=
&

Swansea University ‘C I'OIlfa

Prifysgol Abertawe Setting Research Free

Swansea University E-Theses

Drawing from calculators.

Thimbleby, Will

How to cite:

Thimbleby, Will (2010) Drawing from calculators.. thesis, Swansea University.
http://cronfa.swan.ac.uk/Record/cronfa43088

Use policy:

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms
of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior
permission for personal research or study, educational or non-commercial purposes only. The copyright for any work
remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium
without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from
the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the
repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference
above.)

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa43088
http://www.swansea.ac.uk/library/researchsupport/ris-support/

Drawing from Calculators

Will Thimbleby MEng

Submitted to Swansea University in
fulfilment of the requirements for the
Degree of Doctor of Philosophy

Swansea University
Prifysgol Abertawe

September 2010

ProQuest Number: 10821480

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 10821480

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346

Drawing from calculators

Will Thimbleby
PhD Thesis, Swansea University, 2010

Summary

Two novel interactive systems, a new calculator and a new drawing pro-
gram, are developed. The novel user interfaces derive from the application
and development of design principles during the software development. It
is the principles, their relationship to the development process, and their
potential future role in interactive system development, that form the main
contributions of the thesis.

Each system was created using an iterative, principle-driven method, in
which the principles and implementation built on each other. The principle-
driven design process led to original user interfaces and to refined principles.
The design, development and underlying principles of each system form two
complementary parts of the thesis:

e The calculator is designed to work as though it is “paper with an-
swers.” The user can write any mathematical expression by hand,
and the calculator recognises the written expression, then morphs the
user’s input to a neat typeset expression, corrects any syntax errors,
and then provides an answer. The neat typeset expression can then
be edited freely by direct manipulation or by adding further writing.

e The vector graphics drawing program design follows a similar principle-
driven approach. It applies the principles developed with the calcula-
tor, but to a very different style of user interface.

Both systems provide substantial examples of user interface design and de-
velopment. Their design and development resulted in four key user interface
principles: projection, continuity, what you see is what you edit, and declar-
ative interaction. These four flow principles are, it is argued, the main
reasons the user interfaces are effective.

User studies, qualitative feedback, heuristic, and analytic evidence is pro-
vided for the user interfaces. Both systems have been well received by users
and are commercially distributed.

The design principles may support future user interface design and develop-
ment. They provide further research opportunities, particularly in exploring
exactly where they are applicable, and how and when they can be applied
to future designs.

Acknowledgements

This thesis would not have been finished without the encouragement, sup-
port and goading I received from many people. I appreciate all their effort
even if it appeared otherwise at the time.

Both the calculator and Lineform are now commercial products, and both
publishers deserve my thanks for their enthusiasm and support in creat-
ing two quality products. Freeverse, who published Lineform, and en-
abled many people to have the chance of using it. Also thanks are due
to Promethean, especially for their enthusiasm about the calculator when
it seemed that it would languish never used, and their publishing of that
program. Promethean have made it possible for the calculator to end up in
many schools, to be used to teach and explore mathematics and to hopefully
inspire adults and children alike.

Harold Thimbleby my father and supervisor, who kept me from doing too
many other things. He not only provided some of the initial thoughts that
inspired the direction of this thesis but also provided me with my initial
experiences of computers and a belief in what I could achieve. (All relevant
previous work is properly cited as appropriate throughout the body of the
thesis.) Thanks to rest of the FIT lab staff for the good conversations,
particularly Matt Jones, George Buchanan and Parisa Eslambolchilar.

Microsoft Research for getting me to write my thesis, while pretending I was
working for them, and specifically Richard Harper who provided much good
advice and direction. Without whom I might still be contemplating starting
to write.

Many other HCI peers have also provided good advice that this thesis would
have been poorer without, especially Michael Harrison, Matt Jones and Paul
Cairns.

My thanks also to my family, friends and fellow PhD students at Swansea.
Specifically Emily Bridge, Ben Spencer, Will Harwood (whose pictures I've
used in places) and Emily Thimbleby.

Contents

1 Introduction
1.1 Abstract
1.2 Introduction.
1.2.1 Contributions, principles and evaluation
1.2.2 Structure of the thesis
1.3 Calculators
1.3.1 Typicaluse
1.3.2 Calculator design principles
1.3.3 Evaluation,
1.3.4 Calculator summary
14 Drawing L e
1.4.1 Drawing design principles
1.4.2 Drawingevaluation.
1.4.3 Drawing summary
1.5 Opening new research questions
1.6 Publications and outputs related to this thesis
1.7 Conclusions o
1.8 Bibliography o o

I Calculating
2 Context
2.1 History e

2.2 Penandpaper
23 Calculators
2.4 History of computer user interfaces for mathematics
2.5 Types of mathematical user interfaces
2.5.1 Linear user interfaces
2.5.2 Template-based user interfaces
253 Visualmethods
2.6 Summary

3 Design & development
3.1 The development process

vii

13

15
15
17
18
18
22
23
25
26
29

31

CONTENTS viii

3.1.1 Likepaper. 32
31.2 Affordance 34
313 Feedback 34
314 Morphing 35
3.1.5 Editing 36
316 Draganddrop 36
31.7 Erasing 37
3.1.8 Computing 37
3.1.9 Partial expressions 38
3.1.10 Storage e 39
31.11 Undo 39
3.1.12 Teaching applications 40

3.2 Summary e e e 41
4 Principles 43
4.1 Principles L o 43
4.2 Projection e 44
4.2.1 Userinterfaces 46
4.2.2 Multipleviews oL, 47
4.2.3 Projected user interfaces 48
4.2.4 Visibility of system status 49
4.2.5 Similarconcepts 49
426 Editing oo 49
427 Keyconcepts 50
4.2.8 Example: Internet search 50
4.2.9 Example: Calculators 52

4.3 Continuity 52
4.3.1 Animation. 53

4.3.2 Keyconcepts 54
4.3.3 Example: Calculators 55

4.4 What you see is what youedit 55
4.4.1 Different models 56
4.4.2 Modes and hidden state 57
443 Keyconcepts 58
4.4.4 Example: Syntax-directed editors 58
4.4.5 Example: Template editors 58
4.4.6 Example: Calculators 59

4.5 Declarative interaction o000 60
4.5.1 Userinterfaces 61
4.5.2 Similar concepts 62
453 Difficulties. 63
454 Keyconcepts oL 64
4.5.5 Example: Calculators 64
456 Predictable 0. 65
457 Refining L oo 65

4.6 Synergy e e e e e 66

CONTENTS ix

4.6.1 Flow o 66
4.6.2 Reducing the user’s cognitive workload 67
4.6.3 Errorrecovery 67
4.6.4 Breaking principles 68

4.7 SUmmary e e e e e e e 68
5 User interface overview 71
5.1 Overview e e e e 71
5.2 User interface sections, 73
5.3 Simple mathematicsentry 74
54 Editing 77
55 Draganddrop 77
56 Deletion 81
5.7 Partial expressions 82
5.8 Hiding theanswers 85
59 Thedock e ... 86
5.10 History e 88
5.11 User interfaceconcepts 89
5.11.1 Handwriting 89
5.11.2 Morphing o 89
5.11.3 Feedback 90
5.11.4 Freeform editing 90
5.11.5 Calculation 90
5.11.6 Exploration 91
5.12 Summary 91
6 Implementation 93
6.1 Tools. e 93
6.2 Overview e e 94
6.3 Symbol recognition L 0oL 96
6.3.1 Charactermodels. 97
6.3.2 Segmentation 98
6.3.3 Recognition 101

6.4 Expression recognition 101
6.4.1 Some difficulties 102
6.4.2 Alternative solutions 102
6.43 Thesolution 103
6.4.4 Structure specification schemes 103
6.4.5 Thealgorithm 105
6.4.6 Exponentiation 106
6.4.7 Missing components 107

6.5 Calculation 108
6.5.1 Implementation. 109

6.6 UserInterface 112
6.6.1 Interaction 113

6.6.2 Pen-based interaction 114

CONTENTS X
6.6.3 Expressions and ink editing, .. 114
6.6.4 Selection, 115
6.6.5 Draganddrop 115
666 Undo 116
6.6.7 Thedock 117

6.7 Summary e 118
7 Evaluation 119
7.1 EvaluationinHCI 119
7.1.1 Creatingoriterating 120

7.2 Evaluation in thisthesis 121
7.3 Declarative calculators 122
7.4 Pen-based mathematics 122
7.5 Initial evaluation S 123
7.5.1 Userstudies. 124
752 Results 125
753 Timeontask 126

754 Easeofuse, 127
755 Accuracy 128
7.5.6 Summary 129

7.6 Royal Society evaluation 130
7.6.1 Visitors o 131
76.2 Results 132
763 Quotes. 133
7.6.4 Mumbai,India, 136
7.6.5 Summary 136

7.7 A comparison with zThink 138
7.7.1 Specific differences L. 139
7.7.2 Worked example 142

7.8 Cognitive Dimensions evaluation 145
7.9 A note on the philosophy of science 147
7.10 Summary e e e 148
II Drawing 149
8 Context 151
81 History 151
8.2 Drawing applications 153
8.3 Drawing in vector applications 153
8.3.1 What are vector graphics? 153
8.3.2 Why use vector graphics? 154
8.3.3 Techmicalreasons 155
8.3.4 Where do they come from? 155
8.3.5 Semantic requirements 155

8.4 User interface requirements 156
84.1 Graphics 156

CONTENTS

xi

842 Béziersplines
843 Tools e
84.4 Selection
84.5 Editing
84.6 Navigating
84.7 Style. e
8.4.8 Compositing
849 Filters e
8.4.10 Documents
8.5 Poor user interfacedesign
8.5.1 Direct manipulation
852 Modes
853 Rigiddesign.
8.5.4 Over complication
8.5.5 Lack ofimmediacy
86 SUmmAary i e e e e e e e
9 Design & development
9.1 Motivation e
9.2 Initialdesign
9.3 Continued development
9.3.1 Apple Design Awards
9.3.2 Initial user feedback
9.3.3 Commercialisation
934 Userfeedback
94 Flowprincipleso L.
9.4.1 Projection.
9.4.2 Continuity e
9.4.3 What You See Is What YouEdit
9.4.4 Declarative interaction
9.5 Lineform principles
9.5.1 Physicalmodes
9.5.2 Flexibledesign,
9.5.3 Appropriate controls
9.6 Summary e e e e
10 Principles
10.1 Physicalmodes
10.1.1 Lineform,
10,1.2 Recall

10.1.3 Disadvantages
10.1.4 Key concepts

10.2 Flexible design . . .

10.2.1 Key concepts

10.3 Appropriate controls

10.3.1 Key concepts

156
157
158
158
159
159
159
159
160
160
160
162
164
165
165
166

167
168
169
170
170
171
172
173
174
174
176
176
177
178
178
178
179
180

CONTENTS xii

10.4 Other principles. 189
10.4.1 Direct manipulation 189
10.4.2 Simplicity 190
10.4.3 Well definedroles 190

10.5 Summary 191

11 User interface overview 193

11.1 Theinterface, 193
11.1.1 Thetoolbar 193
11.1.2 Thestatusbar 194
11.1.3 Imspectors 194
11.1.4 The mediabrowser 194
11.1.5 Keyboard 194

11.2 Manipulating thecanvas 195
11.2.1 Zoom 195
1122 Drag« o v o o e e 195

11.3 Creating graphics, 196
11.31 Thebrushtool e e e 196
11.3.2 Thepentool 196
11.3.3 The rectangle and ovaltool 196
11.3.4 Thetexttool 197

11.4 Manipulating graphics 197
11.4.1 Selecting graphics 197
11.4.2 Moving, scaling and rotating 198
11.4.3 Transform inspector P 199
11.4.4 Transforming with the keyboard 200
11.4.5 Align and distribute 200
1146 Flip e e e 200

11.5 Layersand Z-order 200
11.5.1 Isolationmode 201

11.6 Groups and combining L. 202
11.6.1 Clipping . -« o o o i i e 203
11.6.2 Combining 203

11.7 Style o o e 203
1171 Fill. .. .o 204
1172 Solid 205
1173 Tmage o oo it e e e 205
1174 Gradient 205
1175 Text o oo 206
11.7.6 The text inspector 207

11.8 Stroke 207
11.8.1 Arrows o o e 208
11.8.2 Artisticstrokes oL 209
11.83 Pressure oL 210
11.8.4 Custom artistic strokes 210

11.85 Text L 211

CONTENTS xiii
119 Effects 212
11.L10Filters o v v e e e e e e 212

11.10.1Filter resolution 214
11.11Editing graphicsindepth 214
11.11.1Rectanglesandovals 215
11.11.2Bézier paths. L. 215
11.11.3Boolean operations 217
11.11.40utline 218
11.12The canvas in depth and exporting 218
11.12.1Rulers, guidesand grid 218
11.12.2Page layout 219
11.12.3CMYK previewo 220
11.12.40utline view L. 220
11.125Export 221
11.126SVG e 221
11.12.7AppleScripto 222
11.13Summary e e e e 222

12 Implementation 223

12.1 Document model structure. 223
12.1.1 Drawingmodel 224
12.1.2 Thedocument 224
12.1.3 Graphics 225
1214 Groups ot e e 225
1215 Fill . . . o oo o 225
12.1.6 Stroke 226

12.2 Userinterface o, 227

12.3 Representations 228
12.3.1 Semanticso 229
12.3.2 Comparisons 230

12.4 Other features 231
12.4.1 Linkback 231
12.4.2 Scripting oo 231
1243 Corelmage, 233

12.5 Summary 233

13 Evaluation 235
13.1 Why expert reviews? 235
13.2 Userreaction 236
13.3 Expert reviews oo 237
13.4 Apple Design Award 239
13.5 Commercial success. oo 240
13.6 Cognitive evaluation 240
13.7 Summary 242

14 Conclusions 245
14.1 Contributionso oL 245

CONTENTS xiv
14.1.1 Utility o e 246

14.1.2 Validity L 246

14.2 Principles 247
14.2.1 Projection L. 247

14.2.2 Continuity 248

14.2.3 WYSIWYE — What you see is what you edit 248

14.2.4 Declarative interaction 249

14.2.5 Physicalmodes 250

14.2.6 Flexibledesign 250

14.2.7 Appropriatecontrols 250

14.3 Furtherwork 251
14.3.1 Computerscience 251

14.3.2 Human computer interaction 253

14.3.3 Interactive editing 254

14.34 Teaching 254

14.3.5 Learning 0 e 255

144 Summary e 255

A Anonymous questionnaire 267
B Initial results 271
C Royal Society — Briefing notes 277
D Royal Society — Evaluation form 283
E Royal Society — Results 285
F Calculator manual 299
G Dock equations 309
H Recdit draft paper & timeline of chapters 311
I Published papers 327
1.1 A Novel Pen-based Calculator and Its Evaluation 327

1.2 A Novel Gesture-based Calculator and its Design Principles . 332
1.3 Mathematical Mathematical User Interfaces 337
1.4 Internalist and Externalist HCI 395

Chapter 1

Introduction

This chapter is designed as a complete and self-contained version of the
larger thesis. The chapter provides a brief summary of the work in the
entire thesis.

1.1 Abstract

The user interfaces for a novel calculator and a drawing program are de-
scribed. The design and the associated design principles of these systems
form the two complementary parts of this thesis.

These two systems provide, what will be proposed, are novel user interfaces
for the conventional tasks of calculating and drawing. It is the user interfaces
that make the applications distinct and could account for their appeal to
users and their success in the marketplace of discretionary use.

The novel interfaces have been created using the insights from the applica-
tion and development of certain design principles. During the development
of the applications these principles helped shape the designs, and they were
themselves shaped and refined as they were used. It is these diverse princi-
ples, their relationship to the development process, and more generally their
potential future role in application development, that is the substance of the
thesis.

This thesis focuses on clarifying and specifying the principles as well as
describing how they emerged, developed and were used. The purpose will
be to articulate what these principles are, how they were used and how they
can be used in future design.

Chapter 1 Introduction 2

1.2 Introduction

Both drawing and calculation are very old: humans have been drawing and
calculating for over tens of thousands of years. Unsurprisingly, tools (in
addition to fingers) which support these activities have existed for almost
as long.

With the invention of computers, their use as a tool to aid drawing and
calculation was an obvious step, and thus computer applications to support
drawing and calculation have been used since the earliest computers. The
initial primary use of the modern digital computer was mathematical com-
putation. And as early as 1963, Ivan Sutherland’s Sketchpad was one of the
first interactive drawing applications for a computer.

The calculator and Lineform, a vector graphics drawing program, described
in this thesis were designed in a principled way with original user interface
features. These systems have been well received by users: the calculator
was selected for exhibition at the UK’s top science exhibition, the Royal
Society’s Summer Science Exhibition; the drawing program was awarded an
Apple Design Award, an award that recognises the best and most innova-
tive Macintosh software. Although part of a PhD research programme, both
these systems are robust, commercial-quality pieces of software: the calcu-
lator has been used for teaching in schools; the graphics program has been
used in professional design. Both are now being distributed and supported
commercially. They have tens of thousands of active users.

1.2.1 Contributions, principles and evaluation

The main contribution of the thesis is the specific novel design and im-
plementation of both systems, and also their principles and argued design
rationale that may be applied to future user interface design. In summary
this thesis makes distinctive contributions at several levels:

e The programs, description of the design process, and novel user in-
terfaces are themselves contributions, and are available to commercial
standards.

e The principles can be used in other design processes.
e Features of the programs can be used in other systems.

e This thesis opens new research questions and makes suggestions for
further work (Section 1.5).

o Additionally, there are refereed publications and other forms of com-
petitively reviewed outputs (Section 1.6) arising from the thesis work.

A key question for any contribution is its validity. Conventionally, contri-
butions and claims are evaluated, at least if their value is not self-evident.

1.3 Calculators 3

Unfortunately, it is not possible to directly evaluate a principle, only its
expression in the systems whose design it informed, and even then there
may be other factors to control for. For example, only one programmer —
the thesis author — was involved in the software development described in
this thesis. It is also possible that any reasonable principle would improve
design, perhaps because of the structure it provides. In an ideal world, one
might use double-blinded reverse-result experiments (i.e., participants do
not know the purpose of the principles they are given, but the experimental
design has also included principles intended to make user interfaces worse),
however, this is beyond what this thesis attempts.

The principles this thesis explores have not directly been subject to any
empirical testing outside of their impact on the design of the particular
applications. Of course, empirical user-based evaluation is only one form
of evidence that can be recruited to argue successful research, though it
is one which is very widely used; other methods include expert inspection,
cognitive walkthrough, and so forth. However, as well as presenting sub-
stantial exploratory evaluation, this thesis will argue that the principles are
an important aspect of the design of the novel user interfaces described, and
further, their use in future user interface design has potential to lead to other
novel and easy to use interfaces. Future studies might provide further eval-
uation of how the principles express themselves in other user interface styles
(e.g., text-intensive, mobile, walk-up-and-use, CSCW), how the principles
are used by other programmers, and so on.

1.2.2 Structure of the thesis

This thesis is split into two parts, which mirror each other. Each part in
turn describes the context, design and development, principles, user inter-
face, implementation and evaluation of the two different programs. The
calculator is described first, and Lineform, which builds on some of the cal-
culator’s principles follows. This thesis then concludes with a summary of
the contributions and the new opportunities for further work.

1.3 Calculators

Imagine writing a calculation down on paper and the paper magically work-
ing out the answers. The paper recognises your handwriting and you write
naturally, using the ordinary mathematical notation you are already famil-
iar with. The new calculator works like this and provides a user interface
for pen-based interaction; or for interactive whiteboard use, for instance in
lectures or classrooms.

The calculator, first described in [Thimbleby, 2004], provides a natural, dy-
namic method of entering conventional arithmetic expressions using hand-

Chapter 1 Introduction 4

3 3x4=12 3x6=18

0] e ©

Figure 1.1: Using the calculator

writing. It provides continual feedback showing the calculation and results.
The user interface adjusts and copes with partial expressions, morphing the
expressions to the correct position and result. Gestures are also used to edit
and manipulate calculations. The actual interaction is very fluid, and is
hard to convey well in a static, non-interactive paper format such as a PhD
thesis. Video demonstrations of users interacting with the calculator and of
the user interface are available on-linel.

1.3.1 Typical use

Figures 1.1.1—1.1.6 show a sequence of screen snapshots of the calculator in
use. In the first screenshot, the user has written 3x4 and the calculator is
at the moment of the screenshot “catching up" with the user’s handwriting,
and has just rendered the 3 in a typographically neat font.

In Figure 1.1.2. next, the calculator has morphed all the user’s input, and
immediately combined it with the output (here, ‘=12’) and displayed it all
as a typeset equation. The output generated from the calculator is shown in
red, distinguishing it from the black of the user’s input. The user continues
to edit the equation and by Figure 1.1.3, they have deleted the 4 and written
‘=18’. Effectively this poses the question “three times what is eighteen?”
making the calculator compute “3xa: = 18”. Additionally in Figure 1.1.3,
the user can be seen to continue to edit this solved equation as if it were
their own input; the user has written underneath of the equation to divide
the left hand side by 5.

By Figure 1.1.4 the calculator has morphed these changes and combined the
typeset output and the user’s input into another neatly typeset equation,
now showing a generated 30.

In Figures 1.1.5 and 1.1.6, the user “drag selects” the “3x” from the previous
screen and drags it below the division line. (This is an “ink edit”, the “3x"
is not a syntactically nor semantically meaningful unit.) Finally, Figure

lhttp://www.cs.swan.ac.uk/calculators/

1.3 Calculators 5

1.1.6 shows the result of this edit, and it is mathematically correct — thus
providing a solution to “z/(3 x 5) = 18”.

1.3.2 Calculator design principles

The design of the calculator was based on the idea of a natural pen and
paper user interface. As the calculator was created, principles developed
that informed the design. As the design was advanced and built on, these
principles were integrated deeper and refined through use and implemen-
tation, this process is described in Chapter 3. These principles, that both
guided and evolved through the calculator’s design are described more fully
in [Thimbleby and Thimbleby, 2005] and in Chapter 4. The main principles
are summarised here.

e Projection — Changes to the system’s state are immediately visible
everywhere. This expands on the term projected editors used by [Si-
monyi et al., 2006] and is similar to tight coupling as described by
Ahlberg and Shneiderman [1994]. An important aspect of projected
editing is that the input and output of the user interface can never
be inconsistent. This means that the display of output data (e.g. the
answer) has to be correct instantly without further user action.

e Continuity — Continuous feedback and morphing provide the conti-
nuity between state changes. The user is always provided with clear
feedback [Shneiderman, 1992] about what is happening. For exam-
ple, the user’s hand-written input is morphed into a typeset sum, this
provides a clearer knowledge of the mathematics being calculated and
how the output relates to the input.

o What You See is What You Edit (WYSIWYE) — Only what is visible
in the user interface determines how system can be edited. A user is
not forced to think syntactically about the structure of the mathemat-
ics, they edit the actual mathematics they see without constraint.

e Declarative interaction — There is no distinction between input and
output [Runciman and Thimbleby, 1986]. The inputs and outputs of a
user interface should not be rigid concepts. For example, it is possible
to change the output (“3 x z = 187) to find what input generates it.

The novel user interface the calculator provides is argued to derive from
these principles. They are expanded and explored further in Chapter 4,
and potentially open up much possible new, fruitful work in user interface
design.

Chapter 1 Introduction 6

1.3.3 Evaluation

The results of a pilot user study of nine participants, using national math-
ematic exam questions for 16 year olds, have shown that users enjoy using
the calculator and it can be faster at computing more complex sums like
2f A However the most interesting result from this study is that regardless
of intermediate mistakes no user arrived at any incorrect answers, compared
with several wrong answers from pocket calculators the users were familiar
with.

Royal Society calculator survey 2005

1 2 3 4 5

Disliked It Enjoyment Loved it

Figure 1.2: Royal Society evaluation: Enjoyment

Several thousand people were also able to see and use the calculator at the
Royal Society’s 2005 Summer Science Exhibition, a public exhibition of the
UK’s top science. The 436 evaluation forms completed by users provided
encouraging results. Figure 1.2 shows how users rated their enjoyment of
using the calculator on a SMART interactive whiteboard.

The user feedback came from a wide range of occupations, education, back-
grounds, and ages. The average age of the users who returned feedback
forms was approximately 30, with an even split between male and female.
34% of respondents said they had problems with their current calculator or
mathematical method.

1.3.4 Calculator summary

The calculator provides a novel user interface for a calculator and as an
interface for enjoying and exploring mathematics. A longitudinal user study
which would provide insight into the lasting success of the calculator has not
yet been undertaken. However, the current studies provide good support
for the calculator’s design, especially aspects like exploring, teaching and
accuracy. The reaction and enjoyment users get out of the interface is real.
Many users have laughed, smiled and grinned whilst doing mathematics,
even if they did not realise it, which is great for mathematics, which most
people claim to hate! Underlying the calculator’s design are the principles
that shaped it, these provide useful ideas for future design.

1.4 Drawing 7

1.4 Drawing

Figure 1.3: Lineform’s user interface, editing a drawing. (Drawing
(c) Paul Davidson)

Lineform, shown in Figure 1.3. is a novel vector drawing application, similar
in functionality to, and aimed at providing the capabilities of applications
such as CorelDraw and Adobe Illustrator. Lineform was initially created
to provide a drawing and illustration program for the author’s personal use
and expanded into a commercial product that thousands of people use.

Lineform provides a different example of novel design; it was designed and
built after the calculator and its design was informed by, and builds on the
principles that came from the calculator’s development. During develop-
ment, other principles specific to Lineform were also articulated and used to
guide the design, Chapter 9 describes this process in more detail.

1.4.1 Drawing design principles

The primary influence from the calculator was the projection principle, but
other principles also provide other design suggestions. How the calculator
principles informed Lineform’s design is summarised below.

* Projection — All views of the drawing, whether the drawing itself
or data in inspectors, are always consistent and always reflect the
underlying drawing.

* Continuity During any user interaction editing the drawing, the
whole user interface updates immediately. No state changes are initi-
ated without the user’s control, thus reducing any continuity problems.

Chapter 1 Introduction 8

o What You See is What You FEdit — Is supported through various
features that attempt to make the structure of a drawing more visible,
like an outline mode. WYSIWYE also suggests future features similar
to those that bitmap editors provide, such as vector based bucket-fills
and erasers.

e Declarative interaction — All views, when possible, are editable. For
example, the width in the Transform inspector both shows the selected
graphics’ width as output and allows editing which enables the exact
width to be input.

The design and implementation of Lineform also led to some additional
guiding principles.

o Physical modes — User interface modes should be controlled by what
the user is physically doing [Sellen et al., 1992]. The reasoning is that
continuous physical force makes a mode less likely to be forgotten
(compare using the Shift-key to the Caps-lock key). Other approaches
providing different forms of feedback [Monk, 1986] are also possible.

e Flexible design — Allow users to delay decisions until they are ready,
and to easily change their mind. Lineform is designed so that any
graphic can be easily repurposed in a different role, instead of being
rigidly defined by how it was created.

e Appropriate controls — Discrete values should have discrete controls
and continuous values should have continuous controls. The correct
use of user interface controls allows both the easy exploration and
exact setting of a value.

These ideas are described further in Chapter 10.

1.4.2 Drawing evaluation

Conventional user interface evaluation involves empirical work with users,
(for instance as was undertaken with the calculator) or in some cases as
expert evaluation, e.g., heuristic evaluation (though expert evaluation is used
less often in research). These sorts of evaluation have not been undertaken
with Lineform. Independent reviews by professional artists and users provide
the majority of the user evaluation. Lineform also won an international
design competition, focusing on innovation, user experience and technology,
indicating that in some sense it can already be considered to provide a good
user interface.

Lineform won the Mac OS X Student Apple Design Award and is published
by Freeverse?; it has now been acquired by Apple. Lineform has been very
well received by thousands of users and reviewers. The following typical
quotes are provided to illustrate this.

2http://www.freeverse.com/lineform/

1.5 Opening new research questions 9

Lineform has two other selling points. First, its speed: the
program launches in a couple of seconds and shames lllustrator
throughout in its responsiveness. Second, its ease of use. The
simple interface alone makes it easier to find things.

— MacUser review (Oct 2006, vol 22 issue 22)

There is nothing that even comes close to this program for ease
of use, adaptability and creative potential.

— Peter Marino (Amazon user review, May 2007)

1.4.3 Drawing summary

The development of Lineform drew heavily on the experience and devel-
opment of principles from the calculator, previously described. It provides
novel user interface concepts that have appealed to users and uses the ideas
from the calculator in a very different type of user interface. The use of the
principles in Lineform is an additional confirmation of the claims made of
their value and of their potential for designing other applications with novel
interfaces.

1.5 Opening new research questions

These two applications provide novel user interfaces and themselves provide
many possible future research possibilities, such as extending the current
designs. They also raise research questions about the principles, where these
principles are valid or applicable, as well as how they can be applied to
future user interface design. Obvious open-ended design questions include
the following;: :

e How can the fluid correctness of the calculator be extended to more
complicated maths, from simple algebra to completely different do-
mains?

o Are the principles generally useful and where are they effective?

o How can the contrasting benefits of bitmap drawing be combined with
vector drawing while retaining the principles such as WYSIWYE?

e How can the calculator be extended to facilitate use by teachers in
novel and interactive teaching methods?

e How can the calculator encourage exploration and learning?

Chapter 1 Introduction 10

1.6 Publications and outputs related to this thesis

Four publications which I have co-authored and which are related to this
thesis are included as published in Appendix I. These publications cover the
design, development, and principles of the calculator, and also thoughts on
the different methods of thinking about interaction design.

The last paper in Appendix I introduces and contrasts internalist and ez-
ternalist design. This thesis adopts a primarily internalist perspective, that
is, one that broadly emphasises (although by no means exclusively) the de-
sign and principles of a systems rather than external perspectives such as
user evaluation. The paper discusses the validity of this perspective and its
relation to the wider interests of successful HCI design.

In addition to refereed papers, the research in this thesis has generated other
types of output and recognition, including the following.

e The calculator, described in Part I has been exhibited at the Royal
Society (at the Royal Society Workshop, “Rags to Riches,” 2004, and
at the Royal Society Summer Science Exhibition 2005), at the Welsh
National Eistedfodd 2006, at the National Waterfront Museum (2006
and 2007) and at Techfest 2008 (Bombay, India). It was also exhibited
at the UK Parliamentary Young Engineers Competition in 2006, where
it won the Vodaphone Prize.

e The drawing program, Lineform, described in Part II, has been pub-
lished as a successful retail and on-line commercial product by Freev-
erse. Lineform won the Apple Student Design Award, 2006, and has
amassed considerable praise from users and reviewers, as described in
Chapter 13. In 2008 Apple purchased the rights to Lineform.

1.7 Conclusions

Two novel user interfaces have been designed and their design and underly-
ing principles articulated. A large number of people have used both applica-
tions and have provided positive feedback, these and other results support
the claims of the quality of the design of the applications, and in associa-
tion the utility of the underlying design principles that were used. Thinking
about the design of a user interface in a principled way has been a successful
strategy for these two systems. It’s hoped that the principles described in
this thesis will be useful for future user interface design.

1.8 Bibliography 11

1.8 Bibliography

[Ahlberg and Shneiderman, 1994] Christopher Ahlberg and Ben Shnei-
derman. Visual information seeking: Tight coupling of dynamic query
filters with starfield displays. In CHI 94: Proceedings of the SIGCHI
conference on Human factors in computing systems CHI, pages 313—
317, New York, NY, USA, 1994. ACM Press.

[Monk, 1986] Andrew Monk. Mode errors: a user-centered analysis and
some preventative measures using keying-contingent sound. Interna-
tional Journal of Man-Machine Studies, 24(4):313-327, 1986.

[Runciman and Thimbleby, 1986] Colin Runciman and Harold Thim-
bleby. Equal opportunity interactive systems. International Journal
of Man-Machine Studies, 25(4):439— 451, 1986.

[Sellen et al., 1992] Abigail J. Sellen, Gordon Kurtenbach, and William
Buxton. Prevention of mode errors through sensory feedback. Human-
Computer Interaction, 7(2):141-164, 1992.

[Shneiderman, 1992] Ben Shneiderman. Designing the User Interface:
Strategies for Effective Human-Computer Interaction. Addison-Wesley,
1992.

[Simonyi et al., 2006] Charles Simonyi, Magnus Christerson, and Shane
Clifford. Intentional software. In OOPSLA 06: Proceedings of the 21st
annual ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications, pages 451-464, New York, NY,
USA, 2006. ACM Press.

[Thimbleby, 2004] Will Thimbleby. A novel pen-based calculator and its
evaluation. In NordiCHI 04: Proceedings of the third Nordic confer-
ence on Human-computer interaction, pages 445-448, New York, NY,
USA, 2004. ACM Press.

[Thimbleby and Thimbleby, 2005] Will Thimbleby and Harold Thim-
bleby. A novel gesture-based calculator and its design principles. In
N. Bryan-Kinns L. MacKinnon, O. Bertelsen, editor, Proceedings 19th.
BCS HCI Conference, volume 2, pages 27-32, 2005.

Chapter 1 Introduction

12

Part 1

Calculating

13

Chapter 2

Context

2.1 History

Figure 2.1: A Chinese abacus originating from around 200 BC

Calculation aids have been in existence for thousands of years. Abacuses,
shown in Figure 2.1. are thought to have been invented around 200 BC,

15

Chapter 2 Context 16

and long before that bones and tally marks were used. The oldest known
mathematical object, the Lebombo bone, a bone marked with tally notches
is dated circa 35,000 BC. Amazingly, similar aids are still in use today. Tally
marks are a common way of recording counting in most cultures and abacus
arithmetic was still being taught in schools as late as the 1990s in Taiwan
and still finds use in Asia. The virtually limitless precision (perhaps by
utilising more than one abacus) more than compensates for the lack of more
advanced features like trigonometric functions.

We have always developed instruments to aid our mental arithmetic and to
help us with mathematics. A variety of other instruments have been devised
over the centuries. In 1614 John Napier invented his “bones” and then his
logarithms, providing tools to multiply and divide easily.

Slide rules were devised shortly afterwards, circa 1630 by Edmund Gunter,
utilising logarithms to perform multiplication and division by addition and
subtraction. Slide rules utilise the mathematical rules log(xy) = log(ir) +
log(y) and log(]) = log(x) —log(y). These remained popular until the
widespread use of electronic calculators.

In 1642, Blaise Pascal invented a mechanical adding machine, and in 1942
Gottfried Leibnitz constructed the first mechanical calculator capable of
multiplication and division. Leibnitz’s methods formed the mainstay of
calculating devices until the late nineteenth century.

Modern electronic calculators were introduced in the 1960s and became pop-
ular in the 1970s. The world’s first “handheld " battery operated calculator
was the Sharp QT-8B. Figure 2.2, which provided an eight digit display and
four functions (addition, subtraction, multiplication and division).

Figure 2.2: Sharp QT-8B “micro Compet” — First handheld elec-
tronic calculator (1970). Source: Vintage Calculators

Over thirty years later as part of the latest state-of-the-art operating system,
the normal calculator looks much the same! Microsoft’s latest calculator in-
cluded with Vista is shown in its basic mode in Figure 2.3, the user interface
it provides is not far removed from the Sharp QT-8B.

2.2 Pen and paper 17

cjkuuto feiCMikey
IM Viw Ht'f

C
"ot GO
B BOQOQO
S O0OBOB
BJL° B E B E

Figure 2.3: Microsoft Vista’s Calculator (2008)

Of course, this is slightly unfair, modern computers and software can do an
incredible amount of mathematical calculation and manipulation. Software
packages like Mathcmatica, Figure 2.4, now provide many different powerful
mathematical tools and aids.

I —) m |

“*‘O*I
0 » -A -/m<& e ¥k 9 4]

" e © .

Figure 2.4: Mathematica (2007)

2.2 Pen and paper

A thread that is similar to that of the evolution of mathematical tools run-
ning through history is the thread of mathematical notation. However while
mathematical notation has changed and its evolution through different ideas
is fascinating [Cajori, 1993]. the tools that mathematical notation is designed
for have not changed. Pen and paper, or their equivalents, have been the
tools of choice for mathematics for thousands of years and still are today.

Pen and paper as mathematical calculating aids, like every calculation aid,
provide a physical representation of the abstract mathematical thoughts of
the mind. Written mathematics is a notation that has been developed for
thousands of years, and something that we are taught from early childhood.
The discussion of the optimality of standard mathematical notation, in the
age where computers can provide user interfaces only dreamt of before, is

Chapter 2 Context 18

2:9-1°0°0 E-v-1'Qyem

Zz'm-ZZ'-n"[e] +e [
K(z.0,,0,)=—TF

2- [z . u[z']-nwun(o,. o,)]

x X
N[Z]=e-8' 2+l

Figure 2.5: Plotted expressions from the Symbolic Mathematical
Laboratory [Martin, 1967b]

an interesting one, but beyond the scope of this thesis. We are taught and
use a two dimensional notation, designed for pen and paper.

Today, the ubiquitous tools of pen and paper are usually augmented with
additional calculating aids, that actually perform calculations. In contrast
to calculators, paper is not interactive. Answers to even simple sums have
to be worked out in the user’s head or using another calculation aid. This is
the most common way in which basic mathematics are performed: pen and
paper aided by a handheld calculator. These users of calculators are also
thus hopefully competent with two dimensional mathematical notation.

2.3 Calculators

Many of the calculator functions that run on bitmapped work-
stations and personal computers are designed to simulate real hand-
held calculators. Such a design allows rapid transfer of skill to an
otherwise unfamiliar situation. However, such a design is naive, in
that simulated calculators inherit all of the problems of real calcu-
lators and fail to exploit the opportunities for improvement that a
graphics workstation provides.

— Johnson [1985] on the state of calculators in 1985

Jeff Johnson’s statement above about calculators is for the most part still
true.

2.4 History of computer user interfaces for math-
ematics

Computers have always been used for performing mathematical computa-
tions. Indeed, Ada Lovelace is widely thought of as the first programmer
[Fuegi and Francis, 2003], having written a program in 1843 to calculate
Bernoulli numbers for the never-completed Analytical Engine. The first

2.4 History of computer user interfaces for mathematics 19

Figure 2.6: A Macsyma rendering of 21i+3;
2

“modern” computer system for mathematics ran on batch processing sys-
tems, that took input as punched cards and provided output some time later.
The use of computer user interfaces for general manipulation of mathemat-
ics developed later. In the 1960s two dimensional output was possible, and
Magic Paper I [Clapp and .Kain, 1963] was the first system to display two
dimensional output: it used a typewriter for inputting mathematical ex-
pressions and a display scope or plotter for showing the typeset outputs.
Minsky’s [1963] Mathscope proposal for manipulating mathematics was one
of the first handling of mathematics from a user interface point of view.
This proposal was built on by Martin [1967b], creating the Symbolic Math-
ematical Laboratory, which was capable of displaying normal mathematical
notation using different fonts and special symbols, Figure 2.5 shows an ex-
ample of the plotter output from the Symbolic Mathematical Laboratory.
The same display of the mathematics was shown on a scope and basic in-
teraction was possible using a light pen to select variables and operators.

Martin’s work was far ahead of many of the systems that followed. The
majority of these displayed mathematical expressions using multiline text,
like that shown in Figure 2.6. Engelman [1965] created MATHLAB in 1964,
an early computer algebra systems for manipulating symbolic mathematics,
which was a precursor to the commercial Macsyma [Martin and Fateman,
1971] and the actively developed open-source Maxima [Joyner, 2006} com-
puter algebraic systems.

The Reduce pretty printer [Leler and Soiffer, 1985] followed in 1985, adding a
powerful user interface to Reduce [Hearn, 1968] that allowed editing multiple
expressions, mouse selection and subexpression collapsing. Young [1987]
created GI/S in 1987: GI/S was the first system to allow the selection
of mathematics unrelated to the underlying mathematical structure. The
user could select any rectangular sequence of linear expressions, for example
selecting a x b+ from the expression @ x b+ ¢ — d.

Milo [Avitzur, 1988] was developed for the Macintosh, originally as an aid
for undergraduate physics homework. Milo combines text, expressions and
plots within the same document. Milo included only a basic algebraic solver,
but provided an easier to use interface than most other applications. Parts
of Milo were embedded in FrameMaker and the original Macintosh graph-

Chapter 2 Context 20

y="zjc+cv/?7+1 yv=ax+tab+ 1

yrax=ab+\ yAW,_R()

- 1 |
-ax+y=ab+ 1 yw=x+ b+~

Figure 2.7: Dragging terms in Graphing Calculator

ing calculator, that was included at one point with every Macintosh sold.
Avitzur [1998] provides a good discussion of the user interface of the Graph-
ing Calculator and of its predecessor. Milo allowed the selection of symbols
by dragging a box over the subexpressions but 110 selection of operators.
It maintained the correct mathematical syntax at all times, so that the
mathematics would never be syntactically incorrect. Milo was also the first
system to allow the direct manipulation of expressions; subexpressions could
be dragged left or right and the expression around them was adjusted so that
the moving of the expression did not alter the equality. This makes use of
various mathematical laws such as the distributive law of multiplication over
addition, and uses subtraction or division to move a subexpression across an
equals sign. Figure 2.7 shows two examples of dragging subexpressions fur-
ther to the left in the Graphing Calculator, as the subexpression is dragged a
simple rewriting of the whole expression ensures that it maintains the same
meaning.

Although the pen is naturally suited to mathematical expression input, the
complexity of recognising handwritten mathematics has meant that develop-
ment of this as a user interface has been slower. Early work in handwriting
recognition of mathematics was done by Anderson [1968] recognising type-
set mathematics and Martin [1971] provides a good analysis of some of the
difficulties.

Littin [1993] makes use of a modified 2D LR parser to handle mathematical
expressions. This grammar requires symbols to be written in a particu-
lar sequence, thus restricting input and making editing nearly impossible.
Grbavec and Blostein [1995] approached the same problem using a graph
rewriting language. The graph consists of the symbols and their connec-
tions relating to spatial relationships, such as “below” and “left-of.” This is
matched against templates and reduced into a full parse tree. Blostein and
Schiierr [1999] and Lavirotte and Pottier [1997] built o11 this concept.

The Freehand Formula Entry System (FFES) is a complete system for for-
mula entry and conversion to DTgX [Smithies et al., 1999. Smithies, 1999]

2.4 History of computer user interfaces for mathematics 21

that uses the same graph rewriting concept to recognise mathematics. This
later used Diagram Recognition Application for Computer Understanding
of Large Algebraic Expressions (DRACULAE) [Zanibbi et ah, 2001, 2002]
which implements a tree-transformation based approach for recognising the
syntax and semantics of mathematical expressions.

Eto and Suzuki [2001] use minimal spanning trees to reconstruct the mathe-
matical formula. OpenXM, the Open message eXchange protocol for Math-
ematics, is a communication protocol for various computer algebra systems,
which has been used to provide online recognition of handwritten mathe-
matical expressions for various mathematical software [Fujimoto and Suzuki,

2002],

Figure 2.8: A sketch in MathPad [LaViola and Zeleznik, 2004]
exploring damped harmonic oscillation

MathPad [LaViola and Zeleznik, 2004] provides a unique approach to math-
ematical recognition: it allows the interaction of mathematics with sketches.
MathPad provides the ability to link equations and drawings, such that the
drawings animate. Figure 2.8 shows a sketch of a spring and mass system,
the mathematics of the system are linked to the sketch so that it animates
correctly. An initial evaluation of MathPad [LaViola, 2006] found users re-
ally enjoyed the interactivity and were forgiving of recognition accuracy but
often failed to use implicit associations correctly.

Interactive pen-based systems like xTliink1 and Microsoft Math are more
recent visual developments that use pen-based entry of mathematical ex-
pressions. Microsoft Math and its free component the Microsoft Equation
Writer, shown in Figure 2.9, provide good all-round mathematical equation
entry.

Iwww.xthink.com

Chapter 2 Context 22

M =\[|3

/ + u

Figure 2.9: Screenshot of Microsoft Math

There are several problems with current computer algebra sys-
tems (CASs) that are interface-related. These problems include the
use of an unnatural linear notation to enter and edit expressions, the
inherent difficulty of selecting and modifying subexpressions with
commands, and the display of large expressions that run off the

screen.

— Kajler and Soiffer [1998]

Today punched cards are only of historical interest and there are many
more flexible and powerful graphical user interfaces providing mathematical
expression entry, manipulation and computation.

2.5 Types of mathematical user interfaces

User interfaces for mathematical entry and manipulation can be split into
three main categories: linear, template-based and visual user interfaces. All
of these user interfaces can be used to provide an interactive calculator;
however, some are more suitable than others. Kajler and Soiffer [1998]
provide a useful overview of the whole area of algebra entry concentrating
on template-based entry systems, although their paper also covers pen and
voice user interfaces.

* Linear user interfaces are typified by a need for mathematical expres-
sion entry as a linear sequence of commands.

* Template-based user interfaces build up a mathematical expression
from building blocks.

* Visual user interfaces make use of computer vision technicjues to read
input as standard mathematical expressions.

2.5 Types of mathematical user interfaces 23

2.5.1 Linear user interfaces

All cheap and simple pocket calculators require mathematical expressions
to be entered as a simple linear sequence of digits and symbols or opera-
tors. Many advanced mathematical user interfaces for complex mathemati-
cal packages also rely on this sort of user interface, although programs like
Mathematica [Wolfram, 1991] and Maple? have recently added template-
based expression entry and aspects of visual methods.

The primary disadvantage of linear user interfaces is that mathematical no-
tation is not linear, and users tend to think of, and treat mathematical
expressions as they would write them on paper, as two-dimensional expres-
sions. These expressions have to be converted from their two dimensional
form, that the user has conceptually in their mind, to the linear form that
the computer can understand. This is often done by adding lots of brackets
and unusual symbols, such as ~ which is used for exponentiation. This pro-
cess of linearisation, taking the two-dimensional notation and converting it
into a linear sequence of button presses, has to be performed by the user and
is an additional cognitive burden. For example the unbracketed equation,
Equation 2.1, is written in linear form as (2+3°3)/(1+1/2).

2+3°
1+ 3

(2.1)

Handheld calculators

In contrast to paper, a typical handheld calculator uses buttons and a small
display. Some handheld calculators provide a formula and answer format on
two lines, but even then the formula is written in a one-dimensional textual
notation. In addition, most handheld calculators, because of the limitations
of their small screen size, by necessity hide relevant information (such as the
last number entered), and this makes them harder to use.

The simplest and most common calculators, often found in school class-
rooms, enforce further constraints. These calculators often have no concept
of precedence or parentheses. These restrictions mean that for simple hand-
held calculators a simple equation such as Equation 2.1 is nearly impossible
to calculate without the aid of paper. Equation 2.1 would have to be entered
asMIJUHE@EHOM)OBXBXEBIHEE) (=) (MR), which is a con-
voluted and awkward translation that the user is burdened with performing
themselves, and only works with memory.

Furthermore, the majority of more complicated functions, or notations such
as log or [, often have unusual and strange input command sequences that
have to be learnt.

Zhttp://www.maplesoft.com/

Chapter 2 Context 24

Unfortunately the design of common calculating aids, such as Microsoft’s
and Apple’s calculator applications, has often been to emulate these real
hand-held calculators and their difficult-to-use and restricted user interfaces.

Reverse Polish Notation

A variation of the linear method of input is Reverse Polish Notation, RPN,
or postfix notation. RPN is a notation where the operator is entered after
the operands, RPN thus removes the need for parentheses. For example
the expression 4 x (2 + 3} would be entered as () 3}
Equation 2.1 becomes (2) (Exter) 3) Enied) 3) (D) 0 D s D Exed @ DD &),
which is shorter but places a larger cognitive burden on the user to convert
the mathematics to the format the calculator understands.

Proprietary packages

Mathematica [Wolfram, 1991] and Maple each provide their own proprietary
format for entering expressions.

(o] 3
/ 27 4 (2.2)
0

log z

An example of such a command sequences for calculating the integration
shown in Equation 2.2 is shown below in the formatted for Maxima (an open
source mathematical package) Mathematica, and Maple (both commercial
packages), in this order.

e integrate (4x**3/log(x), x, 0, inf);
e Integrate[4x~3/Logl[x],{x,0,Infinity}]
e int(4x~3/1n(x), 0..infinity)

Each one is different and the individual syntax of each package has to be
individually remembered by each user. None of the syntax could be intuited
from the actual mathematical expression, thus a user needs to learn each
format.

All three of these programs also provide alternate means of entering ex-
pressions in a linear form, attempting to alleviate some of the complexity
of entering expressions accurately and quickly. Whether this is a benefit
overall is hard to say.

Document processing

Unlike template and visual methods, linear user interfaces often provide
output in a different form to the input. This is most commonly used to

2.5 Types of mathematical user interfaces 25

convert a linear sequence of commands into a more readable two dimensional
format. The early computer algebra systems achieved this through multi-
line text output. Equation 2.1 rendered by Macsyma in this format would
look like Figure 2.6.

Another common use of linear input for mathematics is document process-
ing. TgX [Knuth, 1984] is commonly used for typesetting mathematical
documents. In fact Equation 2.1 is typeset using TEX using the linear input
\frac{2+3~3} {l+\frac {1} {2>>. Document processing programs are differ-
ent from programs designed to manipulate mathematics, however, as they
do not provide any mathematical computation and often provide multiple
ways of typesetting the same formulae.

2.5.2 Template-based user interfaces

Template-based user interfaces are the most common mathematical user in-
terfaces. They are simple to create and extend well to incorporate a wide
range of mathematical notation without any difficulty. A template editor
has been a part of Microsoft Word since 1993 [Microsoft, 1993], and many
computer algebra systems such as Mathematica now provide template in-
terfaces. LyX [Quill, 1999] provides a similar template-based interface for
mathematical expression entry for DT"X.

0 0 6 Untitled 1

S ** 1iab *im ++® -pesj. -V3 enc a0z Xto8 AOO

OO §k C0 SOIDIJlojoy e 0V - ffi

dx
IDVxZ ‘a4

Style: Math Size: Subscript Zoom: 400%

Figure 2.10: Screenshot of Microsoft’s Equation Editor

Template-based editors allow mathematical expressions to be built up. com-
bining basic building blocks together with more complex templates for dif-
ferent mathematical operators.

Figure 2.10 is a screenshot of Microsoft ’s Equation Editor showing a partially

Chapter 2 Context 26

entered expression. At the top of the window is a toolbar that provides
the templates for the editor. The remaining part of the window shows
the current equation. The grey boxes in the equation are the placeholders
for further templates or simple expressions. In Figure 2.10 the limits for
the integral, the numerator of the fraction and the exponent of a are all
placeholders. The cursor can just about be seen in the placeholder for the
exponent of a, and this is where any new mathematics will be inserted by
default.

Basic linear operations such as multiplication and addition can be entered
from the keyboard. Two-dimensional operations like fractions, exponentia-
tion and integration are entered using templates. Templates contain place-
holders for further building blocks. An example is the fraction template
which has placeholders for a numerator and denominator. A more complex
template example is a summation that has placeholders for the subscript,
superscript and the sum, or a matrix template which has n x m placeholders,
depending on the size of the matrix.

Templates are usually added from a palette or by menu selection and inserted
at the current cursor location, which is controlled by the mouse or arrow
keys. The final complete, expression is built up by adding templates within
templates. In Microsoft’s Equation Editor the toolbar at the top of the
window provides access to most of the templates.

These user interfaces rely on the cursor position for adding new mathematics.
The cursor can be moved by clicking using the mouse to any valid point in
the mathematical expression. The arrow keys also provide some of this
functionality but can be confusing to use when the mathematical structure
being navigated is complex. The mouse can also be used to select portions of
the expression which enables additional actions such as copying and pasting
mathematics. This is restricted to either linear textual selection or selection
of entire templates.

2.5.3 Visual methods

Offline recognition has traditionally been used to digitise mathematical doc-
uments that have already been typeset and printed. Digitising mathematical
documents has been an area of research for some time, Anderson [1968] was
using syntax-directed recognition in 1968 to recognise typeset mathemat-
ics. Typeset mathematics usually have a far more structured and consistent
layout than handwritten mathematical expressions. Recognition of typeset
mathematics therefore tends to be a simpler task and can provide better
accuracy.

Pen-based user interfaces have now become far more common, in devices
like tablet-PCs and handhelds. As a result, online pen-based mathematical
recognition is now a more active area of research.

2.5 Types of mathematical user interfaces 27

Figure 2.11: Nintendo’s Brain Age

An advantage of online pen-based user interfaces is their potentially natu-
ral and intuitive interface. The majority of users are accustomed to writ-
ing mathematical expressions on paper with a pen. A pen-based interface
utilises this familiarity by providing a similar user interface. Users are there-
fore able to use their existing experience, reducing their need to learn new
user interfaces. The advantage over real paper is obvious, as a computer
provides the power to compute, manipulate and solve mathematical expres-
sions — while the pen-based user interface provides a natural method for
entering mathematics.

Pen-based systems also allow a greater flexibility in how mathematics are
entered. The ability to enter mathematics anywhere, and the lack of a cursor
makes the user interface simpler. However, pen-based systems are rarely
foolproof and users will often have to correct recognition errors. Compared
to typeset mathematics there are lots of inconsistencies in how users write
mathematical expressions that makes them extremely hard to recognise. A
handwriting mathematical system has to deal with an arbitrary order of
entry, the diverse nature of the same symbols, and a rough positioning of
the various elements of the expression.

The use of visual methods in mathematical expression entry covers a broad
range of capabilities from simple augmentation of linear or template entry
to complete expression entry and editing using a pen.

Nintendo’s Brain Age, shown in Figure 2.11, does not calculate mathematics
but tests your mathematical skills by using a pen to input the answer using
handwriting. The answer is always a simple symbol.

Maple provides simple character based handwriting recognition. Figure 2.12

Chapter 2 Context 28

shows Maple’s character recognition palette. The typical use of this feature
is to draw the symbol with a pen or mouse then click the recognise button;
the suggested symbols that match the handwriting are then shown below
the hand-written character for the user to select or to insert into their math-
ematics. As can be seen in Figure 2.12 the recognition is fairly basic and
the utility of this interface, excluding writing rare symbols, is questionable.

V¥ Symbol Recognition

Vi3

Figure 2.12: Screenshot of Maple’s handwriting recognition

Figure 2.13: Screenshot of MathBox [Kasuya and Yamana, 2007]

MathBox [Kasuya and Yamana, 2007]. shown in Figure 2.13, provides a
hybrid visual template-based method. MathBox allows the user to write
symbols using a pen inside defined boxes, this means MathBox does not
have to perform syntactic structural analysis, and the recognition problem
is simpler and therefore more accurate. MathBox trades the user’s flexibility
for accuracy of recognition; it also does not perform calculations or support
editing.

xTliink allows entire multiple expression input but provides its output as a
linear string. It also allows some editing and alteration of expressions and
adding notes.

FFES [Smithies et ah, 1999] allows the freeform entry of complex expressions
and provides some morphing of the handwriting symbol’s position. FFES
provides T*X output of the handwritten mathematics.

MathPad [LaViola and Zeleznik, 2004] is not designed for mathematical
manipulation or computation, but links mathematics to sketches, allowing
the mathematics to animate drawings.

The Microsoft Equation Writer, shown in Figure 2.9, allows input for math-
ematics by handwriting or by template. It also provides an imitation of

2.6 Summary 29

a handheld graphing calculator, along with a small screen and multiple
themes.

2.6 Summary

This chapter has outlined the context of previous research and applications
of mathematical entry and computation. The three main user interfaces
for mathematical entry to computers: linear, template and visual cover
a wide spectrum of user interfaces, and all provide different benefits and
disadvantages.

Visual methods of expression entry using handwriting would be the most
natural for the user, however the recognition problems mean that these
interfaces can be slow or error prone. Interacting with mathematics using
a pen also provides many new and interesting possibilities for interaction,
such as MathPad’s linking with sketches and easy input of mathematics on
small devices.

Chapter 3

Design & development

This chapter describes the principles and development of a handwriting pen-
based calculator, and how they progressed and built on each other. Neither
the principles, described more fully in Chapter 4, nor the implementation
came first, they both developed concurrently. What started as a principle,
when implemented, was altered, refined and improved. What started as pure
implementation or design, later was extracted and distilled to be described
in a principle.

A full description of this calculator is provided in Chapter 5. This chapter
provides a context for the design decisions and how the user interface was
created. Figure 3.1 shows a brief snapshot of the calculator’s final user
interface being used.

The calculator has provided an enjoyable user interface for a calculator and
an easy interface for enjoying and exploring mathematics. For example, it
was invited to be exhibited at the Royal Society Summer Science Exhibition
where it was used by users both to do and explore mathematics. Thou-
sands of people tried it: some people played with it, some did advanced
mathematics on it.

Success comes in many forms. The calculator is clearly very attractive for
first time use. This might be because it is novel and innovative, rather than
really better. Its benefits for, say, long term use in a classroom is unknown
— what happens when children get bored with its novelty? But the success
of the reaction and enjoyment users get out of the interface is unmistakable.
From all walks of life users have laughed, smiled and grinned whilst doing
mathematics, even if they did not realise it.

Calculators are often not fun or enjoyable and the extent to which users
enjoyed using the calculator was a surprise. The obvious question that fol-
lows is: Why? Why is the calculator a good interface? Are there principles
and ideas embodied in the calculator that can be utilised in other applica-
tions, or instead do these ideas only work as part of the greater whole of the

31

Chapter 3 Design Si development 32

D WO

Figure 3.1: Writing 4x in front of | using the calculator

calculator?

The calculator was designed and developed in an ad hoc, intuitive way and
at the same time parallel to its development, principled ideas about the
user interface interaction were created, refined, and incorporated. Lots of
ideas and concepts were built into the calculator as part of its design to
create a good interface. Gradually the ideas were reduced to principles,
which then informed further development. The concepts and principles that
were initially intuitively built into the calculator, are now identified in the
final product. The purpose of this chapter is to rationally reconstruct that
process of principle-led development.

3.1 The development process

The initial prototypes and pilot studies of the calculator’s design used an
off-line (not in real-time) recogniser, used to recognise type-set mathemat-
ics which was scanned and digitised as images. The algorithms developed
further into on-line handwritten mathematical recognition, using a Wacom
graphic artist’s pad. Finally, the idea of computation for the mathematics,
in addition to the recognition, was built on top of the recognition system.

3.1.1 Like paper

Iterative design is widely recognised as being essential in interactive systems
design [Gould and Lewis, 1985] and the same process was employed with the
calculator. Thus, as the initial stages of the implementation of this calculator

3.1 The development process 33

took shape, the broad principle that guided the developing design became
“it. should work like paper, but with answers”. Here, the iterative design
identified a principle which emerged through reflection on how to generalise
and develop an off-line recogniser.

This principle is intended to convey the idea that if you swapped a user’s
pad of paper and pen for the computer or graphics pad, then the user should
be able to write mathematics in the same way (regardless of order or style)
without trouble. The motivation for the principle was the hope that by
providing an interface that works in a consistent and closely related way to
that which users are already familiar with, then users will find the new user
interface easy and intuitive to use. An interface like this also exploits the
fact that a pen and computer input pad afford the same interaction as pen
and paper for mathematical entry: they suggest and encourage the same
style and flexibility of use.

That “the calculator should work like paper, but with answers” is an am-
bitious goal and it is still something that the design and implementation of
the calculator aspires to, at least when strictly interpreted.

The first place where this principle impacted the actual implementation
was the character recogniser. A recognition system like Graffiti [Fleetwood
et al., 2002], where each symbol is written using a single pen stoke, has the
potential for more accurate symbol recognition but requires users to write
differently to the way they do normally. In order to work like paper, which
the principle proposes, the calculator should accept all normal handwriting.
In Graffiti, symbols are written using a single stroke without lifting the pen
from the ‘paper’, which involves a special alphabet the user has to learn,
but makes the recognition problem much easier. For example, the letter F
is written in Graffiti as I.

The decision to behave like paper affects how the mathematical recognition
system should be designed and what gestures are appropriate to be used.
To work like paper the mathematical recognition needed to work without
any restrictions on the order of input, like FFES [Smithies et al., 1999}, or
on the location of input, like MathPad [LaViola and Zeleznik, 2004].

The calculator was designed so that adding additional symbols is done by
writing on top of the existing expression in the same way one would add
symbols to paper. Paper also supports corrections, through the use of an
eraser, and it was similarly important for the calculator to allow corrections
so that users could fix or edit mathematics. To support the initial design,
there were some deviations from the principle’s ideal; one gesture was pro-
vided, a single stroke X shape, which deleted the symbols that it was written
on-top of. (This gesture can be used on paper of course, where it has a simi-
lar meaning.) Gestures are relatively underused by users [Long et al., 1998],
and because this gesture is not an obvious part of writing normal mathe-
matics, it was displayed in the bottom-left hand corner of the screen at all
times to remind the user how to delete.

Chapter 3 Design & development 34

3.1.2 Affordance

The perceived affordance, as defined by Norman [1988], of an object suggests
how that object can be used. A useful affordance is one that suggests a valid
way in which an object can be used. A pull handle on a door that needs to
be pushed to open it is an example of a false affordance, one that suggests
the impossible and hinders the user.

Affordance helps refine the guiding principle. The calculator should draw
on the similarities with the traditional methods of writing mathematics us-
ing pen and paper and two dimensional notation. The calculator is thus
designed such that these similarities suggest to the user that they can use
the calculator like a piece of paper, and that it is designed to allow this
interaction.

3.1.3 Feedback

The early prototypes of the calculator simply annotated the recognised hand-
written symbol with a box around the user’s pen strokes, and provided an
overlaid typeset symbol in the corner. This proved in use not to provide
enough feedback for the user to easily notice when a recognition error had
occurred. Annotation as a form of symbol recognition feedback was there-
fore superseded by clearer feedback: replacing the user’s strokes by a typeset
character scaled and positioned to have the same bounding box as the hand-
written character.

Replacing the user’s handwritten symbols, while initially jarring, provides
very clear feedback of what recognition has actually happened.

The need for feedback that is unambiguous and clear is evident in how
conventional calculators are used: users trust calculators and often only
make a cursory check on the what the actual calculation is. It became very
obvious in the early development that good visual feedback was critical to
a user’s comprehension and use of the calculator. This became the second
principle — that “the calculator’s state (effectively what it thinks it is doing)
is always obvious to the user”.

The second principle implies that the actual mathematical expression, not
just the symbols, that the calculator is computing is readily apparent to
the user. To provide this, the expression needs to be shown in a way that
is obvious to the user. This principle rules out any feedback that is not
directly or strongly associated with the user’s input.

Other methods of symbol feedback often only provide partial information
leaving the user unsure about the exact state or computation. Two exam-
ples are: symbol colourisation, which is suggested as feedback for baseline
information of expression structure [Zeleznik et al., 2007a], and style preserv-
ing morphs that morph the user’s actual handwriting to provide feedback on

3.1 The development process 35

the expression [Zanibbi et al., 2001]. Style-preserving morphs are claimed to
provide a better form of feedback than typeset symbols, because users prefer
rough-looking sketches; and typeset input connotes an undesired authority
and immutability. Neither of these approaches provide clear feedback.

At every point during the recognition process the user is informed by the
visual and sound feedback of what the calculator is doing.

The principle of continual feedback was later refined to the projection prin-
ciple, which is described in further detail in Chapter 4. Subsequently in
the design process this principle came to dictate how the dock thumbnails
should appear and how the undo system would work as well.

There is a tension with recognition times, between recognising symbols
quickly and providing the user with sufficiently quick feedback, and with
recognising slowly but providing the user with lots of time to write multiple
stroke symbols and time to finish their writing. Ultimately it depends on
the user, of course: a school pupil will have a different requirement to a
practised adult use. To allow for individual differences, the actual timings
of recognition were made adjustable for each user.

3.1.4 Morphing

Another important aspect of feedback is the final recognised expression,
without clear feedback a user might misunderstand what expression is being
calculated. The projection principle encouraged the immediate replacement
of the user’s input with a correct and typeset mathematical expression.
However this was a very jarring experience and users found it hard to make
the connection between their input and the resultant expression.

Morphing between the user’s input and the calculator’s result provides this
continuity and eliminates the harsh and sudden replacement of the user’s
input. Littin [1993] suggested morphing as a suitable method for retaining
continuity between an entered expression and a recognised expression. He
describes a method that replaces the stroke data with a vector font similar
to handwriting which is then morphed to the correct place.

By using gradual changes, morphing minimises the disruption of the user’s
mental understanding of the state of the calculator. It allows the user to eas-
ily keep track of what is happening by providing visual continuity. Morphing
also provides useful feedback on the accuracy of the ongoing interpretation.
This is summarised in the continuity principle which is more fully explored
in Chapter 4.

Once the symbols have been recognised the calculator morphs them to the
correct positions, such that the end result the user sees is a neat typeset
mathematical expression. This feedback is designed to both provide clear

Chapter 3 Design & development 36

understanding of the mathematics and continuity such that the user can
follow and understand the feedback.

3.1.5 Editing

The “works like paper” principle implies that editing mathematics should be
no harder than writing on top of the current expression. From this principle
the calculator was designed such that new handwriting should be recognised
and incorporated into the expression being edited.

As users used the calculator it became clear that users expect to be editing
what they see. Although the mathematical recognition system made mis-
takes the users treated the calculator’s user interface like paper and expected
their additions to the current expression to be interpreted in the context of
everything that was visible on screen. The principle, What You See is What
You Edit, which is described in the next chapter, is this principle of simply
editing the ink but generalised to a broader range of user interfaces.

Implementing this led to a nice solution that provided both straight forward
editing and predictability: the mathematical expression is re-recognised ev-
ery time the user edits it. After each edit the current mathematical struc-
ture is thrown away and the previous typeset symbols and the new input are
treated as a whole. This “ink editing” allows the user to edit in whatever
way they want.

It was also observed that users would often expect individual symbols to
be editable, users often attempted to correct symbols by drawing on top of
them. This results in a new symbol being created, and if the user attempted
to correct a symbol multiple times, as did happen, this could result in a
large number of unexpected symbols. Unfortunately the symbol recognition
system is not able to handle these type of edits. A benefit of not allowing
symbols to be changed is that it is much easier for the user to add new
symbols on top of the mathematical expression, without the worry that
they might by accident end up changing the underlying symbols.

3.1.6 Drag and drop

Drag and drop fitted neatly into this implementation of editing, rather than
rearranging the mathematical expression in complex and confusing ways, a
drag and drop simply moves the selected symbols to the drop location and
then re-recognises the whole expression again. This leads to straight-forward
implementation and interaction for the user. Feedback using a colour change
and sound was added to drag and drop to help distinguish it from normal
writing in order to clearly distinguish the mode because users would occa-
sionally get confused.

3.1 The development process 37

Drag and drop works well with anything selected, even if what is selected
is not valid mathematics in and of itself. Chapter 5, section 5.5 provides
some good examples of how powerful this flexibility is. The implementation
of drag and drop moves the dragged symbols and shrinks them down to fit
into the expression where they are being dropped. It is therefore impossible
to drag an expression, e.g. a square root sign, over the top of an expression
such that it will contain what it is dropped on-top of. Edits like this need to
be performed in reverse fashion, such as dragging the expression underneath
the square root sign. This restriction allows the implementation of drag and
drop to be very powerful, predictable and understandable.

3.1.7 Erasing

To reduce the number of gestures and make the calculator simpler the initial
erase gesture ‘X’ was replaced with a drag and drop to a waste basket,
utilising the fairly universal computer metaphor. A benefit of this deletion
method is that the user can be specific about what is erased, they can ensure
they have the correct parts of the expression before dragging it to the waste
basket.

An initial observation of how users interacted with the calculator was that
they liked to start from scratch if they made an error in a simple mathemat-
ical sum, rather than fixing the error. To facilitate this an erase button was
added in the lower left corner of the screen that wipes the entire expression
and gives the user a clean sheet to start again from.

The entirety of mathematical editing is provided through two interactions,
adding new symbols to the mathematical expression by writing on top of
it and rearranging or deleting symbols by using drag and drop. The What
You See Is What You Edit nature of both of these means that the user’s
interaction is simple, predictable and powerful.

3.1.8 Computing

When the calculator provides the solution it morphs the user’s input, too
much change was found to be annoying because it felt like the calculator was
interfering with the what the user wanted. So the calculator was designed
to “alter the user’s input as little as possible”.

After recognising and morphing the user’s input to a neat typeset expression
the calculator provides the correct answer. In order to provide an experience
like that of paper the answer is provided in context, appended on the right-
hand side of the user’s input. This appending does not rearrange anything
the user wrote, it just adds the correct answer to the side.

This provided a clear way to connect what the user wrote to the answer the
calculator provided. Inserting the answer in-line with the user’s input works

Chapter 3 Design & development 38

well because that is where users would write the answer if they performed
the calculation on paper themselves. The answer provided does not exist, it
is just temporarily appended to the input to make it mathematically correct
and changed when the expression changes. Unfortunately this can lead to
users getting confused when they attempt to drag or delete something that
is not there in the same way that their input in black is. To mitigate some
of this confusion as the user begins to draw the current answer is faded out
to discourage the user from attempting to edit it.

3.1.9 Partial expressions

Users often write partial expressions, or mathematics that are incorrect. To
allow for this the calculator was modified to provide a mathematical solver
similar to Harold Thimbleby’s [1986, 1996] text based calculator. This calcu-
lator fills in all the missing parts of any expression such that the mathematics
are always correct, which provides the huge benefit that the mathematics the
calculator shows are always correct. That is in the mathematical sense, any
final expression shown is mathematically correct. This fits in very nicely
with the projection principle, the answer is up to date and correct at all
times.

When this is combined with the user being able to write equality signs then
the calculator provides a powerful way of writing half finished expressions
to get the correct answers filled in for the user. This allows solving lots of
simple problems like % = 5 very easily. This powerful interaction is in a
sense declarative, the calculator corrects everything such that it is always
correct. The way it is always correct means that even if the sum is not
what the user expected the mathematics is still correct. By handling partial
mathematics sensibly the calculator can be used in stages and by provid-
ing an equality sign the user can solve all sorts of interesting and useful
mathematics very simply. This is described and extended as the principle
of declarative interaction in Chapter 5.

When the calculator corrects an expression by providing computer ‘answers’
in-line with the user’s input it involves some rearrangement of the user’s
input by necessity. However because it is designed to change the users input
as little as possible, any computer correction is inserted as much as possible
as coherent chunks and in predictable places.

Harold Thimbleby’s [1996] text based calculator could calculate missing ex-
ponents and symbols from the user’s input. For example 2°=100 has a
missing exponent to the right of the caret symbol. However, in a handwrit-
ing, two dimensional calculator there is no obvious way to signify a missing
exponent because there is no symbol like = to indicate a missing operand.
Originally, therefore, the calculator provided a question mark symbol, which
signified a missing number: thus a user could write 2° = 100 to solve the
same equation. However, the question mark symbol is not correct mathe-

3.1 The development process 39

matics and was removed on principle. Without the explicit symbol, the same
effect can be achieved by using a left open bracket, 2(= 100, or by placing
a decimal point (as in 2- = 100) and so on. While this ability is initially
fairly obscure, it becomes second nature: it is an idiom for ‘place-holding’
an unknown number. In the case of exponents, a user can use the technique
to solve an exponential equation without resorting to logarithms.

Compare: “tap a dot where you want the answer if you can’t see it already”
(which is a general instruction that works for any calculation) as opposed to
“to solve a” = b rewrite it as = = logb/loga” — which involves rearrange-
ment and only works for this specific class of problem.

3.1.10 Storage

As the calculator was developed as a real user interface and could be used
for mathematics, the core of mathematical manipulation and calculation
required more user interface support. The two main features that were
introduced for this supporting role were the dock, which is used for storing
and recalling multiple expressions, and the clock, which is used to undo
mistakes or, as it turned out, to review earlier calculations, for which it is
also well-suited.

A storage mechanism was needed to allow multiple expressions at the same
time, and to let users save mathematics or numbers, to provide functionality
much like the memory function on conventional handheld calculators.

The storage user interface started life as simulating the “affordance” of Post-
it notes, so users could drag mathematics onto a Post-it note, which could
then be moved and stuck anywhere on the screen. However, even after only
a few equations were stored in the notes, the screen became very cluttered
and made the calculator hard to use. This interface feature was therefore
replaced with the idea of a more organised dock. Compared to Post-its,
which cluttered the interface both visually and interactively, a dock keeps
the storage interface consistently in one place, and physically separate from
the mathematics being edited.

The dock, with any number of items in it, could also be hidden and revealed
in a single consistent gesture, whereas managing lots of Post-its would have
required the user to do lots of gestures to organise them.

3.1.11 Undo

Undo is one of the major benefits of using a computer. It is easy, if not
eventually inevitable, for a user to accidentally make an edit or delete or
add something they did not want to do.

Chapter 3 Design & development 40

Most undo and redo systems are discrete, providing steps backwards (or
forwards) in time. However when conventional undo was piloted in the
calculator it broke the continuity of flow that morphing and feedback achieve
so well. In order to provide a smooth interaction that fit the calculator’s
interface a slider was introduced that scrubbed (i.e., animated) through the
history like a movie player. As the slider was moved, it animated the creation
of the current expression.

This approach animated the mathematics smoothly, just like the user was
winding back time: the typeset mathematics morphs backwards as time is
rewound, eventually reaching to their original places and eventually disap-
pearing. The morphing provided the user with a clear continuity through all
their edits and writing. The projection principle meant that the slider had
to be directly linked to the mathematics, so at no time can it be inconsistent
with the expression.

However, although a slider is a good interface for this sort of interaction
it does not scale well. When a user has been using the calculator for a
while, the distance the slider has to be moved to rewind to some exact place
becomes too small a target for the user to be able to hit easily. One solution
to this is to use a non linear slider, but this has its own problems. The
solution used was to implement the slider as a ‘clock’, and this provides
lots of additional benefits. Firstly, the appearance of the clock-style control
associates it with time and thus naturally with ‘going back into the past,’
and hence undo. The circular motion of winding a clock scales well and can
easily be repeated as much as the user wants. The motion also works very
well for a pen based interface, where drawing circles is very easy for the user.
The user can also see the time move onwards each time they make an edit,
and this is very natural behaviour for a clock.

