
Durham E-Theses

Relational multimedia databases.

Sylivano Chiluli NongaKitinya,

How to cite:

Sylivano Chiluli NongaKitinya, (1987) Relational multimedia databases., Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/1242/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/1242/
 http://etheses.dur.ac.uk/1242/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Relational Multimedia Databases

Sylivano Chiluli N onga Kitinya

This thesis is submitted in fulfillment of the requirements

for the degree of Doctor of Philosophy of the

University of Durham

School of Engineering & Applied Science

Department of Computer Science

The copyright of this thesis rests with the author.

No quotation from it should be published without

his prior written consent and information derived

from it should be acknowledged.

1987

- i -

ABSTRACT

Relational Multimedia Databases

Sylivano Chiluli N onga Kitinya

This thesis is concerned with the design and im plementation of a Relational Multimedia

Database System, in short RMDBS. RMDBS is designed to efficiently use storage space and

manipulate various kinds of data; attribute data, bit-m apped pictures, and program s in binary

code.

RMDBS is an integrated system which enables the user to manage and control operations

on the different forms of data in a user friendly manner. This means that even non­

experienced users can work with the system.

The work described in this thesis is novel in that a true multimedia database has been

implemented within the framework of a traditional relational DBMS. Previous work in this area

has concentrated either in building data base management systems for storing picture-based

data or multimedia databases which are not true data base management systems.

RMDBS is implemented using the Revelation data base management system.

- 11 -

ACKNOWLEDGEMENT

I would like to express my sincere thanks to my supervisor, Mr. J. S. Roper for the

immense help and encouragement during the course of this project. I also acknowledge many

stimulating discussions with Jim Cottrell, the departmental software technician.

The Malcolm MacD onald Studentship provided the funding for the project. Many thanks

to them.

Finally I am indebted to Rev. David W. Jones and Dr. John Welford and their families

for the help and company they gave me.

- 111 -

COPYRIGHT NOTICE

"The copyright of this thesis rests with the author. No quotation from it should be

published without his prior written consent and information derived from it should be

acknowledged. "

CONTENTS

Abstract

Acknowledgement

Copyright notice

Contents

Declaration

Chapter 1

Overview

1.1 Scope of Thesis

1.2 State of the Art

1.3 Overview of Thesis

Chapter 2

Data Base Management Systems

2.1 Evolu tion of Data Bases

- IV -

2.2 General Structure of Data Bases

2.3 Relational Data Bases

2.4 Network Data Bases

2.5 Hierarchical Data Bases

2.6 Comparison of Approaches

2.7 The Revelation DBMS

11

iii

iv

x

1

1

2

4

4

8

10

11

n

14

Chapter 3

Computer Graphics

3.1 General

3.2 Raster or Bit-Maps

- v -

3.3 Drawing Text & Lines by Dots(Pixels)

3.4 Graphics Packages

3.5 Data Structures for Computer Graphics

3.6 Computer Graphics Input Devices

3.7 Computer Graphics Output Devices

3.8 The CORE Graphics System

Chapter 4

User Interfaces to Data Bases

4.1 Why User Interfaces?

4.2 Command Language Driven Systems

4.2 Menu Driven Systems

4.4 Forms Driven Systems

4.5 Graphics Based Interfaces

4.5.1 The CUPID System

4.5.2 Query By Example

4.5.3 The Ski System

4.5.4 The Spatial Data Management System

4.6 Summary

Chapter 5

Storing Picture-Based Information in Relational Databases

5.1 Introduction

18

19

20

23

23

25

27

28

29

30

33

36

36

38

39

40

42

- VI -

5.2 The "Picture-Building" System 44

5.3 A Relational Schem a with Colour & Texture 46

5.4 Query-By-Pictorial-Exam pIe 50

5.5 The Image Analysis and Image Database Management System 53

5.6 Other Systems 54

5.6.1 GEO-QUEL

5.6.2 The Geographic Information Systems Project

5.6.3 Query-By-Structure-Example

5.7 Conclusion

Chapter 6

Multimedia Databases

54

54

54

55

6.1 Introduction 56

6.2 Document Processing in a Relational DBMS 57

6.3 The Multimedia Office Filing System 57

6.4 A Multimedia Information System for an Office Environment 59

6.5 The MINOS System 60

6.6 The Muse System 61

6.7 Conclusion 63

Chapter 7

Generation & Manipulation of the Pictures

7.1 Picture Processing for Printing

7.2 Data Used and Its Sources

7.2.1 Digitised Maps

7.2.2 Census Data

7.:' The Display Processor Used

65

67

67

68

68

- vll -

7.4 Picture Generation

7.4.1 From Pascal Programs

7.4.2 With the Smart Spreadsheet

7.4.3 By Microsoft Windows PAINT program

7.4.4 Comments on the Generation Methods

7.5 Storing the Pictures in Database

7.6 Storing Binary Programs in Database

7.7 Picture Manipulation in Database

7.8 Performance Comparison

7.9 The Results

7.10 Observations, Recommendations & Conclusions

7.10.1 Observations

7.10.2 Recommendations

7.10.3 Conclusions

Chapter 8

The Relational Multimedia Data Base System

8.1 Specification

8.1.1 The Making of RMDBS

8. L.2 Need for Picture Generating Capabilities in RMDBS

8.1.3 A Demonstration System for RMDBS

8.2 System Overview

8.3 Relations Used

8.3.2 For Screen Pictures

8.3.2 For Laser Printable Pictures

8.3.3 For Binary Prognml s

8.3.4 For Param etefs

69

69

70

71

71

72

73

74

77

78

83

83

83

84

86

86

86

87

84

90

90

91

91

92

- viii -

8.3.5 For Digitised Maps 93

8.3.6 For Census Data 94

8.4 Writing of Boolean Expressions 96

8.5 Description of the Functions 98

8.5.1 Get Help 99

8.5.2 Display Picture 99

8.5.3 Insert Screen Picture 99

8.5.4 Insert a Laser Picture 100

8.5.5 Insert a Program 100

8.5.6 Print a Laser Picture 101

8.5.7 Print a Screen Picture 101

8.5.8 Scale a Picture 102

8.5.9 Overlay two Pictures 102

8.5.10 Run Smart 103

8.5.11 Run Microsoft Windows 109

8.5. J 2 Draw on a Picture 112

8.5.13 Descend to Main Revelation Menu 113

8.5.14 Delete "least used" Pictures 113

8.5.15 Set/Update Parameters 114

8.5.16 See names of Programs & Pictures 114

~.5 .17 Delete Picture or Program 116

8.5.18 Descend to TCL 117

8.6 Conculsion 117

Chaptf:'r 9

Conclusions & FutUl'e Work

9.1 Conclusions 119

- IX -

9.2 The User Interface and Its Limitations

9.3 Thoughts on Future Work

9.3.1 Ba')ic Extensions

9.3.2 User Friendliness

9.4 Final Conclusion

References

Appendix 0: Hardware Configuration

Appendix 1: The Revelation DBMS

Appendix 2: The Sm art Spreadsheet

Appendix 3: Microsoft Windows

Appendix 4: Turbo Pascal

Appendix 5: The DEC LN03 Laser Printer

Appendix 6: The RMDBS Main Routine

121

123

123

125

127

128

136

138

143

148

150

156

158

- x -

DECLARATION

The material in this thesis has previously not been submitted for any degree in this or any

other university.

1.1 Scope of Thesis

Chapter 1

Overview

This thesis is concerned with the design and implementation of a relational multimedia

database. It is in tended that the system be able to achieve first, optim urn use of storage space

and second, to be "user friendly". The system is user friendly in the sense that a non­

experienced user should be able to work with the system without too many problems.

1.2 State of the Art

Following the wide use and acceptance of data base management systems, several issues

have come to dominate their uses:- performance, distributed databases, interfaces, multimedia

databases. Relevant to this thesis are the two issues, namely: (i) user interfaces and (ii) storing

data of different forms(multimedia) in the database.

The issue of user interfaces is important because of the fact that as databases become

more widely used, most users of these databases will be non-experts in the field of computers.

This means that interfaces to databases have got to be "user friendly" to enable naive users to

have access data in them.

Multimedia databases have come to the forefront because of the following reasons:

(a) In most cases, information is not attribute data only (as early designers of data base

management systems planned), it comes in many forms; images, charts, voice, etc. To be able

to store and process such information, it needs to be stored and manipulated in multimedia

databases.

(b) Following the rapid improvement in storage technology, various types of storage media

have been produced and become economic to use (for example optical disks), therefore new

- 2 -

types of database management systems have to be designed to take advantage of such

developments.

(c) Processing information in different forms enhances understanding of the information.

For example, giving a user information in number form sometimes does not make more sense

than if the user is given a chart representing the same data. Adding a map or another plot to

the chart can make an even bigger impact!

1.3 Overview of Thesis

This thesis is concerned with the design and implementation of a multimedia database

with a user friendly interface.

The central concepts of Data Base Management Systems are discussed in chapter 2. The

main vehicle of which the system is implemented is the Relational DBMS, Revelation. Details

on the Revelation DBMS can be found in Appendix 1.

Chapter 3 discusses computer graphics. Since images/pictures are used extensively in this

thesis, this serves as an introduction to bit-mapped and vector pictures, display processors, and

graphics packages.

Chapters 4 to 6 review work done on the integration of graphics information into DBMS.

The issue of user interfaces to databases is discussed in chapter 4, where a survey of

different ways of generating user friendly interfaces is made. The exposition also includes

several graphics-based user interfaces. This is the first step in integrating graphics information

into DBMS.

The evolution from traditional databases to multimedia databases is discussed in chapters

5 and 6. In chapter 5, several systems which store picture-based information (and the way in

which they generate the pictures) are discussed. Chapter 6 describes the design and workings

of several, fully fledged multimedia databases.

Chapter 7 describes how the pictures are generated and manipulated. The pictures are

- 3 -

generated from several systems; Turbo Pascal, Smart, and Windows (see Appendices 2, 3, and

4 respectively for details on these systems). These picture are then stored and manipulated in

the Revelation database. It is also shown how binary program s can be stored and used in the

database.

Following the successful demonstration that various types of data can be stored and

manipulated in a traditional DBMS (from chapter 7), a relational multimedia database is

designed and implemented. This system is described in chapter 8. The specification of the

system, its use, and its on-line manual are all described in the chapter. Appendix 0 lists the

hardware configuration on which this system is implemented.

Chapter 9 lists conclusions arising from this work. Also included are thoughts on future

work.

- 4 -

Chapter 2

Data Base Management Systems

2.1 Evolution of Data Bases

The data base is a natural and inevitable outcome of the progressive development of data

processing techniques l . This development can be traced through several stages. Initially as we

know, the first commercial systems were simple applications using serial files. From this simple

genesis more complex systems have come to being, among them are report generators,

packages, and management information systems.

The aim was to have an integrated collection of files and programs that could work

together and lessen or solve the two fundamental problems in the use of files, namely, the data

independence and the data redundancy problems2• 3.

Data independence aims to attain the ideal programs that are independent of the file

organisation methods, such that the program s processing the file will still run regardless of

changes in the file organisation methods. On the other hand, the data redundancy problem is

the problem of ensuring that each item of data appears only once in the master files, because

multiple occurrences of a data item wastes storage space and increases the risk of inconsistency

in the stored data.

2.2 General Structure of Data Bases

A data base with its software for manipulation and main tenance, taken as a whole is

referred to as a Data Base Management System(DBMS). Broad agreement about the

organisation of these systems exist, see the ANSI/SPARC4 agreement, the GUIDE/SHARES

and CODASYL6 reports.

To solve the data independence and data redundancy problems, DBMS are organised in

four levels as illustrated in figure 2.1.

- 5 -

A user is defined as anybody who needs to access a data base. The user, therefore, can be

an application programmer(writes programs which access the data in the data base) or a

terminal user(uses some sort of query language at the terminal to access the data in the data

base). Each user is given a work area where data is placed by the DBMS. At the disposal of

each user is the Data Manipulation Language(DML), called Data Sublanguage(DSL). which is

concerned with the retrieval an d storage of data in th e data base. The D SL can be em bedded in

a host language like COBOL or it might be an extension of an already existing programming

language.

USER 1 USER 2 USER 3

uuu
11

submodel-1 submodel-2

conceptual \
files or
user views

~--~----~~---.

Data Model
or

schema

USER n

D
\

submodel-n

1-__ 1 internal files

Fig 2.1 Data Base Organisation

The data base itself is physically stored on discs or drums. This is known as the storage

structure sometimes known as internal files or physical files. Organisation of records in the

- 6 -

storage structure can be sequential, indexed sequential, random, etc. The user need not know

how the records are stored.

In between the physical data base and the user are the Data Model, the DM, or Schema

and the Submodels or subschemas.

The Data Model or Schema contains the description of the whole data base. It defines the

various record types used and how these records are mapped into the internal files. It is the

dictionary of all the data items used.

Each user sees the data base through his or her submodel or subschema. This subschema

is called a conceptual file. A conceptual file does not physically exist but exists logically.

It is the responsibility of the Data Base Administrator, the DBA, to define the structure of

the internal files, the data model, the submodels, and the mapping functions needed to map

conceptual records to their internal files. The DBA uses a Data Description Language, DDL,

to accomplish these tasks.

Now, to see how the data independence problem is solved by use of a DBMS, consider

USER-i with program X, which manipulates the conceptual file with fields A, B, and C as

shown below:

Because the above record is a conceptual record, the internal record may be different, and

normally is, from this and can contain other fields. USER-i does not see these other fields.

This is the only submodel program X sees. The user also does not know how the physical

records are stored in the internal files. Program X manipulates these physical records via

mappings through the submodel and the schema. Any change, therefore in the physical

structure does not affect program X, so X enjoys data independence.

If another program Y from USER-j needed to use a file with fields A, B, C, and a new

- 7 -

field D. What is only required here is that, the DBA alter the conceptual file to one con tain ing

the following:

So a new conceptual file is made which USER-j uses. Again program X is not altered.

Data redundancy, due to duplicated data is now under control because programs or users

share data through the conceptual files. There is thus no need for each application to have its

own private files. In actual fact any duplication, if any, is put there by the DBA after

considering other factors like operating efficiency.

Another advantage coming from the use of data bases is control of the data. Through the

DBA, data is placed under one control. Since an organisation should be able to control its

valuable assets, through the DBA the organisation can exercise control on its information.

Another advantage is that the DBA can enforce standards on data item formats, names, etc a

thing not possible without the use of the DBMS.

Placing the company's data under one control brings and solves other problems, these are:

(i) Security

The DBA must ensure that data can be accessed through the proper channels only. Through

the use of conceptual files and the schema, the DBA can define checks users must be subjected

to before given access to a piece of data.

(ii) In tegrity

This is the problem of ensuring that the data in the data base contains only accurate data. This

means the DBA must ensure that data is updated correctly, and if several entries of the same

data exist, all copies are correct. At the same time, recovery procedures to restore the data

base to a correct state must be at hand in case there is a hardware failure.

- 8 -

Three broad categories of DBMS exist depending on how the data is organised, these are:

Hierarchical, Network, and Relational7. The main features of each of these is briefly described

in the following three sections.

2.3 Relational Data Bases

The relational data base model was introduced by Codd in his acclaimed papers. More

details on the organisation of data in this model can also be found in2, 9,10.

The main characteristic of this model is that files are stored as relations.

The term relation in mathematics means the following: Given sets D 1, D2, D3, ... , Dn a

relation R is a set of n-tuples each of which has its first element in D 1, the second in D2, and

so on. The sets D 1, D2, D3, ... , Dn need not be distinct. The sets Di are known as domains

of R. The value of n is called the degree of R. The number of tuples in R is called its

cardinality.

The definition of a relation further means the following:

i) no two rows are iden tical

ii) the ordering of rows is immaterial

iii) the ordering of columns is significant

Another popular way of representing a relation is a table. In the tabular representation, it

is customary to name the table and to name each column. The columns of the tables are called

attribu tes.

A column or a set of columns whose values uniquely identify a row in a relation is called

a candidate key or just a key. Since a relation can have more than one key, one of them is

designated as the primary key.

Figure 2.2 is an example of table relation with five columns or fields. The first one,

NAME, is the key. The name of the relation is COUNTIES.

- 9 -

COUNTIES

NAME X Y POP SIZE
SOUTH GLAMORGAN 30815 17457 377 4183
ISLE OF WIGHT 44970 8627 115 3795
KENT 59020 15134 1448 37347
TYNE & WEAR 42788 56222 1136 5424
GREATER LONDON 53133 17970 6609 15792
WILTSHIRE 40478 15740 513 34727
POWYS 30372 26898 108 50699
STRATHCLYDE 21725 66717 2375 137877
BERKSHIRE 46434 17280 671 12557
DERBYSHIRE 42615 35981 902 26264
GLOUCESTERSHIRE 39190 21443 493 26409

Fig 2.2 Exam pIe of a Relation

If relations are to be used in a DBMS without creating update or deletion problems, they

have to be normalised. Normalisation is explained by Codd in 11 and more rigorously in 12.

What normalisation achieves is to make the relations more regular in the sense that each

represents only one fact. Unnormalised relations exhibit update and deletion anomalies

because of the functional dependencies that may exist between attributes. Normalised relations

also reduce the need for restructuring the relations when new types of data are in troduced.

This increases the life span of application program s.

There are three types of normal forms; first normal form, second normal form, and third

normal form. Any relation in first normal form(is a flat table, without any repeating fields) can

be manipulated by relational DBMS, but for optimal performance relations must be in third

normal form.

In most cases normalisation for second and third normal forms is treated in a non-

algorithmic way, requiring a human being to recognise a pattern. When a pattern is recognised,

a file is split into sm aller files. Pattern checking for these sm aller files is then repeated and

splitting performed if patterns are recognised. This method is fraught with problems because

errors can be made if the human being does not see the correct patterns. However, nowadays

algorithmic methods are available for decomposing files into third normal form. For example,

Salzberg in 13 discusses the Bernstein method.

- 10 -

The DMLs used to manipulate relational data bases are based on relational algebra or

relational calculus 14•

Both types of languages are equally powerful15 , and any user query which can be

expressed in the form of first order predicate calculus can be handled. Relational calculus

languages are non-procedural. They are non-procedural in the sense that a user specifies his

request to the DBMS by defining the property of the information he wants instead of specifying

the instructions(procedure) to obtain the information. Expressions in these languages are first

order predicate calculus expressions. Relational algebra languages are procedural languages and

instructions in these languages consist of simple instructions that are similar to operations

(union, intersection, difference, etc) of mathematical set theory.

2.4 Network Data Bases

The concept of network data bases was first expounded by the Data Base Task

Group(DBTG)6. Details on the organisation of these data bases, in a tutorial fashion can be

found in 16, 2,10.

The basic data structure of network data bases is the data structure diagram as in troduced

by Bachman 17. This structure notation uses two fundamental components; a rectangle denoting

a record type and an arrow or pointer. The arrow connects two record types. The record type

located at the tail is called the owner-record and the one at the head is called member-type.

This owner-mem ber named directed arrow is called a set. Several set types exist: one-to-one,

many-to-one, one-to-many, many-to-many, and recursive, that is, a record to itself. Sets are

used to permit data base traversal in response to a user query.

Figure 2.3 is an exam pIe of a network of five record types with six sets.

- 11 -

SET A .
RECORO-l > RECORO-2

. 'r-
SET B

~r

RECORO-3 SET F

.t ~ SET E

SET C
.

SET 0
RECORO-4 :> RECORO-S

Fig 2.3 Example of Network of Record Types

The processing language, the D ML, in a network structured data base is a procedural

language and in most cases it is an extension of COBOL or PL/1. The processing is termed

procedural in the sense that in every set occurrence:

i) given an owner record, m em ber records can be processed.

ii) given a mem ber record, the owner record can be processed.

iii) given a mem ber record, other mem ber records can be processed.

To access records in a network data base, the user must navigate a route through the

records. This implies that one needs to know how the data base is organised for proper

navigation.

As with the DML, the DDL which is used to describe the schema, that is, the records and

their relationships, is usually an extension of COBOL or PL/I.

2.5 Hierarchical Data Bases

The basic data model in a hierarchical data base is the hierarchical relationship between

records types. The driving idea behind this organisation is: because hierarchies are fam iliar in

nature and in human society. and since data bases portray and represent information about us.

- 12 -

it seems logical to design them hierarchicallyl8. The main document describing hierarchical

data bases isS, and further details can also be found in2, 10.

Record type relationships can be viewed as I:N. The I:N relationships have directions

represented as arcs in a graph 17. The data base, therefore, corresponds to a forest of trees

whose nodes are the records. Figure 2.4 is an exam pie of hierarch ical relationsh ip between two

record types, COURSES and STUDENTS. Each COURSES record is related to many

STUDENTS records, these are the students in the course. Figure 2.4(a) shows the relationship

between the two record types and figure 2.4(b) is an exam pie of the appearance of some data

and their relationships.

COURSES
JOHN

COURSE-NO INSTRUCTOR

STUDENTS

I STUDENT-NO I GRADE

(a) record structure

(b) appearance of individual records

Fig 2.4 Exam pIe of Hierarchical Records

A typical hierarchical system is the widely used Information Management System, IMS,

developed by IBM.

Similar to network data bases, hierarchical data bases are processed by procedural

19 . . h k
languages. In particular records are processed in tree traversal form . Agam as wIt networ

data bases, these languages are normally extensions of COBOL or PL/ 1.

- 13 -

2.6 Comparison of the Approaches

There has been much debate on the merits and demerits of the three data base

approaches20• 21.10. 2. Although there has not been a clear winner, and the situation will

continue for a long time21 , relational data bases though coming later, (latest products include

IN G RES22, 23 an d System R from IBM) have becom e very popular.

NOTE: The hierarchical DBMS IMS and the DBTG product IDMS have been in wide use for

some time.

The main advantage of the relational model is that it is based on a very firm theoretical

foundations. Its representation of files as flat tables adds to giving a uniform view of the data

base. The sublanguages used to manipulate relational data bases are not procedural. This

means that even someone who does not know how the data is organised can still get data from

a relational data base. Furthermore, adding a relation to the data base or a new attribute to a

relation does not impact existing application programs. According to Tsichritizis and

Lochovsky24, this implies that relational data bases are more data independent than network or

hierarchical data bases, and therefore better.

Recently, however, the debate is showing signs to move from the discussion on the

merits or dem erits of the data base models towards:

(i) standardisation25,26, 27,2S, and

(ii) design of generalised data models capable of representing any of the data base models29 • 30.

Standardisation wants to classify data base management system related components into

both internal and external components in terms of functions. The aim being to permit buyers

of data base management systems to mix and match their software to the same extent as buyers

already do with hardware from different vendors2S .

The design of a generalised data base system is based on a canonical data model, that is,

one which is potentially capable of supporting user views of all models through local schemas

. . I' la 29 and appropnate data manlpu atlon nguages. The design of Prototype of RElational

Canonical Interface(PRECI)30 is a good example. Using such a generalised data model, for

- 14 -

example, a hierarchical or network data base might appear to the users as a relational data base

and vice versa.

