
The Application of Parallel Computation to

Process Simulation for the Structured

Design of IC Fabrication Processes

Thesis submitted by

Waiter James Cunningham Alexander -

for the degree of

Doctor of Philosophy

Edinburgh Microfabrication Facility

Department of Electrical Engineering

University of Edinburgh

United Kingdom

1992

To my parents

Declaration

I declare that the research documented in this thesis is original and entirely

of my own making, except where it has been indicated to the contrary.

-- - - - 	
Walter James Cunningham Alexander

Table of Contents

1 Introduction 	 . 1

1.1 Design Methodology 	 . 2

1.2 Motivation ..5

1.3 Thesis Structure ..5

2 Process Control in IC Fabrication ...8

2.1 Introduction 	... 8

2.2 Process Steps 	... 9

2.2.1 	Oxidation 	... 9

2.2.2 Diffusion 	.. 12

2.2.3 Ion Implantation 	... 14,

2.2.4 Deposition 	... 18

2.2.5 Lithography,
..

21

2.2.6 Etching 	.. 24

2.3 Process Control and Design .. 26

2.4 Summary .. 29

3 Process Simulation ..32

3.1 Introduction 	... 32

3.2 One Dimensional Simulation 	... 35

3.2.1 Oxidation 	... 40

3.2.2 Diffusion 	.. 41

3.2.3 Ion Implantation 	... 43

3.2.4 Deposition 	... 46

3.2.5 Etch 	.. 48

3.2.6 Electrical 	.. 50

3.3 Two Dimensional Simulation ... 52

3.4 Computational Requirements of Process Simulation 54

3.5 Summary .. 56

1111

4 Parallel Computational Systems 	 . 62

4.1 Introduction ...62

4.2 Parallel Computer Architectures ...65

4.2.1 SISD ...68

4.2.2 51MB ..69

4.2.3 MISD ..71

4.2.4 MIMD ..71

4.3 The Inmos Transputer ..74

4.3.1 Architecture and Concepts ...74

4.3.2 Parallel Algorithms ...78

4.3.3 Parallel Software - Languages and Tools ..82

4.3.4 The Future ..91

4.4 Summary ..96

5 Parallel Implementation of Process Simulation Code101

5.1 Introduction 	... 101

5.2 One-Dimensional Simulation ... 102

5.3 Partitioning SUPREM H code 	.. 105

5.4 Parallel Matrix Solution Method .. 114

5.5 Hardware Architectures 	... 117

5.6 Results 	.. 122

5.7 Discussion 	.. 125

6 Process Optimisation ...130

6.1 Introduction - Design for Manufacturability ... 130

6.2 Experimental Design ... 1133

6.2.1 Design Objectives .. 135

6.2.2 Design Templates 	... 137

6.3 RS11 	.. 141

6.4 Optimised Process Design ... 142

6.5 Optimisation Study 	... 146

6.6 Summary .. 159

iv

7 Parallel Implementation of Process Optimisation 	 . 163

7.1 Introduction ...163

7.2 System Overview ...165

7.2.1 Communication Procedures ...170

7.2.1.1 Introduction ..170

7.2.1.2 The TINY Communications Harness173

7.2.1.3 The INMOS Alien File Server Protocol178

7.2.2 Worker Process ...182

7.2.3 Driver Process ...190

7.2.4 Control Procedures ...194

7.3 System Performance ...197

7.4 Conclusions ..203

8 Conclusions ...207

Appendix A Reprints of 	 ... 213

V

Ifyou do not understand aparticular word in apiece

of technical writing, ignore it The piece will

make perfect sense without it

vi

Abstract

The ability of semiconductor process simulation to analyse the physical effects

of individual fabrication steps and their interaction within an entire process has

gained increasing recognition within the industry. Simulation has been applied to

the synthesis of nominal operating points and has offered substantial reductions

in both time and expenditure when compared to experimental runs for this role.

Semiconductor companies are also realising that both performance and manufac-

turability must be designed into new technologies from their inception. This con-

cept of Design for Manufacturability (DFM) can be implemented by linking process

simulationwith statistically based experimental design and analysis tools. However,

neither the software framework nor the underlying computational resource cur-

rently exist to provide the level of system integration required to support DF-M

within a commercial environment.

This Thesis first introduces a method for enhancing the performance of

process simulation software by utilising the power of parallel computing offered by

the INMOS transputer. A parallel implementation of the one-dimensional simu-

lator SUPREM-II has been developed which demonstrates the computational

performance that is economically attainable and readily scalable using this

technology.' The system has then been extended to provide a fully functional DFM

environment by automatically integrating the parallel process simulation capability

with the experimental design and analysis software, RS/1.

A review of parallel computing systems, semiconductor fabrication control,

process simulation and experimental design/analysis is also provided to compliment

the presentation of the original contributions outlined above.

Vii

The progress of science varies inversely with the

number ofjournals published.

VIII

Publications

Publications by the author relevant to this work include:

W. J. C. Alexander, A. J. Walton, J. M. Robertson and R. J. Holwill, "The

Implementation of Process Simulation on Transputers for the Production of

ASIC's", Microelectronics '89, Brisbane, Australia, July 1989.

M. R. Kump, S. W. Mylroie, W. J. C. Alexander, A. J. Walton, "Use of Process

Simulators to Assist in the Design of Processes for Manufacturability", Conf.

Proc. IEEE Advanced Semiconductor Manufacturing Conference, 1990,

pp15-21 . 	 -

G. J. Gaston, W. J. .C, Alexander. L. J. Clarke, A. J. Walton, "PARTICS:A

Parallel Taskfarm for Integrated Circuit Simulation", -Edinburgh Parallel

Computing Centre Technical Report, EPCC-TR91-08, 1991.

G. J. Gaston, W. J. C. Alexander, L. J. Clarke, A. J. Walton, "A General Task-

farming Tool : Its Application to Semiconductor Fabrication", European 	-

Workshop on Parallel Computing, Barcelona, March 1992.

ix

Acknowledgements

Iwish to thank all those people within the Edinburgh Microfabrication Facility

and the Edinburgh Parallel Computing Centre who have contributed to this Ph.D.

and in particular, the efforts of my supervisor Dr. A. J. Walton.

Iwould also like to thank Clive Dyson and the original applications engineering

group at Imnos, Bristol for their encouragement at the start of this project. Thanks

too must go to Godfrey Gaston and Lyndon Clarke for their concurrent wit and

technical support. I am also very grateful to Edinburgh Air Charter for their

assistance and Dr. H. J. Holwill for the hardware upgradeswhen things went horribly

wrong.

Much appreciation also goes to my parents for their patience, to Henry for her

unmentionable inspiration and to Robbie for setting such a competitive literary

pace, all of which have assured the completion of this text. Finally, I am indebted

to Dr. D. Renshaw for his counsel and endless support throughout the preparation

of this Thesis.

Financial sponsorship of this project came from the Science and Engineering

Council, and, in the form of a CASE award, from INMOS Ltd.

In an R&D orbit, only 2 of the following parameters

may be simultaneously defined:- task, time and

resources.

If a task is defined and its timescale for completion

known, then its cost can not be estimated.

If the timescale and resources are clearly defined,

then it is impossible to know what R & D task

will be performed.

If a task is defined and allocated a budget, then it is

impossible to predict if and when the goal has

been met

If fortune prevails and it is possible to accurately

define all three parameters at once, then what-

ever is being dealt with does not lie within the

realms of R & D.

Chapter 1

Introduction

The semiconductor industry has grown significantly in recent years and now

holds a prominent and influential position within the sphere of international

commerce. The fabrication of integrated circuits (ICs) forms an intrinsic part of

this and must itself be regarded as an important, high volume industry, with an

average of 8 ICs produced for every person in the world during 1990. Whilst this

market has obviously expanded, so too has the level of technology and the economic

performance required to service it in a commercially viable manner.

The manufacture of ICs is extremely capital intensive and requires an

immense initial investment in production facilities before fabrication can even

begin [1]. This is further compounded by the similarly high costs which are asso-

ciated with the development of new processes [2] that is necessary to support

diminishing device geometries. The recovery of such development costs is

complicated by these continual advances in technology, which have tended to

shorten product life cycles and demands the implementation of a production policy

which realises a high yield of reliable ICs on schedule. Profit margins are forever

being eroded by increasing competition and can not afford to be further sacrificed

unnecessarily. The significance of market, forces must not be underestimated, as

can be seen from table 1.1, which illustrates the substantial loss of revenue which

can be incurred by a delayed market entry.

As a consequence of these technical and financial considerations, semicon-

ductor companies have become increasingly aware that new technologies must be

designed with both performance and manufacturabilityin mind. This has prompted

them to re-assess the manner in which new processes are developed and has seen

the emergence of advanced methodologies specifically aimed at addressing the

issues of Design for Manufacture (DFM) and Design for Quality (DFQ).

Delay

(months)

6

Market Window (months)

12 	18 	24 	30 36

1 24% 12% 8% 6% 5% 4%
2 44% 24% 16% 12% 10% 8%
3 63% 34% 24% 18% 15% 12%
4 78% 44% 31% 24% 19% 16%

5 90% 54% 38% 29% 24% 20%

6 100% 63% 44% 34% 28% 24%
7 100% 70% 51% 39% 32% 27%
8 100% 78% 57% 44% 36% 31%
9 100% 84% 63% 49% 41% 34%
10 100% 90% 68% 54% 44% 38%
11 100% 95% 73% 58% 48% 41%
12 11 100% 100% 78% 63% 52% 44%

Table 1.1. Lost revenue for late arrival to marketplace. Taken from [3].

1.1 Design Methodology

The goal of every manufacturing facility has been and still remains that of

producing the right product for the right price at the right time [4]. What has

changed, however, is the means by which this is achieved. There are in essence

three interrelated factors which influence the semiconductor manufacturing pro-

cess: quality, manufacturabiity and economics, with the latter usually having the

right of veto. Figure 1.1 provides a graphical representation of the way in which

the issue of quality control has evolved in recent times.

The use of in-line and post-process inspection alone is very wasteful and more

importantly makes no effort to improve the inherent quality of the process. More

recently, this has been supplemented on awide scale by the use of Statistical Process

Control (SPC) techniques [5] which attempt to control and minimise variabilities

within the process. This might involve redesigning an offending process step or

MFG

Process
Design

Product
Design

1940's 	1960's 	 1980's

- 	
- 	Figure 1.1. Evolution of quality control in xnanufaciuñng processes.

purchasing a superior piece of equipment, neither of which are particularly time

efficient or cost effective. The logical extension of this is to design the product to

be as insensitive as possible to these inevitable • process variations and it is this

concept which forms the basis of DFM. -

The strategy employed under DFM is to concentrate investment at the design

phase when alterations are most easily made and inflict minimal financial penalty.

In the past, the stumbling block with DFM has been the large number of experi-

ments required to characterise a process in terms of its sensitivity to random

manufacturing variations. If however, a few split lot runs are used to calibrate a

process simulator, then instead it may be linked with the relevant experimental

design and analysis tools to provide the desired process evaluation. The use of

Response Surface Methodology (RSM)[6] and Taguchi[7] analysis then enables

3

processes to be designed for optimal performance and manufacturabiity, with little

or no loss of peak device performance, by the prediction and subsequent elimination

of manufacturing problems before they occur.

Ultimately, wide spread acceptance of this powerful methodology by the

semiconductor industry is dependent on evidence of its success and also the

availability of a suitable system. The justification of DFM may be illustrated by

figure 1.2 which compares the timing and quantity of design changes associated for

a particular product line. It can be seen that the cost of the design associated with

DFM is relatively lower, with the greatest proportion of the changes being incurred

at an earlier stage. However, it is important to realise that there is also an increase

in the perceived quality since the product is more stable when it is launched into

the market.

- 	-
Average: Company

V
0

/ 'I!

Superior Company 	/

z 90% total

changes
complete

In
C 	 C 	I 	C

—E
it + 0

E

Figure 1.2. The effect of DFM on design changes. Taken from [8].

4

Although many of the statistical tools required to support DFM have been

available individually for some time, the lack of an integrated system has not made

the technique attractive in the commercial world. The investigations performed

during this Ph.D. have therefore been aimed at redressing this situation.

1.2 Motivation

At the outset of this Ph.D. the investigation concentrated entirely on the

application of parallel computing techniques to process simulation. The research

goal being in the provision of a viable source of computation which would encourage

the widespread use of process simulation required by the design of modern IC

fabrication processes. During the course of this investigation the limited capabilities

of the available parallel software tools became apparent, making the already com-

plex task of customised parallelisation even harder.

Although process simulation has previously been employed to synthesise a

nominal process operating point, this failed to recognise the natural process vari-

ations that occur during fabrication. However, the physical effect of process steps

and their interaction within a complete process can be explored using process

simulation. Therefore the emphasis of the research altered to combine this capacity

with the previously proven power offered by a transputer based system.

The demonstration of a complete structured process design system was seen

as an important step in affirming the role that DFM and DFQ have to play in

ensuring the economic success and survival of the semiconductor fabrication

industry.

1.3 Thesis Structure

This chapter has provided a brief introduction to the employment of struc-

tured design methodologies during the development of semiconductor processes.

A more detailed discussion of IC fabrication control is presented in chapter 2 and

proposes that the application of process simulation is suited to analysis of the

complex interactions involved. A review of semiconductor process simulation is

provided in chapter 3 and highlights the limitations which are often placed on its

5

widespread use due to the intense level of computation concerned. In anticipation

of the solution offered by this research to the aforementioned dilemma, chapter 4

presents an overview of parallel computing concepts and systems before concen-

trating on one particular example of this technology, the INMOS transputer. In

chapter 5, the work performed to apply the powerful transputer technology to one

specific process simulator is described. This approach provides the computational

resource required to support large scale simulation but still falls short of the

structured design methods required. Chapter 6 illustrates how a combination of

process simulation, experimental design and analysis techniques can provide a

framework that promotes DFM and DFQ. The design of a transputer based system

to support the simulatioiis required by this strategy is described in chapter 7.

Finally, some conclusions are drawn on the work which has been presented in this

Thesis and a number suggestions for further work are briefly outlined.

6

References

W. C. Holton, J. Dussault, D. A. Hodges, C. L. Liu, J. D. Plummer, D. E. Thomas

and P. F. Wu, "Computer Integrated Manufacturing (CIM) and Computer

Aided Design (CAD) for the Semiconductor Industry in Japan", Japanese

Technology Evaluation Program, National Science Foundation, Washington

DC, USA, December 1988.

G. Moore, Invited Speech, Symposium on VLSI Technology, Honolulu, Hawaii,

June 1990.

S. van Tyle, Electronics Design, Vol. 39, No. 12, June 1991, pill.

D. J. Miller and J. A. Fenimore, "The Application of Advanced Manufacturing

Technology in Semiconductor Fabrication", IEEE/CIIMT hit. Electronics

Manufacturing Technology Symposium, Orlando, Florida, 1988.

P. K. Mozumder, C. R. Sbyamsundar and A. J. Strojwas, "Statistical Control of

VLSI Fabrication Processes: A Framework", IEEE Trans. Semiconductor

Manufacturing, Vol. 1, No. 2, May 1988, pp62-71 .

A. R. Alvarez, B. LI Abth, D. L. Young, J. Teplik, H. D. Weed and E. R. Herald,

"Application of Statistical Methods to Computer-Aided VLSI Device Design",

IEEE Trans. CAD, Vol. 7, No. 2, February 1988, pp 272-288 .

D. L. Young, J. Teplik, H. D. Weed, N. T. Tracht and A. R. Alvarez, "Application

of Statistical Methods to Computer-Aided VLSI Device Design II: Desirability

Functions and Taguchi Methods", IEEE Trans. CAD, Vol. 10, No. 1, January

1991, pp103-115.

"Concurrent Engineering" Motorola University Course Notes, Motorola Inc.

7

Under the most rigorously controlled conditions of - 	- - 	- 	-

pressure, temperature, volume, humidity and

other variables, the process will do as it damn

well pleases.

Chapter 2

Process Control in IC Fabrication

2.1 Introduction

Integrated Circuit (IC) manufacturing is a relatively new industry, having

evolved since the development of the first IC produced in 1958 by Kilby [1]. Since

its inception, this industry has expanded rapidly from the production of experi-

mental devices into one of the most capital intensive world-wide manufacturing

scenarios of the present day. The main impetus for this swift growth has come from

three principal directions. Firstly, many powerful systems have been initially

conceived and developed in software (e.g. Digital signal processing systems) but

require much more advanced manufacturing technologies if they were to be pro-

duced to meet realistic size and cost constraints. Secondly there was the motivation

within the industry to develop new technologies in order to maintain or acquire a

leading edge commercially and technologically. Thirdly, there was initially a strong

economy within this market sector to support such development, though formi-

dable competition, investment and overheads have forced a much more cautious

and structured approach in recent times. Throughout this evolution, there hasbeen

a limitation on systems development and production. This limitation is largely

imposed by the available technology. Two restraints exist which oppose the driving

forces mentioned above. Economic considerations can prevent the frequent

refurbishment of production facilities often required to fabricate a new process as

this may run to many millions of dollars. Secondly there are times when a new

process could be implemented, but the market is not in a position to accept it.

The system performance available from a given technology is determined by

the characteristics of the devices which implement the circuit functions. In turn

the device performance is defined by the processing technology used in its fabri-

cation. Thus, it can be seen that IC process technology is a prime factor governing

the scope of the next generation systems. There is continual pressure to increase

the functional performance of such systems. To satisfy this, device packing density

8

must be increased by reducing device feature sizes, which in turn requires the

development of new or modified processes. As processes have evolved, so too has

the complexity associated with their production schedules.

Each IC device and production technology has inherent physical character-

istics which determine its performance and hence its appropriate application. The

main technologies are based on silicon although materials such as GaAs are finding

increased application in specialised areas. A more detailed description of the dif-

ferent technologies maybe found in Hifienius [2]. At present and for the foreseeable

future (5-10 years) the greatest volume of IC production will continue to utilise

MOS technology and this thesis therefore concentrates on nMOS and CMOS

processes.

This chapter first provides a brief description of the main process steps within

an MOS fabrication schedule. The implementation and function of each step within

wafer fabrication is discused along with its associated control and monitor para-

meters. Then the integration of these steps to perform a complete process is con-

sidered from a control and stability perspective. Finally the influence of step

interactions on designing a manufacturable process is demonstrated.

2.2 Process Steps

The complexity of current semiconductor fabrication processes is very high

due to both the number of individual steps involved and the interrelated nature of

these steps. The overall objective of constructing functional electrical circuitry

across the wafer surface with a high yield and low cost has remained constant.

However, as technologies have advanced the tolerances and economic constraints

placed upon the semiconductor manufacturing industry have been severely tigh-

tened. In order to meet these conditions, a full understanding of each process step

and its role within the overall process must be gained.

2.2.1 Oxidation

Silicon oxidation plays a very significant role during the IC manufacturing

process. The properties of silicon dioxide, Si02 , and in particular its physical

attributes, have had a major influence on the development of planar processing

technologies. Si02 performs many functions within the fabrication schedule: as a

masking layer against implant or diffusion of dopants into silicon; as an inter- and

intra-device isolation layer or region and to provide surface passivation. However,

it is imperative that the formation of high-quality oxides is a controllable and

repeatable operation to enable silicon IC manufacturing technologies to be suc-

cessfully scaled down to submicron levels. For this, a deep and formal understanding

of oxide formation, its physical and its electrical properties is required.

There are various methods of producing oxides, each having its optimum

application; such as wet anodisation, vapour deposition, plasma anodisation and

thermal oxidation. Although the latter is the most widely used and preferred

technique for the growth of high-quality, low-charge density oxides, chemical

vapour deposition (CVD) is also essential. (E.g. in the formation of an oxide layer

onto a metalisation layer where no silicon exists to be oxidised by thermal process).

Thermal oxidation can be described by two chemical reactions, each pertaining

to a different set of external conditions.

Si+0 2 -> Si0 2 	 (2.1)

Sil-2H 2 0 -> SI0 2 +2H 2 	 (2.2)

The former equation is referred to as dry oxidation and the latter as wet

oxidation. Which technique is chosen depends on the thickness and oxide properties

required. Dry oxidation is generally employed for relatively thin oxides ('C 0.5am)

and/or those that need a low interface charge density. In addition to this, HC1 may

be included in the reaction if there is a risk of sodium ion contamination. Wet

oxidation techniques are applied for the growth of thicker oxides due to the

increased growth rate at moderate temperatures.

Wafers must be cleaned to remove any organic and inorganic residues from

previous processing operations or from handing around the facility. Such con-

tamination can degrade the electrical characteristics of the devices and increase

the defect density in the fmished product. Typical cleaning procedures are

described by Burkman [3]. After cleaning, oxidation can then be performed inside

10

a diffusion/oxidation furnace tube, which will be microprocessor controlled to

provide repeatable sequencing, temperature control and gas flow (mass flow con-

trol). It is vital to maintain consistent process conditions throughout the oxidation

to achieve uniform oxide growth. The microprocessor provides a versatile feedback

control loop to continually adjust any necessary parameters as is required.

Dry oxidation is a relatively simple operation using microprocessor controlled

equipment and produces a slow rate of oxide growth at moderate temperatures (c.

950 0C).Modification of the ambient parameters may lead to enhanced oxide growth

rates, for example raising the temperature will result in a thicker oxide for the same

time. However, such a move will considerably alter the redistribution of dopants

and this fact must be considered. Alternatively an increase in pressure ambient will

positively affect the growth rate, and this time the dopant redistribution will be

more or less unaltered.

The wet ambient for wet oxidation can be produced by one of two techniques,

namely pyrogenic or steam oxidation. In the former high-quality steam is generated

by the direct combination of 112 and 02 within the furnace tube with microprocessor.

controlled gas flow. Steam oxidation requires that oxygen be bubbled through hot

water before entering the furnace. Although both methods provide an enhanced

oxide growth rate in comparison to dry oxidation, concern for water vapour purity

tends to view the steam technique less favourably due to the possible contamination

within the bubbler system. As with dry oxidation, growth rates may be enhanced

by the use of elevated temperatures and pressures.

So far consideration has 64ily bee givehto- enhancing the óiiclè grotff rate.

However as device geometries shrink to one micron and submicron levels, there is

a necessity to produce very high quality thin oxides in the 50-200 A range. These

have a much greater sensitivity to structural defects and underlying non-uni-

formity. Both wet and dry oxidation techniques can be modified to produce thin.

oxides. For dry oxidation a combination of reduced temperatures and pressures has

been successfully used to overcome the problem of the initial rapid growth of around

200 A. For wet oxidations it has been found that consistent low growth rates can

achieved at lower temperatures in a high pressure steam ambient. As will become

apparent in the next section, which discusses the diffusion of dopants, the use of

lower temperatures is essential to reduce the lateral impurity redistribution in

small geometry devices. Rapid thermal processing is therefore becoming a much

more popular technique and a review of this technology may be found in Sedg-

wick[4].

Monitoring the thickness of a grown oxide and its uniformity at both wafer

and batch levels is performed using reflective/refractive techniques such as spec-

troscopy and elipsometry on the product wafers 5].

As can be seen from the brief description of the oxidation process there are

many parameters which can influence the oxide growth rate and the resulting

quality. The prime parameters are those of temperature, pressure, ambient

conditions and gas / silicon quality. It is therefore paramount that their role in this

process is fully understood so that a set of optimum conditions may be derived for

any desired oxide. A development of this topic can be found in chapter 3.

2.2.2 Diffusion

The introduction and subsequent redistribution of impurity atoms within the

silicon crystal structure is an important procedure in IC processing. The type and

electrical conductivity of silicon can be modified by adjusting the dopant element,

concentration and distribution. This principle is used to form the base and emitter

of integrated bipolar transistors and to form the source/drain regions of field effect

transistors and dope polysilicon in MOS technologies. Therefore it is vital that

diffusion of dopants is controllable, uniform and reproducible if device specifications

are to be met.

Dopantsare commonly introduced into silicon by one of the following methods:

diffusion from a chemical source in a vapour phase at

high temperature.

diffusion from a doped-oxide source.

and diffusion and annealing from an ion-implanted layer.

12

The choice of technique is dependant on the desired impurity profile and

surface concentration. Two distinct doping profiles can be achieved. These depend

on the surface concentration of the dopant during its exposure to thermal oper-

ations, which take place in furnace tubes under similar conditions to those used for

oxidation. The use of ion implantation of impurity atoms will be considered

separately in §2.2.3.

Diffusion steps that are performed with a constant surface concentration are

normally referred to as pre-deposition steps. These are normally carried out at

temperatures around 900-1000°Cfor 30-60 minutes and result in a complementary

error function (erfc) distribution of the dopant.

(2.3)
C(x,t) = Coerfc(,7)± c

CB = Background doping concentration

CO = Surface doping concentration

D = Diffusion constant

Dopant sources used for pre-deposition can be solids, liquids or gases. Phos-

phorus and boron are generally deposited in the form of their respective oxides,

P205 and B203, which react with silicon to release the dopant atoms. Wafers of

phosphorus oxide or boron nitride are interleavedwith the productwafersto provide

a uniform distribution across the surface. Arsenic compounds, due to their

• -- . 	excessively toxic nature, are usually deposited by ion implantation.

Once the calculated quantity of dopant atoms has been introduced to the

silicon surface, it is then necessary to redistribute them to give the requiredjunction

depth. This process called drive-in is generally performed at temperatures of

1000-1200°C in either inert or oxidising ambients, and results in a gaussian dis-

tribution profile.

Q 	(_x 2 \ 	 (2.4)
C(x,t)= 	expi.. 	I

3tDt 	\4Dt),

Q = Number of impurity atoms deposited

13

This high temperature process not only disperses the dopant atoms but also

electrically activates them (i.e. places them in substitutional sites within the silicon

lattice [61) and the technique is referred to as annealing.

Diffusion of dopants through not only single-crystal silicon but materials such

as polysilicon and silicon dioxide also needs to be considered. Polysilicon is used

both as a conductor between semiconductor layers and for self-aligned gates. Boron,

phosphorus or arsenic doping of polysilicon is frequently used to reduce the

resistivity of polysilicon. Silicon dioxide is often used to provide barrier regions and

thus enable the silicon to be selectively doped. The diffusion of most dopants

through silicon dioxide is fortunately comparatively slow and thus the use of a

suitably thick layer of oxide will prevent doping of the substrate where this is not

desired. A detailed discussion of dopant distribution in silicon is given by Fair [7].

It has been assumed so far that any redistribution of the dopants has been

caused by vertical diffusion alone (i.e. normal to the silicon surface), however sig-

nificant lateral diffusion will also be associated with any high temperature pro-

cessing performed. At large device geometries (>54m) one-dimensional analysis is

sufficiently accurate that such lateral effects may be considered to be negligible.

Once geometries approach 1 1z.m then lateral analysis is vital. For example, when

fabricating short channel MOS devices, it is imperative that the source and drain

diffused regions do not meet during or after the drive-in, otherwise a short circuit

will result. Depending on the precise drive-in conditions the lateral diffusion will

occur for approximately 75% of the vertical diffusion extent. Such issues emphasise

the need for analysing process steps in at least two dimensions in small geometry

VLSI devices.

Another problem associated with the pre-deposition of dopants is that it tends

to result in high surface concentrations which in turn means that the formation of

shallow junctions is difficult to perform.

Monitoring diffusion operations involves the measurement of the doping

profile, junction depth and sheet resistance of the wafer once the process step has

been completed. Analysis of the dopant concentration profiles may be performed

14

by use of (i) the spreading resistance technique [8], (ii) the Secondary Ion Mass

Spectrometry (SIMS) [9] or (iii) capacitance-voltage (CV) [10] technique. In general

the analysis of the doping profiles is only performed while a process is being

developed or characterised.

Junction depths can be measured by the bevel and stain technique where a

wedge is ground from the wafer and subsequent staining of the exposed sample

allows the p- and n- type materials to be identified. The problem with this test is

that, being both slow and destructive, it can only be applied to test wafers.

The use of four-point probes or. Van der Pauw techniques [11] for the

measurement of sheet resistance provides a quick and non-destructive method,

which can be performed in-line on product wafers.

The deposition and diffusion of impurities in silicon are both dependant on

temperature, time and concentration and, if uniform and reproducible diffusion

profiles are to be achieved, then the influence and control of these parameters must

be understood. Of the three variables, concentration is the least versatile if uni-

formity is not to be sacrificed. Henry's Law relates the dopant concentration in the

gas phase to the surface concentration [12]. Thus altering the partial gas pressure

of the dopant will enable the surface concentration to be varied up to the point

where the solid solubility of the dopant under the deposition conditions is reached.

Therefore to achieve reproducible diffusion result simply it is necessary to ensure

that the surface concentration be maintained at this solid solubility level.

The control of and dependence on temperature and time are generally the

same as for oxidation since the drive-in stage is usuallyassociated with the formation

of field or passivation oxides. Also the wafers will be exposed to temperature

ramp-up and ramp-down at each end of the process and this must be considered

along with the respective timing.

2.2.3 Ion Implantation

Ion implantation is a highly controllable and reproducible method of intro-

ducing dopant atoms into semiconductor materials and provides an alternative to

15

the dopant diffusion technique discussed in §2.2.2. It has now become the

predominant technique used in the fabrication of MOS ICs, especially at VLSI

geometries (<3Mm), due to the degree of control required at these device sizes.

Ion implantation involves the vaporisation of dopant gas molecules into

charged fragments, which are then selectively accelerated to a specified energy.

The ions are collimated into a focussed beam which is electrostatically deflected so

as to scan the entire wafer surface. The process is accomplished in a high vacuum

environment (c 10-6 Torr) to minimise ion scattering.

The dopant accepting areas of the wafer can be defined by photoresist, silicon

oxide, silicon nitride or polysilicon masking layers. The thickness of the mask

required to prevent penetration depends on the material used and the ion beam

energy. For example, a 100KeV boron implant requires the following minimum

mask thicknesses: 0.4im Si3N4, 0.55 Mm 5i02, O.?Mm photoresist. To first order,

the energy of the ion beam defines the depth of penetration and the beam current

defines the dose implanted, and this gives rise to a high degree of control in the

resulting total dose, junction depth, doping profile and uniformity.

As a result of superior controllability, it is possible to perform accurate and

reproducible low dose pre-depositions (cio'5 atoms/cm2) by the use of low beam

currents. This is in contrast to chemical pre-deposition where the surface dopant

concentration was maintained at solid solubility to achieve reproducibility. These

low dose implants (c. 1012 atoms/cm2) are typically used in MOS processing to

perform threshold voltage adjustment. Higher dose implants (up to 1018

atoms/cm2) are also used to provide accurate source/drain implants and well

implants. Implantation energies vary from 1KeV to around 1MeV, giving rise to

average dopant depths running from bOA to bOim. This means that this technology

is capable of producing buried conductors and insulators.

There are a number of problems, including nuclear scattering damage to the

silicon lattice, ion channelling, recoil damage and surface charging, which can effect

the yield of implanted devices. Lattice damage is caused by the impact of the incident

dopant ions displacing target atoms in the wafer and can partially amorphise the

16

implanted region. Such atomic disorder can be annealed out or prevented by

applying a thin layer of oxide, nitride or photoresist before implantation. The

regular atomic structure of a crystalline target means that in certain planes there

are open spaces through which the implanted ions can travel without any significant

scattering. Consequently, they will travel much further into the lattice before

coming to rest as compared to an amorphous target and the final device doping

profile may well vary considerably from that intended, unless this effect is taken

into consideration. This effect can be avoided by tilting the wafer so that the ions

strike the surface at approximately 70100 from the normal, at which angles the

lattice appears like an amorphous sample. Recoil damage is concerned with the

displacement of target atoms from one layer into the neighbouring layer, in the

case when the target consists of two layers. In such instances, it is typically oxygen

or nitrogen atoms which become deposited into the silicon from a thin oxide or

nitride surface layer. High surface doses of oxygen can seriously degrade carrier

mobilities. However recoil mixing can also be used positively to introduce dopant

atoms for which no ion implantation source is readily available but that can be

deposited in a thin film. If the wafer is not well grounded, it can charge up and the

resulting field will distort the ion beam leading to irregularities in the dopant

distribution. By directing a low-energy beam onto the wafer surface, these charge

build-ups can be neutralised.

Depending on the energy of the incident ion beam, the wafer may be subjected

to kinetic heating. This can be beneficial in providing a self-annealing effect to

counter the lattice damage as it occurs though, if particularly high energies are

employed, it may also result in parasitic thermal diffusion. Although ion implan-

tation places dopant atoms into silicon, they must be electrically activated before

they will alter the characteristics of a functional device. The wafers are annealed

in furnace tubes in an inert ambient at c. 900 0 1000 0C,for times of the order of tens

of minutes. Rapid Thermal Annealing (RTA) is also used as an alternative technique

for annealing and encompasses a variety of methods, which involve heating the

17

wafers for times between hundreds of seconds down to a few nanoseconds, thus

enabling lattice repairs with minimal diffusion. The heating can be provided by

high-energy laser pulses, electron beams or tungsten-halogen lamps.

Monitoring and evaluating the quality of ion implantation processing can be

done by the same family of techniques that are applied to thermal diffusion (see

§2.2.2). In addition thermal wave analysis can provide information on the extent of

crystal damage and has the advantage of being non-contact, non-destructive

method.

The .use•of ion implantation in VLSI technologies is continuing to expand as

new applications are found, which require the level of control, reproducibility and

versatility to scaling which it offers. The major drawback it poses, in comparison to

thermal diffusion, is that of low throughput. This is being ameliorated by the

automation of the wafer load, unload and transport operations. Furthermore, it is

most important to refine the control methodologies employed :th .order to incor-

porate real-time feed-back capabilities.

2.2.4 Deposition

During the course of fabricating a particular IC technology, many materials

are deposited as films to provide electrical conduction or insulation regions in the

device structure. Deposited films include silicon dioxide, silicon nitride, polycrys-

tame silicon and aluminium based metallisation alloys. Commonly used methods

for deposition in current fabrication processes can be classed as either physical or

chemical deposition. Physical methods encompass evaporation and sputtering

principles, whilst chemical methods cover the family of vapour deposition tech-

niques (CVD). Whichever process is used, the resulting film must have good

adhesive qualities, uniform thickness across devices and wafers, and consistent

composition and structure. These attributes must be controllable and reproducible

and preferably scalable so as to necessitate as few changes in processing methods

and equipment when geometries shrink.

18

Evaporation processes involve the vaporisation of the film material from a

solid or liquid source by thermal means and its subsequent condensation on the

target surface. Thermal agitation is commonly provided by resistive heating for

widespread coverage or by electron or laser beam for local heating. Evaporation is

usually performed under a low pressure (c. 10-5 - 10-6 Torr) to enable the atoms to

undergo a virtually collisionless path to the target. This technique is most effective

for depositing low melting point materials such as aluminium and can achieve high

deposition rates. However, problems arise when attempting to deposit alloys or high

melting point materials by this method.

These difficulties can be overcome by the use of sputtering. This technique

can be regarded as an extension of the evaporation method discussed, in which the

source material is subjected to ion bothbardment instead of thermal heating. Kinetic

energy is exchanged and particles of the target material are ejected from the surface

of its source and are deposited on the wafer surface. The incident species on the

source material are usually heavy inert gas - ions, the most commonly found being - - --

Argon. Ion generation can either be performed by glow discharge plasmas, most

frequently using magnetrons, or by the use of ion beams. Magnetron sputtering

produces a plasma glow of charged atoms which are then accelerated towards the

target material dislodging the surface atoms which then travel to the wafer surfaces.

High throughput, good step coverage and minimal substrate heating make this

technique very popular. In the alternative method of ion beam sputtering, the inert

gas ions are directed at the source material which then sputters on to the substrates

as before. The deposited films which result are very pure, but the method suffers

the major drawback of a low throughput, so is less commonly employed than that

of magnetron sputtering.