The time shown is linked to the current state, always consistent, so to get
back to ‘now’ the user only has to rewind till the clock shows the current
‘time’.

Like many interactive ideas, it is much easier to see it than to understand
it from a static written description!

3.1.12 Teaching applications

As an aid for using the calculator for teaching, it was requested by users
that the calculator had some way of posing mathematical questions. The
“hide answers” feature was a direct result of this user feedback: this allows
the answers provided by the computer to be toggled on and off by clicking
an on-screen button.

When the answers are hidden, the computed output, which is usually shown
in red typeset mathematics, is replaced by a red empty box. A teacher can
use this feature, say, using a whiteboard in a classroom, to ask questions like

‘what is two times four?’ or ‘what do I divide 20 by to get five?” When the
answer is needed, the teacher can click the on-screen button and the answers
are toggled on so that all the students can see them. The new feature also
allows for a student to write in their own answer, and for the calculation to
be readjusted around the new input.

A large green tick is shown when a user fills in all the blanks such that there
is no need for any mathematical correction. In fact, the tick makes sense
even when there are no questions, and for consistency it is always provided.
When a user provides an answer in a box, the box disappears (for it no
longer can indicate a missing answer); the screen shows a calculation with
no box and a tick if the answer is correct. In the normal mode, the result
is exactly the same.

3.2 Summary

Many of the features in the final user interface originated from different
sources. Some features are the result of principled design, others derive
from the implementation and still others from user observation or sugges-
tions. However despite these disparate origins the process of refinement that
occurred during the design and implementation was the same.

Many of the concepts and ideas that emerged during the development of the
calculator were codified into more solid principles. These principles which
guided the calculator’s design are described in the next chapter.

Chapter 3 Design & development

42

Chapter 4

Principles

Mihaly Csikszentmihdlyi [1990] describes flow as the state in which people
are most happy, a state in which people are fully absorbed and engaged in
the task at hand. This characterises the same concept as the colloquial term
of being in the zone — a state of extreme and natural productivity.

Csikszentmihalyi has identified several factors that can accompany flow:

1. Clear attainable goals with clear rules.

2. A high degree of concentration on a limited field of attention.

3. A loss of self-consciousness, the merging of action and awareness.
4. A distorted sense of time.
5

. Direct and immediate feedback so that behaviour can be adjusted as
needed.

6. Balance between ability level and challenge.

7. A sense of personal control over the situation.

8. An intrinsically rewarding action.

9. Focus of awareness narrowed down to the activity itself.

A system that is designed to allow flow should incorporate some of these as
design goals. The main principles behind the calculator’s design are in some
way practical concepts that are meant to direct design, in order to inspire
user interaction flow.

4.1 Principles

This section provides a methodical description of the more important and
general principles that shaped the development and design of the calculator.
It seeks to identify and explain the principles that developed alongside the

43

Chapter 4 Principles 44

calculator and which informed and directed the design of the novel user
interface.

As described in the preceding chapter, the primary principles of the design
developed to be:

1. Projection — Changes to the system’s state are immediately visible
everywhere.

2. Continuity — Continuous feedback and morphing provide the conti-
nuity between state changes.

3. What You See Is What You Edit — Only what is visible in the user
interface determines how the system can be edited.

4. Declarative interaction — There is no distinction between input and
output.

Here, the terminology has changed and been refined from the previous chap-
ter; we will describe the principles in more detail in what follows.

Each of these principles relates to an aspect of a user’s interaction with a
computer system. The idea is best communicated in Figure 4.1, which shows
the circular interaction cycle of a computer system and a user interacting
with a user interface. Each of the four principles is focused on a different
component of the interaction cycle, and together they combine to describe
a system that as a whole engenders flow.

Each of the four following sections discuss these main principles in turn.
Finally this chapter finishes by describing other principles that have been a
useful part of the calculator’s design.

4.2 Projection

The first principle is projection, which could be described as “consistent and
immediate changes everywhere”.

In the real physical world an object exists in only one place. A cup on my
desk exists nowhere else. This means that talking about and interacting
with that cup is simple. There is no ambiguity when talking about it and if
the cup is moved then it is in a different place.

Simple! The real world works like this, and as residents of the real world it
is how our brains are wired to work, and perhaps how we expect computers
to work. Interacting and referring to objects in the real world is easy and
natural because these simple rules are followed.

Unfortunately computers do not work like this! Computers have none of the
physical constraints on what they can represent that the physical world has.
How we use and interact with computers is mostly limited by the designer’s

4.2 Projection 45

Continuous feedback
and morphing provide

co nti n u ity continuity between state

changes.

.

User

Interface

A

:

WYSIWYE Projection

Only what is visible in the Changes 10 the system's
user interface determines state are immediately
how the state can be edited. visible everywhere.

\4

il

It is possible to provide

Dec ' arati ve the 'output' to discover

the 'input'.

Figure 4.1: The interaction flow cycle

Chapter 4 Principles 46

imagination and abilities. There is no need for computers to interact in a
similar way to the real world. Thus it is now possible on a computer to show
a multitude of different representations of the same thing at the same time.
On a computer the back and the front of the cup could be visible at the
same time or there could be a detailed view and an overview of the same
cup in different windows.

By creating multiple versions of the same object we are creating a potential
confusion about how to interact and refer to the object. The complex-
ity caused by the existence of various different versions of the same object
is a problem that occurs in many different situations. It is a well recog-
nised problem in different fields, and there are many guidelines for avoiding
it. For example, in almost all forms of record keeping the duplication of
records should be avoided. In database design the well known guideline for
“minimising the duplication of information” is a part of normalisation. In
programming the same guideline takes the form “minimising the duplication
of code”. In mathematics there are very clear rules and in z + z = 2, the zs
refer to the same number. Other solutions for avoiding this complexity also
appear in different forms in many other domains.

The guideline against multiple versions or duplication is common and wide-
spread in many different domains because duplication can cause lots of prob-
lems. Any duplication of information that is not kept up-to-date causes
information consistency to break down. If one instance of a duplication
becomes different to another, a database will quickly be corrupted and a
computer program will start to perform wrongly. And because the infor-
mation is partially correct, this corruption is often very hard to spot. The
problem with duplicate information is not that the duplication exists but
that it needs kept up-to-date and is instead more often than not forgotten
and left to become inconsistent.

Frequently a programmer will replicate a bit of code because it is faster
than creating a more general abstraction. Then later a fix is added to the
original code but the programmer forgets to correct the duplicates. The
program almost works, except when the duplicated code is used. Thus the
programmer spends many many fruitless hours trying to track down why the
program occasionally does not work. From personal experience, duplication
of code is immediately easier, but often very painful later.

4.2.1 User interfaces

Unfortunately the duplication of information happens all the time in com-
puter user interfaces, and the duplicated information is often not kept up-
to-date.

User interfaces provide the user with the output data from the computer.
This data is often duplicated and it happens in lots of little places where

4.2 Projection 47

it is not always obvious, particularly in the main parts of user interfaces
where we take it for granted. All this duplication of information in the user
interface increases the amount users have to remember. Many computer
systems fail to remember the duplicated information in the user interface so
users have to remember themselves, and if they do not, the duplication is
forgotten and things go wrong.

4.2.2 Multiple views

Yet despite the obvious problems duplication creates, it also provides a lot of
flexibility and power. A desirable part of this is the ability to have multiple
views of the same data.

Multiple views of the same data can show different and useful aspects. For
example, a graph and a best-fit line can be thought of as different views of
the same data and each provide a different insight. Each view displays a
different transformation of the underlying data. A graph in a spreadsheet
complements the raw data. The two different views of the data together
provide a greater understanding and ability to utilise the data than each
does individually.

In a similar way both our eyesight and our inner ear canals are very useful for
balance and both can be thought of as providing different representations of
the same orientation data to the brain. Their combined information allows
us to be much more agile than we could with only one source of orientation.
When the two sources are combined and their duplicate orientation data
match they provide a greater ability to balance. Yet when the orientation
data is inconsistent we get dizzy, can’t stand up and can be sick, in a response
which is thought to be a reaction to what might be hallucinations due to
poison [Triesman, 1977]. The multiple views of the data, from eye and ear,
are very useful but only as long as they are consistent (although potentially
the discord could also be useful, in this case for detecting poisoning).

There are ways of providing different views of a single object without using
duplication, for example in the physical world it is possible to use mirrors
to show different views of a single object. These are multiple views of the
same object yet the object has not been duplicated. When the object is
manipulated then it changes instantly (for all normal purposes) in all the
mirrors at the same time. There is no possible way for the mirrors to ever,
even for a split second, be inconsistent.

This is not duplication: it is providing multiple, consistent and different
views of the same object. This concept is the principle of projection.

Chapter 4 Principles 48

User edits data in the
User edits data in user interface, but
User Interface the user interface. dosen't press enter.

.....

LN B jlor| LB

System forgets to J
State update all views of

@ N

User edits data in

Projected User Interface the user interface,

.....

No State

a

b
O(_)*\fB

Al views instantly \
State up to date and
consistent.

A o

Figure 4.2: Normal and projected user interfaces

4.2.3 Projected user interfaces

This idea of projection is similar that of projecting a film in a cinema. The
picture is a projection of the film strip in the projector, if the film frame
changes so does the image, if projector is switched off then the cinema
screen goes black, without the projector the cinema screen does not contain
a picture.

A projected view in a user interface is one that is projected outwards from
the underlying data. That is, separate from the data the view has no form.
As the data in the system changes, projected views in the user interface
are automatically updated instantly. This ensures that the user interface is
always consistent. Figure 4.2 shows how a normal user interface can often
become inconsistent and how a projected system is always consistent. The
projected user interface contains no state and thus cannot cause a consistency
error in the same way.

4.2 Projection 49

4.2.4 Visibility of system status

The system should always keep the user informed about what is going on,
providing appropriate and timely feedback. Changes in the behaviour of
the user interface should be reflected in the appearance of the program.
The visibility of the calculator state is encompassed by the projected user
interface, which ensures that any views of the system state are always up to
date.

4.2.5 Similar concepts

The term projection is inspired by the phrase projecting editors [Simonyi
et al., 2006] which is used to describe a user interface separation of concerns
as part of an integrated development environment. Simonyi describes his
Domain Workbench IDE that is designed to provide multiple different views
of a program in order to allow multiple users with different needs to access
and edit the program data in different ways.

Shneiderman [1983] outlined some basic guidelines in terms of user inter-
faces, called direct manipulation, a phrase he introduced. Shneiderman’s
definition of direct manipulation included the “Immediate and continuous
display of results” which contains aspects of the immediacy of direct manip-
ulation. However this is generally confined to one-way physical interaction,
usually using the mouse to manipulate a control in two-dimensional space.
Research into the effect of dynamic updates [Ahlberg et al., 1992}, found
users to be significantly faster, less error prone and tending to enjoy the
dynamic interface more.

Projection is also similar to a key concept of mathematics, referential trans-
parency which means that a name or expression (a view) and its value (the
data) are interchangable. For example, in the expression z + z = 2, the
name z and the number 1 can be used interchangeably for each other, with-
out altering the value of the expression.

4.2.6 Editing

The tricky part of implementing projection is handling editing. A projected
view has no state of its own, thus edits are performed through the view
directly on the projected data. This happens immediately and keeps con-
sistency with the data and other views.

For some views of data such as sliders providing immediate editing is easy,
when the slider is moved the corresponding data is updated live. The slider
value is always valid. Other views like text-boxes are more difficult because
they allow partial and invalid data to be entered. This obviously cannot
be transferred to underlying data-model or translated sensibly to display in

Chapter 4 Principles 50

other views. A consistent and understandable scheme is needed to handle
invalid input.

The best solution to invalid input is to interpret it intelligently and provide
the user feedback about the interpretation. For example, a common inter-
pretation of non-numerical input in a text-field would be 0 and the users
textual input could be replaced with the numerical interpretation.

Another solution to handling invalid input data is to clearly highlight the
user’s edits as not having been committed to the underlying data, the high-
lighting shows the user that the view is currently inconsistent with the other
views and that it is currently breaking the projection. A lot of web-based
forms do this, although only highlighting the problem after the form is sub-
mitted.

Simonyi’s [2006] solution is to make the underlying data model “comfort-
able” with erroneous states, although in practice this seems to be the most
complicated solution.

Finally a lot of non-projected user interfaces do nothing. The edit might
not be made or the user might not be able to remove the focus from the
current, control until they have figured out what the problem is. Both are
cumbersome and frustrating user experiences.

4.2.7 Key concepts

Projection describes how the relationship between views in the user interface
and the underlying data should work. There are several aspects to this,
which can be summarised in these key concepts:

e Immediate — Update all views immediately and continuously as the
underlying data changes.

e Consistent — Ensure multiple views of the same projected data are
always consistent. Multiple views showing different aspects of the same
projected data are very useful, but only when consistent.

e Editable — Immediately perform user edits on the underlying data
and project any changes back to all other views. Feedback in response
to user input should be immediate.

e Lenient — Handle user input errors leniently providing immediate
feedback or highlight the edit as not having been made.

4.2.8 Example: Internet search

Our meaning of the projection principle can be illustrated with reference to
internet search, as follows.

4.2 Projection 51

An example screen-shot taken from Firefox performing a search using Google
is shown in Figure 4.3. The same sort of user interface exists in other web
browsers such as Internet Explorer and Safari and with other internet search
engines like MSN and Yahoo, so this is a common user interface example.

The three different views of the same data, the search terms, are highlighted
circled in red. You can edit the search terms in the toolbar (1), in the
web-page above the search results (2), and you can view the search terms
that relate to the results just above the search results (3). The search
results are also another view (albeit a more complex view) of the search
term data, and these are always consistent with the search terms displayed
at (3). In a projecting user interface all three versions of the search terms
should be consistent at all times, but in this case all three different views
are different. This inconsistency can needlessly confuse the user. Users
generally do not notice this inconsistency because they have been trained,
by bad user interfaces, to remember the duplication. User interfaces, such
as Figure 4.3. place the unnecessary burden of remembering the duplication
on the user.

800 p«ars - Cooflk Search
ALt £0 A <ghitp IWM9OWI* co.ukfiearchh » @

® W|fe Images Groups News Frooole more» &:fdn
C4Qt QI o |

the web (pages from the UK A
Results 1 - 10 of about 10,400.000 fc pears

tifimfiIAISAPJUU! Spar*
List of pear recipes nutrition Information, care and handling

speerfications and Information about growing produce Pfars

Figure 4.3: Inconsistent views when searching

A scenario in which this might occur is this: I'm using my web browser
to browse the internet, I want to look for some fruit so 1 type in ‘apples’
into the tool bar (1) and press return. The web browser goes to the search
engine and shows the web page showing the search results for ‘apples’. 1
change my mind and want some pears, so I type in ‘pears’ into the main
large search field (2) in the web page and press return. The web page now
shows the search results for ‘pears’. I change my mind again and type in
‘oranges’ into the main search field. At this point the user interface will look
something like Figure 4.3. As the user I have only used the interface in a
simple fashion, yet the user interface now has three consistency errorsl. If I
hit return, what should happen?

A projected search user interface would keep all four views (the three views
of the search terms and the search results) of the same data up-to-date at

'There is also a second editable text field at the bottom of the web-page. So in fact
there could be four different and inconsistent views of the same data!

Chapter 4 Principles 52

all times. The search terms between the web-page and the toolbar would
be consistent, so that it would seem like a user was typing in both views
the same time. The immediacy of projection also implies search-as-you-
type, because any editing of the search terms is immediately reflected in the
search results. Only recently computers have been fast enough to implement
search-as-you-type and the lag and delay of the internet would still make
this hard. An alternative solution, as previously suggested, would be to
highlight the search results as out date as soon as the user types, this way it
is clearer that the results are no longer projecting the current search terms.

4.2.9 Example: Calculators

The calculator is a projected user interface. It might seem like the calculator
only has one view of the mathematics, the “paper” that the mathematics is
written on, but the calculator combines several different aspects of the same
data into this view.

e The handwriting recognition is immediately reflected in the canvas by
the replacement of the user’s handwriting with typeset characters.

e The equation recognition is immediately shown by the morphing of
the characters to their correct locations.

e The result or answer of the calculation is immediately shown as cor-
rections to the mathematics.

At no point are any of these three different aspects of the calculation incon-
sistent. All three are projected, immediately visible and always reflect the
same underlying data. That the calculator is never inconsistent is a very
important part of its usability. If the calculator was ever inconsistent then
the user could be confused or misled (which is worse).

Another example of projection is the calculator’s undo clock which is linked
to the expression displayed. The “time” the clock shows and the mathemat-
ics are projections of the same underlying data. As the user winds the clock
forwards or backwards the mathematics similarly morphs, always staying
consistent with the clock. Conversely, after the user has made an edit the
symbols morph and the clock ticks forward, remaining consistent. For the
user the interaction is fun, and it is easy to rewind to a certain point or scrub
back and forth to view the creation of the mathematical expression. With-
out the immediate response of a projecting user interface the clock would be
very awkward to use.

4.3 Continuity

Physical objects in everyday experience move in predictable and defined
ways. As an object moves from one position to another it does so by passing

4.3 Continuity 53

through all intermediary positions. A person can visually track an object as
it moves and interact with it easily.

This movement and transition between states is essential to interacting with
the real world, without it the world would be a jarring set of unpredictable
sudden changes. Without any transition or continuity, understanding what
is happening and predicting what will happen is very hard. A lack of conti-
nuity can be like trying to catch a ball with your eyes closed, you only know
where the ball is once it has hit you. With your eyes open the continuity
the visual arc of a ball creates in flight means that it is simple to predict
the ball’s destination and to catch it.

In contrast to the real world, user interfaces which are free from physical
constraints often provide instant state change. Visual changes in user inter-
faces are often sudden and unexpected, this provides no way for the user to
visually track the changes and create a connection between the old state and
the new state. A user interface without continuity provides no opportunity
for the user to follow the state changes and relate their actions to the visible
changes. This is an experience not too different from catching a ball with
your eyes closed.

For example, opening a file in a file browser often instantly draws a new
window over the top of the existing windows. There is no connection between
the two states, in one moment without any indication of why so much of
the screen has changed. Examples like this are exacerbated by the large and
multiple display setups users have, if the visual change happens far away
from the place where the user initiated the action it is even harder for the
user to connect the two.

4.3.1 Animation

Animation in contrast is extremely successful in engaging its audience and
providing a connection between the cause and effect of an action. Animation
or continuity provides the connection between cause and effect, reducing
the user’s cognitive effort and replacing it with a simple perceptual task.
Figure 4.4 shows the contrast between a user interface that provides this
continuity and one that does not.

Modern operating systems like Mac OS X 10.6 use animation to attempt
to alleviate this sudden disjointed visual change. For example Mac OS X
animates a folder (or directory) opening by morphing a smooth expansion
from the icon where the user initiated the opening action to the new window
location, and animates the opening of a file by expanding the icon in place
(this is a substitute for animating to the location because that position is
unknown).

Cartoons offer an exemplary use of animation for providing fun action that
provides continuity, the principles of cartoon animation are well covered

Chapter 4 Principles 54

User Interface

User Interface with Continuity

Figure 4.4: Continuity in user interfaces

in Disney Animation: The Illusion of Life [Thomas and Johnston, 1981],
which encompasses ideas like solidity, exaggeration and reinforcement which
underpin the success of cartoons. John Lasseter [1987] at Disney defines
principles such as “Squash and stretch" distorting the shape of an object to
define its rigidity and mass, and “Arcs” the visual path of action for natural
movement. These principles of cartoon animation have been applied to the
user interfaces with success [Chang and Ungar, 1993].

Continuous feedback and morphing provide continuity between state changes.

4.3.2 Key concepts

Without continuity, users are surprised and disconnected from a user inter-
face, they need to work out the connections between their action and what
the resulting effect was. A user interface that provides continuity uses an-
imation and morphing to provide the user with the clues to follow what is
happening and to join up the state changes. Changes between states should
provide feedback and continuity such that a user is able to easily follow
them.

* Animated Use a smooth visual change from one state to the next
to provide continuity to the user.

¢ Focused — Start the animation from where the user’s focus is, or from
where the state change was initiated.

* Physical Utilise some of the principles of cartoon animation to
achieve a solidity and an enjoyable physical movement.

4.4 What you see is what you edit 55

o Instructive — Inform the user about the state change using animation,
what, why and how.

4.3.3 Example: Calculators

To provide the user with continuity when entering a calculation, the calcu-
lator morphs between states. When the calculator’s state changes, the user
interface catches up by morphing, this provides smooth rearrangements of
mathematical equations and a seamless connection between different states.
By using morphing it is easier for the user to understand the state changes
of the calculator.

Continuous feedback always provides the user with a clear idea about what
is happening [Shneiderman, 1992]. For example, the user’s hand-written
input is morphed into a typeset sum, this provides a clearer knowledge of
the mathematics being calculated and how the output relates to the input.

The smooth morphing of feedback is also very visual and intuitive and is a
big part of making the calculator visually fun and enjoyable.

4.4 What you see is what you edit

What You See Is What You Get (WYSIWYG) is a well known principle
and acronym. WYSIWYG is used to describe an interface that allows the
user to view the document in a similar way to what the end result would (or
should) look like. Often this is in reference to what the end result is after
printing, so what you see on the screen is what you get or should get from
the printer. As a user interface, then, IATEX is not a WYSIWYG interface,
because the source code the user edits looks completely different to the final
typeset document. In contrast Microsoft Word is more WYSIWYG, because
the document the user edits in Page Layout mode (and less so in other view
modes) looks very similar to the document that is printed.

WYSIWYG is now almost taken for granted. It was important new concept
when computers were usually used through command line programs, as users
often had little idea what output they were going to produce until they
saw it. Today most programs that produce some form of output, often via
a printer, primarily utilise a WYSIWYG user interface. Non-WYSIWYG
modes, like the source code mode in a HTML editor or the outline mode in
Word, are still used and provide benefits for more complex tasks.

WYSIWYG is thus narrowly defined to describe the resulting output of a
program. The corresponding twin of this idea would cover input into a
program, the user’s input in contrast to printed output, editing what you
see. Editing what you see could be thought of as (at the cost of inventing
new acronyms) What You See Is What You Edit, or WYSIWYE. Instead of

Chapter 4 Principles 56

describing, as WYSIWYG does, the process of output, like printing, WYSI-
WYE describes the process of input, such as creating and editing data.
This is not to be taken superficially, where every graphical user interface is
changed or edited through a visible user interface, but the key concept is the
lack of hidden constraints and surprises as the user edits. In other words, in
the same way as WYSIWYG is primarily about the lack of surprise when
printing, WYSIWYE is about the lack of surprise when editing.

Normal User Interface WYSIWYE User Interface
The user makes The user makes
an edit. an edit.
The user is
surprised by the The user sees the
result of their edit. expected result.
A hidden conversion l No hidden change.
or restriction, alters
the user's edit.

Ve e

Figure 4.5: WYSIWYE in user interfaces

Figure 4.5 shows the difference between normal and WYSIWYE user inter-
faces. The unexpected and hidden constraints in the normal user interface
causes the result of the user’s action to be unexpected. In contrast the con-
straints on how the user edits are minimised in a WYSIWYE user interface.
Constraints on the users actions usually have to be inferred from what the
user can see and their knowledge of the system’s behaviour. The more con-
straints there are the more the user needs to know about the system and
the less they are just simply editing what they see, but using what they
know. Any constraint or rule about interaction that the user cannot see is
something they have to learn or something that trips them up.

Another acronym: Things Are Exactly As They Appear, or TAXATA [Boeve
et al., 1993] encompasses some of the same ideas about the visibility of the
underlying model but does not describe the user’s interaction.

4.4.1 Different models

User interfaces often layer a simplified editor user interface over the top
of a complicated data model. This creates a similar problem to the issue
of having different user mental models and system models [Norman, 1988,
1987], which is a conceptual problem when the user understands a different

4.4 What you see is what you edit 57

model to how the system actually functions, causing unexpected results
occur in response to their actions. In the case of a simplified user interface,
the model the user is actually presented and interacts with is different from
the underlying system model. Thus the user has a much more difficult time
understanding the underlying model and predicting the correct outcomes
from the actions.

Paragraph styles in Word are a simple example of when the difference in
models causes confusion. Normally when text is deleted, the text after the
deletion is moved upwards, filling in the space left by the deletion, but when
the preceding text has a paragraph style the text after the deletion is not
only moved up but also acquires the style of the preceding text. (Word does
not allow easy forward error recovery from this.) Up to this point, where
the unexpected happens, there has been nothing to identify the preceding
text as having a paragraph style or that it will behave differently. What is
visible to the user as part of the user interface is different to the underlying
model, which quickly becomes a problem when it affects the result of the
user’s actions.

Most simple text editors in contrast are WYSIWYE editors, where the user
interacts and edits with what they see, which is the characters of the text.
Text editing involves a basic model that includes several simple concepts and
constraints like characters, lines and selections. Once these are understood
the user edits what they see and rarely needs to stop and think about these
concepts because the user interface is consistent, simple and completely
predictable from what they see. The constraints have been minimised to a
few concepts and the user’s edits are predictable and expected. No part of
system model that effects the user’s actions is invisible.

4.4.2 Modes and hidden state

In a user interface modes are states where the user can interact with the
interface in different ways depending on the state of the system. A mode
changes the user’s whole interaction with a program. A hidden mode makes
it impossible for the user to predict the outcome of an action based on what
they see breaking WYSIWYE.

It is a good user interface guideline to not use hidden modes [Raskin, 2000].
When modes are hidden, or obscured, they create a hard to use and confusing
user interface. An invisible mode can mean that the results of the user’s
actions are completely different to what they expect. If the mode is entered
accidentally the user has no idea to expect the different interaction. If the
user enters the mode on purpose the user still has the burden of remembering
the mode. If they forget (or another user interacts with the interface) the
user has the same problem of unexpected results.

Chapter 4 Principles 58

4.4.3 Key concepts

e Predictable and visible — Present the entire underlying model that
affects the user to them. Make anything that effects the result of the
user’s action visible.

e Lack of constraint — Minimise the number of constraints on the user’s
actions.

¢ Consistent models — Allow the user to edit in the user interface model
presented to them without the need for any understanding of the un-
derlying system model.

4.4.4 Example: Syntax-directed editors

Syntax-directed editors [Teitelbaum and Reps, 1981, Reiss, 1984, Lunney
and Perrott, 1988] are editors that are designed to keep the syntax of what
the user is editing correct at all times. Syntax-directed editors were created
with the aim of aiding and improving the process of writing program code.
They were once championed by some to be “the great new way” of writing
computer programs. Syntax-directed editors offered many useful properties
such as reducing errors, fast refactoring and manipulation, and easier nav-
igation. Unfortunately the editors had very restrictive user interfaces and
nobody enjoyed using them [Khwaja and Urban, 1993].

Today there are virtually no syntax-directed editors in general use, although
some of their benefits have been integrated into normal text editors. Exam-
ples are code completion which completes a partially typed term or structure,
code folding where structures in the code can be hidden or folded out of the
way, and automatic indentation. These provide some of the benefits that
syntax-directed editors offered but do not restrict how the document as a
whole is edited. The lack of constraints these additional features enforce
mean that the code editors can primarily be WYSIWYE. This allows the
user to edit the document as if it was plain text, which users have found
much more appealing than the highly constrained syntax-directed editors.

4.4.5 Example: Template editors

Most equation editors use template-based methods that constrain how the
user edits an equation. Mathematical expression template editors are good
examples of non WYSIWYE user interfaces. The mathematical expression
the user edits is stored in a hidden underlying syntactic tree (although the
tree is implicit in the structure of the mathematics). Edits the user makes
are not on the actual visible symbols but actually on this underlying tree.

This hidden structure means that the user has to understand the implied
underlying syntactic structure to be able to edit the mathematical expres-

4.4 What you see is what you edit 59

sion. Not only does the user have to understand the hidden structure in
order to edit the expression but they are also restricted, by the structure, in
how they are able to edit the mathematical expression. Any edits the user
makes are limited by the hidden syntactic structure.

These limitations o11 the user’s interaction make editing the mathematics in
simple ways very difficult. For instance if you wanted to change an expression
from to y” it involves at least three cut and pastes, for example:

* The square root outside the f,/ajon s/uj,-

* The fraction inside the square root

* Then finally a into the numerator y"F

4.4.6 Example: Calculators

A large part of the design aims for the calculator was to make use of the
user interface’s paper-like similarities. The interface should act as if the user
is just drawing, deleting or moving ink on a page. The ‘ink’ o011 the screen
is all the information there is, and there is 110 restriction to how that ink is
added or moved.

Figure 4.6: An unconstrained single drag changing

The calculator enforces 110 constraints o11 the order or position of what the
user writes. By editing the ‘ink’ the user is able to write a mathematical
expression without any regard for the underlying structure of the mathemat-
ics or computer representation. The calculator interprets the mathematical
input from what is visible, the same thing the user sees, using expression
recognition. This permits a very powerful, and natural, interaction style
called ink editing and plays a large factor in making the calculator easy and
natural to use. Ink editing is essentially WYSIWYE for a pen based inter-
face. Figure 4.6 shows the single drag and drop using the calculator that
the same transformation from ~ to y” in a template editor requires at
least three steps.

In the calculator the mathematical expression is always recognised from
what is seen and the user only edits what they see. There are 110 constraints
applied to how the user edits the ‘ink’, the mathematical constraints are

Chapter 4 Principles 60

enforced after an edit is made by fluidly morphing the system into the correct
state. This means that the user is free to input or edit their expression in
any way they want and are rarely surprised by the interpretation of their
action. The calculator’s behaviour is entirely predictable if the user has the
right conceptual model of its behaviour. That is the calculator is entirely
predictable without any knowledge of the history of the calculator state.

The principles of ink editing, or WYSIWYE, dictate that the interpreta-
tion of input should be solely determined by what it looks like. Thus, the
interpretation of the — symbol is determined by its context, and the inter-
pretation can change if the context changes. For example, if the user writes
—2 it is recognised as a minus sign followed by 2. If the user then continues
to write a 3 above the minus sign, the minus sign is reinterpreted in the new
context and becomes a division bar, which results in 32. The ink editing
of this expression is natural to the user and the result looks very similar to
what the user wrote. Without ink editing this would be impossible.

The calculator has a few modes of interaction, for example, selection, and
dragging. Both these modes are directly linked to the users interaction and
are visible on the screen. The user cannot start dragging without explicitly
clicking on a selection and cannot finish dragging without removing the
pen. This makes it much less likely that the user gets confused about how
to interact with the calculator.

4.5 Declarative interaction

Often processes and user interfaces make a clear distinction between input
and output. The user provides input to the computer and then the computer
responds with some calculation as output, but by blurring the distinction
between the two, an interface can provide interesting and powerful interac-
tions. That is, letting the user change the output to get the input.

A programming language that works like this is sometimes called a declar-
ative programming language. Languages like this are different to the tra-
ditional imperative languages that describe how to get to the solution. In
a declarative language the programmer states the relationship between the
input and output. The computer then works out the details of the individual
steps to get the output. Which means that just as the computer can logi-
cally work out the steps to go in one direction it is possible for the computer
to work out the reverse steps to go in the other direction.

Declarative programming is not a popular paradigm for several reasons, but
partially because it involves a very different way of thinking to how most
programmers are used to. Prolog is an example of a declarative language
that has found use in the real world. In Prolog the programmer writes state-
ments, declaring facts, and then Prolog backtracks to solve the equations
(these are sets of Horn clauses in Prolog).

4.5 Declarative interaction 61

Figure 4.7 shows some examples of how the single Prolog function append
can be used to append lists and how it can also be used in completely
different ways utilising the lack of an input output distinction. Here append
is used to test for a prefix of a list, to decompose a list into all the possible
pairs of sublists, and to test for the existence of a decomposition. That
is four different and useful possibilities three of which are normally not
possible! These are all possible because Prolog does not distinguish between
inputs and outputs to the append function. The append function can also
be used to test for list membership (append(_, [b|_]1, [a,b,c,d,e]).) and
to enumerate the members of a list (append(_, [X|_], [a,b,c,d,e]).)!

7- append([a,b],[c,d,e],X). % Just append
X = [a,b,C,d,e]

?7- append([a,b],X,[a,b,c,d,e]l). % Testing for a prefix
X = [c,d,e]

?- append(X,Y,[a,b,c,d,e]). % Breaking into pairs of sublists
= []

[a,b,c,d,e]

= [a]

= [b,c,d,e]

[a,b]

[c,d,e]

< P4 = P4 M4
|

?- append([a,b]l,[c,d,e],[a,b,c,d,e]l). % Testing decomposition
yes

Figure 4.7: Using the append function in Prolog

4.5.1 User interfaces

The problem with making a process declarative is that many processes are
inherently one way. The same problem occurs in user interfaces, which are at
the basic level just ways of viewing and interacting with the input or output
data from processes. A lot of what we see in user interfaces as output data
would be hard to interpret as input. For example, how would altering a
best-fit line change the data, or how could changing the search results affect
the search terms? The usual and simple solution implemented by most user
interfaces is to provide non-interactive views of this output data.

Despite the difficulty of making some user interfaces declarative, doing so
can provide a lot of useful interaction potential. One of the most powerful
and persuasive user interaction possibilities is exploration. By being able to

Chapter 4 Principles 62

change the best-fit line, which is normally just an output only view of the
underlying statistical data the user can very easily explore the relationship
between the graph data and the best-fit line. By changing the best-fit line
the user could explore and experiment with the relationship between the
line and the data and emerge with a good grasp of the how the line and
data are linked.

User thought User can change
needed to change A based on B or
A based on B, vice-verca,

Little thought Is
needed to refine
‘Input’ A edited by AorB. O
user gets 'output’ B. ("

\ - {\
Q Euher AorBcan
ﬁ be edited resulting
In the other.

System Declarative System
Figure 4.8: Declarativeness in user interfaces

Figure 4.8 captures the expanded interaction possibilities a declarative sys-
tem offers. With a normal system the user is restricted to editing the input,
seeing the result then interpreting it so that they are able to refine the input.
In contrast, a declarative system allows the user many more possibilities of
interaction. The user can still interact with it in the same way as a normal
system but also performing the reverse, interpreting the ‘input’ to refine the
‘output’. They can also simply refine the input or output without having
to interpret anything, thus both reducing the cognitive effort and making
the interaction faster and easier. Figure 4.8 reflects these many options that
allow a user to work much more flexibly and freely.

4.5.2 Similar concepts

A user interface that does not distinguishing input from output is declara-
tive, it provides aspects of query by example [McLeod, 1976], programming
by example [Cypher, 1993] and even macro recording systems [Lieberman,
1993]. Using a declarative interface, the user, even without any concept of
the underlying process, is able to show the computer what they want it to
do and the computer does the rest.

Applying this sort of paradigm to user interfaces has been called ‘equal
opportunity’ [Runciman and Thimbleby, 1986, Thimbleby, 1990] and has
been explored as part of other user interfaces. Other systems [Ahlberg
et al., 1992, Ahlberg and Shneiderman, 1994] also utilise the concept of
‘equal opportunity’ by building and extending it with their own principles.

4.5 Declarative interaction 63

Tight coupling [Ahlberg and Shneiderman, 1994] is an extension of the direct
manipulation guidelines [Shneiderman, 1983|, primarily for visual informa-
tion seeking. A key concept of tight coupling is “query components are
interrelated in ways that preserve display invariants and support progres-
sive refinement. Specifically, outputs of queries can be easily used as input
to produce other queries,” which touches on the declarative blurring of input
and output.

Leogo [Cockburn and Bryant, 1996], a Logo IDE for children, provides three
distinct programming environments; a direct manipulation of the turtle us-
ing the mouse, a visual programming environment of icons and sliders and
a standard text based editor. Each of these are inter-linked and no one
environment is considered ‘output’, so users can switch between the three
different representations at ease. The evaluation was not conclusive but the
authors did observe children often switching between the different environ-
ments for different tasks. Interestingly, a large part of the further work they
wanted to undertake was to make the system more dynamic, or in other
words a projected user interface.

4.5.3 Difficulties

A slow or unresponsive declarative user interface does not provide quite the
same ability or freedom to explore and utilise the underlying relationships.
In Prolog, the user has to enter a query, correctly written and terminated
by a special character, until this point, the output (if any) is incorrect and
it makes experimenting with Prolog code slow and tedious. However by
combining a declarative user interface with a projected user interface we
get an interface that is always true all of the time and allows the user the
flexibility of editing almost anything. This reduces user confusion and makes
interaction and exploration fast and easy, allowing a user to both have a
deeper understanding of the underlying relationships and use the interface
in powerful ways.

A lot of relationships are ‘many to one’ meaning the same output can be
achieved with many different inputs. A simple example using mathematical
equality as the relationship is 1+ 3 and 2+2 which both have the same result.
Providing the reverse of relationships like this can be difficult, but as long
as it is predictable it is useful. The most simple solution often works best,
in the previous example the ‘output’ 4 would simply generate the ‘input’ 4.
With a predictable two-way relationship the user can easily make use of the
ability to incrementally build up the desired result by changing which ever
representation (whether ‘input’ or ‘output’) is easier at the current point.

Since the distinction between input and output is blurred, it is better to
think of these as multiple representations of underlying data. To allow real
iterative interaction where the user is able to refine multiple representations
in turn, the system needs to have a mechanism for changing the users input.

Chapter 4 Principles 64

That is, given two representations, if the user specifies the value of one then
changes the other, the first needs to be altered to ensure the underlying
relationship remains valid.

A simple solution is to just override the other representations, replacing
them with completely new results. A better solution is to adjust the values
as little as possible such that the underlying relationship remains valid.
The calculator does this by making the distinction between user input and
computer ‘corrections’, as either side of an equality is adjusted by the user,
computer additions are added or altered to ensure the equality remains
mathematically correct while the user input is left unchanged. In this way
the calculator provides the user with a powerful way to iteratively build up
the desired result by adjusting both sides of the equality.

4.5.4 Key concepts

e Exploration — Encourage exploration by allowing a deeper under-
standing of the underlying model.

e Interaction by example — Provide an example of the input needed
when the user supplies the desired output data.

e Predictable — Always provide the same answer for the same data,
whether ‘input’ or ‘output.’

e Projection — A projected declarative interface makes exploration and
incremental change faster and easier.

e Incremental — Allow the user to incrementally construct an answer
by cycling between editing the ‘input’ or ‘output.’

e Refining — When the user makes any edit alter the ’output’ as little
as possible to ensure it is correct. This supports gradual editing as
each edit refines any others.

4.5.5 Example: Calculators

Harold Thimbleby’s [1996] calculator implements a declarative user inter-
face, which from both informal and empirical evaluations [Cairns et al.,
2004] has been shown to have several advantages. A declarative calculator
treats output and input equally, such that it can solve any basic mathe-
matical expression by providing the correct input for the answer. Users are
thus able to solve problems, such as ‘what power of 2 is 567’ (i.e., 2% = 56)
directly, that they might have no idea of how to solve otherwise, and which
would be impossible without circumlocution (e.g. introducing logarithms)
and impossible without rearrangement and generally losing the initial prob-
lem structure. Typically mathematical problems would be impossible to do

4.5 Declarative interaction 65

correctly without prior experimentation on a calculator, for different calcu-
lators, even within brands, do advanced arithmetic calculations differently!

When combined with WYSIWYE, a declarative calculator makes the exper-
imenting trivial.

The ‘output = input’ concept works well in a calculator, because the output
and input are both the same type of data, a mathematical expression or
number, and can be combined together into one larger expression.

With a declarative calculator, the user can replace the computer output
with their own and nothing will change. This means that if the user writes
the correct answer in then the calculator shows no extra work, and it means
that if the user writes a wrong sum like “3 +4 = 15” the calculator corrects
it. When users use it they find that, as one individual put it, their old
calculators are “nagging and pedestrian fusspots.” More examples of the
possible ways in which the calculator can correct mathematical expressions
are found in Chapter 2.

The flexibility of the declarative calculator allows an explorative and playful
interaction. The calculator makes evident how the underlying mathematics
operates and it enables easy exploration through play. Users are able to
change any part of a mathematical expression to see how it is adjusted to
ensure it is correct, and in doing so the user sees the underlying mathematics
in action.

4.5.6 Predictable

The corrections to user input and the morphing of the input into the final
result are always predictable. The same input always yields the same output.
Thus, once the user understands the calculator’s model they can predict the
results of any particular edit (visually if not computationally).

4.5.7 Refining

The calculator ensures the expression the user sees is always correct by
adding corrections to the partial input. These corrections are inserted into
the user’s own input. An incorrect expression could be corrected in an
infinite number of ways, and lots of these corrections would cause the user’s
input to move around or become more complex, thus making it harder to
follow what the calculator was doing.

Therefore the calculator inserts the least amount of additional corrections
to ensure the mathematical expression is correct. The calculator always
corrects 4+ to 4 + 0 = 4 not any of other possibilities like 4 + 10 = 14 or
44+4=4x2.

Chapter 4 Principles 66

Contiguous blocks of corrections and user input are also preferred, this

means that the user’s input is broken up as little as possible. Corrections are

also always placed on the right-hand side of any user input. For example,
= 3 is corrected to 2 =3 — 1 rather than2+1=30r 1 +2=3.

4.6 Synergy

These four principles, projection, continuity, What You See Is What You
Edit, and declarativeness all work together in an unusually coherent way.
Yet each principle is distinct and describes how one aspect of a user interface
should operate. Figure 4.1 shows the four principles applied to the different
parts of a system:

o Projection— state to user interface relationship

o Continuity — user interface interaction

o WYSIWYE — user interface to state relationship
e Declarative interaction — state interaction

The interaction flow framework shown in Figure 4.1 enables a user to in-
teract with a user interface with lots of feedback, no discontinuity, clear
functionality and few restrictions.

4.6.1 Flow

These principles match up to several of Csikszentmihdlyi’s factors for en-
abling flow. While not sufficient to “get in the zone” these principles do
enable a more seamless experience when using a user interface that aids
flow.

1. Clear attainable goals with clear rules.

WYSIWYE provides clear rules for attaining the desired goals.

2. A high degree of concentration on a limited field of attention.
Continuity helps ensure concentration by removing jarring discontinu-
ities.

5. Direct and immediate feedback so that behaviour can be adjusted as

needed.

Projection provides immediate feedback so the user can adjust their
actions.

7. A sense of personal control over the situation.

Declaration gives the user more control to achieve their results.

4.6 Synergy 67

4.6.2 Reducing the user’s cognitive workload

When using a traditional calculator, before the user can do any calculation
they have to translate the sum they have in mind into key presses that the
calculator will understand. The new calculator removes much of this step,
changing the role of the user and can reduce the user’s cognitive workload.
This means that the user can spend more effort on the important things and
are generally less taxed by using the system.

The calculator reduces the user’s workload in several very effective ways:

e Projection means that immediate feedback and partial input let the
user build an expression up stage by stage, instead of having to enter
a fully formed complete expression at the start.

o Continuity reduces the amount of effort to keep track of the many
state changes that happen.

o WYSIWYE means the user can enter and edit mathematical expres-
sions using standard two dimensional mathematic notation without
constraints. This reduces the need to translate the desired mathemat-
ics into a linear format or into specific user interface actions.

e Declaration ensures that the user does not have to rearrange expres-
sions to have the answer on the right-hand side.

4.6.3 Error recovery

Errors will always happen, so a good user interface helps users to easily
recognise, diagnose, and recover from errors. Errors should be precise, indi-
cating the problem and constructively suggesting a solution.

Errors while using the calculator, either from input or from recognition, will
happen. However, the calculator’s immediate feedback and visible expres-
sion from Projection helps users immediately recognise errors [Thimbleby,
2004] and thus correct them. The WYSIWYE editing abilities of drag, drop
and deletion allow easy and logical forward error recovery. Undo provides
simple backwards error recovery.

The calculator avoids any error messages or inconsistent state by supporting
partial user input. No matter how bad the user input is the declarative
calculator will form a valid expression and the user can always use forward
error recovery from the current state or backwards error recovery using the
undo clock.

Chapter 4 Principles 68

4.6.4 Breaking principles

We have claimed that a set of principles improves a user interface design, and
we have given detailed discussion in the context of a novel, highly interactive
calculator. This should have been a demanding context to test the ideas.
However, methodologically it is good practice to explore the “reverse result.”
If a principle p is claimed to improve an interface, absence of p should make
an interface worse: just as these principles provide a good user experience,
the lack of them should cause errors and problems.

We do not have space to give worked examples of the consequences of the
lack of the principles, but it would be routine to do so. Here is a brief
“thought experiment” of the problems that would be readily anticipated if
the principles were flouted:

e Projection consistency errors — “this can’t be reliable.”

o Continuity continuity errors — “how did I get here?”

o WYSIWYE expectation errors — “that wasn’t what I expected.”
o Declaration editing restrictions — “why can’t I edit this?”

It may be thought of as trivial; that if a good design principle is broken then
the interaction is also broken. But the sharper insight is that breaking the
proposed principles would clearly break the user interface in specific ways.
On the contrary, if the principles were vague (say, “make it nice”) then their
opposites (say, “make it nasty”) would have an arbitrary effect.

4.7 Summary

The calculator’s design has been guided by four precise principles, as piloted
in the previous chapter and now as refined in this chapter. The four main
principles described in this chapter: Projection, Continuity, What You See
Is What You Edit and Declarative interaction are all critical to the design
and fun interaction that calculator provides. These principles aided the
design and implementation of a calculator that has a fluid, smooth, easy,
and powerful user interface, and which is enjoyable to watch and interact
with.

Together the principles form an interaction flow framework, which is able
to provide real generative ideas for making innovative and satisfying user
interfaces.

It remains to substantiate the claims throughout this chapter that the user
interface is effective. The next chapter reviews the user evaluation for the
calculator. Then, in subsequent chapters, we will test the higher-level claims
about the principles by applying them and same generative processes to a

4.7 Summary 69

very different style of user interface and showing that it, too, is remarkably
effective.

Chapter 5

User interface overview

Figure 5.1: Royal Society exhibition. © Will Harwood

It is very instinctive and fast. It’s great, I feel like Tom Cruise

in Minority Report — Bravo!
a PhD student at the Royal Society’s Summer Science
Exhibition

5.1 Overview

In the film Minority Report. John Anderton [Tom Cruise] uses a gesture-
based interface to view and manipulate clips of the future so that he can stop
murders. The interface is built from several large screens which he interacts
with by using hand gestures. The interface displays (fictional!) precognitive
visions of the future, dreams replayed through a computer, on an interface
similar to that of a timeline or a video editor. Using this interface Anderton

71

Chapter 5 User interface overview 72

performs panning and zooming and manipulates this ‘video’ using various
hand gestures.

The interface is typical of film and CGI interfaces, it looks good, it looks
fun, and it looks like it works. However, it is all faked and none of it is
real. It probably took many months of computer graphics and prop design
to achieve. The interface appears to be successful because of how it seems
to interact. The fluid motion and gestural interaction is persuasive within
the film. Would the interface, if actually built, be successful? Does the
perceived usability work in real life, or does it just look good on the big
screen?

Imagine writing a calculation down on paper, and the paper magically work-
ing out the answers. The calculator works like this, using an approach that
is ideal for gesture-based user interfaces, from handhelds with pens to in-
teractive whiteboard use in classrooms. The calculator developed resembles
the interface from Minority Report. The quote at the start of this chap-
ter was from a visitor to the Royal Society’s Summer Science Exhibition,
where they used the calculator on a 6 foot interactive whiteboard that can
be interacted with using fingers. The fluid nature of the mathematics and
the smooth morphing of the symbols that the calculator uses are similar
to the fluid interface of Minority Report, and are probably what prompted
the quote. When the calculator is used on an interactive whiteboard, such
as a SMARTboard, users manipulate the calculator using their hands in a
natural way using gestures and handwriting, in a similar fashion to the in-
terface of Minority Report. Figure 5.1 shows a user using the calculator on
an interactive whiteboard at the exhibition.

The calculator is written in Java and runs under Windows, Linux and Mac
0OSX, and it works with standard hardware such as Mimio, SMARTboard,
or Wacom tablets. It is somewhat difficult to use it with a trackpad or
mouse, because creating normal handwriting movements, the calculator’s
normal mode of input, with a mouse is unfamiliar and awkward.

It is fun and engaging, users enjoy using it and it also works as a calculator
computing mathematics. Fun and mathematics is an unusual combination.
This raises the questions: Why? Why is it fun? Why is it engaging? Are
these inherent in a Minority Report-esque interface? Is the fun part the
gestural interface? Or are there other factors that make the calculator user
interface successful?

This chapter provides an overview of how the user interface works and func-
tions. It provides an overview of the new calculator’s user interface, and
how it operates from the user’s perspective.

Describing a user interface in such detail can make it seem quite dull. This
level of detail is provided for clarity. In reality the calculator’s user inter-
face is not restricted by the medium of five frame cartoon strips (such as
Figure 5.3) or paragraphs of text, and thus it is much more fluid. To re-

5.2 User interface sections 73

ally grasp how the calculator works and interacts, it is probably far more
productive to play with it instead of reading the comparatively dull and
non-interactive text of this chapter.

5.2

User interface sections

1 o

*

/

<
o

nE_

Ix2A3x4x3 :><:

Figure 5.2: User interface overview

Figure 5.2 shows the entire visible part of the calculator’s user interface, the
different numbered sections of it are enumerated below:

1. The dock

Equations can be dragged here from the equation editor, which are
recorded and saved in the dock for later use.

Help

The help button brings up a help screen that shows the user what
symbols are recognised and how the calculator is used and what can
be achieved with it.

Hide/show answers

The button that looks like an eye toggles the showing of answers to
calculations.

History clock

The history clock records the changes made to the mathematics, and
can lie used to review what has happened or to undo changes.

Chapter 5 User interface overview 74

5. The mathematical expression

Mathematics are written here as handwriting, which the calculator
solves. Figure 5.2 shows the calculator in the process of solving 3x4.

6. Clear
Erases the whole screen for a new calculation.
7. Trash

Saved equations in the dock and parts of the mathematical expression
can be deleted by dragging them to the trash.

.3
¢ 3 y.4-
03 X4

° 3x4
e 3x4=12

Figure 5.3: Simple calculator use

5.3 Simple mathematics entry

The entry of a simple mathematical expression is shown in Figures 5.3.1
5.3.5. These show a sequence of screen snapshots of the calculator in use
as a userenters the simple sum3x4. These steps are typical of entering
a straightforward mathematical expression without any mistakes or editing
into the calculator. These interactions and the principles that are the basis
for them are now described in more detail.

5.3 Simple mathematics entry 75

1. User input

Here the user has written by hand the mathematical expression 3 x 4.
The user’s handwriting appears in blue on the screen as they write,
creating a rough mathematical expression. There is no special syntax
or interaction, the user writes the same way of writing they would on
paper. This is the first part of the original guiding design principle:
that “it should work like paper, but with answers”.

2. Symbol recognition

After a short time delay, the calculator begins recognising the user’s
handwriting and replaces the rough hand-written strokes on the screen
with typeset characters that are stretched to the same size and location
as the handwriting.

The user wrote 3 x 4; the calculator is “catching up” with them and has
already rendered the 3 in a typographically neat font. This feedback
is grounded in the projected editing principle, the calculator provides
direct, timely and clear feedback to the user about the symbol recog-
nition.

3. Finished symbol recognition

In Figure 5.3.3 the calculator has recognised all the user’s input and
replaced the handwriting with the typeset symbols.

4. Morphing

After all the user’s hand-written symbols have been recognised the
calculator identifies the mathematical expression and computes what
is missing to ensure it is mathematically correct. Then the calculator
begins morphing the distorted typeset symbols into their final positions
as part of a neat typeset expression. The answer, or corrections, are
shown in red and fade in during the morphing of the user’s input. In
this case the answer ‘=12’ is shown.

In Figure 5.3.4, the calculator is in the process of morphing all the
user’s input and has combined it with the output displaying a nicely
typeset equation. User input that was written in blue ‘dries’ black,
this is to help distinguish new user input as it is written with what is
already on the screen.

The feedback provided by the typeset expression provides direct feed-
back about the equation recognition and is part of projected editing.
The answer provides the last part of the original goal “...like paper,
but with answers”.

5. Finished

The final calculator output is shown in Figure 5.3.5. The equation is
neatly formatted, typeset and the calculated answer is shown in red.

Chapter 5 User interface overview

0 12*

0 12=1728

* Vi?
¢ VI2=12

Figure 5.4: Editing a calculation

76

5.4 Editing 77

5.4 Editing

The next few sections take individual aspects of interacting with the calcula-
tor in turn and describe them more fully. Editing a mathematical expression
is a simple as writing on top of it. The What You See Is What You Edit
(WYSIWYE) principle is core to the editing experience of the calculator, it
means that users need not be concerned with the hidden structure of the
mathematics.

Figure 5.4.1-5.4.5 shows the user editing a simple expression, starting with
12 = 12. Each step shows adding new structure to an already generated
typeset expression, resulting in the final expression V123,

1. Starting expression: 12

Once an expression has been recognised, it is possible to write over the
top of the typeset expression to edit it. Figure 5.4.1 shows new user
input in blue over the top of the typeset expression. The computer
generated answers in red are faded out as the user starts to write,
these answers are only temporary, and the fading out is to stop the
user from making use of them.

2. New typeset expression: 123

The new expression is then morphed and typeset neatly with the cor-
rect answer.

3. Further editing

The individual steps show how an expression can be built up bit by
bit while the calculator provides error checking, recognition and the
answers at every step. Figure 5.4.3 shows the user adding a root on
top of the original expression.

4. Additional further editing

The user can then continue to add more to the expression. The way in
which a calculation is edited is flexible, the user could have written the
3 first before the square-root symbol. As a WYSIWYE user interface
there is no hidden order or structure the user has to conform to, this
makes it much easier for the user to edit an expression.

5. Finished: v/123 The final result is typeset neatly incorporating all the
user’s additions to the original expression.

5.5 Drag and drop

Drag and drop allows users to easily rearrange an expression, any part of
the expression can be moved anywhere else. Drag and drop is also useful

Chapter 5 User interface overview

0 3x30 _ o o

o \27>30 o

Figure 5.5: Drag and drop

238

379

78

5.5 Drag and drop 79

for correcting recognition errors, for example when a symbol is positioned
where the user did not want it to be, they can easily move it to the correct
position. The ability of the user to select symbols without restriction on
what or where is selected is driven by the WYSIWYE style of the user
interface. Without this principle shaping the nature of the interaction, the
experience would be much more restricted and complex for the user to use.
Figure 5.5 provides two examples of drag and drop.

A.1. Starting expression: 3%30

A.2. Selection

To select part of an expression the user draws round the symbols they
want to select. A selection is initiated when the user has drawn a
loop that contains other symbols. The selection mode is signified by a
“whooop” sound and displayed as a blue transparent filled loop with
the selected symbols drawn in blue, both providing valuable feedback
to the user. Figure 5.5A.2 shows a fraction where 3x is selected from
the numerator.

Note that 3x is not a mathematically complete expression but the user
can still select in the WYSIWYE user interface and move it however
they want.

A.3. Dragging

By clicking inside the highlighted blue selection the user can drag the
selection to wherever they want. While the user is dragging an arrow
indicates the drag that will happen. Figure 5.5A.3 shows the user
dragging the selection down into the denominator.

By clicking outside of the highlighted selection the user could also
cancel a selection and re-select a different portion of the expression or
continue editing the calculation as normal.

A.4. Finished: 2%

When the user finishes a drag the selected portion of the expression is

inserted at the end point of the drag and the equation is recalculated

and morphed to a new typeset expression. In Figure 5.5A, moving the

3x from the numerator to the denominator has altered the expression
3x30

30
from = 10 335

The second drag and drop example is shown in Figure 5.5B.
B.1. Starting expression: 23
B.2. Dragging

The user here is dragging a base into its own exponent. This is not a
problem for the calculator, the expression is simply re-recognised with
the dragged components of the expression at their new locations.

Chapter 5 User interface overview 80

Drag Result

fx 4 2=8
Jir=0.002

=21

~th

2
-422=-1764

Figure 5.6: More complex dragging

B.3. Finished: 32= 9

The new expression is now morphed into a neat typeset expression,
swapping the base and its exponent, giving 32. The same result could
have been achieved by dragging the exponent down and left below the
base.

Figure 5.6 shows the result of more complex drag operations on the math-
ematical expression Notice how versatile the drag operation can be in
rearranging the mathematical expression, there are very few limitations and
a single drag can move and rearrange complete or partial expression. The
calculator reinterprets the new expression after the drag, making sense of
whatever the user did. To understand how the resulting expression was
arrived at, thinking about what the drag and drop achieves is useful. For
example in last case of Figure 5.6, which may seem to have a counter intu-
itive result, the drag and drop changes 4r to —4, which is interpreted in a
sensible way as —422.

5.6 Deletion 81

5.6 Deletion

Deletion is performed in much the same way as drag and drop. Figure 5.7
shows how part of an equation can be deleted by dragging it to the trash.
The selected part of the equation is removed and the equation is re-recognised
without the deleted section. A cloud of smoke is used to provide feedback
to the user that they have deleted part of the expression. By utilising the
same gesture and metaphor of drag and drop for deletion the calculator
makes economical use of the few gestures the calculator supports, the user
interface is less complex and the user has fewer gestures to learn.

® 3229

3=3

Figure 5.7: Deleting part of a calculation

1. Starting expression: 32
2. Dragging to the trash

To delete a selection the user simply circles part of the equation and
drags it to the trash in the bottom right of the screen

3. Deleted

The user is provided with a smoke cloud and a “poof” sound as feed-
back from the deletion.

4. Finished: 3

Chapter 5 User interface overview 82

The final expression is recalculated and morphed after the deletion.

There is also a clear button (shown as a cloud of smoke) in the bottom-
left corner of the user interface that clears the whole current expression,
resulting in a completely clear screen.

5.7 Partial expressions

Part of what allows the calculator to compute answers as the user enters
the expression, is the ability of the calculator to handle partial expressions
smoothly. When a mathematical expression is recognised, missing compo-
nents are filled in with placeholders, which appear in the user interface in red.
These placeholders are then adjusted intelligently so that the mathematical
expression is correct. This ability is a part of the declarative interaction the
calculator provides, which blurs the distinction between input and output
and allows the user to utilise this potential for ease of use, like completing
simple incomplete expressions, and for more powerful solving capabilities.

. 3x1=3
« y=0.5

e (—+2)=6

° -2-x4=6

Figure 5.8: Simple partial completion

Figure 5.8 shows some simple examples of partial completion. In each case
the red symbols have been added to the black mathematics written by the
user to ensure that what the user sees is mathematically correct. An an-
swer on the right-hand side is also added ensuring the entire expression is
mathematically correct.

5.7 Partial expressions 83

1. The multiplication is completed with its identity, converting 3x into
3 x1.

2. The incomplete fraction is completed with an added numerator, con-
verting 5 into %

3. Both the denominator and the missing closing bracket are added to
the user’s input.

4. A multiplication symbol is added to disambiguate a fraction followed
by another symbol. This is for consistency so that %4 and 27 are both
clearly multiplications. This stops %4 being confused with 5 +4, which
is how it is sometimes written.

This facility of handling partial expressions is extended by allowing the user
to write an equals sign. By writing an equals sign, the user is able to add
mathematics on both sides of the equality and get the calculator to correct
the partial expressions, providing answers to mathematic calculations that
would otherwise need to be rearranged.

The calculator in a declarative fashion (i.e. a lack of distinction between in-
put and output) completes all the expressions such that the user can easily
compute the answer to questions like “what power of 2 is 1007”. Figure 5.9
shows some examples of how this ability can be used to compute more com-
plex sums very easily without rearranging the expressions. These examples
are described below.

1. A simple multiplication is completed to correct the mathematical ex-
pression. The user wrote 3x = 12 which is then corrected to 3x4 = 12.

2. In the same fashion, an incomplete fraction that is missing a numerator
is completed. This is an example of a common problem “what divided
by z is y?” that users can solve without rearranging.

3. An exponent is completed, without the user knowing the correct log-
arithm rules to get the answer. In this example the fact that there
is a missing exponent needs to be indicated (in this case by using a
bracket). Without any symbol in the exponent the calculator assumes
there is no exponent. Thus 2(= 100 and 2 = 100 are completed very
differently. The latter is completed as 2 = 100 — 98, and the former as
a solution to “what power of 2 is 1007”.

4. An incorrect sum 3 = 5 is corrected with the addition of a —2 on the
right-hand side. All similar corrections happen on the far right-hand
side to minimise confusion about where corrections appear.

5. Some mathematics with unknowns can be completed in an infinite
number of ways. The calculator always picks a “simple” answer. In
this case a multiplication is completed using an identity.

6. A factorial is completed as close as it can get to the answer and the
remainder is added in. The user could be trying to solve “What fac-

.+ 2,664] =100
0 3=5-2

o 12=12x1
o 50=4!+26
o V81=9Y

Figure 5.9: More complex partial completions

84

5.8 Hiding the answers 85

torial is equal to 50?7, the calculator provides as close as it can get,
and the mathematics the user sees is still correct.

7. The inverse of a square root is calculated to correct the input. The
calculator also handles the similar expression \/? = -9 in a sensible
way correcting it to \/7 = —9+ 10.

5.8 Hiding the answers

As a teaching aid the calculator allows the user to hide the answers. This
allows a teacher to pose questions and to get responses to a mathematical
problem before the answer is shown. It can also be used to allow users to
enter possible answers to see if they are correct.

° 3x4=
® — =

Figure 5.10: Hidden answers

Figure 5.10 shows two examples of how this appears to the user. The red
numeric corrections are replaced with dashed red boxes. By clicking the
toggle in the top-left corner of the user interface the user can quickly switch
between this mode and the standard display.

If the user writes an answer in, the expression it is recalculated as usual,
any new corrections are then displayed in the same style with a red outline
box. If an equation is written that does not need any corrections, then this
is highlighted by a big green tick, shown in Figure 5.11. This happens, for
example, when the user fills in the correct answer for a hidden correction.

For teaching and group-use the ability to hide the answers until required
provides a richer interaction both with the calculator and the class. A
teacher can use the calculator to show a mathematical relation and then

Chapter 5 User interface overview 86

by hiding the answers can pose questions like “What happens if I alter this
number?” A missing number is rendered as a box, prompting the user to
enter a number in it. When this is combined with the ability to undo, it
allows users to try an answer, rewind and try a different one, providing a
useful tool for a teacher using it with a class or group.

3x4=12 y?

Figure 5.11: A correct answer

5.9 The dock

The dock gives the user the ability to save and reuse and work on multiple
mathematical expressions. It contains the thumbnails of the calculator’s
stored expressions that the user can access and edit. The dock sits on the
left hand side of the user interface and can be grown, shrunk or hidden to
the user’s liking.

Each expression stored in the dock is selectable by clicking on the tile in
the dock. The current main expression is then switched to the one that
was selected in the dock. Each expression in the dock is self-contained and
has its own data and history. As an expression is edited, the corresponding
dock thumbnail is updated in real time in keeping with projection, ensuring
that there is no inconsistency between the dock thumbnail and the current
expression.

Figure 5.12 shows how mathematics are stored in and used from the dock.

1. The dock user interface is shown on the left of the screen. The current
expression is edited and interacted with on the right, a thumbnail of
this larger mathematical expression is shown highlighted inside a white
tile in the dock.

2. The user saves part of an expression by dragging the selection in the
current mathematics to the dock, creating a new tile in the dock cor-
responding to the saved expression.

3. In the dock the new saved expression is shown with a grey background,
differentiating it from the current expression being edited. The answer
shown in the thumbnail has already been automatically calculated and
filled in, meaning the mathematics even within the dock thumbnails
are consistent or projected.

r=i28 A

5.9 The dock
Ax4=8
0
A A=8
C
0
4=16
4.44=8
0
0

4=16

x42=128

Figure 5.12: Using the dock

87

Chapter 5 User interface overview 88

Saving parts of an expression to the dock is as simple as finishing a
drag and drop action in the dock. The selected part of an expression
will be copied and inserted into a new saved expression.

4. Saved expressions can be dragged back into the current expression or
be deleted by dragging them to the trash.

5. When a saved expression is dragged into the current expression being
edited, it is inserted as an immutable box with the value of the con-
tained expression. The main expression is recalculated and the dock
tile is also kept up-to date. The final sum with the inserted saved

s . 1x[4?
expression is —"—2L—l42.

5.10 History

Instead of providing a discrete undo similar to most modern user interfaces,
the calculator provides an undo that is continuous and smooth. The interac-
tion with the undo system provides feedback that is similar to the morphing
feedback used to provide continuity between the user’s writing and the type-
set calculation. The interface is presented as a clock (seen in the top-right
corner of the user interface) that allows the user to manually “set the time.”
As the user edits the expression the “time” ticks forward, about a quarter
“hour” for each edit. More recent versions of the clock have been made more
abstract in order to not be mistaken with an actual clock.

To undo, or go back, the user grabs the clock and rotates the hands back-
wards. The clock “time” and the calculator state are linked, providing a
projected user interface. To undo to a previous point the user only has to
remember the “time” they want to go back to and rotate the clock’s hands
back or forward to get to that time, or the user can scrub back and forth
reviewing the history of the mathematics until they find the point they want.

As the hands of the clock are turned in either direction the equations morph
from state to state, backwards and forwards in time. The fluid morphing of
the equation as this happens provides a continuity through time and through
the history of the equation that is easy to follow. The morphing contains
all the edits, drags and deletions that have happened to the expression,
including some of the effects like the “poof” of smoke for deletion. (Imagine
Figure 5.3 but animated and scrubbable through like a movie.)

Scrubbing backwards and forwards in time allows the user to undo or review
their previous work. If the user rewinds the clock this undoes previous
edits and the user can continue editing from the current visible state. The
user is able to review all their previous work without undoing by rewinding
backwards and then winding forwards to the most recent state.

5.11 User interface concepts 89

5.11 User interface concepts

5.11.1 Handwriting

Handwriting is an important component of meeting the “it should work
like paper” guiding principle. By providing a user interface that works like
paper, users are able to make use of their existing knowledge and skills for
manipulating mathematics on paper.

The calculator provides a modeless interface, which resembles a sheet of
paper. Any writing causes “ink” to be drawn on the screen. The user is
able to write everywhere. The handwriting recognition works with standard
handwriting as written on paper, thus there is no need to learn a special set
of gestures or to learn a different method of handwriting, such as a simplified
alphabet would require.

The user can write on-top of and over current typeset mathematics which
allows for easy insertion into and modification of the mathematics. A selec-
tion is created when the user’s gesture forms a loop around several symbols.
This selection can then be dragged using the pen to anywhere on the screen.
Other than this selection gesture every pen stroke and touch of the screen
is assumed to be writing.

Cursor manipulation can be the most tedious aspect of editing an equation
in 2D equation-editing systems. A benefit of a pen-based system is that
there is no cursor, therefore the user can write anywhere without awkward
cursor movement or placement. This is especially useful for mathematics
where editing and writing happens in lots of different places and often not
sequentially.

5.11.2 Morphing

Providing continuity to the user with continuous feedback, is a key part of
the user interface, this is encapsulated by the continuity principle. Feed-
back is provided through typeset annotation and animated morphing of the
mathematical expressions. This feedback provides the user with continuity
as the calculator’s state changes and makes it clear what the calculator is
doing and how it relates to the user’s input.

Annotation provides immediate feedback about the success of the character
recognition, replacing the hand-written characters with typeset characters
stretched to the same size and bounding box. Animated morphing pro-
vides the continuity between what the user has written and the final typeset
expression. After the characters have been recognised and replaced with
typeset versions they are still in the rough position and shape that the user
wrote them. The calculator then smoothly morphs these characters into
neat positions to form the final neat typeset expression.

Chapter 5 User interface overview ' 90

5.11.3 Feedback

Immediate feedback is continually provided to the user so that they are al-
ways aware of what is happening and what mathematics is being calculated.
The calculator performs several state changes based on timers, that provide
the user time to finish any edits they make. All state changes are projected
and provide immediate feedback. Projection also means that the user in-
terface is never inconsistent, as soon as the user edits the mathematics the
current answer disappears, and as soon as the user finishes editing a new
answer fades in.

Without the projected feedback and the continuity of morphing the user
would face sudden state changes and an often inconsistent and confusing
user interface.

5.11.4 Freeform editing

The calculator provides a very flexible way of editing mathematics. Adding
new, deleting, or rearranging symbols is performed in an unrestricted and
natural way. Editing is not restricted and any part of the expression can be
changed. Once the user has selected something, they can move it wherever
they want, without having to worry about any constraints on their interac-
tion. This is the result of the WYSIWYEF principle, because of the lack of
restrictions the user interface is both easier to use and more powerful. Many
of the examples of editing mathematics earlier in this chapter would not be
possible in a non- WYSIWYE user interface.

5.11.5 Calculation

The mathematics of the calculator are based on the declarative interaction
principle. The central idea being that the input and output are treated
with equality. The calculator non-destructively completes the user’s work,
simultaneously correcting or solving any arithmetic mistakes or omissions.
Thus ensuring that the expression the user sees is always mathematically
correct.

The calculator provides a sensible answer at any point in time for any input:
partial, complete or wrong. This allows the calculator to provide immediate
projected feedback to the user without delay. Thus the user is continually
kept informed of what the calculator is doing and the current mathematical
solution to what they have entered.

The user is also able to utilise the declarative nature of the calculation to
do mathematics in a more natural way. They are able to solve simple sums,
such as 4 = 27, without having to rearrange the sum. Not only are they able

5.12 Summary 91

to solve simple sums more easily, but they can also solve complex expressions
that they would not have otherwise been able to do.

5.11.6 Exploration

There are many different aspects of the calculator that encourage exploration
and play. All of the flow principles engender a fluid and playful user inter-
face. Projection ensures that what the user sees is always correct and can
quickly and easily respond to the results. Continuity means that the user
rarely loses track of what is happening and does not lose their flow. WYSI-
WYE allows the user to change anything as they see it, without the extra
cognitive effort of dealing with constraints. Finally a declarative interface
makes the underlying mathematics more immediate and concrete. These all
contribute to a user interface that is great for exploring and learning about
mathematics.

Undo is controlled through an interface that is linear and smooth, this pro-
vides continuity so that when undoing or redoing, the user does not ex-
perience any jarring transitions between the different states. The smooth
undo is similar to the morphing feedback that is used to provide continuity
between the user’s writing and the typeset calculation.

5.12 Summary

The user interface of the calculator has been described in a step-by-step
manner, showing how the pen-based user interface can be used in flexible and
powerful ways. These descriptions, though comprehensive, do not convey
the fluid, interactive nature of the calculator. Video demonstrations of users
interacting with the calculator and of the user interface are available online!
are more persuasive. However, nothing compares to the experience and
enjoyment of using the user interface yourself, preferably with a pen or
finger user interface.

The combination of the simplicity of the pen interface, the projected im-
mediacy and visibility of what is being computed, the continuity and fluid
morphing between states, the WYSIWYE ease of editing, the declarative
correctness of incomplete mathematics transforms the way users interact
with the calculator. The new calculator enables mathematics to be explored
in a highly forgiving and experimental interface that is fun to use.

http://www.cs.swan.ac.uk/calculators/

Chapter 6

Implementation

. ALORS CE TABLEAU
Me MARCHE PAS

Figure 6.1: “RealCalc la calculette du futur” (c) J. A. Deledda

This chapter provides an overview of the implementation of the calculator.
For the actual implementation, the Java source code and data files as well
as a version ready to run and use as compiled Java JAR file, are available
online at http://www.cs .swan.ac .uk/calculators/.

A short literature overview of the specific components of the calculator’s
implementation is provided. However this thesis is not intended to primarily
contribute in these areas and the literature overviews have been shortened.

6.1 Tools

The calculator was programmed in Java, an object orientated language
which produces cross-platform runable applications. However, originally
the calculator also made use of Cocoa, a specific Mac OS X technology,

93

Chapter 6 Implementation 94

as this provided a simpler and more familiar way for the author to create
graphical user interfaces. This has been removed to make the calculator
completely cross-platform. The calculator is now written solely in Java. By
programming the calculator in a cross-platform language, it was hoped that
the system may find wider usefulness, beyond a research project. Indeed the
calculator is now published by Promethean.

Effort was made to keep the design of the whole system well structured using
object orientated techniques. As such, part of this the code uses the Model-
View-Controller pattern (Gamma et al., 1995] extensively, which keeps the
user interface separate from the model. The use of this pattern meant that
the replacement of the Cocoa user interface with a Java user interface was a
straight forward task, because the interface between the user interface and
the core structure had already been abstracted.

6.2 Overview

The core of the calculator is summarised in the remainder of this chapter.
The calculator consists of pen-based interaction with a single mathematical
expression. Omitted in this description of the calculator’s implementation is
the majority of the actual code-level or Java-specific implementation details.
This core of pen-based interaction with mathematics consists of four distinct
processes, shown in Figure 6.2. Processes A to C are stages within the
mathematical engine and occur sequentially. The user interface, process D,
is layered on-top of these core stages and provided continuous interaction
and feedback with the core processes.

These processes are:

A. Symbol Recognition — A symbol recogniser that reads the strokes
written by the user on a pen-based device and determines which sym-
bols have been written.

B. Expression Recognition — An expression processor that takes the sym-
bols with their relative positioning and size and recognises the math-
ematical expressions they represent.

C. Calculation — A calculator that provides the completed mathemati-
cally correct expressions.

D. User Interface — A user interface that provides seamless user inter-
action, from the initial handwriting input to displaying the result,
including providing the feedback during this process to the user, so
they can understand what is being computed.

The remainder of this chapter is divided into four sections that each discuss
the individual stages of the process described above.