As mentioned earlier, hierarchical data models are tree structures and network data

models are graph structures. Since tree structures are also graph structures, hierarchical data

models can be represented by network data models. That is, there exists a one-to-one mapping

from the hierarchical data models into the network data models.

In a network data model, the logical structure is completely described by a graph

consisting of a collection of record types and a collection of arcs called sets. Each record type

corresponds to a relation in a relational data model. An arc that joins two record types can be

represented by a relation consisting of two domains. The first domain consists of record keys of

record type RECORD-A and the second domain then consists of the corresponding keys of

record type RECORD-B. Therefore, if there is an arc joining record n of RECORD-A to

record m of RECORD-B then this arc is represented by the tuple (KEY-A-n,KEY-B-m) in the

relational data model. Since both record types and arcs(sets) in the network model can be

represented as relations, any network model can therefore be represented by a corresponding

relational model. That is, there exists a one-to-one mapping from network data models into the

relational data models.

As was shown above, hierarchical data models can be represented by network data models

and network data models by relational data models. Therefore, the relational data model is

capable of representing the logical data structures of both the hierarchical and network

approaches. Taking advantage of the generality of the relational approach, this research

therefore, uses the relational data model as a basis for data base management system s.

2.7 The Revelation DBMS

Because the research uses the Revelation DBMS to store information, it is important that

some features of Revelation are explained. This section, therefore explains the main

" S "I b b" d" 31 32 characteristics of the Revelatton DBM . Detru s can e 0 trune In • .

- 15 -

Revelation uses accounts, files, and records to manage data. Accounts are there to

separate one type of user or application from another. An account may contain any num ber of

data files. Data maybe held in any account and is accessible from other accounts.

Each record in a Revelation database has a unique label, the key or record id. A record

can have only one record id and a record id refers to only one specific record. Record ids can

be any combination of fields.

Revelation considers each column in a record as a separate field. Each field can be

variable length, that is, the field may contain as many characters of data as is needed. (The

only limitation is that Revelation software places a maxim urn length for records of 65,536

bytes). This is one of the key features of the Revelation system. Revelation also supports

multi-valued fields, that is, relations not in normal form.

Revelation files are called "relational files". This simply means that the information in a

record could be presented in a tabular form. Although Revelation allows one to use

unnormalised relations, in this research all relations used are normalised, except when storing

the xy vectors for a map/figure. In this case, multi-valued fields have been used. However,

this is a necessary requirement when processing such types of relations, see als033• 34.

Revelation is called a "dictionary driven" system. When a command is entered,

Revelation checks the dictionaries for the meaning of each word before executing the

command. There are two types of dictionaries; data dictionary and the VOCabulary file.

Data Dictionary

There is one data dictionary for every file. It is created when the file is created. The data

dictionary contains all the information about each and every field. Up to fifteen

param eters(nam e, output conversion, validation criteria, description, etc) can be specified for

each field.

- 16 -

The VOCabulary file

The VOCabulary file (VOC file) is considered to be a dictionary because it contains an

entry for every word, command and symbol that Revelation understands. Every account has a

VOC file. The VOC file can be customised by the user. For example a Swahili user might like

to use the word KAMA instead of WITH.

Revelation has the following major components:

(1) R/DESIGN

This is Revelation's 4th generation menu driven applications language. With R/DESIG None

can define file contents, generate programs to enter data into files, produce reports, etc, without

descending into programming.

(2) R/LIST

R/LIST is Revelation's query language. Although R/LIST is a powerful propositional calculus

based language, it has the limitation that only one relation(file) can be specified in a query. To

refer to fields in other files, this must have been anticipated and done in R/DESIGN through

the XLA TE function.

(3) R/BASIC

This is Revelation's program ming language. From within R/BASIC one can include an R/LIST

command or perform any DOS operation.

(4) R/LAN

R/LAN(Local Area Network) is the name of the networking version of Revelation. This

network uses network operating system semaphores to lock data at record level. These

semaphores allow shared files to be used simultaneously by several stations on the network.

- 17 -

(5) R/EDIT & R/TEXT

These are editors; R/EDIT is a line editor, while RjTEXT is a screen editor.

- 18 -

Chapter 3

Computer Graphics

3.1 General

The roots of computer graphics can be found in early attempts to use the Cathode Ray

Tube(CRT) as an output device instead of remaining purely part of a computer engineer's

tools35. However, computer graphics took on a new turn after Sutherland's epoch making work

on SKETCHPAD36. Since then, computer graphics has grown to become one of the fastest

growing areas in computer science37,38.

The CRT uses electric fields to generate a finely focused, high speed beam of electrons,

and to deflect the beam to various points of the screen surface so as to generate a visible trace.

To be used as an output device, the device is constructed with the usual CRT components plus

a secondary cathode located between the primary electron gun and the screen, see fig 3.1.

X,Y

[computer
1 signal ~

B...-------....

Fig 3.1 The Cathode Ray Tube

visible
image

The primary electron gun produces the writing beam that strokes the graph ic pattern on

the phosphor screen. The secondary cathode continuously emits a diffuse stream of low energy

electrons known as the flood beam. that causes the stored pattern on the screen to glow.

- 19 -

A single sweep of the beam produces a trace that is only momentarily visible because the

phosphor lacks persistence. This means that the same pattern must be refreshed, that is, traced

out repeatedly, in order to produce a steady picture. Because refreshing is time consuming, a

different method known as stroke-writing refreshed display, is used with interactive graphics

which require fast responses. A stroke-writing refreshed display system is depicted in fig 3.2.

X,Y
Isignal

computer +

r=
Fig 3.2 Stroke-Writing Refreshed Display

electro-static
storage tube

video

~B) scanne r signal """'"---_--.
:---r-e-a"""'ar--I

visible
image

An interactive graphics system * builds a com plete picture, and a display file that holds the

current view of the picture. The display file is placed in refreshed memory(a storage area in

either main memory or within the graphics terminal). The display processor(DP) reads the

contents of refresh memory and sends instructions to the vector and circle generators, which

convert the geometric descriptions into XY analogue voltages to control deflection of the

electron beam. The en tire image is stroked during the refresh cycle. A refreshed display does

not have an erase operation; instead the interactive graphics system changes the image by

replacing the contents of the display file.

3.2 Raster or Bit-Maps

The digital data stored in refreshed memory are the basis for the video signal in computer

graphics. The simplest data that describes an image is one bit for each pixel in the image. The

data are stored as an array known a a bit-map. One dimension of the array is the n urn ber of

• a graphics system is defined as a computer system with some sort of display

- 20 -

horizontal lines, and the other is the number of pixels per line. Typical array sizes are 512 X

512, 256 X 256, 1024 X 1024. The computer can change the value of any bit independently,

making each pixel an addressable point.

The resolution of the DP is the number of addressable points in the array. Obviously, the

higher the resolution the better the quality of the picture.

3.3 Drawing Text & Lines by Dots(Pixels)

By displaying dots in a rectangular array pattern such as the one in fig 3.3, it is possible to

produce a display of text. There is no single, widely accepted size for the dot array that defines

a character, but 7 X 8 and 6 X 8 are common.

The letter h in a
7 X 8 dots array

Fig 3.3 Displaying Text by Dots

To display a whole string of text, the dots for the string of text may be held in a list.

Lines on the other hand are plotted by displaying a sequence of points. Several

algorithms for line drawing exist. To visualise the concepts of line drawing in computer

graphics we will consider only one of them, the differential form.

The differential form assumes that the equation of a line is represented by a differential

equation as is explained below:

Suppose we want to draw a line from (XI,YI) to (X2,Y2)

Let

deha-X = X2-XI

- 21 -

delta-Y = Y2-YI

Then

dyl dx = delta-YI delta-X

Solving this differential equation with the given

boundary conditions, gives:

X(n) = X(n-I) + 1 with X(O) = Xl

Y(n) = Y(n-I) + delta-YI delta-X with Y(O) = YI

So X increases by one each time, and Y by delta-YI delta-X

Since V-display must be an integer, then

V-display = trunc(Y(n))

That is, truncate the value of Y(n) to get V-display

To get better values for V-display it is better to use

V-display = trunc(Y(n) + 0.5)

For example consider the line from (0,0) to (4,6). The (x,y) pairs obtained by this method are

shown in table below:

X(n) 0 1 2 3 4
Y(n) 0 1.5 3.0 4.5 6.0
V-display 0 2 3 5 6

- 22 -

The plot of these points is illustrated below.

7

•

o 1 2 3 4 5 6

Since these points are discrete, the computer graphics line is not as straight as the

mathematical line and it has a size(size of dots}.

3.4 Graphics Packages

A display file is effectively a program for execution by the DP. Although the display file

can be created by writing down the instructions to represent a desired picture, they are not

created this way. Instead a computer program is written to generate the display file. This is

called display file compilation because a program is generated by running another program

(compare with program compilation).

To illustrate display file compilation, consider the actions required to display a graphic

function:

LINE(100,150,500,600)

This is a request to add the line from (100,150) to (500,600) to the display file. The resultant

instructions are as follows:

set X
set Y

set delta-X
set delta- Y

100 < --- old pointer
150 position
400
450 < --- new poin ter

position

- 23 -

The set of functions that constitute the display file compilation may be used with a variety

of different application programs. They may be grouped as a package of subroutines(graphics

package) that application programmers load in programs.

3.5 Data Structures for Computer Graphics

In39
, Williams surveys data structures and their use in computer graphics. After

surveying several graphics systems, he points out that linked lists like ring structures, trees and

network structures are widely used and can support complex graphics systems. It is further

shown that more flexible structures like hierarchical ring structures are the best. Flexibility,

however, also poses the biggest problems. But the irony is that the more flexible a structure is,

the more difficult it is to implement. Also, the more flexible a structure is, the more pointers it

uses, and therefore, the more memory space it requires.

Because of the above mentioned problems with linked structures, other general structures

have been tried. Williams in 40 describes how relational data bases can be used in graphics

applications, and how user functions can be constructed as operations on relations. He also

showns that the use of relational data bases simplifies the handling of data but with some loss

of machine efficiency. Foley and van Dam in34 also support this view. But further adding that

in using relational data bases " ... there is no need to build and access linked lists or any other

structures. Instead the program mer can build on top of a general purpose facility by defining

tables of relations. Queries can be formulated to retrieve special n-tuples which is similar to

linked list pointer chasing, or enumerate all associations in a relation which is similar to looping

through an array or a linked list".

3.6 Computer Graphics Input Devices

A graphics input device captures data and makes them available to the graphics program s.

Many types of input devices exits, in this section a sum mary of the main features of some of

these is given.

- 24 -

(1) Alpha-numeric Keyboard

All graphics terminals incorporate a full alphanumeric keyboard as a standard feature.

However, keyboard techniques are not ideal for positioning and selecting. The keyboard is

generally used to enter non-graphic data in the graphics system.

(2) Light Pens

The main function a light pen is to point at graphics objects shown on a refreshed CRT.

The positional input called tracking, is accomplished by moving a cursor. A simple opening in

the tip of the pen perm its entrance of ligh t. The ligh t entering reaches an electric detector that

reacts by generating an electrical pulse. This electrical pulse is detected and used to de term ine

the position of the object.

(3) Digitisers

A digitiser measures the position of a point within a two dimensional area and codes the

measurement into XY coordinates, suitable for computer processing. The device consists of a

flat surface, the digitiser tablet and a positioning tool like a stylus or cursor or mouse.

Many variations of digitiser exists, some of these are:

Touch-sensitive digitisers

These use an ordinary pen in conjunction with a touch sensitive surface. The

surface senses pen movements as XY values

Sonic digitisers

Sound impulses generated by an electric spark at the point of the pen are

detected and used to determine the location of a point.

Light Detector digitisers

These equipment resemble a picture frame. A number of tiny light-emitting

diodes(LEDs) are installed along one horizontal and one vertical edge of the frame.

- 25 -

Light detectors are attached to the two edges opposite the LEDs. The rays of infra­

red light created by the LEDs is interrupted when the operator places a finger or pen

on the digitiser area. The photo-detectors signal the interruption to the digitiser's

logic, which generates the coordinates of the touched point.

(4) Joysticks, Trackballs & Dials

These are used mainly for cursor-symbol control instead of a light pen. Each of these

devices has two components, a handle and a sensor. (the only difference about them is the

type of handle used). The sensor passes input data in suitable digital form to the graphics

system.

(5) Buttons & Switches

Other input devices include buttons and switches. A switch is a input device that remains

in one of the two possible states until changed. A button is a special type of momentary switch

that rebounds after being pressed. A message is sent to the program when a button is pressed

or a switch is reversed. This message indicates the fact that data entry has occurred.

3.7 Computer Graphics Output Devices

These are devices that allow one to retain lasting results of the picture generated by a

graphics system.

(1) Pen Plotters

A digital pen plotter is a servo mechanism, an automatic feedback control system for

mechanical motion. Several types of these exists.

Flatbed Plotters

With these plotters the pen moves in x and y directions on a flat surface while

paper is held by an electrostatic charge.

- 26 -

Drum Plotters

The pen changes in x and y directions relative to position of paper, but it does

so by a combined movement of the paper.

Beltbed Plotters

These are a cross between flatbed and drum plotters. A continuous belt

connecting both sides of the flat vertical plotting surfaces moves in conjunction with

the pen.

Plot Back Plotters

A plot back plotter is a hybrid device that com bines a flatbed pen plotter and a

digitiser. It can be used as a plotter or as a digitiser, to input the coordinates of the

pen into a graphics program.

(2) Electrostatic Plotters

These depend on applying electrostatic charge to the paper, then either:

(i) the matrix-writing techniques or

(ii) the photoconductive plate methods are used

(i) Matrix-writing techniques

Produce an invisible image on the surface of the paper with a static electric charge and then

applying a liquid toner containing suspended carbon particles that become attached to the

charged areas to create a visible image.

(ii) Photoconductive plate methods

The image is produced in an internal CRT. The visible light from the CRT is transformed by a

photoconductive plate into a charge on paper. After an exposure time of several seconds the

toning and drying process is applied to the entire page and a visible image is obtained.

- 27 -

(3) Graphic Film Recorders

A graphic film recoder is simply a camera that photographs an internal CRT.

3.8 The CORE Graphics System

Recently there has emerged a proposal for a graphics standard, the Graphics Standards

Planning Committee's CORE system 41 . The CORE system was developed to make graphics

programs more portable. To this end it strives for device independence. It also aims to specify

only the basic graphics capabilities, providing a foundation for more advanced techniques. Both

these objectives make this standard a good model42.

The CORE graphics standard is not the only graphics standard available, there are others.

For example the Graphical Kernel System(GKS)43 is widely used.

Since the full establishment of data base technology, integration of graphics based

information with data bases has been vigorously sought. In relation to DBMS, graphics based

information has been used in three main areas:

(i) graphics interfaces, discussed in chapter 4

(ii) storing picture-based data, discussed in chapter 5

(iii) in multimedia databases, discussed in chapter 6

- 28 -

Chapter 4

User Interfaces to Data Bases

4.1 Why User Interfaces?

In the ANSI/X3/SPARC report28, an interface is defined as "a language accepted by

two(or more) processes for describing data communicated between them ". From this

definition, a user interface is, therefore, a program that allows man and computer to

communicate. But, why user interfaces? The need for user interfaces is explained better by

Penney44 in the following way: "The computer is a difficult beast to ride. The source of

difficulty lies not in the operating system nor in the organisation of data; though complex, these

are things that can be learned. As technology changes, they may require to be re-Iearned, but

the problem is still one of mental capacity and assiduity. The real problem is at the point of

contact between the human being, director, manager, clerk, etc and the computer system ".

Ever since people started using computers, much effort has been spent in finding ideal

user interfaces. Details of factors affecting man-computer communication will not be discussed

in this work. For these details, see45, 46,37.

With the firm establishment of data base technology, and the wide-spread use of data

bases in the offing, it was soon found out that most users of data bases will be not professional

computer staff but the casual user, the novice. Codd in47 and in48 explains the issue in more

detail. The casual user only uses the computer occasionally, so he need not learn the insides of

a schema or data dictionary. In short, he is not interested to know the structure of the data

base bu t on ly to get data from it.

The need for data bases to be used by novices, makes the problem of designing "user

friendly" interfaces of paramount importance.

- 29 -

4.2 Command Language Driven Systems

Data bases are normally accessed through some form of a query language. The user

issues request commands to the DBMS, and which in its turn does what the user requested it to

do. For relational data bases where no navigation is required to get data from the data base this

does not present any problems, however, for the network and hierarchical data bases this is a

problem. In such cases higher level commands in the form of program s are provided by

professional program m ers24.

To be user friendly, a command language interface must ideally be natural language

(because this is the language humans naturally use). But, as is well known, immense problems

exist in making computers understand natural language 49. Therefore, few natural language

interfaces to data bases exist, RENDEZVOUS developed by Codd48 is a good example. As an

alternative to natural language, English like formal languages have been designed in the hope

that these provide simple-easy-to-Iearn means of expressing primitive actions to obtain

information in data bases. Structured English QUEry Language, SEQUEL50, (later renamed

SQL) which was designed for people who have need for interaction with a large relational data

base but who are not trained programmers, is a good example.

Using the COUNTIES relation described in figure 2.2, formulation of the query:

find the names and sizes of counties whose

populations are greater than 100,000

will appear in SEQUEL as

SELECT NAME SIZE
FROM COUNTIES
WHERE POP> 100000

Using some of more mathematically oriented query languages which use range variables like

QUEL*, the formulation is:

• QUEL is the query language (relational calculus based) for the relational DBMS INGRES

Range of x is COUNTIES
Retrieve (x.NAME, x.SIZE)
where x.POP > 100000

- 30 -

The advantages of SEQUEL in terms of readability and ease of formulation compared to

languages which use range or existential or universal quantifiers is obvious.

However, the main drawback of command language interfaces is that the command

prompt provides little information as to the commands available and the format for using such

commands. Users must remember the syntax of the command and enter it directly from the

keyboard each time the function needs to performed. This intimidates novice users. What

intimidates them is that they have to take an action. They have to know ahead of the time

what commands they need.

Below are some of the other methods of making user friendly interfaces by providing

pleasant graphic interfaces and other methods rather than the sparse command line.

4.2 Menu Driven Systems

An operation menu is a list of operations from which one selects one. A menu driven

system is therefore a system where the user is given an operation menu to choose from.

When compared to command driven systems, computer menu systems are appealing

because they reduce memorisation of commands, reduce training, and structure the user's

decision makin gS1. Figure 4.1 is the main menu a user sees when he/she logs into the

Revelation data base. It is immediately clear from the menu, which commands are available to

the user. Together with the accompanying explanations, the user can easily choose what he or

she wants to do.

- 31 -

REVELATION LOGON MENU
14:14:08 OS NOV 1986

1. ATTACH Revelation Data Disk
2. HELP Menu
3. R/DESIGN Menu
4. LIST of Customers [ATTACH first]
S. A/R Menu [ATTACH first]
6. EXIT Revelation
7. INSTALL Revelation

SCNK

[Use Cursor Movement Keys to Highlight Selection]
[Press Ctrl-FS to go to TCL or type "TCL"]

Do process number 1 before choosing option # 4 (LISTing)
or # S (A/R Menu)

FS= Toggle MAIN/LAST menu Ctrl-FS= TCL
F9= END menu Return= Run menu option

Fig 4.1 Revelation Main Logon Menu

Figure 4.2 is the menu displayed if the user chooses option 2 in the main login menu.

Again, it is clear to the user the options open to him or her at this stage.

- 32 -

REVELATION COM MAN D S 14:16:38 05 NOV 1986

1. ATTACH 18. EDIT 35. SELECT
2. BASIC 19. FORM 36. SET-COLOR
3. BLIST 20. FORM-LIST 37. SET-CRT
4. CATALOG 21. GET-LIST 38. SET-FILE
5. CHANGE-PASSWORD 22. LIST 39. SET-LPTR
6. CLEAR-FILE 23. LISTFILES 40. SET-OPTIONS
7. COMPILE 24. LISTMED IA 41. SORT
8. COpy 25. LOGTO 42. SSELECT
9. COUNT 26. LOOKDICT 43. SUM
10. CREATE-ACCOUNT 27. MOVE 44. TERMINAL
11. CREATE-FILE 28. N AMEMED IA 45. TEXT
12. DELETE 29. PORT 46. TIME
13. DELETE-ACCOUNT 30. RDESIGN 47. WHO
14. DELETE-FILE 31. RECREATE-FILE
15. DELETE-LIST 32. RENAME-FILE
16. DETACH 33. RUN
17. DUMP 34. SAVE-LIST

Enter COMMAND reference number,"?" or "?number"

Fig 4.2 Follow on Menu After Option 2 on Main Menu is Chosen

Figures 4.1 and 4.2 show what are known as explicit menus, menus which supply an

explicit enumerated list of items from which the user selects by typing a number or letter. A

variant to this theme highlights or capitalises the first letter of the selectable item. The use of

icons is also a form of explicit menu.

While explicit menus posses obvious advantages over command driven systems, in some

situations explicit menus can themselves be inefficient. Em bedded menus51 , where the menu

items are embedded within the information being displayed in some respects represent an

improvement. In embedded menus, highlighted or underlined words or phrases within the text

become menu items, and are selectable by touch screen, cursor, or mouse methods. Figure 4.3

is an example of an embedded menu in which where selectable items are in bold capitals.

- 33 -

a database management system, DBMS of which

INGRES is an example, is a program that

coordinates several different users' access

to a collection of data.

A DBMS is important software for a computer

system. While balancing the different

requirements of different users with respect

to the same collection of data, a DBMS is the

tool that helps users manage their data, too.

The term APPLICATIONS PROGRAMS refers to programs that

solve real-world problems. Application software

contrasts with SYSTEMS SOFTWARE, which solves

problems that concern the computer.

Fig 4.3 Example of Embedded Menu

Embedded menus come in very handy in spelling checkers, program editors, and

interactive graphics systems where explicit menus potentially become very verbose, so their use

will take a lot of space on the screen.

4.4 Forms Driven Systems

Forms are an electronic equivalent of paper forms. Figure 4.4 is an example of a form.

- 34 -

Counties Information

name: ----------------------- Population:

X: Size:
y:

Fig 4.4 An Example of a Form

Forms assure ease of use in a variety of tasks because they enable a wide range of

activities to be performed without requiring that you know a special language or learn lots of

complicated procedures. In the INGRES product52, use of forms is called Visual Programming

because forms work is a highly visual process. With forms, one interacts with structures at

various positions on the terminal screen, employing tools that are simple and intuitive.

Form s driven system s are driven by fram es. A fram e is a com bination of a form an d an

operation menu, figure 4.5 is an example of one.

- 35 -

Counties Information

name: ----------------------- Population:

x: Size:
Y:

Help Add Delete Retrieve Update End < Command>

Fig 4.5 An Example of a Frame

Fram es can obviously have a variety of appearances. However, regardless of the

differences between frames, the techniques for making use of them is the same. These

techniques fall into the following few basic categories:

(1) Moving around the frame

Most terminals offer "arrow keys" that move the cursor from field to field in

the frame.

