426 research outputs found

    Emulating Digital Logic using Transputer Networks (Very High Parallelism = Simplicity = Performance)

    Get PDF
    Modern VLSI technology has changed the economic rules by which the balance between processing power, memory and communications is decided in computing systems. This will have a profound impact on the design rules for the controlling software. In particular, the criteria for judging efficiency of the algorithms will be somewhat different. This paper explores some of these implications through the development of highly parallel and highly distributable algorithms based on occam and transputer networks. The major results reported are a new simplicity for software designs, a corresponding ability to reason (formally and informally) about their properties, the reusability of their components and some real performance figures which demonstrate their practicality. Some guidelines to assist in these designs are also given. As a vehicle for discussion, an interactive simulator is developed for checking the functional and timing characteristics of digital logic circuits of arbitrary complexity

    A heterogeneous computer vision architecture: implementation issues

    Get PDF
    The prototype of a heterogeneous architecture is currently being built. The architecture is aimed at video-rate computing and is based on a message passing MIMD topology at the top level-transputer based-and on VLSI associative processor arrays (APA, SIMD structure) for low level image processing tasks. The APA structure is implemented through a set of 4 VLSI chips (GLiTCH) containing 64 1-bit processing elements each. This communication addresses some issues concerning the implementation of the first prototype, namely those related to: • the design and integration of the APA controller unit, which provides the required interface between the APA, the MIMD topology and the video image interface: • the evaluation of the GLiTCH chip through an emulator based on transputers and fast programmable devices; the emulator was designed to be flexible enough to evaluate later modifications to the GLiTCH design; • the design of an integrated set of software development tools containing a structured editor-syntax oriented, with a visual interface/programming interface-and a cross compiler and debugger

    IC optimisation using parallel processing and response surface methodology

    Get PDF

    Structural dynamics branch research and accomplishments for fiscal year 1987

    Get PDF
    This publication contains a collection of fiscal year 1987 research highlights from the Structural Dynamics Branch at NASA Lewis Research Center. Highlights from the branch's four major work areas, Aeroelasticity, Vibration Control, Dynamic Systems, and Computational Structural Methods, are included in the report as well as a complete listing of the FY87 branch publications

    The Application Of RISC Processors To Training Simulators

    Get PDF
    Report on a study of the utility of reduced instruction set computer processors as the control computers in a training simulator. Report includes a master\u27s thesis on detailed hardware design for interfacing transputer hardware to the NeXT computer

    Circuit simulation using distributed waveform relaxation techniques

    Get PDF
    Simulation plays an important role in the design of integrated circuits. Due to high costs and large delays involved in their fabrication, simulation is commonly used to verify functionality and to predict performance before fabrication. This thesis describes analysis, implementation and performance evaluation of a distributed memory parallel waveform relaxation technique for the electrical circuit simulation of MOS VLSI circuits. The waveform relaxation technique exhibits inherent parallelism due to the partitioning of a circuit into a number of sub-circuits. These subcircuits can be concurrently simulated on parallel processors. Different forms of parallelism in the direct method and the waveform relaxation technique are studied. An analysis of single queue and distributed queue approaches to implement parallel waveform relaxation on distributed memory machines is performed and their performance implications are studied. The distributed queue approach selected for exploiting the coarse grain parallelism across sub-circuits is described. Parallel waveform relaxation programs based on Gauss-Seidel and Gauss-Jacobi techniques are implemented using a network of eight Transputers. Static and dynamic load balancing strategies are studied. A dynamic load balancing algorithm is developed and implemented. Results of parallel implementation are analyzed to identify sources of bottlenecks. This thesis has demonstrated the applicability of a low cost distributed memory multi-computer system for simulation of MOS VLSI circuits. Speed-up measurements prove that a five times improvement in the speed of calculations can be achieved using a full window parallel Gauss-Jacobi waveform relaxation algorithm. Analysis of overheads shows that load imbalance is the major source of overhead and that the fraction of the computation which must be performed sequentially is very low. Communication overhead depends on the nature of the parallel architecture and the design of communication mechanisms. The run-time environment (parallel processing framework) developed in this research exploits features of the Transputer architecture to reduce the effect of the communication overhead by effectively overlapping computation with communications, and running communications processes at a higher priority. This research will contribute to the development of low cost, high performance workstations for computer-aided design and analysis of VLSI circuits

    Simulation and analysis of adaptive routing and flow control in wide area communication networks

    Get PDF
    This thesis presents the development of new simulation and analytic models for the performance analysis of wide area communication networks. The models are used to analyse adaptive routing and flow control in fully connected circuit switched and sparsely connected packet switched networks. In particular the performance of routing algorithms derived from the L(_R-I) linear learning automata model are assessed for both types of network. A novel architecture using the INMOS Transputer is constructed for simulation of both circuit and packet switched networks in a loosely coupled multi- microprocessor environment. The network topology is mapped onto an identically configured array of processing centres to overcome the processing bottleneck of conventional Von Neumann architecture machines. Previous analytic work in circuit switched work is extended to include both asymmetrical networks and adaptive routing policies. In the analysis of packet switched networks analytic models of adaptive routing and flow control are integrated to produce a powerful, integrated environment for performance analysis The work concludes that routing algorithms based on linear learning automata have significant potential in both fully connected circuit switched networks and sparsely connected packet switched networks

    Enable++ : a second generation FPGA processor

    Get PDF
    In the computing community field programmable processors are going to fill the niche for special purpose computing devices. A typical example is ultra-fast pattern recognition in experimental particle physics - a task for which we constructed two years ago Enable- 1, an FPGA processor rather specialized for pattern recognition algorithms in μs domain, but also provided with modest features for coping with more general applications. This paper presents the follow-up modell Enable++, a 2nd generation FPGA processor that offers several substantial enhancements over the previous system for a wider range of applications: Enable++ is structured into three different state-of-the-art modules for providing computing power, flexible and high-speed I/O communication and powerful intermodule communication with a raw bandwidth of 3.2 GByte/s by an active backplane. The technical realization of all three modules is guided by the maximum usage of field programmable logic. The actual demand of computing-and I/O-power can be satisified by the number of modules plugged into the crate. Enhanced features of Enable++ comprise the configurable processor topology provided by programmable crossbar switches. In combination with the 4 x 4 FPGA array and 12 MByte distributed RAM the Enable++ computing core offers a strongly increased and scalable computing power. For building new applications the system offers a comfortable programming and debugging environment consisting of a compiler for the C-like hardware description language spC, a simulator and a source level debugger for hardware design. The goal in planning the hardware design environment for Enable++ from scratch is to transfer established methodologies in software design to the design of digital logic. Concerning pattern recognition tasks, we estimate that Enable++ surpasses modern RISC processors by a factor of 100 to 1000
    corecore