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Abstract—This paper is dealing with a new research and 

development platform for the development of Factory of the 

Future Production System, referred to as ZIMS (Zilina 

Intelligent Manufacturing System). ZIMS is a new, open and 

collaborative environment, supporting creativity, inventing new 

solutions and their practical implementation in the form of new 

innovative products. ZIMS is based on holonic based, what 

brings many opportunities to develop new intelligent solutions 

for industry. 
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I.  INTRODUCTION 

The globalized economy is strongly influenced not only 
by economic cycles but also a rapid change in customer 
behavior, which result in turbulences. Business community 
should continually find new ways to respond to these 
incentives. One of the effective solutions is the use of 
reconfigurable manufacturing systems. 

In the world runs intensive research into Factory of the 
Future Production System. The EU has launched extensive 
research programs dedicated to Factory of the Future and 
Intelligent Manufacturing Systems (IMS), Smart 
Manufacturing. The goal of all these efforts is to develop a 
new production system using advanced technology, 
which will enable to satisfy demanding customer 
requirements in the future. 

Authors of the paper describe a new research and 
development platform for the development of Factory of 
the Future Production System, referred to as ZIMS (Zilina 
Intelligent Manufacturing System). 

II. ZILINA INTELLIGENT MANUFACTURING SYSTEM

A. ZIMS – New Research and Development Platform 

Response to the latest trends in the area of Factory of 
the Future Production System is the emergence of new 
research platform – ZIMS. This research platform was 
created in cooperation of CEIT, a. s., Slovakia (Central 
European Institut of Technology) spin off the University of 
Žilina, Technical University of Košice, technological and 
industrial partners. ZIMS responds to trends with the digital 
transformation of Industry – or Industry 4.0 Europe [1]. 

ZIMS uses the most advanced technologies for the 
design, optimization and operation of Factory of the Future 
(FoF), especially in the area of: Digital Factory and Digital 
Engineering, Virtual Engineering, Reverse Engineering, 
digitization (3D laser scanning), Rapid Prototyping, virtual 
testing, computer simulation and emulation, etc. 

The layout of workplaces in ZIMS (Fig. 1) is 
represented an area of more than 1000 m2 (Fig. 2). As 
shown in Figure 1, the layout of workplaces in ZIMS was 
carried out on the basis of the logic of development of 
innovation. It starts with the idea and its presentation in 
Virtual Reality, Rapid Prototyping and product testing, 
design of production processes, configuration of the 
production system using Digital Factory Technologies It 
finishes with the practical realization of the product in the 
production system. 

Figure 1.  Layout of workplaces in ZIMS. 

Figure 2.  Concept of CPS in ZIMS. 

ZIMS is a new, open and collaborative environment, 
supporting creativity, inventing new solutions and their 
practical implementation in the form of new innovative 
products. 
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 This environment fully supports experimentation with 
new, unknown issue and search of non-traditional 
approaches to solving existing problems. ZIMS also serves 
as an incubator latest technology. 

B.  ZIMS – Cyber-Physical System 

ZIMS, as a system is built in three different worlds: the 
real, the virtual and the digital (Fig. 3), where their interface 
is created a Cyber-Physical System (CPS) ensuring a direct 
integration of virtual, digital and real world [2]. 

Figure 3.  Concept of CPS in ZIMS. 

Smart Factory – is built as an agile system that is able 
to adapt rapidly to changing customer requirements. 
Intelligent features, automation, and robotics, 
reconfiguration, automatic control, simulation and 
emulation technologies are used to create rapid change.  

Virtual Factory – virtualization technology and data 
integration are used to represent the dynamics of real 
enterprise. Virtual Factory represents cyber feature of real 
enterprise and virtual representation of all its elements. It 
uses data from sensors, actuators, video and audio 
information, biometric data, etc. In real time creates a 
virtual image of functioning of enterprise. 

Digital Factory – digitalization and digital technologies 
are used to integration of all activities within product life 
cycle and production systems. Digitizing, modeling, 
simulation and emulation are used to understanding of 
comprehensive manufacturing processes and creation of 
new knowledge, which is used for optimization of real 
production systems. In contrast to virtual factory, digital 
factory do not use real data, but use data for example from 
simulation.  