6.2 Overview

95

2
Rl 2 4

T

2 +la) ., 22+4 -
v @ B. Expression recognition \/§

3 3
2°+4 — 2° 4+ 4 _ 6

Figure 6.2: The calculation process

User

eeeeeee

Chapter 6 Implementation 96

6.3 Symbol recognition

The first stage of any calculation using the calculator is handwriting or
symbol recognition. This is the process where the user’s writing, which is
provided to the calculator as vector data from pen movement, is recognised
as individual symbols. These symbols are then passed onto the next stage
which recognises mathematical expressions. During this recognition process,
the user interface provides immediate feedback by replacing the handwritten
strokes with typeset symbols.

Handwriting recognition is a well-researched area. Many implementations
provide very good recognition rates and there are lots of different approaches
to the symbol recognition problem. Plamondon and Srihari [2000] provide
a comprehensive overview of the area. Some of the different approaches to
the handwriting recognition problem are highlighted below.

Persoon and Fu [1977] uses signal processing, viewing symbols as a signal
processing problem, where the closed contour of a pattern is considered as
a periodic signal. Odata et al. [1982] describe a simple statistical method
for online character recognition. Starner et al. [1994] use hidden markov
models, used for recognising continuous speech to recognise online cursive
handwriting. Shaw [1969] uses a syntactic method or Picture Description
Language. PDL uses straight line segments as primitives and grammar rules
to describe how line segments can join together. Chan and Yeung [1998] use
a structural method in which the unknown pattern is repeatedly deformed
if it does not match any of the classes. Pavlidis et al. [1996] use a physics-
based shape metamorphism method and casts the problem as an energy
minimization problem. Tappert [1984] uses elastic matching and dynamic
programming.

Instead of using a handwriting recognition library the calculator implements
its own system for symbol recognition. There are several reasons for this,
not least that mathematical symbol recognition is a different problem to
textual handwriting recognition (handwriting recognition for mathematics
has several special features that mean it is a different problem than normal
handwriting recognition). The main reasons are summarised below:

o A bespoke system is free of restrictions, whether legal or technical,
that hinder other libraries.

e Mathematics is not typically written in a joined-up cursive style. There-
fore the recogniser does not need to address the more difficult problem
of recognising cursive writing.

e Mathematical writing contains many odd symbols, including symbols
that vary in scale and shape, like the v/ symbol. Mathematics also
uses a restricted character set, which makes the recognition problem
simpler. A specialised recogniser can be tweaked specifically for math-
ematics.

6.3 Symbol recognition 97

e The relative location of symbols and sizes vary greatly in mathematics,
whereas text is generally uniform and written in a line.

o In order to provide better affordance with paper, the symbol recogniser
recognises handwriting as written, instead of using a single pen stoke
based system like Graffiti [Fleetwood et al., 2002].

e Technical reasons of integration. Using my own system, as opposed to
say Microsoft’s handwriting recognition engine, means that the entire
calculator is cross-platform.

Handwriting recognition has been a usability issue for the calculator. If the
handwriting recognition fails then the whole user experience is undermined.
Currently the handwriting recognition has an accuracy of 90-95% depending
on the user. Unfortunately this is still the largest cause of users not finding
the calculator easy to use. It is a shame that such a critical component of the
user experience is not part of the whole positive experience. In retrospect
relying on a third party library might have been better, despite all the valid
reasons for not doing so.

However, the symbol recogniser is simple, fast, and fairly accurate. It uses
a simple model matching method, where sets of strokes are recognised by
comparing them to models.

Model matching is based on the assumption that hand-written characters
are distorted realisations of ideal models. At the training stage, templates or
ideal models are recorded. Then at the recognition stage these are compared
to the data to be recognised. A distance measure is then generated between
the data and the template, using features from the data. This distance
metric is used to generate a likelihood value indicating the closeness of the
match.

6.3.1 Character models

Each symbol has many different models. The character models are stored
as stroke data, each model possibly containing several strokes. For model
matching to work well, the ideal models are critical. The clearer and more
distinct the models are, the better the recognition works.

The calculator currently uses a total of 237 models that cover the 22 different
symbols the calculator recognises. Most models are made from one or two
strokes. The maximum number of strokes per model is 3 (which is for the
7 model). Figure 6.3 shows the 23 models used to recognise the symbol ‘4’.
The dots show the start of the individual strokes, and the numbers bottom-
left of the model show the number of strokes used. As can be seen the
symbol ‘4’ can be written in several different ways using one or two strokes.

All the models are normalised to make the matching algorithms faster. The
data points along the strokes of the models are resampled so that they are

Chapter 6 Implementation ' 98

spaced evenly in distance instead of time.

When hand-written input data is matched against a model, the input data
is scaled uniformly so that the largest dimension of the template is matched
by the size of the same dimension of the input data. Note that normalising
to a specified height or width as Tappert [1984] suggests causes problems
with symbols like —,1 and -.

Normalising in this way for matching does not solve all problems, for example
small dots still cause problems (any symbol can be scaled to a small dot and
still match with a low distance metric). Dots are therefore treated as a
special case and solved by recognising any stroke drawn under a certain size
as a dot (or semantically as a decimal point).

LY
baghan g

Figure 6.3: The models used for the character ‘4’

6.3.2 Segmentation

The majority of symbols a user writes are single stroke symbols like 6 and
—, but some symbols like 4 and = can be composed of two separate strokes
of the pen. Segmenting these strokes into separate characters is the first
part of recognising a symbol.

The segmentation stage of the symbol recognition is a brute-force exhaustive
search through all combinations of grouping the input strokes into symbols.
Symbols are assumed to be composed of sequential strokes: that is, strokes
are only combined into a symbol if they are temporally consecutive, thus
a user cannot go back and add an extra stroke to a previous symbol (for
example to dot an 7).

To segment the strokes, a combination of temporal ordering segmentation
and a simple spatial check are used. The symbol segmenter holds a queue
of the strokes entered by the user. As a new stroke is written by the user it
is added to the end of the queue of strokes to be segmented. When the size
of the queue of unrecognised strokes reaches twice the number of maximum
strokes in any symbol model, it is in principle possible for the segmenter
to segment the first two symbols without error as there is no combination
of two symbols that could require more strokes. When this condition is

6.3 Symbol recognition 99

reached, or if a time delay triggers first, the initial symbol is segmented and
recognised.

To do this, the segmenter recursively tests all possible combinations of
strokes in the queue that can be segmented to create two symbols. The
segmented combination with the lowest total sum of distances between seg-
mented symbols and models is chosen. The strokes used for the first symbol
are then removed from the queue and are visually replaced in the user in-
terface with the recognised symbol, appropriately positioned and scaled.

This is a limited version of brute force temporal ordering, but by restricting
the segmenter to two symbols, the symbols can be recognised as the user
enters them, providing valuable feedback while the user is writing.

Figure 6.4: Input strokes for segmentation

Figure 6.5 shows the debug output from the segmentation and recognition
of the strokes 1432' from Figure 6.4. The recursive test of all possibilities for
the first two symbols is shown, segmenting up to a maximum of two strokes
per symbol.

The lowest total sum for recognising two symbols is for the symbols 4 and
3 (a total combined distance of 162 + 919 = 1081). These symbols are the
most likely combination of two symbols from any segmentation of the first
four strokes. This segmentation groups the first two strokes into one symbol
and the third stroke into a second symbol. A different, segmentation (the
first segmentation tried) of one stroke per symbol would provide the symbols
0 and 1 (a total combined distance of 5653 + 64 = 5717).

In the debug output the best symbol and its cost for each segmentation is
shown on the right side of the output. As an example, 0 is the most likely
symbol that matches the first stroke with a cost of 5653, this is shown on
the first line of the output.

Once recognised as the initial symbol, the symbol is displayed on the screen
and the strokes that are part of the symbol are removed from the list of
strokes to be recognised. In this case the first two strokes, which are recog-
nised as a 4, are removed and a typeset 4 replaces the strokes in the user
interface.

Once a symbol has been recognised, the stroke data is discarded and the

Chapter 6 Implementation 100

1st Symbol: 1 strokes best: 0 (5653.3955)
2nd Symbol: 1 strokes best: 1 (64.828865)
2nd Symbol: 2 strokes best: 4 (7712.3564)

1st Symbol: 2 strokes best: 4 (162.56503)
2nd Symbol: 1 strokes best: 3 (919.0894)
2nd Symbol: 2 strokes best: 4 (8252.45)

**Recognised: 4 (162.56503)

delay

Figure 6.5: Segmenter debug ouput

symbol is immutable. The symbol cannot be edited or altered in anyway,
but it can be moved or deleted.

From the user’s perspective, the only restriction they have to conform to
is that any symbol must be written in one go. That is, ¢ symbols must be
dotted and all + symbols crossed before the next symbol is started. The
symbol segmenter has one adjustable parameter, the time delay between
drawing a stroke and when the recognition is started. The longer this time
is, the more time the user has to enter multi-stroke symbols like = and 4.
However, the longer the delay is the longer the system will take in providing
feedback from the symbol recognition. After the time delay, the segmenter
recognises the first symbol on the queue regardless of the number of strokes
the user has written. A long delay is more suitable for children and slower
writers, but slows the calculator down, the actual parameter can be adjusted
as a personal preference.

Composite symbols + and =

The segmentation of symbols is generally good, however the composite sym-
bols + and = pose a specific recognition problem. These symbols can both
be accurately recognised in two different ways. The decomposed strokes of
these composite symbols are themselves symbols. For example strokes of a
+ symbol can also match the two symbols, — and 1. In fact the recognition
of the decomposed versions of these symbols are usually more likely, because
the spatial relationship between the two strokes is more flexible.

The solution used for this problem is to provide a set of symbols that each
composite symbol overrides. Thus if a segmentation of two strokes best
matches an = symbol but can also be recognised separately as two — sym-
bols, the cost of the = symbol is adjusted to make the = more likely than
two separate — symbols. This method is possible because of the restricted
character set of the calculator. This problem and solution are unique to

6.4 Expression recognition 101

mathematics recognition, as the extra structure and context of text allows
easier recognition.

6.3.3 Recognition

Simple model matching is used to recognise all written symbols. Experi-
mentation with training data showed that for the set of symbols the cal-
culator needed to recognise, simple model matching provided comparable
recognition results for the same number of models as other more compli-
cated matching methods like elastic matching. With good models and the
restricted character set, simple model matching provides a good recognition
rate for writing mathematics. The simplicity and speed of simple model
matching also allows more models to be used in symbol recognition with
much less overhead.

The models and the pattern to be matched are vector path data. These
paths are matched comparing each point in the path of the pattern with its
equivalent point on the model. The matching distance between two points
on a stroke is based on the point’s spatial position and gradient in the path.
After experimentation, the distance equation shown in Equation 6.1 was
decided on. Matching further path information (such as curvature) did not
substantially improve the model matching accuracy.

d(i,j) = amin{|¢; — ¢;],2m — ¢ — ¢;} + B((&: — £;)° + (% — §;)?) (6.1)

where ¢; is the slope angle of the curve, and z;, §j; are the normalised coor-
dinates.

« and B were adjusted programmatically once all the models have been
entered so that the distance between different symbols is maximised whilst
the distance between the same symbols is minimised. The values for o and
B used to provide the best recognition for the models used by the calculator
are 10 and 1 respectively when the models are scaled so that they have a
maximum dimension of 1.

The symbol recogniser provides a single symbol to the expression recognition
stage. It does not pass any additional information, such as probability in-
formation. The expression recognition stage therefore does not and can not
provide any backtracking in order to choose different symbols using different
probabilities based on context of the symbol in the expression.

6.4 Expression recognition

The purpose of expression recognition is to determine the meaning of the
expression given the symbols and their relative placement and sizes. This is

LIBRARY

%G:S‘mpxé’.

Chapter 6 Implementation 102

the second stage in recognising a mathematical expression.

6.4.1 Some difficulties

Mathematical expressions can be hard to understand. Mathematical nota-
tion is often very subtle, and continually makes use of the relative sizes and
placements of symbols. Without the context of the mathematical expres-
sion it is sometimes hard, even for practised humans, to comprehend some
layouts of mathematical notation.

Some of the difficulties that occur are:

e Ambiguous symbols — A dot can represent a decimal point, a multi-
plication or an annotation (3.4, a - b, &); a horizontal line can be an
infix subtraction operator, a prefix negation, a fraction bar or part of
a more complicated symbol such as ‘=" or ‘<’.

e Ambiguous spatial relationships — Implied operations are hard to
determine as the meaning is implied by a rough spatial positioning, as
shown in Figure 6.6.

o)=F Q\m

Figure 6.6: Ambiguous powers

e Ambiguous expressions — Sometimes even simple mathematics can
be misinterpreted as a result of implicit operators or knowledge of the
context. Equation 6.2 shows a simple example of how a simple sum
could be misinterpreted.

Does 2v/4 mean 2+ V4 , 2 x V4 or V4 ? (6.2)

Zhao et al. [1996] discuss more determinable and indeterminable parse
trees, and Martin [1971] provides several examples of ambiguities and
indeterminable expressions; one of his examples is shown in Equa-

tion 6.3.
10 10 10
Does Zi-&-Y mean E(i+Y) or (Zz) +Y7? (6.3)
i=5 =5 i=5

6.4.2 Alternative solutions

Blostein and Grbavec [1996] and Chan and Yeung [2000] all provide good
comprehensive overviews of the different approaches to mathematical ex-
pression parsers. There is a wide variety of different solutions and a brief

6.4 Expression recognition 103

overview of the approaches with brief summaries of some of the key contri-
butions to this field is now provided.

Littin [1993] uses a SLR(1) parser with additional tests on the geometric
relationship of the symbols. Anderson [1977] uses coordinate grammars for
both arithmetic and matrix mathematical notation recognition. In 1967,
one of the earliest recognition systems, Martin [1967a], uses concatenation
operators that offer a geometric approach. Chang [1970] uses structural
specification schemes, based on operators that divide the pattern into one
or more sub-patterns. Lee and Wan [1995] and Twaakyondo and Okamoto
[1995] use a procedurally coded system that has no explicit grammar or
structure. Chou [1989] uses a stochastic grammar to recognise noisy typeset
equations. Graph rewriting is used by Grbavec and Blostein [1995], Blostein
and Schilerr [1999]. Faure and Wang [1990] use a top-down data driven
segmentation. Zanibbi et al. [2002] outline an implementation that makes
extensive use of trees, tree transformations and the directionality of notation.
Eto and Suzuki [2001] use minimal spanning trees to reconstruct the formula.

6.4.3 The solution

The expression recognition algorithm described here is based on a struc-
ture specification scheme similar to that of Chang’s [1970]. It uses a struc-
tural specification scheme for special operators (such as division and roots)
that divide the expression into sub-expressions, then uses a recursive de-
scent parser to handle linear expressions when there are no more special
structurally dividing symbols. The algorithm also provides a new way of al-
lowing one operator to dominate another and a special method of handling
non-explicit operators such as exponentiation.

6.4.4 Structure specification schemes

Chang [1970] uses a structure specification scheme to recognise the struc-
ture of mathematical expressions. The scheme could be thought of as a two-
dimensional grammar allowing the specification of certain two-dimensional
patterns. Each grammar rule or pattern can be composed much like tem-
plates are composed in a template-based editor but the composition happens
automatically. The recognition time for this pure structural scheme is O(n?)
for an input expression of n symbols.

Structural specification schemes are based on operators that divide the pat-
tern into one or more sub-patterns. Figure 6.7 shows two different operators
and their sub-patterns as shaded areas. According to Chang, the structural
specification scheme is based upon the assumption that some or all primitive
components of a collection of patterns are operators, and that the structure
of a pattern can be constructed by analysis and comparison of these opera-

Chapter 6 Implementation 104

W

+] (D]
_

Figure 6.7: Example operators and applicable ranges

tors. Each operator has a division rule and applicable ranges. For example,
the + operator in Figure 6.7 has ranges A and B as its operands.

acetrodOl MREN
priority operator \‘\Y\
(muttiplication) \ .
MBAN

. - AN
priority operator A
(division)

RN
3. Parseer;o:-h « N S\{EL:&\\
lominated highe: RN NN\
priority opera?or &\\‘- k\\
(addition)
4. Parse non-
dominated highest
priority operator
(numbers)

; . : 246
Figure 6.8: An example of how Chang’s algorithm parses 3 x —1‘—

Chang uses the concept of operator domination, where an operator domi-
nates another if and only if the latter is in the range of the former and the
converse is false. Therefore ‘+’ dominates ‘=’ in the pattern a + Lc’, whereas
‘~’ dominates ‘4’ in the pattern “T“’ Thus a combination of dominance
and precedence can be used to define an ordering relation on the operators.

Any non-dominated operator has precedence over a dominated one.

6.4 Expression recognition 105

6.4.5 The algorithm

The expression recognition algorithm is implemented in two parts: the first
as a top-down structural specification scheme, the second as a handcrafted
recursive descent parser. The majority of written mathematics is still lin-
ear, and a traditional recursive descent parser handles all of the mathematics
that could be written without any two-dimensional positioning. The lim-
ited vocabulary of the calculator means that with the exception of roots,
exponentiation and fractions, all the mathematics is handled by this parser.
The operator precedence is implicit in the structure of the recursive descent
parser, either an operator is found and the pattern split into the appropriate
sub-patterns, or the parser attempts to find the next operator.

In order to correctly prioritise two-dimensional operators the algorithm pre-
parses the sub-patterns of dominating operators. This is a simplified notion
of dominating operators that uses structural matching for only a few opera-
tors; Chang’s method, while more powerful, requires a more complex parsing
strategy. Correctly identifying dominated symbols allows a simple recursive
descent parser to be used for the majority of the expression. Unlike Chang’s
method our algorithm does not need to prioritise and keep track of operators
and sub-patterns in a queue, which makes the algorithm much simpler and
faster.

This pre-parsing syntactic stage thus takes a two-dimensional dominating
operator and removes its sub-patterns from the expression before any re-
cursive descent parsing starts. Essentially, it can be thought of as cutting
out the dominated symbols and parsing them separately. For example, a
division operator parses its numerator and denominator first, removing the
numerator or denominator from the main expression. Once all dominated
symbols are removed from the main expression this leaves a simple expres-
sion which can be parsed by recursive descent. Only operators that make
use of the two-dimensional nature of expressions can dominate others.

Figure 6.9 shows how the new algorithm parses 3 x %. First the dominating
two-dimensional operators (such as division are pre-parsed), the dominated
sub-expressions (2 + 6 and 4) are separated out, and are then fully parsed
using recursive descent. Finally with no dominating operators left the algo-
rithm performs a normal recursive descent on the main expression. Compare
this with figure 6.8, that shows Chang’s method which has to maintain a
queue of operators ready to be parsed.

Division is handled by pre-parsing because its syntax (the shape of the sym-
bol) defines the range of the operands or sub-patterns explicitly. Thus divi-
sion can be easily computed first before the rest of the expression is parsed.
Horizontal line and square root symbols are sorted in order of width, as an
estimate of priority, then each symbol from longest to shortest is parsed.
Square roots encapsulate the symbols below the root sign, and horizontal
lines capture the symbols above and below into a numerator and denomi-

Chapter 6 Implementation 106
e W7/~
expressions first %%

2. Recursive descent
- SUHWSR’“S x E

swmngen, |3 x-%

Figure 6.9: An example of how the new algorithm parses 3 x %

nator. Horizontal line symbols without any numerator or denominator are
treated as subtraction or negation signs. This process makes use of the as-
sumption (that is generally correct) that the fraction bar or root symbol are
ordered in mathematical priority by their width.

Unfortunately the other two-dimensional operator the calculator supports,
exponentiation, cannot be treated in this way. Although an exponent is
explicitly defined by the baseline structure of the mathematical expression,
the baseline of an exponent is dependent on the rest of the structure of the
parsed expression. Thus exponents cannot be determined before any parsing
has happened.

6.4.6 Exponentiation

Exponentiation causes more problems for syntax directed mathematical ex-
pression recognition than for other methods such as graph rewriting. This
is because exponentiation provides no explicit syntax for the parser to be
directed by. So the top-down syntax direction struggles to extract powers
in order to handle them first.

Chang attempts to solve this problem by limiting the area in which pow-
ers can be written. His two-dimensional division rule can be seen in Fig-
ure 6.10. However, completely structural approaches, such as Chang’s, fail
with even simple mathematical expressions containing exponents. The rule
in Figure 6.10 assumes that only whole syntactic units are parsed and not
numbers composed of multiple digits. Chang’s pure structural specification
scheme is incapable of parsing simple expressions like: %2 or 1234,

To solve this problem, the baseline structure is parsed left to right, once
dominating operators have been calculated but before any recursive descent
parsing of the expressions.

6.4 Expression recognition 107

s
%

Figure 6.10: Chang’s [1970] division rule for exponentiation

Exponentiation is best parsed bottom-up; 2% can be understood correctly
only after the fraction has been parsed and its baseline determined. The
recursive descent is in order of mathematical priority, but the syntactic pre-
parsing is in syntactic order. Thus divisions have a higher syntactic priority
than exponentiation, and are pre-parsed first. The pre-parser is, in a sense,
a bottom-up syntactic parser.

Exponent pre-parsing is done by grouping symbols by baseline into a tree
structure. Each exponentiation level is then recursively parsed further. Fig-
ure 6.11 shows the exponentiation levels of the expression 23°+567. This
expression is parsed from left to right. Symbols are grouped along the same
baseline: if the baseline of the symbols is higher than a threshold (75% of the
current symbol height) then another exponent parse is recursively started
at this point with a new higher starting baseline. When the baseline drops
the parsing exits.

Figure 6.11 shows the final tree generated from parsing the expression. This
is generated left to right, as the baseline moves up, (after the 2, 3 and 6)
a new sub-tree is started, after the baseline drops (after the 4 and 5) the
recursion moves back down the structure tree.

This tree provides the final expressions used in the recursive descent parser.
Exponent operators are added into the expression where complete sub-
expressions provide the base for the exponent, and are ignored when the
base of the exponent is illegal, for example +2 is parsed as +2.

1 2a| 3 2b

234—|-5 67

Figure 6.11: Exponentiation ordering

6.4.7 Missing components

When parts of an expression are not provided but which are syntactically
required, these are replaced with placeholders. Examples of missing com-
ponents would be a missing numerator in a fraction, digits before or after
a decimal point, or a matching bracket. These are required to make the

Chapter 6 Implementation 108

mathematical expression valid and placeholders are added automatically
when there is no user input. The calculation described in the next section
then adjusts the values of these placeholders to ensure the expression is
mathematically correct. '

6.5 Calculation

Lots of work and research has gone into providing computers with more
and more powerful mathematical capabilities, from algebraic manipulations
of complex formulae to signal processing. However in contrast, very little
research has been done in novel methods of providing calculation.

Harold Thimbleby [1996] outlines a new declarative design of a calculator.
This design was an attempt to correct some of the mistakes he found in
existing calculator design and the main premise of this design was to show
the user a correct equation all the time. The primary design components of
this system are:

1. to take equations from the user, not instructions to calculate
. to display exactly what the user has entered

. to permit the equation to be edited

2

3

4. to fill in any missing numbers or symbols

5. to correct all mistakes, and ensure the result is numerically correct
6

. and to do so at all times not requiring any “terminators”

This design for a calculator uses a linear entry of expressions, similar to that
of a text editor, the user can add and edit at any point in the calculation.

The central idea of showing the user a mathematically correct display all
the time is that the calculator non-destructively completes the user’s work,
simultaneously correcting or solving any arithmetic mistakes or omissions.
By doing this the calculator ensures that everything the user sees is always
numerically correct. Figure 6.12 shows a screenshot of this calculator; the
user has entered 9 x ¢ = 1.5 and the calculator has filled in additions, in an
outline font what is needed to make this mathematically correct.

A conventional calculator works out 3 + 4 when the user instructs it to by
pressing the (=) after (4). The design described requires the output
of the calculator to be an equation, such that ‘4 + 5’ and ‘3 x 2 =’ are
strictly incomplete. The completions, ‘=9’ and ‘6’ that are needed for a
correct equation are provided automatically by the calculator to complete
the mathematical expression and are shown in a different colour. These
completions, hopefully intrinsically, provide the answer the user wants. In

fact the answer is available before the user even presses (=).

6.5 Calculation 109

If the user enters an invalid expression such as 7 = 3, the calculator corrects
this by balancing the equation with a ‘“+4’ on the right-hand side.

Untitled Calculation

Figure 6.12: Harold Thimbleby’s [1996] calculator

The completions ensure that at every point in a calculation the calculators
shows a mathematically correct display. The initial blank’ expression is not
‘O, as on an ordinary calculator, but ‘0=0’. A correct expression, such as
'4 = 2+ 2°, requires no completion and is not adjusted in any way. An
important part of this process is that the calculation of the completions is
consistent, that is, the same calculation always has the same completion. A
completion never depends on previous calculations nor on how the calcula-
tion has been edited; it depends only on the actual text of the incomplete
expression. Thus for the user, the calculator’s interaction is completely pre-
dictable, there is no hidden state that determines how the calculator works.

The incomplete expressions are corrected intelligently, often providing use-
ful feedback or even answers before the user has finished entering the whole
equation. The intelligent completion also allows a user to carry out “re-
versible” calculations, for example calculating the answers to equations like

4x? = 36 and 2? = 100.

This declarative design for a calculator works well for a pen-based system
and allows many powerful interaction possibilities. The primary benefit of
this design is the ability of the calculator to provide immediate feedback
as the user writes a mathematical expression. There is no need to wait for
a complete expression before calculating the answer because the calculator
handles incomplete equations smoothly and unobtrusively.

6.5.1 Implementation

The implementation of the calculator uses a novel method of performing
multiple traversals of the final parse tree. Before the calculation takes place,
the final parse tree is built with two considerations, firstly unknown place-
holders are inserted where user input is missing, and secondly if the parse
tree is missing an equality, it is added at the root level with an unknown
placeholder on the right-hand side.

Once the parse tree has been built, it is traversed up to three times:

Chapter 6 Implementation 110

1. An upwards traversal from the leaves, calculates known values and
guesses. After this pass each node in the tree has either a known or
guessed value. Operators with unknown operands guess sensible and
predictable values for the operands.

2. A downwards traversal computing unknowns that are not fixed. This
starts from the root of the tree and using the mathematical inverse of
each operator forces values down the tree into the unknown leafs.

3. A second downward traversal happens to ensure that the mathematical
expression is balanced where unknown values have extra restrictions
on their value, for example roots and factorials.

34+=9

User Input Parse Tree Calculation Up Fixing Down

Figure 6.13: Correcting a user’s expression

Figure 6.13 shows a simple example of this process for the unfinished expres-
sion ‘3+=9’. Once the parse tree has been constructed any gaps are filled
in so that any missing leafs on the parse tree are replaced with computer-
generated unknowns, whose value the computer will fill in when completing
the tree. In this case the right-hand-side of the addition is filled in with
an unknown. Then, in the calculation pass, the value of the expression is
recursively calculated upwards. The value of each node is composed of a
numerical value and a flag stating whether or not that value is fixed. An
unfixed node’s value is a guess and can be changed by future passes. Nodes
that are not fixed include computer-generated unknown nodes and most
nodes with an unfixed child.

An equality, the root node in this tree, chooses its value to be the value of
its fixed child (if both children of an equality are fixed the left-hand-side is
chosen for predictability). In Figure 6.13 the right-hand side of the equality
is the only fixed side (the left-hand side is an unfixed ‘guess’ of 3), therefore
the equality takes the value of the right-hand side. The second traversal
pushes the value of the root node down the parse tree. This alters unfixed
values as necessary to make the tree mathematically correct. In Figure 6.13
the value of the addition is corrected to be 9, which in turn changes the
unfixed left-hand-side of the addition to 6. The parse tree is now complete
and mathematically correct, 3 + 6 = 9, and there is no need for a third
traversal.

Figure 6.14 shows a more complex example of completing !+ = 30, which

6.5 Calculation 111

User Input Parse Tree

Fixing Down Fixing Down 2

Figure 6.14: Correcting a more complex expression

requires three traversals. The initial creation of the parse tree and the
calculation of the values in the tree happens as normal. The value 30 is
chosen as the only fixed child for the value of the equality. The + operator
attempts to set its unknown operands to 30 and 0 (the default behaviour
for the + operator with two unknown operands), this attempts to set the
value of the factorial to be corrected to 30. This is an impossible value for a
factorial (4! = 24 and 5! = 120), so in this case the inverse factorial function
chooses the nearest value it can get to, in this case 4!.

This leaves the operands of the + not actually summing to 30, so a second
correction of the right-hand side of the + is attempted with the left-hand
side fixed at 24, this pushes the value 6 down into the right operand of the
addition. This third traversal finally leaves the tree correct mathematically
with the solution 4! 4+ 6 = 30.

Parsing of a complete expression, 7 = 5 that contains no unknowns, is shown
in Figure 6.15. The calculation of the value leaves an equality mismatch:
the left-hand side of the equality is 7, the right side is 5 and both sides
are fixed. This situation is corrected by choosing the left-hand value of the
equality and adding in an extra operator to the root of the right-hand side
of the equality, this is either an addition or a subtraction depending on
which side is greater. Always choosing the left-hand side value means that
the correction of an inequality is always and consistently positioned on the
far right of the mathematical expression. The third and last traversal then

Chapter 6 Implementation 112

7=5 =

User Input Parse Tree Calculation Up

Equality mismatch Fixing Down
Figure 6.15: Correcting a complete expression

corrects this new parse tree, correcting the addition to have a value of 7,
resulting in the solution of 7= 5-f 2.

This multiple pass correction works well for correcting most expressions and

can sensibly be used to correct more complicated equations like 2 = 100
which gets corrected to 2'3 = 100 —36 and —= —10 which gets corrected
to ~ = -10.

The calculator also handles complex arithmetic easily. It is not only able to
calculate eIt and 1 but also to correct complex expressions like 2(= -64
correctly using complex arithmetic to 26+4 = —64

6.6 User Interface

4x2=8

Figure 6.16: The calculator’s user interface

The main portion of the user interface is the central white canvas, which

6.6 User Interface 113

Figure 6.17: An expression being morphed

shows the current equation and handwriting. Figure 6.16 shows the equation
4x2 being modified to 4 x 2=\ The interaction of the calculator’s user inter-
face is described more fully in Chapter 2, this section provides an overview
of the implementation and how it interacts with the underlying processes.

In terms of implementation, the user interface provides a rendering of the
current calculation and handles user input by passing the user’s handwriting
to the symbol recogniser.

6.6.1 Interaction

The user interface provides continuous projected feedback of the state of the
calculator and it provides continuity linking between the user’s hand-written
input and the calculator’s output by morphing between the two. How the
different stages in the calculation process are handled bv the user interface
are listed below. This process is also shown in Figure 6.17.

A. Symbol Recognition The user interface replaces the user’s hand-
written symbols with typeset characters as the user writes them. A
small delay allows the user to finish writing composite symbols. This
approach provides immediate projected feedback about the recognition
process and does not leave any doubt as to the symbols recognised.

B. Expression Recognition After a small delay once the symbols have
been recognised the calculator recognises the equation. The user in-
terface morphs the now typeset characters from where the user wrote
them into a neat typeset equation. The morphing provides a smooth
continuous linking between what the user wrote and the filial equa-
tion. Using a typeset equation provides a clear representation of what
equation the calculator is computing.

C. Calculation — The ‘blanks’in the calculation are filled in as the equa-
tion is morphed to make the equation mathematically correct. These
show the answers in-place and provides immediate feedback of what
the calculator has declai'atively computed.

Chapter 6 Implementation 114

6.6.2 Pen-based interaction

The majority of potential users for the calculator will already be competent
with writing using a pen on paper and also writing mathematics down on
paper. The primary advantage of a pen-based system is the similarity or
perceived affordance [Norman, 1988] of the pen-based interface with that of
pen and paper.

The advantage of an affordance with paper is especially powerful with math-
ematical expressions, because a lot of sums and mathematical work is still
done on paper with a pen or pencil. A pen-based system that works in the
same fashion as pen and paper, means that anyone familiar with writing
mathematical notation should be able to enter expressions with little or no
training. There need be no restrictions on how an equation is written. Ide-
ally if a mathematician writes an equation neatly in exactly the same way
as they would on paper, it will be recognised.

Another advantage of pen-based user interfaces is there is no need for any
other interface. Pens are capable of replicating the complete functionality
of both the keyboard and the mouse. There is no need switch between two
input devices, as the pen can be used for both. This and the ability of pens
to be used on small screens are some of the prime reasons that are driving
research in pen-based mobile devices.

The actual input data to the calculator software is mouse movement, pen
or finger based input is solely dependent on the user input hardware. While
the calculator is usable with a mouse, writing smooth symbols with it is
very hard.

6.6.3 Expressions and ink editing

The system allows users to enter expressions as they would on paper, without
any unnatural restrictions in a WYSIWYE way. For example, the user is
not forced to enter the expression in a linear fashion as some expression
recognition methods require [Littin, 1993].

Although there are small timing constraints to allow multiple stroke symbols
to be written, these are rarely intrusive, so the user should not have to alter
their way of writing by much, if at all, to use the calculator.

Edits can be made to an expression by adding new symbols, deleting parts
of the expression or moving parts of the expression from one location to
another. After each edit the current parsed mathematical expression tree
is thrown away and completely recalculated from scratch using the new
symbols and locations. This means that an edit, insertion, move or deletion
is performed on the “ink” not on the expression tree. From the user’s point
of view this is what they see and expect.

6.6 User Interface 115

6.6.4 Selection

In the user interface, the user is required to select symbols before they can
be deleted or dragged elsewhere. A selection is created by drawing round the
symbols the user wants selected. This gesture is recognised automatically
from the context and does not make use of explicit user mode switching for
gestures which limits the user’s interaction [Li et al., 2005].

All other drawing on the calculator ends up as ink as part of a new symbol.
The only gesture the calculator supports is the circle-drag-drop gesture.
This gesture is initiated by encircling symbols in a loop, where a loop is one
which is closed or one that comes within a small distance of being closed.

The creation of a selection is highlighted to the user by several visual and
audible notifications: a “whooop” sound is played, the inner part of the loop
turns light blue, and the symbols contained in the loop turning bright blue.

Once symbols have been encircled, the selection stays visible. When a selec-
tion is visible on the screen the calculator does not accept new drawing as
normal. Drawing on the screen does not create new strokes but removes the
selection. By dragging from any location inside the selection, the selected
symbols can be moved anywhere within the mathematical expression. While
the user is dragging, the user interface draws an arrow from the selection to
the current drop point.

Dragging a selection to the bin provides a similar user interface metaphor
for deletion to deleting files in Windows Explorer or the Mac OS X Finder.
This combination of selection and deletion removes the need for an additional
deletion gesture. When the deletion happens an animated smoke cloud is
placed over the symbols and a “poof” sound is played. The symbols are
removed and the expression is re-parsed without out the deleted symbols.

The single encircling selection gesture and the ability to dragging the selec-
tion within the equation, to the bin or even to the dock supports all editing
possibilities. Only having a single gesture makes the user interface simpler
and easier to learn or use.

6.6.5 Drag and drop

Dragging symbols utilises this concept of “ink editing” to provide dragging
for ink rather than syntax or structure. Dragging is implemented by moving
the selected symbols to the end point of the drag and drop and shrinking the
symbols down to tiny proportions so they take up no room but still retain
their relative positions. Once the symbols have been reinserted and moved,
the expression is re-parsed and the symbols morphed into their new correct
locations for the new expression.

A side-effect of the way this drag and drop process interacts with the ex-

Chapter 6 Implementation 116

pression parser is that it is impossible to drag and drop symbols on-top of
the existing expression so that the existing expression is contained inside
the dragged symbols. This is because the dragged symbols are reinserted
as tiny symbols at the drop point so you can drop them into an existing
expression but the symbols are too small to be recognised as containing any
symbols they are dropped on-top of. For example, it is not possible to drag
a square root symbol over the top of a number, but it is possible to drag the
number underneath the square root.

Performing operations on the “ink” of an equation also means that edits can
be made that do not make sense to perform on the expression tree. Exam-
ples would be dragging non-contiguous symbols or syntactically meaningless
groups of symbols. Figure 5.6 in the previous chapter shows several drag
and drop ink-edits that make no sense when thought of syntactically.

6.6.6 Undo

The user interface provides an undo ability, shown in Figure 6.18, in the
form of a ‘clock’, positioned in the top-right hand corner of the screen. The
clock hands show the current ‘time’ of the equation. Every time a user
writes something or edits the equation, as the equation morphs the clock
moves on a “quarter of a hour.”

Figure 6.18: The undo ‘clock’

A user can grab the clock hands and rewind the hands by moving in anti-
clockwise circle around the clock. As the clock is rewound, the equation
displayed is the equation that was shown in the past when the clock was
previously at that time. The undo clock allows users to undo mistakes and
to rewind and scrub through the past to get an overview of how the current
(or any previous) equation was achieved.

The undo system is implemented as a keyframe animation of everything the
calculator has shown. The undo system records everything that happens as
an animation except for the pen movement of user input. So when rewinding
the calculator will display symbols morphing from location to location but
no handwriting. No semantic information is kept only the sizes and positions
of symbols.

6.6 User Interface 117

Each symbol keeps a record of its creation time, all the keyframes of position
and size that it was morphed through during editing and a deletion time if
it was removed. Each time the equation is re-parsed and the symbols move,
the keyframes for all the symbols are recorded for the current position.
Keyframes are also recorded for the smoke deletion animation and for the
computer answers fading in and out.

As time is wound forward or back, the symbols are morphed between these
keyframes without any additional semantic information. Once the user has
finished and begins to write on-top of the mathematics shown, the expression
is re-parsed from what the user sees. By beginning to write in the past, the
future equations are lost and the clock cannot be wound forward again to
retrieve them.

The parsing is flexible enough that any state between the original input and
the typeset result is always recognised as the same expression, this means
that stopping the clock at a point halfway through a morph does not cause
any problems.

6.6.7 The dock

The dock is provided so that a user can work on multiple equations at the
same time. The dock sits at the left side of the screen and can be shown or
hidden by the user by dragging on the dock handle. Expressions stored in
the dock are shown as small, scaled-down, versions of what they would look
like when edited.

Each expression stored in the dock lives in its own world and encapsulates
its own data and undo history, similar to multiple open text documents in
an text editor.

The dock is initialised from a text file which stores the inital expressions in
a layout (ink) based syntax, and can be customised to a user’s needs. The
dock text file and its syntax is available in Appendix G. The dock is not
saved after each session, but there is no technical reason why it need not be.
Saving the dock could provide a useful memory store over multiple sessions
of using the calculator. However, the calculator is currently not designed for
multiple sessions. These choices were made to make it robust in multiuser
situations such as exhibitions.

New calculations can be created in the dock by dragging expressions or por-
tions of expressions from the current expression into the dock. Expressions
in the dock can be rearranged by drag and drop or deleted by dragging to
the bin. Selecting an expression stored in the dock is done by clicking on
the expression. When an expression is selected the main expression being
edited changes to the one stored in the dock.

It also possible to drag expressions stored in the dock out into the cur-

Chapter 6 Implementation 118

rent expression being edited. These dragged dock expressions appear as
boxed expressions that are immutable, but which can be dragged around
and deleted like all symbols.

6.7 Summary

The mathematical recognition the calculator is based on uses simple model
matching of symbols combined with a hybrid structural specification scheme
and recursive descent expression recognition. These provided decent recog-
nition for the subset of mathematics the calculator handles.

The answers to the user’s input are provided sensibly, using a declarative
approach, regardless of how incomplete the user input is. The user inter-
face provides flexibility to the user and allows additions and edits to the
expression without the constraint of the mathematical structure. This “ink
editing” underlies most of the implementation and computational approach
to editing mathematical expressions.

The combination of flexible editing and sensible interpretation of incomplete
input, combine to provide a compelling user experience even when the math-
ematical recognition is completely wrong. Indeed, quick and easy recovery
from errors, whether human or computer, makes the calculator fun to use.

Chapter 7

Evaluation

This chapter begins with a brief discussion of evaluation in HCI as used in
this thesis. Previous research both providing a comparative evaluation of
a 2D version of the calculator and evaluation of pen-based mathematical
interfaces in general are described.

The calculator and the principles described in this thesis are evaluated in a
variety of different ways using different techniques:

e Comparative task-based and quantitative user testing of the pen-based
calculator using exam questions.

e Feedback from unguided user interaction from a large range and num-
ber of people at the Royal Society exhibition.

e Comparative evaluation with zThink, a pen-based calculator that was
designed without the using the flow principles.

e Heuristic evaluation using Green’s [1989] cognitive dimensions.

Evaluating the calculator with different methods yields different insights and
useful information about the design and principles. Each different technique
lends its own complementary support to the design of the calculator and
the principles underlying it. The difference the underlying principles make
is highlighted by the comparative evaluation with zThink which provides a
great comparison because although it is superficially similar to the calculator
it lacks most of the flow principles. The culmination of these different
strands of evaluation is then tied up at the end of this chapter.

7.1 Evaluation in HCI

Readings in HCI [Baecker et al., 1995] concludes “Given [design’s|] complex-
ity, and its mystery, how are we to proceed? The answer is implicit in the
process of iterative design — evaluation.” Many main HCI undergraduate

119

Chapter 7 Evaluation 120

text books [Preece et al., 1994, Dix et al., 1997, Shneiderman, 1997| similarly
cite evaluation as a major part of HCI design.

Evaluation is important. Many techniques, with different approaches, have
been developed to provide evaluation of computer systems and user inter-
faces. Examples include: User testing [Nielsen and Mack, 1994] which is
probably the most widely used technique. Typical users are brought into a
lab and use a prototype. Various data collection methods like observation,
thinking aloud, tasks and questionnaires are then used to elicit data. Partic-
ipatory design techniques [Schuler and Namioka, 1993] attempt to identify
user design requirements. Analytic techniques like, GOMS [Card et al.,
1983], cognitive walkthrough [Wharton et al., 1992] and heuristic evalua-
tion [Nielsen and Mack, 1994] offer an evaluation without users or proto-
type. More recently, laboratory studies have been questioned, and there is
a greater emphasis on field and ecological methods.

In Trouble with Computers, Landauer [1995] states the case that insufficient
evaluation of computer systems and user interfaces with respect to their
usefulness and usability is a major problem and part of the “productivity
puzzle”. Although evaluation only address the usability half of this puzzle,
Greenberg and Buxton [2008] point out that usefulness is much more difficult
to evaluate.

7.1.1 Creating or iterating

While refining a design through user evaluation and iterative design is a suc-
cessful and productive process, these methods are potentially less successful
when it comes to creating a novel user interface design [Buxton, 2007].

When the HCI was a young field much of the literature was principle-
orientated. Books like Tognazzini’s popular and much-cited Tog on Interface
[Tognazzini, 1991], published as late as 1991, are primarily guidelines and
principles. Here are two examples of different principles from Tog’s book:

“Do not attempt a 3D look in one-bit graphics.”

“Make the response time snappy. The more rapid-fire and more
closely coupled the dialog, the more the user will feel and be in
control.” "

A simple example of this trend towards evaluation is that, while evaluation
is a strong part of both the 1987 version of Readings in HCI [Baecker and
Buxton, 1987] and its 1995 second edition [Baecker et al., 1995], the sec-
ond edition spends much less time focusing on principles and more time on
evaluation. The focus in HCI literature has increasingly been to focus on
evaluation: quantitative evaluation (about 70% of publications) and quali-
tative evaluation (about 25%) [Barkhuus and Rode, 2007]. Arguably, this
has been to the detriment of other forms of verification such as analyti-

7.2 Evaluation in this thesis 121

cal evaluation and principled or principle-led design. Barkhuus and Rode
[2007] suggest that this domination of HCI evaluation by a few methods
undermines novel and ground-breaking research that does not fit into the
“correct” mould.

Perhaps the HCI field was initially concerned with creating new user in-
terfaces, and as designs and user interfaces have proliferated, much of HCI
has rightly become about refinement instead of the initial focus on creation.
The focus has changed from creating new user interfaces to iterating and
improving existing interfaces.

7.2 Evaluation in this thesis

It is not the aim of this thesis to evaluate the calculator, or Lineform de-
scribed in Part II, with methods that measure error rates or task completion
times. The contribution of this thesis is primarily the principles and ideas of
user interface design that are incorporated in these applications, not an in-
cremental and measured improvement of solving a calculation, or drawing a
picture. The appropriate methodology for the evaluation of these principles
is reasoning and argument, which this thesis provides effectively. In many
ways the principles could be valuable but a conventional evaluation of them
turn out negative, for example when evaluating the principles incorporated
in a poorly implemented prototype. The purpose is not to dismiss evalua-
tion as a useful and important tool but to position the main contribution of
this thesis as primarily situated in the design and principle space.

This thesis does not stress the traditional evaluation of the calculator or
Lineform and their respective design principles. These are primarily design
and conceptual innovations, and as Greenberg and Buxton [2008] suggest,
traditional evaluation stresses measurable contribution at the expense of
design and engineering innovations. While this thesis does not avoid eval-
uation it attempts to escape the “tyranny of evaluation” [Lieberman, 2003]
by focusing on the principles and design innovation.

Despite the lack of extensive formal evaluation, the designs in this thesis
have been tested and used by thousands of users. The majority of evalu-
ation in HCI is formative iterative evaluation. Just as the feedback from
users of successive versions of Lineform has helped guide its design, iterative
evaluation is part of a process of improving a design.

Both designs, of the calculator and Lineform, are also comparatively eval-
uated, by analytical comparison with similar user interfaces. Formal com-
parative user testing is neither needed nor productive, given the nature of
the user interface designs. Section 7.7 compares the calculator with a su-
perficially similar user interface and shows how the principled design of the
calculator avoids many design problems.

Chapter 7 Evaluation 122

7.3 Declarative calculators

The mathematical engine the calculator uses is based on the declarative
calculator first described by Harold Thimbleby [1986, 1996]. Harold Thim-
bleby’s calculator used a simpler “traditional” one-dimensional input like a
text editor but provided partial expression handling and completion that is
similar to the calculator described here.

Cairns et al. [2004] evaluated this calculator comparing it with a software
simulation of the Casio HS-8V. The Casio HS-8V is a standard four function
calculator, which was simulated to provide control over the implementation
and to remove the difference between physical and computer-mediated in-
teraction.

Twelve subjects took part, each using only one of the declarative calculator
or the HS-8V. The subjects were then asked to answer five GCSE math-
ematics exam questions (i.e., exam questions for 16 year olds), chosen to
avoid the strengths or weaknesses of either interface.

The result of this study was that the declarative calculator took on average a
third longer to use. They did see reduced error rates with the new calculator,
and concluded that user familiarity with traditional calculator user interfaces
and that the new user interface was so different that it left room to be
optimistic about the new calculator’s performance.

7.4 Pen-based mathematics

Studies have found pen-based user interfaces to be slower than typing [Brown,
1988, although compared with soft-keyboards on small screens, handwriting
may have the advantage [Lewis, 1999).

Nevertheless there are several reasons why mathematics may benefit from
pen-based user interfaces. Mathematics makes use of higher dimensional
layouts, for example exponentiation, that are directly accessible from a pen-
based user interface. Template based user interfaces do provide higher di-
mensional representations but these have to be constructed from templates
in a top-down manner. Published comparisons with handwriting have fo-
cused on paragraphs of English text, but mathematics, in comparison, is
more structured and contains many symbols like |/ and). that are not
directly accessible from the standard keyboard.

An evaluation of pen and speech input for mathematics, [Anthony et al.,
2005], compared the entry of mathematical equations of varying complex-
ity using the keyboard and mouse with Microsoft Equation Editor, pen-
based handwriting, speech, and handwriting plus speech. Having empirically
tested 48 participants the conclusion was that handwriting was significantly
faster, less error prone and more preferred than using the keyboard and

7.5 Initial evaluation 123

Figure 7.1: Wacom Graphire2 tablet

mouse with Microsoft Equation Editor. In addition, they found that the
more complex an equation (e.g., longer and including special symbols) the
more the keyboard entry slowed down, while handwriting did not see such a
sharp decline. Speech was also found to be a good method but worse than
handwriting.

7.5 Initial evaluation

The calculator described in this thesis combines aspects of both the declar-
ative calculator’s mathematics [Cairns et al., 2004] and the pen-based hand-
writing interaction which was evaluated by Anthony et al. [2005].

An evaluation of an early version of the new calculator was first published
by Will Thimbleby [2004]. This initial evaluation was performed with an
early prototype of the calculator and later studies in this thesis have been
performed with a much more capable and complete program.

The initial prototype was primarily hindered both by poor handwriting
recognition and an unfamiliar user input device that users had some prob-
lems with. Despite this, the results were favourable and provide interesting
data.

The accuracy of the prototype’s handwriting recognition was 81.1%. That
is, on average one in five characters were miss-recognised. This significantly
lowered the usability of the overall system, as users repeatedly had to correct
the handwriting recognition.

The user interface was based on a Wacom Graphire2 tablet (shown in Fig-
ure 7.1). Graphics tablets have to be used by looking at the screen and
drawing on the tablet with the pen, and are typically usually used by artists.
The disparity between where the user is writing and where they are looking

Chapter 7 Evaluation 124

o Practice calculations:

— Calculate 3 + 62
— Calculate 7 x 4

— Calculate ‘g‘

— Calculate 9— =5
— Calculate 32

— Calculate 3’ = 64

e Simple calculations:

1. Calculate 2 x 3+ 4
2. Calculate 2—12—3
3. Calculate 9 — 2/3

e Mathematical problems:

4. What is the average of 21, 34 and 567
5. What multiple of 32 equals 507
6. What power of two is 287

Figure 7.2: Tasks used for the prototype evaluation

is unusual and it can take a while before users are comfortable with this
kind of interaction. None of the users in the usability study were familiar
with using a tablet, and they predictably found using an artist’s graphics
tablet awkward.

7.5.1 User studies

A total of nine participants took part in the testing (2 female, 7 male under-
graduate students). All the participants had used standard calculators at
school, and were studying a wide range of subjects including mathematics
and art history.

Before the test began, users were allowed to familiarise themselves with
the pen and tablet. This involved suggesting that they try to write words,
numbers and draw pictures with the pen and tablet interface. The observer
then gave a short demonstration of the calculator, showing how an example
sum would be entered. When the user announced that they were ready, the
observer started the test by giving the user a list of tasks on a piece of paper
(see Figure 7.2). Some of these tasks were based on old GCSE mathematics
papers.

The tasks were split into six practice questions, three simple mathematical
questions, and three worded mathematical problems.

7.5 Initial evaluation 125

The thinking aloud protocol was used [Lewis and Rieman, 1993]. Partici-
pants undertook the tasks in Figure 7.2 while the observer watched them
and helped when they had problems. On conclusion of the test, the observer
discussed any issues that arose during testing. These were supplemented by
an anonymous questionnaire (shown in Appendix A). The tests were also
recorded as a live video of the user’s interaction and the interaction on screen
was recorded using screen-capturing software.

The anonymous questionnaire was used in addition to the think aloud and
discussion so that participants could freely express their thoughts about the
system. Providing a discussion afterwards also allowed the observer to ask
additional questions resulting from issues that arose during the testing.

After discussing the calculating system with the observer, users were asked
to perform the same calculations again on either their own pocket calculator
or a calculator provided for them (a Sharp EL-531GH DAL). These tests

were also recorded.
Sharp’s DAL technology means:

Until the introduction of SHARP's D.A.L., keying in equations had
been a complicated process making scientific calculators difficult
to use. Introduced in 1992 and an industry-first, SHARP's D.A.L.
allows symbols and numbers of an equation to be entered as they are
written. Instead of wasting energy on difficult calculator operations,
users are free to concentrate on mathematical concepts.

— Sharp D.A.L. marketing!

For example, the Sharp web site gives 10 4+ 2sin 30 being keyed as (1){0]
(2)(x)(sin) (3}(0) (=)- This would contrast to calculators where sin is a postfix
operator, which confuses users as 10+ 2 x 30sin would almost certainly find
sin 60, etc.

7.5.2 Results

Upon completion of the test, the video recordings were reviewed and infor-
mation on error rates and time on task was extracted and logged.

In general, participants found the interface and concepts of the new calcu-
lator easy to learn and use, despite many users struggling with handwriting
recognition problems.

When asked to rate the system in terms of ease of use compared to other
systems they had used, on a scale of 0 (worse) to 5 (better), all the answers
were above 3 and had an average of 4.1.

'http:/ /sharp-world.com/contents/calculator /features/standard/dal/index.html
(viewed Feb 27, 2010)

Chapter 7 Evaluation 126

Equation
Figure 7.3: Average time for users to complete tasks

The results presented here were extracted from the video tapes of the user
tests and from the questionnaires. Comprehensive results from the anony-
mous questionnaire, and some of the discussions, are in Appendix B.

7.5.3 Time on task

Figure 7.3 shows the average time for the users to complete each of the tasks
in Figure 7.2. This figure shows a comparison in seconds of the average time
for the users to complete each task using this system and using their own
calculator. The last two tasks were left incomplete by several users when
using a normal calculator, so these results are averages of those users that
completed the tasks successfully.

The last two tasks that users struggled to complete were:
5. What multiple of 32 equals 50?
6. What power of two is 28?

Both of these problems require some rearranging to find the result using an
ordinary calculator. Only three users knew enough mathematics to find the
answer to task six, using to find the power of 2 equal to 28. However,
all of the users successfully managed to arrive at the solutions using the new
system.

For the simpler sums, like 9x2/3, the handheld calculator was much faster
than the new system. This was expected. All users were familiar with their
own handheld calculators. Handwriting and handwriting recognition also
slows down the new calculator. However two of the tasks were actually
faster on the new system.

7.5 Initial evaluation 127

Task 2: ~~4 was almost certainly performed faster because users could en-
ter it “as they saw it,” as one participant described it, rather than having
to search for buttons and to think about brackets on a handheld calcula-
tor. Secondly, task ¢: “What power of two is 28?” was performed faster;
again users could write the problem with minimal rearrangement or use of
equations.

m Correcting
o Entering

oJ — 55— CSSS— 57—
1 2 3 4 5 6

Equation
Figure 7.4: Average percentage time entering or correcting tasks

Figure 7.4 shows the average percentage time spent by users entering a
formula and correcting mistakes when using the new system. For each task
the percentage of time spent correcting is large, o11 average 42% of the time
users were using the calculator was spent correcting errors. Several users
had trouble entering task two, often because of bad segmentation errors (an
implementation problem), these users spent a long time trying to correct the
expression, often restarting from scratch when a symbol was miss-recognised.
The timing results here reflect more on, or at the least are obscured by, the
accuracy of the handwriting recognition of the prototype and the interaction
problems of users unaccustomed to an artists tablet input device.

7.5.4 Ease of use

In general, all of the users expressed their enjoyment of using the system at
the end of the tests. After the quick demonstration of a simple mathematical
expression, not a single user asked a question regarding the use of the system,
excluding problems with the handwriting recognition. Every user found that
the system worked as they expected it to.

Feedback in Appendix B from the questionnaires reflects this. Comments
were made by all participants praising the simple and intuitive user interface.

Chapter 7 Evaluation 128

Users liked the lack of buttons and that they did not need to think about
extra things like brackets.

However, several users also expressed some frustration with the symbol
recognition, especially when the system repeatedly miss-recognised certain
symbols. Most users also commented that they found the Wacom pen and
tablet awkward to use. This was primarily due to the fact that writing
happens in a different place to the screen. This is in contrast to later devel-
opments which provided much more accurate symbol recognition and touch
based user interface of tablets or SMARTboards.

Every user liked the morphing, and they particularly liked the fact that they
could instantly see what the calculator was calculating.

delete

Figure 7.5: Delete gesture from early prototype

The initial prototype tested here used only one additional feature to hand-
writing recognition. This was a delete gesture, similar to a joined up X, as
shown in Figure 7.5. This gesture has since been replaced with dragging to
the trash.

Some users found that the delete gesture was difficult to use over a large
area and several users suggested the addition of a button, which has
now been added and is in the current version of the calculator.

7.5.5 Accuracy

The large amount of time spent correcting errors suggests that better hand-
writing and expression recognition could dramatically reduce the time on
task. A large part of the time taken to complete the tasks with the pro-
totype calculator was taken up with specifically recovering from symbol
recognition errors. There is a significant correlation (r = 0.78 p < 0.05)
between the time spent correcting symbol recognition errors and the time
taken, which suggests that improving the recognition will improve the time
spent entering mathematics. The poor average symbol recognition accuracy
percentage of 81.1%, was a significant factor in the input error rate and did
not aid the overall usability of the system.

However, when calculating mathematics, input accuracy is not the most

7.5 Initial evaluation 129

important consideration as these errors can be corrected; the accuracy of
the output is often far more important.

With the new calculator no user got the wrong answer for any question.
That is, although there were a high number of errors in the input, these
were all intermediate errors, errors that were noticed and corrected before
the user finished. Errors that are unnoticed or uncorrected are a far bigger
problem. Users never arrived at an incorrect answer with the new calculator,
but when using a handheld calculator they made several simple mistakes that
went unnoticed, resulting in a final value that the user thought was correct
but was in fact wrong.

Crucially, by displaying the computed mathematics in an easily understand-
able two-dimensional format, the calculator provides the feedback necessary
for the user to understand what is being computed. Users knew if and when
their calculations were wrong and when they had to be corrected. This is
an aspect of WYSIWYE, by making the user interface predictable and visi-
ble the calculator provides enough information for the user to show exactly
what expression resulted in the answer and for the result of any action to
be completely predictable.

Handheld calculators, on the other hand, usually do not provide this feed-
back. Several users got some of the answers wrong and did not realise that
they were wrong until prompted. Some of the users even got some of the
simpler sums wrong (like 9 — 2/3) without noticing their mistakes. This
inaccuracy in the expected output is far more concerning than poor input
accuracy, especially when most users trust calculator answers implicitly over
their own judgement.

7.5.6 Summary

Users found the new calculator more intuitive and easier to use than tradi-
tional calculators. The new system was also faster in some cases and allowed
users to complete problems they could not otherwise complete.

The new calculator was faster for some mathematical problems even though
users were unfamiliar with both the system and the graphics tablet input
device.

Of the two tasks that were faster, task 6 is an unfair time-on-task compari-
son: it was specifically added as a task to see if the new calculator enabled
users to compute answers that they were unable to with a standard calcu-
lator. In the study, six users were able to complete the task with the new
calculator that they failed to do on their own calculator. Thus the new cal-
culator enables users to perform mathematics that they could not do before,
which is enabled by its declarative interaction.

Typesetting and feedback through morphing successfully allowed the user

Chapter 7 Evaluation 130

to understand what the calculator was doing. Importantly, users never ar-
rived at an incorrect answer with the new calculator, however long it took,
compared to several simple mistakes that went unnoticed using conventional
handheld calculators. The immediate feedback of projection and the con-
tinuity of the user interface were key part of the user’s comprehension of
what was happening.

The new calculator provides an improved system that users produce less
errors with and therefore can place more trust in. With practice users
should be able to use it faster, without having to recheck their formulae. It
is clear that the two-dimensional typesetting, and morphing provide good
feedback that communicates what is happening to the user very effectively.
The WYSIWYE nature of the user interface was central to making the
interaction and result from the calculator obvious in how the user got to the
current result and how to change it.

When viewed in the context of the unfamiliarity and symbol recognition
problems these results are surprisingly good. The new calculator was faster
for some problems, let users solve mathematics they could not have done
otherwise and produced fewer errors. The concepts and ideas implemented
in the new calculator were shown to be a success.

7.6 Royal Society evaluation

The calculator was exhibited at the Royal Society’s Summer Science Ezhi-
bition, 2005. This exhibition is held to showcase top UK science annually
at the London premises of the Royal Society, the UK’s national academy
of science. The calculator was one of 24 exhibits that were competitively
selected from universities and companies throughout the UK. The purpose
of each exhibit was to present science, engineering or technology, through
visually engaging and interactive displays to the public.

The Royal Society’s exhibit normally runs for 5 days, and with several
evening events tailored to teachers, business leaders, politicians, royalty and
others. Unfortunately the week included July 7, 2005, with its acts of ter-
rorism across London, which had very unfortunate direct effects as well as
a reduction in travel and visitor numbers to the Royal Society, so there
were fewer respondents than hoped for. In particular, our planned video
evaluations had to be cancelled.

The calculator presented in this thesis was one of these exhibits. Which was
humorously titled with the bad pun: “Weapons of Maths Construction.”
The exhibit was large, covering over 6 by 3 meters of floor space in the Li-
brary of the Royal Society, which contained only our exhibit. This included
aspects of historical calculators, from abacuses and slide rules to mechanical
calculators of the 1960s. A large collection of modern calculators from var-
ious manufacturers including Sharp, Casio and HP were also available. To

7.6 Royal Society evaluation 131

Figure 7.6: Royal Society Summer Science Exhibit

aid their use, GCSE revision notes were available explaining how calcula-
tors should and should not be used, how to ensure mistakes were not made
and how to work round their inconsistencies. A photograph of our crowded
exhibit is shown in Figure 7.6.

The main part of the exhibit, visible in Figure 7.6, was taken up with a s
foot diagonal interactive white board, a SMARTboard 2000i. This board
is a rear projection touch screen, that users can interact with using their
fingers (or indeed anything else). This board was running the calculator
continuously for the four days of the exhibit. Visitors to the exhibit were
encouraged to walk up and use the SMARTboard with their fingers or, a
pen. Often one of the exhibitors would provide a short demonstration and
encourage the visitors to have a go themselves and experiment. Throughout
the exhibition the demonstrators remained on hand as visitors played with
the calculator, answering any questions that arose and prompting the visi-
tors to try different things out. The guidelines provided for exhibitors are
included in Appendix C.

The exhibit was very popular, and due to overcrowding around our event,
we sometimes had health and safety staff remove our evaluation desk and
facilities to encourage people to move on.

7.6.1 Visitors

The visitors came from vastly different backgrounds, ages, cultures, educa-
tion and occupation, from s year old primary school pupils to retired 80
year olds, from GCSEs to PhDs and professors, from students to teachers

Chapter 7 Evaluation 132

to accountants to civil servants and builders

The whole enormous range and variety of visitors from shy teenage girls to
Fellows of the Royal Society enjoyed using the calculator; seeing everybody
and especially teenagers and school pupils getting involved and excited by
the mathematics was very rewarding.

More than 4,000 people came through the doors of the Royal Society over
the four days of the exhibition. From those visitors that viewed our exhibit,
roughly a quarter used the calculator. After visitors had used the calculator
the demonstrators encouraged them to fill in a feedback form. The feedback
form used is included in Appendix D.

Visitors were further encouraged to fill in forms by providing prizes of an
iPod Nano each day for the most interesting/useful feedback.

In total, 436 evaluation forms were filled in and handed in during the course
of the exhibition.

The results from the feedback forms provide a reasonable estimate for the
demographics of the visitors. The average age of the users who returned
feedback forms was roughly 30, with half the users under 20. These were
evenly split between male and female. The largest group of users was stu-
dents who were either studying GCSEs or A-Levels. Teaching was the most
common occupation after students but only by a small margin; there was a
very broad range of other occupations represented.

7.6.2 Results

The raw anonymised data from the Royal Society’s Summer Science Exhi-
bition is available in Appendix E. The results from the feedback forms are
summarised here.

Figure 7.7 shows the percentage of respondents that used different methods
for calculating mathematics. The majority of the respondents used calcula-
tors for doing mathematics and most people used several different methods
of doing mathematics. Just 15% of the respondents used calculators or
spreadsheets as their sole method for doing mathematics, about the same
as the number of people who only used paper or mental arithmetic.

Users were asked to rate the calculator on a scale from one to five for both en-
joyment (disliked-it to loved-it) and helpfulness (unhelpful to very-helpful).
The summary of the results from these two questions are shown in Figure 7.8
and Figure 7.9.

Over 90% of people returning feedback forms either liked it or loved it. Put
another way, they liked or loved a calculator, something that users only
usually tolerate. These results suggest that there is something about this
new calculator that works better, and is more enjoyable.

7.6 Royal Society evaluation 133

100%
80%

m 75%
g
0
C
o
O.

& 50%
o

£ 25%

0%

Calculators Spreadsheets Mental Paper

Used for mathematics

Figure 7.7: Royal Society evaluation: Usage

Users filling in the feedback forms were also asked three other specific ques-
tions on their use of calculators. The results are summarised below.

92% of respondents thought the new calculator was better

27% of respondents said they had previous problems when using cal-
culators

34% of respondents said in retrospect they had problems doing math-
ematics

Part of the exhibit was about current handheld calculators and some of their
problems [Thimbleby, 2000, 1996]. The last two statistics above were from
two questions about problems with calculators were designed to find out
if the exhibit had changed or informed visitors opinions about calculators.
From a subjective point of view, it was successful, one Nuclear Engineer
wrote in their feedback “[the] exhibition helped me realise how cumbersome
(mentally) calculators/spreadsheets are.” However the statistical difference
between the answers for the before/after questions is not significant (though
we did not do a controlled before/after evaluation, as this would have been
infeasible in the exhibition environment).

7.6.3 Quotes

Users were provided with several opportunities for providing feedback on the
different aspects of the calculator. Some selected quotes are repeated here.
Other quotes are available in Appendix E. Hopefully the quotes provide

Chapter 7 Evaluation 134

60% 8%
£ 45%
c
5
a
< 30%
to
0
£ 15%

8%
0% 1%
0%
Disliked it 2 Loved it
Enjoyment

Figure 7.8: Royal Society evaluation: Enjoyment

another dimension to the results presented here, showing the enjoyment
users got from the calculator.

Positive feedback came from students, who often do mathematics daily in
classes and could quickly see the opportunities for using the calculator:

It stops you making mistakes. Student

It is better because you can work out the equation very quickly, it takes
less time to get the answer, you should provide it to all students at colleges
and university. GCSE Student

Iloved it. A-Level Student

The exhibition is amazing, Ilove it it gets me exited. Better than anything
I've seen before. — A-Level Student

The most fun I’ve probably ever had doing Maths! A good mix of paper

and calculator, more interactive and easier to learn. — A-Level Student

Calculators seem clumsy and hard to use — the new method is genius!

— when can I buy one in the shops (If I had had one I would have done

A level maths). A-Level Student
It’s great!! It’s brilliant, better than pen and paper. University Stu-
dent

Lots of teachers and lecturers were also very positive about using the calcu-
lator both as a teaching aid in education and for use engaging students:

7.6 Royal Society evaluation 135

50%

46%
2 38% 36%
C
[¢]
a
& 25%
15%
13%
1% 2%
0%
Unhelpful 3 Very helpful
Helpful

Figure 7.9: Royal Society evaluation: Helpful

It visualises the internal workings of abstract calculations, fun, as it is
wonderful! Fun! Engaging and importantly visible! University Pro-
fessor

Ibelieve this could be of real value for the education of groups of children
in Maths, getting them to really interact with the equations in front of

them. — RSC Higher education award winner

I used to teach with white boards and calculators. It was amazing.

78yr old, retired teacher

Engagement, excitement, interactivity, seamless, more visually appealing

and easier to use! — Teacher
It opens up endless mathematical explorations. — Teacher

It makes maths engaging and allows one to reason about the process,
maths can come across as static but this enlivens things. —- Senior

Lecturer

Many other users from many different occupations and experiences also re-
ally enjoyed using the calculator. The whole range of users from artists to
engineers all were mostly positive:

Great fun — of course it is better. Musician

I’'ve never seen anything that's brought a smile to my face while doing

addition, but this has. For that reason alone, I want one! Artist

GUI is fantastically intuitive. - Engineer

Chapter 7 Evaluation 136

| didn’t think there was an easier way till now, the possibilities are endless..
— Grant Officer

Showed me some limitations of other calculators. — Actuary

Very few users had negative comments about the calculator and those that
did were often commenting on only specific aspects of the calculator:

Calculator is faster, good for teaching but not on a daily basis. — IT
Manager

Clunky but potentially brilliant, it leads to more questions which is great.
— Research Manager

Probably better for school kids. — AS Student
Will kids think even less? — Science Communicator

I'm not sure whether it would be suitable for large quantities of data.
— Accountant

There are limited functions available. — Physics Teacher

These are just a small selection of some of the more interesting comments
from users. In Appendix E the comments from all the feedback forms are
listed. Additional interesting feedback is highlighted there.

7.6.4 Mumbai, India

As part of one of the popular exhibits of the Royal Society exhibition we were
invited to also exhibit at Mumbai Institute of Technology’s TechFest in 2008.
An estimated 50,000 people came to the festival and thousands of students
and parents visited our exhibit, which was constantly surrounded all day,
everyday. Much of the feedback from this exhibit was their enjoyment of it
and also highlighted the calculator’s lack of support for higher mathematical
functions, such as logarithms, integrals and trigonometric functions. This
observation perhaps sheds more light on India’s education system or, more
specifically, on the educational attainment levels of the students visiting the
TechFest exhibition than on the calculator itself.

7.6.5 Summary

While the Royal Society exhibition was not a controlled user study, it did
provide an opportunity to test the calculator with a huge range of people.
The results from this exhibition might not be indicative of a longitudinal
study, but they do provide a good representation of how the calculator
functions in an environment similar to the exhibition and how easy people
find the calculator to use without any prior experience.

7.6 Royal Society evaluation 137

Figure 7.10: Demonstrating at TechFest, Mubai

The feedback was overwhelmingly positive. A large majority of the visitors
who used the calculator thought it was better, enjoyed using it, and thought
the calculator was helpful.

Certainly whether the enjoyment of using the calculator is sustained over
long use or whether users find the calculator easier to use in day-to-day
situations are unanswered by this study. Indeed the form-factor of the user
interface used in the exhibition (a 6 foot whiteboard) limits the situations
where this sort of interaction could be representative of how users might use a
calculator. However, it is reasonable to assume this kind of interaction would
happen in a school classroom, where large screen interactive whiteboards are
now common and the short group interaction is often typical of whiteboard
use with a class.

Frequently during the exhibition demonstrators used the calculator as a
teaching tool, to show users how it could be used, by explaining mathe-
matical concepts like roots or fractions. In fact one of the comments from
a student about a demonstrator was that he was “a nice ‘teacher' he was
very entertaining and whatever he was demonstrating was easy to enjoy”.
Many teachers themselves were very enthusiastic about the calculator with
comments like “a fantastic teaching aid”, “get it in schools” and “When can
we have it?”

As a teaching aid, the new calculator on an interactive whiteboard obviously
lias many advantages over static whiteboards or handheld calculators. The
success of the calculator in the exhibit setting suggests that there might be
different uses for which the calculator might be more applicable. The use
of the calculator in an exhibition or classroom is strongly supported by the

Chapter 7 Evaluation 138

feedback from the Royal Society exhibit.

These positive results cannot be used to claim that the existence of the flow
principles are the critical reason for the good reception of the calculator in
the exhibit. However the flow principles are so integral to the entire user
interface of the calculator, that the success of the calculator is by association
also a success of the underlying principles.

7.7 A comparison with xThink

zThink? is a commercial pen-based calculator that recognises handwritten
mathematical expressions and provides the answers to the calculations.

zThink provides a good comparison for the new calculator because, super-
ficially, it appears to provide the same user interaction and capabilities as
the calculator yet zThink does not implement any of the flow principles.
zThink provides an interface that interacts in a very similar way to that of
the calculator using a pen-based system and as a commercial system it po-
tentially has the better mathematical recognition engine and mathematical
functions. However, it is missing some of the principles described in this
chapter, which means that the contrast in the experience of using zThink
and the calculator can provide a useful focus on the difference the principles
make. This section provides a heuristic evaluation of the flow principles by
utilising a comparison of these two systems.

Some of the aspects of both zThink and Mathematica, as a comparison
to the new calculator described in this thesis, are described more fully by
Thimbleby and Thimbleby [2007]. Parts of this section are based on this

paper. .

A typical ‘page’ from zThink is shown in Figure 7.11. The advantage of this
interface over other approaches, is the ease and simplicity of entering mathe-
matics, however its interaction style retains some of the same problems that
handheld calculators exhibit. There is no guarantee the ‘answers’ are in fact
answers to the adjacent formulae, and furthermore zThink has introduced
new handwriting recognition problems; that is, the formula evaluated may
not ever be the one that was thought to have been written down.

zThink like the new calculator recognises user’s handwriting in the standard
notational format and the computed answer is displayed adjacent to the
hand-written sum.

2www.xthink.com

7.7 A comparison with xThink 139

AThinL Calculat/r

(I+ 0 0i-) ,— <yut —» "~ 12*+13
2,181 123 4—
T - T Un(-n)
18 j. -IT* -6.1V7533
-0-0654-62 il 1
Sin(2) + 12
. MM
nrs«ira) - ia

Figure 7.11: Example of xThink, showing natural handwrit-
ing notation combined with calculated output. Screenshot from
xThink's web site.

7.7.1 Specific differences

Both the calculator and xThink, from first glance, appear to do the same
things. In fact xThink seems to be more powerful as it can handle annota-
tion, multiple sums, and more complex mathematics. Yet ignoring a bullet
point comparison and the superficial similarity of the two programs, they
are in fact very different.

Both calculators provide a user interface based on handwriting recognition.
But this is where the similarity ends.

The new calculator, was designed using the flow user interface principles
of projection, continuity. WYSIWYE and declaration, in contrast, xThink
seems to merely add the idea of utilising the affordance of pen and paper
without escaping some of the typical problems that calculators have.

Handwriting recognition

With the new calculator, recognition of the handwritten symbols is pro-
jected into the user interface. As a symbol is recognised the user interface
is immediately updated replacing the hand drawn symbol with the typeset
recognised symbol. The replacement of the user’s handwriting with typeset
symbols not only provides an immediately neat and tidy (and correct) equa-
tion but also provides immediate visible feedback of what was recognised.

The recognised equation is projected as a neatly formatted equation in the
user interface. This provides the user immediate feedback about the ex-
pression recognition. The displayed typeset equation is the equation that

Chapter 7 Evaluation 140

the answer is calculated for. This in-place visibility removes confusion and
miss-understanding over what the calculator is doing, and whether it bad
handwriting recognition has occured as the user is entering symbols.

The projected recognition means the user’s view and the computer’s inter-
pretation are identical. There is no separate user data used to generate the
display, thus the user sees exactly what is happening and has confidence
in the answer. The projection of what equation the user is trying to solve
makes any errors obvious as they are writing. This immediacy and clarifi-
cation of the user’s desired result (and any deviation from it) is one of the
primary reasons that intermediate errors are quickly noticed and the lack of
final errors.

