C!)

3 The last example shows 4.073 x 10-4 which in an earlier version would have been
presented in the standard Java format as 4.073F — 4, a ‘buggy’ notation, because 
a user could not enter E themselves, so it failed equal opportunity. Here, equal 
opportunity is seen to be a generative design principle: given the existing features, 
it suggested improvements.
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7. TruCalc could explicitly show, where it is the case, that numbers are ap­
proximate. For example, 7r =[3] 3.142 could be the notation to indicate the 
equality is correct to three decimal places. If the user changed the subscript 3, 
they would be changing the precision of the displayed number. Chaitin how­
ever suggested that it would be more in keeping with the direct manipulation 
style of TruCalc to allow the user to drag the righthand extension of deci­
mals: so if the user drags the ‘. . .  ’ to the right in the equation 7r =  3.142 . . .  it 
could become 7r =  3.141592653589793...: and dragging the ‘. .. ’ left would 
put it back to 7r =  3 . 1 . . . ,  for example.

In summary, an interesting part of the ‘HCI of TruCalc' can be expressed as 
the relation between S(e, Cj) ,  the solutions the implementation provides for an 
equation e, and 5'(e,lHI), what the user expects.

6.1 Enjoyment

Finally, it surprised us that TruCalc was fun to use— we had developed it from 
principles and had not anticipated the strong feeling of engagement it supports. 
It integrates body movement, handwriting, and instant satisfaction, that children 
and post-doc mathematicians find exciting. Elsewhere we have reported on our 
usability surveys, a topic that is beyond the scope of this paper [14]. More 
recently TruCalc was exhibited at the Royal Society Summer Science Exhibition, 
where it was used by thousands of visitors, children, parents, teachers, to math 
postdocs. An exit survey was completed by 420 participants (and we insisted 
that anybody who took a survey form completed it, to avoid under-reporting 
of negative results) had 90% liked or really liked TruCalc, and nobody (0%) 
disliked it.

7 C onclusions

Current leading mathematical systems are capable of a remarkable range of 
mathematics. W ith Mathematica, a market leading example of an interactive 
computer algebra system, we are able to solve problems we could not do without 
it. It is easy to confuse these mathematica] capabilities with usability. So much 
power seems harnessed that the power seems usable.

This ‘power leverage’ blinds us to the fundamental non-mathematical na­
ture of these user interfaces. Often clear mathematical principles like referential 
transparency and declarativeness are lost in modes, history dependence, context 
sensitivity, and so on. The failure of these principles in conventional m athem at­
ical user interfaces undermines our ability to reason reliably or mathematically.

xThink makes use of the affordance of pen and paper to create an inter­
face that solves partially some of the interface issues. But it still ignores basic 
mathematical principles when applied to interaction. It gains the affordance of 
paper, at the expense of introducing evaluation modes (and uncertainty in the 
handwriting recognition).
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We have shown in TruCalc that it is possible to create an interface that sup­
ports basic principles throughout the user interface; it has no hidden state, is 
modeless, instantly declarative, and so on— or in Frege et al. ’s metamathemati- 
cal terms, substitutional, referentially transparent, and so on. Adhering closely 
to these mathematical principles do not compromise the power of TruCalc; it is 
in principle as powerful mathematically as xThink and other conventional sys­
tems (though obviously the two systems vary in detail, such as in the choice of 
built-in functions they support)). Further, we have shown that by supporting 
these principles that the calculator is easier, more enjoyable, fun and usable— a 
paradigm shift in usability.
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ABSTRACT
The history o f  technology, as a discipline, supportss alternate 
points o f  view termed internalist and externalist, wHiich terms 
highlight an approximately similar division in pointts o f  view  
within HCI. Conventional HCI is externalist, rightly (concerned 
with human-centered issues; but extemalism riskss ignoring 
important internalist issues. A  successful humam-computer 
system is better i f  it is successful from both perspectiwes.

This discussion paper argues that the externalist viiew, while 
necessary and immensely useful, is not sufficient— <-and in the 
worst case, risks eclipsing innovation from internalist > quarters.

1. INTRODUCTION
David N ye’s review o f  the history o f  technology [144] uses the 
clear terms internalist and externalist, applying therm to styles 
o f historical analysis.

Why did the internal combustion engine triumphi over the 
alternatives, horse, steam and electric? An intemailist might 
emphasize the power-to-weight ratio o f  the internal ccombustion 
engine; an externalist might emphasize the lower ccost o f  the 
Ford Model T and the dramatic impact cost had on ;a growing 
market. An internalist, then, considers the technology . as such.