C. ZIMS - Holonic Concept 

ZIMS represents a pilot project of Intelligent 
Manufacturing Systems, which is composed of workplaces 
that communicate with each other through Holon [3]. 
Holons form comprehensive holarchy.  

The strength of holonic organization, or holarchy, is 
that it enables the construction of very complex system that 
are nonetheless efficient in the use of resource, highly 
resilient to disturbance and adaptable to  changes in the 
environment in which they exist [4]. 

The proposed Holonic concept of manufacturing 
system is used for control and monitoring of individual 
activities multi-agent system (MAS). The functioning of 
holonic systems are based on the use of autonomous ability 
of agent.  The agents are considered to be autonomous 

entities of system. Their interactions can be either 
cooperative or selfish within the defined level of action. 
Agents receive tasks from higher level of holarchy, but their 
solutions are carried out autonomously. Intelligent agent is 
a natural or computing system that is able to perceive their 
environment and on the basis of the monitoring carried out 
actions, which fulfilling the global objectives of the system. 

Multi-agent systems (MAS) can be considered an 
elementary part of distributed artificial intelligence, which 
forms the conceptual framework for modeling of 
comprehensive systems. MAS is defined as a loosely bound 
network consisting of researchers of generated tasks. MAS 
platform represents distribution, autonomy, interaction (i. 
e. communication), coordination and organization of
individual agents. 

D. Knowledge environment - learning from the process 

Fig. 4 represents the principle of building a knowledge 
environment that will encourage learning systems of active 
processes [2]. This approach is validated in research area of 
technology for the industrial production of large optical 
single crystals. 

Figure 4.  System of learning from the process. 

Physical production system in ZIMS is controlled using 
a multi-agent system (MAS). When experimentation and 
development management for large-scale production of 
optical single crystals are used logic control system 
developed in ZIMS. It is based on a system of learning 
processes and uses meta-modeling approach. The control 
system communicates directly with the knowledge system. 
Knowledge-based systems used for decision support 
computer simulation (simulator). The simulator performs a 
set of simulation experiments. From the statistical data are 
obtained using multiple nonlinear regression analysis 
generated the desired meta-models. The resulting meta-
models are used for making predictions about the future 
behavior of the controlled system (prediction) and these 
prediction amenities for Aproximativ production 
management. Aproximativ (gross) production 
management, represented by a set of metamodels is 
cyclically refined, using feedback (data) of real processes 
and new use of simulation. This creates a closed system of 
learning process, and its base is built and own knowledge 
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system. It is integrating the explicit knowledge (for 
example, models created in the past, the knowledge gained 
in the past, new explicit theoretical knowledge) and 
formalized implicit knowledge (conceptual system 
designers, analysts existing system). 

III. INTELLIGENT, MODULAR PRODUCTION CONCEPT

Intelligent Modular Production is one of the workplaces 
that is built in ZIMS and represents a pilot project for 
intelligent, modular production solutions. 

Intelligent Modular Production is research and 
experimental workplace, where are developed five 
subsystems: 

• The Intelligent Modular System of Quality Control
(InMoSys QC).

• The Intelligent Modular Assembly System
(InMoSys AS).

• The Intelligent Modular Automated Guided
Vehicle System (InMoSys AGV).

• The Intelligent Modular Robotic Machining
System - InMoSys RMS-3.

• The Intelligent Modular Storage System (InMoSys
ST) [5].

The principle of Intelligent Modular Production 
activities can be described simplistically on the basis of the 
logic of processing of a product.  

It starts with the inputs from the input/output storage 
system InMoSys ST, from which the material is conveyed 
to the workplace InMoSys RMS-3. There is machined into 
the desired shape (volume, shape, texture, size, etc.). The 
processed part is transported by the InMoSys AGV to the 
quality control workplace InMoSys QC, wherein the 
control operations are carried out (precision, dimension, 
size, etc.).  

High-quality parts are further transported by InMoSys 
AGV to assembly workplace InMoSys AS, which are 
shared with other parts already assembled into the final 
product. The final products are transported to the input-
output storage system InMoSys ST.  

IV. SYSTEM INNOVATION OF INTERNAL LOGISTICS

A.  The Logistics Towing Units 

Reconfigurable manufacturing systems are proposed 
(of several authors) as a solution to unpredictable 
fluctuations in market demand and market turbulence [6], 
[7], [8], [9], [10]. 