Unlike the new calculator where the symbol and expression recognition are
projected, in xThink, the handwriting is not replaced with typeset symbols
and the mathematical expression is not typeset. This means that the user
actually has little confidence that the recognised expression is the correct
one. A handwriting or expression recognition error is not easily visible to
the user and the answer given could be the answer for a different expression
to the one the user believes they wrote.

Continuity from input to output

The new calculator provides continuity between the user’s input and the
typeset output. This allows the user to easily understand how the resulting
mathematical expression corresponds to the one they wrote.

In zThink there is only minimal feedback about the mathematical recogni-
tion and no continuity or even linking is provided between the input and
that result. The feedback is a linear representation of the mathematics in a
unconnected part of the user interface. If the user even notices the feedback
there is no feedback providing the link or relationship of it to the user’s
input.

Getting answers

The zThink user also has to be aware that once they have finished an equa-
tion they still have to press the button, this time switching mental
modes from “entering” to “getting the answer.” In the new calculator the
answer is a projection of the recognised mathematical expression and ap-
pears as soon as the expression has been recognised.

Partial input

As part of the projected user interface, the new calculator supports partial
input of mathematical expressions. This allows the user to easily form an

7.7 A comparison with xThink 141

expression over time and provides simple feedback to the user about any
incompletion. zThink throws obscure error messages when the user enters
an incomplete expression.

Declarative interaction

The new calculator allows users to edit both sides of a mathematical expres-
sion, giving more flexibility and power. zThink does not provide anything
similar; to get the same results users will have to rearrange even simple
sums.

Flexible editing

Editing in the new calculator is simple and easy, the user can edit the ‘ink’
they see by dragging, adding and deleting in a WYSIWYE way. Editing
user input directly in £Think is impossible! zThink only lets the user create
new expressions which are grouped and recognised when the user presses
the button. If the user does not carefully erase old expressions in
zThink the user interface quickly becomes cluttered and new answers end
up appearing on-top of old answers making any interaction confusing.

Once some mathematics is recognised in zThink by pressing Enter it is no
longer editable. xzThink provides a much poorer experience when entering
any mathematical expression unless it is written and recognised perfectly
the first time.

Modelessness

In zThink the user has to switch both mental and physical modes many
times. To erase or move parts of the equation the user has to select different
tools at the bottom of the screen, then when they have finished the user has
to remember they are in a special mode and reselect the original tool. The
zThink interaction style makes this cumbersome approach unavoidable in
principle.

With the new calculator there are no modes, and no user context switching.
Not only are there no multiple different tools or modes but (obviously)
there is no need to switch mental modes or to pause and press an
button. This greatly simplifies the user’s mental model and reduces the effort
required to use the calculator. There is also no synchronisation problem
where the user’s model can become out of step with the system model.

Chapter 7 Evaluation 142

Rearranging

In zThinkit is possible to delete things or move them around, but it is always
an awkward process involving several mode changes and it is fairly limited
in what it achieves. Moreover, any editing in zThink breaks the relation
between written input and calculated output.

In the new calculator the ability to drag and drop, using WYSIWYE, an
arbitrary part of the equation elsewhere is synchronised by the calculator’s
ability to provide continuily by morphing the result into a new typeset
equation. It is therefore possible to move parts of the equation around
without regard for their size or shape, and the user always sees a fully
correct equation.

7.7.2 Worked example

To better illustrate the differences between these two superficially similar
interfaces, the interaction the user employs to solve a simple sum, along
with the potential pitfalls is described in this section. This also provides
a more concrete example of the differences between the two user interfaces
by providing a step-by-step walk through of an example calculation in both
user interfaces.

Initial input

In both user interfaces the user starts by writing the sum on the screen, using
a pen (or using their fingers on suitable touch-sensitive screens). From then
on the user interaction is different.

e In zThink, the handwriting is recognised in a separate location, which
the user must read to check the accuracy of the handwriting recog-
nition. If the handwriting is misrecognised by zThink then, without
checking the small text at the bottom of the screen the user can easily
be fooled into thinking they have the correct answer. The text at the
bottom of the screen is both small and linearised, losing the benefit of
the handwritten two-dimensional notation — for example Figure 7.11
shows the cube root of twelve cubed being calculated, it is printed as
1273 (1/3)=12.

e In the new calculator, as the user writes, the hand-written characters
and numbers are converted to typeset symbols and immediately pro-
jected without any further user action. The user feels as if they are
writing typeset characters and confirming recognition is as natural as
checking that your own handwriting is legible.

o zThink’s lack of projected recognition hinders the interaction. The
visible hand-written equation and the parsed equation that the com-

7.7 A comparison with xThink 143

puter understands are different. Without checking and making sure
that the hand-written equation is the same as the computer’s inter-
pretation it is extremely easy for the user to be confused and misled.
The two views of the equation, the handwriting and linearised math-
ematics are separate, distinct and different. zThink also provides no
continuity between the input and output thus making it harder for the
user to follow what has been computed.

Incomplete input

During entering a complete mathematical expression the user’s input is
rarely complete or mathematically correct.

e In zThink, to determine the answer, the user’s input must be syntac-

tically complete (an expression). For example, to find the value of ﬁ

the user must write exactly this (and it must be recognised correctly).
Anything else results in an error.

e In the new calculator, answers are provided even from incomplete ex-
pressions, as well as with expression. For example, to find the value of
ﬁ the user can also write 7 the incomplete faction is completed for
the user. The user can then leave it as is, or correct the expression to
exactly what they want. Answers for incomplete input are displayed
as the user writes so that the user is provided with feedback as they
construct a complete mathematical expression.

e By providing answers for partial and incomplete input the new cal-
culator allows for a projected almost instant update of the answers
whilst retaining sensible and useful answers. Without this ability the
immediacy of the user interface is reduced.

Getting the answer

Once the user has finished entering a mathematical expression they want
the answer.

e In zThink, to determine the answer, the user must press another but-
ton, and the answer is displayed somewhere nearby the handwriting
on the screen. In Figure 7.11 all such answers have been positioned
under their respective formulae.

e In the new calculator, the typesetting includes solving the equation.
When entering 4—?, the user interface will show a typeset % =3
— the user wrote 4*3'—5 and the computer inserted = 3 in the correct
position automatically.

e The answers and the input are inconsistent in xzThink until the user
presses the button. This lack of immediacy further confuses and

Chapter 7 Evaluation 144

misleads the user, especially when old answers are still shown on the
screen and can be located near the user’s new handwriting. The new
calculator is never inconsistent because the user interface is projected.

Editing

To correct an expression or to modify it to a new expression the user needs
to be able to edit.

o In zThink, the user’s handwriting can be altered, but the answer is
not updated, thus making the answer invalid. There is no easy way
to edit mathematics other than erasing and starting again. What the
user assumes are edits or corrections are treated as new expressions
and additional answers are added to the already cluttered screen. It
is possible for several answers to accumulate when the user evaluates
formulae and old answers are not removed, confusing the expression
even further.

e In the new calculator, the editing of the user’s input is integrated into
its evaluation. Thus the user can then continue to write over the top
of this morphed equation, adding in bits that are missing.

It is possible to edit by inserting, overwriting and by drag-and-dropping
symbols to a bin to delete them, or to other parts of the equation to
move them, WYSIWYE. In all cases, the equation preserves its mathe-
matical truth with continuity, as the new calculator continually revises
it. A full undo function is also available, which animates forwards and
backwards in time — also showing correct equations.

In the new calculator editing happens naturally as the user sees it.
Using a WYSIWYE approach any edit is immediately projected and
incorporated into the mathematical expression and the new expression
morphed providing continuity and the answer given. This makes edit-
ing to alter or correct the expressions fast and easy. Combined with
handling incomplete answers this means an expression can be built up
easily from its component parts. For example, v/4 could be entered as
v/ then 4, or 4 then v/, and the user could write = if they wish. In
any case, the value =2 or 2 is also displayed.

e Editing is not easy in zThink and it is compounded by the way an-
swers accumulate which is very confusing. This is avoided in the new
calculator because of the projected user interface, old answers are im-
mediately updated as the input changes.

The comparison to zThink, which looks the same but lacks the flow prin-
ciples used in the design of the new calculator shows that the principles
provide real benefits. The main differentiating factor between zThink and
the new calculator are the flow principles, the remainder of the interface is

7.8 Cognitive Dimensions evaluation 145

Cognitive Dimension Handhelds | zThink | New calculator
Viscosity high high low
Visibility low medium high
Premature commitment high medium low
Hidden dependencies medium | medium none
Role-expressiveness none high high
Error-proneness high medium low
Abstraction medium none none

Table 7.1: A comparison of calculators using Green’s Cognitive
Dimensions framework

very similar. The comparative failure of zThink’s user experience strongly
suggests that the flow principles are the key reasons that the calculator’s
user interface is enjoyable and successful.

7.8 Cognitive Dimensions evaluation

Green [1989] proposed cognitive dimensions as a vocabulary for discussion
and tools for usability evaluation or heuristics for guiding design. They are
useful for discussing the calculator and allow for a heuristic evaluation of its
usability.

Green’s {1989, 2000] cognitive activities and cognitive dimensions (CDs)
provide a way of critiquing and comparing interfaces and their uses. They
provide both a set of discussion tools, an “analytical vocabulary for design
discussion” and tools for heuristic evaluation.

The table above exhibits Green’s original cognitive dimensions, comparing
the new calculator with standard handheld calculators and with zThink.
These dimensions are not consistently good attributes, for example Green’s
viscosity is a bad attributes, whereas visibility is a good attribute.

Viscous interfaces make change difficult and hard to achieve. Changing
anything on handheld calculators is usually hard. Often this is a result of
having very simple user interfaces, many of them lack any ability to change
any input — requiring a complete restart of the user’s actions and a loss of
all intermediate work. zThink also makes change very hard by offering very
few editing capabilities and often requiring the user to start over again. The
new calculator, using ink editing, allows a very fluid (as opposed to viscous)
user interface that flexibly supports editing and change, through add new
symbols, deletions and drag and drop. The fluidity of the user interface is
a direct consequence of the WYSIWYE principle and the ease of editing
mathematics as they are seen.

Visibility was one of the driving design principles of the calculator stemming

Chapter 7 Evaluation 146

from projection. The whole expression is visible all of the time and this seems
to lead to users having more confidence in the results and being able to use
the calculator faster. Compared to current calculators that are often only
visible to the extent of the last numeric value squeezed into their display, the
improvement is dramatic. zThink shows the whole mathematical expression
but only provides direct feedback about recognition in a linear text string,
it also does not provide any visible linking between the user input and the
result.

Premature commitment is a problem that most handheld calculators exhibit:
rarely if ever is the user allowed to undo or alter what they have calculated.
Even in template editors and some pen-based entry the mathematical ex-
pression has to be built top-down in a rigid ordering. zThink allows parts
of the expression to be erased or moved, but only before the mathematics
is computed, this means that the user has to unnecessarily ‘commit’ to the
expression before they can get the result. In the new calculator a mathe-
matical expression can be constructed in any order and ink can be dragged
arbitrarily, anything the user has done can be altered and is not prema-
ture. This is in part enforced by WYSIWYE, because the user is able to
edit any part of the mathematics at any time, no part is ever committed or
unchangeable.

Hidden dependencies hide the links between entities, such that a user cannot
easily discern what the behaviour of the user interface will be. Standard
handheld calculators often have several modes which determine how they
operate, these are hidden and can confuse the user. zThink has hidden
dependencies between input and output, it is never clear what is linked to
what. This makes it tricky for the user to know how zThink will react to
their input. The new calculator is contrast has no hidden dependencies, the
WYSIWYE user interface means that any dependencies do not affect the
user’s interaction.

Role-expressiveness should merely be a simple matter of doing mathematics
right! However calculators disturbingly fail to do this [Thimbleby, 1996],
in particular their failures to properly provide proper syntax or referen-
tial transparency are obvious (and surprising) failures of design. The new
calculator and zThink both do mathematics correctly without unusual or
confusing syntax, for example using ~ for exponentiation.

Error-proneness is a problem for any calculator. Users depend on calcu-
lators to perform calculations they could not do otherwise and therefore
often put misplaced trust in the answer. Errors arising in use are rarely,
if ever noticed, whether they are caused by the user or by design. Current
calculators exacerbate this problem by failing to provide a visible history
or even error messages. x7hink hinders the user and encourages errors by
providing very little feedback about what mathematics was computed. In
comparison the initial evaluation showed the new calculator was successful
at reducing errors, certainly making users less error-prone. Both projection

7.9 A note on the philosophy of science 147

and continuity are key to providing feedback and reducing errors.

Abstraction provides additional layers of complexity on top of the user inter-
face that the user has to learn. Handheld calculators often abstract math-
ematical input to entering a linear sequential button presses, putting the
burden on the user of converting their mathematics into button presses.
Neither zThink nor the new calculator abstract mathematics, they both
provide pen-based user interfaces that work like paper.

Green also uses more general terms for describing the type of interaction a
user interface supports, these are: incrementation, transcription, modifica-
tion, exploratory design, searching and exploratory understanding. Using
Green’s terms, most handheld calculators provide trivial incrementation and
partial modification. A standard calculator’s (C) and keys provide very
crude modification and the changes the user can effect are almost entirely
incremental. More flexible calculators do provide modification allowing the
user to edit the mathematical expression. The same types of interaction are
supported by zThink. In contrast, the new calculator is very flexible pro-
viding both modification and incrementation, and it provides more complex
activities like ezploratory understanding which is encouraged by all four of
the flow principles. Making it is very easy to discover the underlying math-
ematical structure by using the calculator to do sums and to play.

Using cognitive dimensions within the context of activities provides us with
an interesting picture. Both standard handheld calculators and new cal-
culator provide simple incrementation and partial modification, but the
new calculator supports further cognitive activities: exploratory understand-
ing and unrestricted modification. This suggests that handheld calculators
could provide a better interface for accountancy and summing numbers (e.g.,
123+4345+435.98+123+. . .) when exploration and unrestricted modification
are undesirable. However for performing arbitrary calculations, especially
exploring and learning, the new calculator supports much more flexible and
powerful activities.

The design of the new calculator is supported by a heuristic evaluation using
cognitive dimensions. For all of the relevant dimensions the calculator has
been evaluated against it comes out overwhelmingly positively. The heuristic
evaluation substantiates both the design of the calculator and the underlying
principles that informed the design.

7.9 A note on the philosophy of science

One might like evaluations to confirm certain design principles, but this
would be poor science.

Empirical evaluations can only provide confirming instances of the hypothe-
sis that certain principles are effective for design; strictly, experimental eval-

Chapter 7 Evaluation 148

uation (when undertaken appropriately) can only refute hypotheses [Popper,
1963], since confirming instances might have been caused by other factors
that were not controlled for. In this case, there is the possibility that the re-
sults are caused by, among other things, the relative quality of programming,
which is not a factor that this thesis explores.

The calculator only exists as a confirming instance of the utility of the
design principles, rather than proof of their validity. This is perhaps an
insurmountable issue, it is impossible to evaluate these principles directly,
except through their implementation which may be skewed by other factors.
Thus any justification of the principles in this thesis also relies on appeal to
argument rather than by evaluation alone.

7.10 Summary

Both the underlying mathematical engine was evaluated by Cairns et al.
[2004] and pen-based mathematical entry by Anthony et al. [2005]; each
was found to be successful.

The new calculator was evaluated with user tests, performing timed tasks.
This evaluation found that the new calculator was faster for some problems,
let users solve mathematics they could not have done otherwise, and pro-
duced fewer errors. The fact no user got an answer wrong using the new
calculator is especially pertinent, as getting the correct answer is the critical
part of using any calculator.

A large amount of user data was collected from the Royal Society exhibi-
tion which provided numerical data stating users found the calculator more
enjoyable and more helpful. The exhibition also provided a large amount of
user feedback, the majority of which was very positive and supports both the
numerical data and the novel design of the new calculator’s user interface.

A direct comparison with zThink provided a point-by-point contrast of two
similar user interfaces where the flow principles were the main differentiator.
These comparisons substantiate the arguments for both the design of the
new calculator and the flow principles.

Finally a heuristic evaluation using Green’s Cognitive Dimensions supplied
a more analytic discussion of the differences between calculators and what
the flow principles achieve. This suggestes that the new calculator is more
suited to exploration and learning than to tasks such as accountancy.

In summary, the new calculator has been evaluated in many different and
complementary ways. FEach of the evaluations has provided different sup-
porting evidence for the success of the calculator and of the underpinning
flow principles. Collectively, the evaluations provide a compelling case for
the design principles used in the calculator.

Part 11

Drawing

149

Chapter 8

Context

Figure 8.1: Cave paintings in Lascaux, France (circa 15,000BC)

8.1 History

Along with calculation, drawing also has a long history. The earliest known
rock paintings have been dated to 40,000 years ago and cave paintings to
32,000 years ago. Figure 8.1 shows the famous Lascaux cave paintings from
France that have been dated to 17,000 years ago.

Modern drawing aids such as paper and pens have their origins in Egypt
with papyrus and inks. Other drawing tools like erasers, slate boards, rulers,
drafting tools and correcting fluid have all been invented for different pur-
poses and provide different capabilities that support drawing.

Computers have always been used to generate graphics, but it was not until
the 1960s with Sketchpad that they were used as a user interface for drawing.
Sketchpad developed by Ivan Sutherland [1964] as his doctoral thesis, pro-
vided a graphically interactive user interface for drawing. Sketchpad used a

151

Chapter 8§ Context 152

Figure 8.2: Sketchpad (1963). Source: Sun Microsystems

light-pen to point and a bank of switches to control operations like ‘move’
and ‘draw’. It is generally thought of as the pre-cursor to modern com-
puter drawing. Since then computers have begun to be increasingly used
to provide support for drawing activities. A large factor in the early use of
computers for drawing was Computer Aided Design (CAD). The accuracy
of the drawings and the ability to alter the drawing easily were the primary
reasons why CAD took off commercially.

The first computer painting program was probably Dick Shoup’s “Super-
paint” at PARC (1974 75). Superpaint introduced the distinction between
vector graphics and raster graphics, this is a distinction created by how com-
puters store images, as either mathematical vectors or as a grid of pixels.

Drawing programs were first widely used on the Macintosh in 1984. which
came with both MacDraw and MacPaint, providing both vector and pixel
drawing tools respectively. Since then many commercial programs have been
in wide use, for example, Adobe Illustrator, which was first developed in
1986. Illustrator is currently the main professional vector drawing program
and is widely used by designers and graphics professionals.

.« - MMM *

Figure 8.3: Adobe Illustrator CS3 (2007)

8.2 Drawing applications 153

8.2 Drawing applications

In contrast to calculating, Chapter 2, there has been relatively little research
on user interfaces for drawing. After Sketchpad broke ground early on, there
has not been much focus on general drawing user interfaces. Instead the
majority of drawing research has been focused on different areas such as:
the underlying algorithms [Hsu et al., 1993], sketching for 2D and 3D input
[Arvo and Novins, 2000, Zeleznik et al., 2007b], morphing vector shapes
[Vronay and Wang, 2004] and more esoteric ideas such as novel user input
devices for curves [Grossman et al., 2003] and representations of gradients
using vector partitions of space [Orzan et al., 2008].

User interfaces for the majority of vector drawing have remained untouched
by research since the early days of Postscript in 1982. In fact the back-
bone of vector graphics editing applications, cubic Bézier splines and their
corresponding user interfaces have remained mostly unchanged for over 20
years.

Although more general user interface research is applicable such as direct
manipulation [Shneiderman, 1983] and WYSIWYG.

Thus this context is by necessity defined by the successful commercial appli-
cations that have defined this domain. Those applications primarily being
Adobe Illustrator, CorelDraw and Inkscape.

8.3 Drawing in vector applications

This section provides a discussion of the purpose of a drawing program
and what features and interactions are required. In this context the term
“drawing program” is used to refer to programs whose primary purpose is
to create vector graphics.

8.3.1 What are vector graphics?

Two-dimensional vector graphics are graphics that are composed mostly
from geometrical data, where the data usually forms a kind of “recipe”
for generating a final image. A simple example of what could be a vector
graphics recipe is “draw a red circle on top of a blue square”. This tells the
computer how to arrive at the final image. Real vector graphics are much
more specific and describe the exact shape, positioning and styling of the
different components. Vector graphics are used widely in different domains
and some common file formats are: DXF, SVG, PDF, and PS.

Almost all vector graphics are composed from a few basic “ingredients”;
shapes and the instructions about how to draw them. While there are few

Chapter 8 Context 154

basic component types, vector graphic pictures can contain thousands of
components and can be very complex.

Most graphics on computers are not vector but instead are raster graphics
which are constructed from an area of lots of coloured pixels. Compared
to vector graphics, uncompressed raster graphics are relatively simple for a
program to draw. Adobe Photoshop and Microsoft Paint are examples of
programs that edit raster graphics.

Raster graphics often originate from input devices such as digital cameras,
which take pictures that are raster graphics. The majority of graphical input
and output devices including scanners, cameras, screens and printers are all
raster based. Graph plotters are one of the few examples of an output device
that uses vector data.

In contrast, most vector graphics are created from scratch by hand. The
differences in how raster and vector graphics are created dictates the fo-
cus of the respective applications for manipulating them. Raster graphic
applications are often focused on editing and adjusting input like photos,
vector graphic drawing programs are usually focused on the creation of vec-
tor graphics.

8.3.2 Why use vector graphics?

Creating vector graphics on a computer provides many advantages over both
raster graphics and the traditional methods of drawing using pens and paper.
Vector graphics are far more flexible and are very versatile in how they are
edited and manipulated. Every aspect and component of a vector image is
adjustable. Raster graphics and to a greater extent paper lack this versatility
and changes made to the graphic are rarely later adjustable. Although the
description of editing vector graphics in future sections makes creating vector
graphics seem complex, this is in part because of their flexibility.

A pen and paper interface provides two basic interactions, drawing on the
paper and erasing part of the drawing on the paper. Raster editing pro-
grams provide a few more interactions, but they are still not as flexible as
vector drawing applications. A drawing program additionally provides the
ability to rearrange, move, reorder, change, delete, stylise and adjust each
individual component of the drawing in hundreds of different ways.

It is this extensive amount of possible interactions that make vector graphics
editors a powerful tool for a designer and at the same time means that the
respective user interface is often complex.

8.3 Drawing in vector applications 155

8.3.3 Technical reasons

Raster graphics and vector graphics have different benefits. Generally raster
graphics are best for photographs and vector graphics are better for text or
diagrams.

One of the main advantages of vector graphics is that because they are a
recipe for creating an image, the recipe can be adjusted to create the best
image for the device they are to be recreated on. For example a printer has
a much higher resolution than a screen, and thus by using a recipe it can
generate an image that will look as sharp as possible. If instead a raster
graphic was being printed, the image cannot be altered and it is printed at
the fixed resolution of the image. Vector graphics are therefore often used
in the print industry.

Another advantage of vector graphics is that it is possible to alter the dif-
ferent steps of the recipe very easily. This means that for an artist creating
a graphic, vectors provide a huge benefit because every single part of the
graphic can be altered without any problems.

8.3.4 Where do they come from?

The main source of vector graphics is from people using drawing and illus-
tration applications to create images in graphical user interfaces. Almost all
vector graphics originate from the user in such a fashion. They are also often
generated automatically as a visualisation, for example creating graphs in
Microsoft Excel generates vector graphics.

8.3.5 Semantic requirements

There are many different types of recipes for vector graphics, and each can
have different abstractions. One recipe might simply specify drawing a star,
another recipe could specify the same star as a polygon of individual points.

Despite there being a large number of different types of vector graphics, the
basic components of vector graphics are fairly simple and consistent, these
are: shapes, styles and rules of composition. Shapes are described using
polygons, Bézier curves, circles, or text. Styles provide the method with
which to draw the shapes utilising information like fill, stroke, colour, gra-
dients and transparency. The individual shapes are then composed together
for the final result using composition rules, including clipping and Z-order
rules (what is on top of what).

Almost all vector graphics are built from these basic components, how-
ever very few vector graphic representations stop there. Many representa-
tions provide more complex ways of describing drawings, for example using

Chapter 8 Context 156

Gouraud shading, vector effects and raster filters are more complex aspects
of different vector graphic formats.

8.4 User interface requirements

It is possible to create vector graphics by hand in a text editor, for example
using PostScript, but the nature of the data that is being edited makes this
very difficult. Very few people create vector graphics this way — most users
make use of a graphical drawing program such as Lineform.

Using a vector graphics user interface, the user edits and manipulates the
underlying recipe through a graphical representation. This involves user
interaction to create and edit shapes, style and compositing information.
This interaction should happen in a way that is as logical and as direct as
possible. Building on the principles discussed in Chapter 4, the interface
should also incorporate the ideas of projection, continuity, WYSIWYE and
declarativeness.

This section summarises the main requirement for a drawing program. Some
aspects of this section are based on the absolute requirements of drawing
applications and others are more based on the cultural expectations and
desires of users.

8.4.1 Graphics

Allowing the direct manipulation of graphics is very important because the
raw numeric data that the shapes are created from is generally very hard to
understand and edit. Direct manipulation means the user can change and
alter the drawing directly using an input device such as a mouse. There are
no widely used modern graphical drawing programs that do not provide a
direct manipulation of the drawing.

A WYSIWYG view of the drawing is essential in both providing a view of
the drawing as intended and allowing the user to interact with the graphics
to achieve their desired result. Without WYSIWYG, editing even simple
drawings is hard to achieve. Non-WYSIWYG graphical editing is still useful
for diagram specification, eg. dot files, and graph generation.

8.4.2 Béazier splines

Cubic Bézier splines [Bezier, 1972] are the most general shape description
which many vector editing applications provide. These are composed of
multiple cubic spline segments which have start and end nodes and two
intermediate control points. A larger shape or path is composed of many
segments combined together to make up the final shape.

8.4 User interface requirements 157

(o)

Figure 8.4: A cubic Bezier segment

B(t) = (1 -)3P0+ 3(1 - Q2fP, + 3(1 -)t2P2+ f3P3 ,¢ E [0,1] (8.1)

Figure 8.4 shows a single cubic Bezier segment, the start and end points
are highlighted in orange, the two control points in blue. The control points
describe the curve’s tangent at the start and end but do not lie on the actual
curve segment itself. The thicker spline in between the start and end points
is described by Equation 8.1 which is a parametric cubic equation in t.

Several other spline types are also used in drawing applications, most notably
B-splines and quadratic Bezier splines. B-splines have better smoothness
properties and are thus used more frequently in CAD software, but they are
often harder to use. Quadratic Bezier splines are simpler to use but not as
flexible as the cubic Bezier spline. Cubic Bezier splines have become popular
because they occupy a good middle ground; they are relatively easy to use
and provide good flexibility.

8.4.3 Tools

Due to complexity and the many different tasks the user can be trying to
accomplish in a drawing application, there are too many ways of interacting
without using different modes of interaction. This is generally accomplished
by a set of tools that can be selected one at a time, these provide a modal
interaction experience focused on one task, when the user needs to perform
another task they have to switch tools.

Examples of tools are: rectangle, oval, pen, selection, node editing, zoom
and text. These tools are used to provide interaction modes for creating
shapes and editing the drawing.

Chapter 8 Context 158

8.4.4 Selection

Many operations and much of the editing is performed on a small portion
of the whole drawing. To do this there needs to be a means of specifying
a portion of the drawing that will then be affected by the user’s actions.
Specifying a selection is usually performed through direct clicking or drag-
ging a selection marquee over graphics when using a selection tool. The
selection should be clearly visible so that the user has the visible feedback
about which objects are being affected.

Selection is also important within different modes for more detailed edit-
ing. Both text editing and Bézier path editing involve their own concept of
selection, allowing the selection of characters or Bézier nodes respectively.

8.4.5 Editing

Different shapes require different editing interactions; paths, text, rectangles
and groups all have various properties and need to provide differing methods
of editing. To edit Cubic Bézier spline paths, the user needs to be able to
create, delete, move and position the nodes and control points of each spline
segment. Editing paths is often the single most complex part of creating
vector graphics.

Editing text needs all the standard text interaction providing: fonts, sizes,
styling, colouring, and paragraphs. Other standard text tools such as finding
and spelling improve the interaction. From the user’s point of view the closer
editing text is to the word-processor they are familiar with the better.

Special shapes such as circles, rectangles, spirals and polygons, all have
different specific attributes such as corner radius or the number of points.
The user has to be able to edit these attributes, the more direct the editing
is, the better.

The ability to group graphics together provides coherence in a drawing and
allows certain effects. A group links graphics together, for example a face
composed of eyes and a nose on a background, allowing the user to interact
with the group as a whole rather than as separate components. Editing
groups requires a distinction between editing the group and editing its con-
tents, the ability to do both is important.

All shapes should be manipulatable on the canvas. Positioning, rotation
and scaling are generally provided by affine transformations. In addition to
the many ways of editing and manipulating shapes directly on the canvas,
there are also many other actions or operations, for example alignment and
Boolean composition, that provide useful capabilities to modify shapes.

8.4 User interface requirements 159

8.4.6 Navigating

The ability to navigate the document is necessary for the user to be able to
view larger documents than fit on the screen or edit small details too small
or awkward to edit at the document’s natural size. The common navigation
operations are panning the document to view different sections of it and
zooming in to work on detailed parts of the drawing or zooming out to work
on larger overviews.

8.4.7 Style

Once the component shapes of a drawing have been created, what they
look like needs to be specified. Most vector graphics provide two main
components to style: the stroke and the fill. The stroke of a shape is how
the line around the outside of the shape is drawn and the fill specifies how
the interior of a shape is drawn.

A stroke style can have attributes such as: width, colour, opacity, dashes,
and end cap shape. Some of these, like width and dashes, specify the shape
of the stroke, others like colour, specify how to draw it.

A fill style generally has fewer attributes, the fill of a shape can usually only
be drawn as solid colours, potentially with an opacity. More complex fills
are often provided through a clipping shape that contains other drawing
components that are only drawn inside the clipping shape, for example a
clipping shape could contain more shapes, an image, or a gradient.

8.4.8 Compositing

The ordering in which objects are drawn, the Z-order, affects the final out-
put. There needs to be a user interface to rearrange objects in this dimen-
sion. Standard ordering actions are: bring forward, bring to front, send to
back, send backward.

Also to help manage the Z-order of the drawing, programs often provide lay-
ers that contain many objects. Layers provide a coarse grouping of graphics
and can be rearranged themselves and often allow the toggling of visibility
and locked status. These enable better management of complex documents.

Most modern drawing programs also support colour blend modes, which
describe how the colours of graphics are composited together.

8.4.9 Filters

Many modern vector drawing programs also now support raster effects.
These convert the vector shapes into a raster image and then apply a raster

Chapter 8 Context 160

effect, this allows effects to be created that are nearly impossible with only
pure vectors. Examples of raster effects are Gaussian blur, solar flare and
crystallise. Raster effects can also be layered so that, for example a blurred
flare is possible.

8.4.10 Documents

Documents contain whole drawings, the user needs to be provided with some
document management, to allow different sizes of documents, multiple pages
and possibly features like markers and grids.

8.5 DPoor user interface design

This section describes the bad user interface design of products similar to
Lineform, which played a large part in inspiring Lineform’s design. The
aspects of these interfaces that have seemed to provide bad user interaction
design are highlighted and individual examples are used to demonstrate
different aspects of poor user interface design. The interaction design that
is highlighted in these examples is not exclusive to the individual drawing
applications used as examples. The same user interface design flaw is found
in many other drawing applications.

In many cases there are legitimate reasons for the designer’s choice. For
example, Illustrator comes with the legacy of 20 years of features and was
originally designed to work on hardware much slower than today’s. However
while these reasons might provide good excuses, they are now unimportant
to the design issues discussed; as such these decisions will not be more than
cursorily defended.

There are many aspects of the design of the various drawing programs that
are basic and obvious bad user interface design. Examples are inconsistent
and cluttered user interfaces, obscure user interaction, non-standard user
interface controls and slow and even buggy interaction. Describing these
issues does not provide any insight into the development of new user in-
terfaces and are ignored for the purposes of this section. The examples of
interaction design described in this section have been chosen to highlight
aspects of design that are common to drawing programs. These include the
lack of direct manipulation, unclear use of modes, over-rigid design and the
lack of immediacy of interaction.

8.5.1 Direct manipulation

Drawing programs provide an essentially visual interaction; the primary user
interaction is through manipulating the visual drawing on the canvas. Direct

8.5 Poor user interface design 161

manipulation [Shneiderman, 1983]. which captures the concept of directly
interacting with the object of interest, is especially apt when applied to
these user interfaces. Some of the advantages of this kind of interaction are
the ease of learning, exploration, avoidance of errors and user satisfaction
[Shneiderman, 1997].

A real pen or paintbrush provide a very direct interaction when drawing,
in comparison a mouse and keyboard provide much more indirect control.
Thus they are harder and less intuitive to use. The further interaction is
removed from manipulating the drawing directly, the less obvious and easy
it is to interact with the drawing.

© 0 © Untitled 1>
v Tio lit* Two Lioo THO lioc liso I¥oc Use Uoc Us”]

Figure 8.5: Indirect rotation controls in iDraw

Several programs have an indirect approach to some manipulations of the
drawing. This is often because it is easier to create indirect user interface
controls, that can be abstracted from the ‘physical’ graphics they are ma-
nipulating, than to provide a method of directly manipulating the graphics.
One example of an indirect user interface controls in drawing programs is
rotation controls that are located in palettes. When using these the user has
to manipulate a small control that is not directly linked to the graphics they
are trying to rotate. Interacting with a small control rather than directly
with the graphics is awkward because the user has to link their interaction
to the results. The user also cannot both look at the control and the graph-
ics at the same time and thus has to switch their attention back and forth,
making it awkward to get the right value. Figure 8.5 shows the rotation
control in iDraw, the circular-slider rotation control in the palette is small
and fiddly and the graphic being manipulated is visually separate from the
user interface control.

A different situation where user interfaces lack direct manipulation is when
they force the user to edit an object through an interface that has a different
form to that of the object. In this case the object can be edited directly but

Chapter 8 Context 162

00

r* Stroke \ to
Weight: iopt [* it r »

Miter Limit: 1J 4 n NI

ii2p»n IT M"pnr 1 n

dash gap dash gap dash gap

Figure s .6 : Indirect stroke weight in Adobe Illustrator

the interaction is not natural. Figure 8.6 shows Adobe Illustrator’s stroke
palette, to change the stroke weight in Illustrator, the user either has to type
a weight in, select one from the pop-up menu, or use the stepper controls
to the left of the text field. All of these interactions with the user interface
to change the stroke weight provide a discrete interaction, that is, they do
not allow the user to continuously change the value. (A slider is an example
of a user interface that allows continuous interaction.) The problem is that
these controls provide a discrete way of interacting with a continuous value,
forcing the user to interact with the data in a way that is not natural for the
underlying data. Discrete interaction like this can be very useful, but it is
less natural and can be a very awkward way of exploring a range of values.

8.5.2 Modes

User interface modes are the various states that a user interface can be in
which determine how it reacts to the user’s input. User interface modes
make it possible for user interaction to make use of the same actions to do
many things, instead of requiring new user interactions for each task. A
simple example of a mode is the current tool selection in a drawing pro-
gram. A brush tool mode draws a smooth curve when the user drags with
the mouse in the document, compared to a rectangle tool mode which will
draw a rectangle or a selection tool which selects graphics. Modes are often
necessary for complex user interfaces but they can easily be abused.

Many of the drawing applications have many more modes than needed.
Some modes are needed to enable the interface to provide enough function-
ality with the limited user input devices of the keyboard and mouse, but
unnecessary modes are often added because creating modes is simpler than
utilising different interactions. Modes can cause a lot of confusion and er-
rors. The more modes a user interface has, the more interactions a single
action can have and the more effort the user has to make to remember the
individual functions of all the modes.

Modes fail to work when the user forgets which mode the system is in and
expects their interaction to have a different effect than the one the current
mode provides. This could be a completely different reaction than expected.
Invisible user interface modes are bad design [Raskin, 2000].

8.5 Poor user interface design 163

OWIKtkMilooK 0 Typetook O Symbol tools

A WW<ica M LJ E3 A 13
NBI DUH!‘:/:A 1Hn <A B ass ’r*’
. < ViHn <
) N i TVI*Ony Pai Y tyrebol Shtin
v GioupSHci*en JT":m _’“ Y VA4V drtk|
{/'lé o\ Myi< Wl (V1 ﬁ‘j A ~ SymbolSan
. @ : y SvakjHOMYi
y Vpvbol'rfin-f
V‘ [0. Diinwtz look Unaki QSJWM\.;‘;V)W‘
. 0 Patnttnflook
£AndANCKKAC*
k 13 + / PattKuU) IB) 0 Graph took
| kvt «0il M*ih 101 *m @ Ul
B e « 7 (jidMnil Al (Sl?\}dfd("‘M
«\ LowWgmoni 1) - jtyrdoopti M ~ BaGuph
ca # Assat AFSEAK.
A e
Cn inl wLwPmi BT M e
<v AiuCimHi

$ «li Gitd
L_Vje«C<jfk
u_ JSUilaafla (M
RextxV Idie tmek 0 Rilvpirgtods g»,*l»lc g-\
ur* Rotate R
Q bajson A follO
s ISHB

o5?
« toiwil iN AR < j} Sfﬁf&%ll

H

A Tra* J UKife
“HKIni
>>11%,
_ Salo*.
34 BHK
K Fim (nﬁi?ﬂ (ti « A Zoom 2)
, BUx
emld- HowRMi KeyfaoBldSb>f

Figure 8.7: Adobe Illustrator CS2’s list of tools

Many programs like Adobe Illustrator, shown in Figure 8.7, have lots of
tools and thus lots of modes. EazyDraw has 170 tools for different shapes
and functions. In Adobe Illustrator’s case many of these tools are probably
included because of backward support causing the inevitable feature bloat
that comes from being widely used by lots of people for different tasks for
over 20 years.

Another approach to the task of rotating graphics is to have a specific ro-
tation tool. Applications like Intaglio, EazyDraw and Adobe Illustrator all
have rotation tools. While this method is better than a distinct user inter-
face control, a separate tool means that the user interface has more modes
and is more complex. In Adobe Illustrator it is possible to rotate graphics
with several different interactions by:

1. Dragging near a corner of the shape with the selection tool.
2. Dragging near a corner of the shape with the free-transform tool.

3. Dragging anywhere with the rotation tool (this tool has several other
modes as well).

4. Use the Object > Transform > Rotate menu to get a dialog box to
type an exact rotation in.

5. Enter an exact value in the Transform palette.

In Illustrator's case the three individual tools (selection, free-transform, and
rotation) duplicate a lot of the rotation functionality and can confuse the
user simply by the number of options. Another problem of using a specific

Chapter 8 Context 164

rotation tool is that to rotate a graphic the user first has to select the rotation
tool, then rotate the graphic, then select the tool they were originally using
to continue. The unnecessary mode change slows the interaction down and
can cause further errors.

8.5.3 Rigid design

When designing or drawing, artists often repurpose different parts of the
drawing, using them for something different to what they originally started
out as. During the creation of a drawing, solid coloured boxes can become
text boxes, or text shapes turn into gradient filled shapes. In conflict with
this flexible repurposing, most drawing programs are quitc rigid in how
they let the user interact with different graphics. Often there are several
specialised types of graphics that each perform different functions. This
specialisation means that graphics are prematurely specialised from creation
and it is awkward to repurpose them for other uses.

In almost every other drawing program, individual concepts such as text
boxes, images and text-on-a-line are separate concepts and rigidly distinct.
These unnecessary distinctions between objects provide no usability benefit.
They make the programmer’s (not the user’s) life easier because the distinc-
tions between types of graphics usually mirror the underlying structure of
the classes and objects in the implementation, which means that the user
interface can be less complicated to create because it simply exposes the
data structures of the program.

The increase in specialised types of graphics also affects the rest of the inter-
face. Each kind of shape can be interacted with in a different way and thus
more kinds of shape create more user interface interactions and controls.
For example, Adobe Illustrator has a specialised graphic type for symbols,
to interact with symbols Illustrator has extra palettes and eight additional
tools. Instead of adding functionality through additional specialised tools
and shapes, the same effect can be achieved by providing more generalised
tools and shapes. A user interface with fewer specialisations has fewer com-
ponents and is simpler.

In fact, the symbols graphic type in Illustrator provides very little extra
functionality over using groups for the same purpose. The specialised symbol
tools allow the user to do things like pushing, rotating, scaling symbols,
these tools are only useful for using on symbols. If these tools were instead
generalised to work on all graphical shapes then the tools would be more
flexible, more consistent in their use, and the entire concept of symbols could
be removed from Ilustrator. This simple change would make Illustrator’s
user interface more simple and more powerful.

8.5 Poor user interface design 165

8.5.4 Over complication

Adobe Illustrator has nine different graph tools, including a column graph
and a stacked-column graph. It also has 65 other tools that do everything
from ‘symbol scrunching’to drawing polar grids. Illustrator’s whole interface
has grown with feature bloat, it includes lots of different tools that all offer
very similar functionality. As a consequence it seems that Illustrator’s design
now lacks a lot of coherence. There are lots of different types of objects
and styles, and most of them have a different method of interaction and a
corresponding different tool.

8.5.5 Lack of immediacy

When drawing, the ability to immediately see what changes are happening is
a large part of being able to create drawings quickly. If changes to graphics
only become visible after the user has finished interacting with them then
the user can be forced into a slow iterative, almost trial and error style of
interaction.

A simple example of the lack of immediacy is the proliferation of modal
dialog boxes in Adobe Illustrator that do not provide live updates. These
force the user to interact solely with the dialog box, restricting the user’s
interaction, and also to repeatedly perform the same action using the dialog
box, undo and try again when they are not sure what the result will be.

Setting the position of a gradient fill for a graphic is another example of a
lack of immediacy. In Intaglio and Adobe Illustrator (prior to CS4, October
2008) setting the gradient position does not provide any real-time feedback.
To set the position the user drags a line using a gradient tool across the
graphics, the gradient is updated once the user stops dragging. As the user
drags the gradient tool on-top of the graphics there is no visual update of
the gradient other than a single line showing the dragging. This makes it
very hard to tweak or adjust gradients, as well as making it hard to get the
gradients right in the first place.

Figure s.s: Ghost resize outlines in Adobe Illustrator

Figure 8.8 shows another example of an interface that does not provide im-
mediate feedback. Here Illustrator uses ghost outlines rather than redrawing
the graphics as the graphics are scaled. This works in a similar fashion to
how dragging windows used to work in most operating systems since com-
puters were not fast enough to provide immediate feedback for this style of

Chapter 8 Context 166

interaction 20 years ago. This lack of immediacy also makes it hard for the
user to know what the result of their interaction will be.

8.6 Summary

This chapter has outlined the context of drawing applications. The research
within the area of vector drawing user interfaces is fairly limited and this
context is primarily shaped by commercial drawing applications, specifically
Adobe Illustrator.

What vector drawing applications should provide has been outlined, these
factors provide the context for what any drawing application needs to sup-
port. Conversely the user interface design flaws of commercial drawing ap-
plications provide the context for what a drawing application should avoid.

Chapter 9

Design & development

Lineforin is a vector drawing application, similar in functionality to appli-
cations such as CorelDraw and Adobe Illustrator. The purpose of Lineform
is to enable users to draw, design and edit two dimensional vector drawings.

Lineform was initially designed and programmed as a hobby project intended
as a drawing program for the author’s personal use. After a few months of
development and design it was decided to develop and polish Lineform fur-
ther with the aim of releasing it commercially to the public. The remainder
of the development of Lineform happened over a period of approximately a
year and a half before it was released to the public for sale online, costing
$80. After the initial release, it continued to be developed as a product,
and it has been through seven minor updates providing small bug fixes and
four major releases providing extra features. Lineform is now published by
Freeverse Ltd both in retail and online; and separately the rights have been
bought by Apple. The following list is a summary of the major releases of
Lineform.

167

Chapter 9 Design & development 168

1.0 — 4th April 2006, Initial release

1.1 — 16th June 2006, SVG support and raster filters
1.2 — 11th September 2006, Published with Freeverse
1.3 — 23rd February 2007, PDF editing support

1.5 — 23rd February 2008, Pressure support and new Layer and Transform
inspectors

The calculator, described in Part 1, provides a good example of novel user
interface design and of the principles that were critical to its design. This
chapter describes the design and development of Lineform, which is a differ-
ent example of a novel design and application. Lineform was designed and
built after the calculator and its design builds on the principles and ideas
that emerged from the calculator’s development.

9.1 Motivation

The motivation for designing Lineform was slightly different to the moti-
vation that conceived the calculator. Lineform was originally created out
of frustration with existing drawing applications with regards to features,
usability and price. Lineform’s design is therefore partially motivated by
solving the user interface problems and copying the good ideas from ex-
isting applications. The calculator was designed to be a completely new
and better approach to mathematics. Lineform was designed to be a fa-
miliar but streamlined, focused and much easier to use approach to vector
drawing, using some of the principles from the calculator.

praw turns htre as
you would 0% papef-

Utv« wild)* wmken
«woxlrt*tvkd«torto
So It fsr yoo.

6* =11

Figure 9.1: Example drawings and diagrams created in Lineform

Drawings and diagrams, such as those in Figure 9.1 are examples of the

9.2 Initial design 169

type of graphic that Lineform was created to help produce. There are nu-
merous vector drawing and illustration applications including EazyDraw,
Corel Draw, Adobe Illustrator. OmniGraffle, Intaglio, iDraw and Inkscape,
but none of these programs satisfied either in terms of their user interface
or value-for-money. Some of the programs were too basic for general needs
(iDraw), others seemed to have appalling user interfaces (most of them) and
others were too expensive (Adobe Illustrator). Many drawing applications
also lacked important features. Most problematic were the lack of function-
ality like Boolean operations, flexible and capable Bezier path editing, and
the inability to interact and transform more than one shape at a time.

Lineform’s design was both born out of the user interface design flaws vis-
ible in existing products and also in the novel user interface design of the
calculator. Lineform is designed for today’s computers with the knowledge
of Illustrator’s success and failures. By starting from scratch with Lineform,
rather than 20 years of legacy, its design was streamlined and focused on
the user interface.

Like the calculator, Lineform developed in a fluid way from these starting
inspirations. The main principles and lessons from the design of the calcu-
lator were part of the original design of Lineform. which provided a very
different type of user interface for their expression. And just like the calcu-
lator some original principles also evolved out of the Lineform’s design and
development process.

9.2 Initial design

Lineform was designed to be a simple, straight-forward and streamlined vec-
tor drawing application. While this design was not fancy or hugely different
to other drawing applications it built on the four flow-principles from the
calculator: projection, continuity, WYSIWYE and declaration. These prin-
ciples were used in different ways to how they were used in the calculator.

Figure 9.2: Some ofthe first drawings done with Lineform (Spring
2004)

Chapter 9 Design & development 170

The design and creation of Lineform lasted about 2 years. The initial appli-
cation was functional from the start and was used for various projects early
on. Some of the first drawings done in Lineform are shown in Figure 9.2,
these were created for a racing game and Lineform, although only a couple
of months old, was used for all of the stylised drawings in the game.

Lineform was created over the course of the next 2 years, finally being re-
leased after a short beta period on the 4th April 2006. The initial feature
list included:

e FEasy simple powerful interface

o Powerful Bézier editing tools

Boolean operations

Great typesetting

Artistic strokes

Bitmap and vector import/export

Initially Lineform was called Inform, however this was changed to with the
release of version 1.1 so as to not conflict with the existing Inform program-
ming language.

9.3 Continued development

After the initial release, Lineform was developed further, incorporating the
feedback from many users. Initially the design and development was spurred
onwards to meet user needs and in order to be submitted to the Apple Design
Awards which celebrate “technical excellence, innovation, and outstanding
achievement” and are the Mac software’s equivalent to the Oscars.

9.3.1 Apple Design Awards

Applications submitted to the design awards are judged in several different
categories including: technology adoption, user interface design and innova-
tion. In order to have a strong chance of winning, for the first three months
after release Lineform’s development focused on incremental features or bug
fixes in response to user feedback and a major version 1.1 which incorporated
many Mac OS X technologies.

The main features that were specifically implemented and were aimed at
winning these awards were: Core Image raster based filters, AppleScript
support and Spotlight support. All these were specific Apple technologies
that would improve Lineform’s success with the judges, and in fact these
were all mentioned at the awards ceremony when Lineform won.

9.3 Continued development 171

Figure 9.3: iPod Nano (Karen Hughes, May 2006)

Drawings were also solicited from all the early users to submit to the design
awards. One of the drawings of an iPod Nano by Karen Hughes, Figure 9.3,
was used to demo Lineform at the awards ceremony.

9.3.2 Initial user feedback

The initial feedback included many bug reports but was overwhelmingly
positive. Here are a couple of examples:

But don’t let all those bug reports fool you. I’'m still deliriously
happy with the program.
Uli Kusterer (pril 2006)

Ijust downloaded Inform today and must say I'm impressed with
your app. It’s exactly what I’ve been looking for to help with some

of my work.

— Jeff Hester (April 2006)

The incremental changes involved several bug fixes and performance im-
provements, but also several important features such as an outline view
which enables non-WYSIWYG but easier editing of complex drawings and
many more keyboard shortcuts.

Single-pixel horizontal or vertical lines drawn on a per-pixel grid
suffer from being anti-aliased into two-pixel wide “blurry line” when
exported (this is a big blocker for me) this looks like a rendering
bug

Dave Balmer (April 2006)

One of the mistakes made at this point, in order to please initial customers
was implementing pixel aligned grids. Dave Balmer‘s feedback about a spe-
cific issue with anti-aliasing prompted the creation of the specific solution
of a toggle that adjusted the grid position by half a pixel. This feature is

Chapter 9 Design & development 172

rarely useful and its use is obscure. Lineform’s user interface would be sim-
pler without it, using a different solution to anti-aliasing would be a better
approach.

A status bar that provided contextual help and information was one of the
main features that were implemented in version 1.1 in response to user feed-
back. Lineform makes use of several modifier keys to change the interaction
mode, these physical modes, described further in Chapter 10, are used for
many different interactions but they are invisible to the user. Users often
needed the functionality but were confused about how to achieve what they
wanted. The status bar provided feedback to the user about what modifier
keys and modes are available, this allowed users to discover the functionality
without reading the manual. An additional physical mode was also added
to allow the user to control the scaling of the stroke size when scaling a
drawing.

The initial method of rotating a shape was copied from CorelDraw. To toggle
the rotation or transform modes the user clicked on a selected shape. To
rotate a shape a user would select it, then click on it to toggle the mode then
use the visible rotation handles to rotate the shape in place. This interaction
was found to confuse users and was replaced with an alternate physical mode
using the control key to toggle the rotation or transform mode. This made
it quicker and easier to rotate shapes.

Other improvements such as group editing, clipping, SVG import and export
were also added. SVG support was in response to the frequent requests for
easier ways to get vector data in and out of the application.

Tools in version 1.0 had two modes: locked and unlocked, a locked tool
would stay selected after use, an unlocked tool would switch back to the
selection tool after use. The idea behind this was to enable a user to quickly
draw a shape with one tool and to not be stuck in it, but also to allow a user
to double click a tool to lock it so that they could also draw many shapes.
After user feedback it was decided that this was additional complexity that
did not lend the user interface any benefit, and it was removed and tools
always locked for simplicity.

9.3.3 Commercialisation

Freeverse Inc who had expressed an interest in publishing Lineform acquired
the publishing rights after version 1.1 was released. Freeverse did not change
the development or design process of Lineform, they handled support and
raised its profile by creating a drawing competition and selling boxed copies
in retail stores. To provide a good release for them, several fixes and small
improvements were fitted into the time before their release. A new transform
inspector was added which allowed users to specify the exact dimensions of
shapes. This was a feature that was requested often from users creating

9.3 Continued development 173

exact drawings. This inspector was also designed to be projected, such that
it provided live feedback as the user transformed shapes on the canvas.

Some user interface aspects which were not entirely projected were updated,
for example the stroke width in an inspector now changed when transforming
a shape on the canvas.

A new physical mode was also used for toggling the scaling of shapes when
transformed on the canvas. This might seem slightly contrary but this al-
lows some handy, if infrequently used interaction. For example dragging
a shape with a image fill and toggling off the shape transformation means
that the image fill is transformed and not the shape, this allows the fill to
be positioned inside the containing shape.

9.3.4 User feedback

The remainder of Lineform’s development focused on adding features, often
in response to user feedback. This section provides examples of user feedback
and the features that came from it.

Implemented features

“| often have to manipulate elements of existing PDFs, such as
graphs created by scientific programs like Matlab. Is it possible to
do this in Inform?

— Arjun Raj (April 2006)

Some user feedback was directly helpful in prioritising features for Lineform.
Several users requested PDF editing, both as a way to import graphics into
Lineform and to edit existing graphics. PDF import as images was a feature
from the start, PDF editing was added later after several requests.

The type tool doesn’t seem to offer kerning and spacing adjust-
ment.
— Roger Harris (April 2006)

Some users had problems kerning, or wrongly assumed that Lineform did
not support kerning. The standard OS location for kerning was buried in a
menu and it was decided that it would be easier to use and provide a better
experience to add a specialised text inspector. This inspector provides con-
tinuous control using sliders of character spacing and other text attributes.
The continuous interaction allows for much easier exploration and use.

Unimplemented features

Some features that users requested were just too complex and did not fit the
goals for Lineform, these were features like animation or bitmap editing.

Chapter 9 Design & development 174

Is Lineform a potential replacement for the vector and bitmap
creation/editing functions of Canvas?
— Bob (October 2006)

Other applications

Many users wanted Lineform to work like their favourite drawing applica-
tion. These desires were often in contention with each other and with the
goal of making Lineform a streamlined and good vector drawing app. Here
are a couple of examples:

| really hope that Lineform can become the new 'Canvas’ and
better.
— Vikingz (February 2007)

[I want Lineform to:] 1. look like Adobe lllustrator CS3.
2. feel like Adobe Illustrator CS3.

3. read Adobe lllustrator CS3 files natively.

— Lucius Kwok (August 2006)

| urge the developers to adopt the best conventions of CorelDraw
— Stokestack (October 2006)

The main response to these requests was to politely say that Lineform had
it’s own design goals.

9.4 Flow principles

Lineform was designed within a context shaped by the calculator’s design.
From the very beginning, the calculator’s flow-principles outlined in Chap-
ter 4 affected the design of Lineform and were a continued source of guidance
and inspiration. This section describes how these principles affected Line-
form’s design.

9.4.1 Projection

Chapter 8 mentioned the lack of immediacy that some drawing programs
have, this is in direct opposition to the projection principle. A projected
user interface is one which is always up-to-date and immediate. Situations
like that of Figure 8.8 are caused by user interfaces that are not projected
and provide many problems for users.

The lack of projection is especially a problem for drawing applications, be-
cause it severely hampers exploration and experimentation, which are crit-
ical components of most artistic creation. A non-projected user interface

9.4 Flow principles 175

forces a trial and error approach to exploration which is slow and error
prone.

The flow principle of projection asserts that the user interface controls and
the rendered drawing are different views of the same data. A lack of immedi-
acy in updating the drawing, for whatever reason, creates an inconsistency
between the user interface controls and the drawing in the canvas. Line-
form keeps the user interface and the drawing in sync at all times. There
is no inconsistency between the drawing and the user interface controls in
the inspectors whether the user is modifying a control in an inspector or
modifying the drawing on the canvas with direct manipulation.

Lineform was developed with the immediacy of projection in mind from the
very beginning. The first release of Lineform (then called Inform) listed this
immediacy as a selling point when describing the gradient feature: “Unlike
some awkward interfaces for gradients, Inform provides excellent interactive
tools. You can interactively set gradient stops from the inspectors including
transparency. And from the document you can drag and alter the gradients
in interactive real time.” This feature means that when the user changes a
gradient, the user sees the result of their change immediately. This makes
Lineform much faster to use than other applications where the user has to
finish interacting before updates occur.

All visual updates happen immediately when interacting with the drawing
in Lineform. Every change to a user interface control is immediate reflected
in the drawing, there are no modal or delayed operations. Everything in
Lineform is always up-to-date, everything the user does provides immediate
feedback. There is not a single modal dialog box, which hinders the experi-
ence of projection, in the entire application. Modal dialog boxes often break
projection and force the user to wait until the dialog box is closed before
any action is taken and the user can see what they have actually done.

Not only does projection reduce the number of possibilities for confusing
the user but it allows faster interaction and decisions about the creation of
a drawing. Projection means that the user interface provides very useful
feedback whilst manipulating the graphics. For example, when changing
the line width of a stroke in an inspector it is possible to see the drawing
updated immediately in the canvas. This allows the user to quickly get the
exact value they want in one continuous interaction, without resorting to
repeatedly trying different values.

Exploration is a critical component of drawing. The combination of pro-
jected editing and providing continuous interaction with user interface con-
trols, are large factors in making it easy for the user to easily explore and
enjoy drawing. These principles as part of Lineform’s design allow the user
to very quickly see and explore the effect of a entire range of values and
their effect on the drawing.

Chapter 9 Design & development 176

9.4.2 Continuity

Lineform provides a very different user interface to calculator. While the
calculator often made state changes independent of the user, causing com-
ponents of the mathematical expression to move around; Lineform does not
make any state changes without the user initiating and controlling them.

As the user changes aspects of their drawing in Lineform they are directly
manipulating the drawing and the feedback from that manipulation is pro-
jected and immediate. There are no real state changes made by computer,
and thus no unexpected continuity errors. The immediate feedback which is
smooth and fast provides the continuity or ‘morphing’ as the user interacts.

9.4.3 What You See Is What You Edit

With respect to how the user edits drawings, Lineform again provides a
different sort of interaction to the calculator. As a drawing program the
majority of user interaction is a direct interaction with the visible objects.
Thus almost all drawing programs are WYSIWYE by default. They have
no hidden state; the drawing is what the user edits.

There are cases of drawing programs ignoring this, for example Bézier nodes
can be selected while they are not visible in Adobe Illustrator. The direct
selection tool for editing Bézier nodes can be used to select invisible nodes on
an unselected shape, the nodes appear as the user hovers over them. This is
a case of the designers choosing a potential speed benefit over the visibility
and clarity of what is editable. A user interaction where you interact on
something that is unseen is by definition not WYSIWYE, and can be very
confusing for users.

Vector graphic based drawings can also get very complicated. In fact there
are innumerable ways in which the same drawing could be composed or
created. Thus editing what you see can be complex, because what you see
is not a one-to-one match with the underlying vector model. The user can
not know what the underlying structure of shapes are from looking at the
resulting image. A potential approach to this problem, one which Lineform
does not use, is planar maps which provide a completely different but more
WYSIWYE experience Baudelaire and Gangnet [1989].

For a drawing program both seeing what you get when you export or print
the drawing (WYSIWYG) and editing what you see (WYSIWYE) are both
very important. In order to aid both of these purposes Lineform provides a
soft proof and outline view of the drawing. Soft proof supports WYSIWYG
by rendering the drawing in the colour space of the printer, usually CMYK,
this shows the colours and contrast of the drawing as they will be when
printed. The outline view supports WYSIWYE by drawing every shape as
a thin outline, this allows the user to better see the individual shapes and

9.4 Flow principles 177

Dlietmlon, talkt* friends, coffee, cakes and faith.

Gofo Church

A welcoming Church
Faith & science

O b S Sunday/ 6p Sdndsy 6pm,

Parklands Churc Church

New Sport & faith
Parthiixta Church

16tftNov Fairtrade bazaar M iNov
Cont* fevy «fckai pr—ro.

c Spevie 1 L J .
\7ih Dec he last supper Dec 'jTtei 0<««ssn'¥n’”"
 cor * e - X‘Iﬁa(X aanubon]

mmune.

i*faisur

Figure 9.4: The outline view of a flyer

how they overlap. Figure 9.4 shows the drawing and outline view of the
same flyer.

Features such as the outline view, the object tree in the Layers inspector
and focus/isolation mode are designed to allow the user to more easily see
and understand the vector data. These are designed to support a more
WYSIWYE user interaction.

9.4.4 Declarative interaction

The calculator provides a declarative interface to mathematical calculations.
It is possible to write on both sides of the equality. The calculator then
enforces the equality by correcting the side or sides of the expression that
are not completely specified.

Lineform is declarative because there no distinction between ‘input’ and
‘output’ in part because of the nature of drawing programs. Any visible
data is editable whether it is by direct manipulation on the canvas or by
interacting with user interface controls in the inspectors. None of these
representations are considered ‘output’ and cannot be edited.

Lineform allows the graphics to be edited from many different views. While
there are no semantic “declarations'” that Lineform enforces, it has very
little distinction between input and output, which is what makes declarative
interfaces easy to use.

The Transform inspector in Lineform is an example of a user interface con-
trol that could be considered primarily for input but supports both input
and output equally. The Transform inspector can be used to enter exact
dimensions for the selected graphics, and conversely when changing the size
or position of graphics in the canvas it is possible to see the exact numerical
values in the inspector updated continuously. This allows the user to use
the Transform inspector as guidance when they are manipulating graphics.

Chapter 9 Design & development 178

9.5 Lineform principles

The calculator’s flow principles provided an initial starting point and further
refinements or new principles were developed alongside these as Lineform
was created.

9.5.1 Physical modes

As the design got more complex, additional modes were needed and physical
modes were used repeatedly. Physical modes provide quick and simple mode
switching that reduces the user’s cognitive burden and allows for a very fast
exploration of what each mode achieves. As the design of Lineform evolved,
physical modes were used in many different situations especially when short
term modes that benefited from quick toggling were needed.

The rotation interaction started off as a non-physical mode that was toggled
by clicking on the selection. After user feedback and continued use, this
additional mode seemed to cause confusion and slowed users down. Here is
one example of user feedback on the initial rotation interaction:

Make it easier to toggle between the square “grippies” and the
oddly-shaped ones for rotating. | find myself clicking several times
until I'm finally rid of the rotation grippies so | can resize an object.
What about having a dedicated “resize” tool or menu item instead?
Or you could also just have the regular grippies, and in some spots
a special “rotate” grippie next to it or so.

— Uli Kusterer (April 2006)

While none of the user’s suggestions were taken, the underlying problem was
solved in a way that streamlined the user interface and removed a confusing
non-physical mode.

9.5.2 Flexible design

Lineform’s flexible design was directly inspired by the rigid design of other
drawing applications. Instead of providing rigid specialisations, such as a
specific text or image object, Lineform was designed from the start to allow
objects to be reused for different purposes. In Lineform there is no over
specification, the original marketing blurb explained this as: “Fit text inside
any odd shape. Inform does not constrain you to special text objects, but
lets you put text inside any shape. Text is then flowed through the shape
to create the designs you want.”

An example of this in action is how groups and layers which perform similar
roles evolved to provide the same capabilities and in fact are now exactly the
same. The original 1.0 release of Inform had a completely distinct concepts

9.5 Lineform principles 179

of groups and layers. Layers could be named, locked and made invisible
from the Layers inspector; groups o1 the other hand could be resized and
directly manipulated on the canvas.

O» 6,5
Man* 9wt
% v Layers > frame SO
Name *om » Crast On
O Graphics so * toil %% -
Text detail 1 o}
so deta.12 o
Background SO detail3 [o]
deUM SO
» Beflettoe O0Sao
» Boat 0so
drake sc
> Sea cso0
» Cloud* sO
| EH Mgt >Sky SO

.-

Figure 9.5: The evolution of the Layers inspector

Figure 9.5 shows the evolution of the Layers inspector from left to right.
The latest layers inspector allows every graphic to be manipulated just as
the layers were in version 1.0. they can all be named, locked and made
invisible. Groups and layers became identical and removed the arbitrary
restrictions the distinction placed ou1 the user. The new version, without
the distinction, allows users to: apply an opacity or filters to layers, to
select and resize layers, to name, move and lock groups or other graphics, to
drag rearrange groups, layers and graphics (including dragging ‘layers’ into
groups or groups out of ‘layers’).

9.5.3 Appropriate controls

Appropriate controls sums up the idea that continuous values should be
controlled through continuous interaction. For example the width of a line
is controlled using a slider. Combined with projected editing this allows the
user to quickly and easily explore a range of values.

This was a core principle from the very start of Lineform’ design. Almost
every continuous value is controlled through either direct manipulation or
through a continuous control such as a slider. Both user feedback and con-
tinued use refined this initial principle into ensuring that continuous values
have both a continuous control for exploration and quickly setting rough
values easily, and a discrete control for setting exact values and adjusting
rough values.

Later in version 1.5, Lineform added a Transform inspector that provided the
discrete, exact controls to complement the continuous direct manipulation
of transforming graphics o11 the canvas. The Transform inspector provides
discrete numerical value entry for the size, shape and rotation of graphics
which are extremely useful for setting the size of graphics to exact values.

Chapter 9 Design & development 180

Version 1.5 also added a Text inspector that provided continuous controls
for aspects of text layout that were originally controlled through discrete
menu items. The Text inspector provides continuous setting of character
and line spacing and baseline position, these are projected and allow much
easier exploration and setting of values than the discrete menus did.

9.6 Summary

Lineform was dually inspired by the success of the calculator and the failings
of the existing drawing applications. The problems seen with other applica-
tions outlined in the previous chapter include a lack of direct manipulation,
lots of modes, rigid design, over complication, lack of immediacy and a lack
of features. Lineform was designed specifically avoiding these flaws seen in
other programs and building on the principles that developed along with the
calculator.

The design of Lineform once publicly available stretched to meet the needs
of the many users while also attempting to retain the core goal of being
a streamlined, focused and much easier to use approach to vector draw-
ing. Since its initial release Lineform has continued to be developed and
incorporates user feedback when it meets the core goal.

The calculator flow principles: projection, continuity, WYSIWYE and declar-
ative interaction; are also an important part of Lineform’s design. The im-
mediacy of projected editing means that exploration, a large part of drawing,
is much faster. Continuity is maintained through no state changes that the
user is not directly controlling and the speed and immediacy of the interac-
tion. WYSIWYE is partially supported by providing different views of the
drawing, like focusing and the outline view, that provide a clearer view of
the underlying data. Declarative two-way editing on the canvas and in in-
spectors allows users to switch repeatedly and iterate between the different
views, so they can edit in the view that best suits their purpose.

Chapter 10

Principles

This chapter mirrors in part, Chapter 8’s criticism of bad vector graphics
drawing user interfaces. The areas of bad user interface design that were
identified are used to show how Lineform avoids the same failings. How the
flow principles from the calculator affected Lineform design was discussed
in Chapter 9. This chapter describes the new concepts and principles that
were important and solidified during Lineform’s design.

10.1 Physical modes

Mode errors [Norman, 1981], such as drawing with the wrong tool, originally
defined as what happen when the user misclassifies a situation resulting in
actions which are appropriate for the user’s interpretation but not the true
situation.

Studies [Sellen et al., 1992] have shown that both visual and kinaesthetic (by
physically pressing a key or a foot pedal) feedback can significantly reduce
mode errors. Kinaesthetic feedback has been shown to be more effective
than other forms of feedback (e.g. visual or audible) in reducing errors and
reducing the cognitive load of mode changes. Kinaesthetic user-maintained
modes, that is modes which are maintained by a continuous physical user
action such as holding a key down, provide feedback to the user that is hard
to ignore or forget. Raskin [2000] uses the phrase quasimode to label the
same concept.

There is a limit on the number of different interactions that a user interface
can provide without overloading the interface and the user with different
methods of interaction, so using modes allows a user interface to provide
more functionality by allowing single interactions to have multiple functions
in different modes. This often leads to a profusion of modes in complex user
interfaces like drawing applications and the numerous modes and tools of
drawing applications was one of the design flaws outlined in Chapter 8.

181

Chapter 10 Principles 182

The primary problem with modes in a user interface is their virtuality. That
is, the current mode is often forgotten by the user, even if it is visually
represented on the screen. Modes have a large impact on what the user’s
interaction does, but they rarely have a high visibility or awareness. This
leads to mode errors, where the user expects a different result from their
interaction than the current mode provides.

Instead of “kinaesthetically user-maintained”, physical modes is the term
used here to describe the concept of the user controlling interaction modes by
physical action. Most human sensory inputs operate such that the awareness
of constant stimulus decreases over time, which continues until there is no
awareness of the stimulus at all. In comparison the awareness of muscle
action to produce a force does not fade with time [Raskin, 2000]. This helps
explain the greater awareness of modes caused by muscle action and the
corresponding reduction of mode errors. It is much harder to forget what
the current mode is if body is physically part of the interaction that causes
the mode. This sense of the body’s location and positioning is also called
proprioception.

Use of physical modes is not a new concept, for example many user interface
use the Shift key to toggle a mode where typed letters are capitalised or
objects are added to a selection and the Alt key on a Mac is often used
to toggle the copying of dragged items. Consider how natural these modes
become, even though there is no other representation of the mode except
for the physical act of holding down a key, there is very little confusion
over which mode the user interface is in. Capitalising letters using the Shift
key comes very naturally to computer users, however the Caps-lock key
which provides the same functionality, the same mode, but in a different
form causes confusion. Because the Caps-lock key is not user-maintained,
or physical, the awareness of the mode is reduced, and even though the
Caps-lock key has its own toggle light on the keyboard Caps-lock sometimes
cause even experienced users confusion. Most experienced computer users
rarely use the Caps-lock key because of the increased cognitive and physical
effort of using it.

Of course for long term modes, interaction modes that a user interface is
used in for extended periods of time, a physical mode does not always make
sense. Holding down the Shift key to type a paragraph or even a heading in
capital letters could get physically tiring.

Some user interfaces such as SMARTboards and Wacom tablets provide real
physical modes, where different physical tools perform different functions.
For example a SMARTboard has three different coloured pens and an eraser.
The SMARTboard recognises when these are removed from their holding
trays and triggers interaction modes that draw the correct colour on the
screen or erase parts of the drawing. Which tool the user is using is physically
dependant on which tool they are holding.

10.1 Physical modes 183

10.1.1 Lineform

The primary interaction with Lineform is through the mouse, but Lineform
makes widespread use of physical modes to alter the effect of this interaction.
Lineform uses several modifier keys: Shift, Control, Alt, Command, Z, and
~. Each ofthese keys when held down affects how the user interface interacts
at the moment.

Scale Rotate/Skew

Figure 10.1: Rotation modes in Lineform, toggled by the control
key

Figure 10.1 shows two modes for modifying shapes in Lineform: when the
Control key is held down the current control handles that surround a se-
lection change from resizing to rotation handles. Here the mode provides
both visual feedback, the handles change appearance, and physical (or ki-
naesthetic) feedback of the user physically holding down the Control key.
Because of the physicality of the mode it is almost impossible to forget that
the system is in the rotation mode.

The modifier keys augment the current tool mode in Lineform, affecting
the action the user is currently performing. Different modifier keys are
valid in different situations but their function is consistent, for example the
Shift key toggles the restriction of transforms, when rotating a restriction of
15° angles, when scaling a restriction of a constant aspect ratio and when
dragging a restriction to horizontal or vertical movement. Table 10.1 shows
a summary of the physical modes used in Lineform and a description of their
function.

Figure 11.5 in Chapter 11 shows how toggling the fill and the stroke mode
affects the scaling of an image in a box. These two modes, scaling the
fill and the stroke, are physical modes, and they are toggled by holding
down the Command and Z key respectively. These modes can be toggled
independently of each other and the user’s actions. As the user transforms a
graphic they can toggle these modes off and on, instantly seeing the changes
each mode affects.

Chapter 10 Principles 184

Physical key | Mode function

Shift Constrains modifications to a restricted set of values,
like 15 deg angles or rational fraction scales.
Control Toggles between scaling and rotation
Alt Transforms the centre of the modification to the cen-

tre of the selection.
Command | Toggles whether the fill style of the selection will be

modified.

Z Toggles whether the stroke style of the selection will
be modified.

~ Toggles whether the shape of the selection will be
modified.

Table 10.1: The physical modes used in Lineform

10.1.2 Recall

Physical modes such as using the Shift key to capitalise letters becomes very
natural and are remembered because they are used consistently across most
user interfaces. In this way they also utilise “muscle memory” and become
almost automatic.

However, in a new user interface, such as Lineform; where the modes are
different, knowing which keys do what is not obvious. Therefore to provide
the user with a clear knowledge of the currently applicable modes and keys
Lineform provides a status bar just below the toolbar in each document
window. The status bar for various different tools is shown in Figure 10.2,
the highlighted status bar is shown when using the selection tool. This
status bar shows the current scale of the selection and the current modifier
keys that affect the transform, such as Shift to constrain the transform.
The changes to how the shapes are modified are immediately shown when
any modifier keys are pressed, this projection allows very quick correction
of mistakes and a comprehension of what each mode does.

—— L2
E Scale: 114.500t x 30.39pt (50.44% x S0.44% O constrain X from center z static stroke 3 satic il esc: cancel [I
k 3

| Dagto select graphics. © addtoselection Yingdebox " T T T)

itonte 1500 0 constrsin Msubc Ml esccancel o T T

§ Creating: 56.00pt x 56.00p¢ 0 constrain < from center esc: caneel o T

§ Click e create lines. Drag to create curves. © constrain @ delete last segment = finish esc: cancel |

{ idsdrag 1o seect graghics. © woggle X undemesth o o B

Figure 10.2: The status bar in Lineform

10.1 Physical modes 185

10.1.3 Disadvantages

A disadvantage of using modifier keys for physical modes is that the user
usually needs two hands, this is especially true when using the mouse as the
main tool of interaction, which Lineform does. Users that are unable to use
both hands are unable to access these modes. This is a common problem
and Mac OS X provides a universal access feature called sticky keys that can
treat the standard modifier keys as toggles. One press of a modifier key and
it is temporarily held down until a different key is pressed, if the modifier
key is pressed twice then the modifier key is kept held down, a third press
and the modifier key is toggled off. These different modes are accompanied
by both a typewriter sound and an on screen depiction of which keys are
held down.

coe¢

U Stytei S i jjig- 3E *- * Sptwg g | Uttt 1

These modes are accompanied by both a typewriter sound and
an on screen depiction of what keys are held down. This
enables users with problems holding down multiple keys at
once to perform the needed interaction with a user into

&

Figure 10.3: Sticky keys in Mac OS X

Figure 10.3 shows the on-screen visual reminder of the current modifier key
mode provided by sticky keys, in the figure the Shift key is permanently
held down and the Command key is temporarily held down. The next non-
modifier key press will be typed with the Shift and Command modifier keys,
after that non-modifier keys will be typed with just the Shift modifier key.
Sticky keys enables users that have difficulty holding down multiple keys
at once to perform interaction with a user interface as if they were holding
down all the keys at the same time. However despite both the audible and
visual reminder of the current mode it can be very confusing.