• Extem alism  is focused on the world external tto the user 
interface: /r«wa/j-interaction and e.g., observation, 
evaluation, cognition, etc.

• Intem alism  is focused on the world internal tto the user 
interface: computer interaction and e.gg., logic, 
engineering, computation, etc.

An example illustrating human-computer interaction! issues is 
Tracy Kidder’s classic The Soul o f  a New Machine [10]. The 
book traces the development o f a computer, the Datta General 
Eclipse MV/8000, all the technical issues, right up too the point 
that the finished product is brought to market. Them the book 
ends, just when the external world o f  the computter and its 
possible use starts to get interesting. The book takes an 
internalist view.

O f course both views are needed in a balanced discuission, and 
indeed Nye provides a masterful analysis. We belkeve N ye’s 
internalist/externalist terms from the history o f  technoology have
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value in distinguishing major styles in the way HCI is viewed, 
presented and undertaken.

Clayton Lewis proposed a similar, but, psychological 
distinction for HCI, that o f  inner and outer H C I [13]. Here, 
inner and outer refer to cognitive processes and human behavior 
respectively. Lewis emphasizes the potentially fruitful interplay 
o f inner and outer HCI. Curiously, while his the terms “inner” 
and “outer” might at first seem to cover everything, Lewis 
excludes the computer (or other interactive system)— he simply 
does not mention it in his conception o f  HCI! It is as i f  the 
interactive system is a given, taken for granted, rather than a 
legitimate object o f  study in its own right.

Similarly in the “Kittle House Manifesto” [3] Carroll suggests 
that academic psychology has had no impact on interactive 
design practice, and that major innovations in practice (e.g., 
Sketchpad, an innovative graphics program) have made no 
explicit use o f  psychology. He bemoans the fact that HCI does 
not use science, or that if  it does the relation is haphazard. Yet, 
curiously, he overlooks that computer science is science too, 
and in fact underlies the major contributions he describes as 
driving innovation. While it seems to us quite right to try to 
promote psychological science and explore why it is in some 
sense under-rated or used haphazardly, it seems counter­
productive to the wider purpose o f  HCI to overlook 
computational science. Carroll’s more recent collection [4] sees 
HCI as something computer scientists need to be taught, as 
something quite other than computer science, rather than 
something that can draw on computer science as well as human 
sciences.

This externalist emphasis o f  the HCI field is routinely found in 
the standard HCI textbooks, o f which most take externalist 
points o f  view— indeed, [5] suggests that teaching HCI should 
cover the computer science which standard HCI textbooks omit.

Barnard, May, Duke and Duce remind us o f  “syndesis,” binding 
together systems that contain interacting subsystems, such as 
people and computers. They introduce the terms “Type 1 
theory” and “Type 2 theory,” referring to approaches that go 
deeper or that go across interaction respectively. They warn 
that we are not very good at establishing Type 2 connections, 
and this weakness may lead to “the fragmentation and demise 
o f  HCI as a coherent science” [1].

It seems that HCI needs terminology to discuss these issues. 
Our internalist/externalist distinction is analogous to the Lewis 
inner/outer HCI distinctions, but from the point o f  view o f  the 
computer rather than the human. Without repeating Lewis’s 
arguments here, we too see the great potential o f  fruitful 
interplay between internalist and externalist perspectives.

Just as a brain-computer interaction (BCI) researcher would 
certainly wish to go deeper into the “inner HCI” than Lewis 
does, so also our “internalist” perspective has a rich internal



structure— it isn’t just “the computer” set against the wide 
range o f  standard HCI disciplines, anthropology, psychology, 
sociial science, economics, marketing, design; the internalist 
seess algorithms, complexity, information theory, proof, 
requirements, hardware, graphics, databases, and so forth ... a 
richi science contributing to HCI.

1.11 The Authors’ Perspective
BotUi authors o f  this paper have an internalist background, and it 
is uinashamedly from this perspective that this paper has been 
writtten. The paper has a twofold purpose: to name and 
intrcoduce a useful distinction for HCI, and to stimulate debate 
on tthe balance— or the lack o f  balance— in HCI as practiced, 
and 1 hence stimulate thinking on strategies for doing better.

We believe the internalist/externalist distinction allows a 
conistructive discussion about the methodologies o f  HCI, 
wifrhouit diminishing either internalist or externalist points o f  
vievw. By naming the distinction, we suggest that there are 
different an d  valid views about how HCI, and particularly HCI 
resesarch, can and should be done. Nevertheless, we believe 
intermalist HCI tends to be under-valued by the more dominant 
exteemalist point o f  view, and this paper therefore makes an 
enthhusiastic case for intemalism.