An example of an innovative development using the 
latest Internet of Things technologies is an autonomous 
logistics system developed in the framework of research 
ZIMS [11]. This system uses the logistics towing units 
Aurora, from the company CEIT (Fig. 5).  

Figure 5.  The logistics towing units of program Aurora. 

These autonomous towing units were developed in the 
base of the requirements of the automotive industry, in 
cooperation with Volkswagen, Slovakia. The resulting 
solution is the Modular Reconfigurable Logistics System. 

 The following Fig. 6 shows the application of this 
logistics solution in the automotive industry. As is shown, 
the system uses automatic identification of towing units 
position, custom navigation, monitoring and control 
system, which is integrated to the Production Planning 
System. 

Figure 6.  The logistics concept of CEIT. 

The following Fig. 7 shows the deployment of current 
system AURORA in the automotive industry. 

Figure 7.  The logistics concept of CEIT. 



The development of autonomous mobile robotic control 
system is implemented in its own development platform 
Ella® that uses virtual reality and digital models of 
individual elements of the proposed system. Dynamic 
verification of the functioning of the system in operating 
conditions is implemented through computer simulation 
and emulation (Fig. 8) in the environment of Ella SIM 
system [12]. 

Figure 8.  Simulation/emulation environment of  Ella SIM system. 

The preparation for implementation (Fig. 9) is 
performed off-line, in the environment of Ella VUP, in the 
system of virtual commissioning [13]. This approach 
allows in advance, supported by simulations to undertake 
predictive studies and optimization [14].  

Figure 9.  The virtual commissioning Ella VUP. 

Digital Factory Technologies enabled the development 
of the company's own decision-making approach for 
analyzing potential for developing innovations (Fig. 10). 
The first step, it is evaluated the innovative concept and 
technological feasibility of the innovation (it finds out if: 
Does the innovation work?). In the second step, it is tested 
the significance of innovation, it is determined the market 
potential and market interest in innovation (to find out if: 
Does a customer buy this product?). 

Figure 10.  Decision-making on innovation. 

One way to facilitate the design of the production 
system in virtual reality and simulation is to use our own 
software solution (Fig. 11), referred to as Virtual Design of 
Manufacturing Systems (VDMS). The trade name of 
VDMS is CEIT Table [15]. 

Figure 11.  CEIT Table. 

CEIT Table represents an integrated solution for 
support intuitive, team-oriented design of production and 
logistics systems.  

It supports the productivity growth of the design 
process; it also fully supports the elimination of inefficient 
decisions in the process of preparation of innovation 
projects. 

The customers have the opportunity to try out the 
activities of their Factory of the Future Production in the 
environment of virtual reality and augmented reality 
(CAVE - Computer Aided Virtual Environment). It was 
labeled as Adaptive Haptic Virtual Collaborative 
Development Environment (HVACDE) (Fig. 12). 

Figure 12.  CAVE. 



There are also technologies for haptic, special virtual 
reality headset for 3D dynamic effects (Oculus Rift), or the 
latest experimental technology for brainwave reading 
device (EPOC) (Fig. 13). 

Figure 13.  Oculus Rift and EPOC. 

The latest development is oriented to the wider use of 
Digital Factory Technologies and advanced information 
and communication technologies [16]. All devices in 
developing logistics system will automatically monitor 
through sensors. Their current status (operation, failure, 
downtime, etc.) will be available to any other element of 
the production system. 

In the development is the solution, in which each 
product will be carried (as one of the attributes) all the 
information, which will be required for processing in the 
base of the current status of the production system.  

Intelligent pallets in developing manufacturing system 
will be equipped with its own processor and will be capable 
of optimizing of processing of their contents in production. 
Mobile robots will be fully autonomous and the order for 
transport will directly receive from the processed products 
or pallets.  

Operation of all elements of the system will be 
constantly monitored and on the basis of this operation will 
be carried out predictions of potential fault conditions or 
interruption of system operation and will be immediately 
implemented some countermeasures. 

 An innovative approach to planning, evaluation of 
audits, deadlines and workshops in order to obtain outputs 
interactively, with room on-line display of the selected 
group of workplaces (Fig. 14). 