Sputtering, in contrast to evaporation, can deposit films of metals, alloys,

semiconductors and insulators in a highly controlled fashion making it a universally

popular technique. This difference arises from the mechanical, as opposed to

thermal or chemical, nature of vaporising the coating material. The limited damage

to the wafer surface can be removed by a short low temperature anneal. Despite

19

the universality of this technique, the primary applications are associated with

interconnect metallisation using aluminium or aluminium alloy films. Variation of

chamber pressure, wafer temperature and substrate bias provide effective control

of the resulting film thickness and deposition rate. Discussion of further sputtering

techniques such as RIP and Reactive sputtering may be found in [13]

CVD is extensively used in semiconductor processing to deposit pure silicon,

its compounds and metallisation films on wafer surfaces. The source material is

introduced to the reaction chamber in the gas phase. When this ambient is subjected

to a high temperature a chemical reaction occurs which results in the desired film

being deposited on the wafer surface. Most of the reactions are based on the oxi-

dation of silane, SiH4, or reaction of diclorosilane, SiC12H2 with nitrous oxide, N20.

CVD can be classed under one of three basic groups: atmospheric deposition

(ATCVD), low pressure deposition (LPCVD) and plasma-enhanced deposition

(PECVD). By introducing dopant species into the gas system it is possible to deposit

layers with controlled impurity concentrations. - - - -

ATCVD is rarely associated with the fabrication of MOS device structures, but

is of importance in bipolar processes. In this case it is used to deposit epitaxial silicon

layers with the identical crystal orientation as the substrate. Such a process is

typically achieved at temperatures around 10000 to 1200°C and results in poor

thickness uniformity. It is also possible to selectively deposit expitaxial silicon by

the use of silicon dioxide to block nucleation sites on the substrate [14]

Polysilicon, silicon nitride and silicon dioxide are deposited by the use of

LPCVD which is performed at lower temperatures around 8000C. The precise

temperature used depends on the chemical reaction chosen to produce the

deposition material. LPCVD provides superior step coverage to both evaporation

and sputtering, especially for metallisation layers, so it is favoured for formation of

multi-layer interconnect. PECVD also has a faster deposition rate and produces

improved uniformity of the layer thickness and composition than ATCVD.

20

PECYD is complex process and is only used when low temperature processing

is a necessity. The gaseous reactions occur in a plasma at around 1500 to 3500C and

silicon nitride and silicon dioxide can be deposited in this manner. Due to the

complexity of this process it is very hard to control and provide reproducibility

across wafer batches.

In order to provide accurate control mechanisms throughout deposition steps

a combination of on-line monitoring of film growth and post-processing film

thickness assessment must be used. Techniques such as mass spectrometry, elip-

sometry and partial pressure measurement of individual gas species may be used

to monitor or infer the film thickness and deposition rate. Non-distructive testing

of film thicknesses at the completion of the processing step use the reflective/re-

fractive properties of the materials to provide data. Electrical four-point probe

measurements and other destructive methods may be applied to test wafers to gain

further information.

CVI) techniques have a substantially higher capital cost associated with their

equipment requirements when compared to evaporation or sputtering. However,

as device geometries shrink beyond one micron, the required quality and

throughput of device fabrication is placing a greater emphasis on the use of CV])

techniques for layer deposition. For MOS technologies this means that in the future

there will be an increase in the use of LPCVD and PECVD.

2.2.5 Lithography

Lithography is a multi-process step which enables circuit designs to be

transferred from a software database onto the surface of the wafer. Each iteration

of this step defines a feature, such as the gate or contacts, within the particular

material layer once it has been grown or deposited. The main processes within a

lithographic step are:

Spin coating the wafer with a film of resist.

Soft bake of the resist (c. 1000C for 30 mm).

Exposure of the resist to the image pattern.

21

Development of resist pattern to remove unwanted areas.

Hard bake resist (c. 130°C for 30 mm).

Perform desired action on patterned wafer. (e.g. source/drain

implant or etching an oxide or nitride layer).

Strip remaining resist from wafer surface.

Resists can be classed as eitherpositive or negative. The former becomes more

soluble in developer after exposure whilst the latter becomes less soluble. Due to

the nature of the chemical reactions that occur when a resist is exposed, positive

resist enable higher resolutions to be attained [151 and are therefore more com-

monly used.

Many methods for wafer exposure have been developed for transferring the

mask image onto the wafer surface, including optical, electron and ion-beam and

X-ray techniques. Technological and economic factors will influence the actual

choice, though the primary requirement is that the method must be capable of

achieving the registration tolerance and resolution demanded by the particular

product at an economic yield. Visible or ultra-violet radiation is most frequently

used to expose the wafers through a glass/chromium or glass/emulsion mask. This

technology is capable of resolving images down to the wavelengths used (c. 0.4,an)

which is more than adequate for current feature sizes in commercial production

facilities.

The significant parameters in assessing a printer are resolution, layer-to-layer

alignment, throughput, depth of focus and cost. Within optical lithography, a choice

of contact, proximity or projection printing techniques is available. Contact printing

uses a 1:1 mask which is pressed against the resist during exposure and offers a

high throughput for a relatively low capital cost. This is offset by the defects induced

in both the mask and the wafer by the contact which significantly reduces the yield

if masks are not frequently replaced or cleaned. Proximity printing provides a

separation of around 255.i.m between the mask and the wafer which increases the

mask life but reduces the resolution available due to Fresnel diffraction effects.

Projection printing improves both the resolution and the mask life by projecting

22

the image onto the wafer through a system of lenses rather than using a shadow

casting technique. This may be performed by a whole-wafer 1:1 projection system

or by a direct-step-on-wafer (DSW) system which use a step-and-repeat technique

to provide a 5X or lox reduction of the image reticule onto the wafer surface at

each die site. DSW offers very good resolution and superior layer-layer alignment

than contact, proximity or whole-wafer projection systems, although it suffers from

a lower throughput rate and higher cost. These drawbacks are justified for small

geometry processing by the returned increase in yield.

Lithographic process monitoring is primarily associated with the measure-

ment of linewidths in the developed resist which provides resolution and uniformity

information. Optical microscopy or the use of Van der Pauw structures provide

optical or electrical methods ofattainingthe relevant linewidth data. The remaining

parameters such as baking times and temperatures and resist spin speeds are

generally specified by the materials and equipment used andtherefore stay constant

once they have been established for a particular combination. Exposure and develop

times are typically generated empirically by performing a matrix of tests over a

range of probable values.

As process specifications incorporate tighter tolerances on layer-layer align-

ment, linewidth control and critical dimensions DSW printing will become the

predominant optical technique. Their high capital cost and relatively low

throughput is offset by the better processing quality and the resulting improvement

in yield. Further developments of this technique, in the form of 'flash-on-the-fly'

DSW printing, is progressing with the aim of improvingwafer throughput. Electron,

X-ray [16] and ion lithography all offer higher resolutions than optical methods and

so will become important, once new technologies demand feature sizes less than

approximately 0.4jim, the best optical systems can provide. Until this limitation is

reached, these methods will remain peripheral to mainstream processing tech-

niques.

23

2.2.6 Etching

After a pattern has been defined by a lithographic step in photoresist on the

wafer surface (see §2.2.5), it must be transferred to the material layer itself. This

requires the removal of the unwanted regions of the layer (i.e. those not covered

by resist in the case of a positive resist). This is most commonly performed by an

etch step. During the course of fabricating an MOS device many such lithographic

and etch steps are performed to selectively remove areas of deposited or grown

layers. Therefore techniques must exist to etch all the materials used throughout

the fabrication process. For example, silicon dioxide must be removed to expose the

silicon surface prior than ion implantation or pre-deposition step and metallisation

areas need to be removed to leave the desired interconnect structure. There are a

number of methods available and the choice is dependant on the required feature

size and profile as well as the material concerned.

Etching techniques can be broken down into two classes of process, namely

wet and thy. Wet etching is the most fundamental technique used and involves

immersing the prepared wafer in a solution of the appropriate chemicals for a

predetermined time. Most liquid etches attack the layer surface in all directions at

an equal rate and such an etch is said to be isotropic. Providing the feature linewidth

and spacing is greater than the respective height then the unwanted horizontal

feature narrowing can be compensated for in the mask dimensions once the error

magnitude has been established. Wet etch performance may be controlled by

variation of the chemical concentration, temperature, time and application of agi-

tation. The choice of chemical and conditions depends on factors such as etch rate,

selectivity, resist adhesion as well as the material to be removed. Wet etching also

suffers from poor uniformity across wafers and although this can be improved by

agitation, it typically requires the routine use of over-etch to ensure complete

clearance of the relevant material. The simplistic nature of the process results in

a high throughput which means that it is well suited to production environments.

However, on reaching VLSI geometries where feature heights are comparable to

their linewidths and spacing, mask compensation is no longer applicable to counter

24

the isotropic nature of the etch. The routine over-etches also demand a high sel-

ectivity with respect to both the mask and the substrate to ensure neither are

subjected to unacceptable damage. For these reasons, anisotropic etching

techniques are a prerequisite in VLSI device processing.

Dry etching techniques are based on the ability of a plasma discharge to

fragment and ionise a relatively inert input gas, producing species which are highly

reactive in both gas and solid phases. When these species combine with any exposed

surfaces volatile products are formed, which are subsequently vented out of the

reaction chamber. Careful choice of the plasma composition enables etch processes

to be defined for all materials commonly found in semiconductor wafer fabrication.

Highly directional motion of the reactive species can be induced by the use of r.f.

power to excite the plasma, thus producing very anisotropic etches. Consequently,

dry etching techniques are most appropriate for defining critical VLSI device fea-

tures such as MOS gates.

There are two classes of dry etchers, termed plasma or reactive ion etchers, 	- -

which differ in the polarity of the electrode that supports the wafers immediately

below the plasma. In Reactive Ion Etching (RIE), the wafers are held on the r.f.-

driven electrode. RIE is performed with lower operating pressures and higher

energy ions than plasma etching and consequently has a higher etch rate making

it preferential in production environments. However, it is found that within dry

etching there is a trade-off between the selectivity and anisotropic performance

[17]. Selectivity arises from the chemical reactions occurring and favours the higher

pressure ambient of plasma etchers. On the other hand, the presence of higher

energy ions within the low pressure RIE ambient increases the degree ofanisotropic

etching, but also reduces the selectivity by the resulting physical sputtering. By

sharing the r.f. power between both electrodes, a blend of etch characteristics can

be produced for specific process requirements and such a machine is known as a

"flexible" etcher [18].

25

For both classes of etcher, the primary control parameters are those of r.f.

frequency and power, input and output gas flow rate and the chamber pressure.

The mechanisms involved in dry etching are very complex and as yet are not fully

understood, which makes the etch rate difficult to control. As with all process steps

it is vital to maintain good intra- and inter-wafer uniformity. Typically, dry etching

is performed on a batch basis with the chamber being vented to atmospheric

pressure for the load/unload operations. This reduces the overall throughput

capability and also permits the adsorption of contaminants which may alter the

etch rates as well as introducing particle defects onto the wafer surface. As a result,

single wafer dry etching, where the wafers are automatically loaded and unloaded

through a load-lock, is often used [19]. This provides a cleaner reaction ambient

and, with only intra-wafer uniformity being optimised, should provide enhanced

etch performance.

Wet etch rates are not generally monitored, the chemical immersion time of

the wafers being empirically determined with visual confirmation of etch comple-

tion. However, in dry etching end-point detection by the use of optical spectroscopy

or mass spectrometry can be implemented to monitor and control the progress of

the etch. These techniques do not guarantee complete and uniform removal of all

the required material and so a minimal over-etch period is usually included.

Within VLSI device fabrication, dry etching techniques are superseding wet

etching with the exception of large feature processing. The necessity for improving

yield and throughput whilst maintaining consistent inter-wafer etching advocates

the use of single-wafer techniques. This is further supported by the ability to

automate wafer movement and provide in-situ process monitoring.

2.3 Process Control and Design

The production of semiconductor ICs is an inherently serial process, with

several hundred individual steps being performed in order to arrive at the desired

circuit implementation in the silicon wafer. Each of these steps, as discussed in

§2.2.1 to §2.2.6, can significantly influence other steps in the fabrication sequence.

For example, any step involving a raised thermal ambient will cause redistribution

OV

of any existing dopants within the silicon structure. Likewise, the presence of an

oxide or nitride region will prevent the ingress of dopant atoms to areas shielded

in this way. There are also more subtle effects such as the existence of oxide regions

which promote enhanced diffusion of dopant atoms in the silicon beneath.

Before any step can become part of manufacturing process, careful consider-

ation must be given to its control parameters so that the resulting actions fit in

with the complete process schedule. A corresponding set of monitor parameters also

needs to be defined, so that post-processing verification of the step performance

can be made by test measurements on the final product and/or test wafers. The

data returned from these measurements will be used to monitor the processing

quality and provide process control feedback.

This simple control methodology enables deviations from process specifica-

tions to signal the need for an investigation into the current process parameters.

In the short term, this can indicate where a temporary alteration to processing

conditions should provide corrective action for futurebatches and on longer term

basis, it points to where more robust and permanent modifications need to be made.

However, this procedure can be very difficult to implement, firstly in that it may

not be easy to pin-point the source of variation and secondly, re-tuning the process

can be a highly time consuming exercise. in either case, the time and yield lost

during the investigation and subsequent rectification will represent a large financial

loss.

In a production, as opposed to a research, environment where there are many

products and different batches within a product line to be tracked, the volume of

engineering data generated by a facility is vast. The distribution and analysis of this

data, if performed efficiently, can provide substantial benefits to the overall pro-

duction management. Equally, it can be catastrophic if inefficiency or misuse

persist. Computer Aided Manufacturing (CAM) software packages such as

COMETS(WORKSTREAM)® and PROWS®, have been specifically designed for

the manufacturing industry and are widely used to provide extensive data man-

agement services throughout the entire facility for engineers and management

27

alike. Although such systems enable process engineers to track, monitor and control

processing, they only provide one half of the ultimate requirement for ensuring

that accurate processing is achieved consistently. The other half can be obtained

by investigating a priori, the effect which any excursions from the specified para-

meter levels will have on the final device characteristics. In this way, an inherently

stable process can be designed which will be less sensitive to parametric variations

and therefore return a significantly higher yield.

This process design concept requires that the variation and sensitivity of each

output parameter to changes in the input conditions must, as a minimum be

qualified and preferably be quantified. Over the past two decades awealth of process

models have been developed which describe the physical changes that occur during

each of the major process steps discussed in this chapter. These software models

are usuallylinked together within a single package to provide the means to simulate

an entire fabrication process or just those steps of interest for a given problem.

Chapter 3 discusses some of the models available, their merits and drawbacks and

their growing importance in current and future semiconductor processing. Obvi-

ously, if the effect of input parameter variations is to be quantified, a number of

these simulations will have to be performed over the desired range of possible

conditions. Although some process parameters only affect a single device char-.

acteristic, more commonly they influence numerous characteristics and also

interact with each bther in complex ways. Therefore a rigourous and structured

analysis of the simulation results is essential in order to extract an informative and

quantitative set of relations between the process parameters and the device char-

acteristics. The application of experimental design and analysis techniques to this

field is covered in detail within chapter 6. The combination of process simulation

and experimental design provides a very powerful and vital route to achieving a

structured process design in which potential control problems are indentified and

hopefully avoided before manufacture. - -

28

As device features diminish in size and processing tolerances tighten there is

a greater need to fully understand the interaction of process steps with each other

and to consider many of the physical characteristics which were of little conse-

quence at larger geometries. Coupled with the increasing trend towards the use of

Application Specific ICs (ASICs) and the emergence of low volume IC production,

structured process design and control has never been more important

2.4 Summary

In this chapter, on overview of silicon wafer fabrication has been given in the

form of an outline of the basic steps employed within a typical process. These steps,

described in terms of how they are performed and their function, have been pres-

ented to emphasise their control and monitoring requirements. The concepts of

process control and process design have been introduced and their importance

demonstrated, especially with demands for ever-increasing yield and reliability

whilst scaling device geometries into the submicon range.

29

References

J. S. Kilby, "The Invention of the Integrated Circuit", IEEE Trans. Electron

Devices, ED-23, p648,1976.

S. J. Hillenius, 'VLSI Process Integration", VLSI Technology 2/e, ed S.M. Sze,

McGraw-Hill, 1988.

D. Burkman, "Optimising the Cleaning Procedure for Silicon Wafers Prior to

High Temperature Operations", Semiconductor mt., 4, 103, 1981.

T. 0. Sedgwick, "Rapid Thermal Processing: How well is it doing and where is

it going?", Mat. Res. Soc. Symp. Proc., Vol. 92, 1987, pp 3-12 .

A.C. Adams, "Dielectric and Polysilicon Film Deposition", VLSI Technology

2/e, edited by S.M. Sze, McGraw-Hill, 1988.

M.D. Giles, "Ion Implantation", VLSI Technology 2/e, ed S.M. Sze, McGraw-

Hill, 1988, p355 .

R.B. Fair, "Impurity Doping Processes in Silicon", ed F.F.Y.Yang, North-Hol-

land Press, Amsterdam, 1981.

R.G. Mazur, D.H. Dickey, "Spreading Resistance Technique for Resistivity

Measurements on Silicon", J. Electrochem. Soc., Vol 113, 1966, p255

J.B. Bindell, "Analytical Techniques", VLSI Technology 2/e, "ed S.M. Sze,

McGraw-Hill, 1988

E.H. Nichollian, J.R. Brews, "MOS (Metal Oxide Semiconductor) Physics and

Technology", John Wiley and Sons, New York, 1982

L.J. Vander Pauw, "A Method of Measuring Specific Resistivity and Hall Effect

of Discs of Arbitrary Shape", Philips Res. Repts., Vol 13, 1958, pp 1-9

R.B. Fair, "Diffusion and Ion Implantation", Semiconductor Materials and

Process Technology Handbook for VLSI and ULSI, ed G.E. McGuire, Noyes

Publications, New Jersey, 1988

J.A. Thornton, "Physical Vapor Deposition", Semiconductor Materials and

Process Technology Handbook for VLSI and ULSI, ed G.E. McGuire, Noyes

Publications, New Jersey, 1988;

30

K.E. Bean, "Chemical Vapor Deposition of Silicon and Its Compounds",

Semiconductor Materials and Process Technology Handbook for VLSI and

ULSI, ed G.E. McGuire, Noyes Publications, New Jersey, 1988.

R.K.Watts, "Lithography", VLSI Technology 2/e, ed S.M. Sze, McGraw-Hill,

1988.

J. Lingau, R. Dammel, J. Theis, "Recent Trends in X-Ray Resists - Part 1",

Solid State Technology, Vol 32, pp105-112, Sept. 1989.

R.J. Schutz, "Reactive Plasma Etching", VLSI Technology 2/e, ed S.M. Sze,

McGraw-Hill, 1988.

L.M. Emphrath, "Reactive Ion Etching for VLSI", IEEE Trans. Elec. Dev., Vol

28, pp1315-1319, 1981.

W.C. Dautremont-Smith, R.A. Gottscho, R.J. Schutz, "Plasma Processing:

Mechanisms and Applications", Semiconductor Materials and Process Tech-

nology Handbook for VLSI and ULSI, .edG.E. McGuire, Noyes Publications,

New Jersey, 1988.

31

Any given program, when running, is obsolete.

Any given program costs more and takes longer.

Ifaprogruni is usefu4 it will have to be changed..

If a program is useless, it will have to be documented.

Any given program will expand to fill the available

memory.

The value of a program is proportional to the weight

of its output.

Program complexity grows until it exceeds the

capability of the person who must maintain it.

Chapter 3

Process Simulation

3.1 Introduction

The fabrication of silicon ICs involves an inherently complex set of operations,

with a typical process comprising several hundred individual steps. In each new

generation of IC, device geometries have been shrunk in both planar and vertical

dimensions in order to meet the continual demand for greater circuit performance

and packing density. With the reduction in feature sizes to micron and submicron

dimensions, the development of new technologies and fabrication processes has

become increasingly more difficult, time consuming and expensive.

The use of computer aided design (CAD) tools has emerged as a powerful way

in which to assist in the development of the technologies requiredto.approach these -

levels of circuit complexity, Such tools not only cover circuit layout, but also process,

device and circuit simulation. Together these can provide a more or less complete

simulation system for the development of semiconductor products. A large number

of numerical and analytical models have been developed over the past two decades

to simulate each of the steps within a fabrication process. These models are gen-

erally implemented as a set of modular subprograms which are controlled by a

supervisory shell program. This software provides the facility to calculate the

impurity distributions and structural features of a fabricated device from a sequence

of process steps with their respective control parameters.

Computer based modelling of semiconductor fabrication was first introduced

in the 1960's to attempt to predict the process dependencies associated with the

fabrication of the high speed double-diffused bipolar technology [1]. However, it

was not until MOS technologies began to dominate the market during the late

1970's and early 1980's that 'the importance of rapid development in process

modelling and simulation was fully perceived and acknowledged.

32

The most commonly used simulators are one dimensional, modeling a 1-D

section of the device structure normal to the wafer surface, such as depicted in

figure 3.1. One dimensional models provide sufficient accuracy and information for

large geometry processes, where the minimum feature size exceeds 3jtm. These

models have been continually researched and improved since the introduction of

process modelling and thus are much more 'mature' than their two dimensional

counterparts.

Field Oxide
	

Polysilicon Gate

Figure 3.1. Section through an nMOS enhancement mode transistor.

However, once feature sizes begin to drop below the 31tm level, it becomes

important to model the two dimensional effects that occur during the wafer pro-

cessing, such as lateral dopant diffusion under field oxides or gate regions. The

models used within 2-D simulators are less comprehensive than found in a 1-D

system, but the solution times are still much longer (typically by a factor of 70-500

[21). It is also anticipated that for accurate and constructive simulation of submicron

geometries, the use of three dimensional modelling will be required [3],[4].

33

One major application of process simulation has been in the development of

new fabrication processes. Traditionally, this was achieved by an iterative schedule

of process modification, experimental fabrication and parametric test until the

desired criteria were attained. With each cycle taking in the order of 6 to 8 weeks,

this was a time consuming procedure. Economic pressures coupled with the

increased demands being placed by the Application Specific IC (ASIC) market have

led to a requirement for more rapid process development and design turn-round

times. The need to simulate processes has become essential in low volume pro-

duction if economic yields are to be achieved from the first batch of production

wafers. Simulation not only provides a faster and cheaper development cycle, but

it also enables process engineers to 'see' inside the device and observer features

which are not directly visible in the physical structure, such as doping profiles. This

feature can assist engineers in finding the cause of an anomalous device char-

acteristic.

Another use which has emerged more recently is in the statistical control of

VLSI fabrication processes. In its simplest form, simulators such as FABRICS [5]

are used to assess the sensitivity of a particular process to the inherent variations

found in the input parameters within a manufacturing environment. This

methodology has also been expanded to incorporate this information into

Computer-Aided Manufacturing (CAM) systems to provide additional on-line

control functions [6]. This concept has also been illustrated with the incorporation

of SUPREM Hand COMETS"' [71 to provide look-ahead and what-if functions for

process development and maintenance [8]. By offering the possibility of corrective

processing to wafers which have been diagnosed as misprocessed at any point in

the fabrication schedule, an opportunity is presented to improve the overall yield

of the process.

Alternatively, a combination of process simulation and classical experimental

design techniques can be used to observe the sensitivity of a given process to

parameter variations and optimise that process for a particular set of performance

goals. In this manner, any problems with the process can be ironed out before it

34

ever commences fabrication and an acceptable yield is assured for every batch of

wafers so processed. The powerful nature of this technique is only nowbeing realised

with the considerable increase in design turn-round and economic pressures facing

the semiconductor industry today.

3.2 One Dimensional Simulation

Simulation, by its very nature, can not exactly model all the events that are

found in the real world. For the case of process simulation, a series of conceptual

models have been developed which approximate the physics associated with each

of the process steps described in the previous chapter. From these conceptual

models arise a corresponding set of mathematical models which provide a

description of the physical processes that are occurring within the semiconductor

structure. These mathematical models fall into one of two categories, namely

numerical or analytical. The latter can provide a rapid solution which is accurate

only within a range of values for which it has been verified, whereas the former

provides a more comprehensive approach but does consume a far greater compu-

tational resource. This issue is of such importance to the future of process simu-

lation that itwilibe discussed in detail in §3.4. Such modelling techniques introduce

limitations and hence errors, in the results attained from the simulations. However,

if the models are applied judiciously, it is still possible to obtain quantitatively

meaningful results.

Each mathematical model, be it numeric or analytic, contains a variable

element in the form of adjustable coefficients so that it can be calibrated to a par-

ticular set of experimental data. Thus if it is important for a particular application

that accurate quantitative results are obtained, then the process in question must

be fully characterised to enable the relevant coefficients to be changed. This process

characterisation comprises measurement or estimation of the model parameters.

However for many applications, such as sensitivity analysis or trend analysis [9], an

exact solution is not necessary and thus the default parameter values will provide

the required data.

35

The largest simplification that can be made is to assess only the vertical

dimension for the study of layer formation and dopant distribution. This is done by

modelling a single one-dimensional section normal to the wafer surface at a time.

In order to simulate the effect of the entire fabrication process over a whole device,

a number of such sections through the major regions of the device will need to be

simulated. As an example, consider figure 3.2 which illustrates a cross-section of

an nMOS invertor structure with the significant regions requiring simulations

highlighted.

Contact 	 L. 	Source/Drain 	Field
section 	 section 	section

- - 	
- 	Figure 3.2. Cross-section. of nMOS showing 1-D simulation regions.

The consequences of this simplification are that the models possess a much

reduced -parameter set and require considerably less computation. it is desirable

for the Models to be general-purpose and therefore theoretically physical based

models rather than empirical models are favoured. Although this incurs substan-

tially more computation, in the case of analytic models, it is too easy to operate

outside the calibrated range of empirical models and thus incur large errors.

o 	 36

It is useful to point out a few of the general features of process simulators

before examining one package in detail. In order to simulate any structure the

following basic information is required:

. Initial wafer material type, orientation, and doping level.

• Definition of the semiconductor structure by means of a grid to

provide a discretised simulation space in which the solution of

the numerical models is performed.

. Specification of the necessary process steps in the order that they

appear in the relevant fabrication schedule.

Each simulator has its own control language in which the structural initiali-

sation and subsequent processing -information isdefinedç as well-as specification of - ----

the output format. An excerpt from a typical input file is shown in figure 3.3 and

the link between the input syntax and basic equipment control parameters that -

would be found on an actual process runsheet, can be noted.

COMMENT Grow pad oxide
DIFFUSION TEMPERATIJRE=1050 	THICKNESS=0.05 	DRY02

COMMENT Deposit nitride masking Layer
DEPOSIT NITRIDE 	THICKNESS=0.2 	DX=0.02 	SPACES10

COMMENT Grow field oxide under high pressure
DIFFUSION TEMPERATURE=1000 	TIME30 	STEAM 	PRESSURE=5

COMMENT 	Etch oxide and nitride Layers
ETCH 	 OXIDE
ETCH 	 NITRIDE
ETCH 	 OXIDE

Figure 3.3 SUPREM ifi input statements taken from an

MOS device simulation. Structural initialisa-

tion data has been omitted for clarity.

37

The output from the simulators provides physical, electrical and structural

information pertaining to the device at the chosen point in the processing sequence.

Such information includes:

• layer thicknesses and charge densities

• sheet resistivities and threshold voltages (where appropriate)

• graphical plots of the structure and doping profiles from the

simulation space. This information may also be exported

directly into certain device simulators [10]

The first process simulator to be widely used by industry and academia alike,

was SUPREM II [11] and is capable of modelling both bipolar and MOS processes

in one dimension. This simulator was developed at Stanford University, California, - -

in the mid 1970's and came as the first of a family of process simulators. The models

it incorporates are mature and well understood which, coupled with public domain - - -

source code, has continued its widespread use in both commercial and academic

environments. These models use a mixture of physical and empirical solutions for

ion implantation, oxidation, diffusion, epitaxy and etching. Default models for the

distribution of boron, phosphorous and arsenic are included, but their use only

pertains to silicon and silicon dioxide layers which is a severe limitation in the light

of current technologies.

SUPREM III [121 was released in the early 1980's to replace SUPREM II and

has substantially greater capabilities. The most important of which must be that

simulated structures may contain up to ten material layers selected from silicon,

silicon dioxide, polysilicon, silicon nitride and photoresist or user-defined materials.

This feature, coupled with a revised set of physical models for the major process

steps discussed in the previous chapter, has enabled SUPREM ifi to model most

current process technologies. Table 3.1 provides a brief comparison of SUPREM II

and SUPREM ifi.

38

SUPREM II STJPREM ifi

2 layers 10 layers

default material for default material for
implant & diffusion implant & diffusion

silicon silicon
silicon dioxide silicon dioxide

polysilicon
silicon nitride

aluminium

no additional additional materials
material types may be defined

3 dopant types 4 dopant types

default dopants default dopants

antimony antimony
arsenic arsenic
boroii boron/BF2

phosphorous phosphorous

oxidation of oxidation of

silicon silicon
polysilicon

silicon nitride

The ensuing sections provide a brief discussion of the scope and limitations

of SUPREM Ill's one-dimensional models and reflecting the relationship between

its control language format and typical equipment control parameters for each

process.

39

3.2.1 Oxidation

The rate of Si02 growth has traditionally been described by the linear-pa-

rabolic Deal and Grove equation [131, the basic form of which is given in equation

3.1. Within SUPREM ifi, this has been further developed to account for the oxide

growth on both silicon and polysilicon [14].

x-x 	x0-x, 	 (3.1)
+

B 	B/A

where

X0 	= oxide thickness at time t

Xi initial oxide thickness (if any) at t = 0

B 	= parabolic growth rate

B/A = linear growth rate

t 	= 	time

The parabolic and linear growth rates are given in their general form by

equations 3.2 and 3.3 respectively. When solved with STJPREM ifi, terms for wet,

dry or HO! ambients, pressure, substrate orientation and rapid initial growth are

also included [15].

B = 2.D.Ct/N, 	 (3.2)

(3.3)
B/A =

(1/k 5) + (1/n)

where:—

D 	= 	Oxidant diffusion coefficient in oxide

	

0* = 	equilibrium oxidising species concentration

	

N1 = 	number of oxidant molecules per unit volume

	

= 	oxide / ambient interface reaction rate constant

n 	= 	Si / SiO2 interface reaction rate constant

All the factors which influence the growth of an oxide are modelled physically

with the exception of HC1 which is empirically implemented since no quantitative

El [s]

physical model yet exists. Due to the almost entirely physical basis of the oxidation

models, they are capable of simulating many different process conditions, ranging

from short gate oxide growths to long isolation oxide formations.

In order to invoke an oxidation step from within SUPREM ifi, a DIFFUSION

statement is used, whose parameters must include an oxidising ambient such as

pure oxygen, pyrogenic steam or pure steam, as well as a suitable time and tem-

perature. Figure 3.4 provides an example of a typical DIFFUSION statement in

which the gas flows into the furnace have been directly specified. This option is

most useful when relating a simulation to an actual set of manufacturing conditions.

DIFFUSION 	TIME=30 TEMPERATURE=1000 F.02=2 F.H2=2 F.N2:2 F.H20=1

Figure 3.4 SUPREM Ill input statements for an oxida-

tion in which the ambient gas flows have

been specified as ratios.

The ability to simulate processing condition used in practice, is further

enhanced by the option to supply additional parameters to indicate the growth of

doped oxides and elevation or reduction in furnace pressure from the default

atmospheric ambient. Both temperature and pressure may also be ramped at a

user-specified rate.

3.2.2 Diffusion

One of the prime tasks of a process simulator is the generation of impurity

doping profiles. Since great importance is placed on the resulting profiles, it is vital

that the models associated with their evaluation are highly accurate. In the case of

SUPREM ifi, diffusion models are present for the redistribution of antimony,

arsenic, boron and phosphorous within polysiicon, nitride, silicon and silicon

dioxide layers. For each of the listed impurities there is a set of physical models

which are solved numerically.

41

Dopant redistribution occurs during every heat step used in the fabrication

process, including oxidation, deposition and annealing. Thus the diffusion models

within SUPREM Ill are required during the simulation of many different processes

under a variety of ambients, temperatures and times.

Simulation of diffusion processes must therefore involve the solution of the

complete one-dimensional continuity equation:

= 2 \
	

± -- -- (Dt ±t 	
(3.4)

	

T7 	ax 	ax) 	k ax' 	ax)

where:-

D 	= 	effective diffusivity

C 	= 	total impurity concentration

0 	= 	electrically charged impurity concentration

The potential 4) is:

kr U
4, = —in--

q 	n 1

(0 \

where -i and ni are the electron and intrinsic carrier concentrations respectively,

at the diffusion temperature. There are four major diffusion mechanisms, namely

vacancy-assisted, interstitial-assisted, interstitialcy and crowdion, which can con-

tribute to the re-distribution of dopants in a semiconductor [16]. Within SUPREM

Ill, equation 3.4 models the diffusion by the vacancy-assisted mechanism under

non-oxidising conditions. In addition, account is also taken of high phosphorous

concentrations, the presence of oxidising silicon or polysiicon surfaces, and

transient diffusivity enhancement which may result from implant damage, for

example. For multi-layer structures, dopant transport and segregation across

material interfacesis also included in the relevant diffusion models. Amore detailed

discussion of the models used for diffusion in SUPREM ifi may be found in [17].

Explicit simulation of dopant diffusion through a semiconductor structure is

performed using the DIFFUSION statement from the SUPREM ifi input language.

As can be seen in figure 3.5, the processing conditions requiring specification are

42

those of temperature, time, and ambient. This includes the oxidising ambients as

described in section 3.2.1 or an inert ambient such as nitrogen. As with oxidation,

the diffusion rate will be affected by any temperature ramping that is present during

the process step, but in contrast, there is no dependency on the pressure coefficient.

DIFFUSION 	TEHPERATURE1160 	TIME=45 INERT

Figure 3.5 SUPREM Ill input statements for an inert

diffusion.

It is most unusual under conventional manufacturing techniques simply to

perform a diffusion without an associated oxidation or growth of a layer, and thus

the models are generally called automatically during the simulation of these other

process steps. However, the ability to explicitly simulate the consequences of the

tliemn-ial component of a step, without its associated growth or oxidation, can be

useful during process development and fault-finding.

3.2.3 Ion Implantation

Traditionally, initial dopant concentrations within a semiconductor structure

have been obtained by either pre-deposition or ion implantation. Pre-deposition

can be modelled as a conventional diffusion step with Dirichlet boundary conditions

[18]. However, the fabrication of small geometry devices requires a far greater

control of doping profiles than is available from a pre-deposition step and ion

implantation also permits a wider range of impurity ions to be introduced into the

structure. In addition, the fabrication of shallow or low concentration doped regions

such as might be required in the formation of small geometry source and drain

regions, with sufficient efficiency and reproducibility is only attainable by ion

implantation. Dopants can also be implanted through multiple layers of a structure.

Thus there is an almost universal use of ion implantation for this process step.

43

It is very important that the outcome of this step is accurately predicted,

because the implanted profiles form the initial conditions for all subsequent

diffusion processes. This operation is modelled by either an analytical or numerical

technique depending on the trade-off between speed and accuracy that is acceptable

to the end-user.

SUPREM II took the analytical approach and utilised a series of look-up tables

based on the established LSS theory [19] to produce predicted range distributions

for the implanted ions. On this basis of the LSS theory, the simplest resulting

distribution is a symmetrical Gaussian curve with experimental data providing the

projected range, R, and standard deviation, s, for a variety of ion-target combi-

nations. Asymmetric profiles are found experimentally for many ions and are

obtained by using the 3rd central moment for range information [20]. These

distributions can be represented by 2-sided Gaussian profiles which are charac-

terisedhy two standard deviations, si and S2 for arsenic, antimony and phosphorous.

Boron requires the use of a modified Pearson distribution with an exponential tail

added in order to account for the channelling effects. The major limitation of the

basic LSS theory is that it assumes a homogeneous target, and hence is not appli-

cable to the simulation of multi-layer structures. It has been reported [2 11 that the

assumption of a homogeneous target has been removed, but this is not the case for

the currently available simulators which incorporate this modelling technique.

Additionally, LSS theory is unable to model recoil effects such as secondary

implantation. The general analytical calculations represent an impurity distribu-

tion 1(x) as shown in equation 3.5

1(x) = N .[J(x)+f,(x)] 	 (3.6)

where

N 	= 	dopant concentration / dose from implanter

Ax) = 	normalised distribution (Gaussian / Pearson)

ft(x) = 	exponential tail added to f(x) in silicon

44

Numerical modeling methods are based either on the Boltznmn Transport

Equation (BTE) or on Monte-Carlo (MC) techniques. The primary method incor-

porated in most of the available simulators at the present is based on the solution

of the Boltzman transport equation from work by Cristel et al [22]. In this model,

the scattering of the ions is described by changes in the statistical momentum

distribution function. BTE can model recoil implantation effects and damage

mechanisms, but like the analytical models, is based on an amorphous target and

therefore can not explicitly model channelling effects.