10.1.4 Key concepts

Physical modes offer a very simple and effective way of providing short term
modes in a user interface. They allow very quick toggling and are very hard
to forget.

* Quick Modes that are short term or need to be toggled quickly
should be physical.

+ Complementary Physical modes complement another interaction,
they should be secondary in effect and simple to toggle, not distracting
from the main interaction.

Chapter 10 Principles 186

o Projected — The changes a mode affects should be immediately visi-
ble.

10.2 Flexible design

Green’s [1989] cognitive dimensions describe several heuristics which can be
used for design or evaluation. Two of these related to flexibility: wviscosity
and premature commitment, are useful for describing flexible design. Vis-
cosity describes how much effort is required to affect change in a program
and premature commitment is when the user is forced to make unreversable
decisions before they want to.

A design goal for Lineform was to provide a user interface that was both
flexible and that did not constrain the user by over-specialising certain types
of graphics. In Lineform there are very few different types of graphic and
it is very easy to convert between them. This was directly inspired by the
rigid and restricting design of some drawing applications, such as Adobe
Illustrator.

Lineform does not have specialised graphics types like: text-boxes, text-on-
a-line, images, spirals or graphs. The more complex shapes such as graphs
or spirals can be constructed from the simpler shapes, and the other graphic
types like text or images are provided as styles which can be applied to any
shape.

In Lineform it is possible to draw any shape and fill it with text or an image.
In contrast, in most drawing programs, images and text are provided by us-
ing specialised types of graphic. Both approaches allow the same drawings to
be created. However, Lineform’s approach does not pre-specify a graphic’s
function at its creation, they can easily be used for any kind of purpose. Ap-
plications such as Illustrator, that provide lots of specialised graphic types,
make changing the function of a graphic awkward, and often have different
user interfaces for each different specialisation. Additionally the extra con-
trols and inspectors that that these require can make the applications both
harder to learn and use.

Groups are also used for both layers and on canvas groups, there is no spe-
cialised layer class. This means that layers provide all the same powerful
operations as groups, for example, just like a group, layers can have trans-
parency, raster effects, or be edited in isolation mode (this hides the rest of
the document so the user can focus on a group).

Thus there are fewer special concepts in Lineform’s user interface and it is
therefore simpler and more coherent. This design also means that the user is
more free to work with their preferred process, fewer aspects of the drawing
are pre-specified unnecessarily restricting the user.

One aspect of WYSIWYE is that what things look like should determine

10.3 Appropriate controls 187

what they are and how they can be interacted with. In many drawing
programs there are specialised object types that look identical but have a
specific role that is fixed and unchangeable. The over-specification of the
role of an object not only forces the user to make a decision before they
want to, but also hinders WYSIWYE by treating objects that look similar
in vastly different ways.

10.2.1 Key concepts

Viscous or rigid user interfaces increase the amount of barriers a user has to
overcome in order to affect change. In contrast flexible user interfaces allow
users to delay decisions until they are ready and to easily change their mind,
providing a much more enjoyable user experience.

o Flexible — Allow the user to change their mind whenever they want.
Enabling change facilitates exploration.

e Deferred — Do not force the user to decide anything before they need
to. Unnecessary, early or premature specification restricts the user
needlessly.

10.3 Appropriate controls

The underlying values in a user interface, the user interface control types
and the user’s interaction can all be discrete or continuous. Matching the
correct control, value and interaction is important for providing the right
experience.

Discrete values are those that are individually distinct, they do not have an
ordering or have a finite number of states between two values. Examples of
discrete values are integers or types of fruit. Continuous values are those
where there is a smooth and unbroken progression between any two values.
Examples of continuous values are real numbers or temperature.

Correspondingly, user interfaces have controls for discrete and continuous
values. Check-boxes, pop-up menus and selection in tables are all discrete,
whereas sliders and directly manipulatable two dimensional position con-
trols are continuous. Some controls such as text boxes can specify both
discrete or continuous values. However both types of user interface con-
trol can still offer discrete or continuous interaction. Discrete interaction
is a stop-start affair where the value is only set once the user has finished
editing. Continuous interaction is a smooth projected experience where the
value is continually adjusted whilst the user interacts. Without projection or
continuous interaction even a continuous control exhibits discrete behaviour
and hinders the user exploration and ease of use.

Chapter 10 Principles 188

ov Eflects
UpHITE " 0.75
Blend mode. Normal

2 Has Shadow ®

Figure 10.4: User interface controls in Lineform’s Effects inspec-
tor.

The user interface in Lineform is primarily composed of the canvas and the
inspectors. The inspectors are mostly made up from standard user interface
controls. Although interaction with the graphics is indirect, the interaction
with the controls is direct. Figure 10.4 shows Lineform's Effects inspector
which controls the opacity, blend mode and the drop shadow of the selected
graphics. The continuous variables (opacity and drop shadow radius) are
controlled through sliders which are continuous user interface controls. The
position of the drop shadow is similarly controlled through the custom user
interface control that looks like a white box. where dragging on the box
changes the offset of the drop shadow as a continuous interaction. The
discrete attributes, such as blend mode and shadow, are controlled through
the check-box and pop-up button which are discrete controls.

This is a result of a principle informing the design in an unanticipated way.
Only in retrospect, in clarifying the principle, does the potential improve-
ment to Lineform’s design become apparent.

A continuous discrete user interface control is possible when there is a live
preview of the result during the interaction. An example would be if the
blend mode pop-up menu showed the results of the selection whilst the user
scrolled through the menu. Although Lineform does not do this now for
any discrete controls, it would be a big improvement especially for the blend
modes. Lineform has 13 different blend modes, some of which can have
unusual results, therefore it is often the case in the current implementation
for the user to repeatedly click on the pop-up menu and select the modes in
turn in order find the right blend mode. In a continuous implementation the
user could click the pop-up menu then just scroll down through the items
seeing the results as each item is hovered over in turn, this would result in
a vastly faster and easier interaction.

Providing continuous interaction and control for a continuous attribute makes
it easier and more natural to change the attributes. A continuous control
that is projected and provides live updates allows the user to quickly explore
a large range of possible values. Of course, being able to specify the exact
values for these attributes is still valuable, so Lineform often provides both
types of control and interaction. In Figure 10.4 both a slider and a text-box

'

10.4 Other principles 189

are provided for the opacity attribute of the graphics.

10.3.1 Key concepts

The correct user interface controls for the right values makes a huge differ-
ence. The right control can enable the user to manipulate it’s value quickly
and easily.

o Discrete — Discrete values should be controlled through discrete con-
trols.

¢ Continuous — Continuous values should be controlled through con-
tinuous controls.

e Exact — Continuous values should also have an exact way of setting
values.

e Continuous interaction — Every control should, where possible, pro-
vide continuous projected interaction.

10.4 Other principles

These are some of the other principles that were important during Lineform’s
development.

10.4.1 Direct manipulation

Direct manipulation [Shneiderman, 1983] is a standard user interface design
principle, but one that is also critical to Lineform’s user interface. Lineform
provides manipulation controls on the actual shapes as often as possible,
instead of in other distinct user interface components. For example it is
possible to directly grab the corner of a selection and rotate the selected
graphics. Manipulating the graphics is done by ‘interacting’ with the graph-
ics, this provides a much easier and natural control of the graphics than a
separate user interface control.

Unfortunately there are many complex aspects to vector drawings that do
not easily allow for an obvious direct manipulation. For example, it is not
obvious how to directly specify the stroke dashes of a graphic by interacting
with the graphic on the canvas. In fact most of the attributes of the visual
style of graphics have the same problem. In general the geometric shape
and position of graphics lend themselves to direct manipulation, but their
visual style and appearance do not. Lineform manipulates the shape and
appearance of objects in different user interfaces that best control those
aspects, this is further described in Section 10.4.3.

Chapter 10 Principles 190

10.4.2 Simplicity

Lineform seems simple, but the more you look, the more features
there are. That’s a nice feat that Adobe and others don’t seem to
be able to pull off.

— Dylan (April 2007)

Part of the motivation for having few specialised graphical types in Lineform
is the motivation of keeping it simple. This desire was driven by the over
complication of user interfaces. The fewer concepts and the more coherent
those concepts are; the easier and simpler the user interface should be to
learn and use.

The design of Lineform tries to minimise the number of specialised tools,
modes and concepts. The aim was not to overload individual modes of
operation but to reduce the complexity of Lineform’s user interface.

Lineform lacks many of the numerous “complex” features of programs such
as Adobe Illustrator. However the feature set of Lineform probably pro-
vides almost all of what novice users require and a large proportion of what
professional and amateur users want.

Many of the complex features of Illustrator can be replicated with a couple
of extra steps in Lineform. The benefit of a simpler and streamlined user
interface outweighs the cost of needing extra steps to achieve complex effects.

10.4.3 Well defined roles

Lineform provides a clear distinction between the function of different as-
pects of its user interface. The main two components of this are the docu-
ment canvas and the inspectors. The inspectors always and instantly show
the current state of the selection, the document always and instantly shows
the current drawing. They do not do anything else. The well defined roles
of the different parts of the user interface contribute to Lineform’s ease of
use.

There are no dialog boxes or other modal user interface components in Line-
form. All the different aspects of a drawing are presented to the user through
the inspectors which can be visible all the time and are always up-to-date,
providing projected editing. The inspectors have a single function, which is
showing and modifying aspects of the current selection or document. The
inspectors do not provide any non-reversible actions, undo is never needed
to change a value in an inspector back to it’s original value.

Manipulating the shape of graphics is performed on the canvas and addi-
tional actions such as Boolean operations and aligning graphics are available
through menus, short-cut keys and toolbar buttons.

10.5 Summary 191

10.5 Summary

Lineform avoids many of the issues described in Chapter 8 by providing
a straightforward, flexible user interface to drawing. The consistency and
overall simplicity of the user interface design are one of the key qualities of
Lineform.

The primary principles that are important to Lineform’s user interface de-
sign include: physical modes, having a flexible design and using appropriate
controls. The use of physical modes simplifies and makes mode switching
within tools simpler and quicker. By using physical modes the user can very
quickly switch modes within a tool whilst they are performing any interac-
tion. Lineform’s flexible design allows users to not worry about restrictions
from premature commitments, this allows users to not worry about future
changes of mind while they want to be creative. Using the appropriate con-
trols for the right underlying values means that the values are both easy to
set and to explore using continuous projected interaction.

Other principles such as direct manipulation and the simplicity of the user
interface also were important during Lineform’s development.

Chapter 11

User interface overview

11.1 The interface

Lineform’s interface revolves around a document window that displays the
canvas and objects being edited. Objects ou1 the canvas are manipulated by
the mouse or keyboard and can be altered from the inspectors that float in
front of the document window.

11.1.1 The toolbar

Creation Style

'eoe Untitled a
* coe o Jf/ G 4
Click Mg teleet gy bion b brggle oo
Transform, selection and editing Navigation

Figure 11.1: The toolbar

Each document in Lineform has its own toolbar at the top of the window.
This toolbar shows which tool is currently being used and allows quick access
to other tools. These are:

+ Selection Selects and moves objects.

» Editing — Alters curves and lines.

* Brush — Draws smooth lines.

* Pen — Draws lines and Bezier curves.

* Rectangle — Draws rectangles and squares.
¢ Oval — Draws ovals and circles.

* Text — Draws text boxes.

193

Chapter 11 User interface overview 194

e Zoom — Zooms in and out of the canvas.
e Drag — Moves around in the canvas.
e Dropper — Picks up styles from objects in the canvas.

The tools can also be selected by pressing the digits 0-9 or their correspond-
ing shortcut keys. The toolbar can be customised to contain several handy
functions, such as combining and Boolean operations. To customise the
toolbar, choose Customise Toolbar... from the View menu.

11.1.2 The status bar

Click/drag to select graphics. € toggle 3%: underneath

Figure 11.2: The status bar

Below the toolbar is the status bar. This shows hints and information about
what action the user is currently performing. It shows the possible modifier
keys for any action in blue and it shows the current size or state of any
transformation of objects being modified.

11.1.3 Inspectors

Lineform uses inspectors that float above all the other windows. These
provide access to object and canvas properties. The inspectors can be min-
imised or hidden and snap to each other. Inspectors can be toggled on and
off in the Inspectors menu.

The Fill, Stroke, and Effects inspectors affect the appearance of objects in
the document. The Grid, Layout, and Layers inspectors affect the canvas
itself. Finally, the Filters inspector provides advanced options to apply
effects to objects.

11.1.4 The media browser

The media browser is accessed from the Inspectors menu. It provides access
to images and pictures stored in iPhoto or elsewhere on the user’s computer.
The user can also drag images into any Lineform document.

11.1.5 Keyboard

Several keyboard shortcuts and modifiers are used in Lineform, many of the
shortcut keys were copied from Adobe Illustrator for consistency. These are

11.2 Manipulating the canvas 195

U o UNi

Y Ci iPboto
Library
) Last Roll
o Last 12 Months
U WingNuts 2
IB Burning Monkey Solitaire
IB Comic Life!
» - Pictures Folder

Figure 11.3: The media browser

mentioned in this chapter where they are relevant. The Shift, Alt, and Com-
mand keys affect most operations and the Escape key cancels the current
action.

11.2 Manipulating the canvas

11.2.1 Zoom

Clicking with the zoom tool magnifies the canvas by 200%, and Alt-clicking
zooms back out by 50%. The user can zoom in on a particular area of the
canvas by clicking and dragging the zoom tool around the area of interest.

The canvas can also be magnified to a specific zoom level by selecting a
level from the pop-up menu in the bottom right of the document window,
or zoomed to fit the current graphics from the View menu.

Pressing Control-Space once selects the zoom tool temporarily, allowing the
user to zoom in quickly on part of the canvas. After zooming, the tool
reverts to the previously selected tool.

11.2.2 Drag
The drag tool is used to move around the canvas. To move the visible part
of the canvas, click and drag with this tool.

The drag tool can also be temporarily selected by holding down the Space
bar.

Chapter 11 User interface overview 196

11.3 Creating graphics

The brush, pen, rectangle, oval and text tools are used to create line and
shape graphics. When one of these tools is selected, clicking and dragging
on the canvas creates new shapes. Newly created graphics use the current
style from the inspectors.

11.3.1 The brush tool

The brush tool is used to draw smooth curves and paths and is ideal for
drawing smooth arbitrary shapes and tracing pictures. The paths the brush
tool generates are automatically smoothed and if a more accurate path is
required the Alt key can be held to limit the smoothing.

11.3.2 The pen tool

The pen (Bézier) tool creates a sharp node for each click, building an ar-
bitrary shape out of a series of nodes. Clicking and dragging with the pen
tool create smooth nodes and curves. Clicking creates a node at the initial
click point then dragging specifies the control point positions. The curve is
updated live as the user draws ensuring it is easy to see what the result of
the action will be.

Double-clicking on the canvas or on a node completes the current path, and
Escape cancels it. Pressing the Delete key cancels the last segment of an
unfinished line allowing the user to go back and redo parts of the path being
drawn. The Shift key limits the line and curve drawing to 15° angles.

Clicking on the initial node closes the path being drawn, creating a closed
shape.

Both the pen tool and the brush tool allow new paths to be drawn starting
from either the beginning or end of existing paths. When either tool is
selected, nodes appear at the ends of selected paths that are available to
append to. Drawing from one of these nodes automatically appends the
new path to the existing path. This allows both tools to be used to draw
different parts of the same shape.

11.3.3 The rectangle and oval tool

The rectangle and oval tools draw their respective shapes. Holding the Shift
key restricts the new shape to a 1:1 aspect ratio, thus creating either squares
or circles. The Alt key allows the creation of shapes from the centre. These
modifier keys are exactly the same as the modifier keys for resizing shapes.

11.4 Manipulating graphics 197

11.3.4 The text tool

The text tool can be used in two modes: it can be dragged to create a
text region, or used by simply clicking and then typing, the region created
will be the same size as the text typed. The text tool does not create a
special object: it is just a handy shortcut, the same effect can be achieved
by creating a rectangle with a text fill style.

11.4 Manipulating graphics

11.4.1 Selecting graphics

Graphics are selected using the selection tool to click on them. Multiple
graphics can be selected by Shift-clicking or by dragging a selection around
several graphics. The selection tool starts a drag-selection when clicking and
holding down the mouse button in an empty part of the canvas. Graphics
are added to the current selection by holding the Shift key while selecting
more graphics. Graphics can be deselected by Shift-clicking on them after
they have been selected.

Graphics with no fill can be selected by clicking on the stroke line or by
drag-selecting them.

Selected graphics are drawn with a highlighted thin line around them. The
primary object is drawn with a green highlight and all other selected graphics
are drawn with a blue highlight. Pressing the Tab key changes the primary
graphic cycling through all the currently selected graphics.

The primary graphic is the graphic displayed in the inspectors when more
than one graphic is selected. Operations such as Boolean subtract or align,
are performed relative to the primary graphic. For example, aligning left
edges will always align the edges of the selected graphics to the left edge of
the primary graphic.

By holding down the Alt key, only graphics that are entirely within the
selection region whilst dragging are selected. This is useful for selecting
small graphics or graphics that are on top of each other.

All the graphics on the canvas can be selected with Select All from the Edit
menu, or deselected with Select None.

Often one graphic will obscure other graphics hidden below, these are nor-
mally tricky to select. Clicking with the Command key held down selects
the next graphic beneath the click and can be used to select an obscured
graphic by repeatedly clicking on top until the desired graphic is selected.
The first Command-click selects the top object like a regular click, then each
subsequent Command-click will select the object below the current selection.

Chapter 11 User interface overview 198

Several Command-clicks will cycle through the objects below the mouse in
order, eventually returning to the topmost object.

11.4.2 Moving, scaling and rotating

Once some graphics have been selected, nine handles appear around the se-
lection. These handles manipulate the selection allowing resizing and scal-
ing. The Control key toggles the mode from scale to rotate/skew, the handles
change appearance to reflect their use, this is shown in Figure 11.4.

B B S * *

L] B L] * ” .

Scale Rotate/Skew

Figure 11.4: Resize and rotate modes in Lineform, toggled by the
control key

Using the resize handles it is possible to:

* Move graphics by dragging on them or by dragging the white centre
drag handle. Constrain the movement vertically or horizontally by
holding the Shift key.

* Create a copy of the graphics by holding the Alt key while dragging.

* Scale the graphics by dragging any of the blue and green edge han-
dles. The blue corner handles scale the graphics both horizontally and
vertically. The green edge handles scale only in one axis. The Shift
key constrains the corner scaling to preserve the original height/width
aspect ratio. The Alt key transforms the graphics from the centre.

The Control key changes the handles of the selected graphics so that it is
now possible to:

* Rotate the graphics by dragging the orange corner handles. Holding
the Shift key down constrains the rotation to 15 angles.

» Skew the graphics by dragging the yellow edge handles. Holding the
Shift key down constrains the skewing to 15 angles.

While manipulating objects, holding down the Command key stops their fill
from changing. This allows the user to clip pictures easily because resizing
scales the shape but not the picture. Command-dragging also allows the
size of a text box to be increased without changing the size of the text.

11.4 Manipulating graphics 199

In a similar manner, holding the Z key down while manipulating objects
stops the stroke style of the objects from changing size. By default when
resizing graphics the stroke width changes correspondingly, the Z key toggles
this so that graphics can be resized whilst retaining their original stroke
width.

Original

Scaled Stroke

(default) Unsealed Stroke

Scaled Fill
(default)

Unsealed Fill

Figure 11.5: Scale modes in Lineform

Figure 11.5 shows the difference between scaling the fill or stroke, these can
be toggled live whilst the user is resizing the graphics.

11.4.3 Transform inspector

O v Transform

T Bo°si W 169.00pt

Y. 126.00pt H: 123.00pt
A 0° CD 0°

Transform: 0 Shape & stroke 0 Fill

Figure 11.6: The transform inspector

The Transform inspector, shown in Figure 11.6. makes it easy to manipulate
the width, height, layout, rotation and skew of graphics. The grid control
in the upper left of the inspector sets the origin of the transformation. The
Shape, Stroke and Fill checkboxes enable or disable transformations for the

Chapter 11 User interface overview 200

graphic’s respective components. The Transform inspector can also be used
to rotate or skew graphics.

11.4.4 Transforming with the keyboard

The arrow keys can be used to nudge objects. Graphics are moved 1 pixel
" by default or 10 pixels if the Shift key is held down. Graphics can also be
nudged at the current zoom level by holding down the Alt key.

11.4.5 Align and distribute

A graphic can be aligned both horizontally and vertically with the edges
and centres of other graphics. Commands for alignment can be found in
the Objects menu. The selected graphics are aligned relative to the primary
selected object.

Graphics can also be distributed horizontally and vertically from the Objects
menu. The distribute commands space the selected graphics out so that the
size of the gaps between the graphics are the same.

11.4.6 Flip

Graphics can be flipped around their centre horizontally or vertically by
using Flip from the Objects menu.

11.5 Layers and Z-order

Z-order refers to the order in which objects are drawn, i.e., which objects
are drawn on top of others. The ordering of objects can be changed with the
Bring to Front and Send to Back commands in the Objects menu. These
move the selected objects all the way to the bottom or top of the stack.

Objects can also be raised and lowered one step at a time with the Bring
Forward and Send Backward commands. These will move objects up or
down, respectively, as long as the next layer is visible and unlocked.

Each layer contains its own graphics. The layers also have their own z-order,
and can be rearranged in the Layer inspector by dragging. Each layer can
be toggled visible/invisible and locked/unlocked using the checkboxes in the
last two columns. Hiding individual layers sometimes makes it easier to
concentrate on the remaining visible layers. Locked layers are visible but
not editable, which is useful when editing objects stacked on top of each
other.

11.5 Layers and Z-order 201

orT Uytra
Kune
> Fram*
»Crass
'¥Boat
drtaill
detail/
detail3
deuiW
»Reflection
» Boat
Wake
»Sea
a ciojfls
sky

. DU
< o
e

Figure 11.7: The layer inspector

The third column from the right, represented with a pencil, shows the editing
status. A black circle highlights the currently active layer; all new objects
will be created in this layer. To make a layer the active layer, double-click in
editing status column of that layer. Selected shapes are shown by a square,
the primary selection is shown by a double square and groups or layers with
selected shapes inside them are shown as dashed squares.

Graphics are selected in the layer inspector by clicking in the editing status
column of the graphic. The same modifier keys used on the canvas affect
selection in the inspector: Shift adds graphics to the selection and Command
toggles the selection of specific graphics.

Layers are created and deleted by the + and - buttons, and can be merged
together with the Merge button in the Layers inspector. Layers are named
by double clicking their names and editing.

11.5.1 Isolation mode

Isolation mode is a mode which dims out all graphics that are outside of the
current group when editing a group. This allows the user to concentrate on
the graphics inside the group without any other graphics getting in the way.

When editing groups, isolation mode is the default, but it can be toggled

Chapter 11 User interface overview 202

on and off from the View menu. In isolation mode only graphics inside the
current group can be edited and all other graphics are drawn dimmed out
behind the current group. If isolation mode is off, then what the user sees
is the same as if they were not editing a group and the user can select any
graphic. Editing layers works by default with isolation mode off, but it is
possible to switch it o11 to focus only on one layer.

11.6 Groups and combining

Several graphics can be grouped into a single group which behaves like a
single graphic when it is manipulated. Grouping graphics is a useful way
to keep graphics together, for example keeping text positioned over a back-
ground image.

Graphics can be grouped together with the Group command in the Object
menu. This creates a new group from the selected objects. The Ungroup
command reverses the grouping of selected groups, separating out their com-
ponents.

i 0
[y

Figure 11.8: A drop shadow applied to individual shapes and a
group

A group can be edited easily by double-clicking the group or clicking the
Edit Group... button in the Fill inspector. When a group is being edited,
double-click outside the group or select a layer to finish editing the group.
When a group is being edited it is displayed without any effects applied to
it and everything else is dimmed out.

Groups do not have stroke or fill styles as with other objects but they can
have effects. Thus it is possible to use a group to combine several objects
together before a drop shadow or applying a transparency. The left of Fig-
ure 11.8 show's two objects that have a drop shadow effect, and the result
looks ugly because the drop shadow's are draw'll separately o1 top of each
other. On the right of Figure 11.8 the objects are grouped together and the
group has a drop shadow effect, this results in one single drop shadow for
the combined objects.

11.7 Style 203

11.6.1 Clipping

Groups are also useful for clipping graphics, clipped graphics are only drawn
inside the clipping region. Graphics are clipped by enabling Clip to Top Path
in the Fill inspector. With this enabled all the graphics inside a group are
clipped to the topmost path in the group. If the topmost object has a text
fill then the group is clipped to the bounds of the text.

1111 1M

Figure 11.9: Using text to clip a group

Clipping to text in this way enables complex fills on text that is still editable.
For example Figure 11.9 shows how grouping some text with a gradient and
transparent squiggle beneath it, then clipping the group results in a complex
logo where the text remains editable within the group.

11.6.2 Combining

Graphics within groups retain their separate styles and shapes. A differ-
ent way of combining graphics together is to use the Combine command.
Graphics combined together are merged into a single graphic, losing their
separate style.

In Figure 11.10 two rectangles are combined together. The resulting shape
takes on the style of the primary selected graphic in this case the larger blue
rectangle. This is useful for creating shapes with holes or making bigger
shapes where the different parts of the shape have the same style.

Sepai'ate Paths splits the parts of composite shapes out again. Split out
graphics will always be Bezier paths, so rectangles that are combined then
separated lose the ability to change their corner radius.

11.7 Style

The style of a graphic determines how it is drawn. Each graphic can have
its own style specifying fill, stroke and effects. Fill specifies how the centre

Chapter 11 User interface overview 204

Figure 11.10: Combining two shapes to create a single shape with
a hole

of the graphic is drawn, the stroke specifies how the outline of the graphic
is drawn, and effects specify shadowing and how the object is composited
onto the page.

When there are no graphics selected, the stroke, fill, and effect inspectors
show the current tool style. This is the style used when creating new graph-
ics, this can be used to create many graphic with the same style.

The dropper tool transfers styles between graphics. Clicking on a graphic
with the dropper tool picks up that particular graphic’s style. The style is
applied to the currently selected graphics or to the tool style. The individual
components of the style can be picked up with the dropper tool by holding
the Shift, Alt, and Command keys, which pick up the fill, stroke, and effects
respectively.

11.7.1 Fill

In Lineform there are five fill styles that can be applied to graphics from the
Fill inspector: None, Solid, Image, Gradient, and Text. These are selected
from the pop-up menu in the top-left of the inspector.

The fill of a graphic, image, gradient or text is usually transformed with the
object when it is resized or changed. Sometimes this is not the behaviour
wanted, holding the Command key during resizing or altering the shape
allows the fill to remain unaltered. With this technique, pictures can be
cropped or size of a text box expanded without altering the text.

To reset the fill, use the Beset Fill Transform command in the Objects menu.
This will reset any alteration that has been applied to the fill, such as the
rotation of an image.

The content of the inspector is dependent on the type of fill that is selected.
Selecting None simply does not fill the graphic, leaving the centre of the
graphic completely transparent.

11.7 Style 205

oT (*

fit COK*

Figure 11.11: Solid fills

11.7.2 Solid

Solid fills the graphic with a solid colour. This colour can have an opacity
setting, allowing both opaque and transparent graphics as extremes.

11.7.3 Image

ov Fill
Image ?)
irowser.T'}
Choose . }

Opacity - 9

Figure 11.12: Image fills

An Image fill draws an image inside the graphic. The image is clipped to the
graphic’s outline and can be clipped to arbitrary shapes. The slider in the
inspector controls the opacity of the image. The Choose... button provides
an open file dialog for picking an image and images can also be dragged onto
the image preview in the inspector.

Images can be easily clipped by holding the Command key whilst dragging
a scale handle.

11.7.4 Gradient

A Gradient fill creates a linear or radial smooth transition between two or
more colours. The inspector provides a horizontal preview and a sequence
of colour swatches. Colour swatches are edited by clicking on them and can
be dragged around by clicking above the swatches on the gradient preview.
Additional colours are added by clicking underneath the gradient preview
and removed by dragging the swatches from the gradient preview.

Chapter 11 User interface overview 206

Figure 11.13: Gradient fills

The Position button provides ail interactive way to change the location
and direction of a gradient. Clicking the Position button begins editing the
gradient, this enables direct manipulation of the gradient inside the graphic.
While positioning clicking elsewhere on the canvas or pressing any key exits
the positioning mode. The gradient handles can also be dragged around to
alter the gradient position.

Holding the Shift key whilst dragging limits the angle of the gradient to 15°,
the Alt key allows the setting of the individual position of radial gradient
handles without affecting the other handles.

11.7.5 Text

bediing:
Hyphenation

I bebyonnd

Figure 11.14: Text fills

A Text fill allows any shape to contain text. The padding and hyphenation
of each text fill is set from the inspector. Text is edited by double-clicking
the object and simply typing. Resizing the text graphic without resizing the
text is achieved by holding down the Command key whilst resizing.

The background fill check box fills the graphic with a plain background
colour. Padding insets the text inside a graphic and hyphenation controls
how text is wrapped. In Figure 11.15 the ‘8’s shows text accurately filling

11.8 Stroke 207

Figure 11.15: Unhyphenated and hyphenated text fills

a complex shape, also styled with a blue background fill, an artistic stroke
and a drop shadow. The text is fully justified: the left-hand 8 shows the
unhyphenated text, while the right hand 8 shows the text fill with maximum
hyphenation.

11.7.6 The text inspector

The lentivspeetiryrovit e
rntiverey dliter ond v aeeen
e spreig ot prithaing
velees e fet Choreeter sy iy
vt le e g eeieg altent
Porivente by alliming it
vier b ety the frendeg of
therectery Puelive shifts

e live speeivg The tetivspectir
vl ot eegeick cecess oodlle
vty vl oyt sevenn
fetherpeten fentn et
et

Figure 11.16: The text inspector

The text inspector, shown in Figure 11.16 provides a continuous slider and
quick access to the spacing and positioning values for text. Character spac-
ing controls the spacing of text horizontally allowing the user to specify the
kerning of characters. Baseline shifts characters up or down. Line controls
the line spacing. The text inspector also provides quick access to all the re-
cently used fonts and several of the system inspectors which allow advanced

typography.

11.8 Stroke

Strokes are applied to graphics in the Stroke inspector, it is similar to the
Fill inspector but applies to the outline of the shapes. There are four options
for strokes: None, Solid. Artistic, and Text.

Chapter 11 User interface overview 208

QT Stroke

Solid .) B

Thickness:

[y Comers | 11hts

Figure 11.17: Strokes

Solid applies a solid colour to the line drawn and the inspector allows the
colour, thickness, and style of the line can be set.

mal AAA

Figure 11.18: Stroke ends and corners

Figure 11.18 shows the ends of strokes which can be (left to right) Butt,
Round or Square and the corners which can be set to Mitre, Round or
Bevel.

Lines can also be dashed and this can be set from the Dashes pop-up menu.

11.8.1 Arrows

Figure 11.19: Arrows

Arrows can be placed at the beginning or end of any line. This is useful for
drawing diagrams and charts. Each arrowhead can be sized relative to the
line size and can be morphed to the line shape.

Notice how some of the arrows are morphed in Figure 11.19. Morphing can

11.8 Stroke 209

be applied to the start or end arrow and can make the arrows look much
more natural and professional.

11.8.2 Artistic strokes

artistic 1jjj

Thickness

Default

Daub

Figure 11.20: Brush strokes

Artistic strokes are an expressive way to draw vector objects. The strokes
remain fully editable, and provide a richness in appearance that vector ob-
jects often lack. Figure 11.21 shows a single brush stroke being edited, the
actual path of the shape is visible as a dashed blue, the fat red brush stroke
is the result of an artistic brush applied to this path.

Figure 11.21: An artistic brush stroke

Figure 11.22: An artistic snail and its “skeleton”

Artistic strokes also provide a great way to create entire stylised drawings.
This quick sketch of a snail in Figure 11.22 was drawn with a graphics tablet,
making use of the brush tool. Layers were used to build up the snail using
different artistic strokes with transparency to achieve the final image. On
the right hand side of Figure 11.22 the “skeleton” of the snail is shown, this
is what it looks like without artistic strokes.

Chapter 11 User interface overview 210

11.8.3 Pressure

C*Uigrapti
Ctefe
Cfiat.2

Figure 11.23: Identical strokes with different pressure profiles

Artistic strokes support varying pressure along the stroke, Figure 11.23
shows a custom banner stroke applied to the same path but with differing
pressure profiles. The pressure of a stroke can be set in the stroke inspector
by clicking to add nodes, dragging nodes or by deleting nodes by dragging
them out of the profile. The pressure can also be reset using the “—’button
and can also be toggled on and off. Pressure is also recorded when a path is
drawn using a graphics tablet, this provides a easy way to draw thick, thin
or varying strokes.

11.8.4 Custom artistic strokes

o * Oocumen
info Grid - IraUi-)

Colonzatwn method [Hue shift I

K*Y color

_ A(UtUSFbMV WUt Ilktd It
Li-iT)fejopoi/L>nlo'rrnlrunfry/

Figure 11.24: A custom banner stroke

Custom strokes such as the banner stroke in Figure 11.24 can be used to
extend the default set of strokes. Custom strokes are created by saving
Lineform documents in “Library/Application Support/Lineform/Brushes”,
these documents are used to create the custom brushes.

Documents that are used as brushes distort the across the entire document
size such that the vertical mid-point of the document will follow the path
exactly. Figure 11.24 shows the banner document and the document in-
spector. The ‘Colorization method’ controls how the document is coloured
when drawn as an artistic stroke and the ‘Key color’ specifies the colour
from which a hue shift will occur, this should usually be the primary colour
of a custom brush.

11.8 Stroke 211

The different options for the brush colourisation are:
* None — No colourisation occurs.

* Tints — The brush stroke is colourised so that black becomes the
stroke colour, white remains white and everything in between is a
shade of the stroke colour going to white.

* Tints and shades — The brush stroke is colourised so that black and
white remain the same, and everything in between is a blend from
black to white through the stroke colour. The midpoint grey becomes
the stroke colour.

* Hue shift The brush stroke is colourised so the key colour becomes
the stroke colour, and everything else is hue shifted relative to the key
colour. Greys, black and white remain the same. This is a good choice
for strokes that have multiple colours in them.

11.8.5 Text

Mh Com*™ fettot

Figure 11.25: A text stroke

Text strokes allow placing text on a path which can be any shape or size.
The text is edited inside the Stroke inspector and typeset as the user types
out along the path from beginning to end. and paths that contain multiple
segments have text typeset along each segment in turn. Text is scaled with
the line thickness and a baseline offset can be specified to move the text
perpendicular to the line.

Figure 11.26: Bad kerning at a tight corner

By using kerning, or character spacing in the text inspector, it is possible

Chapter 11 User interface overview 212

to correct the compression and extension of the text that happens at sharp
corners. Changing the text baseline alters the text layout. A baseline that
centres the text over the line can eliminate some of the compression and
extension.

11.9 Effects

Effects

Pivne 1t Lighite

Q Has Shadow

Radius b—\l/ "

Figure 11.27: Blend modes

Effects change how an object is drawn or composited onto the canvas. It
is possible to control the object’s opacity, blend mode and shadow through
the Effects inspector.

Opacity controls how transparent an object is. The ability to control the
opacity of groups is useful as it controls the opacity of the group as a whole.

Blend modes specify how the colours of objects should be mixed. Blend
modes allow for powerful compositing modes but are also fairly complex.
To understand how blend modes work, it is probably best to experiment
with them. Figure 11.27 shows a brush blended with different modes. From
top to bottom the blend modes are: Normal, Lighten and Difference. Blend
inodes are very effective when combined with artistic strokes to add extra
depth to an object or image.

Drop shadows are a simple effect that add a lot of depth to graphics, these
can be applied to any object in Lineform. Shadows are added to graphics in
the Effects inspector. The radius (how fuzzy the shadow is) of the shadow
and its colour and position are also set from the inspector.

11.10 Filters

Filters allow more complex effects, ranging from blurring and colour ad-
justment to halftones, which can be easily applied to graphics whilst the
graphics remain editable.

11.10 Filters 213

Lineform provides a powerful set of filters based on Apple’s Core Image
technology. Using Core Image allows many effects to be achieved which
would not be possible with pure vector objects. For example, filters make it
simple to create a Gaussian blur of a graphic, as shown below in Figure 11.28.
The same graphics are shown on the left without filters applied and on the
right with filters.

blUKIanebl UHallize

Figure 11.28: Filters on some text

Filters are controlled through the Filter inspector, shown in Figure 11.29.
At the top of the Filters inspector are three controls, from left to right:
whether filters are enabled, the resolution at which the filters are applied
and an action button to add new filters. Below these controls is the stack
of currently applied filters which can be individually minimised, disabled,
deleted and re-ordered. Each filter also has its own parameters that can be
set.

ov Filters
M Enabled 72 dpi (Ix) |:j +.
¥ W Crystallize 01

481
Center]i) ISO (Set...

V¥ S Hue Adjust o
Angle .-------44- 104

V¥V M Bloom
— - 10.00
Inteniity . 1

Figure 11.29: The filter inspector

Many filters are available, and it is worth spending some time experimenting
and exploring the possibilities. The filters are categorised by type as: Geom-
etry Adjustment, Distortion Effect. Blur, Sharpen. Color Adjustment, Color
Effect, Stylize, Halftone Effect, Tile Effect, Generator, Gradient, Compos-
ite and Transition. To add new filters, click the top-right button in the
inspector. To delete filters once they have been added, click the X button
in the right of the filter title-bar. The filters are applied in order from top
to bottom and can be re-ordered by dragging the grey title bar up or down
to move the filter above or below other filters. The order of the filters can
often have a large impact on the final result.

Chapter 11 User interface overview 214

11.10.1 Filter resolution

Because filters are, by necessity, bitmap operations that work at the pixel
level, the resolution at which the filters are applied makes a difference to
how they look. Lineform endeavours to keep the filters as independent
of resolution as possible, however it does not provide complete resolution
independence.

Each object can be set to have a resolution of 72, 144 or 300dpi, the lowest
being screen resolution and the highest being good for printing. For print
it is usually best to make use of higher resolution filters, but it is worth
experimenting, as some filters with very gradual transitions, such as the
Gaussian blur, often work well at low resolutions. Low-resolution filters are
faster to draw and take up much less memory.

Bitmap images included in Lineform are optimised to have filters applied at
their native resolution. This is only the case when the filters themselves are
resolution-independent, such as colour adjustment, and the image graphic
does not have a stroke. This allows filters such as colour adjustment to be
applied to images at their native resolution and at faster speeds.

11.11 Editing graphics in depth

Graphics can be edited and altered in different ways. The most flexible and
useful way to edit graphics is to use the Edit tool. This allows shapes to
be changed and altered in any fashion. Once the edit tool is selected, nodes
appear on the graphics being edited. The type of nodes depends on the type
of graphic — rectangle, oval shapes and paths have different nodes.

Lineform provides several different ways to begin editing graphics. The
simplest is to select the edit tool from the toolbar, any graphics that are
selected will become editable. The Return or Enter keys also toggle between
the selection tool and the edit tool, it is possible to hit Return repeatedly
to switch modes.

Lastly, it is also possible to double-click to start editing. A double-click acts
like a normal selection click, except that it starts editing, thus a double-click
can select objects to add and remove them from editing, just as clicking does
with the selection tool. A double-click-drag selects multiple graphics for
editing and the same modifiers affect the double-click selection as normal
selection. The Shift key allows graphics to be added and removed from
editing, the Alt key selects only graphics that are fully within the selection,
and the Command key allows the selection of graphics below the top object.
All these shortcuts are effective both in and out of edit mode.

The double-click selection provides a simple mirror of the standard selection
tool and is a very effective way of quickly editing graphics.

11.11 Editing graphics in depth 215

Text objects have a slightly different default behaviour. Double-clicking a
text object or pressing Return when one is selected will begin editing its
text. The object itself can be edited by selecting the edit tool or by editing
it at the same time as other objects.

11.11.1 Rectangles and ovals

Rectangles and ovals are editable in additional ways, they provide easy meth-
ods to alter the specific attributes of the shape. If further editing is needed,
these shapes can be converted into Bezier shapes. This is done with the 7o
Bezier menu command. Once a rectangle or oval is converted to a Bezier
shape it is editable in any way.

Figure 11.30: Rectangle and oval special shapes

Editing a rectangle allows a rounded corner to be set and the rectangle to
be scaled on its original axes. The cyan nodes in Figure 11.30 are used to
scale the rectangle along its width and height. The small purple node sets
the radius of the rounded corner.

An oval is edited in a similar fashion; two small control nodes allow the oval
to be changed into an arc, the nodes control the start and end angles of
the arc. If the mouse is dragged inside the oval when dragging a control
node, the oval becomes a pie, if the mouse is dragged outside the oval, it
becomes an arc. Holding the Shift key forces the angles to be constrained
to 15° intervals. Ovals are drawn when the two control nodes are close, this
behaviour can be prevented by holding the Alt key.

11.11.2 Bezier paths

The shape in Figure 11.31 is being edited, and the squares and circles rep-
resent the nodes of the shape, these control the shape of the graphic. In
Figure 11.31 there are two blue unselected nodes and three pink selected
nodes.

Square nodes represent a line segment and the circle nodes represent curved
segments. The smaller purple circles connected to some of the nodes are
control handles that affect the shape of the curve. These control handles
only appear on selected nodes that are adjacent to a curved segment of the

Chapter 11 User interface overview 216

Figure 11.31: A Bezier shape being edited

Selecting nodes work in a similar fashion to objects. Clicking on nodes or
dragging around them selects the nodes. Holding the Shift key adds or
removes nodes from the selection and the Command key selects nodes from
underneath, allowing access to nodes on top of one another.

Once nodes are selected they also act in a similar way to graphics. Dragging
moves them and holding the Shift key limits the movement to horizontal or
vertical. Nodes can also be nudged using the arrow keys in the same fashion
as objects.

Control handles can be dragged but not selected. Each curve node has two
control handles, which are automatically aligned. The Alt key allows the
handles to move independently, the Shift key constrain the handles to 15°
angles and the Command key keeps the control handles at a constant angle
while dragging.

Figure 11.32: Deleting nodes in a Bezier shape

The selected nodes can be deleted by pressing the Delete key. Deleting
nodes removes them from the shape; the shape is joined up between where
the nodes were removed.

Changing nodes to lines, shown in Figure 11.33 on the left, alters the shape
so that the nodes selected are now lines and not curves. This and the other
editing functions can be accessed from the Objects menu or the contextual
pop-up menu. The reverse (Figure 11.33 right), changing nodes to curves,

11.11 Editing graphics in depth 217

Figure 11.33: Changing node types in a Bezier shape

converts any selected nodes to curve nodes. Initially this will look the same
until the control handles are moved.

To add a node at any point in a Bezier path without altering its shape,
Alt-Command-click at the point in the path to place the new node. New
nodes are added without changing the shape of the path.

There are three extra editing commands: duplicate, connect, and cut. Du-
plicate creates two nodes on top of one another, this is useful for adding in
extra nodes and detail into shapes. Connect joins nodes together within the
same object. Finally, cut breaks the shape at the nodes selected, creating
multiple segments.

11.11.3 Boolean operations

Boolean operations are a way of combining two or more graphics together.
The resulting graphic is created from a Boolean (yes/no) combination of the
selected graphics and takes the style of the primary graphic. Figure 11.34
shows the results of the four boolean operations: union, subtract, intersect
and XOR.

Union Subtract Intersect XOR

Figure 11.34: Boolean operations

The Union Boolean operation combines two or more overlapping shapes into
one larger shape, consisting of the outer contour of those shapes.

The Subtract Boolean operation removes or subtracts the shape of the se-
lected graphics from the primary graphic. In Figure 11.34 the orange rect-
angle is the primary graphic. If the circle were the primary graphic, the

Chapter 11 User interface overview 218

resulting graphic would be a blue pie shape missing the top-left quadrant.

Using the Intersection Boolean operation results in a shape that consists
of the overlapping area(s) of the selected graphics. If the graphics do not
overlap, an Intersection is the same as deletion.

The XOR Boolean operation creates a shape where an odd (one but not
two) number of graphics overlap. The same effect can be achieved by simply
combining the graphics together. However, XOR creates a new shape with
new control points that allow further editing.

11.11.4 Outline

Outline converts the outline of the text or graphics into a path. This creates
an outline that can then be edited, filled, and manipulated.

Figure 11.35: Outlining a shape

Figure 11.35 shows a rounded rectangle with a gradient fill (left) and the
result of outlining the rectangle with the same fill applied (right). Without
outlining the path, a gradient stroke is impossible.

There are many other possible uses of outlining, such as drawing walls in a
floor plan, creating logos out of text, and using Boolean operations on the
outlines of artistic strokes. Outlining text is an important step in lots of
workflows because it allows the text characters to be manipulated, joined,
and edited as Bezier paths, creating logos and designs which are visually
interesting.

11.12 The canvas in depth and exporting

11.12.1 Rulers, guides and grid

Lineform provides several methods of aiding accurate positioning of graphics.
Rulers allow accurate measurement of distance, horizontally and vertically.
Guides can be added to both rulers, these draw pink lines across the drawing
area that graphics automatically snap to.

Guides can be easily used to align objects, size objects and create objects
with accurate sizes. Guides can be hidden or cleared from the View menu.

11.12 The canvas in depth and exporting 219

* CK guides,impunt ()

W |/ [g|QIA [/ <J A

Rhossili

Rhossili kij in a Kjuulul cxpanse ol golden vainl Knkinl b
lush green ijillsides imd very popular wilh ItHjnsts to ihiv area of
The (Jowfr

Figure 11.36: Guides

ov Grid
Color: pi Size: 0.39in
0 Draw Grid Steps 5
Snap to Grid I
Grid in Front _ Pixel Align

Figure 11.37: Grid inspector

A grid provides a uniform set of guides that graphics can snap to through-
out the document. The grid size, steps and colour are all set from the Grid
inspector. A grid is useful for drawing many different things including tech-
nical drawings, floor plans and typesetting layout. The grid can be set to
any major spacing size with minor spacing or steps. The colour and draw-
ing properties of the grid can also be altered from the Grid inspector. Pixel
Align aligns the grid lines in the centre of pixels so that bitmap drawings
along grid lines are not anti-aliased.

11.12.2 Page layout

The Layout inspector sets the size of the canvas in number of pages. Chang-
ing the actual page size, for example to A3, is done in the page setup dialog
box. This is accessed from either Page Setup... in File menu or by clicking
the button in the Layout inspector.

The layout panel also allows the canvas margins to be changed, which is
useful if the drawing should reach to the exact size of the paper, however
most printers will not print to the edge of paper. A specific document size
can be specified by unchecking the “Size in pages’ option, the document
size can then be entered as an exact size.

Chapter 11 User interface overview 220

QT Layout
WMitt 1 page Height 1 page
|Sj Site in pages Pag* Setup
Print Margins S.aSpt

8 49pt 8.a9pt

8.49pt

Figure 11.38: Layout inspector

11.123 CMYK preview

Printers and screens use different methods of creating colour. Screens use
an additive combination of red, green, and blue (RGB); printers mostly use
a subtractive combination of cyan, magenta, yellow, and black (CMYK).
Because of the difference in how colours are created, it is possible to show
colours on screen that cannot usually be printed. This often creates unex-
pected and disappointing results for the user, who has often spent a long
time getting the colours exactly right.

Figure 11.39: RGB and CMYK preview (note: these images will
appear the same in a printed version of this thesis)

To avoid this problem Lineform provides a soft proof mode which is toggled
on and off from the View menu. This draws the current document using
a different colour space. This is by default a generic CMYK colour space
but can bo set to a number of different options, such as grayscale, in the
preferences. The soft proof provides a clearer idea of how the drawing will
appear when drawn in that colour space. Figure 11.39 shows two screen
shots of a composition, the left hand screenshot is the normal view of the
document, the right hand shows the CMYK soft proof ofthe same document.
Notice how the bright blues and reds and are more muted in the CMYK
soft proof. This is closer to what will be printed on a CMYK printer.

11.12.4 Outline view

An outline view renders all shapes as outlines, allowing easier selection and
editing of overlapping and complex drawings. Like the soft proofit is toggled

11.12 The canvas in depth and exporting 221

//IN m AfIN* /AT

Figure 11.40: Outline mode

on and off from the View menu. In outline mode, shapes are rendered as
outlines, without any effects or fill. A composition of a logo can be seen in
Figure 11.40. The artistic strokes composited using blend modes on top of
the hands, which cannot be seen normally, can be seen as outlines.

11.12.5 Export

It is possible to export graphics from a document to both vector and bitmap
file formats. To export graphics, select the objects then use Export... com-
mand in the File menu. Graphics can be exported to BMP, EPS, JPEG,
PDF, PNG and TIFF file formats. When exporting the exported trans-
parency and resolution can be specified in the export dialog.

EPS, PDF and SVG are vector formats and are resolution-independent.
These formats should be used if the exported file will be printed.

PNG and TIFF are the only bitmap formats that support transparency.

11.126 SVG

SVG is a modern XML-based standard for vector-based artwork that is
independent of resolution. Lineform supports SVG as both an import and
export format. SVG support is growing in many places such as web browsers,
and also provides a good intermediary format between Lineform and other
programs. Lineform provides comprehensive support for the basic SVG
standard.

Chapter 11 User interface overview 222

11.12.7 AppleScript

AppleScript support is built into Lineform. If the user needs to extend
or compliment Lineform’s abilities with additional features or automation,
then it is simple to do so using AppleScript.

11.13 Summary

This chapter has provided a comprehensive overview of Lineform’s many fea-
tures. Vector graphics have many different aspects and are complex to create
and edit. A graphics editor mirrors this complexity and itself requires many
different features and abilities to provide full editing capabilities. However
with good design this does not mean that the user interface needs to be
complex. Lineform manages to provide a simple and elegant user interface
for the complex task of vector graphics editing.

Chapter 12

Implementation

This chapter provides an overview of the implementation of Lineform. To
provide a sense of the scale of the implementation, Lineform now comprises
of 67 classes and over 12000 lines of code written in both C++ and Objective
C. The majority of the code is written in Objective C and makes extensive
use of the core Mac OS X libraries including: Cocoa, Quartz and Core
Image.

This chapter describes the three main aspects of Lineform’s design and im-
plementation. Firstly, the document model structure that contains the vec-
tor drawing and drawing model is described; secondly, the user interface
and interaction structure is examined and finally the vector file format and
representations supported are described.

12.1 Document model structure

A Lineform document contains all the information about a single vector
drawing. The drawing is composed from a small number of classes, which
provide the methods to draw the document using Quartz, serialise it in both
Lineform’s own proprietary format and in the SVG format and support the
modification and editing of the document structure.

Figure 12.1 shows a simplified version of Lineform’s class structure for repre-
senting documents and the contained vector graphic drawings. Each docu-
ment can contain many graphics, such as groups, Bézier graphics, rectangles
or ovals. Each graphic has a fill and a stroke style that is used to draw the
graphic. These few classes provide the basis for the construction of every
drawing,.

223

Chapter 12 Implementation 224

Document

Fill
Graphic Stroke
Group Bezier Rectangle Oval
Figure 12.1: Lineform’s document structure

12.1.1 Drawing model

All of the vector drawing in Lineform utilises the Quartz 2D library in Mac
OS X. Quartz’s drawing model is based on PDF's model, which provides the
simple concept of compositing paint on-top of selected areas of a drawing
to produce the final output. Summarised, the model provides three main
capabilities:

* Shapes can be in the form of character shapes (glyphs), geometric
Bezier shapes or polygon lines.

* These shapes may be outlined or filled with a paint or used for clipping
other shapes. The paint may be any colour and have transparency, or
may also take the form of a repeating pattern or a smooth gradient
between colours.

+ Sampled images such as digital representations of photographs can be
drawn.

12.1.2 The document

The document’s primary purpose is to manage the collection of graphic
objects that make up the drawing. The document class encapsulates various
properties such as the paper size, printer information, grid resolution and
rulers; it also handles high level resource management for resources such as
images and external files.

Finally the document class provides general file management for saving and
loading. The document can be saved as vector graphics in EPS, PDF, SVG
and Lineform’s own format. The document can also be saved as various
raster formats, at different resolutions, the formats supported include the
PNG, .JPG, BMP and TIFF formats. The EPS, PDF and raster format
support is primarily provided by the Quartz drawing library.

The basic structure of a drawing contained within a document object is

12.1 Document model structure 225

an array of groups that provide the main layers of the document and which
contain all the graphics that make up the drawing. Creating the final output
of a document, whether raster or vector, is done by drawing each of these
layers or groups in sequence from back to front.

12.1.3 Graphics

The graphic class provides the encapsulation of all the properties of the
graphic’s shape, including how to composite and draw the graphic. It also
provides support for the user interaction of creation, editing and transfor-
mation.

The individual subclasses of the graphic class: rectangles, ovals and Bezier
graphics provide specific editing capabilities for each subtype. For example,
the rectangle class encapsulates the roundedness of its corners and imple-
ments the user interaction for modifying them.

The Bezier graphic has the most complex interaction, it provides exten-
sive node based editing such as node transformations, connect, join, node
selection, hit testing and path creation using different interactions.

12.1.4 Groups

Groups provide a different function to the other graphic types, the distinc-
tion is similar to the difference between a folder and a file in a disk hierarchy.
Instead of providing a shape that is drawn, groups contain other graphics
and draw all of the objects it contains from back to front. Groups provide
the Z-ordering and organisation of individual graphics and also subgroups.
The group class provides the functionality to rearrange, insert and delete
its contained graphics. All object organisation in Lineform is performed by
groups. They also allow effects, such as transparency and clipping to be
applied to a collection of graphics. Layers used to be a separate concept but
were merged with groups providing simpler code and a more powerful user
interface.

Groups also provide the the ability for the user to manipulate multiple graph-
ics as if they were a single graphic and the ability to apply composition
effects, such as opacity, to several graphics at once.

12.1.5 Fill

The Fill class implements the functionality that draws the insides of a
graphic. Lineform provides five different types of fill shown in Figure 12.2:
None, Solid, Image, Gradient and Text.

Chapter 12 Implementation 226

Figure 12.2: Lineform’s different fill styles

The Fill class provides the drawing functionality for all these different types
of fill. The Solid and Image fills provide simple colour and image contents for
a graphic. The Gradient fill provides smooth transitions of colours that can
be adjusted both in the inspector and on the canvas. The Text fill provides
a rich-text container that flows text inside the shape, the text can be edited
using the standard text editing components by double clicking the graphic.

12.1.6 Stroke

‘Stroke

t*and
Figure 12.3: Some of Lineform’s different stroke styles

The Stroke class provides similar functionality to the Fill class, but for the
outline of a shape. There are four different types illustrated in Figure 12.3:
None, Solid, Artistic and Text.

A Solid stroke is drawn with a simple fixed width brush of solid colour along
the outline of the shape, a Solid stroke also has properties for end-cap shape
and dash pattern. An Artistic stroke warps a vector drawing or brush so
that the X-axis of the brush is distorted to follow the outline of the shape.
The resulting effect is a vector distortion that can create powerful effects,
like those of natural media, just by using vector graphics.

The idea is similar to that of skeletal strokes [Hsu et al., 1993], but the
implementation is different. Skeletal strokes are generated by cutting the
brush into lots of small sections with more frequent cuts at locations of high
curvature on the shape the brush is drawn along. Lineform’s implementa-
tion recursively subdivides the distorted Bezier segments until the distorted
segment is accurate enough. Figure 12.4 shows the result of a ‘S’ shape
drawn using a skeletal stroke which uses a high density polygon and Line-
form’s recursive subdivision brush stroke which uses a smaller number cubic
Bezier segments to achieve the same effect, the blue nodes show the polygon
or Bezier control points.

12.2 User interface 227

Artitttc brush Stroked chape Skeletal stroke Uneiorm brush stroke

Figure 12.4: An artistic brush using skeletal strokes and recursive
subdivision

The Text stroke warps text along the outside of the shape outline by placing
each character such that its baseline lies along the path. The text is edited
in the Stroke inspector and can be made up of multiple different styles and
fonts and the result on the canvas is updated live.

12.2 User interface

Figure 12.5 shows the basic class structure of Lineform’s user interface
model. The structuring of the implementation of the user interface is based
on the Model-View-Controller (MVC) architectural pattern [Reenskaug. 1979]
The MVC pattern de-couples the user interface and the data structures or
model of a system by introducing an intermediary controller. The benefit of
this architectural pattern is that both the user interface and the model can
be changed and reorganised without changing the other. In this case, the
Model is the graphics contained in the document and document state, the
View is the visible user interface (the graphics view, inspectors and toolbar)
and the Controller that provides the interfacing between these is primarily
the Document class (shown centrally in Figure 12.5). Although there are
more classes that are not shown in Figure 12.5, this is an accurate but sim-
plified structural view. For example, in Lineform there is more than one
controller class, as each of the different aspects of the user interface have
different individual controller classes.

The document as the primary controller, takes central place in the structure
of the user interface message passing. When an attribute is changed in an
inspector, the selected graphics are altered by passing the message through
the document. The altered graphics inform the document what area of the
drawing has changed, the document then tells the graphic view which area
needs updating. The document is an intermediary for most user interface

Chapter 12 Implementation 228

Graphic View Document Inspectors

Toolbar

Document model;

Graphics...

Figure 12.5: Lineform’s user interface structure

changes. A similar process takes place when graphics are edited in the
main graphic view. The changes that are made to the document, which
then informs all the different views of the graphics data (the graphic view,
inspectors and toolbar) ensuring that they are always up-to-date (projected
editing).

12.3 Representations

Vector graphics can be represented in many different formats. All of the
different representations support different sets of semantic data. The main
vector representations Lineform supports are: its own specialised ‘.lineform’
format, SVG and PDF. These formats are summarised below:

* Scalable Vector Graphics (SVG) [W3C, 2003] is a XML based open
standard developed by the World Wide Web Consortium for both
static and animated two dimensional vector graphics.

* Portable Document Format (PDF) [Adobe. 2008] is a file format cre-
ated by Adobe Systems, for representing two dimensional documents
in a device and resolution independent format. It is also the ISO 32000
standard. Adobe’s development of PDF was motivated by the need
to extend PostScript, a page description language, to encapsulate all
the necessary data needed for page rendering, for example images and
fonts.

* Lineform’s own format provides much of the same functionality as PDF
and SVG. The vector data format is primarily a binary serialisation of
the graphics object graph that a document consists of. The file format
is a bundle that contains the binary vector data and any imported
images used in the document saved as PNG files. (A bundle is a
folder or directory in Mac OS X that looks and acts like a file but has
arbitrary content.)

Lineform’s format was originally stored in the YAML format [Ben-Kiki et al.,
2004], because of YAML’s readability and ease of editing while the format

12.3 Representations 229

specification was being developed. However version 1.1 of Lineform switched
to using a binary format, this was primarily because the speed of loading
the binary documents was many times faster (in some cases 10 times faster).
Parsing large text based “human-readable” formats like XML and YAML
was found to often be very time consuming compared to binary storage,
storing documents as binary data also meant that they took up much less
disk space. Switching to a binary storage had some drawbacks in the code
complexity needed to handle both formats but provided a huge improvement
in user experience, especially when handling large documents.

An advantage of using a bundle and separating the vector data from the
image data, is that hie access can be optimised. Saving document changes
can be optimised because writing changes to the vector data does not mean
that the images, which are potentially very large, also need to be written
to the disk. Similarly adding or removing images does not mean that the
vector data needs to be rewritten. Bundles also provide a simple process
to access the images used in a Lineform document, the individual image
files can be accessed by selecting the “Show Package Contents” item in the
Finder.

12.3.1 Semantics

It is possible to represent nearly all vector graphics drawings in the three
different hie formats. The final output will look identical, however semantic
information is often lost in translation between two of the formats. An ex-
ample is text on a path like the example in Figure 12.3, this is represented in
SVG as atextPath element that retains the semantic data but can can only
be represented in a PDF hie as lots of individual characters with different
transformation matrices. They look identical, but the PDF version lacks
the extra semantic information, which makes it much harder to edit.

Often this semantic data is unnecessary, for instance when printing, only
the appearance of the vector graphics is of interest. However for editing,
importing and changing the vector graphics the semantic data is important.
Editing a string that was attached to a path and is now composed of single
unattached characters is almost impossible, because the editor does not
recognise the characters as a string but as many separate objects.

Adobe Illustrator CS2 uses a PDF file format that is augmented to contain
extra proprietary semantic data. This provides semantic data, like the path
data in the previous example, to allow easier editing. Inkscape, an open
source vector graphics editor, uses an augmented SVG format as its native
file format. Both Illustrator and Inkscape modify the respective standard
file formats but in a way that remains compatible with the standards. This
allows each to extend their chosen format, whilst maintaining a native format
that is a useful export.

Chapter 12 Implementation 230

[llustrator also exports vector graphics as SVG and Inkscape (with some
modifications) also exports PDF.

Lineform uses a different approach: it uses its own file format that can then
be exported as both PDF or SVG. The advantage is that the file format and
data structures are designed specifically for the semantic constructs Lineform
supports. This means the files can be smaller and the user interface and
graphical objects the user interacts with are separated and abstracted from
the specifics of a target format, whether PDF or SVG.

Feature Lineform SVG PDF

Solid strokes yes yes yes
Text on a line yes yes no
Arrows yes partially no
Artistic strokes yes no no

The above table shows some of the features of line drawing styles the different
formats support. Lineform provides the most options, although all formats
are capable of the same visual output. Lineform’s features such as artistic
strokes which are unsupported in PDF and SVG have to be converted to
simpler vector graphics when exported to these formats.

12.3.2 Comparisons

Figure 12.6: Three Lineform documents

The following Table shows the different files sizes for the documents in Fig-
ure 12.6. Document 1 is a simple vector image with gradients, Document 2
is a complex vector image with hundreds of paths and artistic strokes, and
Document 3 is a simple diagram.

Document Lineform Lineform (XML) SVG PDF
1 49KB 245KB 49KB 127KB
2 393KB 2,252KB 4,300KB 2,355KB
3 33KB 224KB 56KB 304KB

Lineform contains some semantic data that was ignored for these compar-
isons.

12.4 Other features 231

e Although further compression (for example zip) is possible for all the
document formats; in all three examples Lineform’s file format size is
the smallest.

e Lineform’s raw format is always a lot smaller than Lineform (XML)
which is the XML equivalent to the binary Lineform file.

e Document 2 is very complex, and contains over 1600 artistic strokes.
The use of artistic strokes provides Lineform a large advantage over
the other formats, due to the semantic compression of storing a single
path and a reference to a brush instead of the complex stroked outline
of the brush along the path. This semantic compression is sufficient
that the Lineform (XML) version is still smaller than PDF, which is
a binary format.

e PDF has an overhead that increases the file size for small documents
but for drawings with lots of stroke data, such as document 2, it is
half the size of the respective SVG document.

12.4 Other features

12.4.1 Linkback

Document 3 in Figure 12.6 contains LinkBack! data so that the equations
in the document can be double clicked in order to edit them in the original
editor outside of Lineform. LinkBack is a library for Mac OS X that provides
a method of embedding semantic data and providing a link to the originating
application. Lineform itself does not use this data but stores it so that
objects can remain externally editable in the original linked application.
The BTEXequations in document 3 remain editable in the original equation
editor even though Lineform does not handle IXTEX. When these objects
have been edited externally and saved, the new objects are passed back to
Lineform which updates its document with their new appearance.

12.4.2 Scripting

Lineform provides scripting support through AppleScript. Scripting allows
Lineform to be extended beyond the tools it provides by allowing an external
program to manipulate the graphics in a document. Scripting provides a
powerful addition to what Lineform can do, because it allows users to write
scripts that change Lineform to meet their needs, in ways it could never
have originally been designed for. Scripting also means that Lineform can
be controlled from other applications, which allows Lineform to be part
of extended workflows. For example, Lineform could be used as part of

 http: / /www.linkbackproject.org/

Chapter 12 Implementation 232

a workflow to generate a PDF contact sheet from a collection of images
downloaded from the web.

Listing 12.1 shows an AppleScript script that prompts the user for a number
of sides and generates a regular polygon or star in Lineform. Lineform does
not provide the tools to create stars and regular polygons and scripting can
provide this ability as a useful extension to Lineform.

Listing 12.1: Polygon generation script

— A simple script to provide Lineform with star and
polygon shapes

tell application ”"Lineform”
tell first document
activate

— Get parameters from the wuser
“display dialog ”Please_enter_the_order_of_the_polygon.”
default answer ”5” buttons {”Next”} default button

” Next”

set order to text returned of result as integer

display dialog ”If_you_want.a_star ,.please.enter.a.
ratio_for_the_point_radius.” default answer ”0.5”
buttons {”Star”, "Polygon”} default button ”Polygon”

if button returned of result = ”Star” then
set radiusRatio to text returned of result as real
set order to order x 2

else
set radiusRatio to 1

end if

— Default settings
set radius to 100

set xcenter to 200
set ycenter to 200

—— Generate path data
set pathInfo to "M.” & xcenter & ”.” & ycenter — radius
repeat with i from 1 to order
set angle to i / order x 360 + 90
set myRadius to radius
if i mod 2 is not 0 then
set myRadius to radius * radiusRatio

end if
set pathInfo to pathInfo & ”.L.” & xcenter + myRadius
* (my cosine_of(angle)) & ”.” & ycenter +

myRadius * —(my sine_of (angle))
end repeat

—— Create path
make new path at end with properties {data:pathInfo}
end tell

12.5 Summary 233

end tell

12.4.3 Core Image

Core Image is Apple’s framework for image manipulation, which provides
raster operations such as Gaussian blur, crystallise, and sepia tone. These
operations are calculated with 32-bit floating point math, so there is little
loss of image quality or precision throughout the image processing pipeline.
The filters are compiled down and lazily run across multiple CPUs and
GPUs. Core Image also provides a plug-in style architecture for accessing
filters, transitions and effects packages called Image Units. This means that
filters and image manipulations can provide real-time, interactive respon-
siveness as you apply and adjust them.

Core Image fits in well with Lineform’s approach to interactivity. There are
no progress bars or delays between selecting or changing filters and seeing the
results because it is fast. Shapes and graphics can have Core Image filters
applied to them with the filter palette. The underlying graphics remain
vector based, and are still completely editable.

12.5 Summary

Lineform is implemented with a straight forward object oriented model-
view-controller model using a small number of core classes.

Although the implementation is not a restriction on user interface princi-
ples, by using a good flexible design the implementation supports the same
flexibility that Lineform’s user interface provides. For example, in Lineform
text is available as both a fill and a stroke type for any graphic, these provide
text-on-a-path and arbitrary text fills, this is a different user experience to
using specialised graphic types which needlessly restrict a user in how they
are used. Lineform’s implementation and class design, which provide text as
a fill or stroke, enable this flexible user interface directly through the class
model design.

Chapter 13

Evaluation

This chapter provides an evaluation of Lineform, which is primarily pro-
vided through expert reviews. A cognitive evaluation using Green’s cogni-
tive dimensions supplies a different approach using a heuristic evaluation to
compare Lineform and Adobe Illustrator.

13.1 Why expert reviews?

The evaluation of Lineform in this thesis is primarily provided through pro-
fessional expert reviews. The purpose of this method of evaluation of Line-
form is to examine and highlight the differences the principles make.

Simply creating two different versions of Lineform, one using the principles
of continuity, projection etc. and one without them would, at its best,
be a highly biased evaluation. A particular problem is that Lineform’s user
interface was designed with its principles as core design concepts. To remove
the principles from Lineform would be to neuter the design and weight any
comparison heavily in favour of the success of the principles. To create a
drawing application without the same principles would require starting from
scratch and building an application with a different philosophy.

Thus perhaps the best comparisons for evaluation are drawing applications
such as Adobe Illustrator and Corel Draw, which while they have had many
thousands of design hours put into them were not designed explicitly using
flow or other Lineform principles.

User and comparative evaluations are difficult for a large program such as
Lineform. Lineform is used by professionals and its main competition and
comparison is Adobe Illustrator, a major application with over 20 years of
development. Both programs take weeks (and possibly months for Illustra-
tor) to learn and few users have the time to be familiar with both. Also
the very fact that they are creative programs where the output is often
subjectively good makes empirical comparison very hard.

235

Chapter 13 Evaluation 236

Expert reviews are a good tool because unlike users, they are unbiased
through voluntary choice and unlike usability study participants, experts
have an expertise in drawing and a wider experience of comparative prod-
ucts. Their unsolicited reviews and comments are made with the knowledge
and skills of drawing.

Users provide useful feedback, but often their comparative feedback is statis-
tically flawed, they are self selecting and have already decided that Lineform
is a suitable solution for them. Several of the examples of user feedback in
Chapter 9 also highlight the desire of users that Lineform would work exactly
like other applications. Thus this chapter is focused on expert reviews by
unbiased professionals. While the reviewers are not necessarily user interface
experts (in the sense of being HCI professionals) they do have considerable
expertise in illustration, vector drawing and knowledge of similar programs.
Their views are arguably better than the usual “n students in my depart-
ment” approach to evaluation!

13.2 User reaction

Lots of users evidently really like Lineform. Here is a short selection of some
of their quotes. Chapter 9 also provides more user feedback that helped
shape Lineform’s design.

Ostensibly a competitor to Adobe lllustrator, Lineform is a vec-
tor drawing program that’s almost completely different: it's small,
efficient and reasonably priced. Revolutionary, right? Lineform pro-
vides ninety percent of lllustrator's crucial functionality in just one-
tenth of the disk space; it claims just 7.1MB on your hard drive and
US$79.95 from your wallet to use and own this program, and it's a
thing of beauty.

— Khol Vinh, Director of NYTimes.com. (Oct 2006)

This is probably one of the best software products I've ever seen
for the creative artist or business person. | had been trying the 30
day free trial and after a week, | had created so many logos and
animated characters for my business that | couldn’t wait to get the
whole program. I've been able to use it in conjunction with other
programs like Comic Life and even word processing programs. This
program is one of the reasons | am always trying to sell my friends
on Mac and why | will never use anything else. There is nothing that
even comes close to this program for ease of use, adaptability and
creative potential. And | can say this now that | have the program,
but at twice the price, it would still be cheap for what you get. |
suggest you go to their website and download the trial version first.
| think you'll see what I'm saying is true.

— Peter Marino (Amazon user review, May 2007)

13.3 Expert reviews 237

lourag* ™
boldniti

rebellion

Figure 13.1: Clockwise (¢) Martin Howard, Rory Prior, Bill
Rogers, Jonathan Leavitt, Aarni Heiskanen, M att Gibson

I'm a pretty heavy Illustrator user and Ilove it. I bought a copy
of Lineform to see if there’s an alternative for use at home. The
learning curve was really low and features like the bitmaps as fill are
great (why doesn’t Illustrator have this?).

Alan Brown (Amazon UK user review, Nov 2007)

Lineform users also initiated a group on Flickr (http://www .flickr.com)
for sharing images created with Lineform. Many users have shared their
Lineform designs, pictures and creations. A small selection of these and
other user images are shown in Figure 13.1.

13.3 Expert reviews

Lineform has received much praise for providing a simple, effective and en-
joyable user interface for drawing vector graphics. It has been well received
by both users and the press.

To provide the flavour of both user and press opinions, some quotes taken
from reviews of Lineform are included below. These show a selection of
different users’ reactions to Lineform. These quotes, from both professionals
and amateur users, support Lineform’s successful design.

Chapter 13 Evaluation 238

It is perhaps worth pointing out that professional reviewers rarely pub-
lish negative reviews: they simply don’t get published often. One would
therefore expect a bias towards positive reviews in any selection of reviews.
However, in citing the reviews as contributing towards Lineform’s evalua-
tion, we are not using the scores the reviewers used, but their words and
understanding. This use of the reviewers is very similar to expert usability
evaluation, where trained usability professionals (rather than participants
selected as representative of the target user population) are used to evaluate
a system.

After years of messing around with lllustrator, then moving on
to Freehand, then bouncing back to lllustrator, | was never able
to do more than the most basic of tasks, and even then only with
the help of a manual. Lineform has addressed this complexity issue
with a simple interface that actually behaves the way you would
expect it to, for the most part. If the lllustrator developers were
concerned about how to make a certain function work, Thimbleby
seemed more concerned with how the user would want it to work.

— Applelinks. (July 2007)

Lineform from Freeverse Software claims to be the solution for
modern drawing and illustration. It is. Winner of a 2006 Apple
Design Award, Lineform is not only easy to use, but the interface
design makes the application so intuitive, Mac users need no expla-
nation to start illustrating. Not only is it easy to use, it produces
professional illustrations for less than $80.

— CreativeMac (February 2007)

It's not often that you find a product you literally have to gush
over. .. but Lineform, for me at least, is that product. I'm a graphic
designer, t-shirt designs mostly, and | use Adobe lllustrator daily.
I've never loved lllustrator, and |I've REALLY never loved the $499
price tag for it... but it has been necessary to do my job.

— AppleGazette (January 2007)

David Karlins reviewed Lineform for MacWorld, he is an author of half a
dozen vector graphics books [Karlins and Hopkins, 2005a,b] and teaches
Illustrating for San Francisco State University.

If youre looking for an easy-to-use, affordable vector drawing
package that can create EPS and PDF files, its hard to imagine a
better deal than Lineform 1.3.2.