There is possible to control not only the planned date, 
outputs of the analysis in tables and graphs but also to 
watch video recording or other desired plan activities. 

Figure 14.  Innovative planning board. 

Comprehensive simulation models whose input will be 
sensors of service consumption (energy, materials, etc.) 
will enable the optimization in real time.  

The whole logistics system will be linked via the 
Internet of Things to cloud solutions so that all system 
information will be stored online and will be accessible in 
the cloud. 

Operational interventions will be done after connecting 
to the internet from an arbitrary point in the world.  

The enterprise will not need already undertaking its 
own IT solutions, servers and data repositories on first use 
of this solution, but will use Direct Memory Access 
Databases, which allow enormous acceleration of IT 
communications in industry.  

Using the Data Centric Computing Deep Computing 
Architecture will run all important calculations at the point 
of data collection, which will further accelerate real-time 
communication. [16].   

This research is funded by CEIT; spin off the University 
of Zilina and the Technical University of Košice. 

Interface of controlled enterprises with social networks, 
households, public buildings, transport systems and 
vehicles is created a new environment – cyberspace.  

This cyberspace can no longer function without 
artificial intelligence. For a description of such 
comprehensive systems will require special descriptive 
language. This language was developed in SRN – Unified 
Service Description Language (USDL).  

V. CONCLUSION

Nature is as a comprehensive, self-organized, holonic 
system. A human is also made up of small, autonomous 
units - Holon, which create together larger self-organized, 
comprehensive units and this units form a comprehensive 
holonic system – a human. 

Nature creates biological systems and enables their 
further development through evolution, towards the highest 
form of organized mass - Intelligent Systems. 

Biological systems represent the most effective and 
efficient production systems that humanity knows. These 
systems serve scientists as role models in creating 
"artificial" mechanisms that imitate nature, for the 
production of new products. 

Learning from Nature has become one of the most 
important resources for further development of humanity. 

Biological systems represent the most effective and 
efficient production systems that humanity knows. These 
systems serve scientists as role models in creating 
"artificial" mechanisms that imitate nature, for the 
production of new products. 

The Advanced Factory of the Future Production 
Systems may come increasingly closer to optimized 
biological systems by evolution and will use the latest 
scientific breakthroughs in artificial intelligence, 
nanotechnology and information and communication 
technology (ICT). 

Nowadays, research teams are developing the 
Advanced Factory of the Future Production Systems in 
Zilina.   
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Abstract— Foreseeing changes in the way companies manufacture 
products and provide services, future trends are emerging in 
design and manufacture. Together with growing internet 
applications and technologies connected through the cloud, a new 
Industrial Revolution, named “Industry 4.0”, aims to integrate 
cyber-virtual and cyber-physical systems to aid smart 
manufacturing, as presented in this paper. Connecting 
information and physical machinery, this new paradigm relies on 
how effective and fast connectivity are achieved for Industry 4.0. 
A new generation of wireless connection, 5G, will help and 
accelerate this trend. Following analysis of the present cyber-
physical integration for the 4th Industrial Revolution, this paper 
also investigates future methodologies and trends in smart 
manufacturing, design and innovation. 

Keywords- Cyber-physical integration; cyber-physical systems; 
Industry 4.0; smart manufacturing; networked autonomous 
production; CAD; CAutoD 

I.  INTRODUCTION 
Design and manufacture are currently moving to a new 

paradigm, targeting innovation, lower costs, better responses to 
customer needs, optimal solutions, intelligent systems, and 
alternatives towards on-demand production. The concept that 
highlights this significant evolution is “Industry 4.0” (I4), 
dubbed the “4th Industrial Revolution” [1], with associated 
concepts of networked embedded systems, cyber-physical 
systems (CPS), smart factory, Internet of Things (IoT), Internet 
of Services (IoS) and “Internet+”, to name but a few. All these 
trends have in common the integration of several features in the 
same place as a response to challenges of computerized 
decision making and big data that are proliferated by the 
internet and cloud computing (CC).  