Monte-Carlo methods on the other hand are based on the simulation of

individual particles and their collisions in the target structure. By summing the

nuclear and electronic stopping events in a large sample of ions (preferably 1000 or

more), the range parameters for both primary and secondary recoils and any

associated damage can be obtained. This methodology has the advantage that any

ion/target combination can be modelled due to the entirely physical approach.

Models for both amorphous and crystalline targets are available [23], thus allowing

channelling effects to be included. Monte-Carlo simulations are highly computa-

tional when a sufficient number of samples are included to provide the necessary

accuracy for small geometry devices.

SUPREM III offers revised analytical models incorporating Pearson 1V/V/VI

distributions [24] depending on the conditions pertaining to the step. It also has

the numerical BTE method included, though in order to reduce the computational

overhead the recoil and damage models have been omitted [251. Implantations are

invoked by the IMPLANT statement and require information on the dopant species,

concentration/dose of the implanted ions, their acceleration energy and the sol-

ution method to be employed. Although any dopant may be used for the numerical

solution, range characteristics only exist for arsenic, antimony, boron and

phosphorous when utilising the analytic solution. Figure 3.6 provides an example

of a typical IMPLANT statement from SUPREM ifi and indicated the close links

between the simulation and fabrication parameter specifications

45

IMPLANT 	BORON DOSE=1E13 ENERGYSO 2-GAUSSIAN

Figure 3.6 SUPREM ifi input statements for a boron

IMPLANT using a two-sided gaussian dis-

tribution function.

Analytical techniques are extremely efficient, but the simulation of small

geometry devices requires the additional accuracy provided by the numerical BTE

or MC techniques and has to be paid for in terms of the additional computational

overheads.

3.2.4 Deposition

Modelling of deposition processes within most one-dimensional simulators is

highly simplified.. with the most common approach being to consider the step as

the addition of an extra layer to the top of the current structure. Such a procedure

may be justified by the fact that one-dimensional simulaticin does not include any

detailed topographical information.

SUPREM III contains default models for the deposition ofsilicon, silicon

dioxide, silicon nitride, polysilicon aluminium and photoresist. With the exception

ofpolysilicon, there are no analytic or numerical models included to explicitly model

the deposition processes, which enables a wide range of techniques to be nominally

modelled by SUPREM Ill. Thus processes such as CVD, sputtering, resist spin-on

and pre-deposition, as well as the presence ofpolysilicon gates or metal interconnect

may be included in a simulation through the DEPOSITION statement. In order for

this generalised method to operate, it is necessary to specify the desired end

thickness or growth rate and time for the particular material layer. For low tem-

peraturesteps, this sixnplyresults in the specific material being added to the current

structure. In the case of high temperature steps, the diffusion models are also

triggered in order to account for the motion of any dopants already present in the

structure. The deposited layers may also be specified to contain impurity elements

E, r1i

such as antimony, arsenic, boron and phosphorous. For low temperature steps, this

will result in a uniform dopant concentration throughout the new layer and a

pre-deposition process is modelled by a high temperature step, where the specified

dopant concentration will exist in the ambient gas.

The increasing role of polysilicon in IC circuits as a gate material and an

interconnect has lead to the inclusion of a series of models for the growth of

polysilicon films in SUPREM ifi [26]. In addition to the previously mentioned

parameters requiring specification, either the ambient pressure or an initial grain

size must be included. Segregation at the material interfaces, carrier trapping and

grain growth are all included in these models.

Figures 3.7 shows examples of three different DEPOSITION statements from

SUPREM ifi illustrating a low temperature deposition, doped silicon and a

polysilicon deposition respectively.

DEPOSIT 	NITRIDE 	THICKNESS0.2

DEPOSIT 	SILICON 	<100> THICKNESSO.l RESISTIVITY 	BORON4

DEPOSIT 	POLYSILICON THICKNESS0.5 TEMPERATURE650 PRESSUREs1

Figure 3.7. SUPREM ifi input statements for nitride,

doped silicon and polysiicon DEPOSITIONS.

As has been demonstrated, SUPREM ifi possesses avastly simplified approach

to deposition processes and the simulation parameters bear only a limited relevance

to their counterparts in the fabrication cycle. More complex and comprehensive

modelling is required when considering two-dimensional analysis and is available

within most 2-1) simulators as well as through separate programs such as DEPICT-1

[27], DEPICT-2 [28] and SAMPLE [29].

47

3.2.5 Etch

Etching processes Within one-dimensional simulation are, like the deposition

processes, highly simplified and in effect can be viewed as the direct inverse of

deposition with no explicit treatment of the separate wet, dry or even ion beam

milling etch techniques found in fabrication. Within SUPREM ifi, an ETCH step

enables the removal of all, or part, of a specified material from the top of the current

structure. Default models for the etching of silicon, silicon dioxide, silicon nitride,

polysilicon, aluminium and resist are included and the presence of dopants within

the layer has no effect.

Since there are no physical or empirical models associated with the simulation

ofan etch, it is necessary to know the outcome ofa particular fabrication etch process

in advance if it is to be modelled. Once this 'calibration' hasbeen achieved, SUPREM

III is then capable of simulating any etch process that might be performed in a

fabrication process. As with deposition, both low and high temperature steps can

be modelled, with the diffusion models being solved for any impurities present in

the structure during a high temperature step.

As an example of the ETCH statement, figure 3.8 illustrates a simple oxide

removal from an MOS gate structure, with figures 3.9 and 3.10 showing the

structure before and after the etch. - -

ETCH 	OXIDE THICKNESS=0.2

Figure 3.8 SUPREM III input statements showing the

removal of an oxide layer.

48

Enhancement

section

Figure 3.9. MOS gate region in Suprem ifi prior to ETCH statement.

Enhancement

section

Figure 3,10. MOS gate region in Suprem III afteijETCH statement.

If effective use is to be made of the ETCH and DEPOSITION steps within

SUPREM ifi, it is vital to make sure that they are well characterised in advance,

otherwise significant errors will arise. This becomes of particular importance when,

for example, the effects of over- or under-etching are being investigated. In such

49

circumstances it might be more beneficial to perform a two-dimensional analysis

using one of the dedicated topographical simulators, such as DEPICT-1/2, to pro-

vide the detail required.

3.2.6 Electrical

An important use of process simulation is to provide process and device

engineers with the electrical performance of devices fabricated using a specific

sequence of process steps. As has been seen in the preceding sections (3.2.1 through

to 3.2.5), process simulation calculates the physical structure and its associated

doping profiles for a given set of fabrication steps. These can then be analysed to

provide basic electrical information such as

• electron / hole concentrations

• layer conductivity / resistivity

s net charges within a layer

• threshold voltage for MOS device

For amore accurate and detailed analysis, such as would be required for device

optimisation, dedicated device simulators exist which provide 1-D [30] and 2-D [311

data. These programs may be interfaced directly to process simulators such as

SUPREM III or SUPRA allowing the transfer of doping profiles and device structure.

As with all the simulation programs discussed so far, it is important to calibrate the

electrical simulations to a given fabrication process if quantitative process analysis

is to be performed.

The electrical parameters obtained from SUPREM III are calculated from a

numerical solution to Poisson's equation as shown in equation 3.7under a series

of bias conditions.

a (J= 	 (3.7)
ay 	-q{p-n+N-N} 	semiconductor

insulator

50

where :-

e 	= 	dielectric constant of material

t) 	= 	potential

p 	= 	hole concentration

n 	= 	electron concentration

N 	= 	electrically active donor ion concentration

N A 	electrically active acceptor ion concentration

Iii SUPREM Ill, it is the ELECTRICAL statement which indicates the start

of a solution to Poisson's equation. if VT is to be calculated then a series of bias

points will need to be specified since the threshold voltage is calculated by

extrapolating the conductance versus bias curve tangentially to zero from the point

of maximum slope. By default, layers are biased to zero volts, but can be individually

biassed by use of the BIAS statement. In addition, the presence of any surface charge

on the substrate can be specified by the QSS statement. An END.ELECTRICAL

statement signifies the end of the solution to Poisson's equation. Figure 3.11 shows

the electrical statements required to calculate VT for an MOS transistor structure.

ELECTRICAL STEPS18 VTH.ELEC 	LAYER=1

	

BIAS 	 LAYER=3 	V=-0.2 DV=O.1 ABSCISSA
QSS 	 LAYER1 	CONC=5E10

END. ELECTRICAL

Figure 3.11 SUPREM ifi input statements to perform a

threshold voltage calculation.

As can be seen, these commands bear little relation to any real on- or off-line

threshold voltage measurement technique, but they can be used to assist in the

initial calibration of the simulator to a particular process.

51

3.3 Two Dimensional Simulation

As device geometries scale down below 1.5- 2.0tm, two-dimensional modelling

of impurity distributions and surface topology become critical in assessing device

performance.

The basic operation of MOS device involves the field effects imposed by

electrodes on doped silicon regions. Analysis of these devices requires a minimum

of 2-D and preferably 3-D [32] solutions to Poisson's equation (see §3.2.6) if accurate

modelling of their performance and sensitivity to fabrication technology is to be

assessed. Mostvariations in fabrication processing result in subtle 2-1) effectswhich

enforce the need for 2-1) process modelling to provide sufficient resolution for these

imperfections to be reflected in the structural and doping information.

A number of 2-D simulators such as SUPRA [33], SUPREM-4 [34], COM-

POSITE [351, BICEPS [36], RECIPE [37] and ROMANS-11 [381 have therefore been

developed with the intention of providing general purpose small geometry process

simulation capabilities. All of these have their respective limitations, some ofwhich

will be highlighted in the course of this section, making it important to ensure that

the correct simulator is used for a given modelling problem.

The major difficulty associated with the development of 2-D process models

is in the consideration of the moving boundary conditions for diffusion during

thermal oxidations. There are several methods available to surmount this difficulty,

though none is without compromise. By using an analytic solution to the impurity

diffusion during oxidation, the issue of spatial discretisation can be avoided and

calculations can be achieved quickly. This rapid response is obtained at the expense

of flexibility, in that analytic models are generally only valid for low concentration

diffusions. Alternatively, finite element and finite difference techniques, with or

without moving boundaries maybe employed.

The problem associated with the numerical solutions is that of producing a

grid system around which the semiconductor structure can be defined and the

required equations solved. One way to solve this problem is to discretise the physical

simulation region at each time step and then solve the resulting nonlinear equa-

52

tions. In order to cope with the fact that one of the boundaries is moving, a new

spatial discretisation and an associated interpolation from the old discretisation to

the new one is needed at each time step. Another approach is to transform the

diffusion equations and their respective boundary conditions from a physical

co-ordinate system to a co-ordinate system where the moving boundary appears

stationary in the time domain. In this way, the solution region is simplified at the

expense of making the underlying diffusion equations more complicated.

SUPRA established itself as one of the first commercially available two-di-

mensional process simulators. Many of the models are based on those of SUPREM

ifi and allow the simulation of ion implantation, silicon oxidation, inert drive-ins

and low temperature deposition and etching. Although the structure may comprise

up to ten layers from six material types, impurity distribution is only calculated in

silicon and silicon dioxide layers. Thermal oxidation must be solved analytically,

and diffusions in doped inert ambients must be solved numerically, but the

remaining models may use either method. However, one severe constraint is that

numerical solutions may be performed after analytic, but not visa versa, which

seriously limits the scope for simulating entire processes.

SUPREM-1V [39] is a still more recent two-dimensional simulator which

includes an advanced set of numerical and analytic models. A numerical thermal

oxidation model is now included. This eliminates many of the constraints applied

to SUPRA, though it does dramatically alter the overall computational intensity.

Impurities are now simulated in all layers, though the total is now limited to four

from silicon, silicon dioxide, nitride and polysilicon.

In contrast to these two packages is COMPOSITE. This possess a completely

different development background from the Stanford/TMA family of simulators,

coming from the Fraunhofer-Institut für Festkôrpertechnologie in Munich. The

models included are two-dimensional extensions of those found in SUPREM ifi,

however physical modelling of deposition, etching and lithography steps are also

incorporated, giving a genuine ability to model an entire MOS fabrication process.

53

Neither SUPRA or STJPREM-W have any physically based topographical capabil-

ities, though SUPRA does have a bidirectional interface with DEPICT / SAMPLE

to provide these facilities.

All of the simulators mentioned during the course of this section produce

two-dimensional structural and impurity concentration data. However unlike their

one-dimensional counterparts, a dedicated device simulator such as PISCES-213 or

CANDE [40] is required to provide the resulting electrical characteristics.

By comparison with one-dimensional analysis, two-dimensional process

simulation is far more complex to use efficiently and successfully. A knowledge of

the inherent limitations of each simulator is required to prevent erroneous results.

More crucially, a careful choice of grid structures is essential for the numerical

modes so that sufficient detail can be achieved in the active parts of the device. It

should also be noted that, compared to a one-dimensional simulator, less accurate

vertical doping profiles will be produced given the reduced number of grid points

in the vertical dimension and the use of less mature and comprehensive models.

For example, SUPRA may use up to 100 nodes in a given dimension, whereas

SUPREM Ill could use up to 500 in the vertical dimension. Nevertheless, the

requirement for two-dimensional simulation cannot be regarded as anything other

than essential, if useful qualitative and quantitative analysis of small geometry

devices is to be achieved.

3.4 Computational Requirements of Process Simulation

The application and importanôe of both one and two-dimensional process

simulation in designing, developing and debugging VLSI fabrication processes has

been highlighted in the preceding sections of this chapter. However, before any

conclusions can be drawn on the overall benefit of process simulation, it is necessary

that the computing resources demanded by the relevant software-be presented and

assessed.

In the past, these software packages wrere typically run on multi-user main-

frame machines, such as the VAX" 11/750 or on a minicomputer, such as one of

the MicroVAX- series of machines. In their day, these machines were very popular,

54

but were not cheap to buy or maintain. Even with efficient virtual memory man-

agement systems, the number of users that could concurrently access these large

programs concurrently, without the time spent swapping tasks dominating, is quite

low (typically 2-6 depending of the software). At present, personal workstations,

such as the SUN 3111, 4, or iPX" range of machines, are capable of providing com-

puting powers in the order of 10-30 times that of their predecessors, for a fraction

of the costs. However, even these technological advances are not sufficient to meet

the demands being placed on simulation machines due the increase in the utilisation

of process simulation and by the move towards 2-D and 3-D simulation that is

required to model present and future processes.

This information highlights the problems associated with this hardware

arrangement. It does not lead to an efficient process simulation environment in

which each process / device engineer who could benefit from access to the software

would actually be able to use it. The problem is further compounded by the fact

that as device geometries scale down, not only is there a greater need for more

simulation but additionally, each simulation becomes more computationally

intensive. In the extreme, the use of three-dimensional modelling, which has been

proposed for submicron processes, would render conventional simulation pro-

cedures unusable. Therefore, a fresh approach is required to provide a suitable

computing environment which allows relatively cost-effective access to the

necessary software by all the relevant engineers.

There are two aspects which could lead to the significant improvements which

are needed. Firstly, an economic source of superior computing power, which is

preferably available in a desktop format, would deliver a more immediate solution,

though emphasis has to be placed on the 'economic' constraint if global access to

the engineering community is to be met. This proviso rules out the alternative

range of computing platforms in the CRAY" style of supercomputing platforms

which are extremely expensive to both purchase and maintain. Secondly, on a more

long term basis, the development of improved numerical algorithm's within the

55

solution of the physical models would produce a lower loading on both existing and

future computational platforms. This route must not be ignored, but it is unlikely

to produce significant advances in the short term.

Although SUPREM II is only a one-dimensional process simulator which

presents a relatively low load on a processor, the availability of source code has

allowed execution on a variety of computing platforms to be compared. Table 3.2

presents a series of CPU times for a typical CMOS gate region simulation on a

number of processing elements, along with an estimate of their respective costs.

These results do provide a clear indicator as to where a possible solution may exist.

Hardware Platform CPU Times Approx. Costs Remarks
(secs) () (1990)

VAX 11/750 4460 55000 plus maintenance(— 10%)

SUN 3 2070 6000 plus maintenance(— 10%)

PC-AT 80286 6170 2500 'AT' Compatible

PC-AT ± IMST414 580 2700 INMOS Transputer -
with no floating point
unit

PC-AT + IMST800 312 3100 INMOS Transputer -
with floating point unit

Table 3.2. Comparison

3.5 Summary

This chapter has presented a brief synopsis of process simulation within the

semiconductor manufacturing environment. The main physical and electrical

models as contained in a particular one-dimensional simulator, SUPREM ifi, have

been described along with examples of their respective input data formats

This chapter has presented a brief review of process simulation and its role

within the semiconductor fabrication environment. The merits and limitations of

both one- and two-dimensional simulation are then considered in the light of cur-

56

rent processes and their future trends. SUPREM ifi is then examined in detail as

an example of a typical one-dimensional simulator with a discussion of its main

physical and electrical models and their respective input and output data formats.

Although two-dimensional simulation is vital in order to model the lateral effects

that become significant in small geometry device processing, it is shown to lack in

the accuracy obtainable from one-dimensional modelling and require considerably

greater computational resources. The issue of computational overheads is then

expanded upon and shown to severely limit access to this software. With this in

mind, a comparison of various hardware platforms, in terms of both cost and per-

formance, is used to focus on a possible simulation environment which would enable

its full potential to be exploited.

57

References

S.M. Hu, S. Schmidt, "Interactions in Sequential Diffusion Processes in

Semiconductors", J. App!. Phys., Vol 39, pp4272-4283, 1968

P.H. Singer, "Process Modeling and Simulation", Semiconductor International,

Vol 10, No. 2, p78, February 1987.

W. Fichtner, L. Nagel, B. Penumalli, W. Petersen, J. D'Arcy, "The Impact of

Supercomputers on IC Technology Development and Design", Proc. WEE.,

Vol 72, No. 1, p96, 1984.

A.M. Mazzone, C. Rocca, "Three-Dimensional Monte-Carlo Simulations - Part

1: Implanted Profiles for Dopants in Submicron Devices", IEEE. Trans. CAD,

Vol 3, No. 1, pp64-71, 1984.

S.R. Nassif, A.J. Strojwas, S.W. Director, "FABRICS II: A Statistically Based

IC Fabrication Process Simulator", IEEE Trans. Computer-Aided Design,

Vol.CAD-3, No. 1, January 1984, pp40-45.

P.R Mozumder, C.R. Shyamsundar, A.J. Strojwas, "Statistical Control of VLSI

Fabrication Processes: A Framework", WEE Trans. Semiconductor Manu-

facturing, Vol. 1, No.2, May 1987, pp62-71 .

"Introduction to COMETS", COMETS User Manuals, Version 5, Consilium

Inc., Mountain View, CA, USA, December 1988.

A.J. MacDonald, ", Ph.D. Thesis, EMF, Edinburgh University, 1989.

P. H. Singer, "Process Modeling and Simulation", Semiconductor Interna-

tional, No.2, Vol. 10, February 1987, p 79.

R.J. Sokel, D.B. MacMi!len, "Practical Integration of Process, Device and

Circuit Simulation", IEEE Trans. Elect. Dev., Vol.32, No.10, October 1985,

pp2lll.

D.A. Antoniadis, R.W. Dutton, "Models for Computer Simulation of Complete

IC Fabrication Process", IEEE Trans. Elect. Dev., Vol.26, No.4, April 1979,

pp490-500.

58

C.P. Ho, J.D. Plummer, S.E. Hanson, R.W. Dutton, 'VLSI Process Modeling -

SUPREM III", IEEE Trans. Elect. Dey., Vol.30, No.11, November 1983,

ppl438-1453.

B.E. Deal, A.S. Grove, "General Relationship for the Thermal Oxidation of

Silicon", J. Appi. Phys., Vol.36, 1965, pp 3770-3778.

L. Mei, R.W. Dutton, "A Process Simulation Model for Multi-layer Structures

Involving Polycrystaline Silicon", IEEE Trans. Elect. Dev. Vol.29, No.11,

November 1982, p 1732 .

C.P. Ho, J.D. Plummer, S.E. Hanson, R.W. Dutton, 'VLSI Process Modeling -

SUPREM Ill", IEEE Trans. Elect. Dev., Vol.30, No. 11, November 1983, p 1439.

J.C.C. Tsai, "Diffusion", VLSI Technology l/e, ed. S.M. Sze, McGraw-Hill, 1983,

p171.

C.P. Ho, J.D. Plummer, S.E. Hanson, R.W. Dutton, 'VLSI Process Modeling -

SUPREM III", IEEE Trans. Elect. Dev., Vol.30, No.11, November 1983, p 1442 .

P. Pichler, W. Mingling, S. Selberherr, E. Guerrero, H.W. Pötzl, "Simulation

of Critical IC-Fabrication Steps", IEEE Trans. Computer-Aided Design,

Vol.CAD-4, No.4, October 1985, p384.

J. Lindhard, M. Scharff, H.E. Schiott, "Range concepts and Heavy Ion Ranges",

Mat. -Fys. Medd. Vid. Selsk. Vol.33, No.14, 1963, pp 1-42 .

J. Gibbons, S. Mylroie, ", App!. Phys. Lett., Vol.22, June 1973, p 568.

A.M. Mazzone, G. Rocca, "Three-Dimensional Monte-Carlo Simulations - Part

1: Implanted Profiles for Dopants in Submicron Device", IEEE Trans.

Computer-Aided Design, Vol. CAD-3, No. 1, January 1984, p 64 .

L.A. Christel, J.F. Gibbons, S. My!roie, "Application of the Boltzmann Trans-

port Equation to Ion Range and Damage Distributions in Multi-layer Targets",

J. Appl. Phys. Vol.51, December 1980, pp 6172-6182 .

A.M. Mazzone, G. Rocca, "Three-Dimensional Monte-Carlo Simulations - Part

1: Implanted Profiles for Dopants in SubmicronDevice", IEEE Trans.

Computer-Aided Design, Vol.CAD-3, No. 1, January 1984, p 65.

"SUPREM II Users Manual", Technology Modeling Associates Inc., Palo Alto,

CA, USA, December 1988, p 3-6.

It'

C.P. Ho, J.D. Plummer, S.E. Hanson, R.W. Dutton, 'VLSI Process Modeling -

SUPREM11I", IEEE Trans. Elect. Dev., Vol.30, No.11, November 1983, pp1447

L. Mei, R.W. Dutton, "A Process Simulation Model for Multi-layer Structures

Involving Polycrystaline Silicon", IEEE Trans. Elect. Dev., Vol.29, No.11,

November 1982, ppl726-1734.

"DEPICT-1 Users Manual", Technology Modeling Associates Inc., Palo Alto,

CA, USA, June 1987.

"DEPICT-2 Users Manual", Technology Modeling Associates Inc., Palo Alto,

CA, USA, January 1988.

W. Oldham, S. Nandagokar, A. Neureuther, M.O. Toole, "A General Simulator

for VLSI Technology and Etching Processes", IEEE, Trans. Elect. Dev., Vol.28,

1981, pp 1455- 1459.

Y.P. Yu, R.W. Dutton, "SEDAN-3, Users Manual", Integrated Circuits Lab-

oratories, Stanford University, Stanford, CA, USA, 1985.

"PISCES-213 Users Manual", Technology Modeling Associates Inc., Palo Alto,

CA, USA, March 1988.

W. Fichtner, L.W. Nagel, B.R. Penumalli, W.P. Petersen, J.L. D'Arcy, "The

Impact of Supercomputers on IC Technology Development and Design", Proc.

IEEE, Vol.72, No.1, January 1984, p106.

D. Chin, M.R. Kump, H. Lee, R.W. Dutton, "Process Design using Two-Di-

mensional Process and Device Simulators", IEEE Trans. Elect. Dev., Vol.29,

No.2, February 1982, pp336-340.

"SUPREM-4 Users Manual", Technology Modeling Associates Inc., Palo Alto,

CA, USA, 1989.

J. Lorenz, J. Pelka, H. Ryssel, A. Sachs, A. Seidl, M. Svoboda, "COMPOSITE

- A Complete Modeling Program of Silicon Technology", IEEE Trans. Elect.

Dev., Vol.32, No. 10, October 1985, ppl977-1986.

B.R. Penumaali, "A Comprehensive Two-Dimensional VLSI Process Simula-

tion Program, BICEPS", IEEE Trans. Elect. Dev., Vol.30, No.9, September

1983, pp986-992.

60

G.E. Smith, A.J. Stecki, "RECIPE - ATwo-Dimensional VLSI Process Modeling

Program", IEEE Trans. Elect. Dev., Vol.32, No.2, February 1982, pp216-221.

C.D. Maldonado, "ROM_ANS II, A Two-Dimensional Process Simulator for

Modeling and Simulation in the Design of VLSI Devices", Appl. Phys., Vol.A31,

No.3, 1983, p119-138.

"SUPREM-W Users Manual", Technology Modeling Associates Inc., Palo Alto,

CA, USA, July 1989.

"CANDE Users Manual". Technology Modeling Associates Inc., Palo Alto, CA,

USA, July 1988.

61

All great discoveries are made by mistake.

Chapter 4

Parallel Computational Systems

4.1 Introduction

The von Neumann model for computer architectures as shown in figure 4.1

or a variation there-on, has remained the dominant serial micro-architecture for

many decades. Although computational theory proposed that this model could

provide the means to solve most existing numerical problems, it has been the

technology required to realise this in hardware that has proved to be the funds-

mental limiting factor over much of its life.

Memory

	

Instructions 	data

Processor

Instructions

	

-H 	Control

data 	H 	I/O Device

Figure 4.1. The von Neumann computer architecture.

However, continued progress in fabrication, device and circuit design tech-

niques has led to greatly enhanced CPU speeds, instruction set, memory sizes and

access tithes. In this way, VLSI technology has lifted many of the hardware

limitations which were originally so restrictive on computing achievements and has

enabled greater potential to be extracted from this architecture. Consequently,

62

families of devices have emerged which offer a wide range of performance and

provide a simple path for upgrading machine capability. A prime example of this is

the Intel 80x86 microprocessor family (8086 - 80486) which powers the IBM PC

series of computers.

Because of the basic architectural consistency throughout this continual

development, end users have been able to place relatively little importance in

architectural detail and a high degree of software compatibility and portability

between hardware platforms has resulted. This has been accompanied by the cre-

ation of a vast pool of knowledge and expertise in both hardware and software. A

huge investment has been made over this period into the development of many

immense software packages for use by academic and commercial establishments

alike - a factor which has continually influenced and hindered the course of alter-

native developments.

Unfortunately, although advancing technologies have altered or removed

many of the constraints which influenced the von Neumann design since its

inception, it is becoming increasingly difficult to obtain yet more performance from

this time-honoured model. It is the architecture itself which is now the limiting

factor due to the various communication and processing bottlenecks that are

associated with it and the time has come for new approaches to be researched and

applied to the computational problems being faced today and in the future.

The knowledge that parallelism could provide a means to improve computer

performance has been around since before the introduction of the first electronic

computers. However, it is only more recently that the technology with which to

implement such concepts has become available. This progressive technology has

led to a repeal of Grosch's law [1], which stated that the best cost-performance ratio

would always be obtained from a powerful uniprocessor. No longer is it true that a

single large processor will necessarily outperform a number of smaller processors,

given the same capital cost. VLSI fabrication technology already enables the entire

functionality of complex microprocessors to be realised on a single chip. Similarly,

multiple processing elements, albeit of a less elaborate nature, have also been

63

produced in single chip formats. If the cost-effectiveness associated with volume

IC fabrication is to be harnessed, then parallelism must be exploited on an extensive

scale. Consequently, the construction of parallel computers from a large number

of relatively small, cooperating processing elements, provides an attractive alter-

native to the high budgets associated with the serial supercomputers of today. Such

levels of system integration are already being achieved and have resulted in the

introduction of affordable multiple processor computing platforms. Although much

work remains to be done with respect to the processing technology, a significant

proportion of the current technological research is altering its emphasis towards

that of processor interconnection. Experience has provided the evidence that this

factor is highly influential in overall system performance and suitability to par-

ticular applications.

However, although parallelism appears to be a natural concept when observing

the way humans tackle problems, traditional computational skills and strategies

hW76 moulded the conceptual approach to this field into a highly sequential manner.

With this in mind, a parallel programmer has a vast array of new concepts to grasp

and additional responsibilitieswhen developing such software. These commitments

relate to such issues as the distribution of tasks amongst the available processors

and the communications between tasks andprocessors. Ideally, it should be- the

function of software tools to assist in determining how a program will run on the

hardware and permit the designer to describe what the program will accomplish.

To date, such tools have been virtually nonexistent due to insufficient underlying

theory and only now are the first generation of suitably comprehensive development

environments becoming available.

Parallel programming is non-trivial and requires the development of many

newalgorithms andprotocols to realise its potential benefits. The porting of existing

serial software onto parallel platforms is typically time consuming and highly

application dependent, if maximum performance is to be extracted. At present, few

compilation facilities exist which can successfully automate this process whilst

retaining a sufficient performance advantage over the serial version. Commercial

64

software development in this field has lagged behind that of the hardware, especially

in the provision of complete parallel programming environments which support

both program development and its application thereafter. This has left the academic

community floundering in its attempt to gain the much needed support required

to prove the genuine benefits afforded by this technology and presents an all too

familiar catch-22 situation.

The field of parallel processing has seen many players come and go throughout

its relatively short existence as each has attempted to produce competitive and

marketable systems. This sadly reflects the complexity and cost of the resources

associatedwith the developing efficient andaffordable parallel computing facilities.

It also highlights the failure of the industry as a whole to demonstrate and convince

the open market of the real benefits that can be provided by this technology.

This chapter intends to provide a brief overview of parallel computing archi-

tectures, charting their progress from von Neumann's serial model through to the

present multiple processor architectures. Then, as an example of one of these and

as an introduction to the computing technology associated with this work, a more

detailed description of the Inmos transputer will be presented. This section will

cover both hardware and software aspects of the transputer technology and then

proceed to highlight a few of the factors which hailiiiidiiëU its widespread -

application to parallel problems.

4.2 Parallel Computer Architectures

Many attempts have been made to provide a thorough classification of parallel

architectures, though the two most commonly referred to are those by Flynn [2]

and Shore [3]. The former based his evaluation on how a particular machine related

its instructions to the data that they process, whilst the latter considered the

structural organisation of the architecture itself. Terminology associated with both

of these classifications has become very much part of the general computer science

language used throughout the field. Flynn's taxonomy identifies four distinct

classes of processing machines which are listed below and illustrated schematically

in figure 42.

65

• 	SISD 	Single Instruction - Single Data

• 	SIMD 	Single Instruction - Multiple Data

• 	MISD 	Multiple Instruction - Single Data

• 	MIMD 	Multiple Instruction - Multiple Data

Memory 	- data 	 Program

InatructCfls
Insfructons

Control

Control
Instructions

I .

Processing
Instructions 	 Elements

Processor
data 	 Memthy

dais I___________________

I

Memory
- 	 Memory 	- data

D

Iratrtctna
Progr

Control

Control

IrtructIons

Processors
	

Processors
data 	 data

MISC' 	 MIMO

Figure 4.2. SISD, SIMD, MISD and MIMI) Architectures.

data

66

However, before going on to examine each of the aforementioned architectural

classes, it is important to decide how individual systems can be objectively assessed

in relation to one and other. Such a review will obviously include a measure of sheer

computational performance, but must also consider more wide-ranging issues

relating to its implementation and operational requirements. Processor and mul-

tiple processor performance is generally quoted in terms of either MIPS (millions

of instructions per second) or MIFLOPS (millions of floating point operations per

second) when considering scientific calculations. The latter is usually highlighted

by manufacturers if a dedicated floating point unit (FPU) is included, be it as part

of a chipset, as with the Intel 80x86 and 80x87 chip sets, or included on-chip, as in

the case of the T800 transputer series of devices.

Comparison of these performance figures can be highly misleading in that the

relationship between the instruction execution rate and the resulting arithmetic

performance is dependent on both the function and the processor. This then

becomes additionally complicated when both CISC (complex instruction set com-

puters) and RISC (reduced instruction set computers) machine architectures are

being compared since a RISC processor can be expected to execute more instructions

for a given function than its CISC counterpart. The rationale behind the RISC

concept is one of providing high performance-support for programs written in-high -

level languages [4] and reducing system interrupt latency. One further problem

with these figures is that they relate to a peak performance, which can only be

realised under highly specific or even theoretical conditions. Bearing this in mind,

it is therefore far more constructive to combine this peak performance data with

results from a number of representative benchmark calculations. There are a

number of these standard benchmarks, each tailored to highlight a particular

computational process. In this way, a genuine and attainable measure of the pro-

cessor performance can be obtained and it becomes possible to match processing

systems to their prospective applications.

67

4.2.1 SISD

This is the conventional serial von Neumann computer architecture in which

there is a single stream of instructions which are performed on a single data set.

As was mentioned earlier, a nominal degree of parallelism has been introduced into

this model and thus it is worth briefly highlighting the evolutionary course of the

serial computer concept and architecture. The earliest designs worked on a bit-

serial approach using a single processor to perform all the computations on the

required operands, bit at a time. This later gave way to word-serial processing units,

which operated on multiple bit words, though still maintained the serial time-se-

quencing of the instructions. The final development saw the introduction of pipe-

lined processor architectures where individual arithmetic processes were

implemented in separate specialised hardware units. Thus, as each data set passed

from one process to the next, the hardware process would receive a new data set in

its place and hence a number of data sets rippled through the processing units at

one time. In this manner, multiple data sets could be simultaneously operated upon

by different processes.

This class includes machines ranging in performance from the ubiquitous

desktop P.C. through the familiar SUN workstations to the IBM and DEC mini-

computers and finally to the very fast serial supercomputers. Examples of these

supercomputers are the CRAY-x series of machines from Cray Research and the

ETA GF-lo from the now defunct Engineering TechnologyAssociates. Both ofthese

processor families offer performance in the order of GFLOPs by immersing the

processing units in liquid nitrogen.

A great advantage with these concepts is that no modifications to existing user

software were called upon, making them very attractive propositions. However, if

explicit knowledge of task independence prevails, then this may be used to induce

further performance by vectorising regions of the code for execution on a vector

supercomputer. Unfortunately, the running costs of these supercomputer pro-

68

cessors is extremely high due to their power consumption and liquid nitrogen

cooling requirements. Consequently they are generally found only within large

commercial organisation whose budgets canjustify and support these running costs.

4.2.2 SIM])

This architecture follows the simplest approach to constructing a massively

parallel computer by connecting a large number of identical processing elements

(PEs) together in a multidimensional array, with a single host processor controlling

the network. Instructions are then broadcast simultaneously to all of the PEs which

then execute these on their locally stored data sets. Typically, the network geometry

is both fixed and regular in its nature and this can result in long inter-processor

communication paths. For example, in a 64 by 64 two-dimensional array, there can

be up to 61 intermediate PEs between the source and destination. The commonest

geometries are either a taurus, as shown in figure 4.3, or a hercube, as shàthi in

figure 4.4. Almasi et al{5} provide a fuller discussion of other geometries which are

application to both SIMD and MIMI) machines.

Figure 4.3. SIMD Taurus Geometry.

One very important aspect to consider in large multiprocessor computers is

that of redundancy. In the basic geometries illustrated so far, if any processing

elements fail then the entire computer becomes inoperable, which is not at all

69

Figure 4.4. SIMD 4-D Hypercube Geometry.

desirable. Most commercial machines therefore tend to include an extra row(s) or

column(s) of PEs which can be switched in by software to replace a faulty device

and hence provide a more robust operational environment.

The most familiar example of such a machine is the ICL RAP (Distributed

Array Processor). The first generation of these machines comprised a 64 x 64 array

ofPEs constructed from MSI components, each with 4 Kbits of RAM, and performed

bit-serial arithmetic at 4MHz. Both the host and PEs are programmed in FOR-

TRAN, albeit with a special version used on the PEs, and the resulting performance

is in the order of 200Mflops.