— David Karlins, MacWorld (May 2007)

Lineform has two other selling points. First, its speed: the
program launches in a couple of seconds and shames lllustrator
throughout in its responsiveness. Second, its ease of use. The
simple interface alone makes it easier to find things.

— MacUser (October 2006, volume 22, issue 22)

13.4 Apple Design Award 239

When | say that Lineform offers a simplistic interface, or takes
the easy route to giving me the tools to do the job in hand, this is
really a positive. For many years now | have used Freehand instead
of llustrator, because the interface is a lot simpler to find your
way around. Lineform is very similar to this, the interface is very
clean and allows you to get on with what you are trying to achieve,
but when you need more powerful tools, they are on tap too, but
without being over-complicated (unlike some very expensive apps).

— Geekanoids (October 2006)

Darren Rolfe reviewed Lineform for MacReviewCast, he works as freelance
artworker, designer and illustrator and in his own words is a “fully paid
up member of the Adobe Illustrator Fan Club”. His review written from
the view point of a heavy duty Illustrator user is full of comments such as
“compared to Illustrator its an absolute joy to use”.

And the goodies just kept coming. Little things that have so
obviously had some serious thinking time spent on them. | was
pleasantly surprised!

This is a stunning piece of software. And if you are in the market
for an viable alternative to the heavyweight option this is it!

Darren Rolfe, MacReviewCast (Dec 2007)

| found completing the necessary tasks to be surprisingly easy
with Lineform. It took me approximately 45 minutes to learn the
program (without any previous knowledge), find the tools | was
looking for, and use them how | intended.

The program has a small learning curve. It's clear that Lineform
programmers put in a great deal of effort to make it as simple and
user-friendly as possible.

Epoch Times (July 2009)

13.4 Apple Design Award

Lineform won a 2006 Apple Design Award, the most prestigious awards for
Mac software, recognising the best, most innovative Mac products, technical
excellence and outstanding achievement on Mac OS X.

Thousands of applications are submitted each year and they are rigorously
examined by a large number of judges. To win an award is a testament to
Lineform’s design, user interface and its underlying design principles.

Chapter 13 Evaluation 240

13.5 Commercial success

Lineform has also been a commercial success, it is now available as a retail
product, published by Freeverse Inc. It has sold over 10,000 copies since it
was released in 2006.

Apple bought the rights to Lineform in 2008 and elements of Lineform are
now a part of iWork which is Apple’s suite of office applications. iWork in-
cludes presentation, word processing and spreadsheet applications: Keynote,
Pages and Numbers. Lineform’s users (from amateurs to professionals) and
Apple (a big multinational corporation) bought Lineform for completely dif-
ferent reasons, but were motivated by the same high quality of design and
implementation that Lineform represents.

13.6 Cognitive evaluation

Green’s [1989, 2000] cognitive activities and cognitive dimensions allow a
heuristic evaluation, similar to the one that was performed on the calculator.
The table below exhibits Greens original cognitive dimensions, using them
to compare Lineform and Adobe Illustrator.

Cognitive Dimension Illustrator | Lineform
Viscosity medium low
Visibility medium high
Premature commitment high none
Hidden dependencies none none
Role-expressiveness medium medium
Error-proneness low low
Abstraction medium none

Table 13.1: A comparison of drawing applications using Green’s
cognitive dimensions framework

Change is how drawings are created, a wiscous drawing application that
makes change hard would be a complete failure. Thus both Adobe Illus-
trator and Lineform provide many different ways and tools to change and
interact with the drawing. Neither user interface is wiscous, they are both
fluid interfaces that allow and encourage change. Although Illustrator does
not have the same principle of appropriate controls and sometimes provides
awkward discrete controls for continuous values. This can be seen in Illus-
trator’s stroke palette, shown in Figure 13.2, which only provides discrete
stepper controls or pop-up menu for the stroke width which is a continuous
value. These inappropriate controls detract from the fluidity of the user
interface, making it harder for the user to change the stroke width value
and explore the results. Illustrator’s premature commitment also reduces

13.6 Cognitive evaluation 241

J®Strote xtn iw kawwnnf I .=
gj2 p< 957 A ojsi
MterUMkg4 ~l« rfl»n!*]

Align iz-oiz |P 1Q |In |

0 Dishte Lire--mmmmmmmmmmeeeeeeee e

dash gas dash gas dash gas

Figure 13.2: Adobe Illustrator CS3’ stroke palette

the fluidity of its user interface.

Visibility describes how well a user interface makes the information a user
needs available. Lineform and Illustrator are both graphical applications
and provide a WYSIWYG interactive view of the document as well as fur-
ther outline modes and layer palettes. However Illustrator does not provide
projected feedback for several interactions and this severely reduces visibility
whilst the user is interacting and thus makes it much harder for the user
to get the desired result. Examples of this are the outline resizing, shown
in Chapter 8 Figure 8.8, and the gradient tool which draws a single line as
feedback instead of drawing the result of the gradient.

Premature commitment was one aspect of drawing applications that Line-
form specifically avoids and is codified in the flexible design principle. II-
lustrator often determines the role of an object at the point of creation, for
example whether an object is a text-box, image, stamp, shape or mesh is de-
termined by the tool that created it. Later if the user changes their mind it
is nearly impossible to change the role of these objects. In contrast Lineform
lets the user change the role of any object freely without restriction.

Hidden dependencies occur when important links between entities are not
visible. Neither application has any dependencies, each shape or object on
the canvas is independent of any other shape.

The direct manipulation graphical WYSIWYG user interfaces mean that
both applications provide a role expressive interface on the canvas. However
the tools and concepts of a drawing application are fairly specialised and for
a novice the role of many tools like the Bezier pen or eye-dropper might
not be immediately discernible. These concepts that the user has to learn
reduces the role expressiveness of both user interfaces,

Error proneness is not a big problem for either application. The visual and
direct manipulation user interfaces means that mistakes are rarely made.
However Illustrator’s lack of projection when using certain tools means that
temporary mistakes are made as the user attempts to achieve a desired
effect by a trial and error exploration. Lineform instead provides a projected
exploration that presents immediate and continuous feedback which reduces
any intermediate errors.

Chapter 13 Evaluation 242

raw u*>'ltreM
yYOU WOUW 01 » *P*r

4+’ asK s-

Uavt Ktiitm iw»*«n
to »rt ttw «k*Utar to
*oit for Yoxe

6x %
Figure 13.3: Several examples of my use of Lineform

IMlustrator’s multiple shapes and tools that operate only on a specific class
are complex layers of abstraction which can confuse users. Lineform’s lack
of specialised classes of shapes or tools removes the potential for confusion.

13.7 Summary

Lineform is now used by thousands of people, from professionals to home
users, in order to fulfil a huge variety of different needs.

Figure 13.3 shows some more drawings that Lineform has been used to
create. It is the creation of these sort of drawings that motivated the creation
and design of Lineform. Figure 13.3 includes examples of diagrams, flyers,
buttons, logos and the help graphics for the calculator. Almost all diagrams
and drawings in this thesis were created using Lineform.

Vector graphics are fairly complex, and vector drawing applications require
many different abilities or features so that users can create and edit graphics.
Well designed drawing applications that meet these requirements can allow
powerful and complex drawings to be created easily. Lineform succeeds in
doing so, its user interface incorporates all the required features that were
previously identified, and does so in a way that is evidently clear and easy to
use. The quotes of users and reviewers, and indeed its commercial success
with thousands of users, testify to Lineform’s user interface design, and in
turn to the design principles that guided its development.

243

Chapter 14

Conclusions

The user interfaces, designs, and design principles of two new systems has
been described. Both systems are effective, as evidenced by a variety of
empirical evaluation including expert reviews, as well as argument and ap-
peal to the literature. They are now both successful commercial products.
Both were designed using a similar principle-driven processes. Both have
produced novel user interface ideas. And both now open up interesting
opportunities for future research.

This chapter concludes the thesis with a summary of the primary principles
that are the key components of the designs of these user interfaces, followed
by an overview of further research, which could extend and build on the
novel contributions of the thesis.

If we intend a science of human-computer interaction, it is es-
sential that we have principles from which to derive the manner
of the interaction between person and computer. It is easy to de-
vise experiments to test this idea or that, to compare and contrast
alternatives, or to evaluate the quality of the latest technological
offering. But we must aspire to more than responsiveness to the
current need. The technology upon which the human-computer
interface is built changes rapidly relative to the time with which
psychological experimentation yields answers. If we do not take
care, today's answers apply only to yesterday's concerns.

— Donald Norman [1983]

14.1 Contributions

While the programs, description of the design process, and novel user inter-
faces are themselves contributions and are valuable for future design, it is
the principles, their relationship to the development process, and their po-
tential future role in interactive system development, that form the lasting

245

Chapter 14 Conclusions 246

contributions of the thesis.

Norman {1983] states that principles are essential, in order to apply todays’s
answers to tomorrow’s problems. The principles which resulted in the novel
and effective interfaces of the calculator and of Lineform, also allow the same
constructive user interface design ideas to be applied to future designs.

Although principles in general are essential, that does not mean the princi-
ples described in this thesis are. Nor that they are uniquely important or
special. They were however a major factor in the design of both systems
and the four flow principles were key components in both designs. Crucially,
the two different applications, the calculator and Lineform, allow us to talk
about the principles and their consequences on design in a concrete way.

14.1.1 Utility

While the principles were not followed unthinkingly, they were utilised al-
most without exception, Chapters 3 and 9 describe how they were used and
when they were ignored. The designs of the systems are consistent and log-
ical in their approach to problems; without implementation the principles
consistenly the resulting designs would not be as coherent nor work as well.
For users, this consistency might not be immediately apparent but (we have
argued) it leads to an ease of use that would otherwise have been missing.

Although the conception of these principles has been illustrated in specific
designs, their application and utility is general and extensive. The principles
described in this thesis are not only important for these two user interfaces,
but can provide relevant guidelines and ideas for future user interface design.
The underlying design process is also an important factor of consideration.
To fully utilise these principles, it is key to have a design process that ensures
their consistent and pervasive application.

The use of the flow principles when designing Lineform highlights their
utility in a contrasting type of user interface to the calculator. The principles
need not be used in the same way as how they were used in the designs in
this thesis. Each principle may vary in relevance to a particular design but
still be useful to consider — just as continuity is less relevant to Lineform’s
design but it still provides useful insight. Also in the same way as Lineform’s
design generated new principles, more applicable to its purposes, so to would
future principle-driven designs. The discussion and insights that principles
focus, may be as useful as the principles themselves.

14.1.2 Validity

User studies, qualitative feedback, heuristic, and analytic evidence of the
effectiveness of both user interfaces is found in Chapters 7 and 13. The
principles themselves have not directly been subject to any empirical testing

14.2 Principles 247

outside of their impact on the design of those specific applications. How-
ever, the principles are an important aspect of the design of the novel user
interfaces described, and this thesis has argued that they are the primary
reason that both user interfaces have been effective.

The design and development of each application built on the synergy that
formed between the principles and the application designs. The applications
and principles developed together, to such an extent that they are insepa-
rable. This makes evaluation complex, because without the principles the
applications are incomplete husks. The principles provide the core structure
of how the user interfaces of both applications work.

14.2 Principles

Principles were developed during the design and development process of
both the calculator and Lineform, and each main principle is summarised in
this section.

The calculator was designed using the flow principles of projection, continu-
ity, WYSIWYE and declarative interaction. Each of these principles relates
to an aspect of the user’s interaction with an interactive computer system.
Each of the four flow principles is focused on a different component of in-
teraction and together they combine to describe a system that as a whole
engenders flow.

Lineform’s development incorporated these principles in a manner that was
more appropriate to its domain, and built up some more narrowly-focused
principles of its own. These principles of physical modes, flexible design and
appropriate controls developed during the implementation of Lineform.

All these principles are described fully in Chapters 4 and 10.

14.2.1 Projection

Projection could be described as “consistent and immediate changes every-
where.” Inconsistency in a user interface requires a cognitive effort to keep
track of, and can cause users problems when it is not clear which values are
valid.

A projected view is a view that is projected outwards from the data and
has no state of its own; as the data changes so does the view. Projected
views are updated immediately and continuously as the underlying data
being projected changes, thus multiple projected views of the same data
will always be consistent. Similarly, editing a projected view immediately
changes the underlying data, and provides an immediate response to the
user’s edits in other views of the data. This can make a user interface

Chapter 14 Conclusions 248

easier and faster to use because the user is not burdened with remembering
inconsistencies and is provided with immediate feedback of any edits.

The calculator provides projected editing of mathematical expressions. It
always updates and accommodates new input as the user writes new sym-
bols. The handwriting recognition is immediately reflected in the canvas,
there is no need to press a button to get the answer, and the answer is
updated immediately to reflect the new input. What the user sees is always
mathematically consistent. Lineform also projects all its data ensuring that
no part of the user interface is ever inconsistent.

Another example of projection is “search as you type.” In these user inter-
faces, the search box and search result are multiple views of the same data.
As the user types, these different views are always kept consistent, and the
results are immediately updated as the user edits search terms. A normal
search box provides old and inconsistent search results for different search
terms, until the user presses return.

14.2.2 Continuity

When a user interface changes state without continuity there is a sudden
visual change that can confuse or mislead a user. A user interface that
provides continuity uses animation and morphing to provide the user with
the clues to follow what is happening and to enable them to mentally join
up the state changes.

Morphing and continuity form a large part of the user’s experience of the
calculator. Every time symbol or expression recognition occurs the user
interface morphs the current input into a typeset expression and displays
an answer. This morphing not only provides continuity but also enjoyable
physical movement. The continuous feedback and smooth morphing the
calculator uses provides the user with a clear idea about what is happening
and a consistent linking between input and output. Continuity enhances the
user’s appreciation of the calculator’s use of projection, because they see it
working.

For example, the user’s hand-written input is morphed into a typeset sum,
which provides a clear link between mathematics being calculated and how
it relates to the user’s hand-written input. This morphing not only makes
the calculator easier to use but is also very visual and enjoyable.

14.2.3 WYSIWYE — What you see is what you edit

Users should only interact with what they can see. Hidden state and struc-
ture means that user input can have unexpected consequences, thus causing
a frustrating experience and causing the user trouble. A What You See

14.2 Principles 249

Is What You Edit (WYSIWYE) user interface is one in which there is no
hidden state or constraints that affect how the user interacts with it.

A WYSIWYE user interface is predictable, the entire underlying model
that affects the user is visible to them. The user can see anything that
affects the result of an action and therefore can (after learning the user
interface) predict what any action will do. A WYSIWYE interface has very
few constraints on how the user can edit, and those that do exist, are visually
obvious to the user.

The calculator is a good example: what the user sees — digits and symbols
— is exactly what they can edit. The user can edit any expression by
dragging, adding, or deleting the symbols, without being concerned about
unexpected results or modes or constraints. In contrast, most other two-
dimensional mathematical editors restrict the user’s actions to the implicit,
but invisible, underlying application structure.

14.2.4 Declarative interaction

Declarative interfaces blur the distinction between input and output. Often
input and output in a user interface are entirely and conceptually separate,
which means that if a user wants to change the output in a certain way they
have to work out how to change the input to affect the desired result.

A declarative user interface aims to allow the user to edit most views of
the data, whether ‘input’ or ‘output’ views. By not distinguishing between
input and output, the user interface can allow for more powerful and intuitive
interactions. An example of this is how a user can, by providing the desired
output data discover an example of the input needed, a sort of interaction by
example. The user is able to incrementally explore or construct an answer
by cycling between ‘input’ and ‘output,” adding changes in whichever way
makes most sense. Declarative interfaces also facilitate exploration of the
underlying process and allow users to gain a deeper understanding of the
input-output relationship.

A declarative calculator treats input and output equally, such that the user
can change either, and the other will be altered to ensure the expression is
mathematical correct. This means the user can solve simple mathematical
expressions by editing both sides of the equality, including the output. Ex-
amples of expressions the user could solve directly are ‘2+3’, ‘4x? = 24’ and
‘v/7 = 100’. Both sides of the equality are treated equally and the calculator
solves the expression so that it is mathematically correct.

In Lineform, the user can drag out a shape to roughly the right size in the
canvas, then tweak the exact measurements by entering or editing numbers
in the Transform inspector, then the user can reposition the shape in a better
location on the canvas. Each view, the inspector and the canvas, lends itself
to a different style of use, and neither view need be used solely for output

Chapter 14 Conclusions 250

or input. The combination of both is powerful and gives the user flexibility.
In Lineform, the views are also projected, thus the different views are never
inconsistent or confusing.

14.2.5 Physical modes

Modes in user interfaces alter what a single action achieves. Mode confusion,
where the user is unaware of what mode they are in, can cause problems
when an interaction gets an unexpected result. We define physical modes as
modes that are maintained by some continuous physical action, for example
holding down the Shift key to type capital letters. There is a mode (upper
or lower case shifting of letters, in this case), but the user has to be engaged
in a particular physical action to be in a particular mode.

Physical modes provides a much better reminder and awareness of the cur-
rent action being performed than a state or action that is indicated outside
of the user’s body. Using a physical mode instead of ‘virtual’ visible or au-
dible mode identifiers, such as icons on the screen, reduces the possibility of
mode confusion.

Lineform makes extensive use of physical modes throughout to control the
action of different tools. These make it easy to switch modes quickly without
any confusion. Furthermore, if the user takes their hands off the keyboard,
all modes reset without the user having to know which mode was which or
what state the user interface was in. This is a significant simplification over
non-physical mode approaches.

14.2.6 Flexible design

Flezible user interfaces allow users to delay decisions until they are ready
to make them and then to easily change their mind. Compared to rigid
interfaces this provides a much more enjoyable user experience. Rigid user
interfaces enforce unnecessary premature specification that often needlessly
restrict the user.

Lineform provides a flexible user interface where any shape or object can
be repurposed for any use at any time. This is in contrast to (for example)
Adobe Illustrator that provides specialised shapes, that once created are
very hard to change. Lineform’s flexible design allows users to be free to
draw and design without the fear of future constraints based on the initial
choices.

14.2.7 Appropriate controls

Using right user interface controls for the right values makes a huge differ-
ence. The right control can enable the user to easily and quickly manipulate

14.3 Further work _ 251

the underlying values.

Discrete values should be controlled through discrete controls and continuous
values should be controlled through continuous controls. Continuous values
should also have an exact discrete way of being set. Every control should
also provide continuous projected interaction.

If a user interface provides a discrete control for a continuous value, then the
user’s interaction when changing that value is limited. By always provid-
ing continuous controls for continuous values, the user’s interaction is not
restricted. Discrete controls are important for discrete values and also for
continuous values where setting an exact value is important.

Lineform provides sliders, which are a continuous control, for its continuous
values. Most of these values can also be set to exact values using a discrete
control, like a text input box. Further, in Lineform, these controls are
projected and they allow the user to explore the range of possible values
quickly, because the user can immediately see the effect of the range of
possible values on the canvas.

14.3 Further work

The flow principles of the calculator and the principles drawn out from
Lineform’s design suggest many new and interesting ideas for further devel-
opment.

Instead of going into great detail about possible further research, the re-
mainder of this chapter is structured to provide short sections of potential
further research, organised by research area. The next sections cover various
aspects of the research and how the ideas could be built on and extended in
each research domain.

14.3.1 Computer science

Using the principles of projection and declarative interaction, the calculator
corrects any input so that it is mathematically correct. It attempts to do this
in a manner that causes the least disruption to the user. There are however
many possible ways that calculations can be corrected. Questioning the
calculator’s particular implementation that attempt to show a valid equation
at all times raises interesting questions.

e How can ambiguous equations with multiple unknowns be corrected
to valid equations?

e What are the least disruptive corrections that can be made to equa-
tions?

Chapter 14 Conclusions 252

The calculator’s approach could also be applied to other domains, for in-
stance, Boolean logic. In general, extending the mathematics of the calcula-
tor poses both interesting problems algorithmically and in the appropriate
styles of user interaction.

o How can the fluid correctness of the calculator be extended to more
complicated maths, from simple algebra to completely different do-
mains?

e Is it possible to provide the same principle-based correcting mechanism
consistently in these areas?

The current calculator can be put in a mode to conceal an answer, as in
4+0 = 14, with the box not automatically filled in. This idea raises further
design tradeoffs, which still offer interesting exploration; for example, if the
user wrote 4 + 1 = 14, should the display become 4 + 1 + [0 = 14 or should
it be 4 + 10 = 147

There are also other mathematical problems, such as what should the cal-
culator do with %. It is not clear what the best solution is.

e How should the grammar be extended to other domains, and what
applications are there that could exploit the user interface?

One of the potential ways in which the principles could be explored is embed-
ding the calculator in other user interfaces: whereever a number is needed,
it could be entered or manipulated with a calculator-style user interface,
applying the combination of the flexibility of editing and the automatic cor-
rections to user interfaces.

Another approach is generalising the syntax correction. For example, a
possible use is in code editing, where the approach could provide some of
the benefits of syntax directed editing without the major disadvantages in
how editing code is restricted.

e In what other user interfaces does automatic correction (e.g., projec-
tion) in a constrained environment work?

e How could different forms of input (for example, diagrams) be cor-
rected?

WYSIWYE is a powerful way of interacting, but in this thesis there were
limitations in how it was implemented: Lineform provides a very structured
interaction and the calculator editing operates only at the symbol level. The
WYSIWYE nature of both applications could be taken further.

e How could WYSIWYE editing work at the sub-symbol level (e.g.,
drawing over a 3 to change it into an 8, or drawing over a — so it
can be changed to + which can then be changed to 4)?

e How can the benefits of bitmap drawing (with its easy WYSIWYE)
be combined with vector drawing (flexibility and editability)?

14.3 Further work 253

o The current calculator is numeric; how can it be extended to symbolic
maths. Is there a continuum?

A solution to this last question would help those users who very quickly
create calculations like 1019'*" or 100000! that cause overflow. Such expres-
sions are currently evaluated numerically in Java floating point numbers,
and then fail due to overflow. Instead, they could be retained symbolically
and hence avoid any interruption in the user interface flow. Potentially,
symbolic solutions would also permit 1/0 and other ‘errors’ to be handled
gracefully.

14.3.2 Human computer interaction

The main area in which this thesis could be extended by usability researchers
would be further evaluation and user studies. In particular, longitudinal
studies in primary schools could provide many useful and interesting in-
sights, and there are a lot of useful questions that could be answered by
such studies ...

e Does the novelty of the morphing user interface wear oft?

e Would students enjoy using the calculator every day, for the maths
they do in class? (Maths in class is ‘work’ whereas all evaluation in
this thesis might be accused of evaluating ‘play.’)

e Does a pen-based user interface improve with practice or is it awkward
and slow compared to keypad entry?

e Do users begin to make use of the declarative aspects of the calculator
rather than rearranging equations before they enter them?

Users certainly enjoy using the calculator. Children like the calculator, and
it is certainly more powerful, easier and more reliable to use than any other.
The appeal of proprioception, gesture and affordance all potentially play a
part. A key part of learning is exploration, by surfacing the rules so that a
user can interact with them a declarative interface can potentially support
easier exploration. However, longer-term (longitudinal) experiments will be
needed to see whether the fun and other benefits persist.

e Is the user’s “fun” a surprise due to the unfamiliar nature of the user
interface, or is it durable?

e How can declarative user interfaces, such as the calculator, encourage
exploration and learning?

e Subsequently, how can experiments and user studies rigorously exam-
ine the process of exploration?

Carefully constructed user studies could better inform us of the utility of
the different principles developed both in the calculator’s and in Lineform’s

Chapter 14 Conclusions 254

design.
e Are the principles generally useful, and, if so, where are they effective?
e What are the best ways to provide continuity to the user?
e How do the principles work in other user interfaces?

There are still many interesting questions to be answered in the domain of
drawing and specifically in vector graphics.

o Are there easier ways to draw curves than the ubiquitous Bézier curve?
Can the Bézier curve control points be simplified in some way?

e What are useful interactions and operations for drawing?

e How can we provide an experience that has the preciseness of computer
vectors and the ease of sketching with a pencil?

14.3.3 Interactive editing

This thesis explores in detail just two applications and their relation to the
design principles. In fact, a third application was also developed: Recdit is
an example of an application that was inspired by the design of the calcu-
lator, specifically its ‘undo’ clock (see Appendix H). Recdit is a text editor
that records the entire history of a document, and provides a timeline-like
interface for scrubbing through the creation process of the document. The
majority of this thesis was written using Recdit, and the graphs describing
the creation of this thesis, generated by Recdit, are provided in Appendix H,
along with a draft paper on the editor.

14.3.4 Teaching

Currently the calculator provides the ability to hide and show calculated
answers. These let a teacher write an equation on an interactive board for
a class to see, whilst hiding the answer. Teachers have mentioned that it
helps to have the answer calculated for them: it means that where if math
skills are often rusty they are more prepared and more confident to answer
questions and explore the answers with the students.

e How is the calculator used by teachers to provide richer teaching of
mathematics?

e How can its features lead to richer teaching of mathematics? And how
effective would it be?

e How can it be extended to facilitate use by teachers in novel and
interactive teaching methods?

14.4 Summary 255

The calculator was designed purely as a calculator, to do arithmetic sums.
In this sense, the goal was to make it natural and easy to use. Those
positive attributes have led teachers to strongly encourage us to make it more
effective in the educational setting. In this context, children are learning
not just arithmetic but the mathematical notation itself — for example
children may be learning Arabic numerals. Typically, an educational device
is wanted, not a calculator. For example, teachers have wanted ‘drills’ of
various kinds, rather than an open-ended tool.

e How can the calculator, or similar user interfaces, be developed to
support disabilities?

A further-developed calculator might provide or support numerical games; it
might do tests and provide assessment; it might provide features for children
with specific learning difficulties; and so on.

Many fun exercises are of the form “only use fives to make the number 30”
(some answers are 5% (5+5/5), 55—5x5, 5x 545 and so on). The calculator
could show a legitimate calculation in green (say), and any ‘cheating’ (in this
case, using other digits) in blue. The user’s goal is now to make 30 with an
all-green calculation.

14.3.5 Learning

The calculator poses interesting questions about how to enable the ability
to explore mathematics whilst the visible calculation remains mathemati-
cally correct affects learning. The ability to explore different mathematical
expressions while the calculator ensures correctness is potentially one of the
most effective tools for learning. Exploring this in use, and the potential
of this approach in the calculator and other user interfaces, offers a lot of
potential, both for understanding mathematical skills and for developing or
extending the calculator.

e Is allowing students to explore mathematics beyond the level that they
have been taught a good idea?

e Does the ability of the calculator to ensure correct mathematics all
the time help in exploration, for instance in enhancing confidence?

e How can the calculator encourage exploration and learning?

14.4 Summary

The development of novel user interfaces, a new calculator and Lineform
using a principle-driven process, has generated and refined useful principles
as well as raising many interesting questions for further work. These under-
lying design principles have been key to the design of these systems. The

same principles now provide the opportunity for their use in future user
interface design.

There are many examples of worthwhile further work that extends the work
done in this thesis. In particular more thorough evaluations of both the sys-
tems in longitudinal studies and of the principles’ efficacy would be valuable.
Although much further work now seems useful, arguably little of it would
have been considered but for the critical development of principles and the
development of the calculator and the drawing program.

It is hoped that the design of new user interfaces can use and build on
the work of the flow principles, and in doing so extend and validate them
further, as well as raise even more interesting questions.

Bibliography

Adobe (2008). Document management — portable document format part
1: Pdf 1.7.

Ahlberg, C. and Shneiderman, B. (1994). Visual information seeking: Tight
coupling of dynamic query filters with starfield displays. In CHI ’94:
Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 313-317, New York, NY, USA. ACM Press.

Ahlberg, C., Williamson, C., and Shneiderman, B. (1992). Dynamic queries
for information exploration: An implementation and evaluation. In CHI
'92: Proceedings of the SIGCHI conference on Human factors in comput-
ing systems, pages 619-626, New York, NY, USA. ACM.

Anderson, R. H. (1968). Syntax directed recognition of hand-printed two-
dimensional mathematics. Interactive Systems for Ezperimental Applied
Mathematics, pages 436-459.

Anderson, R. H. (1977). Two-dimensional mathematical notation, pages
147-177. Springer-Verlag.

Anthony, L., Yang, J., and Koedinger, K. R. (2005). Evaluation of multi-
modal input for entering mathematical equations on the computer. In CHI
'05: CHI ’05 extended abstracts on Human factors in computing systems,
pages 1184-1187, New York, NY, USA. ACM Press.

Arvo, J. and Novins, K. (2000). Fluid sketches: continuous recognition and
morphing of simple hand-drawn shapes. In UIST ’00: Proceedings of the
18th annual ACM symposium on User interface software and technology,
pages 73-80, New York, NY, USA. ACM.

Avitzur, R. (1988). Milo (a Macintosh program). Paracomp Inc., San Fran-
cisco, CA, USA.

Avitzur, R. (1998). Direct manipulation in o mathematics user interface,
pages 43-60. Springer.

Baecker, R. M. and Buxton, W. A. S. (1987). Readings in Human-Computer
Interaction: A Multidisciplinary Approach. Morgan Kaufmann Publish-
ers, Los Altos, CA.

257

BIBLIOGRAPHY 258

Baecker, R. M., Grudin, J., Buxton, W. A. S., and Greenberg, S. (1995).
Readings in Computers and Human Interaction: Toward the Year 2000,
2nd edition. Morgan Kaufmann Publishers, Los Altos, CA.

Barkhuus, L. and Rode, J. A. (2007). From mice to men — 24 years of
evaluation in CHI. In ACM CHI(O7 - Alt.CHI.

Baudelaire, P. and Gangnet, M. (1989). Planar maps: an interaction
paradigm for graphic design. SIGCHI Bulletin, 20(SI):313-318.

Ben-Kiki, O., Evans, C., and Ingerson, B. (2004). Yaml specification 1.1.

Bezier, P. (1972). Numerical Control; Mathematics and Applications. John
Wiley & Sons, London, UK.

Blostein, D. and Grbavec, A. (1996). Recognition of Mathematical Notation,
chapter 22. World Scientific Publishing Company.

Blostein, D. and Schiierr, A. (1999). Computing with graphs and graph
transformation. Software Practice and Ezperience, 29(3):1-21.

Boeve, E., Barfield, L., and Pemberton, S. (1993). WYSIWYG editors: And
what now?, volume 753, pages 68-82. Springer Berlin.

Brown, C. M. L. (1988). Comparison of typing and handwriting in “two-
finger typists”. In Proceedings of the Human Factors Society, pages 381-
385.

Buxton, B. (2007). Sketching User Ezperiences: Getting the Design Right
and the Right Design. Morgan Kaufmann.

Cairns, P., Wali, S., and Thimbleby, H. (2004). Evaluating a novel calculator
interface. In Watts, A. D. . L., (Ed.), Proceedings BCS HCI Conference,
volume 2, pages 9-12. Research Press International.

Cajori, F. (1993). A history of mathematical notations. Courier Dover
Publications.

Card, S. K., Thomas, T. P., and Newell, A. (1983). The Psychology of
Human-Computer Interaction. Lawrence Erbaum Associates.

Chan, K.-F. and Yeung, D.-Y. (1998). A simple yet robust structural ap-
proach for recognizing on-line handwritten alphanumerical characters. In
Proceedings of the sizth international workshop on frontiers in handwrit-
ing recognition, pages 229-238.

Chan, K.-F. and Yeung, D.-Y. (2000). Mathematical expression recognition:
a survey. International Journal on Document Analysis and Recognition,

3(1):3-15.

Chang, B.-W. and Ungar, D. (1993). Animation: from cartoons to the user
interface. In UIST ’98: Proceedings of the 6th annual ACM symposium
on User interface software and technology, pages 45-55, New York, NY,
USA. ACM.

BIBLIOGRAPHY 259

Chang, S. (1970). A method for the structural analysis of two-dimensional
mathematical expressions. Information Sciences, 2(3):253-272.

Chou, P. A. (1989). Recognition of equations using a two-dimensional
stochastic context-free grammar. In Proceedings SPIE Conference on Vi-
sual Communications and Image Processing, pages 852-863, Philadelphia,
PA.

Clapp, L. C. and .Kain, R. Y. (1963). A computer aid for symbolic math-
ematics. In AFIPS ’68 (Fall): Proceedings of the November 12-14, 1963,
fall joint computer conference, pages 509-517, New York, NY, USA. ACM.

Cockburn, A. and Bryant, A. (1996). Do it This Way: Equal Opportunity
Programming for Kids, pages 246-251. IEEE Computer Society, Wash-
ington, DC, USA.

Csikszentmihdlyi, M. (1990). Flow: The Psychology of Optimal Experience.
Harper and Row, New York.

Cypher, A., (Ed.) (1993). Watch What I Do: Programming by Demonstra-
tion. The MIT Press, Cambridge, MA, USA.

Dix, A., Finlay, J., Abowd, G., and Beale, R. (1997). Human-Computer
Interaction. Prentice Hall.

Engelman, C. (1965). Mathlab: a program for on-line machine assistance in
symbolic computations. In AFIPS ’65 (Fall, part II): Proceedings of the
November 80-December 1, 1965, fall joint computer conference, part I1I:
computers: their impact on society, pages 117-126, New York, NY, USA.
ACM.

Eto, Y. and Suzuki, M. (2001). Mathematical formula recognition using
virtual link network. In ICDAR ’01: Proceedings of the Sizth Interna-
tional Conference on Document Analysis and Recognition, pages 762-767,
Washington, DC, USA. IEEE Computer Society.

Faure, C. and Wang, Z. X. (1990). Automatic perception of the structure of
handwritten mathematical expressions, pages 337-361. World Scientific,
Singapore.

Fleetwood, M. D., Byrne, M. D., Centgraf, P., Dudziak, K. Q., Lin, B., and
Mogilev, D. (2002). An evaluation of text-entry in palm os - graffiti and
the virtual keyboard. In Human Factors and Ergonomics Society Annual
Meeting Proceedings, pages 617-621.

Fuegi, J. and Francis, J. (2003). Lovelace & babbage and the creation of the
1843 ’notes’. IEEE Annals of the History of Computing, 25(4):16-26.

Fujimoto, M. and Suzuki, M. (2002). A handwriting interface to various
computer algebra systems via openxm framework. In Proceedings of the
RIMS Workshop, Applications of Computer Algebra Conference, volume
1335.

BIBLIOGRAPHY 260

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. M. (1995). Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional.

Gould, J. and Lewis, C. (1985). Designing for usability: Key principles and
what designers think. Communications of the ACM, 28(3):300-311.

Grbavec, A. and Blostein, D. (1995). Mathematics recognition using graph
rewriting. In ICDAR ’95: Proceedings of the Third International Confer-
ence on Document Analysis and Recognition, volume 1, page 417, Wash-
ington, DC, USA. IEEE Computer Society.

Green, T. R. G. (1989). Cognitive dimensions of notations. In Proceedings
of the fifth conference of the British Computer Society, Human-Computer
Interaction Specialist Group on People and computers V, pages 443-460,
New York, NY, USA. Cambridge University Press.

Green, T. R. G. (2000). Instructions and descriptions: some cognitive as-
pects of programming and similar activities. In AVI ’00: Proceedings of
the working conference on Advanced visual interfaces, pages 21-28, New
York, NY, USA. ACM Press.

Greenberg, S. and Buxton, B. (2008). Usability evaluation considered harm-
ful (some of the time). In CHI ’08: Proceeding of the twenty-sizth annual
SIGCHI conference on Human factors in computing systems, pages 111-
120, New York, NY, USA. ACM Press.

Grossman, T., Balakrishnan, R., and Singh, K. (2003). An interface for
creating and manipulating curves using a high degree-of-freedom curve
input device. In CHI ’03: Proceedings of the SIGCHI conference on Hu-
man factors in computing systems, pages 185-192, New York, NY, USA.
ACM.

Hearn, A. C. (1968). REDUCE: A user-oriented interactive system for al-
gebraic simplication, pages 79-90. Academic Press, New York.

Hsu, S. C., Lee, I. H. H., and Wiseman, N. E. (1993). Skeletal strokes.
In UIST ’93: Proceedings of the 6th annual ACM symposium on User
interface software and technology, pages 197-206, New York, NY, USA.
ACM.

Johnson, J. (1985). Calculator functions on bitmapped computers. SIGCHI
Bulletin, 17(1):23-28.

Joyner, D. (2006). OSCAS: maxima. ACM Communications in Computer
Algebra, 40(3-4):108-111.

Kajler, N. and Soiffer, N. (1998). A survey of user interfaces for computer
algebra systems. J. Symb. Comput., 25(2):127-159.

Karlins, D. and Hopkins, B. K. (2005a). Adobe Illustrator CS2 Gone Wild.
Wiley.

BIBLIOGRAPHY 261

Karlins, D. and Hopkins, B. K. (2005b). Adobe Illustrator CS2 How-Tos:
100 Essential Techniques. Adobe Press.

Kasuya, Y. and Yamana, H. (2007). Mathbox: interactive pen-based in-
terface for inputting mathematical expressions. In IUI ’07: Proceedings
of the 12th international conference on Intelligent user interfaces, pages
274-277, New York, NY, USA. ACM Press.

Khwaja, A. A. and Urban, J. E. (1993). Syntax-directed editing environ-
ments: issues and features. In SAC ’93: Proceedings of the 1993 ACM/SI-
GAPP symposium on Applied computing, pages 230-237, New York, NY,
USA. ACM Press.

Knuth, D. (1984). The TEXbook. Addison Wesley.

Landauer, T. K. (1995). The Trouble with Computers: Usefulness, Usability,
and Productivity. MIT Press, Cambridge, MA, USA.

Lasseter, J. (1987). Principles of traditional animation applied to 3d com-
puter animation. In SIGGRAPH ’'87: Proceedings of the 14th annual
conference on Computer graphics and interactive technigues, pages 35—

44, New York, NY, USA. ACM.

LaViola, J. J. (2006). An initial evaluation of a pen-based tool for creating
dynamic mathematical illustrations. In Proceedings of the Eurographics
Workshop on Sketch-Based Interfaces and Modeling.

LaViola, J. J. and Zeleznik, R. C. (2004). Mathpad2: a system for the
creation and exploration of mathematical sketches. ACM Transactions
on Graphics, pages 432-440.

Lavirotte, S. and Pottier, L. (1997). Optical formula recgonition. In Proceed-
ings 4th International conference on Document Analysis and Recognition
(ICDAR), volume 1, pages 357-361.

Lee, H.-J. and Wan, J.-S. (1995). Design of a mathematical expression
recognition system. In ICDAR ’95: Proceedings of the Third International
Conference on Document Analysis and Recognition (Volume 2), pages
1084-1087, Washington, DC, USA. IEEE Computer Society.

Leler, W. and Soiffer, N. (1985). An interactive graphical interface for re-
duce. ACM SIGSAM Bulletin, 19(3):17-23.

Lewis, C. and Rieman, J. (1993). Task-centered user interface design: A
practical introduction.

Lewis, J. R. (1999). Input rates and user preference for three small-screen
input methods: Standard keyboard, predictive keyboard, and handwrit-
ing. In Proceedings of the Human Factors and Ergonomics Society 43rd
Annual Meeting, pages 425-428.

Li, Y., Hinckley, K., Guan, Z., and Landay, J. A. (2005). Experimental
analysis of mode switching techniques in pen-based user interfaces. In

BIBLIOGRAPHY 262

CHI ’05: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 461-470, New York, NY, USA. ACM.

Lieberman, H. (1993). Tinker: a programming by demonstration system for
beginning programmers, pages 49-64. MIT Press, Cambridge, MA, USA.

Lieberman, H. (2003). The tyranny of evaluation. In ACM CHI Fringe.

Littin, R. (1993). The pen input of mathematical expressions. Master’s
thesis, University of Waikato.

Long, A. C., Landay, J. A., and Rowe, L. A. (1998). Pda and gesture
uses in practice: Insights for designers of pen-based. In Technical Report:
CSD-97-976, Berkeley, CA, USA. University of California at Berkeley.

Lunney, T. F. and Perrott, R. H. (1988). Syntax-directed editing. Software
Engineering Journal, 3(2):37-46.

Martin, W. A. (1967a). A fast parsing scheme for hand-printed mathematical
expressions.

Martin, W. A. (1967b). Symbolic Mathematical Laboratory. Massachusetts
Institute of Technology, Cambridge, MA, USA.

Martin, W. A. (1971). Computer input/output of mathematical expressions.
In SYMSAC ’71: Proceedings of the second ACM symposium on Symbolic
and algebraic manipulation, pages 78-89, New York, NY, USA. ACM
Press.

Martin, W. A. and Fateman, R. J. (1971). The macsyma system. In SYM-
SAC ’71: Proceedings of the second ACM symposium on Symbolic and
algebraic manipulation, pages 59-75, New York, NY, USA. ACM.

McLeod, D. (1976). The translation and compatibility of sequel and query
by example. In ICSE ’76: Proceedings of the 2nd international conference
on Software engineering, pages 520-526, Los Alamitos, CA, USA. IEEE
Computer Society Press.

Microsoft (1993). Microsoft Word User’s Guide, Version 6.0. Microsoft
Press.

Minsky, M. (1963). Mathscope part i: A proposal for a mathematical
manipulation- display system. Technical Report MAC-M-118 Artificial
Intelligence Project.

Monk, A. (1986). Mode errors: a user-centered analysis and some preven-
tative measures using keying-contingent sound. International Journal of
Man-Machine Studies, 24(4):313-327.

Nielsen, J. and Mack, R. (1994). Usability Inspection Methods. John Wiley
& Sons.

Norman, D. (1981). Categorization of action slips. Psychology Review,
88(1):1-15.

BIBLIOGRAPHY ' 263

Norman, D. (1983). Design principles for human-computer interfaces. In
CHI ’83: Proceedings of the SIGCHI conference on Human Factors in
Computing Systems, pages 1-10, New York, NY, USA. ACM.

Norman, D. (1987). Some Observations on Mental Models, pages 241-244.
Morgan Kaufmann Publishers Inc, San Francisco, CA, USA.

Norman, D. (1988). The Design of Everyday Things. MIT Press, Cambridge,
MA, USA.

Odata, K., Arakawa, H., and IsaoMasuda (1982). On-line recognition of
handwritten characters by approximating each stroke with several points.
IEEE Transactions on Systems, Man, and Cybernetics, 12(6):898-903.

Orzan, A., Bousseau, A., Winnemoller, H., Barla, P., Thollot, J., and
Salesin, D. (2008). Diffusion curves: a vector representation for smooth-
shaded images. In SIGGRAPH ’08: ACM SIGGRAPH 2008 papers, pages
1-8, New York, NY, USA. ACM.

Pavlidis, I. T., Singh, R., and Papanikolopoulos, N. P. (1996). Recognition
of on-line handwritten patterns through shape metamorphosis. In JCPR
’96: Proceedings of the International Conference on Pattern Recognition,
volume 3, pages 18-22, Washington, DC, USA. IEEE Computer Society.

Persoon, E. and Fu, K. S. (1977). Shape discrimination using fourier descrip-
tors. IEEE Transaction on Systems, Man and Cybernetics, 7(3):170-179.

Plamondon, R. and Srihari, S. N. (2000). On-line and off-line handwrit-
ing recognition: A comprehensive survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(1):63-84.

Popper, K. R. (1963). Conjectures and Refutations: The Growth of Scientific
Knowledge. Routledge.

Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S., and Carey, T.
(1994). Human-Computer Interaction: Concepts And Design. Addison-
Wesley.

Quill, U. (1999). Introduction to lyx: Make working with latex easier using
the wysiwyg editor lyx. Linuz Journal.

Raskin, J. (2000). The Humane Interface: New Directions for Designing
Interactive Systems. Addison-Wesley.

Reenskaug, T. (1979). Thing-model-view-editor an example from a plan-
ningsystem.

Reiss, S. P. (1984). Graphical program development with pecan program
development systems. SIGSOFT Software Engineer Notes, 9(3):30-41.

Runciman, C. and Thimbleby, H. (1986). Equal opportunity interactive
systems. International Journal of Man-Machine Studies, 25(4):439-451.

BIBLIOGRAPHY 264

Schuler, D. and Namioka, A., (Eds.) (1993). Participatory design: Principles
and practices. Lawrence Erlbaum Associates, Hillsdale, NJ, USA.

Sellen, A. J., Kurtenbach, G., and Buxton, W. (1992). Prevention of mode
errors through sensory feedback. Human-Computer Interaction, 7(2):141-
164.

Shaw, A. C. (1969). The formal picture description scheme as a basis for
picture processing systems. Information and Control, 14:9-52.

Shneiderman, B. (1983). Direct manipulation: A step beyond programming
languages. IEEE Computer, 16(8):57-69.

Shneiderman, B. (1992). Designing the User Interface: Strategies for Effec-
tive Human-Computer Interaction. Addison-Wesley.

Shneiderman, B. (1997). Direct manipulation for comprehensible, pre-
dictable and controllable user interfaces. In IUI ’97: Proceedings of the
2nd international conference on Intelligent user interfaces, pages 33-39,

New York, NY, USA. ACM Press.

Simonyi, C., Christerson, M., and Clifford, S. (2006). Intentional software.
In OOPSLA °06: Proceedings of the 21st annual ACM SIGPLAN con-

ference on Object-oriented programming systems, languages, and applica-
tions, pages 451-464, New York, NY, USA. ACM Press.

Smithies, S. (1999). Freehand formula entry system. Master’s thesis, Uni-
versity of Otago, Dunedin, New Zealand.

Smithies, S., Novins, K., and Arvo, J. (1999). A handwriting-based equation
editor. In Proceedings Graphics Interface, pages 84-91, Kingston, Ontario,
Canada.

Starner, T., Makhoul, J., Schwartz, R., and Chou, G. (1994). On-line cursive
handwriting recognition using speech recognition techniques. In ICASSP-
94. IEEFE International Conference on Acoustics, Speech, and Signal Pro-
cessing, volume 5, pages 125-128.

Sutherland, I. E. (1964). Sketchpad a man-machine graphical communica-
tion system. In DAC ’64: Proceedings of the SHARFE design automation
workshop, pages 507-524, New York, NY, USA. ACM Press.

Tappert, C. (1984). Adaptive on-line handwriting recognition. In Proceed-
ings Tth International Conference on Pattern Recognition, pages 1004-
1007.

Teitelbaum, T. and Reps, T. (1981). The Cornell program synthesizer: A
syntax-directed programming environment. Commaunications of the ACM,
24(9):563-573.

Thimbleby, H. (1986). The design of two innovative user interfaces. In
Proceedings of the Second BCS, pages 336-351, New York, NY, USA.
Cambridge University Press.

BIBLIOGRAPHY 265

Thimbleby, H. (1990). User Interface Design. ACM Press, New York, NY,
USA.

Thimbleby, H. (1996). A new calculator and why it is necessary. Computer
Journal, 38(6):417-433.

Thimbleby, H. (2000). Calculators are needlessly bad. International Journal
of Human-Computer Studies, 52(6):1031-1069.

Thimbleby, H. and Thimbleby, W. (2007). Mathematical mathematical user
interfaces. In Engineering Interactive Systems: EIS 2007 Joint Working
Conferences, EHCI 2007, DSV-IS 2007, HCSE 2007, Salamanca, Spain,
March 22-24, 2007. Selected Papers, pages 520-536, Berlin, Heidelberg.
Springer-Verlag.

Thimbleby, W. (2004). A novel pen-based calculator and its evaluation.
In NordiCHI °04: Proceedings of the third Nordic conference on Human-
computer interaction, pages 445-448, New York, NY, USA. ACM Press.

Thimbleby, W. and Thimbleby, H. (2005). A novel gesture-based calculator
and its design principles. In L. MacKinnon, O. Bertelsen, N. B.-K., (Ed.),
Proceedings 19th. BCS HCI Conference, volume 2, pages 27-32.

Thomas, F. and Johnston, O. (1981). Disney Animation: The Illusion of
Life. Abbeville Press, New York.

Tognazzini, B. (1991). Tog on Interface. Addison Wesley.

Triesman, M. (1977). Motion sickness: an evolutionary hypothesis. Science,
197:493-495.

Twaakyondo, H. and Okamoto, M. (1995). Structure analysis and recog-
nition of mathematical expressions. In ICDAR ’'95: Proceedings of the
Third International Conference on Document Analysis and Recognition,
volume 1, pages 430-437, Washington, DC, USA. IEEE Computer Soci-
ety.

Vronay, D. and Wang, S. (2004). Designing a compelling user interface for
morphing. In CHI °04: Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 143-149, New York, NY, USA. ACM.

W3C (2003). Scalable vector graphics (svg) 1.1 specification.

Wharton, C., Bradford, J., Jeffries, J., and Franzke, M. (1992). Applying
cognitive walkthroughs to more complex user interfaces: Experiences. In
CHI ’92: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 381-388, New York, NY, USA. ACM.

Wolfram, S. (1991). Mathematica: A System for Doing Mathematics by
Computer. Addison-Wesley.

Young, D. A. and Wang, P. S. (1987). Gi/s: A graphical user interface for

BIBLIOGRAPHY 266

symbolic computation systems. Journal of Symbolic Computation, 4:365—
380.

Zanibbi, R., Blostein, D., and Cordy, J. R. (2002). Recognizing mathemati-
cal expressions using tree transformation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24(11):1455-1467.

Zanibbi, R., Novins, K., Arvo, J., and Zanibbi, K. (2001). Aiding manipu-
lation of handwritten mathematical expressions through style-preserving
morphs. In GRIN’01: No description on Graphics interface 2001, pages
127-134, Toronto, Ont., Canada, Canada. Canadian Information Process-
ing Society.

Zeleznik, R., Miller, T., and Li, C. (2007a). Designing ui techniques for
handwritten mathematics. In SBIM ’07: Proceedings of the 4th Euro-

graphics workshop on Sketch-based interfaces and modeling, pages 91-98,
New York, NY, USA. ACM.

Zeleznik, R. C., Herndon, K. P., and Hughes, J. F. (2007b). Sketch: an
interface for sketching 3d scenes. In SIGGRAPH ’07: ACM SIGGRAPH
2007 courses, page 19, New York, NY, USA. ACM.

Zhao, Y., Sakurai, T., Sugiura, H., and Torii, T. (1996). A methodology of
parsing mathematical notation for mathematical computation. In ISSAC

’96: Proceedings of the 1996 international symposium on Symbolic and
algebraic computation, pages 292-300, New York, NY, USA. ACM Press.

Appendix A

Anonymous questionnaire

The following pages show the anenymous questionnaire used for usability
testing. The results from these questionnaires are shown in Appendix B

267

Chapter A Anonymous questionnaire 268

Thank you for taking part in my usability testing. During or after your use
of the system please answer the following questions by either circling the
appropriate answer or writing in the space provided.

Answers you give here are completely confidential, and will not be looked at
till all the user-testing is finished and all questionnaires have been grouped
together.

Questions
Have you seen the system before?
How much do you normally use computers?

What is your occupation?

What is your overall impression of the system?

What did you feel to be the best parts of the system?

What did you feel to be the worst parts of the system?

How accurate was the system at recognising your handwriting and mathe-
matics?

What do you use to normally calculate mathematics?

Which aspects make it better than how you normally calculate mathemat-
ics?

Which aspects make it worse than how you normally calculate mathemat-
ics?

What did you think about the user interface? Feedback and editing?

Did you enjoy using the system and what could be improved?

Comments

Are there any other comments you would like to make?

Chapter A Anonymous questionnaire 270

Appendix B

Initial results

How much do you normally use computers?
e Not very often - for essays mainly
e lots
e Everyday for about 7 hours
e Lots
e Lots and Lots
e Only when I need to
e 1-4 hours a day
e 2 or 3 times a week
e Not much
What is your occupation?

Student

Placement officer

Computer science student

Student

e Doorsafe manager

International student

Handyman

Mathematics student

What is your overall impression of the system?

e Its really good when you get the hang of it

271

Chapter B Initial results 272

sleek styly + I want to use it
very good

very cool user friendly concept — got a few niggles that need ironing
out

new — interesting
a lot of potential — needs to recognise my 5’s
very good and highly intuitive

It works very well — sometimes the recogniser seems to be a bit slug-
gish. It’s easy to be confident of what I'm calculating because it dis-
plays it on screen.

What did you feel to be the best parts of the system?

Is fairly easy to use when you get the hang of it — you can write what
you know of the sum and it works the rest out.

sound effects — clean look — idea!
much more natural than having to type equations in

when the computer would fill in the blanks even if you hadn’t finished
the sum

add and change elements in the calculation

it’s simplicity, use of ”question mark” — also the ability of people with
poor handwriting to produce clear equations

the ease with which sums could be written in to the system having
been copied direct from ‘printed’ notation

Easy to edit equations — adding and removing parts — it works out
the answer for me — understood nearly all of my handwriting

What did you feel to be the worst parts of the system?

It didn’t always recognise my numbers/signs

got confused when it didn’t understand my writing — actually I have
an idea, decrease the size of the numbers when its a

simple equation so you can sneak nos in

Had to adjust how I wrote = to get it to work
hand recognition (not working that well)

The time used to clean the window

the tablet takes a bit of getting used to and it didn’t like my number
8s which I though were inoffensive

273

Interpreted = as two fraction bars creating a big mess to clean up from
a small error

How accurate was the system at recognising your handwriting and mathe-
matics?

Generally very good but didn’t recognise some.
good for all numbers — except 4/5 had to make it recognise
good, had problems with = and 5’s

had trouble with some numbers + signs — but possibility of updating
the system on my scribbling was good

problem with getting it to delete properly and struggled to recognise
my 5’s

almost flawless 4 is almost + but other wise no mistakes at all

What do you use to normally calculate mathematics?

Calculator

head - i only do simple stuff

My head

fingers, other people

my head — paper or pencil — not complicated stuff
a graphical calculator and computer programs

an abacus (I don’t ‘do’ maths)

pencil and paper — a calculator if I really need one — often computers

Which aspects make it better than how you normally calculate mathemat-

ics?

You don’t have to find/understand all the buttons as you do on a
scientific calculator

I am more comfortable using comps these days so I'm not scared of
using it. Also, it’s a dream come true, someone giving me the answer
just by writing the equation

2 to power of what = 28 are made much easier as you don’t have to
rearrange anything to do the calculation

I can see how the sum is working and edit it at will. I can draw how
I see the sum in my head

the possibility to change the calculation without starting all over again

the way you use it is much more intuitive and saves you time in terms
of writing the answer down

Chapter B Initial results 274

the problem does not have to be converted by me into a format compre-
hensible by a calculator and can do stuff I couldn’t do on a calculator

it requires an input method I am not familiar with

no thinking about brackets or trying to find numerical keys on a key-
board — can see the computation taht it’s done. — can edit it, or add
more steps to the computation, (in the middle of the expression!)

Which aspects make it worse than how you normally calculate mathemat-

ics?

You have to cross out things when you've finished with it rather than
just simply pressing cancel, you have to be careful about where you
write numbers and signs, can be a bit confusing

not as quick for simple calculations

takes the fun out of using your head

you can spend more time writing perfectly than doing the sum
it didn’t recognise my numbers frequently

learn to recognise 8’s and = signs. Maybe it easier to delete stuff -
maybe somewhere on screen to press to clear the screen

slow to recognise after input — can end up making the same error
several times in a row as I try to enter something and it gets it wrong

What did you think about the user interface? Feedback and editing?

excellent — didn’t notice it that much

v. good I found it hard to use the pen
easy to use, edit. impressed

T’'ve always liked pens better than buttons

very simple, really intuitive (esp. the delete gesture) nice how it adds
in and calculates placeholders

Did you enjoy using the system and what could be improved?

Yes but I got a bit confused at first.
Include letters rather than ? ie. 2% rather than 27

Yes — the handwriting recognition could be better — if it were able to
distinguish similar symbols and throw up a warning — the user could
re-input the symbols

Yes, and clean the window — a possibility for deleting everything on
the screen

the method of deleting

e yes — a lot — could do with delete all — clear page — or equivalent
— extend it to cope with multiple expressions — want to see several
results at once

Are there any other comments you would like to make?
e get a good degree dude!

e from a teachers point of view: would be great fun to try this out on
pupils

o i like the explosions — Maths teachers would love it

e it works really well

Chapter B Initial results 276

Appendix C

Royal Society — Briefing
notes

277

Team briefing notes

Resources you should read
http://www.cs.swansea.ac.uk/calculators/
http://www.cs.swansea.ac.uk/calculators/timetable.html]

Meet at the Strand Palace Hotel on Sunday evening 3 July at 6pm for a briefing
meeting and to have some fun — we’ll meet in the bar! See
http://www.strandpalacehotel.co.uk/

For those of you travelling, we will pay your expenses; so keep hold of all those the
receipts. The hotel is booked from Sunday to Friday for you (Harold Thimbleby, Will
Thimbleby, Will Harwood, Andy Gimlett, Matt Jones, Adam Powell).

At the meeting we’ll go over all details, and hopefully we’ll have photographs of our
mock up so we can see how everything fits together.

Our contact mobile phone numbers are
07747790414 Harold

07818038777 Will

What is the Royal Society Exhibit?

The Royal Society Summer Science Exhibition is a four-day exhibit of the UK’s top
science and technology research. The researchers exhibit their research. There will
be 24 different exhibits from a wide range of different sciences, all exhibiting at
the RS in London.

What does it involve?
Talking to the public, discussing science, talking about calculators, and demoing the
‘interactive gesture calculator.

There will be about 4,000 people over the course of the week, these will range from 16+
school kids to pensioners, to engineers, scientists, politicians and teachers, thus covering
a whole range of people, most of who will be motivated and interested in what we are
doing.

It will be very busy!

Key objectives

First, it is really important that you have fun and enjoy the event. It will be exciting and
very busy, and your excitement and fun will be infectious. We don’t know all the

answers, and listening to people will be part of the science — and this is a point worth
emphasising.

We would like you to bear in mind the following secondary objectives:

= Communicating the fun of computer science.
= Evaluation, both as a science project.
= Evaluation, as a ‘public understanding’ project.
= There is an evaluation form (with prizes!) for evaluation.
Possibilities of research or development funding.
Corporate contacts (we have a patent).

= Educational contacts, either for funding or for teachers.

= People who want to do PhDs.

= Museums who want to work with us to ‘ruggedise’ the display.
= Opportunities for further talks or exhibitions.

= Opportunities for articles.

= Opportunities for press coverage.

= New ideas.

= We have a letter to be given to ‘good’ contacts we want to see again!

We will have one (or more) ideas books, so either you or visitors can write down new
ideas about any aspect of the work. Note that the ideas book is different from the
evaluation form.

We’ll give you briefing papers etc on Sunday.

What will be demonstrated

The main thing being demonstrated is the gesture-based calculator running on white
boards (ours are SMARTboards). However the principles, the science and getting people
to think, are important. Instead of getting people just to use the whiteboards try and get
them to suggest ways that calculators could be improved or to point out problems they
currently have. Then show them our solution.

We want to get across that we are doing real science; we don’t know all the answers; the
work is not finished. We want feedback from visitors. We have got an evaluation form
and a competition for the best suggestion each day — with a prize of an iPod. We would
really like to get lots of feedback.

Also, if you have a visitor who is ‘prestigious’ we would like to collect testimonials from
them and/or get permission to get testimonials from them later.

The exhibition stand will have a suggestions box to return these forms.
Good examples to show
Mathematics

Simple things like 4x3 or 6+12 just to give the idea of handwritten mathematics

The ability to overwrite and correct a simple example eg. 4x3 — 4x32

The two-dimensional nature of the mathematics eg. */5 3*

The ability to drag bits of the equation around eg. '*°/, — '%/,, (moving the x3) or 23 —
32 in one movement.

The fact that it is declarative eg. 4x3=20 and how it is corrected.
The ability to solve for unknowns eg. 4x=20 even deeply inside equations.

You don’t need =, or it can be on the left or right (=3+5, or 345, or 3+5=) and even you
can have several, as in 2x=3x=4x=12

Complex Mathematics

Square roots, factorials and powers eg. v 12, 4!, solving for unknowns V= 25, =124,
2(=64

Complex numbers v—4, e, 2'=—64

Multiple equals signs 2'=2'=—64 or >*/,=

It can handle factorials (eg, !=5040) and continued fractions (eg 1+ —1—1—) nicely.
1+

More Interaction
Using the clock to undo and revise what has already been done

Using the number toggle to hide and show what solutions are, eg for classrooms or
teachers, can also get people to guess and enter a number, rewind for another go.

Using the dock to store parts of equations, and dragging in equations from the dock into
equations you are editing.

Tips (some obvious and others not so)
Two of the comments made frequently at past RS Exhibitions have been

“Exhibitors should be more forthcoming”
and

“More enthusiasm from exhibitors.”

Please be enthusiastic and open; if you are tired take a break. Most people want to be
talked to and won’t start a conversation themselves.

Make sure you get to play with the exhibit yourself. Play with the mechanical calculators,
and the other exhibit stuff. The gesture based calculator does have some quirks, so
practice writing on it and learn how to reset it — touching the cloud on the bottom left.

Try to pull people in when talking about the exhibit. Start with a question like “What
problems have you had when using calculators?” or “Who’s got a calculator on their
mobile phone?” We will have a display with several problems for calculators, and a pile
of cacluators for folk to try.

Getting people to try to do sums on mobiles is a great way to show some of the problems
with calculators. Even simple sums like 4x-5 tie people in knots, and it leads great into
talking further about the problems or our solutions.

Do not eat, sit down or get tied up using the calculator yourself whilst you are on the
stand.

Try to involve everyone and if someone is taking up a lot of time, try to get them to fill in
a feedback form, leave contact details, come back later. You do not have to demonstrate
everything to everybody. Have fun!

Any immediate queries — please email Will will@thimbleby.net before the exhibition!
Or give us a ring on our mobiles!

See you Sunday!

Appendix D

Royal Society — Evaluation
form

283

Hpan iPod Weapons of Maths Construction

huffle €VETY Feedback
taothe best

gestions
Age D <16 o 16-18 o 18-25'D 25-45 0 45+

Al Sex DMOTF
Highest mathematical qualification
O ccupation

Contact details

(required for prized r a w)

n Can we contact yOU? All data will be anonymised and treated in confidence.

HOWdo yOU do mathematics / sums? 0 Calculators 0 Spreadsheets 0 In my head 0 Paper
details...

Doyou have problems with the current mathematical method you use? o Y ON

Would you have said ‘yesbefore visiting our exhibit?o YON

details....

Isit better or worse than you current method? 0 Better 0 Worse
details....

Ienjoyed using it (disliked it —lovedit)01 02 03 04 05

Ithought it was helpful (unhelpful —very helpful) 01 02 03 0405

details....

How could it be improved? Any other suggestions? Would you like to write something supporting

details our work, which we could acknowledge and
quote in e.g. articles or for research proposals?

out of space? you can use the back of this form...

—thankyou Please fill in this form, and hand it back to one of the Weapons of
Maths Construction exhibitors, drop it off in the suggestions box, or
mail it to us at Will Thimbleby, Department of Computer Science,
Swansea University, Swansea, SA2 8PP

Appendix E

Royal Society — Results

The following results table contains all the data from the Royal Society
Feedback Form (Appendix D). In the results table on the following pages
the keys in the table header have the meanings listed in the table below.
Interesting feedback from comments or other data are highlighted in the
results table in grey.

285

Chapter E Royal Society — Results

286

Key Meaning
Age Age (1-5) <16, 16-18, 18-25, 25-45, 45+
M/F Gender
Qualification | Highest mathematical qualification
Occupation | Occupation
How How do you do mathematics / sums? (1/0)
Calculators, Spreadsheets, In my head, Paper
? Do you have problems with the current math-
ematical method you use. (y/n)
< Would you have said yes before visiting our
exhibit. (y/n)
B Is it better than you current method. (y/n)
E Enjoyment (1-5)
H Helpfulness (1-5)
Comments | Comments from any part of the feedback form

287

«io[q181a Lpjuelzodwy puw 3uiBeluy jung jinjiep

-uocM 8] 31 S8 ‘unj ‘Suoije[nNd|ed 30VIIEqE JO SBUIHIOM |SUISIUT Y3 SOST|BNTIA 3|, g g £ £ & 1111 10ssogord wn w v
LIVUIIO) JUIIUS[AUOD ‘UNJ SIOUT SYIRUX BI{OWS 31, ¥] £ u u 0100 juapnig EA4 w [4
4eouepInd 1oy seuf pUA3 punoidydeq ‘3i13 ‘sdo] ‘yess Lpusiy, 14 v | £ u a | TTOT | jaepnig | - SV 3 z
§3a3081qQ pasu 3, uop nok 2 £ £ u u 1101 juapnig a4805 w 4
€ € u u 0100 juspmig asoo 3 4
14 v £ u | u | 0101 uepnig FSOD w 4
S g £ u u 0001 juepnilg SV w (4
A3BI2ATUN pue 83357100 € $IUIPN]S [[e 03 31 opjacid ‘Jamsue ayj 303 03 2wy
§83] §)qe3 31 ‘APPInb L1aa uojjenbe oY3 N0 Ylom uBD NOA esNEORq 133329 8 3, [] £ u 1000 juepnyg AS0D 3 €
«Iouelq
12390 ‘a[oym 3Yyj) uo ‘Sulyjiom pue S2IN3INJS [eIjRWAYewW ‘isiy e Juisnjuod,, |2 Q u u 1000 juapnig) 1
14 g £ u u 1100 juspnig w 1
: PRpPMBIION | ¥ | v | £ u [IT01 juLpnig dsoD 4
(AIOWISW JO S[003 §% BINO[OD JUSIAJ
. =JIp ‘Bupjiom moys ‘suopysaZ3ns dndod ‘sioje]no|ed [YUIIOU 03 JA]IRUIIY|R WIS, [¥ £ u u 1000 juapnig 8 1
49STL 07 1918%d SI Mau ‘pajipne aq ued |x,, 1 14 £ u u TI1T paiey vd w g
s18339] 1 v £ u u 0100 juapnig V SYIeN IsY3Ing w €
wWwded pue ued ueyy Jeigeq ‘UBIEq #3] 1weaBeat, | g | 9 | A [uw i uw | 1007 Juspnig V SyIey 1eyung w z
pasoxdury aq j,ued S 14 £ u u 0100 juepnig SLYS 3 I
Buisnjuod aq ued € 14 £ u 1001 juapnig 8 3} 1
Junj ‘eseagore, | ¢ | g | £ u | 1101
. e [4 v & Ul u I juepnig SLYS u T
‘poo8 Apeailje s3] 4 £ u 0100 juepnig 9 w 1
*31 peao[[g g | £ £ | u |} 1000 uepnag L w 1
«$103B[NJ|BD §1UIPNI8 OF SA[VUIL)|®
ue se s1y3 Suen yesdw 998 ueo | ‘dn desy 3,ues oya sjuepnis awos Joj Suijep
-jugjur s1 peay ‘djay 03 sjuapnis }SE O3 PedU SPWI}AWOS ‘puay Awr uy A[3souwl g [A A £ 0100 I9goea], v w 1 4
«Teljlure] suA | 3§ 393399 393 plrom ‘aa(gov alour ?- Jutloq ssa], € € £ £ £ 1001 R juapnyg | leySiy pacuvApy X
W/ ‘s100ge
punos [00o ‘swins jo uoissaifoird e YSnoiyjs mol[oj o3 nok smo[le ‘uny sjinb,, € [£ u u 0100 juapnig qSDD z
«Spiom pue 83001
aqno ‘suolje[nd|ed jeadal Jo §30] Op 03 AIESSO03UN §I sayew ‘asn 03 unj L[[eai, € v £ u £ 1101 juepnig qSOD w z
«SINO[0d 310w ‘K03 @ Y| 8,31 s| s| 4 u | u [0100 JPUD dS0D 4
aeds la|jews viv| 4 u | £ | 1101 uspnig ASOD (4
— - e e+ e 193399 Souwiry 0QQT ‘UonIqIyxa 3wed Awvasyemy, [g | 9. | £ | 4) uw | 1100 wepnas | . €8M 1
sydeid pue sueipea 1 13 £ u u 1001 juapnig SV 3 z
sjoqu4s pue s19339] se[nutioy I 14 IS u u 1001 juspnig qASDD 3] k4
«ue3 §00 uls ug 3nd ‘8103°[NO[WD AYI] 3,U0P,, € S £ u | £ | 1100 juspnig dsoD 3 4
«iPI®Oq uoc swoo 31 995 pue Ke[d 03 unj sem 31 ‘sjqehofus aiow, 14 [£ u u 1101 jusapnig q4SDD z
. . «i®lqtperouy ‘sajduiexe Jf jeym osn, g g | 4 u|u 1100 pPoapey g
stseq A[lep ¢ uo jou Juryoeaj 10} pood 13j3se) s10je[Nd[ed g q u u u 111 Ll s193seN £
20RJI5jUI MU I} - UOlOUN] j2ayspeards 2p suoljouny alouwt g ¥ u u TI11 juapnig wn €
S g | £ 1100 juepnig €83 w I
v v | 4 u | u [TO0O juspnig sy 3 4
sydei3 pue (wa10dY3} JBpUIRWDI 2§ SIUIOYI0D dD) sa[qeliea v v IS u u 1101 juapnig SY w z
v]e|l £ u | £ | 1101 asInN painey [e} g
qq uo pjnom Jayodoeay
Se_uorjonijsuod/Iupjiom moys 03 pasoidwy 8q pihoys wsiueyoswr JFuiyoesy ¥ j4 u u TI11 138eue)y 109foig w v
sjuaWUWON) H q a > i MOH uoryednao) uorjesyijend) h\z a3y

288

Chapter E Royal Society — Results

Udes] 03} Ialses pue SAI0BIPU] JI0W ‘I0je[NI[Ld

..pus 3aded jo x1m poo8 Y SN Sujop pey 19ae Aqeqoid oa,] uRy soUr YL,
298 03 3ul)sarajul pue asn 03 uny jesald st 91

«1adns ‘unjy

qeryem ym spuy
(Ple 1£8.) Bujzewie sem j[81098[NOJED pUR SPIYO] SPYM [3IM 1[2€a} 0} pesn |

INJasn Sl SYJTW UIOl] 1e9) Y3 seaowral jey) SuiyjLue
a1qejiod

(p1eoq 3orlq o) SINOUD JULIAYIP PIZIS IvIR[NI[ED

o «'suoljenba ayj punoile
SUOIIOUN] SAIIBDIUNUIWOD 10 3alsseldxs ppe o3 serjiunjioddo aq yBuu a1ayy

‘S19Ull} j€ SUOIjRIOUUR IO S3YDANS PURYIIL] Yilm suolrjenba auiquiod 03 axi[P,l.

Jouum

Pieame uoiyesnpa J9YSIH OSH— WOY3 JO JU0l U} suoiyenbe ayj Y3m joeiejur

A|[ee1 03 way)} Furjad ‘syYjepy ul UIpnyd jo sdnoi3 jo woywonpe Y3 I0j enjea

1eax jo 8q PNOd s1Y} 8AdlRq [, -peseindruew Ajpesisdyd oq usd juyy sydeid

‘e1qa8(e ym Jujeeq 'ssasBoid [vuopeONpa spie A[|viouUeSs JusWIRA[OAU} |8SAYY

‘syjew Ui peajoauj Afjes18dyd spnj $ui3jeB jo Aem pooB ‘uorgonpe 10§ [nydiay ‘A,

Iednq

.38y, 293 2g pnom | piey. puey ul aqeyieAy (9007 3O Bquyxs Jupsaiajuj isow
UOISI3AUOD ADUa1INd

=j 911 suorjerado [esrBo

PUYD © sem | uaym 31 pey pey J ysim |

19338q yonuw

eiqad|e osjoquLs

S9}eISIW 9BW JOU SIOP

(SOWOOINO0 [FPOJN ;[eNSIA IIOW ‘AJIpOoW O I9Ises ‘pasi[ensia 13918q,,
12939Q ST }I 9SINOD JO - uny juaild

3589] j8 (QT dNeejue] - 13332q Yonw

38918 8f 9]qe 910w IO
_Ienuajod gyBnoys - syjew Surop maym sjes Sujeq jo Juyjea; puse joeduay jensia

uoriudodss 19339q
. Seyestm Jupjem nok sdoje
«59AIRRP 91 3013snl oY) uaA[d usaq A[[euy sey 2dAj0a199s daljedou ¥

noA£ 10j syuiys 3l

MM P T M0

syjew AW peel 03 31 308 03 eFusjjeyd Ju)OXe UL puR 98N O UNZ 3| punoj J

wan

. 19pUn S3UI0D PUT UOISNUOD 398910 SSWNIAWOS UEI JUY3 J0R(qNS € Iey AQ 18%9eq,

w

0010 T 100

oo WS g w «

M

o

w

T W Wan N o

AN N T P

v

TOWW T TN

wn o

w

A RE RS

»E >N

»

P>

B> AR] L)

Nk ks

=‘>~.= m»mEEc R R

£ e

»e g >

e a

»g

e >

»

feR SR

E - -

»

ol

» e

AR E RIS RER

1101

100T .