(2) Entering or editing data on the frame.

There are two basic instances in which data is entered onto a frame:

(i) entering data into a field, and

(ii) editing existing data in a field.

Whether it is entering or editing data, however, the fundamental procedures are the

same.

By use of the cursor keys, the cursor is moved to the required field and

overstrike typing is performed. This means that whatever text is typed it is accepted

as new data.

- 36 -

(3) Selecting and Executing Menu Operations

After entering data values, for example, one may want to add them to the data

base. By use of the cursor keys, the name of operation (eg ADD) may be selected

and execu ted.

4.5 Graphics Based Interfaces

It is widely acknowledged that pictures are superior in communicating information than

pure text. Because of this broad communication bandwidth, the potential for computer graphics

to act as friendly user interfaces was spotted early in the development of computers. It was

expected that, the power of computers to manipulate information, and the power of graphics to

communicate information will forge an ideal combination. This natural combination is

explained clearly by Ingalls in the following sentence53: "Qualitatively, people think with

images, and any system that is incapable of manipulating images is incapable of augmenting

such thought. Quantitatively, a person can virtually absorb information equivalent to millions

of characters per second, while the normal rate for reading text is less than 100 characters per

second". Foley and van Dam 34 support this view when they say that interactive graphics is "the

most natural means of communicating with a computer".

The development of Sketchpad36, and its success m handling computer-human

communication, enhanced the use of graphics in computer-human dialogues. Several user

interfaces which have exploited this feature are worth mentioning. These are Cupid54, Zloof's

Query-by-Example(QBE)55, and Ski56

4.5.1 The CUPID System

In the CUPID(Casual User Pictorial Interface Design) system, the user accesses

information in a data base by writing queries by aid of pictorial sym boIs. Instead of writing text

sen tences, the user draws diagram s on the screen using specially known sym boIs for relations,

item s, operators, etc.

- 37 -

CUPID is built on top of the relational DBMS, INGRES and the pictorial symbols are

compiled to an equivalent QUEL statement.

Using the relation COUNTIES shown in figure 2.2, the example query shown below is

represen ted in the CUPID pictorial Ian guage in figure 4.6.

Query:

write down the names and sizes of counties whose populations are greater than 100,000

NAME SIZE

. 4 6 CUPID Example Flg .

The advantages of this type of syntax are:

1 no un bounded text strings

POP

2 only constants are entered from the keyboard, thus

eliminating most spelling and typographic errors

3 user friendly

This makes formulation of queries easier and clearer.

- 38 -

4.5.2 Query By Example

Zloof's QBE on the other hand allows the user to access a data base by filling forms

displayed on the screen. The basic idea is that the user formulates the query by entering an

example of a possible answer in the appropriate place in an empty table. Each operation is

specified by using one or more tables; each such table is built up on the screen, with column

names being supplied by the system and the other parts by the user. Example elements which

are indicated by underlining are variables specified by the user and solved by the system during

query processing.

U sing the COUNTIES relation described in figure 2.2, figure 4.7 is form ulation of the

query:

Query:

write down the names and sizes of counties whose populations are greater than 100,000

COUNTIES

NAME X y POP SIZE

P. > 100000 P.

Fig 4.7 Query-By-Example Example

By typing the relation name COUNTIES on the empty form given by the system, the

system automatically fills in the column names. the P in the form instructs the system to print

those columns and in the POP column the> 100000 value typed is not underlined, so only

tuples with this value will be printed.

It is appreciated that this form of accessing the system enables the user to form ulate

queries without resorting to extensive use of dictionaries because the system also supplies some

information to the user when formulating a query instead of leaving everything to him. Thus,

- 39 -

QBE enables even non-experienced users get information from the data base.

Another form-based query language similar to QBE (but used to query pictorial data

bases) is Query-by-Pictorial-Example(QPE), this is discussed in section 5.4

4.5.3 The Ski System

Ski(stands for A Semantics-Knowledgeable Interface) was intended to be a naive user

interface, but at same time allowing access to the full facilities provided by the DDL and the

DML. During a session, the user is presented with a formatted screen. Figure 4.8 is a

simplified example of such a screen with only one relation appearing. On choosing a function,

the screen will change to display the requested results.

The screen is broken into a variable number of strips. The top strip represents one or

more parent types, which may be any of the types in the schema. The next strip represents

attributes of the parent types, etc. The screen therefore provides a medium for representing

the complicated structure of the schemas.

- 40 -

Help Report Data-View Re-draw Collapse Expand Exit

Paren t types
show
move
change
how related
Attributes
show
move
change
how related
Predicates
show
move
change
how related
Sub types
show
move
change
how related

Fig 4.8 Ski Formatted Screen Example

RELATIONS

COUNTIES

SHAPES

The user uses a mouse to control and choose Ski operations. While interacting with Ski,

the user uses the Ski operations to create a session view. The user selects schema components

of interest and peruses the schema for related information. The unique feature of Ski is that

this perusing is not performed navigationally but semantically.

4.5.4 The Spatial Data Management System

Another interesting graphics based user interface is Herot's Spatial Data Management

System(SDMS)57. This system is really an INGRES DBMS running under UNIXt and can be

accessed as a normal data base. The system, however, has the ability to compile data stored in

relations to pictorial form and store the pictures on a video disk using ready made icons, see

figure 4.9.

t UNIX is a trademark of Bell Laboratories.

Tuples in a
Relation

\

Icon -Class . -
Description Language

Pictures on
Graphical Display Surface

(video disk)

- 41 -

Fig 4.9 Text Data to Pictorial Data Compilation

icon

The user can process (update, query, etc) either of the two representations of the data

base; the data in tuples or the pictorial data on the video disk.

To view the data, the user uses a joystick to browse through the data on the video disk.

The system also allows the user to zoom in on any data that is to be examined in more detail,

making it appealing to both advanced and novice users. Zooming also encourages the user to

move through the data, getting more details without resorting to the use of any dictionaries.

- 42 -

4.6 Summary

This chapter has presented several ways of constructing user interfaces in human­

computer communication in particular how to access information in relational DBMS.

Data bases are normally accessed through some form of a query language in the form of

commands. The user issues request commands to the DBMS, and which in its turn does what

the user requested it to do. However, the main drawback of command language interfaces is

that the command prompt provides little information as to the commands available and the

format for using such commands. Users must remember the syntax of the command and enter

it directly from the keyboard each time the function needs to performed. This intimidates

novice users. What intimidates them is that they have to take an action. They have to know

ahead of the time what commands they need. To overcome the shortcomings of command

languages, other forms of interfaces have been tried. These are menu and graphics-based

interfaces.

There has been wide use of menus in many aspects of human-computer communication.

This is mainly because menu based systems are appealing (especially to the novice user)

because they reduce memorisation of commands and their formats. The other factor making

menus based systems appealing is that they can be programmed to be 'foolproof' in the sense

that the programming denies the user any chances of performing unauthorised actions. For a

system that is to be used by non-expert users this is also a very good feature.

The major drawback of menu based systems is that for the expert user frequent traversals

of familiar paths may become cumbersome. An alternative may be the offering of shortcuts or

command languages as a means of bypassing certain menus.

The motivating factor in the design of graphics based interfaces is the belief that pictures

enhance communication. Of the graphics based interfaces discussed in the chapter, Query-By­

Example has been successful and its ideas have been used in other systems like Query-by­

Pictorial-Example and Qu ery-by-Structure-Exam pie. These are discussed in sections 5.4 and

5.6.3 respectively. The ideas in the CUPID system have not been well received. No follow up

- 43 -

work has been done nor similar system has been designed. This can possibly due to the

complicated way in which the pictures in formulating a query have to be structured. CUPID

also does not have a help mechanism to the user. The user has to remem ber relation nam es

and domain names. This is opposed to the QBE system where when the user tills in the

relation name, the system helps him/her by providing the domain names.

The use of graphics in the design of interfaces has increased the ways of constructing user

interfaces. Graphics based iconic menus, em bedded menus and pop-up menus are widely used

now. Such interfaces are used in conjunction with a pointing device, for exam pIe a mouse.

Use of such menus has two advantages. First, it cuts down dram atically the num ber of key­

strokes the user has to enter. Second, the interaction is highly visual. This makes the hum an­

computer communication much more appealing, therefore much more user friendly.

- 44 -

Chapter 5

Storing Picture-Based Inform ation in Relational Databases

5.1 Introduction

The potential for applying computers to large m asses of pictorial inform ation, su ch as

remotely sensed earth resource data or medical photographs, leads to the necessity for storing

pictorial based information in data bases 58 , 59.

The use of relational data bases to store pictorial data is much more appealing because it

frees the data from any specific storage structures, thus providing means for extending the

lifetime of pictorial data by divorcing it from particular hardware. Furthermore, it allows

integration of shared data data bases that includes symbolic and numerical information 60 .

The other motivation for storing picture based information in relational databases is the

sim plification obtained in handling data structures in com puter graphics. See section 3.5, where

this issue was discussed at some length.

Several systems have been designed to assess the feasibility of storing picture based

information in relational data bases. In this chapter, a survey of such projects is made. The

systems discussed primarily store, manipulate, and retrieve the picture-based data and not the

pictures themselves. The pictures are generated on the display when the corresponding data is

retrieved and plotted. However, Lien and Utter61 describe how they designed an integrated

1m age Database Management System, the IDMS, which allows users to store, retrieve and

manipulate im ages. The system however, uses no database concepts in the normal sense of

DBMS.

5.2 The "Picture· Building" System

A project by William s and Weller62 , reports on the ability of storing both graphical and

non-graphical data in relational data bases. They report on the Picture-Building-System, a

- 45 -

system with a mechanism for vlewmg and interactively manipulating the graphical data VIa

pictures.

In this system, both graphical and non-graphical data are stored together. For picture

building purposes, domains have graphical meanings. For example in a relation there might be

a domain for COLOUR, INTENSITY, SCALE, X,Y, and Z(for position), etc. The system also

has a set of allowed XYZOPERATIONs for graphics functions, for example MOVE, LINE.

AREA, etc.

x

0
2
1
0

(a)

Figure 5.I(a) is an example of a relation that draws lines to form the triangle below it.

TRIANGLE

Y XYZOPERA TION

0 MOVE
0 LINE
2 LINE
0 LINE

Y

IL-_..L-___ X
o 1 234

(b)

Fig 5.1 Triangle Definition

Figure 5.2(a) is another relation that calls the relation in figure 5.1(a) to draw the shape

(the triangle translated, that is, shifted two units to the right) below it.

- 46 -

SHAPE

RELATION SHIFTX SHIFTY

TRIANGLE 2 0

(a)

Y

L-_~---"":I......-___ X
o 1 2 3 4 5

(b)

Fig 5.2 Translated Triangle

Such drawing is done by the graphics interpreter that traces througb any hierarchy of

.relations. Thus, the interpreter draws pictures from data stored in relations by use of the

graphical meaning of domains and XYZOPERATIONs.

The picture-building system also contains a correlation handler and a relations editor. The

correlation handler is provided to allow users to identify and manipulate displayed items. The

relations editor on the other hand, allows the user to interactively create, edit, and display

relations.

In addition to supporting relations as defined by Codd ins, this system also supports (i)

ordered tuples, and (ii) duplicate tuples. These features have been found to be vital when

storing graphical data in relations33 .

5.3 A Relational Schema with Colour & Texture

In 60 a relational schema for describing pictures having colour and texture IS described.

The system also includes symbolic and numerical information.

The approach used in this system to describe pictures is to analyse the picture contents in

a top down way. First the individual pictures are considered, and then the details contained in

them are broken down into individual picture points. For example. figure 5.3 is a relation of a

- 47 -

set of snapshots/ pictures. Each row, therefore. represents one picture.

SNAPS

SNAP#

1
2
3

DATE PLACE

74103 MENLO PARK
84115 MENLO PARK
76129 MOON BAY

Fig 5.3: Example of Snaps

SUBJECT NEG A TIVE#

CHILD 6
CLIFF 8

SEAGULL 6

FRAME#

10
3

After describing the pictures, objects are described next. Since pictures are 2-dimensional

projections of 3-dimensional objects. superposition orders need to be specified. A superposition

order is some ranking of the centre of mass with respect to its distance from the observer.

Figure 5.4 describes some objects of pictures in figure 5.3.

OBJECTS

SNAP# OBJECT# OBJECT NAME SUPERPOSITION ORDER

1 1 CHILD 1
1 2 TREE TRUNK 1
1 3 SHADOW 2
1 4 LADY 0

Fig 5.4: Objects

In the same way that pictures are superposed of objects, objects are superposed of parts.

This means that each object's details can be described considering it as a picture. so finding

superposition orders on it. More precise descriptions about any part of a picture can be got by

applying this process to that part. Figure 5.5 is a relation showing part superposition orders on

objects from t1gurC' 5.4.

- 48 -

PARTS

SNAP# OBJECT# PART# PART NAME PAR T SUPERPOSITION OR D ER

I I I HEAD 0
I I 2 HAIR '1

I I 3 COAT I
I 4 I FALLEN LEA VES I
I 4 2 LAWN 0

Fig 5.5: Parts

After describing parts, regions are specified. A region is defined as a connected set of

picture points with the same colour. Colour attributes are nam es or values of gray level. hue.

or saturation. The outline of such a region is called its boundary. Regions are the lowest level

of picture description. Figures 5.6 and 5.7 illustrate regions and boundaries respectively.

REGIONS

SNAP#

I
1
1

OBJECT#

I
1
1

Fig 5.6: Regions

PART#

I
2
3

COLOUR BOUNDARY#

PERSIMMON I
DARK BROWN 2
SAXE BROWN 3

BOUNDARIES

BOUNDARY#

1
1

1
2
2

- 49 -

POINT#

1
2

14
1
2

x Y

6.45 6.45
7.05 6.23

5.70 6.20
6.45 6.45
7.00 7.00

Fig 5.7: Boundaries

The last things to be specified in describing pictures are colour and texture. The most

common standard representation of colour is in terms of tri-stimulus values Red, Green, and

Blue. Figure 5.8 is a representation of colour in RGB system.

COLOUR

COLOUR CODE COLOUR RGB VALUE

001 SAXE BROWN 000808
002 BLUE 000006

Fig 5.8: Colour Codes

Figure 5.9 is an example of a relation of how texture is described in this schema.

TEXTURE

SNAP#

1
1

OBJECT#

4
4

PART#

1
2

Fig 5.9: Texture Description

5.4 Query-By-Pictorial-Example

- 50 -

TEXTURE#

8
10

TEXTURE NAME

TEXTURE OF LEAVES
TEXTURE OF LAWN

Chang and Fu 59 describe the form based relational query language, Query-By-Pictorial-

Exam pIe, QPE, for manipulating queries regarding pictorial relations as well as conventional

relations. Though closely modeled on Zloof's QBE, QPE has significant extensions to cater for

pictorial operations and pictorial queries.

The QPE facilities are described through illustrative exam pIes by considering the following

relations:

ROADS(FRAME, ROID, Xl, Yl, X2. Y2)

RONAME(FRAME, ROID, NAME)

POS(FRAME, XSIZE, YSIZE, XCEN, YCEN, LOC)

CITIES(FRAME, CIID, Xl, Yl, X2, Y2)

CINAME(FRAME, CIID, NAME)

Query 1

Print the names of roads in the same frame as city Lafayette.

The user can express the query by making entries in four positions ill two tables, as

illustrated in figure 5.10.

- 51 -

CINAME FRAME cnD NAME

10 LAFAYETTE I

RONAME FRAME ROID NAME

10 P.MAIN

Fig 5.10: Query 1 Formulation

The form ulation of this question is exactly the same as its form ulation in QBE. However.

query two below requires the additional facilities found in QPE and not in QBE.

Query 2

Find the portion of Interstate Highway 65 that IS enclosed within the cif\,

boundaries of Lafayette.

Pictorial operators are needed to finalise formulation of this query. Such pictorial

operators include INT, POINT, LINE and UNION. Letters are attached to the end of the name

of a pictorial operator to denote the type of the operands. The letters are P for point. L for

line, and R for region. For example:

INT -LR refers to the intersection of a line and a region

Figure 5.11 is the formulation of query 2 in QPE. Three intermediate relations R1, L1 and L2

are produced in the process of solving the query. L2, the third intermediate relation is the

solu tion.

Another category of pictorial operators found in QPE and not in QBE are those for finding

perimeters. lengths of lines or curves. areas of regions. ,md distances between two points.

Query 3 below characterises queries needing such operators.

- 52 -

Query 3

Find the length of Interstate Highway 65 that IS enclosed within the city

boundaries of Lafayette.

The solution to this query is obtained by applying the pictorial operator LENGTH-L to the

result of query 2, namely LENGTH-(L2).

CINAME FRAME CnD NAME

3

CITIES FRAME CnD

3 5

Rl Xl Yl

X Y

RONAME FRAME

10

ROADS FRAME CnD

10

Ll Xl

S

The final solution is L2 = INT-LR(Ll.Rl)

Fig 5.11: Query :2 Formulation

7

Yl

T

5 LAFAYETTE

Xl Yl X2

X Y Z

X2 Y2

Z W

ROID NAME

7 65

Xl Yl X2

S T U

X2 Y:2

U V

Y:2

W

Y2

V

- 53 -

Other facilities offered by QPE are:

(i) Image-sketch-relation conversion, whereby the user can sketch on the display data from a

relation or change a sketch on the display into a relation.

(ii) Pictorial example, whereby certain desired features such as shape can be plotted and used

to formulate queries in QPE, or interesting portions of displayed pictures can be pointed on the

display by moving a light-pen, tracker ball, or joystick.

For example consider query 4, whose formulation is given in figure 5.12.

Query 4

Find the name of the road I pointed on the screen

ROADS FRAME CnD XI YI X2 Y2

* 7 @ @ @ @

RONAME FRAME ROID NAME

* 7 P.MAIN

Fig 5.12 Query 4 Formulation

The special character "@" notifies the system that a pictorial exam pIe is being used and

the ,,*., notifies the system that the frame number of displayed image is used.

5.5 The Image Analysis & Image Database Management System

Chang63 describes the Image Analysis and Image Database Management System, IMAID.

This is an integrated system that can store and retrieve images or image based information

stored in a relational data base.

When an image is obtained. for example a LANDSAT image, it is processed by image

processing and pattern recognition functions to extract descriptions and registrations. These are

- 54 -

stored into a relational database, while the original picture is stored in a separate image store.

To process a user's query, either data in the database tables is used or the stored image

themselves.

If the extracted image descriptions are sufficient to answer the query then there is no need to

retrieve the original image. This has the advantage of reducing the volume of data processed.

On the other hand, if the stored inform ation is not su fficient, all im ages satisfying the selection

criteria are retrieved from the image storage and processed to required precision.

Data in the IMAID system is manipulated by the form based query language, Query-By­

Pictorial-Example, see section 5.4.

5.6 Other Systems

5.6.1 GEO-QUEL

Go et al in64 report the implementation of GEO-QUEL, a database with display

capabilities constructed on top of the INGRES DBMS.

In GEO-QUEL, all geographic data are treated as relations, thus very little special code is

needed to process the data as most tasks can be turned into interaction in QUEL, the DSL used

in INGRES.

5.6.2 The Geographic Information Systems Project

The Geographic Data Systems Project carried out under a joint study between IBM

Research and the County of Santa Clara designed, placed into experimental use, and evaluated

a prototype computer based analysis and display system for solving problems requiring

geographically related data65 .

5.6.3 Query-By-Structure-Example

1058, a DBMS for storing and retrieving relational structures is introduced. The system is

able to retrieve relational structures which are similar to an example structure or template.

This is called Query-By-Structure-Example, QSE. Although QSE follows in the same analogy as

- 55 -

QPE and QBE, it is accessed by applications program s only, so does not prom pt a user with a

template.

5.7 Conclusion

The example systems presented in this chapter illustrate two very import;mt points. First.

that the relational approach to DBMS can be successfully employed to hand pictorial data.

Second, that query languages need to contain special features that are capable of specifying,

retrieving and manipulating pictorial data.

However, these relational DBMS systems used for storing pictorial-data are not true

multimedia databases because they store attribute data only. Although these systems provide

functions to draw pictures and to manipulate them on the display, the pictures themselves are

not stored in the database.

6.1 Introduction

- 56 -

Chapter 6

Multimedia Databases

Multimedia databases, are databases which process various kinds of data:- numeric, text,

image, voice, etc. The motivation to design and build multimedia databases arises because data

is made of many different types. This is especially so in the office environment where

documents, reports, forms, and letters come in different form 66, and more often in spoken

form 67.

Most of the multimedia databases discussed do not follow the architecture of a traditional

DBMS, for example, they store documents in ordinary files.

It is a pity that most multimedia databases are not implemented in DBMS in order to take

advantage of services offered by DBMS such as concurrency control, crash recovery, and access

control. Several reasons are given to justify this68, 69:

(i) Queries in this environment may be different from queries in traditional DBMS.

(ii) Queries on the image and text part of messages are not often handled by traditional DBMS.

(iii) Users of office information systems may have very diverse backgrounds from the

sophisticated type to the naive. This reason is very difficult to uphold becau se even in

traditional DBMS such diversity of user expertise exists.

(iv) DBMS have traditionally emphasised data organisation and manipulation. Presentation of

data in devices with diverse capabilities has traditionally not been emphasised. This is

particularly important in the presence of bit map display capabilities with different gray levels,

colours, display sizes, etc.

For a longer discussion on why multimedia databases should not be implemented in

- 57 -

traditional DBMS see70•

6.2 Document Processing in a Relational DBMS

In 71, Stonebraker et al propose extensions or enhancements to a relational database

manager to support document processing. Proposed enhancements suggested are support for

variable-length strings, support for ordered relations, support for su bstring operations, and

support for new operators that concatenate and break apart string fields.

The aim of their proposals is not that text editing of database documents be performed

using the command languages of a relational DBMS. Rather, they propose DBMS facilities that

can effectively support a text editor run as an application program making calls on extended

DBMS facilities.

The context in which they present their constructs is the INGRES database system.

6.3 The Multimedia Office Filing System

In68 a system for multimedia messages is outlined. The system uses signature techniques

for fast filtering, miniatures, voice excerpts and game environment for effective browsing and

selection of the desired messages.

In this system, a message is defined as having a header and a contents part. When a

message is received, it is labelled and stored in a separate file.

ID CONTENT

header attribute text image voice

Fig 6.1 Structure of a Message

Messages are retrieved through a search of the file directories. For flexible retrieval, a

combination of (i) sequential scan, (ii) keyword searches and (iii) pattern recognition

techniques (for image and voice parts of the message) are used. Message retrieval facilities

- 58 -

consist of two parts; a filtering capability and a browsing capability. Filtering enables the user to

specify what he would like to see, while the browsing capability enables the user to pinpoint

from the filtered messages the ones he actually wants. The filter used is a conjunction of all

restrictions on the data, text, voice, and image values of the message.