Advanced Memory Technology (AMT) now produce an LSI/VLSI version of

the DAP which incorporates a 32 x 32 array of 12MHz PEs hosted by a MicroVAX

or Sun workstation. Unlike its predecessor, the AMT DAP incorporates a duplicate

set of PEs for redundancy. These sets operate simultaneously until a fault is

detected, when the functioning set continues and the faulty set is taken off line.

Other examples of well known SIMD machines include University College of

London's CLIP (Cellular Logic Image Processor), Thinking Machines' Connection

Machine[6] and Goodyear's Massively Parallel Processor (MPP)[7]. Most of these

machines are built as one-off s and are used for specialised tasks within academic

70

or commercial research and development environments. Most of the previously

mentioned machines are programmed in sub- or super-sets of one of the high level

serial languages (i.e. C, FORTRAN or PASCAL).

4.2.3 MISD

According to Flynn's taxonomy, machines of this type permit multiple

instructions to be executed on every data set. It might therefore appear that this

class is somewhat academic since there are in fact no genuine examples of it.

However, it may be considered in terms of a macro pipelined architecture where

each processor executes a different set of instructions on one data set which would

presumably be stored in global memory.

4.2.4 MIMD

MIMD computers are an evolutionary step forward from the first generation

SISD machines and contain several independent processors. These processors are

usually identical and each executes its own program, which may or may not be the

same for all the processors. In order to contrast this with the parallelism exhibited

by SIMD machines, the term concurrency is often used with respect to MIMD

computers.

MIMD architectures may be classified according to many characteristics, but

the two most important and distinctive features are those listed below

• 	The number and power of the processors used.

• 	The processor to memory relationship and connectivity.

The first classification separates machines with a small number of very

powerful processors from those which contain a larger number of relatively smaller

processors. Of these, the former have generally evolved from existing serial com-

puters and have the advantage that they can continue to support much of their

original software with little or no modification - a highly significant feature for many

vendors and potential customers alike. The Cray XMP and YMP series of machines

are good examples of this technology and consist of 2, 4 or 8 vector pfocessors

combined in a single machine.

71

The second classification concerns the use of distributed (local) or shared

(global) memory amongst the processors and leads to the terms, loosely-coupled and

tightly-coupled in describing MEAD architectures. In a tightly-coupled machine,

the available memory is shared by all the processors, with the exception of limited

local caches in specific instances. This requires the use of very fast, complex

switching networks or a high bandwidth bus to form all of the processor to memory

connections. Machines which incorporate physically shared memory posses one

major disadvantage in particular in that they can not be scaled up indefinitely, since

there will be an ever increasing contention amongst the processors in attempting

to access the memory [8].

The loosely-coupled architecture provides an alternative approach by dis-

tributing the memory among the processors and thereby reducing the required!
--

- memory bandwidth. The problem is now one of accessing memory locations on

remote nodes and requires a suitable connection strategy. The use of a single bus

or switch only leads to the communications bottleneck discussed previously.

Similarly, since the total number of possible connections rises with the square of

the number of processors, it is equally unfeasible to achieve 100% connectivity.

Needless to say, the commonest solution involves the connection of each processor

to a subset of the remainder within the system. The general hypercube architecture,

as pioneered by CalTech [9], is one of the most frequently used interconnection

topologies in current generation machines. The basis of ad-dimensional hypercube

is that each processor has d connections to its neighbouring processors as can be

seen in figure 4.5 which illustrates the simplest members of the series.

The Intel iPSC family of machines use a hypercube architecture as their basis

and consist of up to 7-dimensional cubes of 80286/7 or 80386/7 processor sets. The

original iPSC/1 used a store-and-forward routing strategy which left much to be

desired and this was replaced by a hybrid circuit switching and packet switching

system in their iPSC/2[10]. This offer a ten times improvement in message latency

over the iPSC/1.

72

e-e
i!p • •

S

3-D

Figure 4.5. The first five members of the hypercube series.

An alternative to this concept of fixed topologies has been taken by Meiko and

Parsytecin connectingthe processors through switching chipswhich allowsvariable

topologies to be constructed under software control. When this is combined with

an adaptive routing software package, such as TINY[11] which is discussed later in

0.3.3, then application codes can be designed independently of the underlying

processor topology. This in turn permits topological variations to be constructed

and tested for a particular application.

The range of MIMD machines available at the present time is too large to be

successfully highlighted within the scope of this work. Hockney [12] provides a

comprehensive survey of these machines and an equally full and more recent survey

of SISD, SIMD and MIMI) machines is given by Trew and Wilson [13].

73

4.3 The Innios Transputer

4.3.1 Architecture and Concepts

The term transputer refers to a unique family of VLSI microprocessor devices

produced by Inmos Ltd, all of which adhere to a common architecture. The trans-

puter hardware and its associated programming language, OCCAM, were both

designed specifically to address the issue of parallel processing and alleviate many

of the constraints imposed by conventional systems. The transputer can be con-

sidered as the first genuine single chip microcomputer since processor, memory

and communication links are all integrated into a single device. As can be seen from

figure 4.6 which illustrates the general transputer architecture, each product also

contains an application specific interface which enables it to be customised for a

particular purpose.

At the present there are three main members to the first generation of

transputer products and the main features of these are highlighted in table 4.1. As

will be discussed later in this chapter, a second generation transputer has been

launched [141 by INMOS but this will not be available until early 1992.

T212 T414 T800

Processor 16 bit 32 bit 32 bit

Floating point support n/a 1tcode FPU

On-chip RAM 2 Kbyte 2 Kbyte 4 Kbyte

Max Clock Freq. 20 MHz 20 MHz 30 MHz

MIPS (pk/sustain) 20/10 20/10 30/15

MFLOPS (pk/sustain) n/a n/a 2.9/2.25

-T9000

32 bit

FPU

16Kbyte

50 MHz

200/70

25/15

Table 4.1. Summary of basic transputer features.

74

Application Specific Interface

32 bit
Processor

System Services

Link
Services

Timers
	 Link

Link 	I

Link2 	H
4 Kbyte

RAM
	

Link 3

--I __K 	Event

External
Memory
Interface Memory

Figure 4.6. The general transputer architecture.

The processor itself follows a RISC-like philosophy by using a small core of

very fast, simple instructions to boost performance whilst minimising the CPU

complexity. In general, this approach results in a larger code for a given task than

would have been required by a conventional CISC architecture. However, in the

case of the transputer this has been overcome by the use of a single-byte basic

75

instruction format. This can be extended to multi-byte instructions where

necessary, with each byte retaining the same format [15]. Not only does this improve

the effectiveness of the instruction fetching mechanism, but it also means that code

can be run on both the 16 and 32 bit transputers without any recompilation.

Unlike conventional RISC machines, the transputer instruction set is not

hard-wired, but is instead contained in microcode so that application specific

functionality can be simply included with no loss of performance. It is through this

approach that the floating point and graphics capabilities of the T800 have been

offered. The transputer also benefits from the RISC philosophy in terms of very

fast process switching [161 due to the small number of registers involved, namely

three stack and three control [17]. The processes being switched may be low level

or complete high level user processes and in this manner transputers can execute

multiple processes on a single processor, which provides an economic route to

system development. In the support of high level languages, procedure calls are

dealt with in a similar manner, with each prccedure being allocated its own work-

space.

The reduced complexity of the CPU which is afforded by the RISC-like phil-

osophy means that only 25% of the silicon area on the T414 is occupied by the CPU,

which enables sufficient memory and the I/O links to be included on the same -- -

device. The inclusion of on-chip memory permits considerable architectural free-

dom when designing multiple processor systems. It may also be sufficient to store

the entire code required by many embedded applications and thus remove the need

for any external memory. The second important feature of transputers is that of

their serial links which provide inter-processor communication paths. There are

up to four bidirectional links on each transputer which operate asynchronously at

speeds up to 20 Mbit/s. In real terms this means that it is possible to transfer up

to 1.5 Mbytes of useful data per second on each of the two wires which constitute

a link [18]. The link drivers are directly implemented in silicon and operate

76

autonomously. The sending and receiving processes remain unscheduled until both

are ready, at which point communication is established and data will be transferred

in parallel with CPU (and FPU where applicable) operations.

The point to point communication links enable direct connections to be made

to two (T212) or four (T414/T800) other machines or components, facilitating the

construction of processor networks with arbitrary topology and size. Figure 4.7

illustrates how these simple links enable arbitrary network configurations to be

easily constructed.

Figure 4.7. Construction of an arbitrary network configuration.

The serial nature of the links simplifies the physical connections to a twisted

pair of wires between basic plugs and sockets, rather than the complex backplane

technology associated with bus-based systems. Thewire links also enable processors

to be distributed between a number of cabinets and/or act as a local area network.

In contrast to multiprocessor buses, the asynchronicity of these links elm-

mates contention for the communication mechanism, regardless of the network

size. Additionally, both memory and communications bandwidths scale directlywith

the number of transputers in the system and neither saturate with network

77

expansion [191. This last feature, coupled with the process-oriented nature of the

original operating language, OCCAM, permits systems to be reconfigured inde-

pendently from their application software and thus simplify the task of finding an

optimum configuration for a given application. Hence transputer systems offer truly

scalable performance as well as a controlled performance degradation in the event

of processor failures - a feature of great importance in complex real-time systems.

Such flexibility in terms of system development, expansion capability and fault

tolerant redundancy makes transputer based parallel systems an attractive option

for abroad spectrum of applications. These range from high performance embedded

controllers through real-time graphics and simulation to application specific

accelerators. It is this final category which broadly describes their role within the

work which will be presented in the following chapters.

4.3.2 Parallel Algorithms

There are many advantages to be gained from fragmenting an application into

a set of concurrent modules which may be executed on a multiple processor com-

puting system. However, as will be highlighted by the work presented in Chapter

5, parallelising an existing application is generally a non-trivial task. The extent of

these difficulties and the resulting parallel performance is very dependent on the

application concerned and how itwas originally structured. Ideally, programs should

run N times faster when executed on N processors compared to their execution a

single processor. But in reality the speedup will range anywhere from a poor log N,

through the common N/log N response and on to N itself [201. Unfortunately it is

possible in some instances to realise a speedup of less than 1 as a consequence of

poor programming, which is exacerbated on a parallel machine. Finally, in a few

cases, speedups in excess of N have also been reported [21], but these are the

exception rather than the rule. -

Although the choice of algorithm is important in determining the true

speedup, it is only one of many factors which may influence the program running

time. M was originally noted by Amdahl [22], the compute time for an application

may be divided into parallel and serial portions. The resultant speedup will be

78

asymptotically limited by the latter, no matter how efficient the former can be

made. For example, consider a particular task which requires a total of 100 oper-

ations to be performed, of which 80 can be done in parallel but the remaining 20

require serial execution. Then the maximum speedup attainable by using SO or

even 100 processors, compared to a single processor, is 5 (limited by the 20/100

serial operations) and not SO (the parallel content).

The crux of the matter is not in writing or re-writing the application, but in

how it is mapped on to the chosen hardware architecture. Sadly, parallel computers

are not particularly forgiving and the difference in performance between programs

which have been written well or not, is far greater than would be obtained from a

serial architecture. This can be taken to the extent that in an extreme case, a

multiprocessor version may run more slowly than the original serial program. A

successful and efficient solution requires the ability to think parallel. This entails

taking the distribution of both data, computation and inter-processor communi-

cations into account. The idea being to match the program/algorithm parallelism

to that of the target architecture, which if achieved successfully, will positively

influence the overall system performance[23] [24].

Programs typically exhibit many levels of parallelism and the term granularity

is often used to indicate the level of independent computation that each processor

can perform in relation to its communication needs. A course-grained application

is one which may be divided into logical parts involving relatively long independent

processing sequences with little synchronisation or communication. In contrast to

this, few instructions are executed between inter-processor communications in a

fine-grained application. The concept of granularity may be shown schematically

by figure 4.8 which illustrates how a program may be split up into subtasks, using

a cubic representation.

However this split is achieved, it is vital that the overall system efficiency be

maximised by balancing the loads placed on each processor. This is to ensure that

they are performing useful work as much of the time as is possible and are not idle

79

Fine grain

tj II.AII I

Figure 4.8. Course- nd Fine-grained task granularity

whilstwaiting for other processors to catch up. Hence as can be seen from equations

4.1 and 4.2, there is a close tie between the efficiency of an entire parallel system 	-

and the resulting speedup.

Efficiency = 	
tI 	 (4.1)

N'tN

Speedup =
ti
-
t

(4.2)

Load balancing is a complex issue in its own right and discussions have been

presented on the matter [25]. But, in simple terms, loads can be more effectively

balanced for a large number of small tasks [26], where there are many more tasks

than processors. Unfortunately, this conflicts with the drive for a higher compu-

tation to communication ratio, which requires a reduced number of larger tasks, in

order to improve the system efficiency. Although communication technology has

seen many improvements of recent, many fine-grained applications still become

communication bound and thus fail to attain their potential performance.

80

The resulting trade-off is yet one more of the challenges which must be faced

when high performance parallel applications are being developed. Until such times

as intelligent compilers are capable of efficiently mapping applications to particular

architectures automatically, it will be left for the developer to exploit existing

parallelism rather than attempt to introduce more. This parallelism can usually be

classified under one of the following headings:-

 Geometric parallelism

• 	Algorithmic parallelism

• 	Event parallelism

Geometric parallelism is said to exist when the problem space, be it linear,

quadratic or cubic in nature, is divided up with each region being assigned to an

individual processor. Computations pertaining to the data within each region may

then proceed concurrently until inter-processor communication is needed for the

exchange of boundary values. In order to minimise the overhead of these com-

munications, it is favourable for the target architecture to match that of the problem

space concerned. Thus a linear problem is suited to a chain of processors and a

quadratic problem space is best mapped onto a 2-dimensional processor array and

so on. This form of parallelism is frequently associated with image processing

problems or simulations of physical .phenomena, such as those described in chapter

3.

The second form of parallelism to be exploited is that of algorithmic paral-

lelism. In this case, the algorithm itself is decomposed into a number of functions,

each ofwhich is assigned to a different processor. The processors are then connected

together, typically in the form of a pipeline, through which all of the data will flow

in turn. Thus at any one moment, each processor will be working on a separate data

set and the degree of parallelism which can be obtained overall will depend on the

number of sub tasks available. This approach is well suited to production or process

simulations, but is considered to be difficult to implement. Unless the load balancing

of each function is carefully tuned, bottlenecks will arise which will limit the system

response as a whole. In addition, the optimum processor configuration for one

81

problem is unlikely to be appropriate for another, making for an inflexible system.

This last problem can be overcome by incorporating dynamically reconfigurable

linksbetween processors, so that the topology can be altered under software control.

The final form of parallelism is that of event parallelism and this is frequently

the simplest and most efficient approach for exploiting the benefits of parallel

processing. Providing that the original problem can be broken down into a large

number of independent tasks, then these can be farmed out to a number of slave

processors for computation under the control of a single master processor. Such a

configuration is usually referred to as a task farm. In its simplest form, each slave

executes the same serial code on its local data set. The familiar ray-tracing problems

are an example of this, where each processor is given a small patch of the overall

image to compute at any time. However, as will be seen in chapter 7, the incor-

poration of a more sophisticated operating system permits different programs to

be run across the task farm. Whichever level of complexity is deemed suitable for

a particular application, the benefit of event parallelism comes from the increase

in throughput rather than an increase in the performance realised by one instance

of the program. This is in contrast to the response of the two other cases previously

discussed. This distinguishing feature often indicates the suitability of one par-

ticular algorithm over another for a given application. For example, a task farm is

the obvious solution for a large batch of independent simulations or calculations,

but is totally unsuitable for reducing the execution time of a single intensive

application.

4.3.3 Parallel Software - Languages and Tools

In one respect, parallel computers are no different from conventional serial

machines in that by themselves they do little more than convert electrical energy

into heat somewhat inefficiently! What transforms them into highly valuable assets

is the software that runs on them and this is one area in particular where the state

of serial and parallel products differs substantially. To date, powerful and robust

programming environments for the parallel software engineer have been notable,

primarily by their absence. This strongly contrasts their serial counterparts for

82

which there is an abundance of products serving most computing fields. By

examining the nature and needs of todays computer users, the reason for this state

of affairs becomes apparent. The computing community can be coarsely broken

down into three groups of users whose needs may be summarised as follows.

• 	Basic data processing services, such as word processing.

• 	Scientific 'number crunching' in research and development.

• 	General application codes for individual user communities.

Under this classification, users from the first of these groups actually don't

even want to use computers per se, but wish access to the facilities they provide.

Their major concern is in the response time of the application packages ; which can

usually be satisfied by the use of serial computing platforms, and hence will not be

considered further at this point. It should also be noted that this group accounts

for approximately 90% of the total user community, which helps place the bar-

gaining power of the remaining two groups into perspective.

The second group provided many of the original users in the parallel processing

community and was centred around the stage of academic and commercial research

into fields such as aerodynamics or quantum physics. Although scientific pro-

grammers appreciate good software tools, the overall goal of maximising perform-

ance has in the past frequently overruled such luxuries As a result of this and the

relatively small community size, these users have created a very limited demand

for the development of comprehensive parallel programming environments.

It is from the final group that the second generation of parallel processing

users is emerging and whose needs require particular consideration. The applica-

tion programming community is sufficiently large and loquacious that its impres-

sion and success with parallel processing is probably the key issue in opening up a

volume market in this product area. It has therefore become the responsibility of

parallel software and hardware manufacturers alike to provide a satisfactory route

for these programmers to take advantage of the attractive price/performance

offered by parallel computers. For the companies concerned the cost of failure is

high and the writing is very much on the wall for all to see with the demise of past

83

competitors, such as ETA Systems, Multiflow and Myrias Research. The parallel

processing arena is too large to assess in its entirety in terms ofthe software available

within the scope of this chapter and so the remainder of this section will concentrate

on the evolution of software tools for the INMOS transputer since its arrival on the

market.

Originally, the primary language for the development of transputer based

parallel systems was intended to be OCCAM [27], which was designed along with

the hardware itself. INMOS provided their Transputer Development System (T]JS)

[281 as an integrated environment for the programming of transputer networks

under OCCAM. In its initial release, it comprised of a powerful editor, compiler,

file manager and runtime facility which was available for both IBM and NEC PC

hosts. Although this was a good tool, it sadly lacked any debugging facilities or

support for foreign languages which limited its capability. The provision of a network

debugger was included in subsequent releases of the TDS. The process-oriented

nature of the language is directly reflected in the transputer architecture and this

enables efficient design and execution of parallel systems written in this manner

[29]. However, as much as these benefits were seen as being of great importance to

the design of high performance parallel systems, OCCAM has never gained an

impressive level .of popularity amongst the parallel computing community, — - -

especially outside the realm of academia. The reasons for this are two-fold. Firstly

there was a general reluctance amongst programmers to learn another language,

albeit very akin to a conventional high level language with the addition of constructs

with which to express parallelism. Secondly, vast resources of software already

existed which would never be re-coded in OCCAM, regardless of the possible gain

in performance. Thus, transputers may also be programmed in most conventional

high level languages, such as C, Fortran and Pascal. Ada, which can also be con-

sidered as another concurrent programming language [30], was supported in order

to attract military orders on both sides of the Atlantic. In addition, individual

processes may be coded in the optimum language for its given role and these pro-

84

cesses may then be linked together under an OCCAM harness to produce the overall

system. This multi-lingual capability is depicted in figure 4.9 and substantially

facilitates the parallel implementation of existing codes.

N. OCCAM
Harness

Figure 4.9. The use of multiple languages within a transputer system.

The OCCAM support required for these foreign languages necessitates the -

use of the INMOS OCCAM Toolset [31], rather than the TDS, which provides a

much simplified operating environment with fewer facilities to assist with task of

investigating development problems.

The use of these products, whether it be in a single or multiple language

system, still requires explicit control of all inter-process communications by the

programmer. Because of the fact that there are only four physical links for

inter-processor communications, this either limits the interconnection strategy or

requires the design of custom multiplexors to increase the number of virtual

channel using each link. Both of these options are undesirable as they compromise

the ability to alter the partitioning of processes across the network without recoding

the communications. As a result of these deficiencies, a number of communications

85

harnesses have been developed for inclusion within high level codes, examples of

which are CSTOOLS[32], FORTNET[33] and TINY[34], which is discussed in detail

during chapter 7. These harnesses enable any process to communicate directlywith

any other process in the system, regardless of where either actually resides and are

a valuable addition to the conventional language constructs. Consequently any

repartitioning of processes can be achieved within the definition of the system

configuration and no recoding becomes necessary. However, even with the inclusion

of these improved facilities, the use of these tools is most suited to porting existing

applications to a transputer environment or developing new applications of limited

complexity. In addition, they are intended primarily for use in single user systems

and inherently support the OCCAM model of concurrency[35]. Although this model

is generally the most applicable for typical parallel developments, there are alter-

native models, such as that of tuple space as supported by Linda[36], which may be

better suited for particular application fields such as transaction processing and

database operations.

Because there are a number of hosts which support transputer products (i.e.

PC compatible, Sun 3, Apple MacIntosh, MicroVAX), compatibility has limited the

facilities which can be provided on all the systems. As a consequence, a number of

host specific tools have arisen which can aid developers in their particular envi-

ronment. These include performance estinaation[37], run-time graphical repre-

sentations[38] or multi-window debugging[39]. An early step in the right direction

was the Windows File Server (WFS) from Nets Technology Ltd[40]. This provided

windowed support for the 3L compilers, the INMOS TDS and Toolset by providing

a version of the transputer file server running under Microsoft Windows. The

development of such tools is highly commendable, but unfortunately does nothing,

to direct effort into the provision of a unified development environment which is

supported by multiple host platforms. However the need for such facilities was

confirmed with the introduction of multi-user transputer based systems, where the

parallel resources within a single machine coUld be shared by a number of users at

any given time. A static allocation of resources is supported by the Meiko range of

computing surfaces, such as installed in the Edinburgh Parallel Computing

86

Centre[41], whereas a dynamic strategy is taken by the Parsytec range of

nmchines[42]. The former scheme partitions the available resources into a number

of fixed domains, which appear to the user as a self-contained machine. These may

only be altered in size by reconfiguring the physical links of the relevant processors

and then rebooting the machine. This is obviously an inefficient and rather limiting

method of partitioning the resources. The dynamic approach permits new users to

access any unused resources and then releases these again when the session is

terminated. Over a period of time, this generally permits a far high degree of

processor utilisation by a larger number of users. Both of the above systems are

designed around the manufacturers own hardware units and the resulting systems

usually employ a large number of processors. An alternative to this is to host an

independent set of transputers operating under Helios[43]. This provides a

multi-user, multitasking environment with a UNIX-like user interface. It is a

genuinely distributed operating system based on the client-server model, com-

municatingwith host systems via servers running on a variety of operating systems,

including MS-DOS, SunOS, UNIX and AppleOS. Helios supports dynamic processor

allocation to multiple users under the control of a special network server and thus

a possible system configuration might take the form of that depicted in figure 4.10.

Helios supports awide range of programming languages (C, FORTRAN, Pascal,

Modula U, STRAND), all of which can call each other and system libraries

directly[44]. The parallelism of programs written in these languages is specified

using the Helios Component Distribution Language (CDL) which defines the

required communication topology. The software is then automatically distributed

across the physical processor network on a dynamic basis. This means that appli-

cations can be run on variable size, variable configuration networks with no code

amendments, which is an invaluably powerful feature. Multi language, source level

debugger, macro assembler and performance monitoring tools are all available to

assist with application development. Graphics support is provided with both X

Windows and Windows 3.0[45] interfaces.

87

User 1

Transputer Network

FE r

'iI 	ri 	LI

spare node r 	Li

U

U2 	U3:[EI..

User 2 1 User 3

Figure 4.10. Multi-user transputer system running Helios.

An ethernet support package which includes a TCP/IP server enables trans--

puter systems running Hellos to be integrated into other computer networks. This

facility means that users no longer require a direct connection to the transputer

system and has many implications for potential system applications. Hence system

configurations may take the general form shown in figure 4.11 with the transputers

appearing as another shared system resource.

This remote, networked processing capability has substantial appeal for

off-loading computationally intensive tasks from conventional machines, as might

be the case in simulation oriented environments. One such application for this

approach is discussed in chapter 7 which describes how the combination of

experimental design techniques and suitable simulation software leads to improved

semiconductor fabrication processes. Another suitable environment is in the

88

Ethernet

User 1

System services

User 2

Transputer Network

F4mfl FLfl

User 3 	 1LJ.ft]LJ..ft
1 	LIIJ

Local services

Figure 4.11. Ethernet based multi-user transputer system.

addition of simulation facilities to Computer Aided Manufacturing CAM systems

to provide a what if capability in the event of mis-processed products being found

[46].

The Express parallel programming environment from the ParaSoft Corpor-

ation[47] is another tool which has gained support, particularly through its port-

ability to a number of parallel computer platforms. At present, implementations

are available for most transputer based systems, NCube's hypercube, Intel's iPSC

hypercube, Meiko's Computing Surface, Sun-3/4/386i networks and even some

shared-memory machines such as the Cray Y-MP. The basic Express system pro-

vides a comprehensive message-passing communications harness which is made

available through an extensive set of FORTRAN and C libraries. Program

89

decomposition and optimisation tools and low level graphics support for PC or X

Windows are also provided with the system, all of which are controlled through a

menu-driven front-end on the host. A number of additional tools, such as source

level debuggers, a simple automatic C and FORTRAN paralleliser and profiling

utilities are supported by ParaSoft which produces a comprehensive programming

environment. -

The IDRIS parallel operating systern[48], as developed by Parsys for their

SuperNode (SN) series of transputer based machines, provides a multi-user,

multitasking operating system. However, unlike Hellos, it has specifically been

developed for use on the SN series of machines. This is a UNIX compatible operating

system that conforms to the IEEE POSLX standards and as such, enables many

commercial applications to be ported to a parallel operating environment. Although

it employs a distributed client-server model, many system calls can be serviced

locally due to the placement of an IBRIS kernel on every processor. This increases

performance and reduces the loading on inter-processor coir1municaticns. Because

the kernel is compact and requires no memory management facilities[49], it is

ideally suited to a transputer based implementation. User programs may be written

using the 3L compilers or the INMOS TDS, with an automated process placement

similar to Hellos. X Windows and TCP/IP ethernet support arealso provided as -

standard under IDRIS enabling complete integration of the resource into existing

facilities. Ma consequence of the distributed UNIX environment, Parsys have been

able to provide a suitable platform for the porting of Oracle's distributed database

system. The significance of this development is far greater than the obvious benefits

available to Oracle users, in that it is probably the first port of a genuinely com-

mercial package to a transputer based parallel processing system. The IDRIS

operating system offers the same potential upgrade route to many other commercial

packages. If even a small number of additional ports are successfully achieved this

could finally create the critical mass required to encourage large-scale use of parallel

processing in the commercial sector.

90

There are many alternative software products available for transputer sys-

tems, both in terms of operating systems and application development tools, to

those discussed in this section. However, it does illustrate the trends and limitations

associated with the evolution of this product area. In conclusion, advances in this

area lag far behind that of the hardware and this has seriously inhibited the levels

of progress and acceptability of parallel computing systems to date.

4.3.4 The Future

INMOS first announced their transputer concept in 1984 - the computer on a

chip - and the T414 appeared on the market two years later, to be followed by the

T212 and T800 members of the family. The micro-architecture of these devices, as

shown in §4.3.1, was distinctly unconventional when compared the existing

microprocessors and was met scornful criticism in general. But time is often abetter

judge of these issues and five years on, the transputer concept has matured into a

most credible force with sales making it the top 32-bit RISC microprocessor of

1989[50]. Much of this credit is due to its unique architecture which has enabled

transputers to take a substantial share in both the system CPU and embedded

processor markets.

However, not to be seen to be standing still, the next generationtransputerr ,

codenamed the 111, was announced in September 1989{511 and viewed as the first

member in a new family of transputer devices. INMOS and their new owners,

SGS-Thomson, were convinced that parallel and multiprocessing would be the

future for microprocessors and that to meet this their next generation transputer

would be designed to support more general purpose parallel computing applications.

Formal announcement of the new transputer, the T9000, was given in April 1991

along with the release of its technical specifications. These had every intention of

continuing the success of the transputer concept well into the 1990's and fight off

the challenge posed by Intel's i860 processor which would lead it in terms of raw

performance and time to market. The T9000 is probably the most deterministic

microprocessor designed to date[52], especially with respect to its new communi-

cations system. When considering embedded applications in particular, deter-

91

minism is often of much greater importance than sheer computing performance

which should enable transputers to maintain their edge over the competition, as it

has done in the past.

The architecture of the T9000, as shown in figure 4.12, contains many new

features, compared to that of the T800, which provide the additional functionality

and performance that the new device promises and yet maintain binary compati-

bility with existing products.

At the heart of the T9000 is what INMOS describe as a pipelined superscalar

processor, whose performance peaks at 200MIPS and 25MFLOPS whilst sustaining

in excess of 70MTIPS and 15MFLOPS[53]. The five stage pipeline operates on a

50MHz clock and can execute groups of up to eight instructions at one time. In this

way the T9000 running at 50MHz can execute T805 binary code approximately 10

times faster than on the original 20MHz T805. The 16Kbytes of on-chip RAM is

programmable as RAM, cache or as SKbytes of each. For many embedded applica-

tions, be they single or multiprocessor systems, the full RAM option may be

sufficient so as to require no external memory and greatly simplify the overall

design. It is the totally new three layer metal sub-micron cMOS process which

permits the large on-chip memory capacity as well as the high clock speed.

It is however, the completely new communications system employed by the

T9000 which will be regarded as the most important improvement over its prede-

cessors. Although the existing limit of four physical communications links is

retained, these now operate at lOOMbit/s (c.f. 20Mbit/s) and in conjunction with

the Virtual Channel Processor (VCP) enable channels to exist between two pro-

cesses located on any transputer. A typical interconnection problem, as depicted in

figure 4.13, shows the need for three channels to pass over the single link between

the two transputers in order to provide the desired inter-process communications.

p

OA

Address
Work- Generator 1 space 	Address
Cache 1Generator2

FPU

ALU

System Services

Timers

16 Kbyte
Instruction
and Data

Cache

Programmable
Memory
Interlace

Virtual
Channel

Processor

Link 0

Link 1

Link 2

Link 3

Event 0-3

CLink 0

CLinki

Figure 4.12. T9000 system level architecture.

Existing transputer systems overcome this problem by the use of software

communications harnesses supported either as part of the operating environment,

as with Hellos, or as an explicit utility such as TINY. Figure 4.14 illustrates one

solution using TINY and shows the routing processes that run concurrently with

the user processes on each network processor.

93

Figure 4.13. A typical interconnection problem.

Software
1

___ Multiplexors _________________________________

¶:taii;Zc
PROM

Process 	 Process

Process 	 TINY 	 INY
B 	 Router outer 1!

1Wt III

Figure 4.14. The use of TINY to provide virtual communication channels.

The T9000 solution adds the necessary multiplexing capability to permit any

number of processes to access each link and transparently share the physical link.

This is achieved through a dedicated hardware process which runs concurrently

with the CPU and supports a large number of virtual channels on each link. These

virtual channels behave in the same manner as the soft channels which form the

inter-process links on a single transputer and thus the T9000 has effectively

94

removed any differentiation between software and hardware channels. Therefore

ata schematic level, as shown in figure 4.15, the T9000 solution to the above problem

looks very similar to that delivered by TINY.

Hardware

Multiplexors

Figure 4.15, T9000 hardware based communication system

However the hardware provision of virtual channels relieves the need for

software routing harnesses such as TINY, thus improving communications per-

formance whilst reducing the code required on each processor; A special purpose - -

routing chip, the C104, permits large arbitrary and hierarchical networks to be

built. Message routing through the network is determined using an interval

labelling algorithmE541 which claims to provide an inherently deadlock free com-

munications strategy.

From an operational aspect, the T9000 will retain its support for all of the

existing transputer languages and toolsets by virtue of the instruction set com-

patibility. A range of system software in terms of operating systems and real-time

kernels will also be supported, particularly reflecting the needs of the embedded

systems market. These include VRTX32 from Ready Systems and a distributed

UNIX environment from Chorus[55].

95

Even though a complete technical specification will only be documented and

made available with the release of T9000 silicon in 1992, it should be more than

apparent from existing data that the combination of processing power, multipro-

cessing capabilities, standard and custom software support will take the T9000

successfully into the 1990's. But as with all new products, the key to its good fortune,

lies not only in its capability and cost, but equally in the marketing policies adopted

to sell it. To this end INMOS will have to work very hard to stave off the competition.

4.4 Summary

For all that parallelism is inherent in so many problems, it is not always easy

to visualise, especially for a newcomer to the field, and it often requires a fresh train

of thought to be applied before it can be successfully harnessed. The difference in

performance that can be observed between an efficiently and inefficiently coded

parallel program is generally far greater than for a sequential program. A fact which

is all too often borne out with personal experience. At present, the development of

parallel processing hardware is far in advance of its associated software and until

there is a concerted effort in producing portable development tools and operating

environments which abstract the programmer from the specific architectural

details, then the true power of this technology will fail to be realised.

This chapter has provided a brief overview of various type of vector, parallel

and multiprocessor computing facilities as they exist at the present time. It has

also looked at the hardware and software development for one parallel processing

machine in particular, the INMOS transputer, and suggests how this relates to the

current status of the parallel applications market. Finally, a description of the next

generation transputer, the T9000, has been given with an assessment of how this

device will broaden the use of parallel and multiprocessing facilities outwith its

traditional home ground of academic and industrial research. The next chapter

focuses on a specific application of the INMOS transputer and illustrates how the

benefits and drawbacks presented above manifest themselves in a commercial

problem.

V1.1

References

K. Hwang and F. A. Briggs, "Computer Architectures and Parallel Processing",

McGraw-Hill, New York and London, 1984.

M. Flynn, "Some Computer Organisations and their Effectiveness", IEEE

Trans. Comput., Vol. C-21, No. 9, 1972, pp 948-960 .

J. E. Shore, "Second thoughts on parallel processing", Comput. Elect. Eng.,

No. 1, 1973, pp95-109.

P. Chow and J. Hennessy, "RISC architectures", Computer Architecture -

Concepts and Systems, Ed. V. M. Milutinovic, North-Holland, 1988, pp 48-83 .

G. S. Alinasi, A. Gottlieb, "Highly Parallel Computing", The Benjarnen/Cum-

mings Publishing Co., 1989, pp 279-300.

Thinking Machines Corporation, "Connection Machine CM-200 Technical

Summary", June, 1991.

J: L. Potter, "The Massively Parallel Processor", MIT Press, 1985.

"(3. Wilson, "An Introduction to Parallel Processing", Past, Present Parallel,

eds A Trew and G. Wilson, Springer-Verlag, 1991, p 8.

C. L. Seitz, "The Cosmic Cube", Comm. ACM, Vol. 28, No. 1, 1985, pp 23-23 .

Intel Scientific Computers, "The INTEL iPSC/2 System - Product lnfonna--- -- ----

tion", August 1987, p 14 .

L. J. Clarke and G. V. Wilson, "TINY: An Efficient Routing Harness for the

Inmos Transputer", Edinburgh Parallel Computing Centre Technical Report,

EPCC-TR90-03, 1990.

R. W. Hockney, "MIMD computing in the USE 1984", Parallel Computing, Vol

2, 1985, pp119-136 .

A. Trew and G. Wilson, "Past Present, Parallel", Springer-Verlag, 1991.

INMOS Ltd, "The T9000 Transputer", Product Seminar, June, 1991.

R. Dettmer, "The lean machine", Electronics and Power, August, 1985, p554.

"The Transputer Instruction Set - A Compiler Writers Guide", Inmos Ltd,

Prentice Hall, 1988, p 83 .

97

"Transputer Reference Manual", Inmos Ltd, Prentice Hall, 1988, p 29 .

"Transputer Reference Manual", Inmos Ltd, Prentice Hall, 1988, p 5.

"Transputer Architecture: Reference Manual", Inmos Ltd, Bristol, July 1987,

p7.

G. S. Almasi, "Overview of Parallel Processing", Parallel Computing, No. 2,

1985, p201.

S. G. Aid, "The Design and Analysis of Parallel Algorithms", Prentice Hall,

1989, pp21-30.

G. Amdahl, "The validity of the single processor approach to achieving large

scale computing compatibility", AFIPS Joint Comput. Conf, No. 30, 1967,

pp483-485.