1111
110t
0100
1100
1000

1001

LTIRT

0601
0100
1101
oT10T
0001
TI1T
1110

T0T0

0101

. 0010

0001
Tiit
0101
1101
1011
1107
o110
0100

0001

o101

TT11
0110

1101

TI1t

17101
0001
129191

RIS

juapnig

juepmig
Iayoeay,
juspnig
juspnig
juepnig
juspnig
K1ysy
IED:O .wo.um wﬂ.OMNEm
1eyoea) palljey
is13o112uan)
I8yoes], pailey
juapnig
quapnig

aud

uewsjjeIy

n

uSisep uorjdeIAIUT

L13staaey) 1sanjoery

. 1squeg
ysij8ug jo 10ssajorg
juelnsuo))

10SIAPY SJIuldg
JURAISS [1AlD)
sotsdydoysy
painey

an

uRIsnA

sayoeay,

1210323

1oyoea], PESH
js13ualdg
10920(]

. juepmyg

Juapng

Ljuepnig
Juepmyg
Issdqg

asoD

muda
254

o
dSOD
dsoo
PSW

9a13a

SV

ayd
asdd

<0 O <05<0

<
e
N

dsOd
dsoD

-~

-

-

E-EE-EE

-t

EE

w -

D M N =0

[RT-RVR R RO RCRUR R

«N o T

-

TN

289

e1qa3re

JURIBYIP £10A pue RN 03 UNJ FeM 3]
eiqalje

_ [ngesn v ||omew uny sem 3

Buiajos wajqord mojre

punoie sjuewndie pue s3dsouod Suraouws jo Aem e

«Pa3u nok Buryjfisaa £[Iesu seop A[Hoinb sejenoes asn 03 Ases

‘[NJINOIOD 310U ‘UOIIDUN OPUN UeY3 13Yjed ‘H}Ooo[o ay3 pure uldisop ayjy aao[1adns
«s91dde/smoo 33 sarnjord ‘adtoa

«JululelIajue L2134 puw Ieises yonuw ‘gno sJuryjy yiom sdiey puw esn 03 unj Aaea

03 unj puv esn 03 Ased

(SI19j0%Ieyd ucojies ‘[ny
-Inojod a1ow ‘80031 90104 ‘spunos pue saSeur 9Yj Y3jim uny ssanoxd ayj seyew 31,
iij9sn 03 1asres

«K139w09e8 ‘Lerdsip jeuorjer,,

SUIOOISSE[D Ul Pasn 3q p[noys pue j3ea1d sem 31 y3noyy |
Lwelqoad v prY | 8A31|2q OP | 8y} 2% ‘unj pue pood Ajees,
JUIIYS dI0W Yonuwr

ua1p[iyd lo3 juet|iiq

«ATeulq ppe 'e|qu{|al 210w puw JOISYR 10339q 1%,

yonw 003 31 uo A1 Aew sdoad

«d03 ay3 je lamsue ayj [j13 dn 1oyS1y s1e poppe sared ‘spiweldd zaqunu,,
Buisnjuod

snnofes

ureiq AW ueyj I9)58] 98N O} IL1SWEd

spoyjaw [euoljipeis uevyj s|qedolus aiow 31 puy pue

91 9A0[|[Im spI)] -Buiop pue Buiyono} Butsowr Aq uiea] 3By} ASOY3 10} OljSEUE]
(Se1dwrexa jyiomsse|d ‘Juijeijsuowsp 10j pool

uo1jeINpa 10§ pood A13Aa

suad s1331] Y3im siojenojed ayew 1o suad 9[331] Y3im ur 31 jnd sajiqowm

[NJInojod siouwr
«Suoije[nofed snotasid jo yoeay sdeay pue 1aisea ‘sjqelsod,

28N 03 a[dwiis pue saxeISIW 83091100 ‘1ax2nb 831,

« aonyeoridde [njremod = 9sn 03 aq uws 41 eydung

‘3URIIIG 8} 31'sbo snoaTejnWs 'SE[NEIO) - JUSY SI0W Yonu,
UQeIOR YONog € JNOYJM 88N 10 Q) € Inoge moy — Joded

Bujsn uvyj 109es pue I03¥[NO|BD ¥ UO suojing Sujsessd uwyy pejed)|dwod sse]

W T NN WD WD

W W T

AN D W

00

OISOV IIOVIOVN I T PP

wan

W TN DN

LT OWTOMO TN T D0 W T

100010 0 0

00

R RN

0o

LR RN

o>

RN o

LR R R Y LR R R R R R N T N)

LR RN

>

NEE >

EE mmm e >

mseagcegae

PERE XRRHE >R

AESEERREES S

a'e

ECI TN

CEREER

PAE PR RE R AREE XSS » e

HEAIREC OB SRR

(%

110t
0001
T000
0100
0100
1101
111t

o111
1101
1101
1ot
1101

1000
11t
T10T
1001
T10T
0101
0101
1101
0110

ARt31

0101
o101
T101
i1t
1101
111
0011
0001
0100

11T
0001
11T
1101
0100
0101
0101
0010
0101
1101
0101

L0101,

111t

juspnig

uepniyg

juopnig

uapmg

23010088y Ydi1easayy
Juapnyg
juesjnsuo)) 33N

juspnig
juejjnsuo)) I8N
juepnig

juapnig

juej[nsuo)

juejnsuo)
juspnig
Gﬁwc—uvm
juapnig
juepnig
juspnyg
uapnig
juspnig
1092211(]
juepn3g
Juepnyg

juapnjy W
uspnig
19ydea],
Juepnig
uIpn3yg
JS13URIOG Yd1easay
juspnig

o9xy Buljeyien

I8Ydes], 90UdIDG
Iayoea],
1090821
Juspnag
juapnig
juapnig
juapnsg
juepnyg
juapnig
juspnIg
Juspnig

- - . juspmig |
1sA[euy yolreasay

uepnig

asod
asoo
asoo
ason
aud
S133sRN
un

tun
SLVS
SLYS
a1

[¢]
dason
dasod
asod

°sd
asod

asoD
[e]
SLVS
EA4
H@SOD

asod
o

°sd
gsdOD
as0d

asod
9213sQg
aud
S1VS

S.LVS
€83

-

-

£ Ew

-

EE

FRFNANN

W 0

FOT A SN NN T NN

R R R R)

<+ -

290

Chapter E Royal Society — Results

Burjerysnyy

«@15ed + Adod ‘juswasczdun m/y,,
K1jow003
spiosm op pue safejuadsiad

1002 s1 Yoo

joavig - jaodey
AQIOUYN WE SRINID WO, O [00)] 3u0iB g3 -3ev) pue SandunSuy L19A €T 3)

«32218 ST yorym suoijsenb alowr 03 spesj 31 ‘Juenuiq A[[eijusjod jnq Ajunyo,,

spunos

udis
Sleuorjer ‘eiqadie ‘sfewdep SulrInoal ‘requinu e juem nok sieym
X0q ‘possndsip aq UeO 9891) pue 19Adjeym lomsue ue s9Ald 31 asnessq pool,,

1aj[ews

I3j1ews
v1qale

uolje[noed |[n§ Bureas axi|

sSlamsue 30¥xd pur = xoidde
Loeinooe 193399 ‘unjy sem 31,
239 s1amod ou y3im spowr ajdwis

«'SS9[pus 21w sanyliqissod ayj ‘moU [[13 ABA 191SES Ue S®M BIsY) JUIYY 3, UPIP I,

s[oquids

judI3yp
uotjtugooal
passarduat £19a sem |

§8W[O U] 33€1jUDU0D 03 sjuapnys djpy Lewr
93eindde a1our s 3

e1qade

UO[FR[NO[ED Y3 98}{¥NSIA Ued nok

«2A1IRIIUL L1oa ‘yuouresorduly oSNy ¢ 6f 1YY,

o

SO0

-

o N T ™ M N wn < a0 A A

W N

wawn M-

W W W

MW N WA N

<

<

N W D

WD N MIN MM T

A0 W

0N 0

Py R ARG R » =

)

> e o E RN} » e

P

I~ g8 R =1

S g R »™F EXEARER - - =1 N ---

”

sexa

£ R E > [~} » e EmEER NEE XA R f

HPHE REGEEC B8 >

PEEOE >R

BEE>»»

T10T

11Tl
1011
111t
T10T
1101
0100

111
0011
0111

0I0T .

0001
111
1101
0001

111

0100
1000
1001
0010

1101
OT1T
0001
12888
1101
11t
11T
0100
1000
IITT
0010
o111

orttT
Q101
0101
o101
1101
0001
0001

. 1101

1000
1iot
1101

J3wouodys Vv

3so1sAyd

-0138Yy Yoawasay
VuerINSU]

JURIUNOODY

juepn3g

Isyoea],

uapnig

Juepnig
l10s1ApYy [edan]
198ueIA] YdIeasay

WYY PRy |

10300Q
uelreiqiy
1291Ip
Ioyoea],

197oea], Sy

PPN

aAldRIBIU] JO pPESH
juapnyg

Juapnyg

J0uBIse(q qopp

Jaui
19yndwo)n
juapnig
10feaing Buip[ing
uepnig

uapnig

12O Y21e0soy
Iayoes],

-weifoig

juapniyg
198eurw 309foxg
an

190Q JSuRID

s3stSotorg
Jlwepedy
jsireuanop
juapnig

19Yyoeay, Paliigey
109s8AU]

199LIA

juepnyg
Juapnsg
juapn3g
juapnig

aud

1aydiy
wn

o
dS0D
VIN

pRID) 3804

\4
[L19}
v
v

o
dsoo

osd

2sq
jctela)
dasobD

SV
gsod
asod

[

EEE

EEE

o)

Ew Ew

E &

e o

<

SN P®

Dol Bl MmN N T~ w < AR T-R S TR)

A0 WD

NN N

201

(anoqe
wa[qoad ay} Burrowar g€ [[em SB) SN 03 §[3] AFEs MmOy puw 3 Jo Ajre[d pue
8218 ayj) i I 'se8e sje} SIY3 — a3v)8 YOUO W UMOP SISMBUE 831iM puu seBu3s

JIews 1 ewns Jre op o . 03¢

(fUoljouny saiowr Jsuwm: pue [aa0u
| &'9UO0 I3|[RWS 8 RV ‘I Busn pado(ua | ‘12186 puUR 98h 03 UNG FeM Y,

s[@A8] ® 10j a1ow spsau 3jdosd JunoL 10} Jea13
s1qejiod pue 1938%]

paseq aotoa pue jySnoys

uorjesiensia 10j 18338q

£I08[NO[RD JO SUOIIRIWII] SWIOR W PIMOYS

ipaYdIm $3j00]
1001 ‘sydeas sjaeyosid ‘suorjesijensia alous
suorjoniysur

UOISIaA §)e)S
suoljeue[dxa aiow 9A18 "1 Yonoj ued nok :13339q §,31

SUOISIBAUOD JIUN
unj 38218

SUOSS?| SYJRW UL 1S9I3JUL 310w 3)eq spy d[oy [[I4 3 july]y | joefoid jeaid
siaqunu

Yjm uny / Surures] uieinoous ul [nid[sy £19A 8q P[NOD pPuUe 38N 03} unj §I SIY3
Sujuaddey st 3eym 29s ued nok

Buisnjuoo

m/y pue vigadre

19j[ews pue uoisioaid

wns jo uoljeur[dxe puey 3uo|

unj aiow A[juressd
spiom pue %,

©P..0} PU®),] 08 JIoM |IiM I03enOjEd AW MOy MOUY 3,u0p [

WL LIOLDDNOAMI LS OF D

™

L ONONND 0

O S I PO

FO TN TN T W0

W0 WOV MFI 0D M THFOLE SO0

TN P P 0D T

R R Y

> > > LR R N

AR AR AR

& » e

=NE >

» >

o)

S EXNE 2AXNEH

=

FEEeEefaEBRCCE R

PAAXHC AHRE R X

i~}

ECcaxme e RN

EEEEXNES XA L%

SExRe R g

S EMXREE>»A PBDARAIRIRE R XS EE S

a

EEa>x»R

‘

S FI0X.

1101
1101,
T10T
0100
0101
0001
1101
00T
1101
11t
1001

TILT
1110
T10T
T00T

o TInR

1101
00IT
1010
TIIY
1100
0001
TITT
1101
0100
TI1T
TItT
0001
1101
1000

0101
0010
1100
0001
111
1101
T100
1000
T100
1111
01T
0011
0001
1101
T000

juopnig
uapnig
suapnag
juepnig
uspnig
juspnig
juspnyg
juepnig
juepnig
juapnyg
1ssuIBuyg
juapnig

JUBAISS [IAID
juej[nsuod
juapnig
paigay

Arenjoy |

ultsaq orydein
Jexy jo9fo1g
[espapy

so1sAyd
jstdeiayyoohsg
uoasing
juspnig
juapnlg

JUB)SISSY YdIeasayl
10300

I3Y0ea], 90UIIG
Juspnlg

JURAIDS [IALD)
Juapnlg

1ossagoid
1ein}oa31ydIy

paisy

paai3ay

Buy aremyjog
juapnig

juapnig

JURAIIS [IALD)

JUBAIIS [IAID

19310\ Ljtunwuio))
19YD1easay AJISIaATU()
juapnig

juspniyg

.. HSOD
sV

sv

syBG 4 [9A9]
dsob

4

4

ason
gsoD

A4

gsod

osd
s1agseN

SV

v
22183
dsoD
dsod
v

fun
aud
osd
ASOD

¥SH
qsOD
v

dsoo
(o]
osd

dsoD
v

dia
dSOD
OAN

s3e35
asod

w EEw

EEE

w

EsEE

EEEE

£

TN S T ITIOD NN NTFAANANAN- AN

AN D A0 DD W0 M0

292

Chapter E Royal Society — Results

isnfpe paeds
3UI3$9164UT SIOW SISQUINY 7p SYIRW s BW 3} ‘sarydeld 73 USAIOSYONOY Y3

Furjlam 10) preoqAay
-oyloads 103e[No[ed S| spurwwod jndur nok yoiysm ul 1apio ayj
a9||ews

spdoad juelouldr Aq uaxoiq aq 3 ued

‘ssjure 03 j0u pinom

uorytudooer esoad [¥NnprArput A[eIns °"sEApP} 11073 93VI[UNWIWIOD O3 O|qe aq Je3jaq
pinom sav]oly Yy pus 13U2[d8 A[|eUOIFVUIIU] UIAS IO L[[BUOIIRU JO A||v0
~0] pajyiomiau 31em SOINAL [813498 J] ‘juejroduly eq p[nod — ‘pnoje Supjuiy;
10} [njesn Lisp ‘Teluajod SNOUIIOUS 398 UND] IGAGMOY ‘SPU¥IE 9] 5¢ IOJE[ND|¥D
[UNWWOD Y3 JOJ I8N I[}}[] SAVY P[NOM | [3A3] JU31IND AW Jy °S3UIPNIS [0OYIE [P
-ptw pue Lfiewpd uf eduajedwod osyyeweyjeuw |Ing SuiBeinoous 1oy [003 [NJiemod

«0T uey} 19yjo saseq ‘ssedoad ayj moys,,

(syiew [8A3] y ouop eaevy pnom I) sdoys 9y3 uj suo 4Anq [ued

Buoim auoF 24, NoA 919yMm NoA smoys 31

u29s aaey] 10je[no[ed 1ayjo Lue ueyjy [njlemod pue 9[qISsa00® I0W Yonux
19333q Aem Aem

j393j1eWt Y3 uo

passaidut £1aa

1e213 st 31 quiyqy |
«Aofua o3 Aseo gem Buy
Feym puv Bujuieioque £19a Fem oY JoYoess, , POl v,

—3es3e p sem oy
sjoquifs 103y 1eq[00)
WJur

-ydesd qj1a op PINOd — (01583 IMOA INO MOI|] 2TRM)JOS JO 203 IISVIURY €,
°apt juel[liq € awl) }oeq Surdunny

ainjnjy u 9sayy 29s 09 joadxa |

| _PodI | A|puaty 1080 A104 51 pUV A[I5¥a 010W SWINE I1aY3 OP 0F 128N Yy SMOY[Y I

_UoyM - jgnruol s| poyjoul mou oy3 -98n 03 PISY PUT ATWINID We9S SI103V[NOIND

O NN A

™M

AN

MW

FOMIWN

WITL DD IIENNIOMNN

D e) Al

* T

NV M INIVIL F IO F T H W0

W an W0

WM T

wan W

>Rk

LR R R R)

S X AR R RN)

g >

(SRR]

£

AxSC RO C

> cceee » EEE8

c

[~

cecgcep@

ceaexnea

PAREEXRE RS

[+

[-]

»

EREEECERORESERE LR

secaad

>

e »a

1101

JJ-1101.

0011
1001
1111
11t
1101
0001
0101
1101

1101
oTI1T
0001

(Uses
0101
1100
10T
0100
1101
1101
1101
1101
1001
0001
1101
0001
1101
0001

1101
0001
19941
0001
1100

11t
1101
11T
110t

1101

JITIT

0100,

1S13ULIOg Yoeesey

Lo uepmg
1039eIjU0d jeldueuly
juspnyg
juepnig
juspnig
juepnIg
Suyeyaey
juspniyg
juepmyg

juepmig |
uﬁmmuﬂum
1eawiBuy paingey
juapnyg

juepmig

juapnyg
19317 9OUBIDG
juapnig
juapnig
juspnig
jusapnig
Juspnig
juepnig sy
juapnig
1s1801004syg
1030021
juapnyg

dD

juapnig

juepnig
juapnig
Juapnyg
juapnyg
JuapnNIg

juapniyg
juapnig

10390
juepnig
juspnyg

v

sY

A4

asoD

V syjeN Joyiing

dsOD

. SUIBNL JOYHRI SV,

dsoD
ONH
SV

.dsoD

SV

v

A4

SLVS

asod

dasod

dasod

V suieN 1ayiing
dgsod

aud
gson
v

SV .

gsod

SV
dSOD
ason

SV

SV

(A4

v

~ w EwE

~ g EE EEE-

- g

-

Al

NHMNMMAONANN -

RN N

NFANILNDN AN ~ANWDOD N

NNNNN

NN

293

3utpuejsiepun dioy 31 ssop

Yjeuw jo 3ulsijIdApe 83 IO} JUI[[99Xa
suns jo uolyeue(dxs

uorstoeid Lieijiqre
sjooyos ur 31 398
1331e]

(uorjoe pax desy jo j10s awos ‘yym Leid oy uny,
sisA[euv jejs 198 pue syjeuw [
s308[qus ur -dse arous s1ouses] sa¥eSus 1930 JusWLAOW "OUl Juswaedus |edisAyd

UOTjRWIUR 3I0UWT
(10308] MOM €31 ‘s|ooYds 10§ Jeaid ‘spunoidioeq paino[od,
«|BNSIA £19A ‘AISN[OUL §,31 ‘I19A9]0 AI9A

T e e " (810 35n138p1s3yS1aqayap Burdesysewey s suus
“1ata) 3o08foxd Buquiojuaw-d WA3S INO SSNOSIP OF SN JOBIUOD 03 3] P|NOM nok
31 “un je (1s+) syjew Apnjs o3 sjdoad inod JuiSeinoous ur paysarajul wi]

a[qer]a1 siow pue 132Inb — jo(jed 10§ 08 pue 100 YOHp

(Jaoneuerdxa ajduns je poo3 pue di3sesnyjue o8 ‘uvwt 3unod juenb

[012 ‘Sunmieyo € yons jeouwr oy Juidenooua os sem '4deduoo uy ajduis juellIiq,

JBuryps yur g7-¢
‘I1995eUW 03 Ase2 pue [njd[sYy L1924 ‘sBuryjiom-)deq Jo Speo] 531038 41 asneoaq jealrd
aAlsuodsal pue pIon| aiow pue 133otnb

£4893] U2A qUIY3 SPIy [{m
eop1 SurIpa-yul pue Id[ews 1! Yyim dn swred nok moy eapl ou aaey] Bulzewe

«Jeqoo) woay 3uidleip Aq

$0D uls ‘aseld 3no ssord ‘(4218 jySBi £13) 24138939ns K19 jou 19yndwod 10§ paa,,
jueiaq

uoljesi{ensia ssew Jurids

[003 Buiures| e se €3l

.. 4iielduns arour 3uryifue s1oyy s

. _A31a1300309uf Yons Aq_pairdsuj a1e uyo

MMV LT IOMNO LTI 0D

w

mwwwne e

0N

T 0

LTI R R TR o)

ia-ou:mmvv

00

DA FMWI T W0

w

a0

< 00

a0

N0 a0 0

LR

R R R e >

»

>

)

AR > » o> »

>

L)

coeRcedcaExRECRC a

=

-~~~ - - I

[~}

e

[~ -B-I - -]

HEmERE >

FE>»ARR

>

]

» e o>

FEefaRA

HNERE XS EER

- Te0T.

1100
ot10T
OTTT
11T
1101
o101
1101
01Tt
IT1t
0010
1101
1110
TITT
It

OTTT

T11T
199181
ITItT
1001
TI1T
1110

0001 .. |

0001
1101

1100

1001

CTTin

0001
19945

1101
o101
o101

0001
o101
0001
T11T
11T
T101

1ayoRsy,

..—0w_>.:wn_=m Kaesany
Iayoes],

1a8eur]y 198fo1g
Ioyoea],

18yoea],

1epring

juepnjg

193veue]y 308forg
1oydRajpesy
1ayoesy,

1ayoea],
js180j0a80pAH
I9yoes],

Jeyoes], soIsAyd
103

-eJlUUNWIWO)) IOUING

19Feury uoleONpPH
19yoes],

13Yoea, 90UaOg
197oea],

1syoea],

Ao1j04 uorjesnpy
__I8yows],

10%eIjSIUIWpPY
JueAlsg IAID
10A8AINg paiajrey)

juspnig

. d9ypeay, painey |

JUBIUNODDY

uepnyg

1ayoeay,

109

-eOlUUNWIWO.) dOUIIDG
juspmig

1sourduy

yoiessay
juspnig

121M309] PaiNgay
Ia8euey LI
oyyny

19auiBuy peuijey

osd

as0
ason
80D

SASO
gsob
aud
osd

osd

2SN
osd
dsod
v

v
19YyS1H

o

o

dsoD
°sd

v
asdD
°sd

aud

dasod
diysaejoos

no
°sd

-

£«

£

£ Fww

w

wm n N wan 00 It - WS 0

LN

294

Chapter E Royal Society — Results

‘unj sarjews
~[j8W 3A[3ORISJUL JO SWIGDJI[© optacid [[1m eurydvw ayJ, ‘Jooid [00] s[aa) a[qIsIA

so[qelrea

unj pue jesu

003 Buljseiajul pue asn 03 Ased sI 31

- suolye[nofed

dn spoads se [nydiay £12a — [u1 [je 3] Burd£} U} s10113 AsTUIIUIWE OF peay Auwr ug
suoyjoas o|duris op jnq wiqasiv pajedydwod exom dn pasds 03 s103€[NO[RD 88N |
sSuorjenbs Burfuviie uaym purm Lul g€ £8m SWVS SY3 6YI0M J[— d3eINIdE SI0W
pu% 3091100 03 131seve ‘rejdwuls = InoA ‘e3939evIq JO $90] PUWY 830[I8N 03 Pasu [,
u23s 2q, UE Yo{yM poyiawr Bui3saleju) 910W pue Op Of URY I10UX 41 S BUr 3§

SuO3lINg ppe — % PUT Y3lM S[QNOI] dARY
‘slaquinu xa[dwWod Yjlm 9]qNoIj ARy pue syjewl [aa9] @ Sulop we |

suoryero[dxs [esrjeweyjewl sse[pue dn suedo 3f
«2A1IRIOQR]|0D 31 AR 'sBulY} * suUsAl[US SI3 ING OI38]S §B SROIOE SWIOD

[@ep eyyeur ‘seagoud oy jnoqe uoswar o3 auo smojje pue Surdeluo syjsw gayewm,

juel[1q 5,38
{31 Inqusp

CEELE
auo pey | Ysim s[ooyds 10j jesid ‘Yiom 10j Jeorjoerd moy ains jou .voow:wﬁ”:
uo jods

wUmuuxkﬂ 210w paau p[nom

«u233o asn [1jun xajdurod ‘19333q Iej

LUMmOp waYyy
2311M 0} 1918 YONW ‘I0)e[NDO[ED YY)} UO SUO}INQ 3Y3 10 j0Oo] 03 Sutaey sdem[e,
osn 03}

10150 Surjeadde L[|ensIA S10UX ‘SER[UIYES ‘A31AIJORISIU] JUSWIO}IOXS J:nEmmnmnn «
«dn 31 paads ‘urea 03 Juevm + ALofua Ajreny

-0 0} sjidnd NS sapdsu; p{nom ‘I038[NI[Ed UO SiaMBUE 2[J0ip} 398 sauijjswos,,
9B[NWIO} [BdIWaYD

193se] Jojrews
‘eyep jo saijljuenb afre] 10) a[qeJINS 3q PINOM 31 13YjoYM 2INs jou

;31 9AeY 9M UeD USYA\ dUOAIIAS -swinNW - 0}
jo0Yds 3 SPep - sucAur 8SNYIUS P[NOAy -sIoje[nofed ojul jnd] ojut ayjy 3a310§ |

...ivseeld s1aded wexs ojuy e3erodioouy

v

MO TN W

0

A0 A0 0 D
0D W00 0 W

MWW

(-]

o, W0 W

Lo lY>}

NSV 0 F D0 T

7]

AP,

B

»o o

» >

PP

»

»

R RN Y

EES R RS SN

LR e R R R) »

-]

-

Eam» &

]

S8 -}

-

SE»XA »ea a RE S SRR

EEEE N>

>

R -

1101
1001
1000
1000
1100
0101
100T
1001

0101

1101

0101 .

0001
0or10T
1101
1701

1101
(11988

0110

0100
OTIT
o101
1ttt

00TT
1101
71T
15991
Titt
1101

o111
18481

0101
1999
TIrr
1101
0010
1111
1101

1101

HU;U.NUH
juopnsg
juepnig

uepnig

i 19uBise(] awes)
1090211q
juapnig
juepnig

juepnig

Juapnjg
juapnig
juepnig
URIDIUYISL, AV
juepnig
juepnig

1ayoes],
19Yoea), PeIey

,18In3097] F0[UAg

yoieasay
Iayoes],
Y5a3-a0ualog
Jayoea], sy

js13o[olg surieN
I9yoea], pailjey
:UWGIQUEDMUW
13yoeajpesy
3$13UBI0G yoeasay
19yoes], a0uUaldg

agd
10qoea],

IayoRa],
1ayoea],
3Jualdg Jo pesy
19Y2ea], 90Uslog
1ayoeay,
JURIUNOIOY
1syoea],

I9Yoweajpeay

SV

v

(o]
qsoo
SV

sv

A4
SV
SV

dsod
asdd

[e]

°sd

, .Pud
aud

[e]

qsodD
Busy

asod
Pd 313D
ds0d
fcicte]

v

OSSN

2sd

2SN -
v

EEE

EEE

£ -

B g

[

NN N NN N

N

NNFRNN®

w0

AL

O ®

0w e

w

295

$JU0] PU® SINO[OD SI0W PUR $13308IeYD £3[3A0U U] ppe ‘sowdp

SSe[> 10} 38313 sI pue uaIp[IYo 10j Juluiead] s33BINOOU3 31 MO[[0] 03 Ases pue
aiduirg payuy] a1e sBuly) moy 298 ued NOA s€ 13I8'A suoljenbs pue suorpssnb
ayew ued S1Yj pue se[nuioj a3uelieal ued nok (s3[ed [eurduo Yjwm) slomsue
Buoam 33 03 pe?| ued siyj pue Junjiom AW Yiim Y3noua 1ea(d jou w,] seWIIoWas
“JUeJSISSe 20O 1] SUryiswos saey pue

IN3ano[od 210w 31 ey ‘Sullim LW PuB}SISPUN 3 UPIP SIUII}OWIOS NG UNJ FEM }1
jouo juem] jsAljeUNIOJUI pu® unj 3e’1d

39138 03 Buruies| sasneo os pue unj s.1]

Buoim 2u03 9A,NCA UIYm 998 PUR SN 07 Ialsea

jeyIewssYWl 10j poo3 aq prnom jooqpuey a[dwis e

1[ams®e 31 uo ajum

aJe 8jaays

-peaids/sioge[nojes (A|[ejusw) sWOSIIqUIND Moy asijesal swr padjay uoljiqIyxs
4830J9q US98 3A, |

Buigakus uey) Jeyeg PeIFxe sur 5308 §) 3f 40|] ‘Suizewe 81 UOKIQIYXS Y3,
«Sjuswaaordury ou ‘jus||adxa,,

"3t 98N 03 1] P.I
‘Bulop are nok jeym 2as ued nok

jey3 pue A3[A130R193Ul aY3y 9)If | "s10je[nojed ul Surdouue 51w s19qUINU aa1FeSaN
jusweAozdur 10j PIau OU JUI[[2OXD

‘o1sejue] 31 9w pinom L1jua AvpLiass 10y pudLay
® YjIm SIY3 JO UOIeUIqUIOd ® YUY} | jPUOP 9 'dAIjInjur A[jedyysejuey st 1D
1332(nb 31 ayjrw

«A[21eIpamiuIl 31 98N UWD SIOJEV[NI[ED

YIIm lerrurey s1asn os a[qryedwod premyoeq 11 aew pue ‘933[op dej om) e asn,,
‘s8uiy3y Furpuejsiopun pue Suisyensia jo

Kem pooB ' aq pinom sydesd pue s30] 9A[08 03 PoOF aq P|NOAA ‘UNj BIOW UIAD
SYJRW SpRJN ‘SISMSUR }I3YD 0} I1315ed OS[Y "103e[NO[ed ' asn o3 Fuiaey jySnoy;
Jo ureay inofk 3uiso[JNOYIIM 1om 03 nofk smojly -1ajdwis yonw s1 Buiajog
*1338€J 8] pPUB §3}VISIW S3O9I100 §]

(3991102 10w

79) jI935€) yonw yonw Auo 1aded uo pInom] se saje[nojes 31 asnesaq 11 IA0[|

193339 3q 3, Up[nod
snmo[es spasu

12213

3y

unj s

«18333q 3Y3 193unof ey,

*8[00Y28 03 0B jsnul A|[esr 3T - SIY3 Y3IM SYIVW JO MIIA 8,UCIJBIsUEd € 9Buvyd
PINO2 N0 [ouU0 Juum [‘oUC{® UOSWel 3WY3 104 °SeY Si43 gnq ‘uongippe Jurop o[Igm
208} Awr 03 S[[Ws € JY3naiq 838y} SuiylAue Ua3s I9A0U 9A,] ‘Spoylem Fujydes)
JUBLIND YI[M 9[B3NJIS oYM ULIP[IYD 10§ [[om dIom YI[p -Je3jeq Jupjiom jo Aum

13§ 392yo 03 Buf1y pafofua [- aivmyjos Jo adeld Suneursey

|..8MIelq 4w 3y 03 SWoss 31 INQ ‘AYm QUSSP 03 HNOMYIP 8L, 18 Aq 0339q,, |

nan wWan waw w D W W0 N M w

D A0 D 0 0 WD

\Dﬂ‘n'll)

0 90 a0 ~ WD 00D W «

w an

w1

10151010 10 10 0

R R Rl = o>

-

Rl

E)

L)

LR R R RN)

()

AR ER s e R Xal

o> e c

EHxhExRrEQ

D ARRE SRR

g »

-]

> >

EHx,mE S RA

1101

1101
1111
0100
0100
00Ut
1101
T10T
T000

0110

.|-. OT00

000t
TITt
1101

1101
0001
T00T

1101
0100
0001

00TT

1101
T00T

1001
0001
0001
0001
0001
11t
T0TT

1701

juepnig

juapnig

uapnyg

idng

JuapnIg

10ss0401d

juspnig
I1ajseopeoiq a2Udldg
ndng

193uiBuy responp

juapmig
juapnig
JUBIUNODDY paIsgiey))
juepnig

juspnlg
sjuspnyg
Juopnig

1autfuy
juspnlg
juspnig

A3oj01g 1e[Nd3OIN

juapnig
juapnig

juapnig
juapmg
juapnjg
juspnig
juapnyg
juapnig
yoaeasay

. Y

£8M

€84

SLVS

SLVS

sV

v

dsodoo

osd

Arewrid p 1eadk

avd

. v
SLVS
ONH
v

SvY
SLVS
asod
mun

v
ason

°sd

A4
sV

wn

vd

EE

g«

A AW N

w

a N HANM AN N HN

FANNNNANAN

296

Chapter E Royal Society — Results

‘1ajsej yonuwx st g1 s umop Juljram axi 1
32010 pue
133uy 213ew pue $30312 punos paxI] ‘suoijenbe 31q 10§ usdids 81g "1ea1d sem 31

MON 92qaew oy uo 31 133
93¢ 3unok ® wioy dn 31 338

«Jaded jo asn jo ases ayj3 pue Ioje[noed 3Yyj jo 1amod ‘sp(iom Yjoq jo 3saq,,

‘JUOIOYIP pue SUnIdXE "IN0 s3UlY] SHIOM 1 MOY J0S 03 NOK smojje 31

-diosaded ay3 i Jueysisse pejewiue

ue ppe p[noy (932 Y230138 03 pasu) 3y nok sdoss] pue uses oA, 103e[NdJed Isog
j103e[nojes [eutiou € Buisn U8l FAVH P[Noa 3} Suo[Moy nok moye p[nod oo
3y, ‘soyejsjuw L1ess2000un pjoas pue Sutop 818 nok IVYm 098 uBd ok 10339q Aep
‘238 d

‘euo sanpoxd o4 o[Fed 103 jjeMm 3,UNd |

iqeed j[eH ;491199
‘ura1sds uny ® yons asn o4 Jupjeteqyy A1e0a sem 37 jySnoysy
id pue s3e
s193nduwIod [eWIOU UO 31 8sSn 03 3[q8 9q

| 1.9 Y83 81038[NO|BD dljEwWaq

«239[ep dej pue 312110 jnoqe moy ‘Ap/xXp I s[oquiks
[edljewayjewr jo 30[® 3STu30091 jued I ‘JUIIIYIP OS ST 1 Se asn 03 unj jeasd,

A13291100U1 passend 31 UIYMm MOUY O} SPaau |

«uo131uB80091 jo paads st wra[qoid urew ‘saljInjul aiouu,,
JUIIOYS dI10W §,1]
[000 A[jes1 sem 3t jy3noys |

_ [fpuey A1ea - 10u3a303 spoyjeur juerind omj Aw sefieuwx
juawasocidurl 10 peau |81 OU U0 SPURY pue 231U

Sp1y [00Yds 10) 19339q Ajqeqoad

Burjtoxs syoo|

sydeid pue 30[pue wns 8| sjoquis ul ppe

09 pesn 3u1jjal swos seye] 31 YyInoyj[e 9sn 03 Bursaraqul sem 31
uorjrudosar m/y pescrdutt spsau

.. (eo1nosa1 uny) Bupyoeey JUS[|90X3 UY ‘dAIMIUYL AI9A

‘unj pue [njd{ay 210j10y3 pue ajdwils sem 31

53932819 paceidsin jo esnedsq jen(apem ore seyuqsiw Uagm Burdouue of s} 3]

| Moy pasjjeas 3,upwy | adojeq

ARSI

LR RCRURE] IR R R R RN

AR

SOOIV OONF D IDON LD L LD -0

TV

ALRTR N B

-

FWOL TN M

AR RPN IR R R A

WA 3«

0 W

AR E >

R RRRRRRRR >

LRk

=

NYLEES

PAE R E

ESE S I - A

EExmE RO EEC [~

& »e

(-3~

cEsaeReEE

>

L)

-

NI R S e

-]

E)

4]

AR R A S fERROERSRARERRESR

FEEM»

1000
0101
T1T1

0100
0010
o111
1101
1001
0001
0101
o101
1001
1001

0100

010% ..

1101
0001
1100

1T

ortotT

Q101

1101
1101

11T
1111
10T
11T
1110
1101
0001
0001
1101
0101
0001

1Q01.

11t
1101
1100

0101
1011
1101

1101 .

1101

10300
juspnyg
patzey

juspnig
juejnsuo)) ssaulsng
juspnig
juopnig

juapnyg
juapnig
juapnyg
juspnig
juapnig

JuapN3}g

juepnyg
pakojdwaun
1saurSuyg pairjey

seauBugy perrey
aﬂ&—b—.—am

1e[oydg
Juapmig
juapnig

19j10M YoINYD
juejnsuo))
ajimasnoy
juapnig

juspnig
pein-sod
JuapnIg
juspnig
juspmig

juapnyg

uapnjig

juspnyg

juapnyg

yoe3ly dylusdg
juapnig

10300Q

juspmig

J9Y0es], 90UaRg
juapnyg

asoD.

VADN
ONH

vd.

| =@s0D

SV,

dSOD

ayd
ds0D
°sd
°>sd
dason
v

534

sy

A4
asoo
dasoD
s1998RA
SV

v
dasod

£sM

~EEEE

5

£~ “

EEE~~E

e

EEEE

N~ 1D AN

n o,

Lol IS I I R Y]

-

® NN

SFFAMATNANNNMANNA TN N0

297

14 v £ u u 0001 juapnig T
Jutop st werdoxd oyj jeym 19001 01 UOIJRIOUUR 12 2 u u | ootr 1913097 v w v
S S £ u u 1000 juspnig sSY w Z
14 i4 £ u u 0001 SY w [4
14 4 £ u u 1101 juapnig SV [4
snanb sy3 ul Lusw 003 £ u 1001 do Y g
aQ—dﬂohﬁw [el2Iauruiod ® I0J pPasn uaaq sely 2[ed[eal auleu ayj) € [+ u ua IT1Y u@EEthOkm pisleg g
Popoaau 83001 aqno q q £ u u T10T juapnig SvY w (4
(Jdomsue ay3 108 3] moy 938 wed nok L[1ead jno Sujgihisas
€398 3L Pre 3ujyoeey opsejuny, | G AL LM | 00QF. | .. 3ey2eel, 100U2SUIIH - QSH. | .. v
g s | £ u | 0101 juepnyg sv) z
v | gf £ u | u | pr01 juapnyg 534 w z
g | s | e] £ £ £ oott ISHUBIOG JPIYD J g
g g £ u | u | or01 uapmg v w 4
‘«elqe[feas aq j0u Lewr £Bojouyoey Iese| AIYM D35 saBuel 3n0 Buprom - Awly oyy
| 103 Te1ymasod sey s1yy eins we J ‘ATR[[IIIY JeAoy ‘queisisse [eoIuyaar, Xo ue sV, | S |48 u | u}oarl M .. doqueq . w 9
g [£ u u | o001 Jjuapnig SY z
[99%2 03 HuI| s | g | £ u | 0001 15dofaAdp UOIQIYXT AsOD 3 v
vy ! ¢f| £ uw | ul ooor Juepnig J 1
€ 4 £ u | u | 0100 juepnilg qSOD w z
Ajung L1ea s | g | £ u | £ | ooot Juspnig T
(oW1 ' e
UOI3E[ND[BD JUOC UBYJ 210U ‘WNISAN 3OUILDG Y3 8 UOHRIQIYXa UR Op 0} juem |, g g £ IS TI1T WNasNIA U0 v 12
«8UOIJBALISD
303 pivoq ey dn Lio3syy emy 4q auy ® eavel - ‘e[qepess swopouny peyrunl, | ¢ | g w | u lw | 111y | Jewoway sowhyg | LY. v
13332q aq p[noo Junumpuey | g [g [A |7 £ K [110 Juapmg 534 2z
JURY? 30U — 95Uy (|14 OU JeYm [QIJU0D 3Yed NOL [4 u uimu 1101 juopmg sV w z
€ € u 0101 paley w S

Appendix F

Calculator manual

299

TrueCalculator Manual

The interf

Preferences Edit

HML618

13x3+4x4=5x5

7 +1=511
145 44
2

1. The equation editor
Equations are written here, which the calculator solves. Figure 1shows the

calculator in the process of solving 3x4.

2. The equation dock.
Equations can be dragged here from the equation editor. These are recorded
and saved.

3. Hide/show numbers.
This button toggles whether computed results are shown.

4. History.
The clock records the changes made in the equation editor. It can be used to
review what has happened and to undo changes.

5. Trash.
By dragging to the trash saved equations in the dock and parts of the equation
editing can be deleted.

Solving an equation

To solve an equation write it in the equation editor, just as it is written on paper.
TrueCalculator uses handwriting and expression recognition to understand what you have
written. It then morphs your input into typeset output with the answer inserted for you.

n=3J42

3+4=5 2

lélg

4

As a user enters an equation, typeset characters replace digits and symbols. This enables
the user to recognise when a character has been misrecognised and stop to undo the error.
Once the user has finished entering the equation or pauses the calculator morphs the
annotated, typeset, input into a neatly formatted equation.

2 Cu 2 e
sy Spa
4 e 4 T 15 986

The calculator recognises these symbols and mathematical operations:
Digits

E, pi and i

Plus, times, minus, divide

Brackets

Equality

Square root

Exponents

Factorial

Incomplete equations

The calculator automatically completes equations for the user so that they are
automatically correct. This means that the calculator can morph and display a meaningful
equation before the user has completely finished. It also shows the user where they are
missing operands and gives the user time to think about what they want to write.

Editing an equation

Writing

Once an equation has been recognised and morphed it is still editable. A user can
continue to write on top of the typeset equation. The altered equation is reparsed to
recognise the new equation.

s IVHC g“b s

R § | p1& a4 e

1 et — ° —

e f=8) £=2.828
*=g Z2

The computer added corrections in red are removed as soon as a user starts editing. A
user can therefore write over the top of the computer’s correction. By editing the equation
in this fashion a user can build up a mathematical expression in stages, checking at each
point that the correct expression is recognised.

Drag and drop

An equation is also edited in the equation editor by drag and drop. Selection is done
syntactically; a user can select non-semantic or non-meaningful parts of an equation. For
example a user can select the first and last digits of a number, or the numerator and
denominator but not the divisor line.

Cek 1 0 wo_j

3kl) ns
3+4=5-.. 3+4=5+: 3+4=5+.
"k o« *f4(1x A2
X bZ ! 1

To drag and drop parts of an equation, first part of the equation is circled. The calculator
automatically highlights the area and symbols you are selecting. Once part of the

equation is selected the pen or finger is lifted, then dragged from within the selected area
to where the user wants to drop the selected part of the equation. When let go the selected
contents are cut from the equation and pasted at the drop point as if they were very small.

Thus with this method parts of the equation can be moved around easily. Mathematics
can be dropped underneath square roots or divisors, or placed as exponents. However a
divisor bar cannot be dragged on top of an expression because the calculator does not
know how large you want the bar to be. The solution is to drag the expression underneath
the divisor bar.

Deleting

Part of an equation can be deleted by dragging it to the trash. The selected part of the
equation is removed and the equation is reparsed. A cloud of smoke is used to show that
you have deleted part of the equation.

Equal opportunity

The calculator uses a method, of solving partially complete equations, called equal
opportunity. This allows both incomplete equations to be parsed sensibly, as described in
the section Incomplete equations, and allows the calculator to compute more complicated
results in a way which is simple and makes sense to the user.

With a normal expression entered by the user, the calculator adds an equality followed by
the answer. If the user enters an equals sign then it is possible to write on both sides of
the equality. This is where equal opportunity is useful. The computer corrects incomplete
equations so that the least amount of change takes place.

. 1
ni
[

14?
3¥IS59

618 18— ¢
e)

2 >

f=9

Thus simple problems are solved without any rearrangement for the calculator. And more
complex problems can be solved without an understanding of the mathematics.

Hii

S=3442
3+4=5 _

n

(6 644)

D R 1)

2 =100

In the above example a bracket is used to indicate that the calculator should put a number
here. Without the bracket a simple addition or subtraction on the right hand side is used
to ensure the equation is correct. In this way the calculator is declarative, no equation
ever shown to the user is mathematically incorrect.

p§ 2=100 98

2=100

If

Multiple missing values are sensibly filled in, for example rational numbers are used for
divisors.(Note: it is necessary to indicate that a horizontal line is a divisor by placing a
bracket or decimal point above or below it)

«

Using the dock

The equation dock on the left hand side of the screen can be used to store and retrieve
equations. The equation editor always shows the contents of one of the equations stored
in the dock. This equation has a white background, the rest of the equations have grey
backgrounds.

To retrieve an equation from the dock, you simply click on it. The equation editor will
then switch to that equation.

Dragging to the dock saves the selection creating a new item in the dock. The selection
can be either an equation or part of an equation. The selection is copied to the dock and
the equation being edited remains unchanged.

In the dock clicking and dragging on the equations drags the equations around. To delete
the equations these equations can be dragged to the trash.

%im-d?,l42

3+4=5+2

1
A _9_=1

StSml'+VmtL.

12x33 J§§

HY7A4

An equation can also be inserted into the currently editing equation by drag and drop. It
appears as it does in the dock, and is immutable. More than one copy of the same
equation can be inserted into the editing equation.

Using the history

By rotating the hand of the history clock, the entire equation history can be viewed. This
is similar to a “scrubber” or slider on a movie player. The smooth morphing and
movement of the symbols and expression can be played backwards and forwards at any
speed.

In this fashion a user can review the entire working to arrive at a solution. A user can also
use the clock to undo mistakes, once they have released the clock and started writing the
backwards “time-travel” is made permanent and the future recording is erased.

Hiding the answers

The numbers shown button, toggles the computer-generated numbers on and off. When
the numbers are not shown they are drawn as empty dashed boxes. This enables a teacher
or presenter to pose questions about the mathematical formulae without revealing the
answers.

eJII -;N
ft=Xi4i
3+44=5 .

fcU.618 1 : 2 3
3X3+4-X4=3X5 —
tri3:«7f 41V,

12- -

Whilst the computer-generated numbers are hidden, the calculator remains usable. This
enables a user to attempt to enter the answer to find out if it correct. If it is not correct the
calculator has to add in a correction, which is also hidden. When the user gets the correct
answer no correction is added and the whole equation is black.

b=3.142
3+4-5 .

RS 1y fy

Appendix G

Dock equations

The dock text file syntax is solely a positional syntax. Each character repre-
sents a symbol added to the mathematical expression at the current cursor.
Every symbol moves the cursor right except curly or square brackets which
shift the cursor up or down respectively. Any symbols written within these
special brackets take up a single symbols width.

Thus, {12} [3] - is recognised as the symbols 12 raised, the symbol 3 lowered
and a - symbol, all horizontally aligned with the same width. Which when

parsed becomes —1:,72 .

The initial dock equations text file is:
3+4=5
3%3+4%4=5%5=
32+{9}[B5] —*=
=2.54x% (+12%)
1+{1} [1+{1} [1+{1} [1+1]-]-1-={1+R}[2] =
P=/
1=1%2%3%4*5
0=e{iP}
(1+ [100]1- D){12} =(1+[100]- DD{1}1]

309

Which gives the resulting mathematical expressions:
e 3+4=5
e 3x3+4x4=5x5=7
o 32+ &x?=7

o 7=254x (7+12x7)

2
f——
l+m
o 7 =7/7

N=1x2x3Ix4x5

? ?
1+ 5) % = 1+ 155)°

Appendix H

Recdit draft paper &
timeline of chapters

This section includes a draft paper on Recdit, a novel text editor inspired
by some aspects of the calculator. The majority of this thesis was written
in this editor, and following the draft paper are the timelines generated by
Recdit for the creation of each of the chapters of this thesis.

311

Recdit: A Text Editor With a History

Will Thimbleby
FIT Lab
Computer Science
Swansea University
Singleton Park
Swansea, SA2 8PP, UK
will @thimbleby.net

ABSTRACT

A novel text editor, Recdit, provides a complete character
by character history of text documents is introduced and dis-
cussed. Recdit provides the ability to see an entire docu-
ment’s history and to “scrub” through it like a movie.

Recdit also provides highlighting and graphs that tracks and
shows overviews of a document’s edits and changes. The
ability to do this provides many novel uses. These features
are discussed and are useful for both single and multiple au-
thors, both of which Recdit supports.

ACM Classification HS5.2 [Information interfaces and pre-
sentation]: User Interfaces. - Graphical user interfaces.

General Terms Design, Experimentation

KEYWORDS: Undo, history, versioning, track changes, col-
laborative writing

INTRODUCTION

Tracking the changes in text documents is an essential task
[3], especially when multiple users are editing the same doc-
ument. Recdit provides a character by character recording of
the entire history of text documents. This history provides
the ability to extensively track changes in text documents.

The primary' contribution of this paper is the combination of a
complete edit history, its visualisation and a controlling user
interface. These provide novel ways of tracking document
changes and interacting with them.

Some of the features of Recdit provides are:

¢ Multiple concurrent authors

* A complete edit history

* A slider user interface to control viewing the history

¢ Trails which highlight the last few edits

* Graphs providing an overview of the entire history

* Sideways text layout that provides more structure for the
text

Recdit is a fully working text editor designed for Mac OS X.
This paper was written in Recdit of which every edit can be
reviewed. The application and paper are available to down-
load from http://will.thimbleby.net/truetext/

INSPIRATION

This text editor was inspired primarily by seeing users en-
joying the undo-clock in the pen-based interactive calculator
presented in [6, 7],

The calculator instead of providing a discrete step-based
undo similar to most modem user interfaces, provides an
undo that is linear and smooth. The undo user interface of
the calculator is presented to the user as an analogue clock
that allows the user to manually set the time by rotating the
clock’s hands.

Users really enjoyed interacting with the undo-clock when
using the calculator. Like most undo systems, users did not
often use the undo feature, but they still liked to play with it
and enjoyed the interaction.

This success led to the original design question for Recdit:
“What would a text editor look like if it had a similar undo-
clock?”

Figure 1: Recdits user interface.

Time-machine computing |Sidcscribes a whole system con-
taining multiple applications which can be navigated in time,
Recdit provides the same navigation in a more focused and
refined user interface specifically for textual documents.

DESIGN

Implementation

To provide the similar ability to rewind the edits to a text
document as the calculator provides for equations, Recdit
records every single event as the user type. The recorded
event data includes a timestamp, the current user, and the edit
| data itself. As a user types, each modification, the document
| records an event, every single character press is recorded as

a individual event.

| The edit history of a document is recorded in the saved files
| so that the history of a document is not lost between editing
| sessions.

When a document is opened in Recdit the document replays
 its creation from the start. This allows keyframes of the doc-
| ument’s state to be recorded throughout the its creation. To
| jump to a location in history the document is “wound” for-
ward from the nearest keyframe by replaying the edits made
between the keyframe to the new location. The keyframes
that are stored every couple hundred edits allow jumping to
any location in the document’s history to be very fast and
allow scrubbing through the history to be immediate and in-
teractive.

User Interface

A screenshot of editing this paper in Recdit is shown in Fig-
ure 1. The text is laid out sideways in individual pages with
page numbers at the top. Some highlighting of this text is vis-
ible showing the last few edits made to this paper when the
' screenshot was taken. At the top of the window is a graph of

the documents state throughout its creation and a slider that
| controls the currently displayed version of the document in
history.

If the user does not interact with the history features of the
editor then the editor interacts identically to a simple text
editor.

The main user interface for interacting with the history of the
document is provided by the slider at the top of the docu-
ment window. Using this slider it is possible to jump to any
point in the document’s history and to scrub back and forth to
see the changes as they were made. Dragging the slider left
moves the document back in history, up-to the beginning of
the document, and dragging it right forward in history. This
works like scrubbing through a movie. As the slider is moved

- the document is updated instantly, the state of the document

and the slider are never inconsistent.

A slider is used instead of the undo-clock used by the cal-
culator because it provides instant interaction for moving to
specific points. Another benefit of a slider is that it can be
overlaid on-top of graphs showing the state of the document
at any time. A disadvantage of a slider is that as the docu-
ment has a history in the thousands or tens of thousands edits
the slider becomes more inaccurate, each pixel of the slider’s
position representing many edits.

Using the slider to scrub back and forth in the history of the
document shows the edits that created the document. This
can help a user to understand the process of the document’s
creation.

By replaying a document’s creation when it is opened, the
user sees the document recreated from the beginning charac-
ter by character. This provides the user with a fast-forwarded
reminder of how the current state of the document was reached.

MULTIPLE USERS

Group editing documents with multiple authors even with
version control systems or concurrent group editors is not
a simple task. Other than the technical problem of pro-
viding distributed access to the same document, one of the
main problems of multi-user editing is keeping track of the
changes made by other users [3]. Simple versioning is often
used to provide a basic tracking of changes.

Recdit provides networked multi-user concurrent editing ca-
pabilities. A document can be served from a server to mul-
tiple individual users that connect to the document. This al-
lows multiple users to concurrently edit the document at the
same time.

By recording the history of a document Recdit creates the
potential to review other user’s changes. Allowing a user to
potentially rescue paragraphs deleted by other users and to
“see” their changes, to see how and what they wrote, cor-
rected and deleted.

UNDO vs. HISTORY

Most undo systems create a tree of edits, usually each branch
of the tree except the main current branch is lost. Several
interesting undo frameworks have been proposed like US&R
[9] and multi-user undo systems like [1]. Recdit is not fo-
cused on implementing an undo system. The history and
undo are distinct, which makes both simpler to interact with.

The history records all the undo and redo changes, because
the undo system is external to the history of a document.
Moving back in time it is possible to see mistakes made and
undone.

Unlike undo the history of a document is immutable, once
an edit has been made it is recorded forever. Although it is
possible to view the history of a document it is not possible
edit the document in the past.

The history of the document can be represented as a sequence
of states on a time based axis. The version of a document
that existed at any point in time can be retrieved. No state
the document was previously in is irretrievable, at no point is
any data ever lost.

TRAILS

As the user types in Recdit a coloured trail is left behind.
This appears as a light background colour behind the text,
which can be seen in Figure 1. As the a continues to type
this colour fades out over time until it disappears after one
thousand edits. This means that at any point in the documents
history the highlighted trail provides a overview of what the
last one thousand edits are. Deletions are not highlighted
because they do not leave behind any text.

A benefit of only colouring the last few edits is that the ma-
jority of the document looks normal, and the gradual fading
of the highlighting provides a good overview of what edits

were made and when they were made.

Edits by different users are highlighted with different colours,
so it is easy to see who wrote what in the last one thousand
changes in a group authored document.

SIDEWAYS LAYOUT

Recdit lays the document out sideways, splitting the docu-
ment into pages. The pages are laid out sideways in order
to make best use of current widescreens which are becoming
more popular and to provide additional structure to the text.
This is to provide more structure to the document, such that
it is easier to find where a part or page of the document is.

The pages the text is spilt into are sized so that they are a good
size for reading and editing. Page-breaks between sections
means that modifying one section will not affect the page
layout of another section.

The document can also be zoomed in and out smoothly using
another slider. This allows Recdit to provide a overview of
the whole document, which is useful to show where edits are
being made located in the document as changes are replayed.
This is shown in Figure 2.

B AU, gk _® e

* rrrrf ""I-PS ft. SSSUr

Figure 2: An overview of this entire paper, as a user
can zoom it

LATEX

Recdit does not support rich text. All edits and the history of
the document are recorded as plain text. Recdit instead pro-
vides inbuilt I5TgX syntax colouring and built in PDF gen-
eration. This provides any rich text support. Using DTgX
means that the architecture of Recdit is simpler, because it
only needs to work with plain text. It also means that the
typesetting and layout capabilities can be very powerful.

To provide network based editing support for images, with-
out including the images in the plain text, Recdit provides a
geturl (http://...} macro that retrieves a file from a
URL and saves it as a file in the /tmp directory. This allows
images to be handled by Recdit over a network without ex-
tending by handling and recording images. (Cached URLs
are used to ensure that the same image is not downloaded
more than once.)

GRAPHS

Recdit provides graphs of the document size and time of ed-
its. The purpose of these graphs is to allow quick overviews
of how' the document has changed. For example when large
scale edits, insertions or deletions are made the graph of the
document size shows large jumps. The graphs can be high-
lighted to show over what time periods the document was
edited and which user performed the edits. Edit wear and
read wear [4] introduced graphs that answer different ques-
tions based on edit location instead of time. Combinations of
these visualisations could be interesting.

rsi

0 . 25922
Edits

Figure 3: A graph of this paper's creation.

Figure 3 shows two graphs that are drawn of the editing his-
tory of this paper. The same graphs can be seen underneath
the slider in Figure 1. The horizontal axis on this graph is
not linear in time but linear in edits. The top line that travels
from bottom left to top right is the size of the document in
characters. A steady increase in this line represents typing,
jumps in this line represent insertions or deletions, edits that
create large changes in the character count. In Figure 3 this
line tails off towards the end, as more of the edits made were
correcting.

The lower line is the edit location in the document. The start
of the document is represented by the top line, the end of the
document is the x-axis. When this line is near the bottom of
the graph the edits are being made at the end of the document.
Flat areas in the edit line are periods of continuous typing,
sharp spikes are often small corrections. A downward slope
is often seen when a user is editing the document from start
to end. Repeated edits like this create a sawtooth graph, like
that in Figure 3.

ALTERNATIVES

There are tools that currently provide some capabilities for
tracking changes in text documents. These tools provide sim-
ple functionality, they are not capable of Recdit’s character
history or able to “scrub” through history.

¢ Microsoft Word provides a feature called frack changes.
Additions are highlighted and deletions are scored out.
Track changes can be tedious to use, it does not show the
actual edits and it creates documents that when the changes
are shown, are increasingly hard to read.

¢ Various web based editors, like EditLive and Google Docs,
provide similar tracking changes functionality to Microsoft
Word. These editors often provide good group authoring
support.

e diff is a typical file comparison utility that is used to show
the changes between two documents, diff is often used
to provide change tracking when combined with version
management systems, like subversion. The results of diff
can be confusing when there are large edits or even simple

rearranging. Other similar tools are more capable [2].

e Wikis provide web based multi-user authored pages, some

of these provide the ability to tracks the changes between
versions. The history of these pages can contain thousands
of edits and users and can provide interesting insights into
the authoring of the pages [8].

e Ad hoc emails and conversation provide the majority of
change tracking for most co-authored documents. The
change information is usually passed between authors in
an unstructured form, with multiple versions of the same
file in different places.

ANECDOTAL EXPERIENCES
| Single User

As a single-user tool I have been using Recdit for over a year
to write my PhD thesis. Over this period of time over 30,000
words have been entered into many different documents (in-
cluding this paper) and almost 200,000 individual edits have
been recorded.

| It has been my experience that I have not often used the abil-
| ity to review the history of a document. On a few occasions it

has been useful to rewind to locate and recover a paragraph
from the past that I had previously deleted. The process is
to rewind the history until the section that was deleted is lo-
cated, select and copy that section, then fast forward to the
current state of the document and paste the copied section.
These paragraphs would have been lost completely if I was

' only using a simple undo system.

. The biggest benefit of a recorded history I have found is

the coloured trails that show the last one thousand edits that
make it easy to review the last few edits. I have found this
to be most useful when opening a document after having not
looked at the document for even a day or so, because after
even such a short time I find it takes some time to pick-up
the flow of editing the document from where I left off. Hav-
ing an overview of the last few edits means that, as a user, I
can start back where I left off with an understanding of what

I was just doing, regardless of how long ago I was last editing

the document.

Multiple Users

I have also used Recdit to author several multi-user docu-
ments. These were mostly not concurrently edited but edited
using ad-hoc versions emailed between authors, this has been
partially necessary because of the need to edit documents
off-line. In these cases I have found the ability to not only
see other user’s changes but to review the actual process of
what they did, very useful. Firstly being able to see exactly
what the other user has changed (and deleted) is useful, and
secondly I have found that being able to see the process of
editing has provided a good idea of what the other user was
trying to achieve. These are both impossible by only showing
the textual changes made to a document.

CONCLUSION

This paper has described a text editor that provides a novel
history recording feature and user interface for interacting
with this history. The history combined with trails and graphs
that provide overviews of the document history. These al-
lowed several possible benefits both for single and multi-user

editing and reviewing changes.

My experiences of using this editor have suggested that track-
ing edit changes in a text document is both valuable for a sin-
gle user and also extremely valuable in a multi-user context.

I believe these experiences suggest that using Recdit to fur-
ther study collaborative document editing, specifically look-
ing at versioning, tracking changes and history for different
domains, will be very valuable.

AVAILABILITY
The Recdit application, this paper and a movie of its interac-
tion are available at http://will.thimbleby.net/truetext/

ACKNOWLEDGEMENTS
Will Thimbleby is supported by a Swansea University PhD
scholarship and by Microsoft Research Cambridge

REFERENCES
1. Chengzheng Sun. Undo as concurrent inverse in group
editors In ACM Trans. Comput.-Hum. Interact., Vol 9,
Number 4 ACM, NY, (2002), pp. 309-361.

2. Christine M. Neuwirth C.M., Chandhok R., Kaufer D.S.,
Erion P., Morris J. and Miller D. Flexible Diff-ing in
a collaborative writing system In Proceedings of the
1992 ACM conference on Computer-supported cooper-
ative work, ACM, NY, (1992), pp. 147-154.

3. Hee-Cheol Kim Eklundh, K.S. Collaboration between
writer and reviewer through change representation tools
In System Sciences, 2002. HICSS, IEEE, (2002), pp.
531-540.

4. Hill W. C. and Hollan J. D. and Wroblewski D. and Mc-
Candless T. Edit wear and read wear In Proceedings of
the SIGCHI conference on Human factors in computing
systems, ACM Press, (1992), pp. 3-9.

5. Rekimoto J. Time-machine computing: a time-centric
approach for the information environment In UIST ’99:
Proceedings of the 12th annual ACM symposium on User
interface software and technology, ACM Press, (1999),
pp. 45-54.

6. Thimbleby W. A Novel Pen-based Calculator and Its
Evaluation In Proceedings 3rd ACM Nordic Conference
on Human-Computer Interaction, ACM, NY, (2004), pp.
445-448.

7. Thimbleby W., Thimbleby H. A novel gesture-based cal-
culator and its design principles In Proceedings 19th.
BCS HCI Conference, Vol 2, BCS, (2005), pp. 27-32.

8. Viégas, F. and Wattenberg, M. and Dave, K. Studying co-
operation and conflict between authors with history flow
visualizations CHI, Vol. 6, No. 1. (2004), pp. 575-582.

9. Vitter J.S. US&R: A new framework for redoing (Ex-
tended Abstract). In SDE 1: Proceedings of the first
ACM SIGSOFT/SIGPLAN software engineering sympo-
sium on Practical software development environments,
ACM, NY, (1984), pp. 168-176.

00

s19j)deaey)

Edits

s19jdeaey))

Edits

s19j3deaey)

Edits

sx9ajoeaey)

Edits

zszgs

Edits

216

Edits

i

00

sJ9a)deaey)

162

Edits

rsi

sJ9djdeaey)

Edits

Appendix I

Published papers

I.1 A Novel Pen-based Calculator and Its Evalua-
tion

327

A Novel Pen-Based Calculator and Its Evaluation

William Thimbleby
now at Department of Computer Science
Swansea University, Singleton Park, Swansea, SA2 8PP
will@thimbleby.net

ABSTRACT

A novel calculator, ideal for interactive whiteboards and
pen-based devices, is introduced and evaluated. The calcu-
lator provides a natural, dynamic method of entering con-
ventional expressions by handwriting and provides contin-
ual feedback showing the calculation and results. The user
interface adjusts and copes with partial expressions,
morphing the expressions to correct position and syntax.
Gestures are also used to edit and manipulate calculations.
The user interface is declarative, in that all displays, even
with partial user input, are of correct calculations.

The new calculator is faster for more complex expressions
and importantly, gives users more cenfidence in its use. The
majority of users said that they would prefer to use this cal-
culator rather than their conventional calculator.

Author Keywords
Handheld calculators, gesture input, novel interfaces.

ACM Classification Keywords
H5.2. Information interfaces and presentation (e.g., HCI):
User Interfaces.

INTRODUCTION

Imagine writing a calculation down on paper, and the paper
magically working out the answers. We have built a calcu-
lator that works like this, which is ideal for pen based user
interfaces, or for interactive whiteboard use in classrooms.
This paper discusses the design and its evaluation. (It will
be demonstrated in the conference.)

Overview

Refer to Figure 1 at the top of the next page, which shows
screen snapshots of the new calculator in use. We first show
a user doing the sum 3+6. In the first screen shot, they have
written 3+6, in the next the calculator is catching up with
them and has already rendered the 3 and + in a printed font.
In screenshot 3 the calculator has morphed the input into a

Paper presented at the ACM NordiCHI Conference
2004, the biannual Nordic HCI conference, held in
Tampere, Finland. Cite as W. Thimbleby, “A Novel
Pen-Based Calculator and Its Evaluation,” Proceed-
ings of the third Nordic conference on Human-
compulter interaction, pp 445—448, 2004.

nicely typeset equation. The user then clears the screen,
screenshot 4, using a cross-out, X, gesture; the feedback
from deletion, the ‘smoke’ feedback is also visible. The
final two, 5 and 6, screenshots show the user entering
2/3x=4, the declarative calculator ensures the answer is
correct, and the interface morphs the answer into a nicely
typeset and readable equation.

History and Motivation

We have always used instruments to aid our mental arith-
metic and to help us with mathematics. Somewhere around
200AD, the abacus was invented, and in the 1970s with the
development of electronics, electronic calculators became
popular. For the most part their design copied earlier me-
chanical calculators. Now, thirty years later, when desktop
and handheld computers can do almost anything, today’s
calculators merely imitate early electronic calculators. The
calculator provided in the Start menu by Microsoft is less
powerful, and less expressive, than a 10 year old handheld
calculator! Yet computers today could do a lot better than
just simple imitations of mechanical calculators.

The majority of current research on expression recognition
has been directed towards that of expression entry [1,2,3],
although there have been attempts to marry expression en-
try with calculation (for example, the PenCalc project [4]
Yet, none of the existing implementations have attempted
to use expression recognition itself as a user interface for a
calculator.

The calculator presented here, and its design extend the
domain of calculator user interfaces into the 21* century.
Rather than relying on obsolete metaphors that dictate
awkward and unnatural mathematical entry, this calculator
provides a natural interface that is designed to (and does)
function like pen and paper — or, rather, paper that does
mathematics magically.

PEN-BASED USER INTERFACES

The main advantage of a pen-based system is the familiarity
of the interface. The majority of users are already compe-
tent at writing with a pen. This advantage is greater with
mathematical expressions, because the majority of mathe-
matical work is still done on paper with a pen or pencil.
Using a pen-based system to enter expressions is a natural
progression, as it means that anyone can use it with little or
no training. Pens can replicate the complete functionality of
both keyboard and mouse, enabling computers with a sole
input device.

3 +

3+6-9 f-x

4 5

¢ o]

Figure 1. Screenshots of the calculator's progress computing, 3+6 and then 2/3x?=4.

Meyer [6] gives a good detailed overview of the whole
technology, including both a history of pen based comput-
ing and more technical aspects of the hardware and soft-
ware.

IMPLEMENTATION

The implementation is written in Java, and is spilt into two
modules. The first provides basic symbol recognition using
a model-matching algorithm. The second recognises the
equations using a recursive descent algorithm based on
Chang [S]. The interaction and user-interface are layered on
top of these two modules

USER INTERFACE REQUIREMENTS

Ideally a user interface for mathematical input should pro-
vide a superset of paper's functionality, allowing a user to
use the interface in the exact way they would use paper.
The key features of the paper metaphor are outlined below.

Sketching

Ideally a user could draw rough sketches. Often when
solving a problem a user will not jump straight onto their
computer and solve it, but jots down diagrams or figures
first. The system presented does not implement sketching,
however a solution is to specify areas for diagrams and
mathematics.

Expressions

The system should allow' the user to enter expressions as
they would on paper, without unnatural restrictions. For
instance, the user should not be forced to enter the expres-
sion in a strict fashion.

Editing

It should be possible to edit expressions at any time. Both
input and output expressions (that is. an expression just
entered, and one that has been computed) should be treated
in the same manner. High-level editing, such as rearrang-

ing, insertion and deletion should be possible. To imple-
ment these with a pen-based interface, without leaving the
paradigm of pen and paper, requires special gestures that
are assigned to each of the editing functions. For example, a
scribble is used for deletion. Character editing is different
and involves correcting the computer guess at the semantics
of a set of strokes.

Feedback
The system should always keep the user informed about
what is going on. providing appropriate timely feedback.

THE DESIGN

Our new calculator uses a single canvas for mathematical
expressions, which enables us to create a completely
modeless interface that is intuitive and natural. The user
interface is shown in Figure 1. The operation of the user
interface was developed from Thimbleby [7],

The one adornment of the interface is a delete gesture re-
minder in the bottom right comer.

Expressions

The system imposes small timing constraints. It requires the
strokes of contiguous symbols to be written sequentially
w'ithin a small amount of time. This allows the interface to
recognise the user's input on-line as they enter it. These
small restrictions were found to be unobtrusive, and not to
affect the user's writing style.

Editing

After testing several different ways of editing expressions,
it was found that for the majority of mathematical expres-
sions. the easiest wav to edit them was to delete and rewrite
portions of the expression. This keeps the interface very
simple. (Dragging or pop-up menus would create areas of
the screen that function differently from each other.) By
allowing only a simple delete gesture, no mode changes are

necessary. Every part of the screen or virtual paper acts like
paper: every click and drag draws.

Feedback

The visibility of the system’s status is provided through two
kinds of feedback: annotation and morphing. As the user is
writing, the system can process in the background. As a
symbol is recognised the user is informed of this recogni-
tion by visual feedback: a typeset character stretched to the
stroke’s bounding box replaces the written strokes.

Morphing starts after a short time delay from when the user
stop writing. This halts when the user starts writing stop-
ping it from distracting the user and from rearranging ex-
pressions as they are trying to enter them. The morph for-
mats the entered expression into a correctly typeset
equation by moving the symbols as little as possible from
the user’s writing. The morph provides continuity between
the user’s input and the typeset equation that allows them to
continue to edit and use it.

EVALUATION

A total of nine participants, 5 students and 4 members of
the public, took part in the usability testing. These ranged in
ability from a mathematics student to people who rarely use
mathematics. The testing comprised of a number of mathe-
matics questions based on old GCSE papers. Users were
given time to familiarize themselves with the interface.
When they were happy, they were observed and recorded
whilst attempting to complete the questions using the new
system and their own pocket calculator or one provided (a
Sharp EL-531GH DAL).

An observer was present and users were encouraged to dis-
cuss problems with them, afterwards the users filled in a
short anonymous questionnaire.

Measurements were recorded of the time taken and the
number of errors or problems encountered entering expres-
sions. The questionnaires provided a better general impres-
sion of the ease of use.

RESULTS

Time on Task

For the simpler sums, like 9x2/3, a handheld calculator was
much faster than the new system. An average of 24 seconds
for the new system compared to 10 seconds for the tradi-
tional handheld calculator. This was expected. The majority
of users were familiar with handheld calculators, and had
used them over many years.

Two of the tasks were actually faster on the new system.
Calculating Figure 2, was faster (an average of 49s to 79s)
because users could enter it “as they saw it” rather than
having to search for buttons on a calculator.

22
21-4

Figure 2. A simple equation.

For the task “What power of two is 287" every user was
able to complete the task on the new system, yet most
struggled to solve it on a handheld calculator. Solving it is
easy, in a similar way to Figure 1 picture 6, using the novel
declarative approach from [7].

Thus this new calculator enables users to perform mathe-
matics that they could not do before. Furthermore, it is
faster for more complicated expressions because users did
not have to rearrange the expression in their head. This was
the not even the case for those who knew the rearrangement
log 28+log 2.

Accuracy

A large part of the time taken to complete the tasks was
taken up with recovering from symbol recognition errors.
Currently the accuracy percentage in this prototype (81.1%)
is poor, but easily improved. This significantly lowers the
usability of the system. Expression recognition caused only
a very few errors, mostly caused by short divisor bars.

However, when calculating mathematics, input accuracy is
not the most important consideration; output accuracy is.
No user got the wrong answer for any question with the
new system. In contrast several unnoticed mistakes were
made with the traditional calculators.

By displaying the computed equation in an easily under-
standable two-dimensional format, it provided the feedback
necessary to understand what was being computed. Thus
users knew when their calculations were wrong with the
new calculator.

Ease of Use

The overall impression from users was that the new calcu-
lator was easy to use. Typesetting and feedback though
morphing successfully allowed the user to understand what
the calculator was doing.

No user had trouble editing expressions using the delete
gesture. Other editing functions like cut and paste were
never missed and users liked the modeless interface and the
simplicity of one function.

Fun
Several users wanted to carry on playing with the system
and asked when they could get their own copy.

FURTHER WORK

During both testing and design many ideas were developed
that provide possible avenues for further development. The
more interesting are outlined here.

Extended Vocabulary

Expanding the number of symbols recognised to include
symbols like =, letters, and other Greek characters, would
enable the system to handle more complex expressions.

Additionally, extra functional vocabulary would allow the
system more power and expressiveness. For instance trigo-
nometric functions, user defined constants, logarithms, and
factorials.

The User Interface
Further additional features of paper (for instance, sketching)
would add to the usability.

Users specifically requested two additional features. A clear
button clears the whole screen, a similar metaphor to start-
ing a new page. This could be provided as a simple gesture
or an external button.

Secondly, users found that there sometimes was not enough
room to enter their additional symbols into an existing ex-
pression. Two solutions for further work would be, the ad-
dition of an insert space gesture that adds in a gap into an
expression and the re-morphing of an expression as a user
writes to accommodate the user’s input.

CONCLUSION

At its most abstract, this paper described a novel pen based
interface for any application. This paper described and
evaluated the pen-based interface for a dynamic, on-line
mathematical calculator.

New user interface concepts for the computation of mathe-
matics were introduced, including:

* The combination of pen user interface with an on-line
calculator.

¢ Extra space added to calculations, like longer division
bars, to aid the addition of more symbols.

* The use of a single delete gesture to edit expressions,
making the calculator completely modeless and providing
the user with an extremely simple interface.

The comparative user testing comparing the new system
with traditional calculators showed that:

* Answers produced by the new calculator were more accu-
rate. In contrast, users failed to notice when a traditional
calculator gave them a wrong answer — errors that they
noticed when using the new calculator.

Users were able to calculate the answer to problems using
the new calculator that they could not solve using tradi-
tional calculators.

* Users are able to obtain accurate answers and have
greater confidence in those answers compared to results
from traditional calculators.

* A pen based calculator is more intuitive, fun, and easy to
use than traditional calculators.

* The pen is a suitable device for entering and editing
mathematical expressions. Additionally, more complex
editing operations than delete are neither necessary nor
missed.

* For complex calculations, the new design was faster than
using traditional calculators.

It is hoped that the creation of this new calculator will
prompt people to rethink the methods by which we do
mathematics. (The calculator is available on the web for
others to build on.) Calculators are currently restricted by
obsolete metaphors, as the testing and creation of this new
calculator has shown.

Ultimately, the calculator should be ported to and tested on
pen based, handheld computers and tablet PCs, as well as in
school classrooms (e.g., using projectors and touch-
sensitive whiteboards) where they would be an ideal way of
teaching mathematics to children.