To gauge the development and trends, this paper aims to 
analyze cyber-physical integration for design and 
manufacture, and to present a timely survey on Industry 4.0. 
Section 2 set the scene of Industrial Revolutions (IRs), with 
cyber-physical systems detailed in Section III. Necessary 
information and communication technologies (ICT) are 
analyzed in Section IV. Conclusions are drawn and future 
agendas are discussed in Section V. 

II. INDUSTRY 4.0 – AN EVOLUTIONARY REVOLUTION

A. What Industry 4.0 Is 
Ever since the beginning of industrialization, technological 

advances have led to socio-economic paradigm shifts which are 

today termed “industrial revolutions”, i.e., mechanization with 
steam power for the 1st IR  electrical energy for mass 
production in the 2nd IR  automated production with 
electronics and control in the 3rd IR. Today, with advances in 
digitalisation and the internet, “smart manufacturing” and 
“smart factories” are becoming a reality, where the 
manufacturing value chain in the physical world can be 
integrated with its virtual copy in the cyberspace through CSP 
and IoT, and then be seamlessly integrated with IoS. Tempted 
by these future expectations, the term “Industrie 4.0” or 
“Industry 4.0” was coined a priori by the German government 
promoting their “High-Tech Strategy 2020 Action Plan” in 
2013 for a planned “4th industrial revolution” [2]-[4]. 

The terminologies “Smart Industry” and I4 describe the 
same technological evolution from the microprocessor 
embedded manufacturing systems to the emerging CPS, smartly 
linking (i) demand to (ii) manufacture, (iii) supply, and (iv) 
services by the internet. Via decentralising intelligence, object 
networking and independent process management interact with 
the virtual and real worlds, heralding a crucial new aspect of 
future industrial production process that integrates the above 
four processes. In short, I4 represents a paradigm shift from 
“centralised” to “decentralised” production, a reversal of the 
logic of production process thus far. The design principles of I4 
components are shown in Table 1 [4].  

Table 1 Design Principles of I4 Components 

B. Importance of the Strategised Industry Revolution 
The first three industrial revolutions came about as a result 

of centralization for production. Now, businesses will establish 
global networks that incorporate their machinery, warehousing 
systems and production facilities in the shape of a cyber-
physical system, comprising “smart machines”, storage systems 
and production facilities capable of autonomously exchanging 
information, triggering actions and controlling each other 
independently.  

A. A. Flores Saldivar is grateful to CONACYT for a Mexican Government
scholarship. Y. Li and W.-N. Chen are grateful to the Royal Society and
National Science Foundation of China for the support via a Newton Fund. 

Design CPS IoT IoS Smart 
Factory

Interoperability X X X X
Virtualisation X - - X

Decentralisation X - - X
Real-Time Capability - - - X

Service Orientation - - X -
Modularity - - X -
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These form a “smart factory” that allows individual 
customer requirements to be met, whilst efficiency obtained in 
automated production is maintained. This means that even one-
off items can be manufactured profitably. In Industry 4.0, 
dynamic business and engineering processes enable last-minute 
changes to production and offer the ability also to respond 
flexibly to disruptions and failures. End-to-end transparency is 
provided over the manufacturing process, also facilitating 
optimized design and decision-making. Further, Industry 4.0 
will result in new ways of creating value and novel business 
models. In particular, it will provide start-ups and small 
businesses with the opportunity to develop and provide 
downstream services. To both developed and developing 
economies, I4 will reduce factory-floor requirements and help 
progress of humanity. 

III. CYBER-PHYSICAL INTEGRATION

A CPS collaborates computational entities which are in 
intensive connections with their surrounding physical world and 
on-going processes, providing and using, at the same time, 
data-accessing and data-processing services available on the 
internet [5]. A cyber-physical production system relies on the 
newest and foreseeable further developments of computer 
science, ICT, and manufacturing science. Concepts like 
autonomous cars, robotic surgery, intelligent buildings, and 
implanted medical devices are just some of practical examples 
that have already emerged in Research and Developments 
(R&D) [6]. 

A. Design of a Cyber-Physical System 
Cyber space and virtual systems represented by ICT are 

now getting integrated with physical control and production 
systems. This integration is enabling compression of 
development cycles by reuse of existing methodologies, 
methods, models, tools and techniques, encapsulated in 
integrated and customized models and components that can be 
rapidly used in an innovative or creative design. The unique 
challenges in CPS integration emerge from the heterogeneity of 
components and interactions. This heterogeneity drives the 
need for modelling and analyzing cross-domain interactions 
among physical and computational and networking domains, 
which demands deep understanding of the effects of 
heterogeneous abstraction layers in the design flow [7]. 