A. Gibbons, W. Rytter, "Efficient Parallel Algorithms", Cambridge University

Press, 1990, pp88-141 .

I. Plander, "Parallel Processors and Multicomputer Systems", Algorithms,

Software and Hardware of Parallel Computers, Eds, J. Miklosko, V. E. Kotov,

Springer-Verlag, 1984, pp273-320 .

V. Sarkar, "Partitioning and Scheduling Parallel Programs for Multiproces-

sors", Pitman Press, 1989, pp 101-146 .

C. D. Howe, B.Moxton, "Howto Program Parallel Processors", IEEE Spectrum, - -

September 1987, p41.

INMOS Ltd, "OCCAM 2 Reference Manual", Prentice Hall, 1988.

28, INMOS Ltd, "Transputer Development System", Prentice Hall, 1988.

"Transputer Reference Manual", Inmos Ltd, Prentice Hall, 1988, p 8.

A. Burns, "Programming in OCCAM 2", Addison-Wesley, 1988, pp150-163.

INMOS Ltd, "D705 OCCAM 2 Toolset", 1988.

Mejko Ltd, "CSTools for MeikOS", April 1991.

R. J. Allan, L. Heck, "Fortnet : a parallel FORTRAN harness for porting

application codes to transputer arrays", Proc. Applications of Transputers 1,

lOS Press, August 1989, pp 82-89 .

98

L. J. Clarke, G. V. Wilson, "TINY: An Efficient Routing Harness for the INMOS

Transputer", Edinburgh Parallel Computing Centre Tech. rep,

EPCC-TR90-04, 1990.

INMOS Ltd, "Transputer Architecture - Reference Manual", Bristol, June,

1987.

G. V. Wilson, "Linda-like Systems and their Implementation", Edinburgh

Parallel Computing Centre Technical Report, EPCC-TR91-13, 1991.

A. Sharma, S. Kumar, 'CODE : An OCCAM Development Environment",

Parallelogram, October 1990, pp 14-15.

F. Mourlin, E. Cournarie, "A Graphical Environment for OCCAM Program-

ming", Proc. Applications ofTransputers.1, 105 Press, August 1989, pp 252-261.

TBUG Users Manual, 3L Ltd, 1989.

N. Spicer, "Windows File Server", Parallelogram, September 1989, pp 18-19 .

D. J. Wallace, "Supercomputing with Transputers", Supercomputer, No. 36,

1990, pp 120-132 .

Parsytec Ltd, "Parallel Products", 1990, p 16 .

"The Helios Operating System", Perihelion Software Ltd, Prentice Hall, 1989.

M. Charnley-Fisher, "Helios Clinic", Parallelogram, June 1990, p 24 .

D. Hart-Davis, "Helios: Are You Being Served?", Parallelogram, April 1991,

ppl5-l8.

A. J. MacDonald, "Integrating CAM and Process Simulation to Enhance the

Analysis and Control of IC Fabrication", Ph.D. Thesis, Electrical Engineering

Department, Edinburgh University, 1989.

R. Allan, "Distributing the Load", Parallelogram, August 1991, p 18-19 .

J. Boftey, "Idris Version 5.0", Parallelogram, August 1991, pp 16-17.

Paxsys Ltd, "IIDRIS Operating System - Product Profile", August 1989, p 2 .

M. Hatch, "Complete System on Silicon", Electronics Weekly, 19 September

1990, p20.

N. Spicer, "Late Developer", Personal Computer World, November 1989,

pp182-l86.

69

R. Causey, "The Design of the T9000 Transputer", Electronics Weekly, 24

April, 1991, p 14 .

INMOS Ltd, "The T9000 Transputer - Product Overview Manual", Bristol,

1991, p55.

C. Dyson, "Inmos Hi Architecture Revealed", New Electronics on Campus,

Spring 1991, p8.

G. Wilson, "Little Chips Muscle in on the Big Game", The Independent, 27

May 1991, p12.

100

No experiment is ever a complete failure - it can

always serve as a negative example.

Chapter 5

Parallel Implementation of Process

Simulation Code

5.1 Introduction

The requirement for and application of process simulation to the development

and manufacture of semiconductor products has been highlighted in previous

chapters. However, as was illustrated in chapter 3, the CPU usage and/or elapsed

execution times for a typical modelling task provides a substantial disincentive to

perform a rigourous simulation schedule for a given problem. With this in mind,

there is good reason to find a suitable alternative computing strategy and envi-

ronment which will enable the full potential to be gained from process simulation

techniques.

The relatively regular structure of process simulations suggested that the use

of either vector or parallel techniques might be profitable. It was therefore decided

to investigate the suitability of the cheap parallel performance available in trans-

puter based systems for the computational requirements of process simulation.

The software chosen to be investigated during the course of this work was

SUPREM II from Stanford University. A one-dimensional simulator was chosen

because this provided a less complex problem to partition and it was invisaged that

the methodologies used could be generalised to two-dimensions at a later date.

Although this program has limitations in the light of current fabrication technol-

ogies, such as the ability to model only silicon and silicon dioxide layers, this does

not affect the basic concepts which are of importance to producing a parallel version

of the code. The models included in the software are mature and relatively well

understood and are solved numerically using finite difference techniques, in

common with most of the other one-dimensional simulators available. Finally, the

easy access to source code (which is public domain) made SUPREM II a favoured

101

choice, in contrast to SUPREM 3 where the source code is only available under

licence from the vendor at an exorbitant cost over an above that of the executable

code.

In order to obtain superior performance from the new version of SUPREM II

without disproportionate investment of resources, a few basic issues must be

investigated before redeveloping the software. The prime task was to determine

the most computationally intensive sections of the algorithms, since these would

gain the greatest benefit from parallel execution. Another important issue was to

assess how much of the original FORTRAN would need to be re-written or changed

into OCCAM to achieve an operational package. The OCCAM compiler produces

more efficient code than the FORTRAN compiler, in terms of execution time, by a.

factor ofapproximately two. However, it would have been wasteful of time to re-write

excessive quantities of SUPREM II, especially given the inherently serial nature

of so many of the operations. The final major issue to be resolved was that of

partitioning the relevant parallel modules over an arbitrary network of transputers

to ensure simple and efficient inter-process communications and enable the net-

work to be simply expanded if so required.

This chapter addresses all of these points with respect to SUPREM H. It then

reports on the results obtained from the particular solution implemented and

discusses these in the light of the knowledge gained during the re-development of

the software. Finally some ideas on how a future version could be improved are also

provided.

5.2 One-Dimensional Simulation

The continuous physical processes modelled by SUPREM II are approximated

numerically using finite difference techniques. Each layer of the physical structure

is divided into a series of cells which are associated with the nodes on a one-di-

mensional grid. Information is then stored about the impurity concentrations for

each dopant type associated with a cell in the structure. Every cell in the interior

102

of a layer is centred about a single node on the grid. The cells at the ends of a layer

have one cell boundary at the end node and the other boundary exists halfway

between the end node and the adjacent interior node as shown in figure 5.1.

r-
0

[*4

Depth

Figure 5.1. Cell/Node structure within SUPREM II. 	 -

The silicon wafer is represented in SUPREM II by up to 400 nodes divided

into three regions, each of which may possess a different grid structure. One region

is allocated for any oxide which may be present and two silicon regions may be

defined. This permits a fine grid to be placed close to the silicon - silicon dioxide

interface for an accurate representation of steep or narrow impurity profiles, whilst

a course grid can be retained for the bulk, so using fewer grid poi;ts in total. Thus

the overall grid structure takes the form of that shown in figure 5.2 below.

This grid structure can and does change during the course of a simulation with

the addition or removal of nodes from the oxide region or the movement of the

silicon/silicon dioxide interface as an oxide region is grown. Additionally, the extent

of the simulation region may be altered as simulations proceed and the relevant

grid spacings altered by the user as well as by the program.

The other important issue which will influence what modifications must be

made to the code, is that of the data-structures. All the information pertinent to

the structure during the simulation must be retained and remain accessible by all

103

Grid points: 	
O-50nodes 	

400 nodes (max) 	 rn

a 	 ---

Grid spacing: a 	DZ 	rn. .—DVSI---s- a 	 >=2DVSI 	 rn

Material: 	 Oxide 	I Silicon: region 1 	 Silicon: region 2

Figure 5.2. Grid structure within SUPREM II.

the relevant processors. The SUPREM H data structure is divided into five main

blocks, ofwhich four are actively used during program execution and the remaining

one was reserved for an optimisation routine which did not materialise before

SUPREM II was superseded by SUPREM ifi. These are held as common blocks

within the FORTRAN enabling global access to the data contained within them by

all subroutines. Whilst this is an established and well-proven method of data storage

within the sequential programming community, it does present difficulties when

applied to parallel programming architectures. Those which possess no shared

system memory, as found in a standard transputer network, cannot implement this

style of data storage efficiently and alternative methodologies are therefore

necessary. At the present point in the discussion, the data structures will be

introduced in their sequential format and any modifications will be presented at a

later stage.

The first data block contains six individual arrays, each of 450 real words. Four

of these arrays use the first 400 points to store up to four individual dopant con-

centrations in each cell and the remaining 50 points contain global information

pertaining to the respective element. The fifth array is a 'scratch' space for general

calculations. The last array contains the spatial information for all the data points

showing the physical distance between adjacent nodes on the grid which uses 400

points and the last 50 points contain physical parameter pertaining to the current

step, such as temperatures and times.

104

The second data block contains three arrays of type logical, integer and real

respectively, which describe grid, substrate and I/O details. The third data block

holds all the model parameters, which are initialised to SUPREM II's default values

on program start-up but can be subsequently revised during program execution.

The final data block consists of four 410 word arrays which are used as general

working arrays by any routines needing such data storage throughout program

execution.

In order to partition these data blocks, it is important to establish what

information may be required by each routine throughout a particular simulation.

Additionally, it will be necessary to ascertain which data segments are required by

the entire simulation region, i.e. global, and which are only relevant to a given

physical region, i.e. local. As a starting point for this latter exercise, it is beneficial

to visualise the data structures and figure 5.3 displays each of the four main data

blocks, indicating the global and local segments within them.

0 400 	401 	450

I 	 Impurity NO Cell Concentrations Coefficients

I 	Impurity No.2 Cell Concentrations coefficients

I 	Impurity No.3 Cell Concentrations Coefficients

I 	Aisenlo: Cell Concentrations Coefficients

I 	Working array I
I 	Grid Spacing Ambient Info.

Figure 5.3. SUPREM II Common Block layout.

5.3 Partitioning SUPREM II code

As has been mentioned, many operations within process simulation are

inherently sequential, such as input/output routines, and therefore cannotbe made

to benefit from parallel execution. Although such routines could be re-written in

OCCAM to take advantage of the superior compiler performance, the time required

to achieve this is not justified by the additional performance attained. On this basis

105

it is necessary to assess each of the major program models in terms of their

computational requirements and of the suitability of the algorithms to parallel

execution. From this, it will then be possible to partition the program up into

sequential and parallel segments and subsequently decide how to distribute the

parallel segments over a transputer network.

Ion implanted impurity distributions are described by either Gaussian or

Pearson distribution functions. These distributions are described by the first two

or three central momentswhich are the projectedrange, R, and one or two standard

deviations, S1 and s2, depending whether a one- or two-sided profile is beingutiised.

These moments are calculated from LSS theory and extracted at runtime from

look-up tables within the code and hence the model is very quick to execute and

requires little computation.

Thermal oxidation is described by the familiar Deal and Grove formula [1]

given in chapter 3, with the linear and parabolic coefficients being determined for

each time step during the total oxidising time. Since this process requires an

elevated temperature, its evocation is from within the diffusion module whilst

calculating the redistribution of any dopants already present within the structure.

Although the coefficients include terms for many more process parameters than

was originally specified, this still does not constitute a particularly computationally

intensive operation.

Etching steps simply involve the removal of all or part of the existing oxide

layer from the structure. If an elevated temperature is specified then the diffusion

models are invoked as well to cover any dopant redistribution that may occur,

otherwise there is no genuine computation associated with this step. There is only

a low temperature oxide deposition step within SUPREM II, which merely adds the

desired quantity of doped or undoped oxide to the top of the current structure. By

nature of the enforced low temperature, there is no need to even consider dopant

redistribution during the operation.

106

In terms of computational requirements, the diffusion model provides a

contrast to those models already mentioned. The algorithm for this model will be

expanded later in this section, but involves solving the one-dimensional continuity

equation with time- and concentration-dependant diffusion coefficients for each

time step, Ft, throughout the entire course ofahigh temperature step. Numerically,

this is achieved by the formation of a large sparse matrix of diffusion coefficients

from which the updated impurity concentrations can be calculated in terms of their

current concentrations. This then becomes both a data and numerically intensive

operation to perform. In addition, the diffusion models can be invoked during any

high temperature steps during the process to be simulated, which means that the

computational performance of this step may dominate that of the entire simulation.

The elapsed times for each of the major program models within SUPREM II

are tabulated below and have been taken from a typical CMOS process simulation.

Measurements are presented for simulations run on both P414 and P800 trans-

puters (i.e. without and with floating point units (FPU) respectively). These sub-

stantiate the relative computational complexities of the individual models, as

proposed by analysis of the underlying algorithms. It is also important to note the

performance gained by use of the dedicated FPU hardware. This factor is obviously

dependant on the data types used within a particular application, but with pre-

dominant use of real data in process simulation, it provides a significant perform-

ance increase from a marginal increase in hardware cost.

107

Program Model T414

(secs)

T800

(sees)

Ion Implantation 0.5 0.2

30 min Diffusion - no oxidation 31.1 0.58

30 min Diffusion - oxidation 35.2 0.68

300 min Diffusion - no oxidation 364.2 18.7

300 min Diffusion - oxidation 4175r) 21.45

ljtm Si02 etch - low temperature 0.1 0.05

ljzm Si02 etch - 280 0 C 0.1 0.06

lm Si02 deposition 0.1 0.05

Table 5.1 	SUPREM II execution times for a typical

CMOS process on T414 and T800 trans- 	- 	- -

puters.

As can be seen, it is the diffusion algorithm which assumes the most compu-

tationally intensive part of SUPREM H. Given that the oxidation routines are also

called from within this module, when applicable, it rapidly becomes apparent that 	-

this code segmentwould benefit greatly from some means ofincreased performance.

Therefore it was decided to split the execution of the code at a high level such that

the diffusion model and any associated routines would run in parallel and the

remainder of the code would continue to be executed serially on a single processor.

This means that at each occurrence of a diffusion step in the simulation input file,

the necessary data-structures will have to be downloaded onto the transputer

network, the calculations performed and then all the data-structures loaded back

up on to the main processor.

The next step in partitioning the code is to assess each stage of the diffusion

algorithm from a suitably high level and to consider the data requirements and

likely frequency of execution. In order to assist with this task, it is best to view the

algorithm in both a pseudo-code format and diagramatically from the point of the

108

routines involved and from where they are called. Figure 5.4 shows a brief outline

of the diffusion algorithm in a pseudo-code form, whilst figure 5.5 displays the

hierarchy of the software subroutines involved. An explanation as to the function

of each of the subroutines is then presented.

WHILE time.so .far < totat.step.time
calculate next time step - Ft
IF oxidising ambient

calculate additional oxide thickness
calculate global, diffusion parameters
DO for each impurity present

form diffusion coefficient matrix
solve matrix system for new dopant concentrations
update impurity concentrations database

time.so .far = time.so .far + Ft

Figure 5.4

DIFOX
LI 	SITHI

OXTHI
L1 OXDEP

DIFPR -

LI INTRP
COE F I
LI DFPB

DEFY
LI

SOLVE
PRINT

Figure 5.5

A brief summary of each of the subroutines mentioned above is presented to

assist understanding of the partitioning of this code segment.

DIFOX Top level routine for oxidation/diffusion segment. Calcu-

lates the time step,Ft, for each iteration and calls DIFPR

with the relevant data for all the impurities present.

SITHI 	Calculates thickness of unconsumed silicon.

OXTHI Calculates oxide growth for time step Ft.

OX.DEP Calculates the linear and parabolic oxide growth rate con-

stants.

DJFPR 	Controls diffusion calculation for each impurity in turn.

PREQ

109

INTRP Interpolates for dopant concentration values around moving

oxide/silicon interface during oxide growth

COEF1 Sets up diffusion coefficients for matrix system representing

the discretised continuity equation.

DFPB 	Prepares diffusion coefficients in presence of phosphorous.

DFFY 	Prepares diffusion coefficients in absence of phosphorous.

PREQ 	Modifies diffusivity due to effect of the clustering of impur-

ity atoms.

SOLVE Solves the matrix system for new dopant concentration

values.

PRINT Prints summary of matrix solution.

Within this set of subroutines, the only computationally intensive one is the

matrix solver, SOLVE. This is instanced once for each impurity present during

every time step, Ft, and accounts for the mqjority of the CPU time during a diffusion

calculation, If SOLVE is the only routine to be converted to run in parallel, then

the entire dopant concentration data-structure and any relevant global parameters

would have to be transferred into and out of the transputer network up to four

times per time step (since the maximum number of impurities is limited to four).

Although this would require the least amount of code to be re-written in OCCAM,

the inefficiency caused by the excess data communications would seriously impinge

on any performance benefit achieved in the calculation time. Were it possible to

use shared memory amongst the processor network, then this data transfer becomes

superfluous and such a methodology would provide a quick and efficient test of

SUPREM H's suitability for parallel execution. However, this is not the case and

an alternative partitioning point must be found.

The next possible breakpoint that might prove more efficient, when viewing

the hierarchy of subroutines displayed above, is to perform all the calculations for

a given time-step before transferring the necessary data-structures. This would

involve converting DIFPR and all its associated subroutines to run in parallel.

However, a typical diffusion process performed under an oxidising ambient may

110

require around 100 time steps, Ft, in order to achieve the total step time, whilst

constraining any errors occurring in the numerical solution. So although 4 data

transfers can be eliminated per time step, this option does not eliminate the

communication bound problem already being faced; thus a yet higher level of

partitioning appears to be required.

The next and final choice remaining open at this point is to transfer all

computation to a parallel mode as soon as a diffusion/oxidation process step is

invoked. Under this scheme, only a single data transfer to and from the transputer

network is required for the calculation, regardless of the number of impurities

present or the number of time steps necessary. Therefore all code associated with

DIFOX has to be re-written in OCCAM to facilitate the inter-process communi-

cations needed throughout its execution. Although basic communications exten-

sions have been provided in the transputer release of FORTRAN, these do not

provide the same comprehensive capabilities that are available from OCCAM.

Given that the breakpoint between sequential and parallel execution has been

established, it is now necessary to determine how the physical problem can best be

partitioned into an arbitrary number of processes. Then these processes must be

configured to run on a number of actual processors with, as yet, undefined con-

nectivity. There can be much to be gained in partitioning a problem into a particular

number ofprocesses, whether or not that number of processors is available because

any subsequent expansion or contraction of the transputer network only requires

altering the number of processes running on each processor. For the process

simulation problem, the simplest partitioning scheme is to divide the semicon-

ductor structure up into a particular number of abutting segments, each containing

a proportion of the 400 nodes on the one-dimensional grid. The actual number of

cells per segment is flexible, providing the total workload per processor ensures

that a sufficiently high computation to communication ratio is maintained. The

most basic and coarse partitioning is to divide the 400 nodes as evenly as possible

over the number of available processors. This can be achieved statically, but a more

111

even distribution of tasks will result if it is done dynamically each time a diffusion

step is performed. In this way any change in the number of nodes actually used will

be taken into consideration.

Using this simple partitioning scheme, the data requirements for each pro-

cessor can be surmised as follows. Firstly, every processor will require a copy of all

the global parameters, common to all sections of the simulation and this will also

need to be updated on all processors whenever a change is made on a particular

machine. Secondly, each processor requires a local data set, pertaining to the par-

ticular section of the simulation which it is performing and also access to the

boundary data, for its nearest neighbours. Where possible it is preferable for each

machine to retain a copy of the data referring to the first one or two nodes on the

adjacent machines, thus creating an overlap which can prevent the need for some

inter-processor communications. Hence the data stored across the processor net-

work can be thought of in terms of figure 5.6.

Root 	Worker I 	Worker 2 	Worker n-2 	Worker n-I 	Worker n

! ! ! ! !

Impurity NO ; : Cell Concehtrations 	/ Coefficients

Impurity No.2 Cell Concentrations / Coefficients
Impurity No.3 Cell Concehtratlons Coefficients

Arsenic: Cell Concentratiáns Coefficients
Working array
Grid Spacing Ambient Info.

Figure 5.6. Partitioned SUPREM II data-structures.

112

The modifications required to the original software in order to achieve this

partitioning come in four main areas. Firstly, there is a series of additional com-

munication modules which transmit and receive the common data blocks between

the single serially executing processor and the processor network operating in

parallel. Secondly, there is another set of communication routines, this time

dedicated to data exchange between the processors executing in parallel. Thirdly,

there is the incorporation of additional logic within the scope of the original sub-

routines which ascertains whether a particular operation is relevant to the par-

ticular physical segment being modelled on that processor. For example, the

calculation of oxide growth is only relevant to processors which contain the nodes

from the surface down to the oxide/silicon interface and may be omitted on the

remaining processors. The final area of change is in the inclusion of a parallel matrix

solution algorithm to replace the gaussian elimination scheme presently employed

by SUPREM II, since this possesses no inherent parallelism and would in fact run

slower across a transputer network. - -

These modifications could be coded up in the FORTRAN of the original

software, but it was decided to re-write all those routines which execute in parallel

in OCCAM. This would not only improve their speed of execution, but also enable

code debugging to be performed in an entirely OCCAM based environment. The

problem associated with this task is that the translation of unstructured FORTRAN

constructs, such as loosely used GOTO's, into the structured OCCAM syntax is not

always that simple. Within OCCAM, this often requires the use of many conditional

constructs in order to enable the program flow to be replicated. As was found under

these circumstances, 15-20 lines of FORTRAN could easily result in the generation

of 60-100 lines of OCCAM. Thus the final parallel code required 8500 lines of

OCCAM to be written and debugged in order to implement the parallel version of

SUPREM-H.

Ilk

5.4 Parallel Matrix Solution Method

It has been shown that dopant re-distribution throughout the semiconductor

structure may be modelled by the one-dimensional continuity equation. The

numerical solution to this partial differential equation can be represented by the

following basic matrix system where A represents the diffusion coefficients, u, the

present impurity concentrations and x, the new concentrations after a given time

period.

A.x=u
	 (5.1)

The one-dimensional nature of the problem means that the impurity con-

centration within a given cell is only dependant on its nearest neighbours and hence

equation 5.1 may be expanded into a sparse, tn-diagonal matrix system as indicated

within figure 5.7.

/a 1 b1 	 - 	 fu1\

c 2 a2 b 2 	 X 2 	u 2

c 3 a 3 b 3 	 X 3 	 U 3

c_ 1 	a_ 1 	b_ 1

C 11

Figure 5.7. Tr-diagonal matrix system.

Many methods for solving these tn-diagonal matrix systems have been

reported for both vector and parallel computers [2],[3],[4]. A partition method by

Wang [5] designed for trithagonal systems has also been extended by Meier [61 for

general banded systems of equations. Wang's method was chosen for this work

because of the similarity in its partitioning scheme with that proposed for the

114

data-structures in SUPREM II. A brief outline of the method will be presented

below, though a fuller description and assessment of the computational require-

ments should be obtained from [5].

The basic algorithm involves five passes of the matrix system to eliminate the

upper and lower diagonals and ultimately provide a solution in terms of the main

diagonal set of elements. Operations can be independently carried out on each block

in parallel, except for the calculation of the bordering nodes which requires

inter-partition communications. Firstly, the matrix A is partitioned in to L sub-

blocks of size, K, which need not necessarily be identically sized. As an example, a

matrix A of order 12, will be partitioned into 3 blocks of 4 elements as shown in

figure 5.8.

a, b, \ 	lx\

U

a 2 b 2

1

c2 x2

U, I c 3 a 3 b 3 a 3
C 4 a 4 b4 It 	x 4 a 4

c 5 a 5 b5 I I
a 6 b6 x6 	1=1
C, a 7 b 7 X7 I I I 	a 7

c 5 a 8 b e X8 J I 	a5
C, 	a 9 	b 9 X 9 X 9 U 9

CIO 	a, 0 b 10 x0 a,0

c 1 1 a1 	b1, 	/ \ x,, 	/
C , 2 	a,2/ \x,2/ \u,21

Figure 5.8. Partitioned block matrix.

The lower diagonal elements are then eliminated within each block except for

a set of films, f.This leaves a more-or-less lower triangular matrix as shown in

figure 5.9

The upper diagonal elements are now eliminated in parallel, except for an

additional set of fillins, gi, leaving the matrix in the form shown in figure 5.10.

115

X 2

X 3

94

Us

a 6

a 7 b 7

a 5 98

c 9 a 9 	 99 fl 	X9

110 a 10 	910 XIO

Ill a 11 	b 11 /XII

f12 a12 / 	\x12

C1, Ui
a2 92

a 3 b 3

a 4

C 5 a 5

16

f

f

U '

U 2

U 3

U 4

U s

U 6

U 7

U s

U 9

10

a ll

12

a, 	b 1

a2 	b 2 X 2

a3 	b 3

a 4 b 4

c 5 a 5 	b 5

16 a6 	b 6

17 a7 	b 7

18 a5 	b 5 x 8

C 9 	a9 	b 9

110 	a10 	b 10 XIO

Ill 	a, 1 	b 11

112 	 a,2 X 12

Figure 5.9. Lower diagonal matrix, with fill-ins.

U

U 2

U 3

U 4

U s

U 6

U 7

U 8

U 9

10

UI'

12

Figure 5.10. Main diagonal matrix, with fill-ins, t and g.

Two further passes of this system provide the elimination of the films, fi and

gi, leaving only a main diagonal of elements, as seen in figure 5. 11, which permits

x to be solved for in terms of u. This final step can obviously be achieved indepen-

dently in each partition.

'lull

a1 	 UI

a 2 	 U 2

a 3 	 U 3

a 4 	 x 4 	 U 4

a 5 	 U s

a 6 	 X 6 = U 6

a 7 	 U,

a 6 	 X e 	 U s

a 9 	 U 9

a 10 	 x Io
	U 10

a1
	 UI'

a12 	X 12
	

12

Figure 5.11. Final diagonal matrix, with no fill-ins.

The simplest partition scheme for this method places one block of elements

on each processor in the network, with each block/processor containing k rows from

the above matrix system. The actual value of k will depend on the number of cells

being used by SUPREM II at the time of the diffusion process and the number of

processors being used.

5.5 Hardware Architectures

The one-dimensional nature of the simulation problem, coupled with the

proposed method of partitioning the computation, would suggest that a one-di-

mensional network of processors could be a productive hardware architecture.

Without becoming extremely convoluted, there are only two general ways of

arranging the processors to provide a one-dimensional array of computational

worker nodes. These are loosely termed the spaceline and pipeline architectures.

These present a similar array of interconnected processors for performing simu-

lation, but differ in their approach to the communication of the major data-struc-

tures between the worker nodes and the single root processor which performs the

serial operations.

117

F MM

Worker 1 	Worker 2 	Worker S 	 Worker n-2 	Worker n-i 	Worker n

Figure 5.12. Spaceline transputer network architecture.

The spaceline architecture, as depicted in figure 5.12, takes the basic form of

a tertiary tree structure as dictated by the four communication links available on

each transputer. This produces a hierarchical network of processors linking the

root to the leaf/worker nodes through a number of branch processors, with each

level having a particular function to perform. There maybe multiple levels of branch

processors, whose sole task is to partition the data-structures and distribute them

to the nextlevel down. Similarly these processors also perform the reverse operation

of combining the data partitions on their return to the root processor. Obviously

this results in an extremely rapid load/unload of the worker processors, since the

distribution is being performed in parallel across each level of the spaceline. The

nearest neighbour communications are also very efficient, with direct links between

every worker node. However, it does produce a somewhat inefficient use of pro-

cessors, in that for a total of N processors, (+ 1) are wasted in terms of the actual

computation associated with the simulation. Furthermore, this architecture is

extremely inflexible with respect to expansion because it requires transputers to

118

be added on in groups consisting of n processors, where n is a power of three. This

last issue entirely defeats one of the major benefits of transputer based systems,

which is that of simple re-configuration to run variable sized networks. Prolific

amounts of complex logic are required to ensure that the spaceline architecture

can be expanded or contracted with little or no user assistance.

In spite of these criticisms and because of pre-conceived worries over com-

munication performance, this architecture was implemented initially using a total

of nine processors (i.e. with six worker nodes for the simulation). Sufficient

hardware existed for this size of network and it operated successfully. However,

due to the number of nominally 'wasted' processors within the system, a larger

network of nine worker nodes was not attainable with the available hardware. As

will become evident in §5.6, it was important to investigate the network performance

over a wider number of processors and so an alternative architecture had to be

implemented which could make greater use of the total number of available pro-

cessors. Therefore, the pipeline architecture as shown in figure 5.13 was also

implemented.

Root 	Worker 1 	Worker 2 	Worker n-2 	Worker n-i 	Worker n

Figure 5.13. Pipeline transputer network architecture.

The major published drawback with this architecture is that it results in a

slower load/unload of the transputer network which will eventually dominate

overall systems performance as the pipeline length is increased. The actual length

of the pipeline at which this occurs depends on the computational and communi-

cation requirements of the computation. However, in favour ofthe use ofthis system

is the fact that for the spaceline architecture, the total load/unload time for the

data-structures was only 60ms [7] in comparison to a computational time of lOmins

or lOs on the T414 and T800 transputers respectively. This overhead can be

119

regarded as negligible, providing that the network size remains at this order of

magnitude. The pipeline architecture has a far higher degree of processor utilisa-

tion in computational terms than the previously mentioned design, with at most

one processor not being available as a worker node. In common with the spaceline

system, nearest neighbour communications are efficient to implement.

Conceptually, each transputer has four bidirectional links with which to

communicate to either other transputers or other peripheral devices. Therefore,

depending on the access to all the transputer links, a duplicate communications

path can be created to provide extra performance or redundancy in the event of a

failure. When applied to the pipeline system, this means that two independent

physical links with each neighbouring processor can be made, one to provide global

network-wide data communications and the other to provide nearest neighbour - -

communications, as shown in figure 5.14. This scheme greatly simplifies the pro-

tocols necessary to send and receive any data from around the network. The local

data channel requires only a very basic protocol to inform the recipient node the

data type and number of data items within a message. The global channel still

requires this information, but in addition the recipient node number/address must

be encoded with the data.

Root 	 Worker 1 	Worker 2 	Worker n-i 	Worker n

Global communication links
Local communication links

......
-••-•-••---.- 	 File server communication links

Figure 5.14. Global and local inter-transputer communication links.

'I

120

The physical nature of these links is emphasised, because it is quite possible

to provide a communications harness, which is transparent to the user, but that

allows multiple soft links to be mapped onto the physical links. Communication

harnesses such as TINY or TITCH, as developed on the Edinburgh Concurrent

Supercomputer (ECS) {8},[9] enable applications to use many independent com-

munication links between processes, whether they are mapped onto the same or

different processors. Obviously if such harnesses are to be efficient and are not to

degrade the computational performance of a network, they must be extremely

carefully developed, in close association with the transputer hardware and low level

system routines.

Due to the relatively simple nature of the communications demanded by the

partitioning of SUPREM II, it was decided to use just the two physical channels

between each processor along with the primitive protocols necessary. Initially, the

network was constructed from a set of T414 transputers which made all four links

available for the user to connect at will. Thereafter, the network was upgraded to

run on T800 transputers in order to gain the benefit of the floating point unit.

However, these came on a set of prefabricated B003" boards, each of which con-

tained four transputers and some external memory. The problem with these boards

is that two of the four links on every transputer are hardwired together to form a

ring system, as depicted in figure 5.15.

This constraint means that there were insufficient free links with which to

form two independent communication channels between every node in the pipeline

and so a single communication path had to be used. This also involved producing a

substantially more complex protocol for the associated controllers, in order to

combine all the necessary data traffic onto the one path. The effect was to reduce

the communication performance in two ways. Firstly, the more comprehensive logic

associated with the communication controllers ran slower. Secondly, the existence

of only one physical data path meant that global and local communications could

121

User-wirable links 	' 	r 	Hard-wired links

Figure 5.15. Schematic layout of B003h1s transputer board.

no longer run in parallel over their previously independent links. The reduced

communications performance was still insignificant compared to the computation

times and so could be deemed acceptable.

5.6 Results

In assessing the resulting performance of the parallel version of SUPREM II,

there were two main levels at which investigations were made. Firstly, the parallel

matrix solver was tested without the remainder of the diffusion related subroutines

being called. In order to provide the solver with a valid data set, this was loaded

from the filing system where the relevant matrix coefficients had been stored from

previous runs. This test would enable the increased performance over the modified

gaussian elimination algorithm used by the sequential SUPREM II, to be observed.

The second test case, was to analyse the performance of the complete diffusion

algorithm from the point at which it was initially called in the sequential portion

122

of the simulation code. This would then indicate the total speed-up which had been

realised by the parallel version of SUPREM II. The execution time of the original

FORTRAN version of SUPREM II on a single transputer was taken as the control

value on which all calculations were based. This provides a set of results which is

then representative of the benefit gained solely from the change to parallel

execution. Obviously, given the absolute performance of transputer hardware

systems, as shown in chapter 4, the actual increase in execution times over many

of the traditionally used hardware platforms will be even greater.

The next problem lies in finding a reliable method of measuring the per-

formance of the transputer network. Unlike most multi-user operating systems

such as UN[XTh or VMS", there are no CPU monitoring functions inherently built

into the system and an alternative method is required. OCCAM concerns itself with

the time dimension in a far deeper manner than most conventional languages and

provides an explicit TIMER object within its syntax[10I. This behaves like a normal

communication channel except for its uni-directional nature. It can only provide 	- -

an input to a variable, i.e. a user can not set a TIMER, but only read its value. Also,

unlike normal channels, more than one process may input from a given TIMER,

which is a necessity in order to provide time related information about a series of

concurrent processes. By the use of modulo arithmetic, time differences can be

measured with a resolution of 64/is on most implementations. Time delays can also

be built in using the same construct, a feature which can be helpful in locating

marginal communication problems.

The results in figure 5.16 show the performance of the parallel matrix solver

described previously in §5.4. The matrix dimensions were varied to model a

one-dimensional grid of lengths from 50 to 1000 nodes and the solution performed

using between 3 and S transputers. The time for the serial gaussian based solution

within SUPREM II for the same datasets has also been included to provide a ref-

erence benchmark.

123

Execution Thne (m)

35
30
25
20
15
10

- SLIPREM II
3T800

—4T800
5 T800
67800
7T800

—87800

I 200 400 600 800 10001200
No. of Cells

Figure 5.16. Parallel matrix solution results, showing how the execution time

varies with the number of cells in the matrix for varying number of

processors.

There are various aspects of this figure which deserve an explanation. Firstly,

for a given number of transputers in the network, the solution time is linear with

respect to the magnitude of the problem domain. The significance of this trend lies

in the fact that if ab imbalanced distribution of the nodes ever arises during a real

simulation then the performance penalty will not be excessive. Secondly, and of

greater importance from a general problem partitioning aspect, is the relevance of

the relative performance of the serial algorithm. It must be noted that for the

parallel algorithm implemented here, in excess of four transputers are required to

provide an improved performance. This can be explained by the fact that there are

many additional overheads concerned with the parallel algorithm. This can be in

terms of the data communications to load and unload the network with the

necessary data-structures and also those associated with globally updating any of

the common parameters, throughout the course of the solution, which must be

available across the network.

124

5.7 Discussion

This chapter has described the complete operation of taking an existing

one-dimensional process simulation package, SUPREM II, and re-developing the

code where applicable, to run with superior performance on a transputer network.

This goal has been successfully achieved, as indicated by the results shown in §5.6,

though it must be emphasised that this particular implementation should not be

considered to be definitive or the most efficient. However, the prime motive behind

the project brief was of feasibility rather than ultimate performance. In assessing

the work accomplished and results attained, there are many pointswhich arise that

require clarification or expansion.