When a user is using the system, the screen layout is divided into four parts as illustrated

in figure 6.2.

Command Menu

Text input and
Message Display Area output

or

Miniature
Filter Display Area Display area

or

Menu of Icons

Fig 6.2 Screen Layou t

The status of the display changes according to the mode. There are three modes:

(i) create/append - the user creates or appends to the filter

(ii) brows;ng - the user is playing the message abstractions(miniatures) for the messages that

are filtered by the system.

(iii) v;ew;ng - the user has just frozen the browsing of the miniatures to view one of the

- 59 -

messages in more detail.

The Office Filing System has been implemented using UNIX on a SUN computer. The

SUN computer has high resolution graphics (1024 X 1024), and a mouse facilitates input of

graphical inform ation.

6.4 A Multimedia Information System for an Office Environment

The paper69, describes an experimental multimedia information system for an office

environment being developed in the University of Toronto. In the paper, issues related to

internal representation, presentation and comm unication with the outside world, content

addressability in the various data types, user interface and access methods are discussed.

Multimedia documents in this system are known as messages, and their structure is

similar to that shown in figure 6.1.

The system is accessed by the user through a screen layout as illustrated in figure 6.2.

The filter used to retrieve messages can be acorn bination of:

a. message type

b. conjunction of attribute values and attribute ranges

c. conjunctions of disjunction of words appearing in the text part of the

message

d. existence of voice

e. location of message

f. conjunctions of words appearing within the text related to the im age

g. for statistical images(pie-charts, graphs, tables) the existence of

attributes, attribute values

To retrieve messages, the system uses content addressability, which means that, the user

specifies the content of messages that he wants to see (or not to see). This information is

specified in his query. For example, the query:

Give me any documents that have some statistics on IBM.

Such a query will appear as:

.im age type statistical

.IBM in text part

6.5 The MIN OS System

- 60 -

MINOS, described in 72 is an object-oriented multimedia information system that provides

facilities for creating and managing com plex multimedia objects.

MINOS is very similar to the systems described in sections 6.2 and 6.3. Multimedia

documents in MINOS are organised as is illustrated in figure 6.1, and the user works in an

environment similar to one shown in figure 6.2. However, MINOS contains extensions for

zooming, narration, transparencies, annotations, and versions.

Zooming

When the mouse is at a given point in that page, the effect of this is to expand the page at that

point. For pages with images with more detail, this results in making the image more visible.

Narration

Is a voice session that is associated with a particular page of a multimedia document. It is

automatically played when the user requests to see a particular page.

Trans paren ci es

This superimposes pages. It can be very useful in overlaying two picture pages, or a picture

with explanations either in sound or just text.

Process simulation

This specifies that a set of pages be turned au tom atically when the user looks at the first page

- 61 -

Such processes may be used to explain complicated events and their interrelationships.

Annotations

These are further explanations, notes, more detailed descriptions, etc on particular documents.

When annotation is selected, users can browse through the annotation in the same way in

which they browse through the pages of the previous document.

Versions

This is a way of including alternative meanings to a word or text. These provide yet another

way of finding information, thus increasing the man-machine communication.

The prototype of this system runs on a SUN -3 workstation running UNIX. An Instavox,

directly addressable, analogue device is used to store voice segments.

6.6 The Muse System

Gibbs et al in66 describe an experimental system that features flexible document retrieval,

a distributed architecture, and the capacity to store very large documents.

This system differs from the systems discussed above because it addresses the problem of

distribu tion.

Muse has three major components:-

a. document servers

These support the basic filing and query processing functions.

b. set of clients

These translate user operations to document server requests. These are the user workstations.

c. one server

This maintains information about network addresses of document servers and the distribution

of document types.

- 62 -

Figure 6.3 roughly shows the display when a client is initiated. The screen is divided into

six su bwindows, named a, b, c, d, e, and f.

Window (a) is used to enter queries and to display document attributes.

Window (b) displays a small set of commands that are always available.

window (c) is for command selection and parameter specification.

window (d) is the display window

window (e) is for scrolling, used for browsing through a document.

window (f) is for printing system messages, error messages, help messages, etc.

Document type: BOOK EXIT (List)
HELP (display)

Document title: madness RESET (drop)
(a) (b) document name:

fractal.d

(c)

COMMANDS

status

local operations
---.------------
query operations

(d) (e) (f)

Fig 6.3 Initial Muse Screen Layout

Muse is implemented on six machines connected by ethernet; a DEC VAX 11/780, a

Massomp MC-500 workstation and four SUN-2 workstations. Each machine runs UNIX.

- 63 -

6.7 Conclusion

This chapter has discussed four examples of multimedia database systems. These are

experimental systems designed mainly for the office environment. They serve to illustrate two

points. First, that the user-interfaces to these systems are far more complex than those in

traditional data base systems. Second, the nature of the different types of data involved

(sound, text, pictures, etc.) requires considerable thought to be given to the design of

appropriate data base su pport facilities.

These multimedia systems, however, have one drawback. They are not true DBMS. This

is because they do not follow the agreed principles of DBMS design and implementation (as

discussed in chapter 2) - for exam pIe, they store data in conventional files.

Although it is not wrong to implement a stand alone data base, such an implementation

misses the services offered by DBMS. Such services include concurrency control, access

control, redundancy control, and indexing facilities. A stand alone data base would, therefore,

need these services to be provided for in its implementation. Since such facilities can be

obtained from DBMS, providing them means wastage of resources which could be used

otherwise. The consequence of this is that such systems take much longer to perfect.

For example, in the MINOS so far there is no concurrency control. Thus the system is

used by only one user at a given time from a SUN workstation. To control duplication a facility

called document formatter is used.

Indexing in MINOS is rather subtle. The multimedia document file is a set of files

organised within a Unix directory that has the name of the document. This set of files contains

a synthesis file, the document descriptor, a composition file, a data-directory file, and a set of

data files. The data-directory file contains the information about the various data files.

Document creation starts by creating the synthesis file. It contains the names of various

data files. The com position file is also created by concatenating inform ation in the syn thesis file

with the data of those data files that have been referred in the synthesis file. The document

descriptor file indicates the location of the physical location where the data in the composition

- 64 -

file are. The document descriptor file is then the index in the MINOS.

Unlike MINOS, The Muse system can be used by several people concurrently. This is

possible because Muse is a distributed system. Documents are stored in a document server and

users access the inform ation from other workstations in the local network. However, only

queries can be processed on-line, updates must be done off-line.

The Muse system uses a B-tree package to build indexes with each index associating

search keys(the document attributes) with physical document identifiers.

- 65 -

Chapter 7

Generation & Manipulation of the Pictures

This chapter discusses two issues in relation to storing bit-mapped pictures in a database:

(i) the ways and methods of generating the bit-mapped pictures used

(ii) how the pictures are manipulated or processed before and after storing them in the

database. In particular, it is described how the pictures are stored in the data base files, and

how they are retrieved from the data base. By treating the pictures like ordinary text fields. it is

shown that it is possible to manipulate them by the normal functions provided by the data base

management system.

The chapter ends with a look on the performance aspects of the picture manipulation

functions. Specifically, the speed of picture processing versus efficient use of storage space is

considered.

7.1 Picture Processing for Printing

Figure 7.1 is a summ ary of the processing used to print bit-m apped or raster pictures onto

a la."ler printer. After generating the picture, it is stored in a file. From this file a program

known as a formatter, is used to send the picture to a laser printer for printing.

prime

- 66 -

PICTURE
GENERATION

STORE BIT-MAP
PICTURE IN A FILE

FORMATTER

STORED IN
A FILE

printed later

Fig 7.1 Formatting Bit-Mapped Pictures for Printing

Because the pictures are already in bit or dot form, using the 'sixel' printing protocol (see

Appendix 5), only a few parameters need to be known by the formatter to dump picture dots

onto the laser printers used. Such parameters include:

(i) how to initialise a page

(ii) positioning of picture on the page

(iii) size of printed picture

All these values can be obtained from the progrmnmer's manual or technical manual of

the laser printer used.

- 67 -

7.2 Data Used and Its Sources

GIMMS

GIMMS (Geographic Information Systems) see 73, is a user-orientated, general purpose

(geographic, cartographic, graphic) processing system for use in a wide variety of applications.

It is primarily of use in the analysis of geographic data by generating maps, graphs and tabular

information of a thematic kind. However, it may also be used simply as a graphics package for

drawing graphs of various kinds (for example line graphs, histograms, scatter diagrams, or pie

charts).

7.2.1 DIGITISED MAPS

In order to assist with the mapping of geographically based data, particularly census data,

NUMAC* acquired a set of digitised outline maps, suitable for input into GIMMS. Each

county in England and Wales is available as a separate file. The initial maps have wards as their

sm allest unit, with the order of the wards within these files being identical to the order in which

the wards occur in the 1981 census files currently available at NUMAC.

The files as they stand are GIMMS internal files and can only be used with GIMMS for

mapping. The wards exist as AREA files with a resolution of 10 metres. Though GIMMS files

are normally used internally within the package, the package provides a facility to dump all, or

part of, a GIMMS file in a character form suitable for data transfer or for diagnostic analysis.

Two files (GB.COUNTIES and GB.OUTLINE) were dumped and their data transferred for use

in our research.

The GIMMS file GB.COUNTIES was used to generate the coordinate vectors (X, Y) for

the UK counties. These vectors were then separated such that vectors for each county were put

into a file .

... NUMAC stands for Northumbria Universities Multiple Access Computers. is a network of computers for
the Universities of Newcastle and Durham plus some Polytechnics in the N.E. of England

- 68 -

Coordinate vectors from the file G B.OUTLINE were used to get the digitised xy points

for the UK map. These were also put in a separate file.

lt is data in these vector files that were loaded into Revelation files (relations SHAPES

and COUNTIES illustrated in figures 8.5 and 8.6 respectively) and used to generate county

maps and the UK map in this research.

7.2.2 Census Data

SASPAC(Small Area Statistical Package) is a computer package which is designed for

analysis of 1981 Census Special Work-place Statistics, see 74 . 75 . Data files in this package are

mostly viewed as one enormous table with each row in the table used for a census area and

each column in the table used for a census variable. Through SASPAC, the user selects areas

of interest (rows of the table) and the counts of interest (the columns of the table). The

selected areas and counts may be manipulated in various ways.

Only a very small subset of this data has been used in this research, only five of the first

tables. The data was summarised into counties. (that is data of boroughs in one county were

added up to generate a county total for each variable). This data was put in the Smart*

worksheet CENSUS and by use of the Smart Spreadsheet16 Graphics function, used to generate

diagranls, charts, and other business diagranlS. See section 7.4.2.

SASPAC data was also loaded into the Revelation file COUNTIES, figure 8.6. Data in

this relation can be retrieved following a user query in R/LIST. put into a worksheet and used

to generate charts, and other pictures in Smart.

7.J The Display Processor Used

Before a discussion of how the pictures are generated is made, it is better if the display

processor used to display the pictures on the terminal is briefly described now.

import.mt because the display processor has a very strong bearing on:

'" Smart is a trade mark of Innovative Soft. Inc.

This IS

- 69 -

(i) size of the pictures

(ii) quality of the pictures

The hardware supporting graphics in our case study system is the the Hercules Graphics

Card. This card offers 720 pixels by 348 on the IBM monochrome display. It uses 6..+K of the

video buffer. This 64K is divided into two approximately 32K buffers for each of the t\\'o

graphics pages the card offers. The screen page is displayed on the monitor, and the RAM page

is in memory. Drawing can be done on either screen, but only the monitor screen is viewable.

the RAM screen is invisible.

7.4 Picture Generation

Three major systems are used to generate the bit-mapped pictures. These are:

(i) Turbo Pascal* Programs

(ii) The Sm art Spreadsheet

(iii) The Microsoft Windows** Paint program.

Details of the main features of these systems are described in the following three

su bsections and in Appendices 2-4.

7.4.1 From Pascal Programs

Turbo Pascal programs 77.78, were written to generate the pictures. Graphics facilities

were obtained from the Turbo Pascal graphics package, the Turbo Graphix Toolbox 79. This

package contains most of the functions recommended by the Graphics CORE System 41
,42,

Pictu res were generated either from m athem atical procedures, like cu rve fitting, histogram s, etc

or from coordinate pairs obtained from digitised maps.

All drawings C"ill be displayed either on the full screen, or in windows. Drawings can also

be on a RAM(virtual) screen in memory, without display. then move the resulting images to

the displayed screen when desired .

... Turbo Pascal is trade mark of Borland Inter. Inc

.. Microsoft Windows is a trade mark of \lilrosoft Corp.

- 70 -

Appendix 4 gives details on how to fit screens to windows, and how coordinates are

mapped onto screens and windows.

The generated image is saved in a DOS file by saving into it the appropriate window

contents. From this file, the picture is processed as described in figure 7.2.

7.4.2 With the Smart Spreadsheet

The Smart spreadsheet76 is a powerful electronic worksheet. It can function alone or as

part of the Integrated Smart Software System 80.

The general features of the Smart Spreadsheet are

1) a worksheet can be as large as 9999 rows and 999 columns

2) each cell can be 15 digits long, or 99 characters for text cells

3) the programs can be driven interactively by commands or through the so called "projects".

The Sm art Spreadsheet provides a built-in business! scientific calculator which perform s all

functions available with the worksheet. These functions include mathematical, trigonometric,

statistical, business, date and time, etc.

Of most interest to our work, the Smart Spreadsheet has a Graphics function capable of

making:

2 and 3-D bar charts

line and scatter graphs

com bination of bar and line graphs

pie and cake charts

area or layer graphs like

high-low charts

histograms

making "slide shows"

It is this graphics facility that will be used in this work to generate bit-m apped pictures

- 71 -

from worksheets.

7.4.3 By Microsoft Windows PAINT program

By use of a mouse, any picture or diagram can be drawn on the screen in free-hand or by

use of drawing tools, with the aid of this program, see 8!. The program is able to save the

picture into a DOS me. On leaving Windows, the picture in the DOS file is later processed as

described in figu re 7.2.

7.4.4 Comments on the Generation Methods

Each of the three methods has its own strengths and weaknesses. For exam pie the Sm .ut

Spreadsheet method is very good for generating business or statistical charts/ graphs like pie­

charts, histograms, etc. On the hand, though such charts can be generated from progran1s,

however, the process is cum bersome. Generating maps from digitised coordinates, however, is

ideal for programs. Whereas, because of the free-hand nature of drawing pictures in Windows,

the program is unsuitable for generating charts or maps. However, the progrmTI is ideal for

editing pictures drawn in the other systems. Though the Smart Spreadsheet contains a graphics

editing facility, the facility is not as good and difficult to use.

In this work the three systems are used in the following ways: although such use IS not

exclusive.

Turbo Pascal programs

To generate maps from digitised coordinates

Smart Spreadsheet

To generate statistical or business charts from worksheets. for exan1ple census data.

Windows Paint

To edit pictures generated from the other sources. Because it allows free hand sketching, the

user can use it to put personalised headings, captions, etc.

- 72 -

7.5 Storing the Pictures in a Database

Figure 7.2 is the general processing done before a picture is stored into the database.

type-l
formatters

(laser printable)

picture
generation

leave picture
in a file

Fig 7.2 Picture Formatting for Database Storage

From figure 7.2

(i) type-l formatters

type-2
formatters

(screen displayable)

are programs that convert the bit-mapped picture into a laser printable picture. This is the

process described in figure 7.1. By supplying an aspect ratio and a scaling factor. the picture can

also be arbitrarily scaled by these programs. Pictures from the different sources use slightly

different formatters, but the basic functions are the same.

(ii) type-2 form atters

are programs that put a header on the picture file so that it can be displayed on the screen from

a Tu rbo Pascal program withou t going back into the generating program.

- 73 -

In Revelation, the pictures are stored as TEXT fields. (Note that Revelation distinguishes

between text fields and alphanumeric fields*) Two principal relations, similar in structure, are

used. These are LASERPICS for laser printable pictures, and SCREENPICS for screen

displayable pictures. The schema of these relations is illustrated in figure 7.3.

PICNAME PICTURE

PICNAME in both relations represents the picture name and the key

Fig 7.3 Picture Storing Relations

7.6 Storing Binary Programs in Database

In addition to storing bit-m apped pictures in the database, binary program s are also stored.

These binary programs are compiled from source languages such as Turbo Pascal, 'C' or

assembly. Binary programs are stored in the relation PROGRAMS, whose schema is illustrated

in figure 7.4. The program is stored as a TEXT field and the program name as an alphanumeric

field.

'" The only distinction between text and alphanumeric fields found in the Revelation manual is the following
statement "R/LIST will break on spaces when printing a text field that is too large for the column"

- 74 -

PROGNAME PROGRAM

PROGNAME in the relation represents the program name and the key

Fig 7.4 Program Storing Relation

The file PROG RAMS contains only binary programs compiled outside Revelation, nam ely

in DOS. R/BASIC programs, which are internal Revelation programs, are compiled and their

binary programs are CATALOG-ed to become part of the vocabulary. That is. their names are

inserted into the VOC file. These R/BASIC programs then drive (through the PCPERFOR M

instruction) the binary programs in the file PROGRAMS to perform tasks which R/BASIC

programs cannot do. Such tasks are mainly the graphics facilities. (Note that Revelation

provides no graphics facilities of its own).

To clarify what has been described in the previous paragraph see figure 7.5, which is an

exam pIe of an R/ BASIC program, called VIEW, for displaying pictures on the screen. Typing

VIEW at the Terminal Command Level(TCL) will invoke the Turbo Pascal program (from the

file PROG RAMS) for displaying the pictures on the screen. The actual comm and is:

:VIEW picture-name

where picture-name is the name of the database picture to be displayed.

7.7 Picture Manipulation in the Database

The pictures are processed by the ordinary commands found in the data base management

system. For exam pIe the following R/LIST query comm and will produce the picture called

WOR LD .MAP on the laser printer.

:LIST LASERPICS "WORLD.MAP" ID-SUPP COL-HDR-SUPP SUPP (P)

We only need to SUPPress default headers, footers. and the key to get the picture printed

- 75 -

properly.

When displaying the picture on the screen, however, the picture bytes have to be \vritten

into a DOS file. From this file, a program then displays the picture on the screen, see figure

7.5. This is necessary because Revelation does not provide graphics facilities.

- 76 -

**
**** get file name from command line a<; second field
STRG = TRIM(@SENTENCE)
PICNAME= FIELD(STRG, ' '.2)
IF LEN(PICNAME) < 1 THEN

PRINT "
PRINT "PICTURE FILENAME MISSING"
PRINT 'USAGE IS: VIEW picture-name"
ABORT

END
**** open file of screen displayable pictures
OPEN", 'SCREENPICS' TO FILE.PIC ELSE

PRINT "CAN'T OPEN SCREENPICS"
ABORT

END
**** extract nam ed picture from file
READ PIC FROM FILE.PIC,PICNAME ELSE

PRINT "PICTURE ":PICNAME: "NOT IN DATA BASE"
ABORT

END
**** write picture bytes to D OS file PICTURE
OSWRITE PIC TO 'PICTURE'

**** open programs file
OPEN ", 'PROGRAMS' TO FILE.PRG ELSE

PRINT "CAN'T OPEN FILE PROGRAMS"
ABORT

END
**** extract dislaying program
READ PROG FROM FILE.PRG,''LOADWIN.COM'' ELSE

PRINT 'PROGRAM LOADWIN.COM NOT IN DATA BASE"
ABORT

END
**** write displaying program to DOS
OSWRITE PROG TO 'PROG.COM'

**** display picture on screen
PCPERFORM "PROG.COM PICTURE"
STOP
END
**

Fig 7.5 Program VIEW for displaying pictures

In order to display a picture on the screen. (that is. after typing VIE\\' "ic(ure-nome at

the terminal command level) the follo\\'ing are performed in~ide program VIEW.

til select picture to be displayed from database

(ii) write selected picture hytes to a DOS file

- 77 -

(iii) select the displaying program from database

(iv) write displaying picture to a DOS file

(v) display picture through PCPERFORM instruction

The only limitation when selecting and extracting a picture or a program is that the whole

record must be extracted. Extracting them as fields does not work because Revelation software

truncates it when it encounters either character FE or FF(hexadecimal) because these are field

and value markers. But these characters can occur in any TEXT field.

7.8 Performance Comparison

This section tries to monitor the performance of the picture manipulation functions

described in the previous sections. Such a process is important because in most systems, there

are always trade-offs to be made especially, between storage space and execution time. One has

to sacrifice one for the other. In our case, the following tradeoffs will be considered:

(a) whether to store the bit-mapped pictures or

(b) the data the pictures were generated from.

These are to be weighed against the speed of getting the picture displayed on the screen.

For exam pIe for digitised coordinates, if the file of coordinates is sm aller than the

corresponding bit-mapped picture, then less space stores the coordinates than storing the actual

picture. But a question arises, what about speed of getting the picture displayed? Similar

questions can be asked for large coordinate files.

Two files of digitised maps used later as data in picture production and performance

assessment need special mention here, these are:

(I) A file containing the coordinates of the world map. This file contains 18932

coordinates(vectors), and

(2) a file containing the coordinates of a triangle. This file contains 4 vectors.

Experiments (a) to (s) were done to measure performance in relation to use of storage

space and CPU execution time in manipulating pictures. R/BASIC programs were executed in

- 78 -

Revelation in all the experiments. The experiments can be classified into several groups

nam ely A, B, C, D, and E. Each of these is described below.

(A) Maps with a Large Number of Coordinates

Here we need to check the speed of generating against the speed of displaying a stored

picture. The coordinates of the world map described earlier were taken as an example. The

following cases were considered:

(a) generate map on entire screen with coordinates on floppy disk

(b) generate map on 1/4 of screen with coordinates on floppy disk

(c) generate map on entire screen with coordinates on hard disk

(d) generate map on 1/4 of screen with coordinates on hard disk

(e) display full screen map with image file on floppy disk

(f) display 1/4 screen map with im age file on floppy disk

(g) display full screen map with image file on hard disk

(h) display 1/4 screen map with image file on hard disk

(B) Maps with Small Number of Coordinates

Here we need to check the speed of generating against the speed of displaying the

resulting stored picture. The file containing the coordinates of a triangle, described earlier was

used as an example. The following cases were considered:

(i) generate triangle on entire screen with coordinates on floppy disk

(j) generate triangle on 1/4 of screen with coordinates on floppy disk

(k) generate triangle on entire screen, coordinates on hard disk

- 79 -

(I) generate triangle on 1/4 of screen. coordinates on hard disk

(m) display picture of triangle onto screen

(C) Displaying Pictures from a Revelation Database

The aim here is to check speed of displaying pictures stored in data base. Becau se

Revelation does not provide graphics facilities, pictures in the data base must be retrieved and

put into a DOS file, then displayed from there. The DOS file into which the picture can be

written can either be on hard disk, floppy disk, or virtual disk. (Note: a virtual disk in this case

means an area in memory above the DOS limit of 640K which is referenced as a drive. The

only difference between the virtual disk and a norm al disk is that when there is a power lost

everything on the virtual disk is erased). So the following were considered:

(n) Picture file put on hard disk

(0) Picture file put on floppy disk

(p) Picture file put on virtual disk

(D) Scaling Pictures by Constant Factor

The aim here is to measure the tinle taken to scale a bit-mapped picture stored in a file.