We are confident that the prototype described in this paper
charts a course in the right direction.

AVAILABILITY
A movie of the calculator and the Java application are
available at http://www.uclic.ucl.ac.uk/usr/will/

REFERENCES

1. Dorothea Blostein and Andy Schiierr. Computing with
graphs and graph transformation. Software Practice and
Experience, 29(3):1-21, 1999.

2. Yuko Eto and Masakazu Suzuki. Mathematical formula
recognition using virtual link network. In Proceedings of
the Sixth International Conference on Document Analy-
sis and Recognition (ICDAR ’01), page 762. IEEE
Computer Society, 2001.

3. Steve Smithies. Freehand formula entry system. Mas-
ter’s thesis, University of Otago, Dunedin, New Zea-
land, May 1999.

4. Pencalc http://www.cs.ust.hk/pencalc/.

5. S. Chang. A method for the structural analysis of two-
dimensional mathematical expressions. Information Sci-
ences, 2(3):253-272, 1970.

6. A.Meyer. Pen computing: a technology overview and a
vision. SIGCHI Bulletin, 27(3):46-90, 1995.

7. H. Thimbleby. A new calculator and why it is necessary.
The Computer Journal 38(6):418—433, 1995.

Chapter I Published papers 332

I.2 A Novel Gesture-based Calculator and its De-
sign Principles

A novel gesture-based calculator
and its design principles

Will Thimbleby & Harold Thimbleby
Department of Computer Science
University of Wales Swansea
will@thimbleby.net harold@thimbleby.net

A novel calculator, designed primarily for interactive whiteboards and pen-based devices, provides a
better task fit than conventional approaches. The calculator provides a natural, dynamic method of
doing calculations by handwriting using conventional notation. This paper discusses the calculator's
underlying design principles, which collectively create a coherent and innovative ‘look and feel.’ The
principle set could be used to help improve user interfaces for other domains.

| Calculators, Design principles, Gesture based interfaces, Equal opportunity, Whiteboard interaction.

| 1. INTRODUCTION

There is evidence that handheld calculators are difficult to use and are fundamentally non-mathematical [2, 5]. A
- simple example is that operators often have to be transposed by the user (consider a sum like calculating 4x-5,

which has to be entered as 4x51+= on most calculators). Although user interfaces for calculators are constrained by
ergonomics (screen legibility, button size), their implementing technology has no such restrictions. This is
particularly true when handheld calculators are simulated on PCs — and the technology has moved on

| considerably since the 1970s, which was the determining era for handheld calculators.

' We have developed a new calculator with improved task fit with mathematics, and thus we have broken out of the

traditional design approach. Pleasingly, the calculator is very engaging to use — where as another paper [7]
discusses its evaluation, this paper presents its new design principles. The success of the new design suggests
that the principles, in their particular combinations, might be usefully applied in other domains.

1.1 Overview of the interface
Imagine writing a calculation down on paper, and the paper magically working out the answers. Our calculator
works like this, using an approach that is ideal for gesture-based user interfaces, for handhelds with pens to

- interactive whiteboard use in classrooms. The calculator is written in pure Java and runs under Windows, Linux

and MacOSX, and it works with standard hardware such as Mimio, SMARTboard, or Wacom tablets — it is

- somewhat tedious to use it with a trackpad or mouse, as it uses normal handwriting as its mode of input. It can be
 downloaded from http:/Amww.cs.swansea.ac.uk/calculators/, where a movie of it in use is also available.

A different approach can be seen in [8], which includes some useful background this short paper does not have

- space for. No calculator known to us is as versatile and interactive as ours; indeed, our calculator was selected as

an exhibit at the UK Royal Society Summer Science Exhibition in July 2005, and we hope at the conference to
report on further insights from evaluation based on its exposure to 4000+ users.

1.2 Evaluation

Without exception everyone (100s of people) who has used the new calculator has liked using it, and many users
have found it easier to use than their own handheld calculators. Users find it fun and enjoy using it. Users with little
mathematlcal skill enjoy using our new calculator, and some have grinned when getting it to change, for example,
2°=8 to 3%=9. Sophisticated mathematical users have also enjoyed explormg issues such as why 649! is divisible
by 100, or pushing the calculator’s arithmetic (e.g., finding T from e**=—1).

It is important to look at why the design forms such a successful user interface. The principles presented in this
paper summarise our principle-led design of the calculator, and are informed by the user testing and evaluation of
the prototype. We have reported elsewhere on an empirical evaluation [7].

2. HOWIT WORKS

it is very hard to capture the look and feel of an interactive program, especially an innovative one, in a static
medium like paper. This section therefore merely gives a hint of the calculator’s capabilities. Figures 1.1-1.6 show
a sequence of screen snapshots of it in use. They first show a user doing the sum 3x4; in the first screen shot, the
user has written 3x4 and the calculator is “catching up” with their handwriting and has just rendered the 3 in a

typographically neat font. User input is handwritten blue and ‘dries’ black, thus it is never confused with what is
already on the screen as itis written.

34 12 3x6=18

r=18 A=18
0 6 0

FIGURE 1: A sequence of six consecutive screen shots of the calculator solving various equations. The thin sketchy’ text (e.g.,
see Figure 1.1) was written by hand, and as the calculator recognises the handwriting, it is morphed into typeset mathematics
(compare Figure 1.1 and 1.2).

FIGURE 2: Using the calculator on a back-projection SMARTboard (6’ diagonal) that permits writing using the tip of a finger.

In Figure 1.2, next, the calculator has morphed all the user’ input, and immediately combined it with the output
(here, -12°) and displayed it all as a typeset equation. The output generated from the calculator is shown in grey in
this paper (though typically it is a colour like red in real use). The user continues to edit the equation and by the
time of Figure 1.3, they have deleted the 4 and written -18°. Effectively this poses the question ‘three times what
is eighteen?” making the calculator compute “3x?=18”. Additionally in Figure 1.3, we can also see the user
continuing to edit this solved equation as if it were their own input; they are starting to divide the left hand side by S.

By Figure 1.4 the calculator has morphed these changes and the combined the typeset output and the user’ input
into another neatly typeset equation, now showing a generated 30. Had a user wished to perform this calculation
on a conventional calculator, they would have had to have entered it in a particular order and with a final = sign,
such as 18x5/3=.

In Figures 1.5 and 1.6, the user “drag selects” the “3x” from the previous screen and drags it below the division
line. (This is an “ink” edit, the “3x” is not a syntactically nor semantically meaningful unit — see below.) Finally,
Figure 1.6 shows the result of this edit, and it is mathematically instantly correct — thus providing a solution to
?/(3x5)=18. What has been done in one gestural operation on the new calculator would have needed around 14
keystrokes on a conventional calculator that permitted last-calculation editing (e.g., so-called twin line display
calculators); moreover, at every step except the last, on a conventional calculator, the expression would be wrong,
whereas on the new calculator every intermediate step is a valid calculation.

The calculator has other features, which are not the concern of this paper; for example, there is a wastebasket to
delete anything by conventional drag & drop; a dock (visible in Figure 2 on the left) can be used for selecting,
storing equations and values; there are some features used for teaching purposes; and there is an ‘analogue clock’
that is used for undo.

3. PRINCIPLES

The basic style of interaction is called equal opportunity, and it certainly lends itself to arithmetic calculations [5]
and other applications [3]. What is new here is the effective combination of two dimensional, WYSIWYG, gesture
based, instant behaviour, and morphing, that taken collectively make a coherent set of features that combine
extremely well for the task domain (and perhaps for other domains, unfortunately beyond the scope of a short
paper). But, further, the design introduces new design principles: ink editing and (non-trivial) instantly declarative
interfaces.

3.1 Standard HCI principles

The calculator was designed bearing in mind a range of important but conventional HCI principles: it should fit the
task domain (and all that that implies) and reduce the user's short-term memory workload; etc. Conventional
| calculators do very much worse in supporting these principles. Additionally, our new calculator design draws on
. standard concepts such as undo, affordance, modelessness, and avoiding error messages (by invariantly ensuring
' correct partial evaluation).

- WYSIWYG usually means that when you print, you get what you have on the screen. For interaction, what you see
i is what you have got is more important [6] (i.e., WYSIWYH), a variation that is a principle for interaction, not for
i quality display or printing, for example. For calculators the interaction problem is worse, if something is calculated
' based on a hidden preference of an implicit operator, will the user ever realise?

| Our calculator always uses explicit operators where there could be a misunderstanding over the implicit annotation
' or operator, for example, it inserts an explicit multiplication between a)" and a “(". Rather than leave the user with
' their hand-written input, the calculator converts everything to a typeset, well laid-out mathematical expression, and
this allows the users to know with certainty what is being computed, instead of wondering whether they have
entered it correctly, whether the computer is recognising their handwriting correctly, or whether there is some
 invisible mode or data affecting the result.

| In short, there is no hidden information or state, and all visible information is used. The calculator shows exactly
what is being computed, thus there is no confusion for the user. Although these and other familiar principles (e.g.
undo) have been consciously combined in an unusually coherent way, space precludes a full discussion of their
. application.

3.2 Ink editing — not syntactic editing
Instead of forcing a user to think syntactically about the structure of how the mathematics works to edit an
expression (even if the average user knows what that means!), the new calculator lets a user interact flexibly with
the actual ink used. Of course, conventional calculators very severely limit what editing is — it is limited to
appending characters or deleting the last number or the entire calculation.

The new calculator does not restrict what is selected to be adjacent or to have any particular syntactic structure; it
is easy, for instance, to select alternate digits out of a number and move them elsewhere in an equation. Although
that seems contrived, the ease and naturalness is important: consider editing 31.416 to 3.1416, which can be done
~directly by moving either the decimal point or the second digit. (In contrast these two operations would, if permitted,
be very difficult in a syntactically constrained editor.) On conventional editing calculators, what is a single operation
- here has to be broken down into a more tedious sequence of operations like delete-move-insert or equivalent.

Although the two-dimensional notation of mathematics implies many syntactic relations, the new calculator does
not impose any. Instead, ink editing allows the user to edit their work naturally as a picture, in a way that is
impossible with any one-dimensional (conventional) representations. This flexible ink editing of two-dimensional
notation allows the user to rearrange and edit mathematics semantically or syntactically, in a way that can be very
close to how the user thinks about the abstract mathematics. The advantages of picture editing were forcefully
described in [1].

WYSIWYH means that the semantics of any expression is directly linked to the syntactic “ink.” For example,
drawing a horizontal line might mean either a division sign or a subtraction, depending on what the user means.
The calculator disambiguates, by allowing either interpretation, which can be changed at any time. If numbers are
written above or below a subtraction line, the line becomes a division symbol; and if they are both deleted, it
reverts to subtraction.

3.3 Instantly declarative

The essence of an instantly declarative interface is that it cannot show the user something that is false, ever. For
example, an instantly declarative calculator could never show “3+4=15." The display has to be correct without any
further user action; and instantly. The benefits for the user are obvious: there is no confusion for the user, the input
and output always correspond. The interface feels natural and immediately responsive to user input.

This approach means that “=,” “Go" (and similar) buttons are redundant; they only slow the user down (sometimes
users get stuck, waiting for things that will not happen until they do something which they don’t know they are

supposed to do). An instantly declarative interface has to cope with partial and incomplete input and respond fully
in a timely fashion. Using equal opportunity [3] enables us to handle incomplete input or partially complete
equations. Requiring complete input can lead to a very modal user interaction. This may be suitable in some
domains (e.g., with safety related issues), but it is in principle unnecessary. Conventional calculator designs never
escaped this unnecessary modality of requiring complete input.

3.4 Output = input = everything

A declarative calculator, both from our informal and empirical evaluations, is superior. But the power of a
declarative interface is only fully realised when combined with a two-way equivalence between the user’'s input
actions and the system'’s output. This added to the equal opportunity that treats output and input equally, creates a
uniquely usable interface. Users are suddenly able to solve problems, such as ‘what power of 2 is 567 (i.e., 2"=56)
' directly that they might have no idea of how to solve otherwise, and which would be impossible without
i circumlocution — and would be impossible to do correctly without prior experimentation on a calculator, for even

': within-brands do advanced arithmetic calculations differently!

|

The ‘output = input’ concept works smoothly with a calculator, because the output and input are the same format
. and can be combined in the same expression. With our calculator, a user can replace the computer output with
| their own, and nothing will change. This means that if the user writes the correct answer in then the calculator
 shows no extra work, and it means that if the user writes a wrong sum like “3+4=15" the calculator corrects it.

| When users use it they find that as one user put it their old calculators are “nagging and pedestrian fusspots.”

3.5 Continuous feedback
The visibility of the system’s status is provided through two kinds of feedback: annotation and morphing. These
. together provide clear feedback about exactly what is happening with the user's input and the calculation.
Throughout the calculation the calculator morphs the input into a neatly typeset output equation. Without this
linking of the output to the input the user has a jarring experience that leaves them wondering where the output
came from. The morphing provides continuity between the user's input and the typeset equation that allows them
. to continue to edit and use it. Certainly, the animation in the morphing is visually seductive.

4 CONCLUSIONS

' Although the new calculator furnishes a very simple user interface to a boring application (who is really interested
in calculators?) it is very engaging — and this is true despite the calculator's prototype implementation’s
. shortcomings, particularly its imperfect handwriting recognition.

We started with a principle-led design, but ended up with a user interface that is surprisingly effective, one that is
- fun and engaging to use, and one that uses and develops a new style of interaction. Whether the new style of
' interaction can be successfully generalised into other domains remains to be seen, but certainly the individual
| principles that led the design can be used to their benefit.

ACKNOWLEDGMENTS

Will Thimbleby is supported by a Swansea University PhD scholarship. Harold Thimbleby is a Royal Society-
Wolfson-Research Merit Award holder, and acknowledges this generous support.

REFERENCES

[1] R Bornat & H Thimbleby, (1992) “The Life and Times of Ded, Display Editor,” Cognitive Ergonomics and Human
Computer Interaction, pp225-255, J. B. Long & A. Whitefield, eds, Cambridge University Press.

[2] P. Cairns, S. Wali & H. Thimbleby, (2004) “Evaluating a Novel Calculator Interface,” Proceedings BCS HCI
Conference, 2, edited by A. Dearden & L. Watts, Research Press International, pp9-12.

[3] C Runciman & H Thimbleby, (1986) “Equal Opportunity Interactive Systems,” International Journal of Man-
Machine Studies, 25(4).439—451.

[4] H Thimbleby (1996) “A New Calculator and Why it is Necessary,” Computer Journal, 38(6):418—433.

[6] H Thimbleby (2000), “Calculators are Needlessly Bad,” International Journal of Human-Computer Studies,
52(6):1031-1069.

[6] H Thimbleby (1983) “What You See is What You Have Got'-A User-Engineering Principle for Manipulative
Display?” First German ACM Conference on Software Ergonomics, Proceedings ACM German Chapter, 14:70-84.
[7] W Thimbleby, (2004) “A novel pen-based calculator and its evaluation,” Proceedings Third Nordic Conference
on Human-Computer Interaction, ACM NordiCHI, pp445—448.

{8] J. LaViola, Jr. & R. Zeleznik (2004) “MathPad2: a system for the creation and exploration of mathematical
sketches” ACM Transactions on Graphics, 23(3):432—440.

1.3 Mathematical Mathematical User Interfaces 337

1.3 Mathematical Mathematical User Interfaces

Mathematical Mathematical User Interfaces

Harold Thimbleby and Will Thimbleby

Department of Computer Science, University of Swansea, SWANSEA, Wales
harold@thimbleby.net, will@thimbleby.net

Abstract. Taking Mathematica and zThink as representatives of the
state of the art in interactive mathematics, we argue conventional math-
ematical user interfaces leave much to be desired, because they separate
the mathematics from the context of the user interface, which remains
as unmathematical as ever. We put the usability of such systems into
mathematical perspective, and compare the conventional approach with
a novel declarative, gesture-based approach, exemplified by TruCalc, a
novel calculator we have developed.

1 Introduction

TruCalc is a new calculator, with a gesture-based handwriting recognition user
interface. This paper reviews its design principles and relates them to the re-
quirements of mathematical user interfaces.

2 The Development of Mathematical User Interfaces

For thousands of years, we've been doing maths by using pencil and paper (or
equivalent: quill and scroll, stick and sand—whatever). When calculating devices
were invented, this helped us do calculations faster and more reliably, but we
still did maths on paper. Comparatively recently, computers were invented, and
for the first time we could replace pencils with typed text and get results written
down automatically, and then, later, we replaced paper with screens. Mathemat-
ics displayed on screens can be manipulated more freely than ever before, yet
most calculators running on computers emulate mechanical devices.

Turing famously presented a formal analysis of what doing mathematics en-
tailed [17]. He argued any pencil and paper workings could be reduced, without
loss of generality, to changing symbols one at a time from a fixed alphabet
stored on an unbounded one dimensional tape. Symbols are changed according
to the current state of the device, the current symbol on the tape, and elemen-
tary rules. The Turing Machine, which can be defined rigorously (and in various
equivalent forms), was a landmark of mathematics and computing. Indeed, the
Church-Turing Thesis essentially claims that all forms of computing, and hence
mathematics, can be ‘done’ by a Turing Machine in principle.

Turing introduced his machine with the following discussion:

“Computing is normally done by writing certain symbols on paper. In el-
ementary arithmetic the two-dimensional character of the paper is some-
times used. But such a use is always avoidable, and I think that it will

J. Gulliksen et al. (Eds.): EIS 2007, LNCS 4940, pp. 519-535, 2008.
© IFIP International Federation for Information Processing 2008

520 H. Thimbleby and W. Thimbleby

be agreed that the two-dimensional character of paper is no essential
of computation. I assume then that the computation is carried out on

. ional »
one-dimensional paper A. M. Turing [17]

Here, Turing’s use of the term ‘computing’ is historical; he is referring to
human computation on paper.

While Turing is formally correct, good choice of notation is crucial to clear and
efficient reasoning. Moreover, almost all notations (for example, subscripts) are
two dimensional, as suits pencil and paper—and the human visual system. One
view of the present paper is that the power—the ‘Turing equivalence’—of typical
mathematical user interfaces has blinded us to the importance of notation and
interactive notation properly integrated with the way the user interface works.
Users put up with one-dimensional and other limitations to interaction because
the deeper ideas appear sufficiently well supported. A very interesting discussion
of Turing Machines and interaction is [3], but the focus of this paper now turns
to the design of interactive mathematical systems.

2.1 Conventional Mathematical Interaction

Without loss of generality, mathematicians use pencil, paper and optionally
erasers. Pencils are used to draw forms, or to cross them out. Typically, adjacent
forms are related by a refinement. Harder to capture formally, the mathemati-
cian’s brain stores additional material, which is typically less organised than
the representation on paper. One might argue that much of the mathematician’s
work is to find a relation between what is in their head and marks on paper. This
is an iterative process. Finally, the concepts and previously unstated thoughts
are mapped to some representation such as I#TEX, so that the organised and
checked thoughts can be communicated effectively to other brains.

When this process is computerised, the forms are linearised into some charac-
ter sequence. A string, typed onto ‘paper’ or a VDU left to right, is transformed
by the computer inserting the values of designated expressions. A typical hand-
held calculator is an example of this style of interaction, though most only display
numbers and not the operators—one of their limitations is that the user does
not know whether the display is the current number being entered or a result
from a previous computation.

Around the 1970s, the sequential constraint became relaxed: the underlying
model remained incremental as before, but the user could ‘scroll back’ and edit
any string. Now the values computed may have no relation to the preceding
strings, because the user may have changed them: the old output may be incor-
rect relative to the current string.

More recently, from the late 1980s on, the user interface supported multi-
ple windows, each separately scrollable and editable, each with an independent
user interface much like a typographically tidied up 1970s VDU. Of course, this
gives enormous flexibility for managing various objects of mathematical concern
(proofs, tactics, notes...) [10], especially when supplemented with menus and
keyboard commands, but the generality and power should not distract us from

Mathematical Mathematical User Interfaces 521

AYANA Examp'e.nb (an)

This is an example, showing the linear order of the notebook is not the same

as the evaluation order: hence the Matheratica docurent is miskeading.
x=5; 3
Print["x is *. x): 3
x is 8 3

| IS |

The next part of this noebook was evaluated out of order.

x=8;

. 4w

S

Y La

IGICOTE @ IXE

Fig. 1. Example of problematic interaction in Mathematica

the relation of the user interface to doing the mathematics itself. Normally we
focus on the maths, and ignore the interface; it is just a tool to do the maths,
not of particular mathematical interest itself.

Consider Mathematica [18]. A Mathematica notebook is a scrollable, editable
document representing the string. Certain substrings in the notebook are iden-
tified, though the user can edit them at any time and in any order. A set of
commands, typed or through menu selection, cause Mathematica to evaluate the
identified substrings, and to insert the output of their evaluations. It is trivial
to create Mathematica notebooks with confusing text like that shown Figure 1,
which illustrates the inconsistency problem (is x 5 or 8?) as Mathematica sep-
arates the order of the visible document from the historical order of editing
and evaluation. In the example above, the x = 5 may have been edited from
an earlier x = 8; the Print may have been evaluated after an assignment x =
8 evaluated anywhere else in the notebook; or the Print may have been edited
from something equivalent to Print["x is 8"]—and this is not an exhaustive
list. In short, to use Mathematica a user needs to remember what sequence of
actions were performed. (In fact, Mathematica helps somewhat as it can show
when a result is possibly invalid.)

Although the presentation can be confusing, the flexibility is alluring. While
the mathematician can keep the editing and dependencies clear in their head,
the notebook (or some subset of it) will make sense.

Mathematica and many other systems add notational features so they can
present results in conventional 2D notation. Instead of writing a linearised string,
such as 1/2, the user selects a template 2 from a palette of many 2D forms. The
* symbols can then be over-typed by 1 and 2, to achieve (in this example), 5.
Such mechanisms allow the entry of forms such as

1

1+ —:19-—:1
1+ 1414

as shown with relative ease. However, a problem is that the template continues
to exist even though the user cannot see it. A simple example illustrates the

o0
/ sinz? e % dx and 1+
0

522 H. Thimbleby and W. Thimbleby

problem: editing + to 12 is difficult, because the initially hidden template will
reappear explicitly in intermediate steps such as 35 or +2.

In Mathematica a function TraditionalForm achieves the inverse: presenting
evaluations using standard 2D notation. While these 2D notations look attrac-
tive (and indeed are considerably clearer for complex formulae, especially for
matrices, tensors and other such structures), they do not alter the semantics or
basic style of interaction.

Padovani and Solmi [5] provide a good review of the interaction issues of using
2D notations, such as Mathematica and other systems use. They argue that 2D
notation requires a model, namely the internal representation of the structure,
which is not visible in the user interface. Hence, for the user to manipulate the 2D
model new operations are required. The model itself is not visible, so inevitably
2D notation introduces modes and other complexities. That is, it looks good,
but is hard to use. Editing operations are performed on non-linear structures
(e.g., trees), but the displayed information does not uniquely identify the struc-
ture. Like the criticisms of Mathematica above, to use a 2D structure requires
a user to remember how they built it; worse, what the user has to remember
(Padovani and Solmi argue) does not correspond with the user’s mental image
of the mathematics being edited.

zThink is a different mathematical system [19], and its model is directly based
on a 2D representation. zThink recognises the user’s handwriting in standard no-
tational format, and can compute the answer which is displayed adjacent to the
hand-written sum. Provided zThink recognises the user’s writing reliably, the in-
ternal model of the formula is exactly what the user wrote. Nothing is hidden. In
this sense, z Think solves the problems Padovani and Solmi elaborate, though not
all of the problems we attributed to Mathematica (as we shall see below).

A typical “page” from zThink is shown in Figure 2. Its advantage over Math-
ematica’s template-based approach is the ease and simplicity of entering math-
ematics, however its interaction style retains the problems of Mathematica’s—
there is no guarantee the ‘answers’ are in fact answers to the adjacent formulae,
and furthermore zThink has introduced new handwriting recognition problems;
that is, the formula evaluated may not ever be one that was thought to have
been written down!

zThink and Mathematica are only two examples, selected from a wide range of
systems. Maple [2], for example, is closer to Mathematica in its computer algebra
features, but closer to zThink in its handwriting recognition. However, Maple
uses handwriting recognition to recognise isolated symbols which are written in
a special writing pad—whereas zThink allows writing anywhere, but the writing
has to be selected (by drawing a lasso around it) before it can be recognised.
zThink, Mathematica and Maple are PC-based systems, and there are also many
handheld mathematics systems, such as Casio’s ClassPad [1], which allow pen-
based input. However, rather than review individual systems, this paper now
turns to principles underlying mathematical interaction.

Mathematical Mathematical User Interfaces 523

i LR
)(Thml; Ca lewlatar

20 T
(14 004) — mput — 12" +1
2.191123 knvl,ul —r +1.581246

Iz -Ts tan (43)

,’+ -,r& -6. 147533
-0.065462 s
. 12®
2

sin(2) + cos(2) 12

|

. Menie
r'“'s'"?" text LN
NZI(R) =12

(29 75D & -4 0-W?

Fig. 2. Example of zThink, showing natural handwriting notation combined with cal-
culated output. Picture from zThink’s web site [19]; the original is in several colours,
making the input/output distinctions clearer than can be shown in greylevels. In the
picture, zThink has just parsed a handwritten v/123, shown its interpretation at the
bottom of the screen (as 12434(1/3)=12), and has inserted a result in a handwriting-
like font below the formula.

2.2 Principles for Mathematical Interaction

With such a long and successful history of procedural interaction it is hard to think
that it could be improved; systems like Mathematica are Turing Complete (upto
memory limitations). Interactive mathematical systems, such as Mathematica and
zThink, are clearly very powerful and have a very general user interface. The book
A = B [6] gives some substantial examples of what can be achieved.

It is interesting to observe that the representations these mathematical system
work with are not referentially transparent nor are they declarative. That is they
only do mathematics that is ‘delimited’ in special ways, and the user has to ‘suspend
disbelief’ outside of the theatre that is so delimited. As a case in point, we gave
the example above of x not having the value it appeared to have (see Figure 1);
even allowing for the semantics of assignment, there is no model like lvalues and
rvalues that maintains referential transparency [9], without some subterfuge such
as having a hidden subscript on all names—which, of course, must exist in the users’
mind (if at all) if users are to do reliable mathematical reasoning.

Such Fregean properties as referential transparency! are key to reliable math-
ematical reasoning. Another is his idea of ‘concept’ that has no mental content,
that is, a concept is not subjective. Most interactive systems require the user to
conceptualise (i.e., make a mental model of) the interaction; they have modes,
hidden state dependencies, delays, separated input and output and so on.

! Quine introduces the term referential opacity but attributes the idea to Frege [7).

524 H. Thimbleby and W. Thimbleby

It is ironic that modern mathematical systems are so flexible that they compro-
mise the core Fregean principles—though [12] shows, under broad assumptions,
any string-based (i.e., Turing equivalent) user interface interaction properties such
as modelessness and undo are incompatible. Modelessness is, of course, an HCI
term covering issues such as side effects, referential transparency, declarativeness,
substitutivity, etc. Essentially, a purely functional interface is modeless; if one can-
not have modelessness and undo (under the assumptions of [12]), any such user
interface must be compromised for mathematical purposes. Such observations beg
questions: is it possible to modify the style of interaction to preserve the core math-
ematical properties—and what would be gained by doing so?

3 Modern Mathematical Interaction

We will use 2Think below to make a side by side comparison with our novel
interface, TruCalc, to highlight the difference between a truly mathematical
system and one that is not.

Note. zThink is a commercial application available from [19] (PC only),
and TruCalc from [16] (Mac, PC, Linux).

Both our calculator and zThink’s calculator from first glance appear to do
the same things. In fact zThink’s calculator seems to be more powerful, it can
handle annotation, multiple sums, more complex mathematics. Yet ignoring a
bullet point comparison and the superficial similarity of the two programs, they
are in fact very different.

Both calculators provide a user interface based on handwriting recognition.
But this is where the similarity ends!

Our calculator, TruCalc, was designed from generative user interface prin-
ciples [12]; in contrast, zThink seems to merely add the idea of utilising the
affordance [4] of pen and paper without escaping Mathematica-style problems.

To better illustrate the differences between these two superficially similar
interfaces we will describe the interaction a user employs to solve a simple sum,
along with the potential pitfalls.

3.1 xThink vs. TruCalc

A first example problem we compare finding the value of “(4 +- 5)/3” in zThink
and in our calculator, TruCalc. In both, the user starts by writing the sum on the
screen, using a pen (or using their fingers on suitable touch-sensitive screens).

1la In zThink, the user must press a button to change rThink into selection
mode. The user can then select what they have written. They must now press
another button to get the selected handwriting recognised. The handwriting
is recognised and represented in a separate window, which the user must read
to check the accuracy of the handwriting recognition. If the handwriting
is misrecognised by zThink then without checking the small text at the

1b

Mathematical Mathematical User Interfaces 525

bottom of the screen the user can easily be fooled into thinking they have
the correct answer. The text at the bottom of the screen is both small and
linearised, losing the benefit of the handwritten 2D notation—for example
Figure 2 shows the cube root of twelve cubed being calculated, it is printed
as 12737 (1/3)=12.

In TruCalc, as the user writes, the hand-written characters and numbers are
converted to typeset symbols without any further user action. The user feels
as if they are writing in typeset characters, and confirming recognition is as
natural as checking your own handwriting is legible.

2a

2b

In zThink, to determine the answer, the user must now press another but-
ton to evaluate the recognised formula, and the answer is then displayed
somewhere on the screen. In Figure 2 all such answers have been positioned
under their respective formulae.

In TruCalc, the typesetting includes solving the equation. In this case, the
screen will show a typeset % = 3—the user wrote 4%5 and the computer
inserted = 3 in the correct position.

3a

3b

In zThink, to determine the answer, the user’s input must be syntactically
complete (an expression). For example, to find the value of v/4 the user must
write exactly this (and it must be recognised correctly).

In TruCalc, answers are provided even with incomplete expressions, as well
as with equations. For example, to find the value of V4 the user can write
v/ then 4, or 4 then v/, and they can write = if they wish. In any case, the
value 2 or =2 is also displayed. Furthermore, if the user wrote v/ = 2, then
TruCalc would insert 4 appropriately, thus solving a type of equation where
zThink would require the user to write 22 (which is notationally different).

4a

4b

In zThink, the user’s handwriting can be altered and hence make the an-
swer (here, 3) invalid—and it will remain invalid until the handwriting is
re-selected, recognised and re-evaluated (and the old answer removed). Or
several answers may accummulate if the user evaluates formulae and does
not remove old answers.

In TruCalc, as typesetting includes solving the equation, the user could con-
tinue and write = or = 3 themselves. In particular, if they wrote an equation,
such as 4T+ = 3, TruCalc would solve it, and insert (in this case) 5.

5a
5b

zThink provides no other relevant features for the purposes of this paper.
In TruCalc, the editing of the user’s input is integrated into its evaluation.
Thus the user can then continue to write over the top of this morphed
equation, adding in bits that they consider are missing. For example, if the
RHS 3 is changed to 30, the display would morph to i"# = 30.

It is possible to edit by inserting, overwriting and by drag-and-drop to a
bin to delete a selection, or to other parts of the equation to move it. In all
cases, the equation preserves its mathematical truth, as TruCalc continu-
ally revises it. TruCalc also provides a full undo function, which animates
forwards and backwards in time—also showing correct equations.

526 H. Thimbleby and W. Thimbleby
3.2 In-Place Visibility

With TruCalc the replacement of the user’s handwriting with typeset symbols
not only provides an immediately neat and tidy (and correct) equation but
also provides immediate visible feedback of what was recognised. The displayed
typeset equation ¢s the equation that the answer is shown. This in-place visibility
removes confusion and misunderstanding over what the calculator is doing, and
whether it has misrecognised bad handwriting.

In our experiments with TruCalc [14], one of the outstanding results was that
whilst users made intermediate errors, no user stopped on a wrong answer. We
believe this was because the calculation they were performing was entirely visible
and unambiguous to them in an in-place 2D notation.

Without in-place visibility, the user may be unsure which results correspond
with which inputs. This compromises mathematical reliability; the user has to
rely on their head knowledge.

3.3 No Hidden State; Modelessness

Hidden state and modes compromise mathematical reasoning. Hidden state af-
fects how to interpret input and output; specifically, modes are hidden state
(e.g., knowledge of history) in the user’s head that is needed to know how to
control the user interface predictably.

Typically, a system does not show what mode it is in, but the mathematical
interpretation of its display depends on the user knowing some hidden state.
For example, in zThink to erase or move parts of the equation the user has to
select different tools at the bottom of the screen, then when they have finished
they have to remember they are in a special mode and reselect the pen tool.
The zThink interaction style makes this cumbersome approach unavoidable in
principle. The relative meanings of displayed results obviously changes when
other images are modified; simply, they may become wrong.

The zThink user also has to be aware that once they have finished an equa-
tion they have to do more (press several buttons, select their text) this time
switching mental modes from “entering” to “getting the answer.” If they don’t
change modes (or of they don’t change through the modes appropriately, or
select inaccurately), there is either a wrong result or no result for the problem.

With TruCalc there are no hidden modes or state, and no user context switch-
ing. Not only is there no menu of different tools but there is no need to switch
mental modes or to pause and press an button to make things work. This
greatly simplifies the user’s mental model and reduces the effort required to use
the calculator. TruCalc does have a few modes, for example a dragging mode,
but these are clearly visible and they are directly initiated and controlled by
the user.

Note that in-place visibility and modelessness together give a very strong—
and easy to use—interpretation of WYSIWYG (what you see is what you get),
as proposed in [11].

Mathematical Mathematical User Interfaces 527

3.4 Instant Declarativeness

A system may show the mathematically right answer when the user asks for
it; but until they ask for computation, the mathematics is strictly incorrect (or
possibly shows a representation of a meta-‘undefined’). In TruCalc the results
are ‘instantly’ correct, with no user action required.

Declarative programming was popularised through Prolog. Essentially, the
programmer writes true statements, ‘declaring’ them, and Prolog backtracks to
solve the equations (sets of Horn clauses in Prolog). Prolog is thus a declarative
language—though its user interface isn’t.

Likewise, TruCalc is declarative. The user writes equations (or partial equa-
tions, taking advantage of the automatic syntax correction), and these are dec-
larations that TruCalc solves (by numerical relaxation).

In Prolog, the user has to enter a query, typically terminated by a special
character. Until that character is pressed, the output (if any) is incorrect. This
inconsistency within the interface is what we are used to, even to the extent of
accepting the sort of inconsistencies illustrated in Figure 1. But it requires the
user to remember the past; they haven’t pressed return or some other special
character or menu selection yet. If they forget confusion happens.

TruCalc extends declarativeness to instant declarativeness, that is, an inter-
face that is always true all of the time. No matter what the user writes the
answer shown is aelways correct.

An instantly declarative interface implies that the calculator has to be showing
something that is correct even if the user has not finished entering everything, or
has a currently incorrect edit. Thus the calculator also has to cope intelligently
with partial expressions like +3+2. In our case the calculator fills in place holders
that alter the expression as little as possible. There are also problems like 1/0 or
overflow like 101°"”"—these too can be handled by correction (such as showing
1/0 as 1/(0+ 1); see [13]), or by changing the algebra implemented by TruCalc.

This instant declarativeness removes the disparity between the input and the
output, removing an enormous potential for user confusion and it also removes
the need for the user remembering having to press the “equals” button (or some
other change mode button) to get an answer.

The implementation of instant declarative user interfaces is only slightly more
complex than conventional user interfaces; at least two threads are required, one
for the user input, one for processing. Processing restarts every time the user
extends or changes the input; in TruCalc there is a short delay, which allows
the user to write an expression fluidly without visual interference from it being
morphed into recognised text until they finish or pause.

3.5 Equal Opportunity

The power of TruCalc’s implementation of instant declarativeness combines pow-
erfully with equal opportunity [8]. Unlike zThink, TruCalc does not distinguish
in principle between the user’s input and its own output. Each has ‘equal op-
portunity’ in the equation. This makes it possible to write on both sides of an
equality.

528 H. Thimbleby and W. Thimbleby

Fig. 3. Example of drag and drop interaction in 7TruCalc. shown as three consecutive
screen-shots. Initially, the user has written —m= 7; next, the user drags the 3x nu-
merator to the denominator; finally, TruCalc provides the correct numerator. The only
user interaction to achieve this transformation is to draw the loop (shown in the middle
figure) and drag it. Had the user had dragged the 3x to the wastebasket, it would have
been deleted, and the equation would be corrected to ~ = 7. (If a loop is drawn not
containing anything to select, it is recognised as a zero).

The ability to change either the answer or the question lets a user solve prob-
lems simply that they would have struggled with otherwise. For example, “what
power of 2 is 100” can be solved directly without logarithms. (For example, the
user writes 2 = 100, which is corrected to 2 = 100 —98, then writes a decimal
point as the exponent of 2. which is where they want, the answer. 2 = 100 - 98
then morphs to 2((,4J856 = 100.)

Equal opportunity is not in itself a feature that is required for a highly mathe-
matical user interface, but it is a natural generalisation (from expressions to equa-
tions) that significantly increases the power of the user interface for the user.

3.6 Rearranging

In xThink's calculator it is possible to delete things or move them around but
it is always an awkward process involving many mode changes and it is fairly
limited in what it achieves. Moreover, any editing in xThink breaks the relation
between written input and calculated output, and the user has to remember to
re-evaluate an edited formula. Hence, in xThink the ability rearrange introduces
modes and hidden state.

In TruCalc the ability to drag and drop an arbitrary part of the equation else-
where is synchronised by ThiCalc's ability to morph the result into a new typeset,
equation. It is therefore possible to move parts of the equation around without
regard for their size or shape, and the user always sees a fully correct equation.

More specifically, in xThink drag-and-drop is achieved bv choosing the selec-
tion tool, drawing around the object, then dragging, then choosing the next tool
to use; however, once moved, the formula typically needs explicitly selecting,
recognising, and evaluating, as further steps for the user. In TruCalc drag-and-
drop is achieved by drawing around an object, and moving it, No mode change is
required, and no action needs to be taken to evaluate the new formula. Figure 3
illustrates some simple examples.

Mathematical Mathematical User Interfaces 529

1 Q_”’“‘ TruCalc has just recognised a handwritten 1, and shown the (at this mo-
g ment) correct equation 1 = 1; the user is now writing 2 by hand.

3
1 2:] 2 TruCalc has recognised the 2; the user is writing 3 as an exponent.

3
—1795Q
12 —]] 2 () TruCalc has recognised the 3, and updated the RHS of the equation.

, 3
12 —] 7 9 8 The user is writing a v/~ around the 12°. Of course, the user could equally

have started by writing the v, and then writing inside it.

3 123__ 4 I ,:S The v/ is recognised, the RHS is updated, and the user has started to

V12°=12

Fig. 4. A step-by-step, broken-down example of using TruCalc on the sum that zThink
is shown solving in Figure 2, showing how a single equation changes as the user writes
on it. This brief example does not show drag-and-drop, nor equational calculations.
However, notice that TruCalc provides continual correct feedback; there are no hidden
modes, no special commands— TruCalc just ‘goes ahead’ and provides in-place answers.
The user feels as if they are writing in a formal typeface (here, Times Roman). This
brief example does not show how TruCalc would handle solving equations, for instance
if the user dragged the 12 onto the RHS. Had the user written an = themselves on the
left of their formula, then the answers would have been shown on the LHS.

4 A Demonstration of TruCalc

Because zThink is not highly interactive, ironically, its screen shots (such as
Figure 2) make it easier to understand than screen shots of TruCalc! zThink’s
screen shots show handwriting input, the recognised input (shown in the bottom
pane), and the result. Figure 2 shows several such examples. It looks straight
forward—except, as we showed in Section 3.1, constructing the interesting dis-
play of Figure 2 requires transitions between many modes, and hence possible
user errors. Figure 4 shows TruCalc solving the problem that zThink is shown
solving in Figure 2; however, zThink solves the equation in one step and re-
quires changing modes, whereas TruCalc solves continually, in place, and needs
no modes at all. (In this short paper we do not illustrate how TruCalc can solve
equations more powerfully than zThink—by combining rearranging with equal
opportunity; see [13] for examples.)

5 Other Features of TruCalc

TruCalc provides other features that make it more powerful and easier to use.
These features support, but are semantically unrelated to the highly interactive

530 H. Thimbleby and W. Thimbleby

way it does mathematics. Further discussion of TruCalc, beyond the scope of
the present paper, can be found in [14] and [15].

5.1 Ink Editing

In zThink, the user writes a formula then asks for it to be recognised. In TruCalc,
the formula being written is continually being recognised. This permits a very
powerful, and natural, interaction style we call ink editing.

If the user writes ‘—’ it is recognised as a minus sign. If they write 2 above it,
the minus sign becomes a division bar. If they cross it out by a vertical stroke,
it becomes a + sign.?2 None of these natural ink editing operations makes sense
in 2 batch recogniser.

5.2 Dock

TruCalc provides a dock, with functionality similar to the dock in Mac OS X.
That is, a whole or partial equation can be dragged to the dock, and it will be
stored as an item. Conversely, any item in the dock can be clicked on, and it
will replace the current equation. If an item is dragged out, it ‘comes out’ as a
picture representing its value. Hence an equation such as 1 + 2 = 3 might be
dragged out of the dock and used, say, as an exponent, as in

21+2=3

=8

(the subequation is boxed, as it cannot be edited except by recalling it from the
dock); such dock items can be used in many places in any other equation. The
dock serves as a convenient declarative memory for the user.

The dock would be a very natural way to extend TruCalc to have variables,
at least if entries in the dock could be named. Indeed, dock entries might be
associated with URLs, and be able to represent internet resources—such as the
current dollar/euro conversion rate, or standard numbers and equations, and
SO on.

5.3 Optionally Hidden Answers

TruCalc shows correct answers at all times, just as we have described it. However,
for use in teaching, it is possible to hide the answer, and show an empty box.
This indicates to a student that their answer is wrong or incomplete, and some
correction is still required. Here is an example:

2+[]=3
where normally it would show 2 4+ 1 = 3.

2 The current implementation of ink editing is not complete; for example you cannot
edit — to 4, or edit . to ! in the obvious ways yet.

Mathematical Mathematical User Interfaces 531

5.4 Undo

TruCalc provides the ability to undo edits and alterations by means of a clock
metaphor. A user grabs the clock hands and can ‘rewind the time,” and as they
do so the symbols and numbers animate back through time exactly as they were
morphed. The morphing provides a temporal continuity between the different
steps of the calculation, and it can be played backwards and forwards (i.e., undo
and redo).

5.5 Possible Extensions to TruCalc
TruCalc can be extended in many ways. We give a few examples:

1. The dock could be on a web site, and made multiuser so several people can
collaborate. The dock could also have a palette of functions (log,sin etc)
that, like the current equations, could be dragged into the working equation.

2. The back-end could be replaced with (for example) the Mathematica ker-
nel so it was extensible. Currently, TruCalc only does complex numerical
arithmetic; it could provide an interface to anything Mathematica etc can
do.

3. Unlike zThink, TruCalc currently provides no way for a user to write things
that are not recognised; formulae cannot be annotated, arrows cannot be
drawn, and so on. A teacher would probably like another colour which can
be used to draw freely with but which TruCalc does not interpret.

There are many obvious developments: complete handwriting recognition, to
extend TruCalc to standard function notation (such as log); restrictions for
teaching purposes (TruCalec uses complex arithmetic); multiple equations on
the screen, like zThink. And so on.

However, what TruCalc does is show how effective—both reliable and indeed
enjoyable (see §6.1)—a user interface for mathematics can be when the interac-
tion, the user interface, itself respects the principles of mathematics.

6 Mathematical Mathematical Interfaces Lead into HCI

HCI is the science and art of making user interfaces more effective {and enjoy-
able) for humans (though HCI techniques have also been used to improve user
interfaces for farm animals!).

TruCalc allows the user to write an equation e involving complex numbers
from C and elementary arithmetic operators. TruCalc has no variable names,
but uses slots; thus, in conventional terms, the equations can contain variables
without repetition—future versions of TruCalc may include variable names as
they are of course useful for many purposes, not least in providing mnemonics
for the slots as currently used.

The variety of solutions S of e is intended to be S(e, C), except the current
version implements C by C, the obvious approximate representation of C using
pairs of Java double precision floating point numbers.

532 H. Thimbleby and W. Thimbleby

1.

3

With these clarifications, we can express some important HCI issues:

What should TruCalc do when S(e,Cy) does not determine a unique so-
lution? Currently TruCalc uses heuristics to try to find solutions that are
principal values, identities of operators, and so on. For example x = 10 will
be solved by 10 x 1 = 10, using the right identity of x. On the other hand,

10% x 10% = 10 has no solution as currently implemented, because TruCalc

effectively tries to solve 1/z = 0.

. What should TruCalc do when S(e,Cy) = @7 TruCalc’s solution is to show ?
symbols (or ?+7i); however, an earlier version {13] modified the equation so
that at least one solution could be found. Neither solution, we feel, is entirely
satisfactory, since S(e,C;) = @ can occur as a transient step in entering a
solvable equation—for example, to enter 1/0.1 either requires contortions or
the intermediate step 1/0.

. What should TruCalc do when there is a humanly-obvious algebraic solution,

but S(e, C;) = @7 For example, the very easily entered LHS

22
22" =747

fails because it is a 19,729 digit decimal number, which is in C but not in
C j—but the equation could be solved as

22 65536
2 =2

or in many other equivalent symbolic ways. Which is best? Should the user
have choices, and if so, how? A symbolic approach would also be a good way
to solve equations the user enters containing 1/0 terms.

. Can users choose S(e, R), S(e, Q), S(e, Z), S(e,N), for instance for elemen-
tary teaching? What about S(e,Z;3) for clock numbers, or S(e, F,), and
other interesting domains, say predicate logic or even chess?

. Improving the handwriting recognition would allow the solution of larger
classes of equations, for instance that include transcendental functions.

TruCalc uses = as an operator over C, not C. This can result in (apparently)
peculiar results such as the following:?

m = 335/113

m = 3.142

3.142 = 1571/500
m=23.142 — 4.073 x 10~*

Perhaps TruCalc should use an operator ~ when the equality is approxi-
mate? (Although results that are approximate in C; may be exact in C!)

The last example shows 4.073 x 10~ which in an earlier version would have been

presented in the standard Java format as 4.073F — 4, a ‘buggy’ notation, because
a user could not enter E themselves, so it failed equal opportunity. Here, equal
opportunity is seen to be a generative design principle: given the existing features,
it suggested improvements.

Mathematical Mathematical User Interfaces 533

7. TruCalc could explicitly show, where it is the case, that numbers are ap-
proximate. For example, m =3) 3.142 could be the notation to indicate the
equality is correct to three decimal places. If the user changed the subscript 3,
they would be changing the precision of the displayed number. Chaitin how-
ever suggested that it would be more in keeping with the direct manipulation
style of TruCalc to allow the user to drag the righthand extension of deci-
mals: so if the user drags the ‘...’ to the right in the equation 7 = 3.142.. . it
could become 7 = 3.141592653589793 .. ; and dragging the ‘...’ left would
put it back to 7 = 3.1..., for example.

In summary, an interesting part of the ‘HCI of TruCalc’ can be expressed as
the relation between S(e, C;), the solutions the implementation provides for an
equation e, and S(e, H), what the user expects.

6.1 Enjoyment

Finally, it surprised us that TruCalc was fun to use—we had developed it from
principles and had not anticipated the strong feeling of engagement it supports.
It integrates body movement, handwriting, and instant satisfaction, that children
and post-doc mathematicians find exciting. Elsewhere we have reported on our
usability surveys, a topic that is beyond the scope of this paper [14]. More
recently TruCalc was exhibited at the Royal Society Summer Science Exhibition,
where it was used by thousands of visitors, children, parents, teachers, to math
postdocs. An exit survey was completed by 420 participants (and we insisted
that anybody who took a survey form completed it, to avoid under-reporting
of negative results) had 90% liked or really liked TruCalc, and nobody (0%)
disliked it.

7 Conclusions

Current leading mathematical systems are capable of a remarkable range of
mathematics. With Mathematica, a market leading example of an interactive
computer algebra system, we are able to solve problems we could not do without
it. It is easy to confuse these mathematical capabilities with usability. So much
power seems harnessed that the power seems usable.

This ‘power leverage’ blinds us to the fundamental non-mathematical na-
ture of these user interfaces. Often clear mathematical principles like referential
transparency and declarativeness are lost in modes, history dependence, context
sensitivity, and so on. The failure of these principles in conventional mathemat-
ical user interfaces undermines our ability to reason reliably or mathematically.

zThink makes use of the affordance of pen and paper to create an inter-
face that solves partially some of the interface issues. But it still ignores basic
mathematical principles when applied to interaction. It gains the affordance of
paper, at the expense of introducing evaluation modes (and uncertainty in the
handwriting recognition).

534 H. Thimbleby and W. Thimbleby

We have shown in TruCalc that it is possible to create an interface that sup-
ports basic principles throughout the user interface; it has no hidden state, is
modeless, instantly declarative, and so on—or in Frege et al.’s metamathemati-
cal terms, substitutional, referentially transparent, and so on. Adhering closely
to these mathematical principles do not compromise the power of TruCalc; it is
in principle as powerful mathematically as zThink and other conventional sys-
tems (though obviously the two systems vary in detail, such as in the choice of
built-in functions they support)). Further, we have shown that by supporting
these principles that the calculator is easier, more enjoyable, fun and usable—a
paradigm shift in usability.

Acknowledgements. Harold Thimbleby was supported by a Royal Society-
Wolfson Research Merit Award, and Will Thimbleby by a Swansea University
studentship. The design of TruCalc is covered by patents. Paul Cairns, Greg
Chaitin, James McKinna, John Tucker and very many anonymous participants
in demonstrations and lectures gave us very useful comments. The Exhibition of
TruCalc at the Summer Science Exhibition at the Royal Society was funded by
EPSRC under grant EP/D029821/1, and Gresham College.

This paper was originally an invited talk at the Mathematical User-Interfaces
Workshop 2006 (http://www.activemath.org/~paul/MathUIO06), but did not
appear in the proceedings.

References

1. Casio, Casio ClassPad 300 Resource Center (2006), http://www.classpad.org

2. Garvan, F.: The MAPLE Book. CRC Press, Boca Raton (2001)

3. Goldin, D.Q., Keil, D.: Persistent Turing Machines as a Model of Interactive Com-

putation. Foundations of Information and Knowledge Systems, 116-135 (2000)

4. Norman, D.A.: Affordances, Conventions and Design. Interactions 6(3), 38-43
(1999)

. Padovani, L., Solmi, R.: An Investigation on the Dynamics of Direct-Manipulation
Editors for Mathematics. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM
2004. LNCS, vol. 3119, pp. 302-316. Springer, Heidelberg (2004)

6. Petkowsek, M., Wilf, H.S., Zeilberger, D.: A = B. A K Peters (1996)

. Quine, W.V.0O.: Word and Object. MIT Press, Cambridge (1960)

8. Runciman, C., Thimbleby, H.: Equal opportunity interactive systems. Int. J. Man-
Mach. Stud. 25(4), 439451 (1986)

9. Tennent, R.D.: Principles of Programming Languages. Prentice-Hall, Englewood
Cliffs (1981)

10. Théry, L., Bertot, Y., Kahn, G.: Real Theorem Provers Deserve Real User-
Interfaces. In: Proc. Fifth ACM Symposium on Software Development Environ-
ments, pp. 120-129 (1992)

11. Thimbleby, H.: What You See is What You Have Got—A User-Engineering Prin-
ciple for Manipulative Display? First German ACM Conference on Software Er-
gonomics. In: Proc. ACM German Chapter, vol. 14, pp. 70-84 (1983)

12. Thimbleby, H.: User Interface Design. Addison-Wesley, Reading (1990)

13. Thimbleby, H.: A New Calculator and Why it is Necessary. Computer Jour-
nal 38(6), 418-433 (1996)

[}

3

14.

15.

16.

17.

18.
19.

Mathematical Mathematical User Interfaces 535

Thimbleby, W.: A Novel Pen-based Calculator and Its Evaluation. In: Proc. ACM
NordiCHI 2004, pp. 445-448 (2004)

Thimbleby, W., Thimbleby, H.: A Novel Gesture-Based Calculator and Its Design
Principles. In: Proc. BCS HCI Conference, vol. 2, pp. 27-32 (2005)

Thimbleby, W., Thimbleby, H.: TruCalc (2006), http://www.cs.swan.ac.uk/
calculatorshttp://www.cs.swan.ac.uk/calculators

Turing, A.M.: On computable numbers, with an application to the Entscheidung-
sproblem. In: Proc. London Mathematical Society, Series 2, 42, 230-265 (1936/7)
(corrected Series 2, 43, 544-546 (1937))

Wolfram, S.: The Mathematica Book, 4th edn., Cambridge (1999)

xThink, xThink Calculator (2006), http://www.xThink.com/Calculator.
htmlhttp://www.xThink.com/Calculator.html

1.4 Internalist and Externalist HCI 355

I.4 Internalist and Externalist HCI

Internalisit and Externalist HCI

Harold Thimbleby
Swansea University
Wales
SA2 8PP
+44 1792295393

harold @thimbleby.net

ABSTRACT

The history of technology, as a discipline, supportss alternate
points of view termed internalist and externalist, wthich terms
highlight an approximately similar division in pointts of view
within HCI. Conventional HCI is externalist, rightly «concemed
with human-centered issues; but externalism riskss ignoring
important internalist issues. A successful humam-computer
system is better if it is successful from both perspectiwes.

This discussion paper argues that the externalist viiew, while
necessary and immensely useful, is not sufficient—and in the
worst case, risks eclipsing innovation from internalist . quarters.

1. INTRODUCTION

David Nye’s review of the history of technology [144] uses the
clear terms internalist and externalist, applying themn to styles
of historical analysis.

Why did the internal combustion engine triumph: over the
alternatives, horse, steam and electric? An internailist might
emphasize the power-to-weight ratio of the internal ccombustion
engine; an externalist might emphasize the lower ccost of the
Ford Model T and the dramatic impact cost had on :a growing
market. An internalist, then, considers the technology . as such.

* Externalism is focused on the world external tto the user
interface: human-interaction and e.g., obbservation,
evaluation, cognition, etc.

* Internalism is focused on the world intemnal tto the user
interface: computer interaction and e.g., logic,
engineering, computation, etc.

An example illustrating human-computer interactiom issues is
Tracy Kidder’s classic The Soul of a New Machine- [10]. The
book traces the development of a computer, the Datta General
Eclipse MV/8000, all the technical issues, right up too the point
that the finished product is brought to market. Them the book
ends, just when the external world of the computter and its
possible use starts to get interesting. The book takes an
internalist view.

Of course both views are needed in a balanced discuission, and
indeed Nye provides a masterful analysis. We beliceve Nye’s
internalist/externalist terms from the history of technowlogy have

© Harold Thimbleby, Will Thimbleby, 2007
Published by the British Computer Society
Volume 2 Proceedings of the 21st BCS HCI Growp
Conference
HC1 2007, 3-7 September 2007, Lancaster Universityy, UK
Devina Ramduny-Ellis & Dorothy Rachovides (Edittors)

Will Thimbleby
Swansea University
Wales
SA2 8PP
+44 1792295393

will@thimbleby.net

value in distinguishing major styles in the way HCI is viewed,
presented and undertaken.

Clayton Lewis proposed a similar, but, psychological
distinction for HCI, that of inner and outer HCI [13]. Here,
inner and outer refer to cognitive processes and human behavior
respectively. Lewis emphasizes the potentially fruitful interplay
of inner and outer HCI. Curiously, while his the terms “inner”
and “outer” might at first seem to cover everything, Lewis
excludes the computer (or other interactive system)—he simply
does not mention it in his conception of HCI! It is as if the
interactive system is a given, taken for granted, rather than a
legitimate object of study in its own right.

Similarly in the “Kittle House Manifesto” [3] Carroll suggests
that academic psychology has had no impact on interactive
design practice, and that major innovations in practice (e.g.,
Sketchpad, an innovative graphics program) have made no
explicit use of psychology. He bemoans the fact that HCI does
not use science, or that if it does the relation is haphazard. Yet,
curiously, he overlooks that computer science is science too,
and in fact underlies the major contributions he describes as
driving innovation. While it seems to us quite right to try to
promote psychological science and explore why it is in some
sense under-rated or used haphazardly, it seems counter-
productive to the wider purpose of HCI to overlook
computational science. Carroll’s more recent collection [4] sees
HCI as something computer scientists need to be taught, as
something quite other than computer science, rather than
something that can draw on computer science as well as human
sciences.

This externalist emphasis of the HCI field is routinely found in
the standard HCI textbooks, of which most take externalist
points of view—indeed, [5] suggests that teaching HCI should
cover the computer science which standard HCI textbooks omit.

Barnard, May, Duke and Duce remind us of “syndesis,” binding
together systems that contain interacting subsystems, such as
people and computers. They introduce the terms “Type 1
theory” and “Type 2 theory,” referring to approaches that go
deeper or that go across interaction respectively. They wamn
that we are not very good at establishing Type 2 connections,
and this weakness may lead to “the fragmentation and demise
of HCT as a coherent science” [1].

It seems that HCI needs terminology to discuss these issues.
Our internalist/externalist distinction is analogous to the Lewis
inner/outer HCI distinctions, but from the point of view of the
computer rather than the human. Without repeating Lewis’s
arguments here, we too see the great potential of fruitful
interplay between internalist and externalist perspectives.

Just as a brain-computer interaction (BCI) researcher would
certainly wish to go deeper into the “inner HCI” than Lewis
does, so also our “internalist” perspective has a rich internal

strurcture—it isn’t just “the computer” set against the wide
range of standard HCI disciplines, anthropology, psychology,
sociial science, economics, marketing, design; the internalist
seess algorithms, complexity, information theory, proof,
requirements, hardware, graphics, databases, and so forth ... a
richi science contributing to HCIL.

1.1l The Authors’ Perspective

Botth authors of this paper have an internalist background, and it
is winashamedly from this perspective that this paper has been
writtten. The paper has a twofold purpose: to name and
intrcoduce a useful distinction for HCI, and to stimulate debate
on tthe balance—or the lack of balance—in HCI as practiced,
and| hence stimulate thinking on strategies for doing better.

We: believe the internalist/extemalist distinction allows a
consstructive discussion about the methodologies of HCI,
withhout diminishing either internalist or externalist points of
view. By naming the distinction, we suggest that there are
difféerent and valid views about how HCI, and particularly HCI
resezarch, can and should be done. Nevertheless, we believe
intezrnalist HCI tends to be under-valued by the more dominant
extecrnalist point of view, and this paper therefore makes an
enthhusiastic case for internalism.

HCII could not exist without programming computers, which is
an iinternalist perspective, and also HCI could not exist without
the human context and study, which is an externalist
persspective. Singly, internalist and externalist perspectives are
momocular and lack depth and perspective. Both are needed.

2. HOW WE GOT HERE

The: HCI community’s traditional emphasis of externalist
persspectives to some extent eclipses internalist perspectives.
Histtorically, existing externalist methodologies were ready
wheen they were needed: there was and still is a very substantial
resoource of experimental psychology that was applied and
workks to a high standard. In contrast, it might be said that most
earlly imternalists did not know what they were doing; see below
wheen we comment on the Therac-25.

A seecond, crucial, reason for the current emphasis on externalist
metkhods in HCI is that external experimental methods can be
usedd independently of the specifics of internalist details. Every
HCII system has very different internals, and requires
inveestment in specific programming and design; in contrast, the
exteernalist methods (e.g., cognitive walkthrough, think aloud,
eye tracking) work on all systems. Experimental designs,
statiistical methods and so on, can be applied to a word
proccessor or to a graphics package with little modification. In
conttrast, a new contribution to HCI by an intemalist might take
yearrs of work that has no other application. It is noteworthy that
mosst externalist studies of programming in HCI design use
triviial programs, because programming real user interfaces is
too : slow. Inevitably, few internalists contribute to mainstream
HCIL

Perhhap's the HCI community has changed too. As fewer
interrnalists contribute at the same rate as externalists, the peer
comnmuinity becomes dominated by externalist values. If an
interrnalist submitted a result to a conference or journal now,
mosst referees calling themselves members of the HCI
comnmunity would be externalists.

ACMM CHI, the major international HCI conference, is primarily
exteernalist. In contrast one of the major internalist conferences,
DSWIS (Design, Specification and Verification of Interactive
Systtenns) has only a hundredth of the participants. This reflects

a difference in the sizes of the communities. Thus, internalists
face higher hurdles to participate in the development of the
field. Then, as the externalists operate in a community
dominated by externalists, it appears reasonable to require
externalist criteria for contributing to that community: possibly
even a hegemony—being defined as the emphasis of cultural
beliefs, values, and practices to the dismissal and over-looking
of others.

3. SAMPLE SYSTEMS

3.1 Therac-25

Horrific stories of bad HCI abound. The Therac-25 was a
medical device that killed patients as a result of “operator” error
(actually system design error). It is primarily an example of
inadequate internalist HCI, an argument for better internalist
HCI rather than fixing design problems with externalist HCI.
Bad programming killed people.

Although the Therac-25 story is an extreme example, the case
illustrates how important it is for user-centered design to react
against sloppy programming practices—this paper is not
arguing internalism is a panacea! Given that many programmers
are not computer scientists, UCD is necessary to improve
things.

One could argue that iterative design gained prominence to
compensate for the difficulty of writing good software,
particularly given the typical programmer skills available to
industry.

3.2 Calculators

By considering logic programming, Runciman and HThimbleby
introduced an analytic concept, equal opportunity [15].
HThimbleby used equal opportunity to constrain the design of a
new user interface, choosing a calculator, as this is a well-
researched artifact. Background research revealed how
conventional calculators were badly designed, an internalist
criticism of their poor technology [16]. Somehow this critical
observation had escaped externalist research on calculator user
interfaces.

We question the point of externalist research when it ignores
the intrinsic failure of the technology; what point is iterative
design or working with users when the conceptual problems of
the user interface are so hard, complex and broken?
HThimbleby made a technically improved calculator available
to the community in 1986. However, it was not till 2004 that it
had any externalist evaluation [2]. More recently, WThimbleby
generalised the calculator, and made its user interface recognize
handwriting [17,18,19]. This calculator has had a modest
externalist evaluation [17].

The new calculator was developed entirely by internalist
considerations. Specifically, it should do mathematics properly
[19]. Few extemalist considerations drove its design, yet it is
very successful. The calculator was exhibited at Royal Society
Summer Science Exhibition, 2005; at the exhibition, several
thousand people used it. 90% of respondees said they really
liked it or loved it. But despite the unusually large scale of the
survey and feedback we gained no new ideas from users that
would contribute to iterative design improvements.

Some feedback from users at the exhibition is listed below:
¢ “It visualizes the internal workings of abstract calculations,

fun, as it is wonderful! Fun! Engaging and importantly
visible!”—University Professor

* “Calculators seem clumsy and hard to use—the new
method is genius!'—when can I buy one in the shops (If 1

had had one I would have done A level maths)’—A-Level
Student

* “Engagement, excitement, interactivity, seamless, more

visually appealing and easier to use!”—Teacher

* “I’ve never seen anything that’s brought a smile to my face
while doing addition, but this has. For that reason alone, I
want one!”™—Artist

The point we would like to make is that an internalist design
program has produced a good user interface, recognized as such
by users. Yet by conventional externalist HCI criteria, the work
would not be acceptable for publication.

3.3 Graphics Programs

The calculator is an example of an intemalist HCI research
program, spanning twenty years before it resulted in a user
interface that attracted attention. In contrast WThimbleby
conceived, designed and built a vector graphics editor within
two years, as a purely internalist project.

The resulting program, Lineform, was fully formed on its initial
release. No early focus on users, no empirical design, no
iterative design [7] informed its development—though of
course computer science and HCI principles did inform and
direct its development.

The quality of the design was recognized by the award to
WThimbleby of the 2005 Apple Student Design Award.
Arguably, this shows the user interface design was better than
of thousands of others (i.e., the number of competitors)—
which, had they been realistically entered into the review,
should have been excellent programs in their own right.

Lineform is sold by Freeverse Software and has been
commercially successful. The program has been reviewed in
commercial magazines and web sites. Its reception has been
uniformly favorable.

Below are some sample quotes from reviews. They are included
to support the claim that the HCT in Lineform is successful,
regardiess of its lack of externalist methodology. Like the facts
we presented about the calculator, the evidence supports our
view that HCI contributions can be good despite the lack of
externalist, practices.

* “Lineform from Freeverse Software claims to be the
solution for modern drawing and illustration. It is. Winner
of a 2006 Apple Design Award, Lineform is not only easy
to use, but the interface design makes the application so
intvitive, Mac users need no explanation to start
illustrating.”—CreativeMac (Feb 2007)

¢ “It’s not often that you find a product you literally have to
gush over ... but Lineform, for me at least, is that
product.”—AppleGazette (Jan 2007)

* “Lineform has two other selling points. First, its speed: the
program launches in a couple of seconds and shames
Illustrator throughout in its responsiveness. Second, its ease
of use. The simple interface alone makes it easier to find
things.”—MacUser (Issue 22 Volume 22)

An intemnalist design program produced a very good user
interface, recognized as excellent by the market and critical
reviewers. Yet by conventional externalist HCI criteria, the
work would not be acceptable for publication.

3.4 Google

On any measure Google is an extremely successful user
interface, with a value to users that exceeds most conventional
userr interfaces studied in HCI. Google is in fact just a text field

with a substantial algorithm behind it [12]: its user interface is
successful because it has a good internalist design. First, the
internalist algorithm then the user interface. Once Google
works it then makes sense to evaluate it and refine it from an
externalist point of view: what services do users want given that
Google works, and how can they be made better? However, the
original, key HCI innovation was internalist.

Few of the services Google now offers would have made any
sense to users or anyone else until after the basic algorithm
worked, and had been demonstrated working well. Although
externalism is now essential to Google, it was not how it
started.

4. SAMPLE ISSUES
4.1 Anecdotes

If Jo is using a system, and this is reported in a research
contribution, then an externalist wishes to know in what way Jo
is typical of the population and to what extent, if at all, the
particular interaction is typical. Jo may be idiosyncratic; the
experimenter may have misdirected Jo. If we wish, ultimately,
to design better interfaces for anybody other than Jo, we need
reliable, generalizable knowledge. Statistics is a good way to
characterize reliable generalization, and a one-off experiment
with a unique individual would be hard-pressed to be reliable.

From an internalist perspective things look very different.
Internal arguments are independent of the user. For example,
computability could show that certain tasks are impossible. Not
just for Jo, but for anybody—impossible for the whole human
population, martians, dogs and bacteria. One hardly needs to
recruit conventional experimental methods to make such claims
reliable. This is not an anecdotal claim, but an analytic claim.

The confusion of these two methodologies undermines
communication. It is our experience that internalist papers
submitted to journals and conferences have been rejected
because the referees have interpreted our analytic descriptions
as “anecdotal.”

The desire that contributions to HCI must include sufficient
(and valid) externalist content before they are acceptable,
increases the burden on the internalist researcher. Few
researchers are able to span the internal/external bridge;
different skills, different theory, different methods are required.
Moreover, in the way of things, externalist work can only
follow after internal work—or simulate it (e.g., with paper
prototyping, which has no internalist content). Perhaps this is
the gulf of HCI? An internalist has to do twice as much work?

4.2 Reproducibility

The systems mentioned in this paper are fully working systems
and can be downloaded by interested researchers
(www.freeverse.com/lineform for the graphics program,
www.cs.swansea.ac.uk/calculators for the calculator, and
labs.google.com for an API). From an internalist perspective,
the research these systems embody is reproducible. That is, the
claims we make about the quality and design can readily be
checked by any interested researchers; because the claims are
user independent.

From the perspective of the present paper, of emphasizing
internalist HCI, it seems a great advantage that exactly what we
have contributed—the underlying science, the programs, and so
forth—are completely available to any researchers who wish to
build on or critique our work. This level of reproducibility is
very rarely the case with externalist HCI research.

4.3 Opposition or complimentarity?

At the BCS HCI 1995 conference, what we would now call an
intcermalist/externalist debate was presented by an externalist in
a kceynote, metaphorically, as an actual war: “Which trench are
yow shooting from?” [6], illustrated with pictures of camage.
Amother keynote at the same conference [8] suggested that “in a
nuitshell ... what I see is a need to get away from the computer
at «centre stage, and a need for methods of description that make
themselwes useful ...” If it’s a war, consider [21], which starts
offf, ““If you want to make software developers squirm...” and
setts out to create the impression that developers don’t know
what they are doing. Some don’t, no doubt, but most have a
harrd enough job getting systems to work at all, and they should
noit be blamed for problems that arise through poor
mamnagement expectations and requirements that nobody
undderstood until their systems were working.

Landaver’s The Trouble with Computers [11] blames
proogramimers for being “arrogant” (pl73)—not designing for
useers, testing, evaluating, and so on. Programmers have
“fantasies” he says. Yet he also mentions that Stu Card “a
leading expert in HCI” was “confident” that a new word
proce:ssor would be “vastly” better—but was proved wrong.
Thws he makes rhetorical distinctions whose effects are to
disscredit the internalist perspective in HCI: internalists are
“arrrogant” whereas equally wrong externalists are “leading.”

We surely need more balanced views, particular as both
inteermalist and externalist share the same goals for the user. A
firsst sitep in being more balanced is to name the imbalance.

Grudiin, one-time editor of the ACM Transactions on Computer-
Human Interaction, presented a mature view of the diversity of
the: HICI community [9], based on his experience as editor and
finial arbiter between conflicting referee and author points of
vierw. A non-partisan view is [20], which argues how easy it is
for- di fferences to escalate to unconstructive conflict.

3. CONCLUSIONS

Thiis paper has proposed a distinction between externalist and
inteermialist approaches to HCI. The distinction helps clarify the
natture of HCI research and practice, as well as preferred
apppro:aches within the HCI research community.

Thiis paper described a selection of very different products of
inteernialist HCI. None have been developed through or
supported research that would have met conventional
extcermaliist HCI criteria, indeed none followed any
reccommmended externalist HCI development cycles—yet all are
successfiul. Of course the systems beg a wide range of
exteermaliist questions, but the fact that one can now do
exteermaliist work does not mean it was necessary to do it for the
oveeralll work to form a valid contribution to HCI.

Ourr purpose is not to dismiss externalist approaches, but to
reccogmize that an internalist approach to HCI can be very
effeective and lead to good user interface design. Internalist
dessigm and research can be valid without any externalist
evaluation.

Giwen that the computer science community argues that design
shoyuld start with a mathematically rigorous specification, and
thern refine to implementation—almost the opposite of the
exteermali:st HCI view of design—there are new questions to be
askced.. C.an intemnalist approaches lead to quality HCI, and if so,
to 'what extent and under what assumptions? This paper has
shoywm that internalist HCI can. We need to see more internally-
driwem HCI, and we need to explore when and why it is
succcessfial.

6. REFERENCES

[1] Barnard, P., May, J., Duke, D. & Duce, D., systems,
Interactions, and Macrotheory, ACM Transactions on
Computer-Human Interaction, 7(2):222-262, 2000.

[2] Caims, P., Thimbleby, H. & Wali, S., Evaluating a Novel
Calculator Interface, Proceedings BCS HCI Conference,
2:9-12, 2004.

[3] Carroll, J. M., Introduction: The Kittle House Manifesto,
Designing Interaction,]J. M. Carroll, ed., pp1-16,
Cambridge University Press, 1991.

[4] Carroll, J. M., ed., HCI Models Theories and Frameworks,
Morgan Kaufinann, 2003.

[5] Cockbum, A. & Bell, T., Extending HCI in the Computer
Science Curriculum, ACM Intemational Conference
Proceeding Series, 3, Proceedings of the 3rd Australasian
conference on Computer Science Education, 113-120,
1998.

[6] Gasen, J. B., Support for HCI Educators: A View from the
Trenches, Proceedings BCS HCI Conference, 21-36,
1995. .

[71 Gould, J. D. & Lewis, C., Designing for usability: key
principles and what designers think, Communications of
the ACM, 28(3):300-311, 1985.

[8] Green, T. R. G., Looking Through HCI, Proceedings BCS
HCI Conference, 21-36, 1995.

[9] Grudin, J. “Crossing the Divide,” ACM Transactions on
Computer-Human Interaction, 11(1):1-25, 2004.

[10] Kidder, T., The Soul Of A New Machine, Back Bay Books,
2000.

[11] Landauer, T., The Trouble with Computers, MIT Press,
1995.

[12] Langville, A. N, Meyer, C. D., Google s PageRank and
Beyond, Princeton, 2006.

[13] Lewis, C., Inner and Quter Theory in HCI, in Designing
Interaction, J. M. Carroll, ed., pp154-161, Cambridge
University Press, 1991.

[14] Nye, D. E., Technology Matters, MIT Press, 2006.

[15] Thimbleby, H. & Runciman, C., Equal Opportunity
Interactive Systems, International Journal of Man-
Machine Studies, 25(4):439—451, 1986.

[16] Thimbleby, H. Calculators are Needlessly Bad,
International Journal of Human-Computer Studies,
52(6):1031-1069, 2000.

[17] Thimbleby, W., A novel pen-based calculator and its
evaluation, Proceedings ACM Nordic Conference on
Human-Computer interaction, 445-448, 2004,

[18] Thimbleby, W. & Thimbleby, H., A Novel Gesture-Based
Calculator and Its Design Principles, Proceedings BCS
HCI Conference, 2:27-32, 2005.

[19] Thimbleby, H. & Thimbleby, W., Mathematical
Mathematical User Interfaces, DSVIS 2007, in press.

[20] Thimbleby, H., Supporting Diverse HCI Research,
Proceedings BCS HCI Conference, 2:125-128, 2004.

[21] Udell, J., Capturing user experience closes the feedback
loop, InfoWorld,
www.infoworld.com/article/04/06/04/23FEuser_1.htm]
2004.

Acknowledgements. Thanks to Ann Blandford, Richard Harper and Matt
Jones.

