320 research outputs found

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    Multidomain Simulation Model for Analysis of Geometric Variation and Productivity in Multi-Stage Assembly Systems

    Get PDF
    Nowadays, the new era of industry 4.0 is forcing manufacturers to develop models and methods for managing the geometric variation of a final product in complex manufacturing environments, such as multistage manufacturing systems. The stream of variation model has been successfully applied to manage product geometric variation in these systems, but there is a lack of research studying its application together with the material and order flow in the system. In this work, which is focused on the production quality paradigm in a model-based system engineering context, a digital prototype is proposed to integrate productivity and part quality based on the stream of variation analysis in multistage assembly systems. The prototype was modelled and simulated with OpenModelica tool exploiting the Modelica language capabilities for multidomain simulations and its synergy with SysML. A case study is presented to validate the potential applicability of the approach. The proposed model and the results show a promising potential for future developments aligned with the production quality paradigm

    Foundations of Multi-Paradigm Modelling for Cyber-Physical Systems

    Get PDF
    This open access book coherently gathers well-founded information on the fundamentals of and formalisms for modelling cyber-physical systems (CPS). Highlighting the cross-disciplinary nature of CPS modelling, it also serves as a bridge for anyone entering CPS from related areas of computer science or engineering. Truly complex, engineered systems—known as cyber-physical systems—that integrate physical, software, and network aspects are now on the rise. However, there is no unifying theory nor systematic design methods, techniques or tools for these systems. Individual (mechanical, electrical, network or software) engineering disciplines only offer partial solutions. A technique known as Multi-Paradigm Modelling has recently emerged suggesting to model every part and aspect of a system explicitly, at the most appropriate level(s) of abstraction, using the most appropriate modelling formalism(s), and then weaving the results together to form a representation of the system. If properly applied, it enables, among other global aspects, performance analysis, exhaustive simulation, and verification. This book is the first systematic attempt to bring together these formalisms for anyone starting in the field of CPS who seeks solid modelling foundations and a comprehensive introduction to the distinct existing techniques that are multi-paradigmatic. Though chiefly intended for master and post-graduate level students in computer science and engineering, it can also be used as a reference text for practitioners

    Design, modelling, simulation and integration of cyber physical systems: Methods and applications

    Get PDF
    The main drivers for the development and evolution of Cyber Physical Systems (CPS) are the reduction of development costs and time along with the enhancement of the designed products. The aim of this survey paper is to provide an overview of different types of system and the associated transition process from mechatronics to CPS and cloud-based (IoT) systems. It will further consider the requirement that methodologies for CPS-design should be part of a multi-disciplinary development process within which designers should focus not only on the separate physical and computational components, but also on their integration and interaction. Challenges related to CPS-design are therefore considered in the paper from the perspectives of the physical processes, computation and integration respectively. Illustrative case studies are selected from different system levels starting with the description of the overlaying concept of Cyber Physical Production Systems (CPPSs). The analysis and evaluation of the specific properties of a sub-system using a condition monitoring system, important for the maintenance purposes, is then given for a wind turbine

    Specifying, Analyzing, Integrating Mobile Apps and Location Sensors as part of Cyber-Physical Systems in the Classroom Environment

    Get PDF
    Cyber-Physical Systems (CPS) are characterized as complex systems usually networked, composed of several heterogeneous components that make the connection between events in the physical environment with computation. We can observe that this kind of systems is increasingly used in different areas such as automotive facilities, construction (civil engineering), health care and energy industry, providing a service or activity which depends on the interaction with users and the physical environment in which they are installed. Nowadays, in the educational context, the process of control and monitor of evaluation activities is conducted in a non-automated way by lecturers. This control is performed before, during and after the beginning of the evaluation activity, and include logistical processes such as classroom reservation, distribution of students per classroom, attendance record or fraud control. However, in an environment involving a large number of students, the execution of these tasks becomes difficult to perform efficiently and safely, requiring innovative techniques or assistance tools. In this work, the creation/design of a cyber-physical system through a modeling approach is proposed, aiming to help teachers to control and monitor evaluation activities. Based on a systematic literature study, we claim that there are no studies presenting the modeling of cyber-physical systems in an educational context, enhancing the interest of the proposed case study. In this document, we show how we used a framework named ModelicaML to model this system during the design phase. Also, this framework will offer a simulation component to simulate the behavior of the prescribed system. On the side of the hardware architecture, for the purpose of identifying the valid seats for the specific students inclass during the examination period, an indoor location system will be used, allowing to blueprint the physical layout of the room and globally manage the activity workflow. We finish this work by showing with empirical studies the gains of our solution when compared to the traditional method

    TiLA: Twin-in-the-Loop Architecture for Cyber-Physical Production Systems

    Full text link
    Digital twin is a virtual replica of a real-world object that lives simultaneously with its physical counterpart. Since its first introduction in 2003 by Grieves, digital twin has gained momentum in a wide range of applications such as industrial manufacturing, automotive and artificial intelligence. However, many digital-twin-related approaches, found in industries as well as literature, mainly focus on modelling individual physical things with high-fidelity methods with limited scalability. In this paper, we introduce a digital-twin architecture called TiLA (Twin-in-the-Loop Architecture). TiLA employs heterogeneous models and online data to create a digital twin, which follows a Globally Asynchronous Locally Synchronous (GALS) model of computation. It facilitates the creation of a scalable digital twin with different levels of modelling abstraction as well as giving GALS formalism for execution strategy. Furthermore, TiLA provides facilities to develop applications around the twin as well as an interface to synchronise the twin with the physical system through an industrial communication protocol. A digital twin for a manufacturing line has been developed as a case study using TiLA. It demonstrates the use of digital twin models together with online data for monitoring and analysing failures in the physical system
    • …
    corecore