In general, problems which possess either algorithmic or geometric parallelism

require a solution which is entirely application specific in order to become con-

current. As with any individual solution, this consumes vast amounts of resources

in comparison to a standard 'off-the-shelf solution which may require little or no

alteration. The performance gained from the parallel version of SUPREM II

required many man-months of software development. Even allowing for the inef-

ficiencies caused by traversing the learning curve for the new software and hardware

environments at the outset of the project, the superior execution time has been

extremely costly to realise. To put the magnitude of the task into perspective,

approximately 16 man-months were needed to produce to final operating version

of the software used to realise the results outlined in §5.6. If 50% of this were

discarded to allow for the acquisition of sufficient skill in using the transputer

hardware and software development packages, this still leaves 8 man-months of

'proficient' software development which might appear excessive for the modifica-

tion of the few subroutines discussed in §5.3.

As a result of electing to re-code the relevant diffusion related subroutines in

OCCAM, it was necessary to understand the original FORTRAN code to afar greater

depth than would otherwise have been required. In light of the experience gained

during this work, a much reduced volume of re-coding would be undertaken for a

similar project in the future, which would save a lot of time. The actual re-writing

125

of the FORTRAN was made particularly difficult due to its extremely unstructured

and undocumented nature and hence failure to map elegantly into the structured

OCCAM syntax. Coupled to this was the fact that OCCAM and FORTRAN store

any multidimensional data-structures in conflicting formats which entailed a

conversion whenever large arrays were being passed between the two languages.

FORTRAN uses a column major format whereas OCCAM uses a row major format.

Initially, because the code was being re-written, it was intended to alter any relevant

array subscripts within the OCCAM version, thus saving the need for a conversion

process. However, in order to efficiently partition the data-structures into segments

[11] for each transputer, OCCAM required the alternative data storage scheme to

be used, making data conversion a prerequisite.

The next major item which required attention was that of trouble-shooting

and debugging a parallel system. The concurrent execution of processes provides

an additional group of stumbling blocks, such as communication deadlocks etc,

which can cause a set of parallel processes to hang. Apart from tracking down where

the system has stopped, it then became vital to be able to differentiate between

which process caused the stoppage and which were hanging because of that failed

process. Obviously, such debugging facilities require direct access to the transputer

hardware and a comprehensive symbolic map of the entire parallel system. From

these it is then possible to build up a picture of each processor in the system and

assess at what point in the code it has stopped. When this project commenced, the

OCCAM deyelopment software environment needed to interface with other lan-

guages (i.e. FORTRAN in this case) had no debugging facility-whatsoever, as this

was still under development and not available for general release. This omission

forced the use of very primitive incremental programming techniques in order to

establish what processes were causing a particular hang up in the system. Although

debugging facilities have now been included in the latest release of the OCCAM

Toolset", their nonexistence during the re-development of the SUPREME software

drastically elongated the project timescale.

1245

The afore-mentioned constituted the main issues pertinent to the timespan

of the software re-development. The other area which requires comment is that

associated with further improving the performance of the concurrent system. The

first section of the software which would benefit from further investigation is that

of the parallel matrix solution algorithm. The direct block-based method implem-

ented to date is less favoured in the literature than the family of iterative solution

techniques based around the conjugate gradient method[12]. However, it was

considered that it would be more worthwhile to pursue development of other

applications of parallel techniques to process simulation rather than re-implement

SUPREM II using these alternative algorithms. Commercially, SUPREM II had

been overtaken by the introduction of SUPREM III and P1 which provide much

greater process modelling capabilities. Therefore any further development of the

SUPREM II code would have primarily been an academic exercise and access to

commercial versions of SUPREM Ill and IV was not possible at this time, which

ruled out the possibility of continuing with these updated codes.

In producing the parallel version of SUPREM II, the largest problem was that

surrounding the data transfers necessary to provide all the processors with a

complete set of local and global information. This arises because the transputer

architecture S is based on local memory alone and relies on effective communication

policies to ensure that all the processors contain valid data. Therefore, another area

for future research would be an investigation into the benefits of using a shared

memory multiprocessing architecture, such as the BBN Butterfly[13], to provide

a suitable parallel computing surface for data intensive applications. Whichever

architecture is chosen for the production of a parallel version of software similar

to SUPREM H in terms of data and computational requirements, it can be seen that

the task is very expensive in terms of the application specific development time.

For many applications, which are only ever run on a limited number of datasets at

a time, this is the only way in which parallel computing techniques can provide

additional performance. However, Wit can be foreseen that an application would be

exercised on a large number of datasets, then an alternative parallel strategy may

be employed. This is commonly referred to as the task farm approach. In brief

127

though, it involves running a number of independent jobs in parallel on the relevant

computing hardware, with each job executing serially on an individual processor.

In this fashion, assuming that there are a large number of jobs to be performed

compared to the number of processors available, then a linear performance increase

equal to the number of processors employed can be expected. The only overhead

associated with this approach, is that involving a single master processor which is

responsible for allocating jobs to each worker processor and collating the returned

data. The application and implementation of a task farm will be discussed in detail

in chapter 7.

128

References

B.E. Deal, A.S. Grove, "Genera! Relationship for the Thermal Oxidation of

Silicon", J. App!. Phys., Vol.36, 1965, pp 3770-3778.

C.H. Romine, J.M. Ortega, "Parallel Solution of Triangular Systems of Equa-

tions", Parallel Computing, Vol. 6, 1988, pp 109-114.

A.H. Sameh, D.J. Duck, "Parallel Direct Linear System Solvers - A Survey",

Math, and Computation in Simulation, Vol. 19, 1977, pp272-277 .

G.A. Geist, M.T. Heath, "Matrix Factorisation onaHypercube Processor", Proc.

Hpercube Processors, SIAM Philadelphia, 1986, pp 161-180 .

H.H. Wang, "A Parallel Method for Tridiagonal Equations", ACM Trans. on

Math. Software, Vol.7, No.2, 1981, pp 170-183 .

U, Meier, "A Parallel Partition Method for Solving Banded Systems of Linear

Equations", Parallel Computing, Vol.2, 1985, pp 33-43 .

W. J. C. Alexander, A. J. Walton, J. M. Robertson and H. J. Holwffl, "The

Implementation of Process Simulation on Transputers for the Production of

ASIC's", Microelectronics '89, Brisbane, Australia, July 1989.

"TITCH User Guide", Edinburgh Concurrent Supercomputer Project,

ECSP-UG-2, 1988.

"TINY User Guide", Edinburgh Concurrent Supercomputer Project,

ECSP-UG-9, 1989.

"Occam 2 Reference Manual", Inmos Ltd, Prentice Hall, 1988.

D. Pountain, D. May, "A Tutorial Introduction to OCCAM Programming",

Inmos Limited,

D. O'Leary, "Parallel Implementation of the Block Conjugate Gradient Algo-

rithm", Parallel Computing, Vol. 5, 1987, pp127-139.

A. Trew and G. Wilson, "Past, Present, Parallel", Springer-Verlag, 1991,

pp64-75.

129

If enough data is collected, anything may be proven

by statistics.

Chapter 6

Process Optimisation

6.1 Introduction - Design for Manufacturability

Throughout the evolution of the IC manufacturing industry the market has

gradually altered from being supply-driven to demand-driven, largely as a result of

the relatively small number of major companies involved globally, each attempting

to retain or acquire a leading market position. Consequently, an extremely com-

petitive edge to both the production and marketing philosophies has evolved, in

terms of both price and quality. From a manufacturing point of view, this can be

seen in the ever-increasing importance that has been placed on yield and turn-round

times in order to increase the viability of a particular process design.

Typically, processes are presently designed round a set of nominal parameter

values which have been found, either by experiment, simulation or a combination

of both, to lead to the desired device specifications. The methodology commonly

used to obtain these nominal values has already been discussed in chapter 3.

However, during any actual fabrication cycle, variations in these process parameter

values will be experienced due to for example, fluctuations in the operating

conditions within the processing equipment. These variations obviously translate

into variations in the resulting device parameters and therefore require to be

investigated to ensure that the spread across the final product remains within the

pre-defined, acceptable range of the process specification. In short this places a

large responsibility upon the quality assurance aspects of the production facility

and may result in an unnecessarily low yield because even functional devices may

still fail to meet the actual product specifications. By briefly viewing the progress

and changes in quality assurance policies within the IC manufacturing industry,

possible means to improve this state of affairs become apparent.

The first attempts at quality assurance in the manufacturing process simply

involved a post-fabrication inspection, with any faulty or under-spec samples being

discarded. A slight improvement on this was made by bringing the point of

130

inspection forward, with the introduction of in-line testing. Now at any test point

there was the option of scrapping poor samples or re-working marginal cases, which

could at least reduce the volume of discarded products. However, rejection of

product wafers is a costly procedure and such principles do not enhance the built-in

production quality, but merely ensure that those samples available for the market

meet their specification.

The next stage associated with quality assurance was to alter the emphasis

from product inspection to process control, with the idea of minimising sources of

manufacturing variations. This was done by assessing each process step in isolation

and where necessary, attempting to reduce any variability by perhaps redesigning

the step or purchasing new equipment with superior uniformity and control

characteristics. This approach has many disadvantages associated with it. The task

of actually pin-pointing the sources of variability is generally non-trivial, and once

found, it may be difficult or impossible to fix byway of process re-design. The capital

cost associated with replacing fabrication hardware is also extremely high. Lastly,

it can be a time consuming activity, taking months or years to slowly tune a process

for satisfactory yield, in which time large sums of money will have been lost.

Hence, there is a definite need for designing ainanufacturable process in order

that specifications may be met - first time with acceptable yield levels. This is

essentialwhen considering the ASIC market, where low-volume, one-oftproduction

runs are commonly found and would be financially beneficial for all IC manufac-

turing environments, especially given the present economic climate within the

semiconductor industry. This leads to the introduction of the term design for

manufacturability, that is, designing a product in order to make it as insensitive to

manufacturing variations as is possible. In complete contrast to all the previously

mentioned techniques, this is performed during the design phase rather than

during manufacture. By taking such an approach, quality is actually being built into

the product and any possible production problems can hopefully be highlighted and

ironed out before the first silicon is committed to fabrication. Assuming the goal of

131

minimising the design sensitivity to processing variations is met, then financial

gains are obtained from the reduction in lost yield, time spent tuning the process

and on expensive fabrication equipment.

Therefore, it is necessary to assess the response of any device characteristics

which are deemed critical for a given situation, in terms of the respective input

parameters. Once this characterisation in terms of the process parameters has been

achieved, then their values may be optimised to the point where least sensitivity

in the required device specifications is achieved. Now, small fluctuations in these

parameter values throughout the fabrication process should not cause a significant

'loss of yield in the final product.

Conceptually, this appears a sound policy to follow, but it does require that

the relationship between the device responses and the processing parameters used

in fabrication must be determined. There are two possible routes to provide this

information. Firstly by conducting a series of experimental fabrication runs under

a variety of process conditions which reflect any likely variations found under

normal fabrication conditions. This is an extremely costly and time consuming

approach with each process run taking around four weeks to perform and costing

many tens of thousands of dollars in terms of material and labour alone. Secondly,

the same exhaustive set of experiments could be performed using some of the

process simulators discussed previously. Although much quicker and cheaper than

the experimental procedure, this still consumes manyweeks of CPU time on typical

computing platforms. As a result of this, the use of statistical experimental design

techniques has been proposed in order to produce a suitable set of experimen-

tal/simulation points and perform the subsequent analysis of the results.

This chapter first introduces the ideas associated with experimental design

techniques. By briefly discussing some of the classical approaches to defining the

required experiments and three of the main design objectives used to analyse the

data, the extremely powerful nature of this technique is demonstrated. Next an

overview of one particular commercially available software package, RS/1" (BBN

Software Products Inc), is presented. This package provides a complete software

132

shell under which statistical experiments may be designed and subsequently ana-

lysed. The application of these techniques to IC process design and optimisation is

then discussed and presented through using a simple case study. Finally, a few

conclusions as to the implementation of these tools are presented. This provides a

background to the experimental work described in the next chapter.

6.2 Experimental Design

Experimental design is a strategy for the effective management of experi-

mentation. It is based around the use of a planned program of experiments which

employ statistical techniques for their design and analysis [1],[2]. As a consequence,

much more useful data can be extracted from a smaller number of runs than would

normally be feasible if an unstructured approach were to be used. Traditional

experimental techniques tended to employ unsystematic variations on the input

parameter set, which were based on previous results. Such an approach can lead to

conflicting results, especially when many factors are being simultaneously

observed. Additionally, it is all too easy for many implicit assumptions to be sub-

consciously inferred throughout the procedure. In contrast, experimental design

starts with a few basic informed assumptions and provides a complete set of

experimental runs in advance, which will cover the entire range of interest [3]. This

ensures that all possible conditions are investigated and maximises the chance of

fmding the best operating region for a particular set of goals.

Experimental design techniques provide many benefits which assist an

engineer to reduce the product design time and cost, so reducing the overall lifetime

costs of that particular process. The most apparent of these is that of enabling

quality and robustness to be built into the process from the initial design stage. In

achieving these goals, any factors which may prove important with respect to

process control issues will be automatically highlighted and can therefore be given

careful examination during the fabrication cycle. Additionally, the relative effects

of variations in any of the processing parameters is known prior to fabrication and

hence emphasis can be placed on the controlability and uniformity of the equipment

pertinent to these factors.

133

There are six identifiable stages involved in an experimental design problem

and these can be summarised as follows:

• Problem definition. The factors to be varied and responses to be

observed must be established. In addition, the objective of the

experimental analysis must be determined (see §6.2.1).

. Model specification. The type of model describes the general form

of the equation (i.e. linear, quadratic, cubic etc.) which will be

fitted to the experimental results during their analysis. The

model type will affect the number of runs required and hence

has to be determined in advance of the experimental work.

• Design Specification. Either a classical or computer-generated

design must be selected in order to establish the actual

experiments which are required to be performed (see §6.2.2).

The choice is dependant on the experiment objective previ-

ously specified and will be one of the following:- -

Plackett-Burman

Full Factorial

Fractional Factorial

Box-Behnken 	-

Box-Wilson

• Experimental work. The necessary experiments maybe carried out

in either a standard/structured or random order.

Standard - Run order is organised by variation in fac-

tors. This approach produces a runsheet

which is simpler to follow.

Random - By randomising the run order, possible bias

effects can be eliminated from the results

and it also reduces the effects of factors

which are not being explicitly considered in

the experiment

134

• Analysis of the results. The model(s) must be fitted to the

experimental data either directly or by the use of regressional

techniques. Usually an iterative refinement process is then

applied in order to confirm the modelvaiidity and quality-of-fit.

On this basis, a requirement for additional model coefficients

or the inclusion of extra factors may be highlighted.

• Interpretation of the results. Response surfaces and statistical

results may be calculated and displayed graphically. Response

values for factor settings within the operating region, but not

experimentally determined, may then be predicted using the

fitted models. This permits the optimum factor settings for a

particular experimental goal to be established.

Although each of these stages can be considered individuallywhilst fflus&ating

their role within the overall methodology, their functionality is only realised once

they have been integrated into one complete system. This requires that a solid set

of data structures and interfaces must be developed to fully support the operations

involved. The following two sections provide a brief introduction to concepts

associated with the design objectives and templates.

6.2.1 Design Objectives

There are three main design objectives which 'pay be called upon to analyse

the data from a particular set of experiments. These are Screening, Response

Surface Methodolo'[4] and Taguchi[5][6]. Each objective enables a different set

of information to be efficiently extracted from the experimental results. Conse-

quently, the selection of design objective influences the choice of the template (see

§6.2.2) used to allocate the experimental points within the region of interest.

Screening is specifically intended for the investigation of a large number of

factors (e.g. more than 10), in order to find the most significant factors within a

minimum number of runs. A Plackett-Burman design is normally used to produce

the experimental points for this case and typically requires only one, two or three

more runs than the number of factors to be screened [7]. Naturally, such a reduction

135

cannot be achieved without trade-offs. In this case the penalty for minimising the

number of runs is an inability to estimate any possible interactions between factors.

However, once a suitably reduced set of significant factors has been obtained, they

can be more comprehensively investigated using one of the following alternative

techniques.

Response Surface Methodology (RSM), is a technique for providing a more

detailed analysis of a limited number of factors over their respective operating

ranges. Interactions between factors can be assessed and a series of linear or

polynomial relationships linking the responses to the factors can be determined.

The model relationships are then able to predict responses at any point within the

operating region: By combining the individual responses into one composite

response, an optimised set of factor values may be found which meet a particular

design goal. This technique provides a systematic approach to a

multi-factor/multi-response optimisation problem. Consequently all the complex

trade-offs which were traditionally made in a designers head or via a vast number

of 1-D plots, can now be considered in a structured manner and presented in one

or two contour or 3-D surface plots.

The Taguchi technique, like RSM, provides a series of relationships between

the factors and responses concerned. M before this enables response values to be

predicted for factor settings which lie within the chosen operating region but have

notbeen explicitly determinedby experimentation. In addition, the method permits

the inclusion of small perturbations on each factor value to investigate explicitly

any problems that may arise from poorly controlled or non-uniform factors.

Both RSM and Taguchi require a reasonable number of runs to be performed

in order that the direct and interactive relationships between factors and responses

may be determined. On this basis, it is not advisable to consider more than six or

seven factors using these techniques since the number of runs will rapidly become

excessive. Hence an initial screening experiment is commonly used to produce a

suitable set of significant factors from a much wider range of factors associated with

the process concerned.

136

6.2.2 Design Templates

There are a number of classical experimental designs, all of which have fixed

properties such as the number of runs, number and type of factors and the

appropriate models. For situations where this becomes too restrictive, there is also

a more flexible, but also computationally intensive, D-Optimal design. A brief

summary of each design type is presented in the following paragraphs (further

details may be found in [81).

The simplest design is the Plackett-Burman design which is most commonly

used for screening objectives. It results in the minimum number of runs to assess

the importance of each factor. As shown in table 6. 1, the total number of runs is of

the same magnitude as the factors, even for a large factor count. Once more than

ten factors are included, the choice of experimental points assumes a significant

similarity to that attained using a fractional factorial design and the number of runs

rises slightly.

Number of Factors Minimum

number of

runs

7 8

9 12

15 16

17 20

23 24

27 28

29 32

Table 6.1. Plackett-Burman Designs

137

The second category of design comes under the heading offactorial designs[9],

of which there are two classes, full and fractional. These permit both the main

effects and interactions between several factors to be investigated at once. Using

two levels for each factor, then a full factorial design is appropriate for up to five

factors and results in 2k runs fork factors. This generalises to mk runs fork factors

each at m levels. In other words, all possible combinations of factor settings are

incorporated into the design. Geometrically, a full factorial design may be repre-

sented by the diagram in figure 6.1.

Figure 6.1. Geometric Representation of a Full Factorial Design.

Hence when considering six to eight factors, a fractional factorial design may

provide a more convenient way to reduce the number of runs from that required

by the full factorial design. Th& price to be paid for this reduction is the loss of

capability to measure some of the inter-parameter interactions. Figure 6.2 shows

the geometric representation of a fractional factorial design.

As was mentioned earlier, once the original factor count exceeds eight, then

it is probably worthwhile performing an initial screening exercise to find which of

these are of greatest interest to the problem under investigation. Neither of the

factorial designs include centre points (i.e. points located about (0,0) on the axes

shown above). This means that mathematical techniques cannot be used to assess

138

Figure 6.2. Geometric Representation of a Fractional Factorial Design.

the quality of fit of the models to the data, nor can any estimate for the curvature

of the response surface be obtained. Hence the factorial designs are termed limited

response surface designs.

The remaining two design types are termed full response surface designs in

that they include three level factoring plus centre points. The first of these, called

the Box-Wilson design, is a central composite design[10]. The basis of this design,

as can be seen in figures 6.3 and 6.4, is a central box of points formed from a factorial

scheme which is then augmented by a series of axial outlying points. Depending on

the span of these axial points, two different designs can be achieved, namely Central

Composite Inscribed (CCI) or Central Composite Circumscribed (CCC). If all the

points lie within the factor ranges, then a CCI design is produced. If, on the other

hand, the axial points he outside the factor range, then a CCC design is produced

which enables 'the optimisation and prediction of responses over the entire factor

range.

139

ff Region enclosed by Factor settings

Figure 6.3. Geometric Representation of a Box-Wilson CCI Design.

ff Region enclosed by Factor settings

Figure 6.4. Geometric Representation of a Box-Wilson CCC Design.

140

The second of the full response surface design is the Box-Behnken design[11].

This provides precise, quality predictions over operating regions where linear,

interactive and curvature effects are expected. Three level factor settings are used

resulting in a series of replicated centre points. Figure 6.5 shows the geometric

representation of a Box-Behnken design, in which the points can be seen to lie on

the mid-points of each edge of a multidimensional cube that defines the operating

region.

Figure 6.5. Geometric Representation of a Box Behnken Design.

6..3RS/1

In the preceding sections of this chapter, the powerful nature of experimental

design has been indicated and a brief resumé of both the theory and practise of

applying the technique has been presented. However, in order to support efficient

use of such methods, a comprehensive set of data management, statistics, modelling

and graphics utilities are required. These facilities can be made available through

a multitude of existing software packages, though this frequently results in the

usual interfacing problems found under such circumstances. Alternatively, a

complete software system, offering all of these facilities under an interactive

menu-driven environment, is available from BBN Software Corporation. The 'RS'

series of software is produced as a set of three fully integrated subsystems, RS/ 1"',

141

RS/Discover- and RS/Explore", all of which are presently available for both

VAX/VMS" and UNIX- operating systems. In addition, a version of ItS/i" is

available for operation on PC compatible computers running MS-DOS".

RS/1 provides the main data structures and management modules, which also

includes comprehensive statistical data analysis routines. RS/Discover provides the

main experimental design functionality, covering the experiment definition, data

analysis and data visualisation aspects. RS/Explore provides additional statistical

capabilities to enhance the depth of information available from the basic RS/1 data

structures and RS/Discover experiments. A general user interface to the host filing

system allows data to be imported from or exported to other software applications.

In common with most commercial database and spreadsheet systems, RS/1 has its

own powerful programming language, called RPL, which enables many application

specific operations to be conveniently automated. RPL's major limitation is that its

capabilities do not extend to the control of RS/Discover, which requires all oper-

ations to be performed via the menu-driven interface. Various aspects of the 'RS'

software directly relevant to this work will be discussed in the course of §6.4, but

fully comprehensive details of the software are available in the appropriate manuals

[12], [13], [14].

6.4 Optimised Process Design

In the manufacture of VLSI circuits, process induced variations of device

characteristics can drastically reduce the performance of fabricated products. It is

therefore most desirable from yield, time and economic considerations, that process

conditions are optimised so as to minimise the device sensitivity to these variations.

Strategies, mainly based on engineering judgement (guess-work!) do exist for

producing devices which work at a nominal operating point. However, few strategies

have been commercially implemented which go to the extent of analysing the

operating point and its sensitivity to perturbations in the processing conditions.

Thus many processes exist which are probably not as robust or viable as they could

be, a fact which is hardly altogether surprising given the complex nature of the

effects and interactions between the magnitude of process variables.

142

The experimental design procedures discussed previously in this chapter, lend

themselves ideally to the cause of optimising a process towards a set of performance

and sensitivity goals. Under most conditions, these goals, as set by the process and

device engineers, are known in advance and hence a list of probable factors and

responses requiring investigation can be drawn up. An initial consideration of the

process parameters will most likely result in a substantial number of variables which

could influence the characteristics of the fabricated devices. Therefore, as men-

tioned previously, it is advisable to perform a preliminary screening exercise to

establish the five or six most significant parameters relevant to the application.

Thereafter, a full response surface design could be produced, again using RS/Dis-

cover, to cover the chosen factors and responses in greater detail.

The use of RSM techniques to provide an efficient, structured design and

analysis strategy has been well-known for several decades. However, its application

to the semiconductor industry is much more recent and can be viewed in a novel

manner by applying the methods to simulated results rather than genuine

experimental results[15]. Although the use of experimental fabrication runs to

provide the data is perfectly valid, it is an extremely expensive and slow approach

by comparison. Thus the results are obtained from the combined use of process

simulators such as SUPREM II, SUPREM Ill, SUPRA and device simulators like

PISCES and MINIMS as discussed in chapter 3. Obviously, it is important that

the simulators have been well characterised for the particular process before the

absolute values of their results can be confidently relied upon. The simulation

results are then entered into the RS\Discover database where upon a multi-variable

polynomial is fitted to each response to permit subsequent analysis. Each response

can then be displayed through contour or 3-D plots obtained using the fitted models,

in terms of any of the relevant process parameters. Such visualisation of the indi-

vidual responses allows each one to be assessed in terms of optimum performance,

however, this is more than likely to produce conflicting options which will require

to be resolved. A flow diagram for the basic steps involved in this procedure is shown

in figure 6.6.

143

AS/Discover

Experimental
Settings

Simulation
PROCESS

TOPOGRAPHY

DEVICE

EXTRACTION

AS/Explore

t

lndivfdual
& Composite
Responses

Figure 6.6. Basic flow diagram for simulation based optimisation.

The strength of RSM is that it enables composite responses to be produced

which comprise a combination of the individual responses already produced. These

composite responses can then be minimised or maximised as necessary using both

visual and mathematical techniques, thus resolving any of the conflicts observed

in the individual analysis previously undertaken. The optimal solution to the given

constraints is then provided by the then relevant maxima or minima. In addition,

it is very simple to incorporate further qualifications in order to guarantee a safe

operating region. The final item which is easily performed with RSM is that of

sensitivity analysis. By including terms for the gradient of the composite response

and variances of the process concerned in the analysis, the response sensitivity to

input parameter variations can be incorporated in the final assessment for deter-

mining a safe operating region.

144

Although these experimental design techniques substantially reduce the

number of simulations required for a given problem, there are still a large number

of repetitive file and system operations involved. Whilst these may all be performed

manually, this is wasteful in terms of time and also provides much scope for

introducing errors. Therefore, a more realistic flow diagram for an integrated

optimisation system is shown in figure 6.7 and illustrates the additional features

which have been included to automate the interface between RS/1 and the relevant

simulators. The early development of this additional functionality is discussed in

§6.5 by way of a worked example, however a more detailed discussion of these

facilities may be found in [161 and [17].

II 	AS/Discover 	II

	

Genefc
	

Experimental

	

input Files 	 Se/tb gs

II Data General/tin II

	

Simulation
	

Simulation

Command File
	

Input Files

Sinwiation

PROCESS

IDPOGRAPI -IY

DCCE

EXTRACHON

Simulation
Resufis Fifes

II Data E4ract/on II

API. Comma/u
	

Experimental
Procedure File 	 Results

individual

& Composite

Responses

Figure 6.7. Complete flow diagram for simulation based optimisation.

145

The important point to be appreciated fromthe concept of experimental design

is that the entire process can be thoroughly analysed before fabrication is com-

menced. In this manner most of the problems associated with production can be

investigated and eliminated during design, which once frozen, should provide a

robust, high-yielding fabrication schedule.

6.5 Optimisation Study

The procedures associated with a complete optimisation schedule, as illus-

trated in figure 6.7 above, may be divided into five distinct sections, of which only

three (1, 3 and 5) are directly involved with the optimisation itself. The remaining

two (2 and 4) have been included to automate the interface between RS/1 and the

relevant simulation software with the intention of improving the time taken to

handle all of the necessary simulation files. The procedures also reduce the scope

for error whilst manipulating all of the appropriate simulation input and output

data, the results of which would necessarily be obvious in the subsequent analysis.

Experimental Design 	 RS/1

Simulation input file generation 	RPL and Fortran/C

3.. Simulation

Data Extraction from simulation output RPL and Fortrap/C -

Results Analysis 	 RS/1

A discussion of each Of these steps is best provided by following through a

typical optimisation problem and thus illustrating their role in the overall pro-

cedure. The problem to be aialysed during this case study involves the simulation

of a cMOS IC fabrication process. The factors to be varied and responses to be

observed'thtlisted below:

Factors 	Implant Energy

Implant Dose

Gate polysiicon slope

146

Responses 	Series resistance

Peak electric field

Transconductance

Punchthrough voltage

With these parameters in mind, the first task is to produce the required

experimental design using RS/DISCOVER. This requires that the range of values

for all the factors and responses are nominated. Then when the particular design

specification is chosen, a table will be produced which lists all the appropriate

experimental points. Figure 6.8 shows the summary screen provided once the

design process has been completed and highlights the significant design features

and experimental status.

Summary of THESIS: 	Process Optimisation Example
(Created 09-AUG-92 16:05:48)

Controlled factors: 	SLOPE, OOSE, ENERGY
Rcsper.ses: 	rUNcl:THROUGiVGLTAGE, PEAK _FiELU,
Formulas: 	COMPOSITE-RESPONSE

Objective: 	RSM
Design Type: FULL-FACTORIAL
Model Type: 	QUADRATIC

MODEL...... 10 terms
DESIGN...,,, 27 runs
WORKSHEET... 27 total runs (0 completed)

I FACTORS
2 SPECIFICATIONS
3 RESPONSES
4 PERFSTAT
S MODEL
6 DESIGN
7 WORKSHEET
8 AIJTOGEN
9 NEXT

Generating expanded terms.
Generating FULL-FACTORIAL design.
Generating standard ordered worksheet.

Figure 6.8. Summary of Experimental Design details

RS/ 1 keeps much of its information stored in the form of tables, some of which

are directly accessed by the user, some which can be indirectly accessed and others

which are for its own use only. The new design is stored in the WORKSHEET table

and this has sufficient space allocated to store all of the assigned factors and the

responses, which are as yet unknown. Figure 6.9 illustrates part of this table,

showing the design data and the space for the results to placed in due course.

147

	

I SLOPE 	2 DOSE 	 3 ENERGY 	4 PUNCHTHROUGH_VOLIAGE

	

(DEC) 	(ATOMS/CM*3) 	(Key) 	(VOLTS)

	

I 	 70 	 le+13 	 30

	

2 	 90 	 te.13 	 30

	

3 	 110 	 Ie.13 	 30

	

4 	 70 	 Se - 14 	 30

	

5 	 90 	 Se+14 	 30

	

6 	 lID 	 Se-14 	 30

	

7 	 70 	 le-IS 	 30

	

8 	 90 	 le+l5 	 30

	

9 	 110 	 le-15 	 30

	

10 	 70 	 le+13 	 60

	

II 	 90 	 le+13 	 60

	

12 	 110 	 le- 13 	 60

	

13 	 70 	 5e+14 	 60

	

14 	 90 	 5e.14 	 60

	

IS 	 110 	 Se.14 	 60

	

16 	 70 	 Ie+15 	 60

	

17 	 90 	 Ie+15 	 60
Enter /HELP for cunmand explanations,
Row I Column 3: [30]

Figure 6.9. Part-filled experiment worksheet table

Within this worksheet, the data in one line contains the values for each factor

for one particular simulation. Although this could be manually transferred into an

appropriate simulation text file, the task lends itself to automation. Unfortunately,

ES/i stores all of its table data in a machine readable form, so it can not simply be

accessed directly and it must first be exported to the host filing system as an ASCII

file, as shown in figure 6.10.

RSIDiscover

21 &~perllmen
Settings

Figure 6.10. Flow diagram for exporting ES/i design data

As mentioned previously, RS/1 contains a very powerful programming lan-

guage, RPL, which enables the user to write mini-programs, called procedures, that

can perform most RS/1 operations. Thus a short procedure was written, which

148

exports the design data to an ASCII file after performing a number of checks on

both the data and the file system. An excerpt of this procedure is shown in figure

6.11 and the resulting text file is displayed in figure 6.12.

/° This procedure allows the user to create a system rile to dump the the InputS
/0 	the rile created can then be used in generate 	 $

Procedure:

temptable - 	o op s - : / 	name of temporary table to create * /
expnarne - getobject(Enter experiment name: -. 	experiment):
It objSexists(expname 	experiment -) then

/0 case when experiment exists 0/

begin:
deslgntbi 	cat(expname, Qworksbeet):
if tabieexists(designtbl)tlien

/0 case when worksheet exists 0/

begin:
factortbl 	cat(expname,@factore):
IF tableexists(factortbl) then

ft case when factors table exists Of

- M1croEMACS 3.9e (WRAP EXACT ASAVE) -- edit. tmp 	File: /u3/wjca/rsuserhnme/$

Figure 6.11. Extract from the "DUMPTABLE" RPL Procedure

90: leo 13: 30

110: 1*+ 13:30

70:5. USe. 14:30
90:5,05e+14!30
110:5,05e+14130

10: Ie+ 15:30
90: le+1530

110: ie+ 15:30
7011e+13:60

90:10+13:60

110:1 e+ 13:60

70:5. OSel- 14:60
905.OSe+ 14:60

I Io:s.ose+ 14:60
70: letis: 60
90: 1et1560

110: Ie+ 15:60
701]e+13190

9011e+13190

110:10+ 13:90
?o;s.ose. 14:90

90:5.05e+14190

Figure 6.12. ASCII design data file

FtP]

P]&next task, as depicted in figure .6.13, is to produce an input file for the

appropriate srau~hator from the data in each line of this ASCII file and also produce

a batch command fileNto actually perform all the simulations. Originally, this was

achieved using a program written in FORTRAN 77, a language chosen not for its

lexical capabilities, but because of constrajits applied by the VMS operating system

in use at the time. The software was subsequently re-written in 'C' and endowed

with greater functionality and robustness on returning to ,a UNIX platform towards

the end of the project.

Generic
	

&perknenta/
Input Ales

II Data Generation II

Simulation
	

Simulation

Command Ale 	 InDut Ales

Figure 6.13. Flow diagram for generation of simulation files

This process requires the following information in order to produce the

necessary simulation files for the correct simulation package: a generic simulation

input file, highlighting the factors to be varied; the design data itself; general

information pertaining to file name conventions, the simulator to be used, data

directories and other details which will be discussed later. The generic simulation

file contains a full description of the process to be modelled with the exception that

the parameters under observation are replaced by a marker symbol, "?n', as can be

seen in the file sample shown in figure 6.14 (?1 and ?2). These markers are then

replaced by the necessary experimental values taken from the ASCII design file.

The generalised procedure data file contains all the information required to

control the entire 'generation' sequence and as will be seen later, the subsequent

'extraction' process. It is this file which provides much of the flexibility offered by

150

TITLE 	THESIS Process Optimisation Example

$ 	 Initialise the silicon substrate.
INITIALIZE <100) SILICON PHOSPHOR-10RESISTIV

THICKNESS-I0.0 XDX-O.5 DX-0.002 SPACES-BOO

$ 	 GATE Oxide
DIFFUSION 	TIME-5 TEMPERAT-850 T.FINAL-900 F.N2-0.0 F.02-21.1
DIFFUSION 	TIME-S TEMPERAT-900 F.1420.0 F.0221.0

$ 	 Polyslllcon deposition ssoA
DEPOSIT 	POLYSILICON TEMPERAT-600 THICKNESS-0.055 SPACES-10

$ 	 Enhancement implant
MASK 	APPLY NAME-ENHANCE
IMPLANT 	BORON DOSE-?I ENERGY-?2
MASK 	REMOVE

-, MIcroEMACS 3.9e (WRAP EXACT ASAVE) 	generlc.dat -- File: generlc.dat

Figure 6.14. Generic simulation input file

this system and enables it to be used for virtually any application under a number

of host environments. A segment of this data file pertaining to the generation

process is shown in figure 6.15.

tIIIIIIIItItIIIIIJIIf BEGIN OF CONTROL FILE ,IIItIIIIIJIIuIIJIIIIIIuuIIIuIIII$
111111 Title of experiment: tIttlIIItIIIIIJIJIIIJfffJiJIIIIJIIIIJIuIIuIIIIiiuii$
title Thesis Process Optimisation Example

1111111 Simulator name:(one word only) tIIIlIJJtJIItIIIIIIIIJI$IIIIIIJJfIIltiit$
simulator suprem

111111 Design file name:(ie file in which data to simulator is stored)IIItIIII$
design - name exdes ign .dat

fill# Generic file name 	(i 0 file which simulator accepts and contain search - Va $
generic-name rs Igen .dat

1111111 Prefix For drive (simulation) rile name: tillilJJlJJJJllJJlJlllll$$lfJJ$
prefix run

1111111 Extension for drive (simulation) file name: ltiiilIIllIlllIlllllilllIJJ$
extension .dat

1111111 No. of drive (simulation) files to be generated: iiitliliilIiIiilIIilli$
no_runri les 27

1111111 No. or input Factors being varied in experiment:
no-factors 3

1111111 Names of factors to be varied in experiment: (separated by spaces) 1111$
factors dose energy slope

1111111 Delimiter separating data values In design rile: (one character oniy)ll$
delimiter

1111111 Variable to search for in generic file: (one character only) 1111111111$

Mi cr oEMACS 3.9e (WRAP EXACT ASAVE) -_ control. dat •. File: control . dot"----

Figure 6.15. "Generate.dat' - Overall procedure details

151

Once the GENERATE process has been performed, a full complement of

simulation input files, each containing a unique set of experimental settings, will

exist, as can be seen in figure 6.16 where the values, "1e12" and '30" have replaced

the marker symbols.