- 80 -

D
larger sm aller

(q) Enlarging the Picture of World to Twice its size

If j is scale factor, the image expansion of a bit-mapped picture is done by duplicating

each row and column j times.

(r) Shrinking the Picture of World to Half its size

If j is the compression factor, a simple compression algorithm is used which selects every

j-th column and every j-th row.

(E) Retrieving pure text from a Revelation Database

The aim here is to check the speed of text retrieval from the data base and com pare it

with the speed of displaying pictures. This is important because, text retrieval is the only query

processing facility provided in Revelation query language R/LIST. This test will give an

indication of the speed of query processing in the database, therefore unabling us to say

whether picture processing is fast enough.

(s) Retrieving 458 records from Revelation file.

There is no magic about the number 458 records, it only happens that it is the number of

the records in one of files in the Revelation Demonstration kit. This kit contains a set of data

- 81 -

used as examples used when teaching or learning Revelation.

Elapsed Time in sees.
Buffers

15 2
Experiment trials trials

1 2 3 avg. %err 1 2 3 avg %err

(a) 611 611 614 612 0.3 614 615 613 613 0.3
(b) 611 610 615 612 0.5
(e) 450 456 453 453 0.7
(d) 450 452 451 451 0.2
(e) 14 15 15 15 6.7 15 14 15 15 6.7
(f) 7 7 7 7 0.0
(g) 5 5 5 5 0.0
(h) 4 4 4 4 0.0
(i) 4 4 4 4 0.0 4 4 4 4 0.0
(j) 4 4 4 4 0.0
(k) 3 3 3 3 0.0
(1) 4 4 4 4 0.0
(m) 5 5 5 5 0.0
(n) 9 8 9 9 11.1 10 10 10 10 0.0
(0) 19 20 18 19 5.3 22 24 26 24 8.3
(p) 7 7 7 7 0.0 9 8 9 9 11.1
(q) 63 60 57 60 5.0 64 64 67 64 4.7

(r) 20 20 19 20 5.0 21 23 23 23' 8.7

(s) 27 27 27 27 0.0
-

Fig 7.6 Results Table

7.9 The Results

It is important to stress that the main objective of these measurement experiments was to

monitor the performance of the picture processing function as implemented. The aim being to

see how good or bad the system performs on this hardware. On the contrary. the aim was not

x to prove that flopyy or hard discs are slower than virtual discs. --
The results(elapsed times) in figure 7.6 were obtained by the use TIME() function in the

Revelation DBMS which gives the time of the day in seconds. Elapsed time was found by

subtracting the time of the day immediately before the activity was started from the time of the

day immediately after the activity was completed.

- 82 -

Average elapsed times are given in the column labelled avg. These average times. given

to the nearest second, were obtained by averaging the elapsed times measured by repeating the

experiment three times.

The column labelled o/oerr in figure 7.6 gives the maximum error of the elapsed times

from the average. As it can be seen, the difference in elapsed time from experiment to

experiment did not differ much. The maximun difference is about 11.1 percent.

The measurements given when the number of buffers is two are for comparison purposes

only. The aim was to see what happens when an unrecommended value for the num ber of

buffers (the manual says between 10 and 20) is used.

- 83 -

7.10 Observations, Recommendations & Conclusions

7.10.1 Observations

(1) Picture operations from floppy disk take longer than (about 111.1 percent more) those on

hard disk for this hardware.

(2) It is faster (about 28.6 percent more) to process pictures on virtual disk than on hard disk

for this hardware.

(3) It takes about 7 seconds to display a picture from the data base onto the screen.

(4) It takes more time to draw a picture/map from many vectors than one from fewer vectors.

This is also expected.

(5) Drawing speed does not depend on window size, see experiments (a) and (b), (i) and (j).

These show that the speed of graphics package function to map world coordinates to window or

screen coordinates does not depend on window size.

(6) For pictures generated from very few vectors, it is a bit faster to generate the picture than

to display its stored image. In the triangle example, generation speed is faster by about 25

percent than displaying speed. However, for pictures generated from relatively many vectors, it

takes much more time to generate the picture than to display its stored image. In the world

map example, generation time is 8000 percent more than the time needed just to display the

stored picture.

(7) In the DOS manual, it is recommended that for data base applications the number of

buffers should be between 10 and 20. In the above experiments the number of buffers was

initially set to 15. Some of the experiments were repeated when number of buffers is 2, the

default. The results show that the values obtained are consistently higher when the num ber of

buffers is two than when the number of buffers is fifteen.

7.10.2 Recommendations

(i) Pictures should be displayed from their stored bit-maps and not generated from

- 84 -

digitised map vectors by programs.

Although this will mean more storage space for pictures with relatively small number of

vectors, this strategy will give a uniform view of how pictures are processed. Note: pictures

from Microsoft Windows are not generated from vectors, but are drawn on the screen by use of

a mouse. Furthermore, the loss in space is not critical since each picture file is less than 32K

long. (Remember that the display processor used can generate pictures whose maximum size is

712 pixels by 350 pixels.)

(ii) To increase processing speed all temporary files should be written to virtual disk and not to

the hard disk. This will improve processing speed by about 28.6 percent.

(iii) Pictures should be generated in sizes they are mostly likely to be used than scale them up
I\.

or down later because scaling bit-mapped pictures is expensive in terms of CPU time, while

during picture generation, generation time does not depend on window size.

(iv) The 7 seconds needed to display a stored picture on the screen though slow for purely

interactive graphics applications34,53,42, where almost instant response is required, is adequate

for applications where retrieval of stored pictures is needed.

7.10.3 Conclusions

It has been shown that it is possible to store pictures in a relational data base. By treating

the pictures in the data base as ordinary text fields they can be manipulated by the functions

offered by the data base management system. It has further been shown that the performance

of such a system is adequate for systems where retrieval of stored pictures is needed.

This storage and retrieval of pictures and binary programs has been implemented on an

IBM-PC within the environment offered by the MS-DOS operating system. Transporting the

overall system to other environments should therefore, in principle, not be too difficult.

Indeed, porting it to other relational DBMS environments, (for example, INGRES) should not

pose too many problems provided the target environment has a graphics package that follows

the Graphics CORE Standard.

- 85 -

Porting it to an environment that does not follow the Graphics CORE Standard raises the

question of the portability of this implementation from an environment based on the Graphics

CORE Standard to a system based on, for exam pIe, the GKS environment. When porting to a

host system that follows the GKS standard, two outcomes are possible. First, if the new system

is programmed in pure GKS, then this will obviously not pose very many problems. Second, if

the new system is not programmed in pure GKS but at some other level (note that graphics

standards are defined in several levels) then this could pose severe problem s and might entail

rewriting the graphics routines.

- 86 -

Chapter 8

The Relational Multimedia Data Base System

8.1 Specification

8.1.1 The Making of RMDBS

Following the successful demonstration of storing and processing bit-m apped pictures in a

traditional relational DBMS (as discussed in the previous chapter), and the adequate

performance of the picture processing functions, a system that takes advantage of such success.

the Relational Multimedia Database System, in short RMDBS, has been designed and

implemented. RMDBS is first and foremost a system to efficiently store and manipulate various

kinds of data: numeric and text data, bit-mapped pictures, and programs in binary code.

RMDBS is an integrated system which enables the user to manage and control operations

on text and numeric data, bit-mapped pictures, and binary programs wholly within the system.

The system is completely menu driven, so the user does not need to remember any command

nam es or their form ats to work with the system.

8.1.2 Need for Picture Generating Capabilities in RMDBS

RMDBS is implemented in a normal relational DBMS which enables a user to work with

the usual commands found in the DBMS, plus a few others for picture processing. Therefore:

(i) using the DBMS facilities an RMDBS user can select data from the database flIes satisfying

certain selection criteria, or having certain properties;

(ii) the user might further require that the data selected be used to generate a picture. To hc

able to support the latter requirement. RMDBS therefore must have some picture generating

capabilities.

If RMDBS is to support data selection from the datab;lse, and getting its pictorial

representation without some picture generating capabilities, then l'yery picture corresponding to

- 87 -

every conceivable combination of selection criteria, must be stored in the database. It is

obvious that this is almost impossible to accomplish in most computer systems because nf the

limited storage space available on the disk. For example, suppose were are working with maps

of counties in the UK. Without some map generating in the system we need to generate all

maps and all their combinations. If all combinations of county maps in the UK are to be

stored, and since there are 66 counties, it follows that 66! = 66x65x64 ... 3x2 pictures need tn

be kept on the disk. This is a very large number. Even if each picture was only one byte long.

such a large amount of storage space is not available even on most large computer systems.

The only viable solution is therefore to include picture generating capabilities in RMD BS.

This will enable the user to select data, and use it as source of a picture plot if he/she chooses

to. Alternatively, the generated picture can be stored in the database, printed to get a hard

copy or just ignored. Only a few pictures therefore need to kept in the database. These will be

pictures which are stored because generating them is time consu ming or they are very

frequently used, see section 7.10. This way efficient use of disk space can be maintained and

system processing speed optimised.

8.1.3 A Demonstration System for RMDBS

A demonstration system for RMDBS has been implemented on data pertaining to

counties in the UK. Two types of data used are: (i) statistical data. like county populations, etc.

(this data is stored in relations and can be selected and used to generate business or statistical

charts); and (ii) digitised coordinate (x,y) pairs for each county. (this data can be selected and

used to plot county maps).

8.2 System Overview

Below is the main menu a user sees when hel she logs into RMD BS. The list shows the

different functions offered by RMDBS and their choice numbers. A detailed description of

each function is given later.

- 88 -

NO. FUNCTION

00 Get HELP Inform ation

01 VIEW: display a screen database picture onto screen

02 PUT .SCRPIC: insert a screen picture into database

03 PUT.LSRPIC: insert a laser picture into database

04 PUT.PROG: insert a binary program into database

05 HARD .COPY: print a laser printable picture

06 PRINT: a screen picture onto lac;;er printer

07 SCALE: scale a picture up or down by constant factor

08 OVERLAY: merge two pictures to produce a third picture in a DOS file

09 SMART: execute Sm art Spreadsheet to drawl edit a picture

10 WIN: execute Windows Paint to draw/edit a picture

II DRA WON: retrieve data and draw it on top of a picture

12 MAIN.MENU: perform the main Revelation MENU

13 DEL.PICS: delete 'least used' pictures from database

14 CHANGE.PARS: change system parameters

15 SEE: what programs, screen or laser pictures are in the database

16 DELETE: a program, screen or laser picture from database

17 EXIT to TCL

As mentioned earlier, RMDBS is a completely menu driven system. The user only enters

the number of the function he/she wants and the system moves to the next stage. Even in

stand alone subsystems used in RMDBS like Smart, automatic methods of selecting and

executing functions have been implemented in order to reduce the amount of command

memorisation required by the user. Help information is also provided at every stage. It IS

hoped these meac;ures go a long way in making RMDBS user friendly.

- 89 -

How RMDBS is invoked

The RMDBS is invoked by first logging into the Revelation DBMS and typing the

following at the Terminal Command Level.

:RMDBS

Before the functions provided by the system are described in detail, the relations or files

used in the system are first described in the next section.

- 90 -

8.3 Relations Used

This section looks at the relations used to store, manipulate, and manage the pictures

(both screen and laser printable pictures), binary programs, xy coordinate vectors(for

generating maps), and other numeric and text data.

8.3.1 Relations for Screen Pictures

Two relations are used to store, manipulate, and control operations on screen displayable

pictures in RMDBS. These are SCREENPICS and PIC.ATTRS. Figure 8.1 illustrates their

schemas.

SCREENPICS
(a)

PICNAME

PIC.ATTRS
(b)

PICTURE

PICNAME DATE.PUT.DB LAST.DATE.USED SOURCE.PROG DESC

Fig 8.1 Relations for Screen Pictures

The relation in figure 8.1(a) stores the actual screen pictures. It has only two domains;

PICNAME and PICTURE. PICNAME, the name of the picture, is the key. The bit-mapped

picture itself is stored in the PICTURE field as a long text string(about 32K bytes long).

The relation in figure 8.1(b) keeps the picture characteristics. The DESC field is a one

line description of the picture. It is given by the user when the picture is being inserted into

- 91 -

the database. It helps users know what the picture is about.

The relation in figure 8.1(b) is used in "deciding" what pictures are to be deleted from the

database when their number exceeds the recommended maximum number of pictures.

Deleting pictures from the database is necessary because disk space is finite, so with time and

more pictures being stored in the database, the disk will fill up.

8.3.2 Relation for Laser Printable Pictures

Laser printable pictures are stored in the relation LASERPICS, whose schema is shown in

figure 8.2. The relation has two fields only. The field PICNAME, the name of the picture. is

the key and the laser printable picture is stored in the next field. This field is a long text field

containing the picture bits and the control characters (put in by the form auer) needed to drive

the printer.

LASERPICS

PICNAME PICTURE

Fig 8.2 Relation for Laser Printable Pictures

To conserve disk space, it is recommended that very few pictures should be relation

LASERPICS because if the user wants a hard copy of a picture, the equivalent screen picture

can be be printed easily. But the function is there for the user to use if hel she wants.

8.3.3 Relations for Binary Programs

To store and to control operations on the binary programs used in the system, two

relations, whose schema are shown in figure 8.3 are employed. The programs themselves are

stored in the relation PROGRAMS and their characteristics in PROG.ATTRS.

- 92 -

The D ESC field is a one line description of the program. It is given by the user when the

picture is being inserted into the database. It helps users know what the program is all about.

PROGRAMS
(a)

PROGNAME

PROG.ATTRS
(b)

PROGRAM

PROGNAME DATE.PUT.DB LAST.DATE.USED SOURCE.LANG DESC

Fig 8.3 Relations for Binary Program s

The programs stored in the relation PROGRAMS are binary programs compiled outside

Revelation. The source language of most of these is Turbo Pascal, but there are a few 'C' and

assem bly program s.

It is recommended that programs should not be deleted from the database just to get

more space on the disk, because if a picture is (accidentally) destroyed, and if the generating

program is not there then there is no way that the picture can be generated (unless of course

one writes or recompiles the original program). This of course does not stop the user from

deleting unwanted programs.

8.3.4 The Parameters Relation

To make the system more flexible to changes in parameter values, (for example: a change

in MAX.NO.PIeS, the maximum number of pictures allowed in database, or type of printer,

- 93 -

etc.) a separate parameters file, PARAMS.FILE is maintained. The schema of this relation IS

represented in figure 8.4.

P ARAMS.FILE

PARAM.ID PARAM.VAL

Fig 8.4 The Param eters Relation

Each parameter is given an id or name. This name (which is also the key) is stored in the

first field. In the second field the value of the parameter is stored.

All program s in the system refer to this file for their param eter values. This arran gem en!

allows easy changes to parameter values because only one program to enter or update

param eters is needed for the wh ole system.

8.3.5 Relation for Digitised Maps

The Relation SHAPES, figure 8.5 below, contains the xy coordinate vectors for generating

the county maps of counties in Great Britain. Data in this relation were obtained from the

GIMMS package. Each map is represented by two fields, SHAPE.ID (which is the key) and

the multi-valued field (X, Y, FLAG). This multi-valued field repeats itself as many times as

the num ber of coordinates in the map.

Note

A FLAG is just a character associated with each digitised point. By digitising with

different buttons on the cursor pad, a varying FLAG may be stored with each digitised point.

Commonly, flags are used to signal either a pen or colour change. a change from 'join' In

'111 ove' in the plotting sequence. etc.

- 94 -

SHAPES

SHAPE.ID x Y FLAG

xl yl f1
x2 x2 f2

xn yn fn

Example entries from relation SHAPES are:

TRIANGLE 330 300 I
330 300 0

5000 5000 0
8981 300 0
330 300

LINE 678 800 1
678 800 0

6000 6000 0

Fig 8.5 Relation for Storing Digitised Maps

SHAPES is the only relation used in this system that is unnormalised, because it consists

of repeating fields. This property of employing unnormalised or ordered tuples in relational

databases is essential when pictures are to be generated from pictorial-based data stored in

relations, see als0 39, 34,62.

8.3.6 Relation for Census Data

The COUNTIES relation contains county data from GIMMS and SASPAC packages. Its

schema is represented in figure 8.8.

- 95 -

COUNTIES

NAME SHAPE.ID X Y POP SIZE BORN.ENG

Fig 8.6 The COUNTIES Relation

(X,Y)

Is the centroid position of the map. This position is good for labelling maps On ordinance

survey maps, X is the easterly distance from the west most line, whereas Y is the northerly

distance from the most south most line. Both X and Y are given in metres.

POP

Is the county population in thousands.

SIZE

Is the size of the county in thousand square metres.

BORN.ENG

Is the num ber of people in the county born in England.

This same data is also stored in the DOS file, CENSUS, from which it can be accessed and

used in the Smart Spreadsheet program as a worksheet.

Together with the relation SHAPES one can select data from COUNTIES and/ or SHAPES

through the R/LIST query language, then either:

(i) plot county maps

(ii) write county names at position (x,y)

(iii) put the data in a worksheet to generate charts/diagrams in the Smart Spreadsheet.

For example one might like to:

(a) Plot the maps of counties with X > 56,000 that is, those counties whose centres are 56,000

- 96 -

metres from the left most point on the ordinance survey maps; or (b) generate a pie chart of

county populations for counties with size over two million square metres.

Note

Although the actual selection of data from the database is done in R/LIST, in this system

the user does not need to know the actual syntax of R/LIST commands. He/she needs only to

enter the selection criteria as a boolean expression. The rest of the form ulation, that is, to put

the query in proper R/LIST syntax is done in the system.

8.4 Writing of Boolean Selection Expressions

The discussion below explains in some detail how the boolean expression is entered by

the naive user. (The experienced R/LIST user is given the option to go straight to writing the

boolean expression in R/LIST syntax).

The method used is to allow the user to write the boolean expression in a straight forward

but structured way. This expression is then converted into R/LIST in the system.

Using BNF notation, a boolean expression is defined as:

< boolean expression> := < boolean expression> < connector> < token> I < token>

where;

< token> := < variable> < operator> < value>

< variable> := NAME IX IY I SIZE IPOP I BORN.ENG

< operator> .- < I> I< > 1= I< = I> =

< connector> := OR I AND

Using the definitions of < variable> , < operator> , and < connector> given above, a

simple parser was written. This parser is able to check that the expression entered conforms to

this syntax.

- 97 -

If it conforms, the expression is then put into the correct R/LIST syntax.

If it does not conform, the user is told so and requested to re-enter the expression.

In the above definition, < value> is allowed to take anything, num ber or string. The

system requires a value to be entered, if it is not given the expression is incomplete, so it IS

rejected. The user is then a~ked to re-enter the expression.

When the variable is NAME, the < value> entered is quoted to conform with R/LIST

syntax for string values.

Two schemes are available to the user when entering the boolean expression either (a)

enter the expression one token at a time or (b) enter the whole expression.

- 98 -

8.5 Description of Functions

This section describes in detail the functions listed in section 8.'2. But before that, two

general comments need to be made here. These are:

Comment 1

Whenever a screen picture or program IS referenced in any function. the

LAST.DATE.USED field in the database relation PIC.ATTRS or PROG .ATTRS. respecth·ely is

updated to reflect that it has been used on a given date.

Comment 2

In all the functions where a new picture is generated, the user will see the following

menu:

No. FUNCTION

1 PRINT it on laser printer

2 STORE it into database

3 BOTH 1 & 2 of the above

4 EXIT: do nothing

This menu allows the user to decide what he/she wants to do with the new picture

produced.

- 99 -

8.5.1 Get Help

Choice No: 00

Function: Get Help Information

Explan ation:

Gives help inform ation at main system level. The help inform ation explains to the user

what the system does, how to make choices, etc. The user is recommended to read this

inform ation. Help inform ation will be given at every im portan t stage of the system.

8.5.2 Display Picture

Choice No: 01

Function: Display a picture on the screen

Explanation:

Selects a picture from the database and displays the picture on the screen.

User action:

The user will be requested to enter the name of the picture to be displayed.

8.5.3 Insert Screen Picture

Choice No: 02

Function: Insert a screen picture into database file

Explanation:

Puts a screen displayable picture from a DOS file into the database file SCREENPICS.

If the num ber of pictures in the database equals or exceeds MAX.NO.PICS, the program

DEL.PIeS (see choice no 13) is called to delete ''least used" pictures from the database to give

room on the disk, before the picture is stored in the database.

- 100 -

User action:

The user will be requested to enter the following:

1) name of the picture

2) full path name of the DOS file containing the picture

3) source program, that is, the program that generated the picture. The source program can

either be Windows, Smart or Turbo Ppasca!

4) a one line description of the picture

8.5.4 Insert a Laser Picture

Choice No: 03

Function: Insert a laser printable picture into database

Explan ation:

Puts a laser printable picture from a DOS file into the database file LASERPICS.

User action:

The user will be requested to enter the following:

1) name of the laser picture

2) full path name of the DOS file containing the laser picture

8.5.5 Insert a Program

Choice No: 04

Fu nction: Insert a binary program into database file

Explan ation:

Puts a binary prognml from a DOS file into the database file PROGRAMS.

- 101 -

User action:

The user will be requested to enter the following:

1) name of the program

2) full path name of the DOS file containing the program

3) source language, that is, the type of source language. The source language can either be

Turbo Pascal, 'C', or assembly.

4) a one line description of the program

8.5.6 Print a Laser Picture

Choice No: 05

Function: Print a laser printable picture

Explanation:

Selects a laser printable picture from file LASERPICS, and prints it onto the laser printer.

User action:

The user will be requested to supply the name of the picture to be printed.

8.5.7 Print a Screen Picture

Choice No: 06

Function: Get a hard copy of a screen picture

Explanation:

Takes a screen displayable picture from database, laser dumps it, and prints it onto the

- 102 -

laser prin ter.

User action:

The user will be requested to supply the name of the screen picture to be printed.

8.5.8 Scale a Picture

Choice No: 07

Function: Scale a screen picture

Explanation:

Scales a screen picture from the database up or down by a constant factor.

User action:

The user will be required to choose the type of scaling, Whether to scale:

1) up

2) down

After selecting the function, the user will then have to enter the scaling factor.

8.5.9 Overlay two Pictures

Choice No: 08

Function: Overlay two screen pictures to produce a third in a DOS file

Explan ation:

Combines the pixels of two database screen pictures to produce a third picture.

Combining is done by ORing corresponding pixels in the two pictures. The new picture is left

in a DOS file. (Note: this algorithm is fine for monochrome pictures. For coloured pictures this

needs to be changed otherwise random colours will be produced,)

- 103 -

User action:

The user will be required to supply the nam es of the two database screen pictures to be

combined and the name of the new picture.