HCII could not exist without programming computers, which is 
an iintemalist perspective, and also HCI could not exist without 
the human context and study, which is an externalist 
perspective. Singly, internalist and externalist perspectives are 
momocular and lack depth and perspective. Both are needed.

2. HOW WE GOT HERE
The; HCI community’s traditional emphasis o f  externalist 
perspectives to some extent eclipses internalist perspectives. 
H istorically, existing externalist methodologies were ready 
wheen they were needed: there was and still is a very substantial 
resoiurce o f  experimental psychology that was applied and 
wortks to a high standard. In contrast, it might be said that most 
earljy internalists did not know what they were doing; see below  
wheen w e comment on the Therac-25.

A seeco>nd, crucial, reason for the current emphasis on externalist 
methhods in HCI is that external experimental methods can be 
usedd independently o f  the specifics o f  internalist details. Every 
HCII system has very different internals, and requires 
inveestmenit in specific programming and design; in contrast, the 
exteemalist methods (e.g., cognitive walkthrough, think aloud, 
eye tracking) work on all systems. Experimental designs, 
statistical methods and so on, can be applied to a word 
proccessor or to a graphics package with little modification. In 
contitrast, a  new contribution to HCI by an internalist might take 
yearrs o f  work that has no other application. It is noteworthy that 
mosst externalist studies o f  programming in HCI design use 
trivial programs, because programming real user interfaces is 
too : slow. Inevitably, few internalists contribute to mainstream 
HCII.

Perhhap'S the HCI community has changed too. As fewer 
intermaJists contribute at the same rate as externalists, the peer 
comnmuinity becomes dominated by externalist values. I f an 
intermadist submitted a result to a conference or journal now, 
mosst referees calling themselves members o f  the HCI 
comnmunity would be externalists.

ACAM C H I, the major international HCI conference, is primarily 
exteEmalist. In contrast one o f  the major internalist conferences, 
D S W IS  (Design, Specification and Verification o f  Interactive 
Syskteims) has only a hundredth o f  the participants. This reflects

a difference in the sizes o f  the communities. Thus, internalists 
face higher hurdles to participate in the development o f  the 
field. Then, as the externalists operate in a community 
dominated by externalists, it appears reasonable to require 
externalist criteria for contributing to that community: possibly 
even a hegemony— being defined as the emphasis o f  cultural 
beliefs, values, and practices to the dismissal and over-looking 
o f  others.

3. SAMPLE SYSTEMS
3.1 Therac-25
Horrific stories o f  bad HCI abound. The Therac-25 was a 
medical device that killed patients as a result o f  “operator” error 
(actually system design error). It is primarily an example of 
inadequate internalist HCI, an argument for better internalist 
HCI rather than fixing design problems with externalist HCI. 
Bad programming killed people.

Although the Therac-25 story is an extreme example, the case 
illustrates how important it is for user-centered design to react 
against sloppy programming practices— this paper is not 
arguing intemalism is a panacea! Given that many programmers 
are not computer scientists, UCD is necessary  to improve 
things.

One could argue that iterative design gained prominence to 
compensate for the difficulty o f  writing good software, 
particularly given the typical programmer skills available to 
industry.

3.2 Calculators
By considering logic programming, Runciman and HThimbleby 
introduced an analytic concept, equal opportunity [15]. 
HThimbleby used equal opportunity to constrain the design o f  a 
new user interface, choosing a calculator, as this is a well- 
researched artifact. Background research revealed how  
conventional calculators were badly designed, an internalist 
criticism o f  their poor technology [16], Somehow this critical 
observation had escaped externalist research on calculator user 
interfaces.

We question the point o f  externalist research when it ignores 
the intrinsic failure  o f  the technology; what point is iterative 
design or working with users when the conceptual problems of  
the user interface are so hard, complex and broken? 
HThimbleby made a technically improved calculator available 
to the community in 1986. However, it was not till 2004 that it 
had any externalist evaluation [2]. More recently, WThimbleby 
generalised the calculator, and made its user interface recognize 
handwriting [17,18,19]. This calculator has had a modest 
externalist evaluation [17].

The new calculator was developed entirely by internalist 
considerations. Specifically, it should do mathematics properly
[19]. Few externalist considerations drove its design, yet it is 
very successful. The calculator was exhibited at Royal Society 
Summer Science Exhibition, 2005; at the exhibition, several 
thousand people used it. 90% o f  respondees said they really 
liked it or loved it. But despite the unusually large scale o f  the 
survey and feedback we gained no new ideas from users that 
would contribute to iterative design improvements.