TITLE 	THESIS Process Optimisation Example

$ 	 Initialise the silicon substrate.
INITIALIZE <100> SILICON PHOSPHOR-10RESISTIV
+ THICKNESS-10.0 XDX-0 .5 DX-0.002 SPACES-BOO

$ 	 GATE Oxide
DIFFUSION 	TIME-S TEMPERAT-850 T.FINAL-900 F.1,12-0.0 F.02-21.1
DIFFUSION 	TIME-5 TEMPERAT-900 F.1,12-0.0 F.02-2I.0

$ 	 Polysi I icon deposition SSOA
DEPOSIT 	POLYSILICON TEMPERAT-600 THICKNESS-0.055 SPACES-10

$ 	 Enhancement implant
MASK 	APPLY NAME-ENHANCE
IMPLANT 	BORON DOSE-IEI2 ENERGY-30
MASK 	REMOVE

-° MicroEMACS 3.90 (WRAP EXACT ASAVE) -- runOl.dat --- Ft e: rt,nOI.dal

Figure 6.16. Completed simulation input file

In addition to producing all the simulation files, GENERATE also creates a

batch file to perform all of the simulations and uniquely rename all of the output

files for subsequent perusal. Figure 6.17 shows part of this batch file for the current

example. The syntax for this batch file is of course system dependent and hence

there is an entry in the general data file for the operating system in use.

All the necessary information has now been produced to enable the simulations

to be performed. This is done by executing the batch file produced by the GEN-

ERATE software. The value gained by this approach is that the methodology can

be applied to almost any repetitive or batch-oriented process since all the required

details are contained with the data file "generate.dat". Once all of the simulations

have been performed, the appropriate information must be extracted from each

152

echo START OF SIMULATION
c
suprem 	/runOOI .dat
my ./s3out .Is3outrunOO1.dat
my RESULTS . /RESULTSrUaOOI .dat
rm option
cp ./OPTIM ./uptim
suprem 	. /runOO2.dat
my ./93out ./s3outrun002.dat
my RESULTS . /RESULTSrUnOO2.dat
my./option . /tempfi I e
cat ./tempfiie ./OPTIM> ./option
suprem 	/run003.dat
my ./030ut .1s3outrun003.dat
my ./RESULTS ./RESULTSrUn003.dat
MY ./optirn./tempflle

cat ./temptlle ./OPT1M > ./optim
suprem 	. /riin004.dat

my ./s3out ./93outrunOO4.dat
my ./RESULTS ./RESULTSrun004.dat
my . /optim . /tempfi I e
cat . /tempf lie 	/OPTIM) ./option

-- Micro EKLCS 3.9e (WRAP EXACT ASAVE) •- runfiie -- File: rurifile

Figure 6.17. Simulation batch command file

output file and returned to the RS/1 worksheet. As before, this involves two pro-

cesses, the first of which is depicted by figure 6.18 and is concerned with extracting

the chosen response information from the simulation output.

Sithulatlan

Results Ales

II Data Extraction II

Experimental

Results

Figure 6.18. Flow diagram of data extraction process

Extracting the correct data from each simulation file is not a trivial process,

since the location of a given piece of information may vary depending on how the

simulation proceeded. Early versions of the extraction software used a similar

method to that employed to generate the input files, namely a generic output file,

with the chosen responses marked as before. Although this worked more often than

153

not, it was not a robust or flexible solution and was dropped in favour of the current

lexical matching technique. This required the user to stipulate a character sequence

pertaining to the required result, plus the number of words and/or lines between

these characters and the actual response. Because many phrases, for example

"Oxide Thickness", may be repeated a number of times within the output file, the

user can specify which occurrence to search for. Other information such as which

files to perform the extraction on and which file each extracted response is to be

placed is all kept in the latter part of "generate. dat", as can be seen in figure 6.19.

final - commands echo STOP

1111111 No. of files to put extracted data JIIltItIIIIIttIuIIJJJJIJIIpj$fIIf5
RD-extract-files I

1111111 Names of files to put extracted data: (separate by spaces) tlIIlIIII*IlS
extract - names 	rsl
1111111 No. of responses in experiment: IIIIIIIIIIIutIIIIIIIIJIJIIJJfffIJIjfjJtS
no-responses 4

1111111 Names of responses:(separate by spaces) IIIIIIIIIIIIIIItIItIIIIIIIII$J$$
responses resistance pkfieid gm vpt

1111111 Strings to search for to locate data: IIIIllIIIIIIlIIIIIIItuIJjJJJJJfl$
search - strings Resistance Electric Transconductance Punchthrough

1111111 No. of occurrence of each string: (count as one if string occurs more IS
SUIt!1 than once in a line) IJIIIIIIIIIIJIIIIIfIIIIIIIIIJjIIIIpIIIII$tiiiijijjS
occurrence I I 2 i

11111 No. of lines at which data is ON after string occurrence has been found: I
data-line - no I 0 2 4

11111 position of data i.e. on which no. of word of the line is data situated: $
data-position 5 6 4 2

1111111 At which file should extracted data be written to: IIIIIIIJIJIIIIIfIII$
111*111 (ignore If no. of extact file is only one) IIIIIIIIIIIIIIIIIIIItIIIIIIIS
extract_destination rsl

IIIIItIIIIIIJ END OF CONTROL FILE IIIII$IIJIIIJIIIIIIIIIIIIIIIIIIIIIIIIIIIJIJJI$
* Mi cr oEK1ACS 3.9e (WRAP EXACT ASAVE) 	control. dat 	File: control. dat

Figure 6.19. "Generate.dat" extraction information.

A second program, again written in 'C', performs all the requested data

extractions and places the results into the specified ASCII text files. The current

version of this EXTRACT software informs the user of any unsuccessful extraction

attempts and performs a great number of error checks to ensure robustness. The

final task to be performed is that of importing all of the results back into the RS/1

experiment worksheet, as depicted by figure 6.20.

This process is performed by executing another RPL procedure, similar to the

export one discussed earlier, which reads in the response values from the

154

RPL Coinmandl 	 I Experimental
Procedure File 	 I Results

II 	AS/Explore 	II

Figure 6.20. Flow diagram for importing results to RS/1

user-specified ASCII file directly into the appropriate columns within the experi-

ment worksheet. Once this has been achieved, the completed worksheet table takes

on the appearance of that shown in figure 6.21.

0 	4 PIJNCUTHROUCH_VOLTAGE 5 PEAK - FIELD 6 TRANSCONDUCTAI4CE
(VOLTS) 	 (XV) 	 (Mhos)

I 	 19.80 	 280 	 5.20
2 	 17.80 	 340 	 6.70
3 	 14.80 	 560 	 8.80
4 	 19.70 	 310 	 6.20
S 	 16.70 -- 420 	 il.7C 	 - 	--
6 	 12.70 	 640 	 980
7 	 16.30 	 370 	 8.00
8 	 14.30 	 480 	 9.50
9 	 11.30 	 770 	 11.60

10 	 17.90 	 260 	 6.20
II 	 14.90 	 320 	 7.70
12 	 11.90 	 530 	 9.80
13 	 16.60 	 290 	 7.20
14 	 13.60 	 400 	 8.70
IS 	 . 	10.60- 	. . 	.- 	-620 - 	 10.80 	 -.- 	 -

16 	 14.20 	 360 	 8.30
17 	 11.20 	 470 	 9.80
Enter /HELP for command explanatIons.
Row I Column 5: [280)

Figure 6.21. Complete experiment worksheet table

Now that all the simulation data is residing within RS/ 1, it must be prepared

for analysis by fitting a model to each one of the responses in turn and confirming

that the fit is acceptable. RS/EXPLORE, the statistical analysis part of RS/1, can

perform this task automatically, only pausingto inform the userwhen discrepancies

are found. It is very important that this process is carried out if any confidence is

155

to be placed in any analysis of the simulation data. One erroneous data point is not

necessarily obvious to the eye and yet can make an appreciable alteration to the

model coefficients.

Once the models have been successfully fitted to all the responses, then

Response Surfaces may be displayed as a contourplot for each response in terms of

the various input factors. The two-dimensional nature of these contourplots means

that there can be two variable factors along the x- and y-axes, and any other factors

mustbe specified atafixedvalue. Figures 6.22 and 6.23 show two particular response

surfaces for the punchthrough voltage. This individual surface is plotted against

the full range of implant dose and energy values, but at a fixed value for the

polysilicon slope in each case.

CntourpI t 4929• 	
l0U092 0 .4 Pape I

PUNCHTIIRO&JlOL7AGz
SlaPs - 10

00050

- VP?

Figure 6.22. Punchthrough voltage response for a 70 0 slope.

It is then posible to interpolate the value for a particular response over any

part of the simulation region using the model coefficients and so obtain response

_values for points where no simulation was actually performed. Although it is --

156

Contoii,pl*tt4i,oi 	 I OU0tZ 0:47 P.c.

PUWCIITj4R006VOLTAGZ

- VP,

Figure 6.23. Punchthrough voltage response for a 900 slope.

therefore possible to produce a large number of these individual surfaces for each

response, it is not necessarily inherently obvious how each factor may be traded off

agaihst another in order to arrive at a particular Set of response conditions. This is

of course the underlying concept of process optimisation and it is rarely possible to

visually assess all of the parameter interactions. However, apart from displaying

individual responses, it is also possible to produce a Composite Response which

incorporates any number of responses and/or functions of responses, into a single

surface. In this way, it becomes feasible to find a set of input conditions which will

maximise or minimise each esponse as desired and hence arrive at a suitable

operating region. For the optimisation example illustrated, it has been decided that

optimal device performance will result when the following response conditions be

met.

157

• 	Maximised punchthrough voltage

• 	Minimised peak electric field

• 	Maximised transconductance

• 	Minimised series resistance

The method employed in constructing a composite response is to produce an

overall expression which can either be minimised or maximised. For this example

it was decided to minimise the value for the composite response, and therefore it

becomes necessary to convert any expression which needs to be maximised into a

form requiring minimisation, i.e. minimise the inverse expression. Hence the

approximate form taken by the composite response is shown in equation 6. 1, where

a, b, c and d are weighting factors.

I I 	IE k' 	1 1 '\ 	
.
IR'\

CR=a 	
'\ b
) —+d T) VPt

It is also advisable to normalise all the responses by their mean values, so that

the issues of scaling or units of each quantity may be ignored. Equation 6.2 shows

the final form for the composite response, where all factors have been equally

weighted and then normalised about their mean values.

(13.13'\ (EPk '\ (8.79\ (R, 	 (6.2)
CR=i

\ V,,) 447) k Gm) k675

Figure 6.24 illustrates the composite response which has been plotted against

the implant dose and energy at the fixed 90 0 polysilicon slope value. From this plot,

it can be seen that an operating point selected from the lower, right-hand region

of the display will meet the conditions previously set.

This technique can then be further extended to assess the sensitivity of these

responses to variations in each factor by displaying the appropriate response

derivatives instead of the responses themselves. Hence the potential exists to locate

an operating point for the fabrication process which meets a number of specified

constraints and yet remain relatively undisturbed by small, but realistic, variations

in the input conditions. It is important to remember that this analysis is only as

accurate as the simulation data it has been provided with, but if the simulation

158

ContootpOot:49314
10—Moo-92 SolO P.g. I

CCSGOSI TE_RSSPDNSE
SLOPE - 00

r
3 0 	

3 05
3

3.15

3-71

NN N :NNN

CR

Figure 6.24. Contourplot of a composite response

packages have been fully calibrated then an acceptable level of confidence may be

placed on any analysis undertaken and the concept of design for manufacturability

has been fully implemented.

6.6 Sunintary

This chapter has introduced the concept of experimental design methods and

a brief explanation of their underlying techniques has been presented. One par-

ticular software system, namely RS/1", which implements experimental design

techniques and manages the necessary databases is discussed and reviewed. The

application of this simple, but powerful methodology, to present and future VLSI

processing is then shown with the unusual approach of employing calibrated

simulations to provide the results instead of experimental data. In this role,

experimental design can not only ensure more robust process designs, but also

enable them to be easily optimised against a set of performance criteriawhich might

159

pertain to a particular application. It is important to appreciate that the compu-

tational requirements are still excessive and that results are slow to acquire.

However, if this hurdle can be overcome, then widespread use of this powerful

strategy must be openly welcomed in commercial operations in order to ensure

more economic and efficient fabrication processes. The next chapter will describe

research carried out on a method of reducing the problem of computational costs

in this area.

160

References

0. L. Davies, "The Design and Analysis of Industrial Experiments", Hafner

Press, New York, 1954.

G.E. Box, W. G. Hunter and J. S. Hunter, "Statistics for Experimenters", Wiley,

New York, 1978.

N. R. Draper ad W. G. Hunter, "Design of Experiments for Parameter

Extraction in Multiresponse Situations", Biometrika, Vol. 53, 1966, pp525-533.

R. H. Myers, A. I. Khuri and W. H. Carter, "Response Surface Methodology:

1966-1988", Technometrics, Vol. 31, No. 2, 1989, ppl37-157.

G. Taguchi, "Introduction to Quality Engineering", Asian Productivity

Organisation, Tokyo, 1986.

E. C. Harrington, "The Desirability Function", Industrial Quality Control, Vol.

21, 1965, pp494-498.

R. L. Plackett and J. P. Burman, "The Design of Multifactorial Experiments",

Technometrics, Vol. 25, 1983, pp279-284.

G. J. Hahn, discussion of "Experimental Design: Review and Comment" by D.

M. Steinberg and W. G. Hunter, Technometrics, Vol. 26, 1984, ppllO-ll5.

C. R. Hicks, "Fundamental Concepts in the Design of Experiments", Holt,

Rinehart and Wilson, Montreal, 1964, pp75-92.

G. E. Box and N. R. Draper, "Empirical Model-building and Response Surfaces",

Wiley, New York, 1987, p306.

G. E. Box and D. W. Behnken, "Some New Three Level Designs for the Study

of Quantitative Variables", Technometrics, "Vol. 2, 1960, pp455-475.

"RS/1 Users Guide", BBN Software Products Corporation, Cambridge, MA,

USA.

"RS/Discover Users Guide", BBN Software Products Corporation, Cambridge,

MA, USA.

"RS/Explore Users Guide", BBN Software Products Corporation, Cambridge,

MA, USA.

161

A. J. Strojwas, introduction to "Statistical Design of Integrated Circuits", Ed.

A. J. Strojwas, IEEE Press, 1987, ppl-2.

G. J. Gaston, W. J. C. Alexander, L. J. Clarke, A J. Walton, "PARTICS: A

Parallel Taskfarm for Integrated Circuit Simulation", Edinburgh Parallel

Computing Centre Technical Report, EPCC-TR91-08, 1991.

R. Ford, "The Application of Taguchi Methods to the Optimisation of IC

Fabrication Processes", B.Eng Honours Project, HSP794, Department of

Electrical Engineering, University of Edinburgh, 1991.

Never replicate a successful experiment

Chapter 7

Parallel Implementation of Process
Optimisation

7.1 Introduction

The important role of simulation procedures in the design and/or optimisation

of semiconductor fabrication schedules has been illustrated during the preceding

chapters and requires little elaboration here: It has also been shown that the

application of experimental design techniques enables a reduced data set to provide

comprehensive analysis over the entire region of interest. However, even on this

minimised data set, it is not hard to envisage how the total number of simulations

can escalate, given that each design point may require many different simulations

(e.g. process, device, parameter extraction, etc).

To date these simulations, when attempted, would generally have been per-

formed as one single serial batch process on an available workstation or minicom-

puter system within an engineering facility. Unfortunately, this approach has a

number of drawbacks associated with it. The most obvious of these is the CPU

limitation and consequently the elapsed time between batch submission and

completion. Additionally, the memory and disk space claimed by such software

usually renders most typical hardware platforms more or less useless for all but the

smallest of other applications, due to the inefficiencies of continually swapping

processes. Realistically, this either necessitates the provision of a dedicated

simulation machine or enforces a limit on the frequency and size of the tasks

submitted. Neither approach is particularly desirable or constructive for a com-

mercial manufacturing or development establishment.

The second problem lies in the enormous number of data files which need

verification and unique identities before each individual simulation is performed.

Unless a robust method for controlling the file system is employed, then great scope

exists for the wrong files to be used for one or more simulations leading to totally

erroneous results.

163

One solution to this may be found by applying the research discussed during

the course of Chapter 5, whereby a parallel version of each software package runs

on a transputer network. This dedicated performance port can substantially reduce

the overall computation time by accelerating every simulation and in addition it

relieves the host machine of the most intensive computation. However, the

resources required to develop parallel codes for all the software packages that might

be required becomes excessively costly in economic and manpower terms as was

clearly illustrated in Chapter 5, when a parallel version of SUPREM II was under

development.

An alternative strategy can be considered for multiple simulations associated

with the experimental design techniques previously described, since the problem

can be broken down into subsets of independent task. Such a scenario may be

referred to as operational parallelism and is ideally suited to a task farm solution

(see Chapter 4.). Here, the individual tasks are performed on any available processor

in a given network, each of which executes a serial program on a number of data

sets. Using this approach, an approximately linear increase in the overall per-

formance can virtually always be assured as the number of computational processors

is increased. A more detailed analysis of the attainable performance and its limiting

factors is provided later in this chapter.

The application ofa task farm system to the computational problems presented

by the Design For Manufacturability (DFM) issue, provides many advantages over

its rival solutions. Each application software package only has to be compiled for

serial execution on a single processor. Porting such software generally presents

relatively few difficulties providing that the code does not rely extensively on system

dependent features. An objective evaluation of the packages that would typically

require porting for the particular application under consideration is made, then the

issue of system dependence should not create many problems. The individual

packages are frequently supported on a variety of platforms and thus it is in the

vendors' own interests to minimise such dependencies. With this in mind, under

most circumstances it is therefore relatively simple to create a comprehensive

164

library of binary codes capable of running on the farm. The one outstanding issue

which prevents progress is the availability of the source code. However, although

most software vendors are understandably unwilling to release their source code,

other than at extortionate prices, they can be more amenable to providing

cross-compiled binary code for the transputer.

Little imagination is required to see how it is then feasible to produce an very

flexible computing environment, whose scope ranges far beyond the bounds of

applying DFM to the semiconductor industry. A selection of such applications will

be proposed and discussed later in this chapter (7.4).

This chapter discusses the design and development of one task farm system

to provide an efficient and economic environment within which the DFM concept

previously presented can be pursued. Firstly an overview of the entire hardware

and software system will be provided, followed by a more detailed discussion of the

constituent modules. Thereafter, the link with the RS/1- experimental design tools

will be shown. This automates the generation of the simulation data files, the

subsequent program execution and extraction of the desired Output data, as

required by a particular experiment. Finally, the system performance will be

demonstrated using a mixture of SUPREM II simulations and a set of programs

designed specifically to enable the effect Of altering the balance between com-

munication and computation to he observed. Consequently, this allows the overall

system performance to be concisely specified and permit users to maximise the data

throughput for each application.

7.2 System Overview

The design of the task farm architecture is most effectively illustrated by

investigating, in the first instance, the system services required to port a serial

application onto a single transputer. Then the subsequent replication of these

services for multiple applications enables the modular structure of the complete

system to be defined. Figure 7.1 shows the starting point for this work by illustrating

a general application running within its original host environment. Although a PC

165

host has been depicted in the following illustrations, any of the hosts currently

available to support transputer systems may be used. At present these are IBM PC

or compatibles, NEC PC, DEC MicroVAX II or Sun-3 [1].

M I Hard Disk

PC Host

L±±±±:? d

Keyboard

Figure 7.1. Application running within host environment.

- 	There are two particular points to be highlighted in this generalised view of

a typical application. Firstly, the only assumption made of the host is that the

application only accesses the screen, keyboard and file system facilities by standard

calls to the run-time library. Secondly, it is significant that this scheme provides

no access to host-dependent interfacing features. As will be discussed in §7.2.1.3

such facilities can be made available indirectly. Figure 7.2 shows the system once

the application has been ported in its entirety across to a single transputer. This

may be described as a flat port, in the sense that the program structure remains

completely unaltered.

The transputer communicates with the host along a single link which is

connected to the host bus via a dedicated link adaptor. A simple server program

runs on the host at the same time as the transputer-based application in order to

provide access to the screen, keyboard and filing system. A master/slave relation-

ship exists between the transputer and host, with the transputer assuming the

master status and initiating all the communication messages. Within this system

architecture, the transputer connected directly to the host bus is known as the root

transputer. Additional transputers can be connected to the root transputer using

166

Host 	 Root

VDU 	 Hard Disk

er 	
Uon

ME
Keyboard

Figure 7.2. Serial port to a single transputer.

any ofits vacant links. However, regardless ofthe number of processors in a network,

the single link to the host bus provides the sole route for all system service access.

Thc&ft'bct of this will vary depending on the functionality of the proce sses placed

on each processor. For example, if an application lends itself to algorithmic

parallelisation, (i.e. employing concurrent execution of separate functional mod-

ules) then wherever possible, all the I/O modules would be placed on the root

processor where direct access to the host bus is available. Equally, in certain parallel

application such as ray-tracing there is no system I/O required by the computing

modules and again no problem exists. Unfortunately, the generalised task farm

system which is being designed here, requires that all the computing processors

have access to the system I/O just as though it were running either on the host or

on the root transputer and thus possessed a direct link to the system services. A

solution to this may be found by providing a multiplexing facility on the root

transputer which provides each processor attached to it a communication path with

the server process on the host. Thus, the system now appears as depicted in figure

7.3.

167

Host Root

PU\ JHfl

from..ervr To

k °—) Workw

Figure 7.3. System structure showing I/O multiplexor.

Within a task farm environment, each of the computing processors is generally

referred to as a worker and the controlling process as either the farmer, master or

driver process. With only four physical links on the Txxx series of transputers, a

maximum of three workers may be directly attached to the root processor, which

somewhat limits the computing power available. Therefore, is becomes essential to

introduce a method of routing messages around a transputer network from pro-

cess(or) to process(or) to increase the number of workers. Such routing facilities

may be simple, topology-dependent tasks or far more intelligent,

topology-independent processes. The issue of inter-process(or) communications

will be discussed later in §7.2.1. The system now stands as shown in figure 7.4 which

includes all the modules presented up to this point.

Host 	 Root 	 Worker

HwdDk

Z) fronaw

FUN
Keyboard

Figure 7.4. System structure showing worker and routing processes.

169

The performance attainable from a task farm system should be linearly related

to the number of processors in the farm system. However, by multiplexing all of

the standard system I/O channels onto a single channel pair, a potential com-

munications bottle-neck has been introduced. The actual degradation in system

performance will of course depend on the volume of traffic on these links and hence

it is essential to minimise this. In considering this matter, it is important to reflect

on the volume of communication traffic in relation to the computation done in

between. As will be explained in §7.2.1.3, the data protocol supported by both of the

standard server processes available, is excessively complex and verbose. It is,

however possible to simplify the data transmissions across the farm channels, since

the protocol is fully documented [2],[3] and the precise format of every command

is known in advance. Each worker therefore has a process running concurrently

with the application which compacts the out-going server data for transmission

across the farm channels and expands the in-coming data before passing it back to

the application. Obviously, this procedure is repeated in reverse on the driver

processor for communication with the server process across the host bus interface.

The last major module lies only on the driver processor and this controls the

farm's operation - a manager process. This takes responsibility for supplying each

workerwith the relevantprogram code and datawhen required aswell as monitoring

the status and performance of each worker. A more detailed explanation of the

manager functions is provided in §7.2.4. Amuch simplified manager process resides

on each worker to supervise the loading and execution of the program codes passed

to it.

Hence, the overall system design may be schematically represented by figure

7.5. In the following sections of this chapter, the function and implementation of

each module will be reviewed in detail.

169

Host 	 Root 	 Worn,,

J __JLJ
Du Ii

Figure 7.5. Schematic representation of the overall system architecture.

7.2.1 Communication Procedures

7.2.1.1 Introduction

Before discussing the communication requirements and capabilities of the

Txxx series of transputers, there are a few background concepts relating to this

issue which would be most appropriately explained at this juncture.

The rationale behind the design of a transputer based system is closely linked

to the relationship between the software and hardware architectural models.

OCCAM may be considered as a 'process-oriented' language which enables con-

current systems to be defined in terms of an interconnected set ofproceàses. These

processes can be regarded as black boxeswhich can be specified completely in terms

of their communication requirements along the point-to-point channels which link

them together. Internally, each process can then be designed as a further set of

communicating processes, thus automatically generating an inherently hier-

archical design structure as illustrated in figure 7.6.

For the sake of completeness, it should be pointed out that although processes

may be written in any supported language, any non-OCCAM ones are subsequently

encapsulated by a simple OCCAM harness. This serves to make them appear as an

equivalent OCCAM process and relieves any possibility of restricting their use

within a multi-process (and hence multi-language) environment.

170

Figure 7.6. A collection of communicating processes.

This OCCAM programming model is implemented in hardware by the

transputer itself. Within the bounds of a single processor, concurrent processes

share the CPU/FPU time and inter-process communications are performed by data

transfer in memory. Where multiple processors are involved, then the inter-process

communications are directly implemented by the physical links. However, the

important notion supported by OCCAM is that the logical behaviour of the software

is independent of the mapping of processes to processors. This allows for flexibility

and incremental expansion of transputer based systems. Figure 7.7 demonstrates

this by showing two possible implementations of a three process system.

Logically, these two systems are identical, but will differ with respect to their

real-time response. Consequently, a program maybe designed and tested on a single

transputer before being transferred to a network. Additionally, this also allows extra

processors to be added to a network or alternative transputer configurations to be

investigated without any alteration to the process definition of the system. How-

ever, there is one limiting difference between the OCCAM model and the Tm

hardware architecture which, under certain circumstances, can prevent the

completely arbitrary process to processor mappings suggested above. The OCCAM

point-to-point process interconnection scheme is simply supported for concurrent

processes on a given processor, since the channels are implemented by memory

locations. Hence it is possible to define and use a large number of channels within

171

n w

WON
d 	71

•
NOW 'N

M

Single Processor Mapping
	

Multiple Processor Mapping

Figure 7.7. Different process-to-processor mappings with identical logical results.

the confines of a single processor. If on the other hand, some of these processes are

now placed on neighbouring processors, there are only four physical links onto

which the relevant channels may be mapped and there-in lies the problem. ri-

manly, there are three potential solutions to this dilemma, of which two are relevant

to the Tm transputer series. Firstly and least favourably, this hazard may be

considered at the process design stage and the number of inter-process channels

limited at all levels in the hierarchy. This then permits total freedom in the process

to processor mappings when the system is subsequently configured. Avariation on

this concept, is only to limit the channel usage at particular process hierarchies and

in this case it is the selection of permissible process to processor mappings which

becomes limited. Both scenarios compromise the conceptual freedom of system

design and implementation built into the OCCAM language and are thus unde-

sirable. The second approach is to produce a dedicated communications harness

which automatically multiplexes the users' channels onto the available links. Two

examples of such harness' which have been developed on the Meiko Computing

Surface at Edinburgh University are TITCH[4] and TINY[5]. The former was

172

- OCCAM based and the through-routing overheads associated with it were fairly

high - in excess of 330 microseconds[6]. The development of TINY evolved away

from traditional OCCAM programming with processes 1 sharing data buffers and was

subsequently written in a combination of C and transputer assembler alone. With

these improvements, the overhead was reduced to 20 microseconds, a value that

could only be further diminished by hardware modifications within the transputer

itselfl71. TINYwas chosen as the harness for this task farm system and consequently

it will be discussed in greater detail in §7.2.1.2. The final solution is only applicable

to the recently announced T9000 transputer, which is capable of supporting virtual

channels across its four physical links through the use of avirtual channel processor

within the hardware architecture[8]. This permits channels to be defined between

any two processes using hardware as opposed to the software solution provided by

TINY. Apart from the upgraded performance to be attained from the T9000, this

virtual channel capability must be the greatest single improvement over the Txxx

series of transputer.

Throughout the course of the following subsections, an outline of the role and

structure of each major process within the system will be presented. Although the

system has been entirely coded, compiled and configured using 3L Parallel C [9],

OCCATvI has been used for the sake of clarity in many of the pictorial representations

of code segments since it can explicitly display concunencysing the PAR construct.

Any coae examples provided within the following text have been written with the

intention that no particular knowledge of the language be required for their com-

prehension. However, a complete definition and thorough tutorial of the language

maybe found in [10] and [11].

7.2.1.2 The TiNY Communications Harness

The issue of communication poses one of the greatest challenges to the parallel

computing applications programmer. This is especially true in the case of distrib-

uted memory MIMD machines, such as a multiple transputer network. When

messages only need to be exchanges between directly coupled processes or a

predetermined pattern of communications exists, then it is not that difficult to

173

create a suitable communications system. However, once the situation involves

disjoint processes or indeterminate communications patterns, then the solution no

longer can be considered trivial and may seem virtually intractable. Under these

circumstances, the inclusion of a general purpose communications harness capable

of forwarding messages from any user process to any other process, becomes highly

sensible, if not essential.

There are two approaches to the provision of such communications facilities.

The first is to write and run the application under a dedicated parallel programming

environment such as CSTOOLS from Meiko [12], Helios from Distributed Software

Ltd [13] or TAOS from TAO Systems [14] all of which inherently implement the

required logical process connectivity. With respect to this work, use of either of the

latter two options would have required the acquisition of the respective operating

system for both the development and subsequent use of the application, whilst the

first would have constrained the system to a Meiko computing surface. Whilst these

restrictions are surmountable, it must also be noted that at the outset of the project,

none of the previously mentioned tools was openly available in a fully operational

form and thus this route was discarded. The second approach is to access a library

of procedures which are callable from avariety of user programming languages such

as the TINY harness, Tdeveloped at Edinburgh. This then allows complete

portability ofthe software and retainsthe desired independence from any particular

operating system. With these factors in mind and the ready availability of the TINY

libraries for inclusion in 3L Parallel C programs, this harness was therefore chosen

for development of the task farm system being presented here.

The basic concept behind a topology independent communications harness

can be illustrated by figure 7.8, which shows the processes residing on every pro-

cessor.

Each user process is connected to a harness process whose responsibility it is

to provide a data path between all the user processes whilst minimising message

latency, CPU impact and avoidance of deadlock conditions. Details of how TINY

174

Unk 1

I

000
Application processes

Unk 3

Figure 7.8. Process structure within the harness environment.

concerns itself with these issues is presented in [15]. The remainder of this section

will provide a brief summary of the TINY harness and its application to the task

farm.

TINY is available as a set of library procedures in either C or OCCAM, which

call an underlying series of C functions to perform the following tasks.

• 	Determine the processor topology

• 	Determine the process mapping

• 	Calculate the routing tables

• 	Spawn the router process

• 	Read and Write messages

Each user process is given a unique integer address for indentification pur-

poses throughout the network. In addition, either a single or multiple channel

interface to the local routing process may be specified, where every channel may

have separate properties assigned to it in terms of message synchrony and

read/write permission (channels can be defined for read only, write only or

Unk 2

175

read/write operations). Thus a portion of a configured network could take the form

shown in figure 7.9, which illustrates two processors each of which is supporting a

number of differently defined user processes.

Figure 7.9. Process structure within part of a configured network.

Three different routing strategies are supported under TINY, which are

referred to as broadcast, sequential and adaptive respectively. The function of the

first is fairly straightforward. The message is forwarded to all other user processes

in the network, with the distribution ensuring that only one copy of the message

is received by any node in the system. With sequential transmission, the message

is forwarded along a fixed and predetermined path to its eventual destination, thus

ensuring that message ordering is preserved. Finally, with adaptive transmissions,

the message is forwarded initially over the same path as used for the sequential

case, but then branches along the least busy path whenever a choice of equidistant

routes exists. In this way, an attempt to balance the overall network traffic is made

at the expense of message ordering which can no longer be guarantd. Figure 7.10

shows an example of each transmission strategy along with their associated datatype

definitions, as would be instanced using a C syntax; It is assumed that TINY has

been successfully initialised previously within the code.

IrI1

#include "tiny.h"

mt ok; 	 /* Success or failure error code */

mt type,dest,Iengih;

mt source;

void data;

ok = t_sseq(type,dest,data,Iength);

ok = t_recv(type,source,data,Iength);

Figure 7.10. Example of TINY message transmit and receive strategies.

The transmit or receive buffer may take any valid C data type providing the

user ensures the length is specified in terms of bytes and not multiples of the

particular data type. Thus for use within the task farm, a unique buffer structure

was defined for each message type that would be transferred across TINY from a

worker process to the driver and back again. Figure 7.11 shows an example of one

such buffer and figure 7.12 illustrates how all the buffer structures are brought

together using the C union construct.

struct afscpenFile

mt accessMethod;

mt openMode;

mitt exisiMode;

jut recordLength;

jilt nameLcngth;

mt priorityLcvel;

char fileName[MAX RECORD];

Figure 7.11. Buffer structure for OpenFile file server command.

177

strict afsBuffer

mt tag; 	 /• Command(to.server) or Result(from.server) value

union

struct afsopenFile OpenFile;

snot afsReadBlockReadBlock;

data;

Figure 7.12. Complete buffer structure for all file server commands.

In this way, the required command and parameter values could be easily

packetised and unpacketised into the correct formats. Finally, all message trans-

missions use the sequential transmission strategy since the ordering of messages

is vital.

7.2.1.3 The INMOS Alien File Server Protocol

As was indicated in §7.2.1.1, an interface exists between user processes on the

root transputer and the hosts' operating system. The host executes a simple server

process which supports a two-tier communications protocol which enables the

transputer processes to access the appropriate host services. The original INMOS

Alien File Server (AFS), afserver, supports access from the D705A OCCAM toolset

and scientific language processes. The OCCAM-2 toolsets use a different server

process, iserver, which permits binary-level platform portability and is therefore

recommended [161. However, the afserver source code is supplied along with its

associated compilers which facilitates user modifications and hence was chosen for

this system. It is intended to provide only a brief overview of this server protocol

at this point, to serve as sufficient background for discussing its modification and

subsequent implementation over TINY within the task farm system. A more

complete description is available in [17], [18].

178

The basic protocol between processes consists of an explicitly tagged protocol,

where the tags indicate the data type of the value which follows immediately. There

are 13 tags within the full protocol specification, although only a reduced subset of

these are actually implemented in current servers. For ease of programming it is

customary to define all of these as constants within a header file which can be

included where necessary. An excerpt from an OCCAM definition of the tags is

shown in figure 7.13. At present, only the final three tags are supported, though

the remainder are reserved for use in future implementations of the server.

bool.value 	 IS 	BYTE 	0:

byte.value 	 IS 	BYTE 	1:

int32.value 	 IS 	BYTE 	4:

nilrecord.value 	 IS 	BYTE 	8:

reconi32.value 	 IS 	BYTE 	12:

Figure 7.13. OCCAM definition of AFS tag values.

Thus the basic integer and record data types can be produced from these tag

variants as shown in figure 7.14. This indicates howan integeris sent as int32.value

(showing that a 4 byte integer is about to be sent) followed by the actual integer

value. Similarly a record of bytes is transferred by first sending, record32.value,

then a 4 byte integer representing the number of bytes in the record and finally

the appropriate sequence of bytes.

integer 	= int32.value 	1NT32

record 	= record32.value ; 1NT32 :: []BYTE

= nilrecord.value

Figure 7.14, Tagged definition of integer and record data types.

179

As can be seen, a means to send zero-length record has been incorporated to

maintain continuity. In this case, the nilrecord.value tag is sent with no following

sequence of bytes.