Figure 1 illustrates a well-funded approach to cyber-
physical integration to meet design principles, mainly proposed 
in [8]. It highlights that analysis is a key issue in current CPS 
developments, integrating various objects, design methods and 
tools, aspect-oriented development methods and tools, multi-
domain physical modelling methods and tools, and formal 
methods that address different aspects of the development 
process of CPS. Systems specification, modelling and design 
method integration involve many aspects of integration at 
different levels, including: 

• Integration of the physical world dimension,
communication dimension and computation 
dimension;

• Integrated object-oriented methodology, multi-domain
methodology, aspect-oriented methodology and formal
techniques;

• Integration of different design views;

• Integration of the methods used to specify and
implement systems requirements;

• Integration of tools that support these methods;

• Integration of physical components and cyber
components;

• Integration of different representations;

• Integration of the multiple specification fragments
produced by applying these methods and tools; and

• Integration between informal specification methods
and formal specification methods.

Model, Methodology and Tool Integration are detailed in 
the following sections. These aspects help investigate future 
directions and trends in Industry 4.0. 

Figure 1.  Integrated Approach to develop CPS. 

B. Model Integration for Manufacturing-Aware Design Flow 

As discussed, it is important to develop methodologies that 
integrate models, techniques, and tools that can be used in a 
design customized within its models and components. 
Components and models in a CPS are heterogeneous, spanning 
multiple disciplines (physical – thermal, mechanical, electrical, 
fluid,… and cyber – software, computing, cloud…). These 
require multiple models to represent the physical aspects, 
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At present, a model-based integration approach is in its 
infancy and requires significant future research efforts. Many 
researchers agree that modelling from the CPS is a sizeable 
obstacle for companies that handle big data and obtain any 
profitable analysis for prediction. It has been suggested to 
tackle uncertainties within the data analysis. Tool integration 
and support from model-based systems and rapid construction 
of domain-specific tool chains are also suggested from present 
research [16]. 

D. Virtual Prototyping with Computer-Automated Design 
Utilizing Evolutionary Computation, CAutoD accelerates 

and optimizes the tedious process of trial-and-error by reversing 
a design problem into a simulation problem, then automating 
such digital prototyping by intelligent search via biological-
inspired machine learning [18]. Experimental research in order 
to validate scientific results of the theoretical work is also what 
researchers suggest. Validation and implementation of this 
approaches help with a fast rhythm of acquiring knowledge and 
developments. What is trending now will not be the same in a 
few more years’ time. When launching projects like smart 
manufacturing and Industry 4.0, companies should stay one 
step ahead and put efforts on innovative resources for advanced 
results. 

V. DISCUSSION AND CONCLUSION 
As stated so far, there exist challenges and future directions 

when tackling the subject of Industry 4.0, as argued in [3]. 
These include general reluctance to change by stakeholders, 
threat of redundancy of corporate IT departments and a lack of 
adequate skill-sets to expedite the march towards the 4th 
Industrial Revolution.  

Many other trends have developed for Smart 
Manufacturing, not only in Germany with Industry 4.0, but also 
in the United States such as the Smart Manufacturing 
Leadership Coalition (SMLC). What SMLC presents is the 
infusion of intelligence that transforms the way industries 
conceptualize, design and operate the manufacturing enterprise 
[19]. Both perspectives agree on what challenges have to 
overcome in order to achieve what they pursue, such as analysis 
of big data-information, interoperability and scalability, among 
others.  

So far, smart manufacturing approaches, analysis, 
virtualization and the new tendencies like the Industry 4.0 and 
big data studies have been studied. Summarizing the related 
work and developments leads to focus on the aspects facing 
Industry 4.0, such as methodologies that integrate collaborative 
systems. In this case, researchers suggest that a well-funded 
methodology that integrates CPS, cloud computing, virtual 
designs and real-time analysis is key to achieving innovation 
and a high productivity, because the system at the end becomes 
self-aware and self-predictive among other properties that are 
suitable for future research. 
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