Some feedback from users at the exhibition is listed below:

• “It visualizes the internal workings o f abstract calculations, 
fun, as it is wonderful! Fun! Engaging and importantly 
visible!”— University Professor

• “Calculators seem clumsy and hard to use— the new 
method is genius!— when can I buy one in the shops (If I



had had one I would have done A level maths)”— A-Level 
Student

• “Engagement, excitement, interactivity, seamless, more 
visually appealing and easier to use!”— Teacher

• “I’ve never seen anything that’s brought a smile to my face 
while doing addition, but this has. For that reason alone, I 
want one!”— Artist

The point we would like to make is that an internalist design 
program has produced a good user interface, recognized as such 
by users. Yet by conventional externalist HCI criteria, the work 
would not be acceptable for publication.

3.3 Graphics Programs
The calculator is an example o f  an internalist HCI research 
program, spanning twenty years before it resulted in a user 
interface that attracted attention. In contrast WThimbleby 
conceived, designed and built a vector graphics editor within 
two years, as a purely internalist project.

The resulting program, Lineform, was fully formed on its initial 
release. N o early focus on users, no empirical design, no 
iterative design [7] informed its development— though o f  
course computer science and HCI principles did inform and 
direct its development.

The quality o f  the design was recognized by the award to 
WThimbleby o f  the 2005 Apple Student Design Award. 
Arguably, this shows the user interface design was better than 
o f  thousands o f  others (i.e., the number o f  competitors)—  
which, had they been realistically entered into the review, 
should have been excellent programs in their own right.

Lineform is sold by Freeverse Software and has been 
commercially successful. The program has been reviewed in 
commercial magazines and web sites. Its reception has been 
uniformly favorable.

Below are some sample quotes from reviews. They are included 
to support the claim that the HCI in Lineform is successful, 
regardless o f its lack o f  externalist methodology. Like the facts 
we presented about the calculator, the evidence supports our 
view  that HCI contributions can be good despite the lack o f  
externalist, practices.

• “Lineform from Freeverse Software claims to be the
solution for modem drawing and illustration. It is. Winner
o f a 2006 Apple Design Award, Lineform is not only easy 
to use, but the interface design makes the application so 
intuitive, Mac users need no explanation to start 
illustrating.”— CreativeMac (Feb 2007)

• “It’s not often that you fmd a product you literally have to
gush over ... but Lineform, for me at least, is that
product.”—AppleGazette  (Jan 2007)

• “Lineform has two other selling points. First, its speed: the 
program launches in a couple o f  seconds and shames 
Illustrator throughout in its responsiveness. Second, its ease 
o f  use. The simple interface alone makes it easier to fmd 
things.”—MacUser (Issue 22 Volume 22)

An internalist design program produced a very good user 
interface, recognized as excellent by the market and critical 
reviewers. Yet by conventional externalist HCI criteria, the 
work would not be acceptable for publication.

3.4 Google
On any measure Google is an extremely successful user 
interface, with a value to users that exceeds most conventional 
user interfaces studied in HCI. Google is in fact just a text field

with a substantial algorithm behind it [12]: its user interface is 
successful because it has a good internalist design. First, the 
internalist algorithm then the user interface. Once Google 
works it then makes sense to evaluate it and refine it from an 
externalist point o f  view: what services do users want given that 
Google works, and how can they be made better? However, the 
original, key HCI innovation was internalist.

Few o f  the services Google now offers would have made any 
sense to users or anyone else until after the basic algorithm 
worked, and had been demonstrated working well. Although 
extemalism is now essential to Google, it was not how it 
started.

4. SAMPLE ISSUES
4.1 Anecdotes
If Jo is using a system, and this is reported in a research 
contribution, then an externalist wishes to know in what way Jo 
is typical o f  the population and to what extent, i f  at all, the 
particular interaction is typical. Jo may be idiosyncratic; the 
experimenter may have misdirected Jo. If we wish, ultimately, 
to design better interfaces for anybody other than Jo, we need 
reliable, generalizable knowledge. Statistics is a good way to 
characterize reliable generalization, and a one-off experiment 
with a unique individual would be hard-pressed to be reliable.

From an internalist perspective things look very different. 
Internal arguments are independent o f  the user. For example, 
computability could show that certain tasks are impossible. Not 
just for Jo, but for anybody—impossible for the whole human 
population, martians, dogs and bacteria. One hardly needs to 
recruit conventional experimental methods to make such claims 
reliable. This is not an anecdotal claim, but an analytic claim.

The confusion o f these two methodologies undermines 
communication. It is our experience that internalist papers 
submitted to journals and conferences have been rejected 
because the referees have interpreted our analytic descriptions 
as “anecdotal.”