8.5.10 Run Smart

Choice No: 09

Function: Execute the Smart Spreadsheet

Explanation:

Executes the Smart Spreadsheet either to draw a new picture or to edit an old picture. A

new Menu is displayed:

No. Function

1 Get HELP inform ation

2 D RAW a new picture

3 EDIT an old picture

8.5.10.1 Help

Choice No: 1

Function: Get Help information

Explan ation:

Explains to the user how and what can be done in Sm art and how user can form a query

to select data from the database for use in Sm art.

8.5.10.2 Draw Picture

Choice No: 2

Function: Draw a new picture

- 104 -

Explan ation:

Allows the user to execute the Smart Spreadsheet in order to define and generate a ne''"

picture. The full facilities of the Sm art program are at the disposal of the user. This enables

him/her to define and generate pictures as desired. Two options are open to the user:

1) use any worksheet to define and generate a new picture

2) retrieve data from the database and use this data to generate a picture

8.5.10.2.1 Generate Picture from any Worksheet

Choice No: 1

Function: Use any worksheet to generate picture

Explanation:

Executes the Smart Spreadsheet to generate a new picture. Any worksheet, for example

CENSUS, can be loaded and used to define and generate a picture.

Since the Smart Spreadsheet gives the user an empty screen, some way of automating

these processes is desirable. The use of "projects" is very useful in this case. Using projects it

is possible to give the user some help inform ation and to au tom atically choose and execute the

functions he/ she wants.

Through the use of projects, figure 8.7 is the message that appears on the screen to

prompt or help the user, especially the non-experienced Smart user.

- 105 -

You are now in the Smart Spreadsheet program, ready to
Define and Generate a Screen picture.

Note the following:

1. The worksheet is already loaded in memory

2. While defining the picture, follow the menus shown on
the picture definition screens. Bu t note the following.
since they are not clearly explained in Smart:

i) Press F6 to access data in the worksheet
ii) Use the arrow keys to move cursor to the start of

the block of data you are interested in
iii) Press F2 to signal to the system that this is the

start of the data block. In Smart this is
known as to "drop anchor".

iv) Use the arrow keys again to move the cursor, but
this time to the end of the data block.

If done correctly, the block of data
marked will be reverse video.

v) Press the RETURN key to go back to the picture
definition screen

3. The picture will be automatically GENERATED after its
Definition.

REMEMBER to save the screen picture, you will be
prompted for a name!

After this Smart will be exited.

Fig 8.7 Help Information Automatically Displayed in Smart

The above is made possible by use of two projects: The first one, figure 8.8(a), is

executed in the Smart Word-processor to display the help infonnation in figure 8.8. The

second one, shown in figure 8.8(b) is executed in the Spreadsheet. This enables automatic:

(a) loading of the worksheet

(b) start of the picture definition process

(c) generation of the screen pictu Te

(a)

- 106 -

read helper
MESSAGE Press ANY key to CONTINUE
JUMP Spreadsheet PROJECT-FILE auto

%1 Enter the name of the worksheet
@r1cl read text %1
%2 Please ENTER name of Picture
GRAPHICS define %2
GRAPHICS generate %2 black/ white screen
QUIT

(b)

Fig 8.8 Projects to Define/Generate Pictures Automatically

User Action:

By use of the projects shown in figure 8.8, user action is reduced to only filling in the picture

attributes (for example name, headings, footers, labels, etc) in the picture definition screens.

8.5.10.2.2 Generate Picture from data Selected from Database

Choice No: 2

Function: Select data from the database to define and generate a new picture

Explan ation:

Allows the user to select data from the relation COUNTIES, and use this data to generate

a new picture. The data is retrieved and put in the worksheet \TMP\DATAFROM.REV. The

user then uses the Smart Spreadsheet to define and generate the new picture. In Smart the

worksheet is accessible only as DATAFROM.REV.

- 107 -

This is a very interesting part of the system, because it allows the user to select data

satisfying certain criteria and use this data only to draw a picture.

For example the user might want a histogram of populations of counties whose sizes are greater

than ten million square metres.

In such a case the user will only need to type the selection criteria:

SIZE> 10000

Records in the COUNTIES relation satisfying this selection criteria will be retrieved and

put in the worksheet\TMP\DATAFROM.REV, and from here used in the Smart Spreadsheet

to define and generate a screen picture.

Limited help to the user, in the form of examples of how to write the boolean

expressions, is available on-line.

Again projects are used to reduce the number of commands the user has to memorise in

order to accomplish the needed tasks. The same help information, shown in figure 8.7, is

displayed on the screen. Then the project in figure 8.9 is used to load the worksheet,

automatically start the picture definition process, and finally to automatically generate the

picture.

@rlc1 read text DATAFROM.REV
%1 Please ENTER name of Picture
GRAPHICS define %1
GRAPHICS generate %1 black/white screen
QUIT

Fig 8.9 Project to D efine/ Generate Pictures Au tom atically

User action:

Through the use of the project in figure 8.9, user action is merely to:

- 108 -

(a) enter the selection criteria of data to be retrieved

(b) respond to the prompts in the picture definition screens.

Comment

Of the two methods for generating a new picture in Smart, described above, method two

is recommended where data satisfying given conditions is required to generate the picture. This

is because, the data in the worksheet DATAFROM.REV will already be satisfying the

conditions.

For example if the user wants a histogram of populations of counties whose sizes are greater

than ten million square metres, then the population field in the worksheet DATAFROM.REV

qualifies the conditions, so definition and generation of the picture can go on without problems.

To use the worksheet CENSUS in such a case means that the user will have to check

manually whether the record satisfies the selection condition. A cumbersome process prone to

errors, especially if the selection criteria is a complex boolean expression. However, if the data

does not need to satisfy any conditions, then method one, whereby the worksheet CENSUS is

used is fine.

8.5.10.3 Edit a Picture

Choice No: 3

Function: Select a database screen picture and edit it as desired

Explanation:

Retrieves a named picture from the database and allows the user to edit it as desired in

the Smart Spreadsheet.

The picture will be retrieved from the database and written to a DOS file, with the same

name plus the extension ".SCN", in the directory \TMP, the home directory of Smart.

- 109 -

Following the same principle of reducing memorisation of the commands needed to edit a

picture (just as for picture Definition and Generation), the project shown in figure 8.10 is used.

Entering the Spreadsheet through this project makes it possible to automatically enter the

picture editing command without going through the several menus the user has to choose.

@r1cl read text helper3
MESSAG E Press ANY key to CONTINUE
%1 Please ENTER name of Picture
GRAPHICS edit %1
QUIT

Fig 8.10 Project to Start Picture Editing Automatically

User action:

Again by use of a project, user action has been cut to:

(i) entering the name of the picture to be edited

(ii) editing the picture as desired

8.S.11 Run Microsoft Windows

Choice No: 10

Function: Execute the Windows Paint program to draw or edit a picture

Explanation:

Allows the user to draw a new picture in Windows or select a picture from the database

and edit it in Windows.

A new Menu is displayed:

1) get help information

2) draw a new pictu re

- 110 -

3) edit a databa~e picture

8.5.11.1 Help

Choice No: 1

Function: Get Help information

Explanation:

Explains to the user the power of the Windows Paint program to draw and edit pictures.

8.5.11.2 Draw Picture

Choice No: 2

Function: Draw a new picture

Explan ation:

Executes Microsoft Windows, giving the user the full power of the system to draw a new

picture. To be able to execute the PAINT.EXE program, the user will have to change directory

to \ WINDOWS, the home directory of Windows.

IMPORTANT

User action:

while in the PAINT program make sure
the option set for pictures is

TERMINAL
and not for PRINTER

To draw a new picture in Windows the user needs to do the following:

(a) change directory to \WINDOWS

(b) execute the PAINT.EXE program

- III -

(c) select the Option TERMINAL (this is very important, otherwise the

picture drawn will not be compatible with other system functions)

(d) draw the picture

(e) save the pictu re in a file

(f) quit Windows

8.5.11.3 Edit a Picture

Choice No: 3

Function: Select a database screen picture and edit it as desired

Explanation:

Allows the user to select a named screen picture from the database and edit it as desired.

The picture will be retrieved from the database and written to a DOS file, with the same

nam e plus the extension ".MSP", in the directory \ WINDOWS, the home directory of

Windows.

User action:

To edit the picture in Windows the user needs to do the following:

(a) change directory to \ WINDOWS

(b) execute the PAINT.EXE program

(c) open and load picture to be edited

(d) edit the picture as desired

(e) save the picture in a file

(n quit Windows

- 112 -

8.5.12 Draw on a Picture

Choice No: 11

Function: Retrieve data from database and draw it on top of a database picture

Explanation:

This function allows the user to select a screen picture from the databa.')e, select data from

the database and draw it on top of the selected picture.

This function, therefore. allows the user to start with a picture or map (which can be

blank) and progressively add m ore details to it.

The data is selected from two relations; COUNTIES and SHAPES.

Maps of selected counties or/ and their names can be drawn on the picture. A new Menu

is displayed:

1) draw county maps

2) plot county names at centroids of their maps

3) draw & label county maps

4) help information

User action:

In both situations, the user must supply the following:

(a) the name of the database picture to draw on

(b) the selection criteria of the data to be retrieved

To enter the selection criteria, the user only needs to type in the boolean expression of

the selection condition.

For exam pie. if the maps of counties with x satisfying x > 5b.000 are to be plotted. then the

user needs to enter the selection criteria:

x > 56000

- 113 -

On-line help information exists in the form of examples of how to write the boolean

selection expressions. The user can choose to see this help information.

8.5.13 Descend to Main Revelation Menu

Choice No: 12

Function: Descend to the main Revelation Menu

Explan ation:

This function allows a user to leave RMDBS and descend to the main Revelation Menu.

This is needed when the user wants to access R/DESIGN to create other applications.

8.5.14 Delete "least used" Pictures

Choice No: 13

Function: Delete database screen pictures to give room on the disk

Explanation:

This function deletes '1east used" pictures from the database to give room on the disk.

This is analogous to an operating system replacing a page, simply because it has been resident

in main memory longest I

The function uses two parameters from the PARAMS.FILE, these are:

NO.PIes - this is the recommended num ber of pictures to be held in the database

MAX.NO.PIeS - this is the maximum number of pictures allowed in the database

When this function is chosen, a of count how many pictures are currently in the database

is made:

(a) if the number of pictures in the database is less than NO.PIeS, then the program just exits,

nothing is done.

- 114 -

(b) if the number of pictures in the databa<;e is greater than NO.PICS, then the

(MAX.NO.PICS - NO.PICS) pictures with the least LAST.DATE.USED are deleted from the

database.

8.5.15 Set/ Update Parameters

Choice No: 14

Function: Change system parameters

Explanation:

This function allows the user to change or enter new values of param eters in the

P ARAMS.FILE.

User action:

For each new parameter and for each of the parameters whose values are to be changed.

the user enters the:

(i) parameter name or id

(ii) parameter value

8.5.16 See names of Programs & Pictures

Choice No: 15

Function: See the names of programs or names of pictures stored in the databa<;e

Explan ation:

This function allows the user to see what program s. laser pictures. or screen pictures are

in the database. A nt'w menu is given.

No Function

see n,mles of PROGRAMS

3

see names of LASER pictures

see names of SCREEN pictures

8.5.16.1 Names of Programs

Choice No: 1

- 115 -

Function: See the names of binary program s in the database

Explanation:

Lists on the screen the names of programs in the database.

User action:

Press the RETURN key after every screen full and to return to main menu.

8.5.16.2 N ames of Laser Pictures

Choice No: 2

Function: See the names of laser printable pictures stored in the database

Explanation:

Lists on the screen the names of laser pictures in the database.

User action:

Press the RETURN key after every screen full and to return to main menu.

8.5.16.3 N ames of Screen Pictures

Choice No: J

Function: See the nanles of screen pictures in the database

Explanation:

- 116 -

Lists on the screen the names of screen pictures in the database.

User action:

Press the RETURN key after every screen full and to return to main menu.

8.5.17 Delete Picture or Program

Choice No: 16

Function: Delete a program or picture from database

Explanation:

This function allows the user to delete unwanted progranl s, screen pictures, or laser

pictures from the database.

This is the preferred method of removmg unwanted pictures and programs from the

database. A new menu is given:

No Function

1 delete a PROGRAM

2 delete a LASER picture

3 delete a SCREEN picture

8.5.18.1 Delete Program

Choice No: 1

Function: Delete an unwanted program from the database

- 117 -

User action:

Enter the name of the program to be deleted from the database.

8.5.18.2 Delete Laser Picture

Choice No: 2

Function: Delete an unwanted laser picture from the database

User action:

Enter the name of the laser picture to be deleted from the database.

8.5.18.3 Delete Screen Picture

Choice No: 3

Function: Delete an unwanted screen picture from the database

User action:

Enter the nam e of the screen picture to be deleted from the database.

8.5.18 Descend to TCL

Choice No: 17

Function: Exit RMDBS and descend to TCL

Explanation:

Leaves RMDBS and drops to the Terminal Command Level.

8.6 Conclusion

This chapter has described the work undertaken during the development of a retational X
multimedia data base system called RMDBS, written the environment and host facilities offered. ""

the Revelation DBMS. Detailed descriptions of the RMDBS end-user command set h<l\·\..' been

- I J 8 -

given along with an outline of how these comm ands have been implemented. Particular

emphasis has been given to the provision of graphics facilities which compensate for the lack of

such resources within the host environment provided by the Revelation system.

By means of timing experiments, (discussed in the previous chapter sections 7.8 to 7.10).

it has been shown that the performance of such a system is adequate.

- 119 -

Chapter 9

Conclusions & Future Work

9.1 Conclusions

An implementation of a multimedia database in a traditional relational DBMS has been

presented. The database integrates the storage and manipulation of bit-mapped pictures, binary

programs, and attribute data. The implementation aimed: (1) to make efficient use of storage

space; and (2) to have a user friendly interface. To varying extents each of these objectives

have been realised.

Chapters 5 and 6 of this thesis have brought together and analysed related work on the

design of multimedia databases. Several powerful and elegant systems have been studied; these

reflect the transition from traditional relational DBMS facilities, through systems for storing

pictorial-data to fully fledged multimedia databases. Each of these systems, though good and

powerful, have limitations. First, the multimedia database~ that have been described previously

are not true DBMS systems. This is because they do not follow the agreed principles of DBMS

design and implementation - for example, they store data in conventional files. Second, the

DBMS systems used for storing pictorial-data are not multimedia databases because they store

attribute data only. No pictures, images or voice data are stored in the database. Although

these multimedia systems provide functions to draw pictures and to manipulate them on the

display, the pictures themselves are not stored in the database.

Since pictures in databases for storing pictorial-data can generated and displayed but not A ~
"

stored, users

needed later,

of such systems have no way of keeping images for later use. If a picture is
t,

then the user has go through the generation process again. This can be very

'"
cumbersome especially if the picture generation process is complicated.

Although it is not wrong to implement stand alone multimedia databases, such an

implementation misses the services offered by DBMS. Such services include concurrency

control, access control, redundancy control, and indexing facilities. A stand alone data base

>

- 120 -

would, therefore, need these services to be provided for in its implementation. Since such

facilities can be obtained from DBMS, providing them means wastage of resources which could

be used otherwise. The consequence of this is that such systems take much longer to perfect.

The work described in this thesis is therefore quite novel in that a true multimedia

database has been im plemented within the framework of a traditional relational DBMS.

The main objective of this research, therefore, was to show that a multimedia database

system can be designed and implemented using a traditional DBMS facility. This work starts in

Chapter 7 where it is demonstrated that bit-mapped pictures and binary progranls can be stored.

retrieved and manipulated in a relational DBMS. The work continues in Chapter 8 where a

multimedia database system is designed and implemented. The demonstration system, called

Relational Multimedia Data Base System, in short RMDBS, is described. A detailed description

of the RMDBS end-user command set together with how these commands have been

implemented is given.

As well as offering the normal functions provided by a relational DBMS, RMDBS also

provides functions to manipulate a picture in the following ways: (i) to display it on the screen,

(ii) to print it on a laser printer, (iii) to scale it, (iv) to edit it as desired, (v) draw other details

to it. Other facilities offered by RMDBS are to generate pictures from various sources, and to

com bine two pictures to generate a third picture.

By means of a series of timing experiments it has also been shown that the performance

of su ch a system in term s of processing speed is quite adequate.

The RMDBS system has been implemented on an IBM-PC within the environment

offered by the MS-D as operating system. Transporting the overall system to other

environments should therefore, in principle, not be too difficult. Indeed, porting RMDBS to

other relational DBMS environments, (for exam pIe, ING RES) should not pose too many

problems provided the target environment has a graphics package that follows the Graphics

CORE Standard.

- 121 -

Recently, there have been movements from the de facto CORE standard to the

sanctioned OKS standard. This raises the question of the portability of RMDBS from an

environment based on the Graphics CORE Standard to a system based on the GKS

environment. When porting RMDBS to a host system that follows the GKS standard. two

outcomes are possible. First, if the new system is programmed in pure GKS, then this will

obviously not pose very many problems. Second, if the new system is not programmed in pure

OKS but at some other level (note that graphics standards are defined in several levels) then

this could pose severe problems and might entail rewriting the graphics routines.

In implementing the database. (i) unnormalised relations (with ordered/multivalued

tuples), and (ii) variable length records have been used. It is important to emphasise that these

are not properties of the relational database model. However, as other researchers have

discovered, use of these approximations is inevitable if unformatted data (text, images) are to

be stored and manipulated in a relational DBMS33, 71.

9.2 The User Interface and Its Limitations

It has been said that RMDBS is user friendly. This claim is only true in the sense that an

inexperienced user can safely and easily work with the system. This has been achieved by

making RMDBS menu driven.

No rigorous measurements or experiments were done to monitor whether the RMDBS

user interface is truly user friendly in terms of human factors, as detailed by Shneiderman in 82,

and Rubinstein and Hersh in 83. For example, how to reduce human error rate, optimising

functionality, making the interface as easy to use as possible, design of the screen layout etc.

A systematic study of human factors was not undertaken because: (i) of lack of time, and

(ii) the study of human factors not being a major requirement of this research. However, two

people worked with RMDBS during its implementation stage. This was an informal exercise,

the aim of which was to discover any problems, omissions, unclear messages, and to see

whether the system could be used by a non-expert user without extensive use of the user

- 122 -

manual. Because this evaluation procedure was an ad-hoc effort no formal record was kept of

their interaction with the system and evaluation comments was made. However, their informal

comments were very valuable and were used to modify the initial design. The final system.

therefore, incorporates their com ments and suggestions.

As the complexity of user interfaces increases84, 85, it becomes necessary to apply some

methodology and discipline to their programming. This is particularly true in the case of user

interfaces to multimedia databases. The user interfaces to such systems are very complex and

require much thought to design and implement them (this has been amply illustrated by the

systems discussed in chapters 5 and 6). A systematic approach to solving this problem is

therefore required.

One potential solu tion to this problem lies in the design and fabrication of special purpose

software packages that support human-computer interaction. Typically, they are called User

Interface Management Systems(UIMS). The benefits from the use of UIMS include reduced

costs of constructing interfaces, smoother interaction, higher reliability, and more importantly

the increase in interface consistency across applications. Knowledge can be gathered from the

multimedia databases already in place to start work now on notation and functionality to build

su ch system s.

It is important to emphasise that no use was made of an explicit user interface

management system within this work. Instead, this function was provided implicitly by me,ms

of the facilities offered by the operating system of the host microcomputer that was used to

implement the RMDBS. The omission of any consideration for the design and fabrication of a

UIMS can be justified on three grounds: (1) it was not deemed to be a major requirement of

the research; 0) the complexity of the interfaces in this work did not warrant the use of this

approach. and (3) this is a rapidly expanding and developing area in which there are few Ttl les

and guidelines to aid the practitioner.

- 123 -

9.3 Though ts on Fu ture Work

To make RMDBS into a fully fledged multimedia database, extensions ill the areas

outlined below need to be made.

9.3.1 Basic Extensions

(a) Text Storage and Retrieval

The addition of facilities to enable the storage and retrieval of text (documents, letters.

etc) is an important requirement within many application areas. Extensions in this area would

therefore allow search and retrieval of the text for its contents. For example, this will allow the

user to search for documents which deal with ''houses'' or 'buildings" and so on. Retrieval of

individual documents could be implemented either by (i) the classical informational retrieval

method of keyword searches, or (ii) through document signatures. Details on document

signatures can be found in 86 .

(b) Picture Searching Techniques

Ideally, RMDBS should include some form of pattern recognition routines in order to

search for pictures having particular characteristics. Facilities for searching and extracting

patterns or structures from the database will be required. For example, the user might want to

extract from the database pictures that contain image segments that resemble a car. This poses

problems relating to defining and extracting patterns (or templates) from images. Note that

what can be a natural pattern for the human eye/ear is not as easy to pin down in terms of

computer-oriented patterns. For example, will the user be able to specify precisely the picture

content of pictures that he/ she wants?

Since picture (or voice) patterns are not easy to define they often require complicated and

time consuming pattern recognition techniques. T\vo methods to reduce time in matching

patterns could be considered:

(i) to require only a certain percentage of match, say 70 percent. This brings other issues like:

- 124 -

who decides on the matching percentage, the user or the system designer'.' will this really

reduce matching time? etc.

While reducing the matching percentage might reduce searching time, there arIse the

problems associated with recall, that is, more material will be retrieved than desired.

(ii) the use of array processors. This will obviously increase processing power. but it brings

other problems related to program ming multi-processor machines.

(c) Facilities for Handling Sound

It is important that a multimedia data bac;e contains facilities to cater for the storage of

sound. This will obviously need specialised equipment. Furthermore, decisions would also

have to be made on how voice data (or other forms of sound) are to be stored in the database.

Two methods exist to represent sound: (i) as analogue signals, or (ii) as digitised data.

However, with current technology, complete extraction of information from digitised

voice poses the same difficulties as those of matching for patterns in pictures or im ages as

discussed in (b) above.

However, as is the case with pictures, sound messages could easily be archived in

analogue or digitised form and indexed using a text-based keyword or key-phrase index. In the

short term such a facility would be a relatively easy thing to implement.

(d) Receiving and Transmitting Multimedia Documents

With more and more documents produced within computers and communicated over wide

areas through communication lines, it is inlportant that RMDBS be able to store. receive, and

transmit such documents. So far, RMDBS is capable of transmitting documents to several local

computers because the microcomputer on which it is implemented is on two local area

networks. namely the IBM LAN and Ethernet. This is not enough. RMDBS would need to be

extended to be able to transmit ,md receive documents worldwide. The most otwious solution

to this problem is to use wide area networks, (like JANET. PSS. etc) in use today. Because

- 125 -

these networks have problems in handling multiple types of data, especially integrating voice

and other types of data on a single transport system, using these types of networks might prove

very difficult for multimedia documents.