The desire that contributions to HCI must include sufficient 
(and valid) externalist content before they are acceptable, 
increases the burden on the internalist researcher. Few  
researchers are able to span the internal/external bridge; 
different skills, different theory, different methods are required. 
Moreover, in the way o f  things, externalist work can only 
follow after internal work— or simulate it (e.g., with paper 
prototyping, which has no internalist content). Perhaps this is 
the gulf o f  HCI? An internalist has to do twice as much work?

4.2 Reproducibility
The systems mentioned in this paper are fully working systems 
and can be downloaded by interested researchers 
(www.freeverse.com/lineform for the graphics program, 
www.cs.swansea.ac.uk/calculators for the calculator, and 
labs.google.com for an API). From an internalist perspective, 
the research these systems embody is reproducible. That is, the 
claims we make about the quality and design can readily be 
checked by any interested researchers; because the claims are 
user independent.

From the perspective o f  the present paper, o f  emphasizing 
internalist HCI, it seems a great advantage that exactly what we 
have contributed— the underlying science, the programs, and so 
forth— are completely available to any researchers who wish to 
build on or critique our work. This level o f  reproducibility is 
very rarely the case with externalist HCI research.



4.3 Opposition or complimentarity?
At the B C S HCI 1995 conference, what w e would now call an 
intiemali'.st/extemalist debate was presented by an externalist in 
a keynote, metaphorically, as an actual war. “Which trench are 
yoiu sho-oting from?” [6], illustrated with pictures o f  carnage. 
Amotlher keynote at the same conference [8] suggested that “in a 
nuttshell ... what I see is a need to get away from the computer 
at (centre stage, and a need for methods o f  description that make 
them selves useful . . .” I f it’s a war, consider [21], which starts 
oflf, “"If you  want to make software developers squirm...” and 
setts out to create the impression that developers don’t know 
whiat they are doing. Some don’t, no doubt, but most have a 
harrd enough job getting systems to work at all, and they should 
noit be blamed for problems that arise through poor 
maanagement expectations and requirements that nobody 
umderstood until their systems were working.

Laindauer’s The Trouble with Computers [11] blames 
programmers for being “arrogant” (p i73)— not designing for 
useers„ testing, evaluating, and so on. Programmers have 
“faantasies” he says. Yet he also mentions that Stu Card “a 
leatding expert in HCI” was “confident” that a new word 
processor would be “vastly” better—but was proved wrong. 
Thius he makes rhetorical distinctions whose effects are to 
discredit the internalist perspective in HCI: internalists are 
“arrrogarnt” whereas equally wrong externalists are “leading.”

Wee surely need more balanced views, particular as both 
intcermali.st and externalist share the same goals for the user. A 
firsst sitep in being more balanced is to name the imbalance.

Gnudiin, one-time editor o f  the ACM  Transactions on Computer- 
H um an Interaction, presented a mature view  o f  the diversity o f  
the; HCI community [9], based on his experience as editor and 
fimal arbiter between conflicting referee and author points o f  
vieiw. A non-partisan view is [20], which argues how easy it is 
for- differences to escalate to unconstructive conflict.

5. CONCLUSIONS
Thiis paper has proposed a distinction between externalist and 
inteemialist approaches to HCI. The distinction helps clarify the 
natture o f  HCI research and practice, as well as preferred 
approaches within the HCI research community.

Thiis paper described a selection o f very different products o f  
inteemialist HCI. None have been developed through or 
supipo>rted research that would have met conventional 
extcerroaliist HCI criteria, indeed none followed any 
reccoiramended externalist HCI development cycles— yet all are 
suc;ce:ssfiul. O f course the systems beg a wide range o f  
extterraaliist questions, but the fact that one can now do 
extterroaliist work does not mean it was necessary to do it for the 
oveeraM work to form a valid contribution to HCI.

Ouir purpose is not to dismiss externalist approaches, but to 
reccogmizie that an internalist approach to HCI can be very 
effeective and lead to good user interface design. Internalist 
dessigm and research can be valid without any externalist 
evaluation.

Giwern thiat the computer science community argues that design 
shoiulcd sitart with a mathematically rigorous specification, and 
them ireflne to implementation— almost the opposite o f  the 
exteerrualiist HCI view o f  design— there are new questions to be 
askced.. C an internalist approaches lead to quality HCI, and if  so, 
to \whiat extent and under what assumptions? This paper has 
shoiwm that internalist HCI can. We need to see more intemally- 
driwero HCI, and we need to explore when and why it is 
succcessfiul.
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