A solution to the integration of voice and other types of data on a single transport system

that RMDBS could take advantage of is The integrated services digital network(lSDN)87. This

digital network is being defined for simultaneous carrying of digitised voice and a variety of data

traffic on the same transmission link. Use of ISDN therefore has the following advantages: (i)

the user does not have to buy multiple services to meet multiple needs, (ii) the communication

makes virtually all data and information sources around the world easily and uniformly

accessible.

(e) Animation

Another very interesting possibility that could be investigated with RMDBS is to see if

some sort of animation can be done with the system. This will obviously need facilities to

retrieve and change pictures very quickly. If sound for the animated pictures is also to be

stored in the system, then tight coupling of the picture and sound retrieval will also be

required.

Animation could be achieved in a variety of ways, for example, by storing image

sequences, by computing images in real-time or by a combination of both of these methods.

Each of these possibilities would need to be considered in order to extend RMDBS to cater for

the storage of anim ated material.

9.3.2 User Friendliness

In addition to the extensions listed above to make RMDBS into a fully fledged multimedia

database system, work in several other areas are important in order to assess and .(if need be)

improve its user-friendliness.

In order to achieve this, extensive field tests and trials need to be undertaken to study the

user interface to see if it is truly user friendly. This will involve checking on the following:

- 126 -

(a) Interaction Method

So far, input to RMDBS is through the keyboard only. Would a mouse might make a

better input device? This requires investigation.

The investigation can be done by implementing another version of RMDBS with the

mouse as the input device. Users would then use both systems and compare them. From this

comparison it would be possible to tell which system the users prefer, therefore, which type of

input device is better according to the users.

(b) Using a Window Package for the Help Facility

Thus far, when the user requests for help, the help inform ation occupies the whole

screen. Experiments need to be done to see if users prefer to read the help information in a

window occupying a portion of the screen only. This arrangement will leave the context the

user was working on displayed on the portion of the screen not covered by the help

information.

(c) Measuring the Usefulness of the On-line Help Facility.

Up to now it has been assumed that the help facility is fine. Tests need to be done to

monitor the usefulness of the help facility to the user. This will answer questions such as; is

the help inform ation really being used? if so, how frequently? are there parts of the help

facility that are used more than others? if so, which ones? If there are parts of the help facility

that are used more than others, can the design be changed so that they are retrieved faster?

(d) Response Time Measurement

By meiillS of a series of timing experiments it has been shown that the processing speed of

RMDBS is adequate. But. is the response time of the system really adequate as far as the users

arc concerned? if not. how can it be im proved?

To best way to investigate this is to let users evaluate every function in RMDBS duril1~

the field trials. Users would be asked to say whether they are satisfied with the response time

- 127 -

they get when they work with the function. If they are not satisfied, then more tuning is done

to the function, for example, finding a better algorithm. This process could be done iteratively.

that is, repeated until an optim al perform ance is obtained.

(e) Implementing a UIMS

Implementing a UIMS in RMDBS is desirable and necessary but it is better to defer such

an undertaking for a few years. The main reason for postponing the implementation of a UIMS

to RMDBS is that, the field of DIMS is still expanding and developing rapidly to an extent th at

no rules and guidelines are there to guide the practitioner. It is hoped that after waiting a few

years the field will mature, that is, have clear and well defined guidelines on how to design

DIMS. Implementing a DIMS to RMDBS then will, therefore, produce a better system than if

the implementation is done now.

9.4 Final Conclusion

The design of a novel multimedia data base system ha.l) been described. The research

involved in the creation of the system has extended quite considerably our experience and

knowledge relating to the practical utility of relational DMBS as tools for the fabrication of

sphisticated multimedia systems. The limitations of the work described in this thesis have been
t\.

described as have its merits. A number of suggestions have been made for future work and

extensions to RMDBS.

- 128 -

References

1. I. Palmer, Database Systems: A Practical Reference. C.A.C.I, London, 1975.

2. C. J. Date, An Introduction to Data Base Systems. Addison-Wesley, Reading, Mass., 1975.

3. J. P. Fry and E. H. Sibley, "Evolution of Data-Base Management Systems," ACM

Computing Surveys, vol. 8 No 1, pp. 7-42, March 1976.

4. "The ANSI/ SPARC DBMS Model," in Proc. of 2nd SHARE Con! Montreal. 1976, ed. D.

A. Jardine, North-Holland, New York, 1977.

5. Data Base Management System Requirements. GUIDE/SHARE Data Base Task Force, New

York, November 1971.

6. "Introduction to 'Feature Analysis of Generalised Data Base Management Systems',"

Computer Bulletin, vol. 4, CODASYL Systems Committee, April 1971. Also available in

Comm. of ACM vol 14 no 5 (May 1971)

7. E. H. Sibley, "The Development of Data Base Technology," ACM Computing Surveys,

vol. 8 No 1, pp. 1-5, March 1976. Guest Editor's Introduction

8. E. F. Codd, "A Relational Model of Data for Large Shared Data Banks," Comm. of ACM,

vol. 13 No 4, pp. 377-387, June 1970.

9. D. D. Chamberlin, "Relational Data-Base Management Systems," ACM Computing

Surveys, vol. 8 No 1, pp. 43-66, March 1976.

10. J. Bradley, File and Data Base Techniques, Holt-Saunders, 1982.

11. E. F. Codd, "Normalised Data Base Structure: A Brief Tutorial," Proc. 1971 ACM

SIGFIDET Workshop on Data Description. Access and Control, San Diego, November 1971.

12. E. F. Codd, "Further Normalisation of the Data Base Relational Model," Courant

Computer Science Symposio. Data Base System, vol. 6, Prentice-Hall, New York, 1971.

13. B. Salzberg, "Third Normal Form Made Easy," SIGMOD RECORD, vol. 15 No 5, pp. 2-

18, December 1986.

- 129 -

14. E. F. Codd, "A Data Base Sublanguage Founded on the Relational Calculus," Proc. 1971

ACM -SIGFIDET Workshop on Data Description, Access and Control, pp. 35-65, 1971.

15. E. F. Codd, "Relational Completeness of Data Base Sublanguages," in Data Base Systems,

ed. R. Rustin, pp. 65-98, Prentice-Hall, Englewood Cliffs, New Jersey, 1972.

16. R. W. Taylor and R. L. Frank, "CODASYL Data-Base Management Systems," ACM

Computing Surveys, vol. 8 No 1, pp. 67-104, March 1976.

17. C. W. Bachman, "Data Structure Diagrams," ACM SIGBDP, vol. 1 No 2, pp. 4-10, 1969.

18. D. C. Tsichritizis and F. H. Lochovsky, "Hierarchical Data-Base Management Systems."

ACM Computing Surveys, vol. 8 No 1, pp. 105-124, March 1976.

19. D. E. Knuth, The Art of Computer Programming, Addison-Wesley, Reading, Mass., 1968.

Vol. 1

20. C. J. Date and E. F. Codd, The Relational Model and Network Approaches: Comparison of

the Application Programming Interfaces, IBM Research.

21. A. S. Michaels, B. Mittman, and C. R. Carlson, "A Comparison of Relational and

COD ASYL Approaches to Data-Base Management," ACM Computing Surveys, vol. 8 No

1, pp. 125-151, March 1976.

22. O. D. Held, M. R. Stonebraker, and E. Wong, "INORES- A Relational Data Base

System," Proc. AFIPS, AFIPS Press, vol. 44, pp. 409-616, Arlington, Va., 1975.

23. W. Zook, K. Youssefi, P. Kreps, and O. Held, INGRES Reference Manual, Memo. ERL­

M579, Univ. of Califonia, Berkeley, Callfonia, 1977.

24. D. C. Tsichritizis and F. H. Lochovsky, Data Base Management Systems, p. 213, Academic

Press, New York, 1977.

25. "A Survey of DBMS-Related Standardisation Activities," in ISO{l'C 97/SC 5/WG 5

Document N140, ed. D. Brand and E. Peeters, April 1984.

26. Framework Repol1 on Database Management Systems, AFIPS Press, Montvale, New Jersey.

1978. ANSI/X3/SPARC Study Group for Data Base Management Systems

- 130 -

27. T. W. OBe, "DBMS Standardisation - 1979 to 1983," Computers and Standards, vol. 2 No

2, pp. 119-126, 1983.

28. "Reference Model for DBMS Standardisation," SIGMOD Record, vol. 15 No 1, pp. 19-

55, Data Base Architecture Framework Task Group(DAFTG), March 1986. of the

ANSI/X3/SPARC Database System Study Group

29. E. Wong and W. B. Samson, "The Specification of Relational Database(PRECI) as an

Abstract Data Type and its Realisation in HOPE," The Computer Journal, vol. 27 No 3,

pp. 261-268, June 1986.

30. S. M. Deen, D. Nikodem, and A. Vashishta, "The Design of a Canonical Database

System," The Computer Journal, vol. 24, pp. 200-209, 1981.

31. Revelation User's Guide, COSMOS Incorporated, 1985.

32. Revelation Technical Reference, COSMOS Incorporated, 1985.

33. R. Williams, G. M. Giddings, W. D. Little, W. G. Moorhead, and D. L. Weller, "Data

Structures in Computer Graphics," in Data Structures. Computer Graphics and Pattern

Recognition, ed. A. Klinger, K. S. Fu and T. L. Kunii, pp. 167-177, Academic Press, New

York, 1977. Originally in Proc. Workshop on Data Bases for Interactive Design,

University of Waterloo, Sept. 1975

34. J. D. Foley and A. van Dam, Fundamentals of Interactive Computer Graphics, Addison­

Wesley Publishing Company, Reading, March 1983. Referenced pages are 5, 359

35. W. M. Newman and R. F. Sproull, Principles of Interactive Computer Graphics, McGraw-Hill

International Book Company, New York, 1975.

36. I. E. Sutherland, "SKETCHPAD: A Man-Machine Graphical Comm unication System,"

Proc. of AFIPS 1963 Spring Conference, pp. 329-346, 1963.

37. J. E. Scott, Introduction to Interactive Computer Graphics. John Wiley & Sons, New York.

1982.

- 131 -

38. M. Heck and M. Plaehn, "A Workstation Model for an Interactive Graphics System,"

Comm. of ACM, vol. 29 No 1, pp. 30-37, Jan 1986.

39. R. Williams, "A Survey of Data Structures for Computer Graphics Systems," in Data

Structures, Computer Graphics and Pattern Recognition, ed. A. Klinger, K. S. Fu and T. L.

Kunii, pp. 105-152, Academic Press, New York, 1977.

40. R. Williams, "On the Application of Relational Data Structures in Computer Graphics,"

in Data Structures, Computer Graphics and Pattern Recognition, ed. A. Klinger, K. S. Fu and

T. L. Kunii, pp. 153-165, Academic Press, New York, 1977.

41. "CORE Graphics System," Computer Graph, vol. 13 No 3, pp. 91-96, Graphics Standards

Planning Committee(SIGGRAPH-ACM), August 1979.

42. S. Harrington, COMPUTER GRAPHICS A Programming Approach, McGraw-Hill

International Book Company, Singapore, 1985.

43. "Graphical Kernel System (GKS) - Functional Description," ISO DP 7942, International

Standards Organisation, November 1982.

44. G. Penney, Data Processing Case Histories, NCC Publications, Sandbach, Cheshire, 1974.

Learning to Ride the Computer

45. J. Martin, Design of Man-Computer Dialogues, Prentice-Hall, Englewood Cliffs, New

Jersey, 1973.

46. J. D. Foley and V. L. Wallace, "The Art of Natural Graphic Man-Machine

Conversation," Proc. IEEE, vol. 62 No 4, pp, 462-470, April 1970.

47. E. F. Codd, "Recent Investigations in Relational Data Base Systems," Proc. IFIP Congress

1974, pp. 1017-1021, North-Holland, Amsterdam, 1974.

48. E. F. Codd, "Seven Steps to Rendezvous with the Casual User," in Data Base Systems,

ed. J. W. Klimbie and K. L. Koffeman, pp. 179-199, North-Holland, Amsterdam, 1977.

49. N. Cercone and O. McCalla, "Accessing Knowledge Through Natural Language," in

Advances in Computers Volume 25, ed. M. C. Yovits, pp. 1-99, Academic Press, Orlando.

- 132 -

1986.

50. M. M. Astrahan and D. D. Chamberlin, "Implementation of a Structured English Query

Language," Comm. of ACM, vol. 18 No 10, pp. 580-588, October 1975.

51. L. Koved and B. Shneiderm an , "Embedded Menus: Selecting Items in Context," Comm.

of ACM, vol. 29 No 4, pp. 312-318, April 1986.

52. Introduction to INGR ES, Relational Technology Inc., 1984.

53. D. H. H. Ingalls, "The Smalltalk Graphics Kernel," Byte, vol. 6 No 8, pp. 168-194,

August 1981. Special issue on Smalltalk

54. N. McDonald and M. Stonebraker, CUPID the Friendly Query Language. Memo. ERL­

M487, Electronics Research Lab., Univ. of Callfonia, Berkeley, Callfonia, October 1974.

55. M. M. Zloof, "Query-by-Example: The Invocation and Definition of Tables and Forms,"

ACM Proc. International Con! on Very Large Data Bases, vol. 44, pp. 431-438, September

1975.

56. R. King and S. Melville, "Ski: A Semantics-Knowledgeable Interface," Proc. of the Tenth

International Con! on Vel}' Large Data Bases, pp. 30-33, August 1984.

57. C. F. Herot, "Spatial Management of Data," ACM Transactions on Database Systems, vol.

5 No 4, pp. 493-514, December 1980.

58. W. Benn and B. Rading, "Retrieval of Relational Structures for Image Sequence

Analysis," Proc. of the Tenth International Con! on Very Large Data Bases, pp. 533-536,

August 1984.

59. N. S. Chang and K. S. Fu, "Query-by-Pictorial-Example," IEEE Transactions on Software

Engineering, vol. SE-6 No 6, pp. 519-524, November 1980.

60. T. L. Kunii, S. Weyl, and J. M. Tenenbaum, "A Relational Data Base Schema for

Describing Complex Pictures with Colour and Texture," Proc. of 2nd Joint Con/. 0"

Pattern Recognition, pp. 310-316, August 1914.

- 133 -

61. Y. E. Lien and D. F. Utter, Jr., "Design of an Image Database," Proc. of Workshop on

Picture Data Description and Management, pp. 131-136, 1977.

62. D. Weller and R. Williams, "Graphic and Relational Data Base Support for Problem

Solving," ACM SIGGRAPH: Computer Graphics, vol. 10, pp. 183-189, 1976.

63. N. S. Chang, Image Analysis and Image Database Management, Umi Research Press, Ann

Arbor, Michigan, 1981.

64. A. GO, M. Stonebraker, and C. Williams, "An Approach to Implementing a Geo-data

System," Proc ACM SIGDA SIGMOD SIGGRAPH Workshop on Data Base for Interactive

Design, pp. 67-77, Sept 1975.

65. P. E. Mantey, J. L. Bennet, and E. D. Carlson, "Information for Problem Solving: The

Development of an Interactive Geographic Information System," IEEE International Conj.

on Communication, vol. II, pp. 44.3-44.6, Seattle, June 1973.

66. S. Gibbs, D. Tsichritzis, A. Fitas, D. Konstantas, and Y. Yeorgaroudakis, "Muse: A

Multimedia Filing System," IEEE Software, pp. 4-14, March 1987.

67. M. Stefik, G. Foster, D. G. Bobrow, K. Kahn, S. Lanning, and L. Suchman, "Beyond the

Chalkboard: Computer Support for Collaboration and Problem Solving," Comm. of ACM,

vol. 30 No 1, pp. 32-47, January 1987.

68. D. Tsichritzis, S. Christodoulakis, P. Economopoulos, C. Faloutsos, A. Lee, D. Lee, 1.

Vandenbroek, and C. Woo, "A Multimedia Office Filing System," Proc. of the 9th

International Conf on Very Large Data Bases, pp. 2-7, 1983.

69. S. Christodoulakis, J. Vanderbroek, J. Li, T. Li, S. Wan, Y. Wang, M. Papa, and E.

Bertino, "Development of a Multimedia Information System for an Office Environment."

Proc. of the tenth International Con! on Very Large Data Bases, pp. 261-271, Singapore,

August 1984.

70. S. Christodoulakis, "Multimedia data Base Management: Applications and Problems: A

Position Paper," Proc. of ACM SIGMOD, pp. 304-305, Austin Texas, May 28-32. May

- 134 -

1985.

71. M. Stonebraker, H. Stettner, N. Lynn, J. Kalash, and A. Guttman. "Document

Processing in a Relational Database System," ACM Transactions on Office Information

Systems, vol. 1 No 2, pp. 143-158, Apri11983.

72. S. Christodoulakis, M. Theodoridou, F. Ho, M. Papa, and A. Pathria, "Multimedia

Document Presentation, Information Extraction, and Document Formation in MINOS: A

Model and a System," ACM Transactions on Office Information Systems, vol. 4 No 4, pp.

345-383, October 1986.

73. T. C. Waugh and J. McCalden, GIMMS Reference Manual Release/Edition 4.5, Edinburgh,

1983.

74. "1981 Census Data at NUMAC," University of Durham Computer Centre Internal Memo,

Durham, 1985.

75. "SASPAC 3.0," University of Durham Computer Centre Internal Memo, Durham, May

1983.

76. The Smart Spreadsheet with Graphics, Innovative Software, Inc., July 1985.

77. TUR BO PASCAL Version 3.0 Reference Manual, Borland International Inc., Scotts Valley,

1985.

78. K. Jensen and N. Wirth, Pascal User Manual and Report, New York, 1978.

79. TURBO Graphix Toolbox, Borland International Inc., Scotts Valley, July 1985.

80. The Smart System Manual, Innovative Software, Inc., 1986.

81. Microsoft Windows User's Guide, Microsoft Corporation, 1985.

82. B. Shneidennan, Designing the Interface - Strategies for Effective Human-Computer

Interaction, Addison-Wesley, Reading, Mass., 1982.

83. R. Rubinstein and H. Hersh, The Human Factor - Designing Computer Systems for People.

Digital Press, Burlington, Mass., 1984.

- 135 -

84. J. Coutaz, "Abstractions for User Interface Design," IEEE Computer, vol. 18 No 9, pp.

21-34, 1985.

85. D. R. Olsen, G. Buxton, R. Ehrich, D. Kasik, J. Rhyne, and 1. A. Sibert, "A Context for

User Interface Management," IEEE Computer Graphics and Appfjcations, vol. 4 No 12, pp.

33-42, 1984.

86. C. Faloutsos, "Access Methods for Text," ACM Computing Surveys, pp. 49-74, March

1985.

87. W. Stallings, Data and Computer Communications, Macmillan Publishing Company, New

York, 1985.

- 136 -

Appendix 0

Hardware Configuration

The Relational Multimedia Data Base System is implemented on the following hardware

configuration:

1. An IBM PC-XT/286 running DOS 3.20 with one floppy

disk and a 20Mb hard disk, with two serial ports

and a parallel port.

2. Attached to one of the serial ports is a Microsoft

serial mouse

3. A Hercules Monochrome Graphics Card supports both

text and graphics display.

When in Graphics mode, the card offers two

(712 X 350 pixels) graphics pages. One of these

is displayable and the other in RAM.

4. The XT is on two local networks: the IBM LAN and

on Ethernet via a SUN computer

Another equipment used is the ICL PERQ digitiser. This digitiser*, consists of:

a digitising table

a digitiser 'black box' attached to the underside of the table

The ICL PERQ comprising of processor, a hard disc,

a display, and a floppy disk drive

The digitising software on the PERQ produces a file of coordinates (accurate to O.Olmm)

on the hard disk. This is transformed to a floppy disc for use as required.

• K. O. Middleton DIGITISING w;III III~ ICL PER Q. UDCCC Guide No 5, University of Durham Computer
Centre, Internal Memo.

- 137 -

Coordinates are produced in form:

(X, Y, FLAG)

The coordinates are sent to the processor from the table by moving either a cursor or a stylus

over the table.

By digitising with different buttons on the cursor pad, a varying FLAG may be stored with

each digitised point. Commonly, flags are used to signal either a pen colour. a change from

'join' to 'move' in the plotting sequence, a request to enter a label to be plotted at the point.

etc.

- 138 -

Appendix 1

The Revelation DBMS

The Revelation DBMS has five major components: R/LIST. R/DESIGN. R/BASIC,

R/LAN, and the editors, R/EDIT and R/TEXT. This appendix discusses the main features of

R/LIST, R/DESIGN and R/BASIC as used in this thesis.

R/ LIST

R/LIST is the name of Revelation's query (inquiry) language. R/LIST allows the user to

retrieve data from a database using 'plain English' sentences to query the database.

R/LIST is a dictionary driven language. That is. the words that are used to compose the

commands in the language are contained in one of the two dictionaries.

The master dictionary, called the VOCabulary file, contains descriptions of the common

verbs (for exam pIe LIST, SORT), the connectives(OR and AND) and the control m odifiers(for

example BY, WITH, WHICH). These are words that relate to all the files.

The data dictionary relates only to the specific file: it contains descriptions of the data

fields that are in that specific file. These descriptions specify fields, display form ats. functional

calculations, interfile retrieval operations and other technical inform ation for each field in the

file.

R/ LIST Verbs

The user can invoke any valid R/LIST verb by typing and entering the word at the TeL

colon prompt. All verbs are similar in format. These are the verbs found in R/LIST.

LISTFILES

Allows the user to see the list of accessible files

- 139 -

LIST

This verb lists the contents of any file.

SORT

Performs exactly like LIST except that the records in a file are output in the order specified by

the user.

SELECT

Also performs like the LIST verb except that the records are selected instead of just listed.

SSELECT

Selects and sorts the records.

COUNT

COUNT sim ply counts the num ber of records that meet the conditions set up by the user.

SUM

The SUM verb is used when a field is to be totaled.

General form of RI LIST Commands

The following is the general form of R/LIST commands:

verb {DICT} filename {record.1ist }{selection.criteria} {output.specs }{options}

verb - is the operation required

{DICT} - specifies that the dictionary of the file rather than the file is to be

processed. This par am eter is optional

filename - one and only one may be given in a comm ,md

(record. list } - Optional fields for eligible records.

{selection.criteria} - Optional lim it for eligible records

{outpuLspecs} - Optional fields for output for exam pie BREAK-ON

- 140 -

{options} - Optional command option for example PRINTER or SCREEN.

The following is a list of the compare words that instruct the system to compare one \'alue

against another:

=

<

EQ EQUAL {TO}, THAT IS

LT LESS THAN

LIKE ARE

BEFORE UND ER

< = = < LE LESS THAN {OR} EQUAL TO

< > NE NOT, NOT EQUAL {TO}, DOESNT ARENT INST

> = = > GE GREATER THAN {OR} EQUAL TO FROM

> GT GREATER THAN, LATER THAN AFTER OVER

STARTING {IN}, ENDING {IN} CONTAINING

MATCH, MATCHES

The General Format of the compare clause is:

WITH < dict.field> < compare.word> < value>

For example

WITH AMOUNT GREATER THAN 9000

Any number of compare clauses may be used in an R/LIST command to refine the

selection criteria, but must be connected with a connective AND or OR.

Examples of R/LIST commands are:

LIST CUSTOMERS WITH INVOICE.AMOUNT < 500

COUNT CUSTOMERS

SORT CUSTOMERS COMPANY STATUS STATUS.DESC (P)

R/DESIGN

R/DESIGN is Revelation's 4th generation applications language. Below are specific

- 141 -

details necessary to build and use R/DESIGN generated custom data entry screens and reports.

The topics that the user must follow when creating a database are:

DEF File Definition and Creation Program

BUD Dictionary Builder

PG MR Program Designer

SEL Field Selection Screen

SCR.GEN Default Screen Generator

SCR Customising Screens

BLD .MENU Build a Menu

The main routine in R/DESIGN is BUD, which is used to build a data dictionary. Up to

15 items can be defined for each field in the file. The following is a sample BUD screen.

BUD BUILD DICTIONARY RECORDS

01 File Name
02 Field Name
03 Single/ Multivalued
04 Field Type (F,S,G)
05 Field Number
07 Output Conversion

(MONEY,DATE.TIME)

06 Which Part of Key

08 R/BASIC Formula
09 Justification 10 LIST Display Length

11 Edit Patterns
12 Bottom Screen Prom pt
13 LIST Column Heading
14 Source Information
15 Description

The BUD Screen

Though items 14 and J 5 on the BUD screen are not used by R/LIST. when given they help in

(au tom atic) documentation.

- 142 -

R/BASIC

R/BASIC, Revelation's programming language, is basically BASIC but with extended

features for:

(i) file handling

(ii) record locking (for the LAN version)

(iii) executing (R/LIST) statements by sending a command to the TCL

processor. This is done by the PERFORM and EXECUTE statements.

(iv) executing DOS commands through the PCPERFORM statement.

- 143 -

Appendix 2

Sm art Spreadsheet

The Sm art Spreadsheet program is part of the integrated Sm art System Software consisting

of the Communications-Manager, Data-Manager. Time-Manager. and the Wordprocessor.

Because the Smart System is modular in nature, each application program has its own unique

structure. This permits the user to run the application progrmn independently or to use it

together with any combination of other Smart Applications.

Project processing allows the user to automate sequences of commands and functions by

placing a program in remember mode. The program records all commands and functions the

user performs, and thereafter, will repeat the sequence automatically when that project is

executed.

The Spreadsheet

The screen display for the spreadsheet can be divided into four areas

- 144 -

worksheet window

control area

status line

autohelp line

The Spreadsheet Screeen

Autohelp Line

Is at the bottom of the screen, shows a single line of help information related to the

highligh ted com man d

The Status Line

Is just above the autohelp line. It contains information relating to the status of the

worksheet and computer. It shows name of worksheet, current location in worksheet, font, etc.

The Control Area

Here the user selects commands, responds to prompts and enters information.

The Worksheet Window

A worksheet is a large grid with 9999 rows and 999 columns; the intersection of a row and

a column is called a cell. Each cell can be thought of as a particular rowl column combination

- 145 -

(for example rIel). Numbers. text. and formulas can be entered into any cell. In addition to

referring to cells on a worksheet, a block of cells can be referenced.

The GRAPHICS Command - an overview

GRAPHICS allows the user to define and display graphs that reference worksheet data.

This command also includes an "edit screen" feature that permits the drawing of lines and

characters on an existing graph or blank screen.

The available graph types are bar-line graphs, pie charts, hi-low graphs, layer graphs.

histograms, and X-Y graphs. Each graph type offers various options to enhance the basic graph.

To create a graphics representation of worksheet data, the GRAPHICS DEFINE

command is used to produce a graph definition file(gdf). In the process of producing a gdf,

information on as many ac;; three screens must be entered:

1. the General Graph Definition screen

2. the General Definition Screen for the graph type being created

(bar/line, pie chart, etc.)

3. the Options Definition Screen for the graph type being created

The formats for the GRAPHICS commands are:

GRAPHICS DEFINE (gdf)

GRAPHICS GENERATE (gdf) COLOR SCREEN (scn-optional)

GRAPHICS GENERATE (gdf) BLACK/WHITE (sen-optional)

GRAPHICS PLOT (gdf) FULL-PAGE

GRAPHICS PLOT (gdf) QUADRANT (quadrant #)

GRAPHICS MATRIX-PRINT

GRAPHICS UNDEFINE

GRAPHICS SLIDESHOW

GRAPHICS ED IT (scn-optional)

GRAPHICS VIEW (scn) CURTAIN (type)

GRAPHICS VIEW (scn) FADE-IN

GRAPHICS VIEW (scn) INSTANT

Where:

scn is a graph screen file

type is a curtain type 1-3

Project Processing

- 146 -

Project processing refers to the building and execution of project files. A project file is a

collection of commands which perform some predetermined activity. These commands are

executed in sequence when the project is executed.

With the REMEMBER command the user can instruct the Smart System to remember a

procedure as it is performed. The project file is automatically created after the user has gone

through a series of tasks the first time. When the user wishs to perform the same tasks at a

later date, hel she sim ply executes the project file.

A project file is much more than a repetition of a fixed series of predefined tasks. The

Smart Programming Language includes commands to generate menus, make decisions.

manipulate variables and more. Since project files are created using the Smart language rather

than by saving key-strokes, they are easy to review and edit.

Building Projects

The key to creating a project IS the REMEMBER command. When it IS selected, the

following option list is displayed:

select option: Com pile Delete Edit Finish Help Print Start

The DELETE option is used to erase a project file from the disk.

REMEMBER START activates and REMEMBER FINISH deactivates the remember

mode. The REMEMBER EDIT option accesses the project editor.

- 147 -

A project file may also be created with any text editor or word-processor that can read and

write standard ASCII text files. If the user creates a project in this manner, the REr--fEMBER

COMPILE comm and is used to create the run-time version of the project file.

Accessing the Spreadsheet

The are two standard ways of accessing the spreadsheet from the term inal: first through

the Sm art system or directly into the spreadsheet.

In the first ca<;e, the user types SMART at the terminal, after which the Main Smart Menu \\dl

appear. Select SPREADSHEET on command list 1.

In the second case, the user types SMART S. This bypasses the Main Sm art Menu and gets

him/her straight into the Spreadsheet.

In this thesis the command used is:

SMAR T S -PprojecLfile

which gets the user straight into the Spreadsheet, and executes the project specified to

au tom atically:

load the required worksheet

start graphics definition

generate the graph after its definition

prompt the user for file name to save graph

quit Smart when graph has been saved

- 148 -

Appendix 3

Microsoft Windows

Microsoft Windows is an extension of the DOS operating system. It comes equipped "'ith

built-in applications: CLIPBOARD, NOTEPAD, CARDFILE, CALENDAR, CLOCK.

TERMINAL, and PAINT. Each is like a standard desk-top aid. Windows allows the user t (i

integrate these tasks, optionally running several programs at once.

You can switch between programs with a couple of key-strokes or a click of a mouse.

And since the user never have to quit a program. s/he can continue from where slhe left off.

The Mouse

The Microsoft Mouse is a pointing device used to move im ages on the display, edit or

format text, to create or edit pictures, and to choose comm.mds in certain mouse supported

applications. The computer responds to movements made by the mouse, which with a tracking

resolution of 200 dots/inch, fairly good images can be drawn.

The PAINT Program

Windows Paint is a drawing tool that is a Windows applications, that IS. it was designed

especially to run with Microsoft Windows.

When Windows Paint is started, it gives a paint canvas and a palette of 24 drawing tonls.

plus the menu:

File Edit Font Fontsize Style Palette Options

Each option of the above menu has a set of options under it. They appear when the

mouse is clicked on the option. Below is the list of su ch options:

- 149 -

FILE EDIT FONT FaN TSIZE STYLE PALETTE OPTIONS

new undo system 12 plain patterns zoom in
open erase terminal 24 bold line widths zoom out
save cut 36 italic brush sh apes no grid
save as copy 48 underline tools fine grid
print clear 60 outline medium grid

invert 72 strike out coarse grid
trace edges 84 align left edit pattern
flip vertical align center for printer
flip horizontal opague for screen

transparent

To draw a picture the user chooses drawing tools from the palette, for example pencil(for

free hand sketch), line(for drawing lines), circle(for drawing circles), text(for writing text) etc.

After drawing the picture, it can be saved in a file by clicking the mouse on FILE and

choosing the required option. After which the program will prompt for the file name of the file

to save the picture.

Turbo Pascal

- 150 -

Appendix 4

Turbo Pascal

The Turbo Pac;;cal system is implemented for the PC-DOS, MS-DOS, CP/t'-1-86 and

CP/M-80 operating systems.

Turbo Pascal closely follows the definition of Standard Pac;;cal a<; defined by K. Jensen and

N. Wirth in the ''Pascal User Manual and Report". In addition to the standard. a number of

extensions are provided, su ch as:

absolute address variables

bit/byte manipulation

direct access to CPU memory and data ports

dynamic strings

free ordering of sections within declaration part

full support of operating system facilities

in-line machine code generation

include files

logical operations on integers

overlay system

program chaining with common variables

random access data files

structured constants

type conversion functions

Turbo Pascal is started by typing TURBO at the terminal. After this it comes with the

menu shown below.

- 151 -

Logged drive: C

Work file:
Main file:

Edit
Dir

Compile
Quit

Text: 0 bytes

Run Save
compiler Options

Free: 62903 bytes

Main Turbo Pascal Menu

The above values for Logged drive and memory use are for illustration purposes only; the

corresponding values shown will be the actual values for the computer in use.

Each command in the menu is executed by entering the associated capital letter (if the

terminal has highlighting capabilities, (this letter is highlighted).

The Turbo Pascal editor(similar to Word Star) appends the extension ".PAS" to all source

file names. For the corresponding binary programs the extension is ".COM" if they are not

chained programs. If they are chained then the extension is ".CHN". Chained programs can be

executed in other programs with common data.

To write Turbo Pascal programs with graphics, the Turbo Graphix Toolbox, discussed

below, is used.

Turbo Graphix Toolbox

The Turbo Graphix Toolbox contains a set of procedures and functions to be used in

Turbo Pascal programs. With the aid of this Graphix Toolbox, high-resolution monochrome

graphics can be developed for the IBM-PC and PC-compatible computers(using either an IBM

or Hercules card), and the Zenith-lOO computer.

The Turbo Graphix Toolbox is a versatile package, designed for both simple and

- 152 -

complicated graphics applications. Simple procedures allow the user to draw:

points

lines

rectangles

ellipses

circles

High-level procedures allow the user to create more complex graphics that are often

needed in business and scientific applications:

labelled pie charts

bar charts

a variety of curves

curve fitting

line and solid modelling

polygons

Screen Management

All drawings can be displayed either on the full screen or in windows. Drawing can also

be done in RAM(virtual) screen in memory without display, and move the resulting image to

the displayed screen. The Graphix Toolbox routines allow the user to save and load either of

these screens to and from disk, and restore them when needed. The screen contents of one

can also be swapped with the contents of the other. The screen currently being drawn is called

the active screen.

Windows Management

A window is any area of the screen that the user defines as the drawing area Several

windows, containing different drawings, can be defined and then displayed simultaneously on

the screen. Each window can be moved independently of other windows, placed on top of

others, and stored to, recalled from, or erased from memory. The user can draw borders.

- 153 -

incorporate high-quality text, and label windows with headers or footers. The window currently

being drawn is called the active window.

A window can be specified to be almost any size, from the whole screen to 1 vertical

pixel by 8 horizontal pixels. The window area is defined by specifying the X and Y coordinates

of its upper left and lower right corners, with Y values measured in I-pixel units and X in 8-

pixel units. These coordinates are called window definition coordinates.

Further to specifying the window definition coordinates when defining a window, a

window is associated with a number, the window number. The window number is unique for

each window and it is used to identify a window.

In the Turbo Graphix Toolbox the following are distinguished: screen coordinates, world

coordinates, and windows as explained below.

The absolute screen coordinate system refers to the entire monitor screen: coordinates

(0,0) are in the upper left corner of the screen, with the X coordinates increasing to the right

up to 719, and the Y coordinates increasing downward up to 349.

A world coordinate system is an arbitrary system that is specified to accommodate any

particular application. World coordinates are completely unrelated to the screen coordinates.

A window is any area of the screen that is defined as a drawing area. Each window can be

moved independently of other windows, stored, recalled, or erased from memory. World

coordinates can be scaled so that they fit correctly into any defined window.

The figure below illustrates two windows A and B, each with its own world coordinates.

- 154 -

window B
,

y
window A

y

T

Windows & World Coordinates

To use the Turbo Graphix Toolbox, system files are incorporated in the Turbo Pascal

program through the "include directive".

Every Turbo Graphix program must include the following system files, in the order given

below.

{$I TYPEDEF.SYS}

{$I GRAPHIX.SYS}

{$I KERNEL.SYS}

Other include files together with their uses are:

{$I WIND OWS.SYS } - for applications needing windows

{$I CIRSSEGM.HGH} - circles and ellipses

1$1 PIE.HGH} - for labelled pie charts

{$I HATCH.HGH} - when hatching histograms

- 155 -

{$I HISTOG RM.HGH} - when histograms, bar graphs, etc are needed

{$I POL YGON .HG HI - if using polygons

{$I AXIS.HGH} - if axes are to be drawn/labelled

{$I SPLINE.HGH} - when curve fitting

{$I BEZIER.HGH} - needed for line and solid modeling

{$I MODPOLY.HGH} - for polygons

These files are included only if the functions they offer are needed in the program.

Images drawn by the Graphix Toolbox can be saved by either saving window or screen

contents.

The SA VESCREEN procedure is used to store the active screen as a file on a disk. The

single par am eter passed in the routine specifies the file nam e in which to save the screen

contents.

The contents of a given window can be saved in a file on the disk by the SA VEWIND OW

procedure. This procedure takes two parameters; the window number of the window to be

saved and name of file in which to save the window contents.

- 156 -

Appendix 5

The DEC LN03 Laser Printer

The LN03 Electronic Printer is a table-top, non-impact page printer that uses laser

im aging and xerographic printing techniques. The printer prints letter quality im ages on cut

sheet blank or preprinted paper, in two sizes, at a rate of 8 pages per minute.

The printer is capable of printing in two different orientations: portrait and landscape. For

each printing orientation, there are several mono-spaced fonts permanently stored in ROM, 32

fonts in all: 24 portrait and 8 landscape. Further to the 32 fonts in ROM, up to 32 other fonts

can be loaded from the host computer and stored in RAM.

Data Interface

The LN03 data interface is a serial interface, that conforms mechanically to RS-232-C,

functionally to a data subset of RS449, and electrically to RS423. The interface connection to

the LN03 is via a 25-pin, male receptacle mounted on the rear of the cabinet.

Character Code Processing

The printer processes characters in accordance with the ANSI standard X3 .4-1977, and the

ISO DIS 2022-1984. The coded characters are processed based on category:

printable or graphic characters, control characters, escape sequences, control sequences. and

control strings.

Printable ASCII characters are printed as they are received by the printer. The escape

sequences, control sequences, and control string consist of multiple characters/ bytes grouped

together to indicate a specific control function. See figure 4.1, 4.2, tables 4.1, 4.2 and tables B-

1/14 of its Programmer Reference Manual* for a complete list of the character groupings .

• LN03 Programmer Reference Manual. Edllcational services DEC. Massachusetts. Janllary 1985.

- 157 -

Sixel Graphics

The LN03 produces graphic images by the protocol known as the sixel protocol. The

sixel protocol allows devices to receive and print black and white bit-map data at various sizes

over a stream oriented comm unications line. Six bits of each 7 or 8 bit character code are used

to represent bit-map data, allowing the remaining values to be used to control the context of

the communications line and to fit within the ANSI text syntax.

The sm allest displayable unit in the sixel protocol is a dot. This can be a light dot on a

screen, an ink dot on the paper. Dots can be round, oval, square, rectangular, sm all or big.

A sixel is a group of 6 vertical pixels represented by 6 bits within a character code. A one

value for a bit indicates that a pixel-spot will be placed at the corresponding grid position; a

zero value is not written. Upon entering sixel mode, the current sixel position is determined

from the ANSI text position and is called the graphic left margin. As each sixel is printed, the

sixel active position is advanced to the next horizontal grid position. Positioning is always

relative to the sixel active position, and cannot go backwards except for returning to the graphic

left margin via the graphic carriage return and the next line commands.

The graphics next line command causes the sixel active position to move to the left

margin and down one row of sixels(six actual grid units}.

- 158 -

Appendix 6

RMDBS Main Routine

**** THIS IS THE MAIN -LINE PR OG RAM TO CONTR OL
**** ALL FUNCTIONS IN RMDBS

PERFORM 'WELCOME"
PERFORM "CONTINUE"
PERFORM "INSTR UCTIONS"
PERFOR M "CONTINUE"
START:
PRINT @(-l):@(-2)
PRINT ""
PRINT ""
PRINT "NO. FUNCTION"
PRINT" 0 Get HELP Inform ation"
PRINT" 1 VIEW: display a picture on the screen"
PRINT" 2 PUT.SCRPIC: insert a screen picture into database"
PRINT" 3 PUT.LSRPIC: insert a laser printable picture into database"
PRINT" 4 PUT.PROG: insert a binary program into database"
PRINT" 5 HARD .COPY: print a laser printable picture"
PRINT" 6 PRINT: a screen picture onto laser printer"
PRINT" 7 SCALE: scale a picture up/ down by a constant factor"
PRINT" 8 OVERLAY: merge two pictures to produce a third in a DOS file"
PRINT" 9 SMART: run Smart Spreadsheet to draw/edit picture"
PRINT "10 WIN: execute WINDOWS PAINT to draw/edit a picture"
PRINT "II DRA WON: retrieve data and draw it on a picture"
PRINT "12 MAIN.MENU: perform the main Revelation MENU"
PRINT "13 DEL.PICS: delete 'least used' pictures to give room on disk"
PRINT "14 CHANGE.PARS: change system parameters"
PRINT "IS SEE: what programs, screen or laser pictures are in database"
PRINT "16 DELETE: a program, screen or laser picture from the database"
PRINT "17 EXIT: to TCL"
PRINT
CHOOSE:
PRINT "PLEASE TYPE CHOICE NO."
INPUT CHOICE
IF CHOICE < 0 OR CHOICE> 17 THEN
PRINT "WRONG CHOICE"
PRINT "CHOICE MUST BE BETWEEN 0 AND 17"
GOTO CHOOSE
END
BEGIN CASE
CASE CHOICE = 0: GOSUB HELPER
CASE CHOICE = 1: GOSUB DISPLA YPIC
CASE CHOICE = ~; GOSUB INSERTPIC
CASE CHOICE = 3: GOSUB INSERTLSR
CASE CHOICE = 4: GOSUB INSERTPRG

CASE CHOICE = 5: GOSUB LASER.ONE
CASE CHOICE = 6; GOSUB PRINT.SCR
CASE CHOICE = 7; GOSUB SCALER

- 159 -

CASE CHOICE = 8; GOSUB OVERLA YER
CASE CHOICE = 9; GOSUB SMARTS
CASE CHOICE = 10; GOSUB WINPAINT
CASE CHOICE = 11; GOSUB DRA WON
CASE CHOICE = 12; GOSUB REV
CASE CHOICE = 13; GOSUB DELPICS
CASE CHOICE = 14: GOSUB CHANGEPARS
CASE CHOICE = 15; GOSUB SEE
CASE CHOICE = 16; GOSUB DELT
CASE CHOICE = 17: GOTO LEAVE
END CASE
GOTO START

HELPER:
PERFORM'1NSTRUCTIONS"
PERFORM "CONTINUE"
RETURN
**** display screen picture
DISPLA YPIC:
PRINT" ENTER NAME OF PICTURE TO BE D ISPLA YED"
INPUT PICN AME
PERFORM "VIEW ":PICNAME
RETURN
**** insert in screen picture
INSERTPIC:
PRINT" ENTER PICTURE NAME"
INPUT PICN AME
PRINT" ENTER FULL PATH NAME OF PICTURE FILE"
INPUT PICFILE
PERFORM ''PUT.SCRPIC ": PICNAME :" ": PICFILE
RETURN
**** insert a laser picture
INSERTLSR:
PRINT" ENTER PICTURE NAME"
INPUT PICN AME
PRINT" ENTER FULL PATH NAME OF PICTURE FILE"
INPUT PICFILE
PERFORM ''PUT.LSRPIC ": PICNAME :" ": PICFILE
RETURN
**** insert a binary program
INSERTPRG:
PRINT" ENTER PROGRAM NAME"
INPUT PICN AME
PRINT" ENTER FULL PATH NAME OF PROGRAM FILE"
INPUT PICFILE
PERFORM ''PUT.PROG ": PICNAME :" ": PICFILE
RETURN
**** print on laser a laser picture
LASER.ONE:
PRINT" ENTER NAME OF PICTURE TO BE PRINTED"
INPUT PICN AME

PERFORM 'HARD.COPY ":PICNAME
RETURN
**** print on laser a screen picture
PRINT.SCR:

- 160 -

PRINT "ENTER NAME OF PICTURE TO BE PRINTED"
INPUT PICN AME
PERFORM "PRINT ":PICNAME
RETURN
**** scale a screen picture
SCALER:
PRINT" ENTER NAME OF PICTURE TO BE SCALED"
INPUT PICN AME
PERFORM "SCALE ":PICNAME
RETURN
**** overlay two pictures to produce a third
OVERLAYER:
PRINT" ENTER NAME OF FIRST PICTURE"
INPUT PICI
PRINT" ENTER NAME OF SECOND PICTURE"
INPUT PIC2
PRINT" ENTER NAME OF NEW PICTURE"
INPUT NEWPIC
PERFORM "OVERLA Y ":PIC1:" ":PIC2:" ":NEWPIC
RETURN
**** execute sm art
SMARTS:
PERFORM ''EXE.SMART''
RETURN
**** execute windows
WINPAINT:
PERFORM ''EXE.WIN''
RETURN
**** draw-on a picture
DRAWON:
PRINT" ENTER NAME OF PICTURE TO DRAW ON"
INPUT PICN AME
PERFORM "DRA WON ":PICNAME
RETURN
**** delete '1east used" picture
DELPICS:
PERFORM 'DEL.PICS"
RETURN
**** change system parameters
CHANGEPARS:
PERFORM "CHANGE.PARS"
RETURN
**** see names of program s, pictures in db
SEE:
PERFORM ''LIST.NAMES''
RETURN
**** delete unwanted program or picture
DELT:
PERFORM 'DEL.ONE"
RETURN

**** descend to the Main Revelation Menu
REV:
PERFORM ''MENU''
RETURN
**** leave rmdbs
LEAVE:
STOP

END

- 161 -