AFS commands all consist of an integer command value followed by a prede-

termined set of integer and/or record parameters. The server will respond to this

command information and return an appropriate group of integer and/or record

values. There will always be a minimum of one integer result returned from the

server, whose value indicates the success or failure of the operation. In the same

manner as with the basic data tags, it is normal to define all the command values

and their associated constant parameters in a header file. Figure 7.15 shows a few

such definitions, whilst figure 7.16 illustrates the syntax of some commands. Both

of these figures use OCCAM definitions; as seen previously, but the concept is

transferable to whatever language is being employed for a given process. A full

listing of all the available command values and their respective syntax is given in

inn 	 -

OpenFile

to.server= OpenFile.Cmd filename access.method open.mode exist.mode record.length

integer 	record 	integer 	integer integer integer

frorn.server 	= stream.id result

integer integer

ReadRiock

to.server 	= ReadBlock.Cmd strearn.id reoord.Iength

integer 	integer integer

from.scrver 	= record result

record integer

Figure 7.16. AFS Command syntax.

When the basic tagged protocol is added to this AFS protocol, the extreme

verbosity of this syntax becomes fully apparent. This is illustrated in figure 7.17

180

OpenFile.Cmd 	 IS 	I: 	- Commands

OpenTemp.Cmd 	 IS 	2:

OpenlnpulStream.Cmd 	 IS 	3:

ReadBlock.Cmd 	 IS 	12

Terminate.Cmd 	 15 	24

RunTimeData.Cmd 	 IS 	34

TextByteStream.Access 	 IS 	I: 	- File access and

Read.Mode 	 IS 	0: 	-- Open modes

Write.Mode 	 IS 	1:

OperationOk 	 IS 	0: 	- Error conditions

EndOfPU: 	- 	 IS 	i; 	- Server errors

FileNameTooLong.Err 	 IS 	3:

FileAlreadyOpen.Err 	 IS 	10 	2:— Host errors

Figure 7.15. AFS Command value definitions.

below where an example of one AFS command is shown in full. The total number

of bytes for the given operation are also indicated with each appropriate value and

parameter.

The negative aspect of this verbose syntax is further compounded by the fact

that link communications operate by the transmission of single bytes [20] rather

than by packets of data as has been incorporated into the T9000 communications

protocol [21]. Hence, even when only a single process is communicating with the

server, the number of byte transmissions will be substantial. However, if, as in the

case of the task farm, there are many independent processes each attempting to

access the link adaptor, then the motivation to compress each message is very

apparent.

181

to.server 	= 	OpenFile.Cmd integer int32.va1ue;OpenFi1e.Cmd

filename record recor32.vajue; 12:: 'TESTFILE.DAT0

access.method integer int32.va1ue;TextByteStream.Aecess

open.mode integer int32.value;Update.Mode

cxist.mode integer int32.va1ue;O1dFi1e

record.length integer int32.value;16

from.server 	= 	stream.id integer in132.value;5

result integer in132.va1ue;Operation0k

Figure 7.17. An entire AFS commandi) showing both protocols.

If the above example of an AFS command in its expanded form is briefly

examined, then it can be seen that the information provided by the basic protocol

tags is actually redundant. The length of the message to the server could be reduced

from 42 bytes to 36 bytes and that from the server from lOto 8, by stripping the

tags from the data transmission. - -

7.2.2 Worker Process

The worker process resides on all but the root transputer and is responsible

for running any application available for the system. Figure?. 18 shows the processes

that go to make this worker and their associated communication channels.

In terms of these sub-processes, TINY has already been discussed in §7.2.1.2,

leaving this section to cover the application itself along with the basic manager and

its protocol translation process. The application maybe simply considered as a black

boxwith apair of communication channelswhich the process assumes are connected

to the server, but which are in fact attached to an intermediate translation task

before being routed to the server via TINY. This view of the application illustrates

the concept behind the OCCAM model of concurrent programming mentioned

previously. The role of the manager is perhaps most suitably explained by first

looking at a simplified OCCAM description of its operation, as shown in figure 7.19.

182

Figure 7.18. Worker processes and communication channels.

- initialise muter

initialise Tiny

- main job loop

WHILE (Jobs to be done)

SEQ

IF

New program

Receive code details

Receive code

Receive job details

Current program

Receive job details

PAR

start program

link APS protocol to TINY

inform DRIVER when program has finished

Figure 7.19. Pseudo-OCCAM description the manager process.

183

The design and functionality of this process could have been much simplified

by electing to nominate a single application at the compilation stage and thus

statically including it in the overall worker process. However, this compromises

much of the flexibility that could otherwise be offered by a task farm system.

Therefore it was decided to permit different applications to be nominated as

required at run-time and consequently this influences much of the logic within the

process.

When the task farm is initially booted up, it is necessary for TINY to be

initialised on each processor and so enable system intercommunications to proceed.

If for any reason this initialisation fail, then the entire system will shut down and

inform the user to this effect. Assuming TINY initialises successfully then

system-wide process communications will be available until an explicit terminate

procedure is activated at the end of all the required computation. All subsequent

communications received by the worker will be with respect to loading, starting and

running the users applications.

Before discussing the basic operation of the worker, it is beneficial to provide

a brief summary of the various modes of communication available to a particular

process. Depending on the harness and run-time libraries that are linked to the

process binary image, one of three alternative, communication schemes can be

invoked, each of which requires to be handled differently. A more comprehensive

discussion of these task variants may be found in [22].

The first case is that of the Standalone task, which may be considered as per

figure 7.20. Such a task can only communicate using channel I/O functions (e.g.

chan in word in 3L C) and not with the standard I/O functions (e.g. printf in Q.

This is because it is linked with a special standalone version of the run-time library

of the relevant language which includes no support for these functions. Within this

task farm system, the worker process would be configured as a standalone task,

since it only communicates with neighbouring tasks and never directly to the server

itself.

184

X Harness

ONLY to 	Link

another 	' 	piotocol
TASK

WA

run-tIme 11b

Figure 7.20. Standalone task communications.

The second case is the Supported task, as shown in figure 7.21. This task again

uses the 3L harness as with the standalone task above, but now includes a full

version of the run-time library to permit standard stream and file I/O using the

standard File Service Protocol. The driver process from this task farm system would

be configured in this manner since it is required to communicate directly with the

server and with the workers attached to it.

31. Harness

M.* * 	I Rx
to 	AFS

*:s?
S•I / 	 \ iS. Link to

TASK erver task

Figure 7.21. Supported task communications.

185

The final case is that of the Inmos task which is illustrated in figure 7.22.

Whilst the full run-time library is incorporated, it is combined with a different

harness which only permits direct communications with a server over a specified

channel pair. These channels adhere to a modified version of the Inmos tagged File

Service Protocol, adjusted to be tolerant of a problem with T414 Rev A transputers

which is incapable of sending one-byte messages over its links.

Ott..'' to 	INMOS APS

IMMOS •
protocol 	

TASK

server
stand alone

run time library

Figure 7.22. Inmos task communications.

It may be noted that this task is identical to the basic flat port of a general

application to a single transputer environmentwhich was presented earlier. Indeed,

the same code may be used to boot and run the application in such a fashion in

addition to being loaded and run from within another task as required by the task

farm. On the basis on this last feature, the Inmos task is preferable to the supported

task for use within the proposed system.

One other general point of some importance is that of the run-time implica-

tions brought about by the inclusion of either the full or standalone run-time library.

If the full run-time library is linked to the task binary code to permit use of the

standard I/O functions, then certain procedures are automatically invoked when

the application is booted up. There are normally four standard streams associated

with these functions - two input and two output, whose roles can be listed as follows.

186

Standard input stream 0 	This is the regular input stream which is

usually associated with keyboard input It may be

redirected on the command line by the operating

system. This is the stdin stream within the C syn-

tax.

Standard input stream 1 	This is a character buffer containing any

command line parameters supplied by the user for

use within a program.

Standard output stream 0 	This is usually reserved for the screen output,

though may also be redirected from the command

line. The flc/out stream within C.

Standard output stream 1 	The output stream usually reserved for

sending error messages to the user on the screen.

The stderr stream from C.

The run-time library endeavours to open all four of these streams and allocated

stream identifiers to them for later use by the calls to functions using them. In the

case of the command line stream, an attempt is made to read in any characters that

may be present in the relevant buffer and then the stream is closed. Obviously, it

is therefore vital that any task using this library has access to the sewer, in order

for these operations to succeed. Alternatively, any task which is not able to access

the sewer, must not be linked with the full run-time library:

The final significant issue to be discussed at this time pertains to the access

of these standard streams and the general filing system within a multiple appli-

cation environment. Little imagination is required to envisage the chaos that could

ensue when a number of applications all tried to write to the screen or read from

the same file or the keyboard at once. Although two of the standard streams can

be simply redirected via the operating system, the remaining two can not. In

addition many programs use fixed, predefined filenames for specific data output

such as debug information which again cannot be easily be altered without changing

the source code, which is compromising one of the original targets. It was therefore

187

decided that between the worker and driver processes, a suitable solution could be

incorporated, thus leaving the application process unaltered and none the wiser of

how and where it is being executed. As will be indicated in §7.2.4, with each appli-

cation that is submitted to the task farm, a number of stream and filename alter-

ations are supplied to provide unique stream and file identities for every application.

With the preceding background information in mind, it is now intended to

continue with details of the manager process operation as shown earlier in this

section. With TINY initialised, the manager must now load and then invoke the

application task (as an Inmos task). The following actions must be performed for

this to be done.

• 	Allocate memory for application code and workspace

• 	Load application code

• 	Arrange communication channels to/from application

• 	Start application task

• 	Handle application task communications

Information pertaining to the task memory requirements can be extracted

from the executable code and are passed to the manager from the driver in advance

of the actual code itself. Obviously, this only occurs when a new application is needed

on a particular processor since the stored code may be invoked as often as is

demanded. However, for every job, the manager requires a list of stream and file-

name translations to ensure unique identities are maintained throughout the

system. In addition to this list, details of any command line parameters for standard

input stream 1 are also included. A more detailed examination of this data will be

presented in §7.2.3 and §7.2.4. The precise details of invoking the code may be found

in [23]. In parallel with the application task, is the process which links the AFS task

channels to TINY, adapting the format and content of all messages as necessary.

The basic operation of this protocol interface process may be summarised by the

pseudo-OCCAM description provided in figure 7.23.

188

WHILE task running

Receive AFS command value from task channel

SWITCH(AFS command value)

CASE 0PENINPUTSTREAMCMD:

CASE General CMD

IF stream_I

ignore - see later

IF stream-0

apply stdin translation

fill TINY buffer with OPENHLECMD

break

read in remaining parameters

apply any translations necessary

fill TINY buffer with CMD info

break

END SWITCH

send TINY buffer to DRIVER

receive TINY buffer from DRIVER

SWITCH(AFS command value)

CASE GENERAL_CMD unpacketise TINY buffer

undo any translations applied

send results in AFS protocol to task

break

END SWITCH

Send TERMINATE_CMD to DRIVER

Figure 7.23. Pseudo-OCCAM description of protocol-translation process.

The majority of the AFS commands require some alterations to be performed

whilst packing up the information into the TINY buffer structure. Obviously any

involving filenames require this string to be changed to its new unique value

on-the-fly, and likewise any filenames being returned from the driver must be

189

translated back to their local value. However, one or two commands require a slightly

more subtle approach to be taken. For example, take the RunTimeData.Cmd, which

would normally read the command line buffer from standard input stream 1 (which,

for a genuine standalone task would already have been opened). In this case, the

request to open this stream is merely ignored, and the subsequent 'read' is replaced

by copying the contents of the command line buffer sent down with the job details

directly to the task.

Amore devious technique is necessary to deal with the OpenlnputStream.Cmd

with reference to input stream 0 (i.e. keyboard). Here, the command is changed to

an OpenFile.Cmd with the filename being the translation for stdin supplied with

the job details. It is important to note that however much a particular command

may be altered for transmission to the driver, the result which is returned to the

application must acknowledge the original command, so as not to lead to confusion.

The only other command which is added to, rather than altered, is the

Tenrinatc.Cind sent at the end of each application run. This is returned to the

driver along with a number of extra parameters relating to system performance and

errors applicable to that particular job. These parameters are then used to produce

formal system log files for the user when the system is finally shut down. Although

on a single transputer application, this command would also be used to terminate

the host server process, within this system it merely signifies to the driver that a

particular worker is available for the next task to be performed. Only when all the

jobs submitted to the system have been processed, will the server be instructed to

terminate and return control to the host operating system.

7.2.3 Driver Process

The driver process resides on the root processor and is responsible for man-

aging and monitoring the entire system operation. Therefore, it provides each

worker with continual stream of jobs, automatically ensuring that the correct

application code resides within the respective workers and then multiplexes all the

TINY communications from each task onto the server channels. The basic process

structure along with the communication links is shown in figure 7.24.

190

Figure 7.24. Driver processes and communication channels.

This figure includes one extra process, filesys, over and above those previously

illustrated for the driver. As will be explained shortly, this process is required to

overcome specific limitations imposed by the host operating system. Of the

remaining processes, TINY has already been discussed in §7.2.1.2 and the mux

process will be shown to be inherently contained within the scope of the basic

manager logic. It is best to lead into the discussion of this logic by considering the

simplified OCCAM description of its algorithm shown in figure 7.25.

The details of the command file from which system instructions are taken will

be presented in §7.2.4. Hopefully, it is also possible to see how the manager

inherently multiplexes the incoming application messages by not reading another

TINY buffer until the previous message has been replied to. In this respect, TINY

not only services the system communications, but also provides an implicit message

buffer for all the processes it supports by the nature of its internal operation.

In contrast to the worker, very few AFS commands require direct modification

before being passed on to the server itself, mainly because this has already been

done pri8r to their transmission. Equally, certain commands will never be received

by the driver since they will have been trapped and dealt with within the confines

of the worker (well that is the plan!). Obvious examples of these are the Openln-

191

initialise TINY

open batch command file

WHILE jobs to do

receive message buffer from TINY

IF AFS message

IF OPENFILE_CMD

IF files open > MAX-OPEN-FILES

close a lower priority file

END IF

unpacketise TINY buffer & send to server in AFS protocol

get result back from server

packetise result into TINY buffer

return buffer to respective worker

ELSE

- node awaits new job

read batch file entry

IF program not on this worker

send out new code

send out job details

update screen with system and job status

Figure 7.25. Pseudo-OCCAM description of the manager process.

putStreantCmd and OpenOutputStreain.Cmd commands which will either have

been transformed to OpenFile.Cmd or dropped altogether on reaching the driver

as indicated in §7.2.2.

However, it is on account of limitations placed on run-time file system access

by the operating system, that the most demanding process, filesys, need be intro-

duced. Most operating systems place a limit on the number of files which may be

opened at any given time. For SunOS" this value is 64, although mechanisms exist

for extending this in some cases [24], but for (MS)DOS" the value is set at 16. This

low value becomes somewhat limiting in a multi-application system where each

192

task is trying to open its own complete portfolio of files under the pretext of being

the sole application accessing the file system. In short this means that OpenFi-

le.Cmd's can not be simply passed directly to the server, since the operation will

fail once all the available file handles have been allocated. However, the application

will be expecting a successful outcome and most tasks will either exit or crash should

failure be detected. Consequently, it is necessary to produce and maintain a logical

file system within the driver, which is capable of supporting as many files as may

be required by all the applications. In this way, each application will be given results

which enable it to assume that these file operations have been successful and that

the relevant files are currently in an open state.

In order to achieve this logical file system, the driver maintains a file table for

each application running under the system. Whenever this requests an OpenFi-

le.Cmd, the file is temporarily opened and an entry made in the respective file table

as to its genuine file identifier, the pseudo identifier returned to the application,

the file pointer position, the file access mode (read/write/append) and type (bi-

nary/text) and its true open/closed state. The file is then actually closed. Whenever

subsequent operations are required on this file (except CloseFile.Cmd, obviously)

it is reopened, the file pointer correctly positioned and the resulting pseudo

identifier used to enable the desired operation to proceed. Again on completion of

the action, the file pointer entry in the correct ifie table is updated and the file is

then reclosed. Unfortunately but hardly surprisingly, this open file, move pointer,

act, update pointer and close file cycle is substantially slower to execute than the

original file operation. This can dramatically influence the overall performance of

batches which make continual use of the file system during the course of their

operation. As a compromise, it is therefore desirable to keep as many files genuinely

open and only perform this open/act/close routine when the system file limit has

been reached. In this way the maximum performance can be attained for a given

file limit. The logic required to implement this would be trivial if it were not for

the fact that an intelligent method of allocating the available open files amongst

all the application must be included.

193

To this end, two steps in particular were taken. Firstly, it was decided that

without prior knowledge of the file usage of all the applications that might be

running on the system at a given time, an equal allocation of the available files

would be made to all workers. This allocation is made during system initialisation,

with each worker being given (maximum system files/No. workers) files. Secondly,

the files relevant to each application would be given one of two priority levels with

respect to it remaining open for as much of the time as possible. In this manner, it

was intended to keep as many of the frequently used files open across the system

so as to incur the least performance degradation. The specification ofafiles' priority

then becomes part of the job description within the batch command file, as will be
- 	

illustrated in §7.2.4. Thus when the genuine file system is at full capacity, the driver.

- 	 will attempt to close files in the following fashion. 	-

1st 	Low priority files on same worker.

2nd 	Low priority files on other workers.

3rd 	High priority files on same worker.

4th 	High priority files on other workers.

By following this approach, it is possible to maintain virtually the maximum

attainable performance for a given file system capacity, without either prior

knowledge of the applications requirements or the use of a complex optimisation

algorithm. By monitoring the system performance, it was possible to confirm that

the incorporation of this pseudo file system concept did indeed boost the file access

time and results to this effect are presented in §7.3.

7.2.4 Control Procedures.

The previous sections have provided a brief summary of the structure and

function of all the main process modules which form the task farm system. It is now

necessary to consider the way in which the user specifies the operation of the

system. The driver process receives all the required details from a single control

file which is specified when invoking the system from the host. There are two levels

of information contained within this control file. Firstly, there are groups of data

194

statements pertaining to each job requiring to be processed. Figure 7.26 shows the

basic format of the statements required to describe a single job whilst in figure 7.27,

example statements for a SUPREM II job are illustrated.

Do program name 	command 	line

Assign filename-I new filename-I

Assign filename-n new filename-n

Stdin redirected filename

Stdout redirected filename

Done

Figure 7.26. General format of control file statements.

Do suprem2.b4

Assign SIJPSEG SUPSEGOI

Assign 	- - SUPSYNT 	- SUPSYNTOI

Assign SUPDEBUG SUPDEBUOOI

Stdin RUNOI IN

Stdout RUNOI OUT

Done

Do suprem2.b4

Assign SLJPSEG SUPSEO02

Assign SUPSYNT SUPSYNT2I

Assign SUPDESUG SUPDEBUO02

Stdin RUNO2.IN

Sidout RUN02.OUT

Done

Figure 7.27. Control file statements for two SUPREM II jobs.

Around these 'job' statements canbe placedaseries of'block' statementswhich

can divide the jobs up into sub groups which must be completed before then next

sub group is commenced. In this way, it is possible to ensure that, for example, all

the process simulations are completed before the device simulations depending on

195

their output are started. This concept can be considered to be analogous to the

dependencies listed in the make file for a software package. This 'block' concept is

shown in figure 7.28, where the particularjob details have been omitted for clarity.

Begin BLOCK-I 	 - first block name

Do

- job No. 1

Done

Do

- job No.2

Done

End

Begin BLOCK-2

- more job assignments.

End

Figure 7.28. Block structure within control files.

As discussed previously in §7.2.3, the priority of any particular file is given by

its order within the job description, with the highest priority being defined first.

When the driver reads the final job description from the control file, it awaits

termination of any outstanding applications on the system before shutting each

worker process down in turn.

The final point to be mentioned concerns the link between an experimental

design within RS/1" and the production of its associated control file and all the

simulator files required by each job. The repetitive nature of all these files is highly

apparent and thus their production lends itself to automation. Taking a SUPREM

H experiment as an example, it can be seen that the following files will be needed

to successfully run the batch.

• 	SUPREM II data files for each experimental point

• 	Control file for entire batch

196

The former are produced from a single SIJPREM II template file, where the

relevant parameters have been replaced by an identifiable character sequence. For

each experimental point, the data is read out from RS/1h1 and used to replace the

relevant parameters within the simulation template file. An incremental name is

then applied to this file and this is also written into the control file as the translation

for stdin. The remaining details for the control file come from another template

file which describes the actual simulator in terms of its filename and command line

requirements. Again any standard application files are given incremental names

for individual identification. Hence, a simple user program can be used to call RS/]Y'

and produce the desired experiment. It can then generate all the necessary files

from two generic templates and then instruct the task farm to run this batch. On

completion of all thejobs concerned, a similar approach is used to extract the desired

results from the simulation output files and return them to RS/ 1- for subsequent

analysis.

7.3 System Performance

OCCAM and its complimentary set of parallel scientific language develop-

ments all consider the real-time aspects often associated with concurrent system,

to a high degree. Therefore ways of measuring and apportioning time have been

included in these languages using the TIMER construct [25].

The task farm performance was thus able to be measured by including a

number of these timers throughout the driver and worker processes. From the

results returned from these, the time associated with loading in the application

code, subsequent application server communication and with the application

computation can be individually identified for each job performed. In addition the

elapsed time for an entire batch of tasks to be performed is measured. The results

relating to each task are passed back to the driver process as part of the modified

Al'S Terminate.Cmd command and placed in the main system log file for later

assessment.

I114

The screen image shown in figure 7.29, illustrates the user interface whilst

the system is in the midst of processing a particular batch. It can be seen that details

are provided for both the system as a whole and the current state of each worker

in turn. In this way should any worker cease to function then this will quickly be

picked up.

	

• 	
14:45:39

	

ttim We 	 Tail st.

	

System tidti : 	$ 	 list Flit 	cpitesl. IC

	

Bodes bsiiy 	3

	

Volts $ttdy 	2 	 loosest Block : block—i

	

Bolos Dead 	: 0 	 ists completed: 2
Code is iLem.'y: cpit.,E.b4

lode 	P. .1"M 	Ileidy Boy 	Jobs dots

I 	cpstest..b4 	I 	0 	I
2 	cpstest,b4 	I 	0 	I
3 	cpistist,b4 	0 	I 	0
4 	cputtst.kt 0 	 0
5 	cputt,t.k4 0 	I 	0

	

Message ri,o 3 : : I.e 20 :; tad 	2.

	

Wise.g. 15 	2 : 	len 	4 :: tag 	0

Figure 7.29. Screen image captured during system operation.

In order to show both the performance and shortcomings of the system, results

from a series of experimental batches are presented. Each batch has been produced

with the intention of highlighting a different feature of the system. However the

first objective was to compare the execution of a representative application on a

number of typical computing surfaces. Therefore the elapsed times for five similar

SUPREM II simulations run on three different systems are shown in table 7.1. All

the times quoted are in seconds.

Various points should be noted in terms of these results. Firstly, all times

represent the time between issuing the initial host command and control being

returned to the host command line. Secondly, the overall elapsed time in the case

of the task farm includes the time taken for the system to be booted up. Unfortu-

nately, because the T800 boards available outside the PC host only possess 256

Kbytes of memory, SUPREM II could not be run on them and so the slower T414

boards which possess 2 Mbytes RAM had to be used. Because SUPREM II relies

198

Simulation

file

VAX

11/750

Tandon

286 PC

Worker

T414

Root

T800

RUN-01 502.5 695.6 1823 -

RUN-02 416.3 672.1 1834 -

RUN-03 524.3 692.3 1812 -

RUN-04 433.5 715.4 1776

RUN-OS 493.8 940.5 1754

Elapsed Time 2,370.40 3,715.90 1875.00

Table 7.1. Comparison of SUPREM II simulation times.

heavily on floating point arithmetic, there is a dramatic performance loss sustained

when using the non-floating point T414 transputers. Therefore conclusions should

not be drawn from the direct comparison of the last two columns in this table.

Whilst still considering the system perforniancerelatingto these STJPREM

II simulations, the next issue Io consider is how the reported ?lapsed time is

apportioned between communication and computation. Figure 7.30 shows the

system log file for the above simulations which includes the worker monitoring

data.

Two particular points arise from this data. The first of which is the time taken

to load all five copies of the application code onto their respective workers. The

second is the ratio of communication to computation times, which are excessively

out of balance. When these results were taken, each worker loaded its code directly

from the host file system. Unfortunately, all block data transfers between the host

and the root transputer have a maximum block size of 512 bytes which is set within

the run-time library. Thus, no matter what size of data block the user requests, if

this is in excess of 512 bytes then the run-time library will automatically perform

multiple block transfers until the desired limit is reached. The application code for

199

System Nodes 5

Batch File 	supresi5.rc

Node 	 Program

1 suprem.b4

2 suprem.b4

3 suprem.b4

4 suprem.b4

5 suprem.b4

CaLc Conii Load Misc

628 1164 27 0

638 1165 27 0

642 1140 27 0

632 1113 27 0

644 1079 27 0

Edinburgh Microfabrication Facility

Simulation iaskfarm System

ConpLeted 5 jobs : ELapsed time 1875 seconds

Figure 7.30. System log for SUPREM II simulations.

SUPREM II occupies just over 300 Kbytes which requires in excess of 600 block

transfers, and leads to the 27 second load time. When applicatiobs such as

SUPREM IV and PISCES are considered, the problem is even worse, as both of

these codes occupy over 2.5 Mbytes at which point the initial code loading time

would outweigh much or all of the advantages to be gained in using the high per-

formance T800. The driver logic was therefore altered so as to store the loaded

application code in its memory, assuming sufficient capacity, and load any other

workers requiring this code directly from memory, thus cutting out the slow disk

transfer. Only when a new code is needed does the slow file system transfer have

to be repeated. In this manner, the above system log now takes the form shown in

figure 7.3 1, where the load times reduce from 27 seconds down to 4 seconds for all

but the first node and the elapsed system time now becomes 1787 seconds.

It is apparent that the time spent by the application communicating with the

host server via TINY is somewhat disproportionate to the onboard computation.

One major factor behind this imbalance is the way the driver handles the file

system. M was discussed in §7.2.3, (MS)DOS" places a limit on the number of files

200

1 suprem.b4

2 suprem.b4

3 suprecn.b4

4 suprem.b4

5 suprem.b4

System Nodes 5

Batch File 	supreti6.rc

Node 	 Program Caic Conro Load Misc

628 1164 27 0

638 1165 5 0

642 1140 5 0

632 1113 5 0

644 1079 5 0

Edinburgh Microfabrication Facility

Siajtation Taskfarm System

Completed 5 jobs Elapsed time 1787 seconds

Figure 7.31. System log with reduced loading times.

which may be open at any one time. The above results were taken when all the

files were open and closed around every operation introducing substantial delays.

Table 7.2 shows the times once the driver maintains its full capacity of open files.

Although this table confirms a moderate improvement in file handing per-

formance, it must be noted that there are 30 files (6 per worker) competing for the

13 system files available (The PC requires 3 of the 16 for its own stdin, stdout and

stderr). Thus many file operations require the inefficient open and close actions.

In order to confirm this assumption, a further batch of simulations was processed

with 3 jobs which meant that there were 18 files competing for the 13 available

slots. As can be seen in table 7.3, this produces a substantial performance increase

over the original system.

201

Data

ifie

Comins.

No files

open

Comma

Max.

open files

Comms.

increase

Total

No files

open

Total

Max.

open

files

Total

%

increase

RUN01 1164 1025 11.9 1823 1689 7.4

RUN02 1165 1079 7.4 1834 1753 4.4

RUN03 1140 1002 12.1 1812 1680 7.3

RUN04 1113 984 10.7 1776 1652 5.4

RUN05 1079 940 12.9 1754 1620 7.6

Table 7.2. Improved file system performance.

Data

file

Comma

No open

files

Comma

Max. open

files

Total

No files

open

Total

Max. open

files

Total

increase

RUN01 1164 379 1823 1053 42.2

RUN02 1165 442 1834 1106 39.7

RUN03 1140 367 1812 1045 42.3

Table 7.3. Performance with full file system access.

The method of server communication over TINY with its associated message

packetising and unpacketising on both worker and driver, does degrade system

performance. But it has been shown thatby carefully selecting the use ofapplication

files, this can be minimised so that a more acceptable communication to compu-

tation ratio is attained. It should also be noted that in all the examples above, each

SUPREM II job writes out approximately 250 Kbytes of debug files and only 20

202

Kbytes of user data. This means that only 12.5% of the communications are actually

necessary. In the case of SUPREM II, the user has no control over the volume of

the ancillary files generated, but this is not the situation for most of the commercial

simulation packages now in use. Simulators such as SUPREM ifi & Wand PISCES

all permit users to define what files are generated for a given job, and hence much

of the inefficiency identified within the above results can be limited.

7.4 Conclusions

This chapter has presented the practical design of a transputer based task

farm system, with particular application to semiconductor process simulations. The

structure of each major software process has been discussed in turn, with a special

emphasis being placed on the means by which every worker gains what it considers

to be unique access to the host system functions. There is at least one AFS channel

multiplexor available, provided with the 3L scientific language software packages

[26], which permits each attached process to access the server. However, it does

not provide the additional support required to alter filenames on-the-fly or operate

with restricted access to the file system. Consequently, an entirely general

multi-processing computing environment has been developed which enables large

batches of independent or semi-independant programs to be efficiently executed

with no alterations to the application software. In particular, it is this last feature

which particularly enhances the attraction to its use. In support of this, the most

suitable applications for execution under such a system, are usually highly

numerically intensive and have a relatively low utilisation of I/O services in general.

The majority of currently used software which fails into this category is written in

one of the common high-level scientific languages for which transputer compilers

already exist and so can be simply ported across to this environment. Thus a

comprehensive selection of applications can be rapidly generated and made avail-

able.

This system is also extremely flexible in terms of the number of processors

available for use at any one time. No alterations are required in order to remove or

insert processors as circumstances dictate, since every time the system is booted

203

up, the routing process establishes the size and connectivity of the attached net-

work. With respect to the hardware requirements, there is only one big difference

between this approach and that suggested in chapter 5, where each instance of the

application was partitioned across the multi-processor network. In most cases, this

distribution of modules results in the data structures held within each module being

diminished. However, in the case of the task farm, every processor contains the

entire data set and thus the memory requirements do not reduce. When considering

the simulation packages used within the semiconductor industry, this places fairly

large demands on the available memory, with a minimum configuration being 4 or

8 Mbytes per transputer.

The results presented during the course of this chapter, confirm the benefits

which the system can provide, especially when applied to the large batches of

repetitive simulations demanded by the experimental design techniques discussed

earlier. Although the system was hosted by a standalone IBM compatible PC for

this iuork, there are many advantages in using a multi-user or networked host. In

the first instance, multi-user operating systems generally permit more generous

access to the file system, thus removing one of the main limitations of the present

environment. However, in terms of future system development, the most flexible

and beneficial operating environment would be provided by permanently running

the task farm as an additional networked device, much like a printer or plotter,

using the INMOS B407 ethernet interface card. In this way, simulations or any

other suitable tasks can be spooled into a dynamic version of the present control

file and multi-user access to the system has been achieved. The farm could then

be interfaced either directly to the host or via an ethernet link enabling it to be

operated remotely from the host.

Whether a single- or multi-user system is acquired, an economic solution to

providing flexible, high performance facilities for computationally intensive tasks

has been proposed. This will enable the full potential of DFM and other similar

methods to be commercially applied to development and production problems

industry-wide.

204

References

"Transputer Development and iq systems Databook", Inmos Ltd, Prentice Hall,

1989,p236.

"Transputer Development System", Inmos Ltd, Prentice Hall, 1988, pp375-

424.

Old Server Manual - spiral bound from INMOS

"TITCH User' Guide".....

"TINY Overview".....

D. Prior, "Communication Harnesses", Edinburgh Concurrent Supercomputer

Newsletter, No. 8., July 1989, p5.

L. J. Clarke, "Focus: Communications in networks of parallel processors",

Edinburgh Concurrent Supercomputer Newsletter, No.7, April 1989, p 18.

C. Dyson, "INMOS Hi architecture revealed", New Electronics on Campus,
.... inn,

oP11iI .Lz,J.,)

Parallel C Users Manual, 3L Ltd, Nov. 1989.

"OCCAM 2 Reference Manual", Inmos Ltd, Prentice Hall, 1988.

D. Pountain, D. May, "A tutorial introduction to OCCAM programming",

Blackwell Scientific Publications/McGraw-Hill.

S. Brown, "Communicating Sequential Tools", Edinburgh Concurrent

Supercomputer Newsletter, No. 10, April 1990, pp 6-7 .

"The Helios Operating System", Perihelion Software Ltd, Prentice Hall, 1989.

S. Turner, "TAOS", Parallelogram International, No. 36, April 1991, p20.

is. L.J. Clarke, "Focus: Communications in networks of parallel processors",

Edinburgh Concurrent Supercomputer Newsletter, No.?, April 1989, pp14-15.

"TransputerDevelopment and iq systeMs Databook", Inmos Ltd, Prentice Hall,

1989,p239.

"OCCAM Toolset - User Manual", Inmos Ltd, Bristol, 1987, pp88-99.

"File Server Protocol", Technical Note No.3, 3L Ltd, 1987.

"OCCAM Toolset - User Manual", Inmos Ltd, Bristol, 1987, pp100-103.

205

"Transputer Reference Manual", Innios Ltd, Prentice Hall, 1988, pp 6-7 .

R. Causey, "The design behind the T9000 transputer", Electronics Weekly,

April 24, 1991, p15.

"Developing Parallel Systems", 3L Parallel C Users Manual, 3L Ltd, Nov. 1989,

pp39-67 .

"Loading and Running Tasks from Parallel C", Technical Note No.5, 3L Ltd,

August 1988.

"C Library Functions", Sun Operating Systems Manual, Version 4.1, January

1990.

"OCCAM 2 Reference Manual", Inmos Ltd, Prentice Hall, 1988, pp 37-38.

"Task Data Sheets - Filemux", 3L Parallel C Users Manual, 3L Ltd, Nov. 1989,

pp346-351.

206

When working towards the solution of a problem, it

always helps ifyou know the answer.

Chapter 8

Conclusions

The concepts of Design for Manufacture (DFM) and Design for Quality (DFQ)

are now recognised by the major semiconductor companies as vital to the success

and survival of their IC manufacturing operations. The implementation of these

methodologies has considerably altered the importance and the role of computer

simulation techniques during the design of IC fabrication processes. Under such

strategies, computer simulation would no longer be employed in an ad hoc manner,

but would instead be coupled with statistical design and analysis techniques to

provide a structured approach to the design of IC fabrication processes. It is

therefore necessary that a system be developed which supports and promotes this

concept- Thework undertaken during this project has concentrated on the provision

of an affordable and flexible simulation environment which has then been inte-

grated with the requisite statistical tools to obtain an operational and functional.

design system. A brief synopsis of the work which was carried out is presented here

and highlights some of the major issues that have arisen and their significance to

the project as a whole. Some areas for future research efforts are then indicated to

conclude this discussion.

The international market for semiconductors is highly competitive, volatile

and fickle, which may be attributed to its demand-driven nature and the conse-

quential susceptibility to influence from a variety of external forces. On account of

this, manufacturers are being placed under increasing pressure to respond more

rapidly to market demands. This can only be achieved by the adoption of flexible

manufacturing technologies, in contrast to the more traditionally established

production environment. The ability to switch between existing processes and

introduce new ones at frequent intervals is essential for servicing the rising demand

for low volume application specific IC (ASIC) production. Similarly, technological

trends towards smaller device geometries, higher packing densities, greater yields

207

and shorter product lead-times place an enormous strain on equipment capability

and process control. The overall consequence of these issues is that semiconductor

manufacturers must expand their design criteria to include manufacturability as

well as performance.

The fabrication of IC's is one of the most complex manufacturing processes

currently performed, with a typical MOS process consisting of many hundreds of

individual steps. Although there is only a limited set of basic process operations, 6

in total, it is the sheer number involved which, when coupled with their inter-de-

pendencies, leads to the degree of complexity concerned. If IC fabrication processes

are to be accurately controlled then it is essential that each operation is fully

understood both in isolation and more vitally, with respect to its influence on the

final product. The yield of any process, considered in terms of both product spec-

ification and functionality, is dependant on the control parameters associated with

each operation as well as the accuracy of the processing equipment. Since the

opportunity to perform in-line wafer testing in order to verify individual process

operations is limited, the importance of process control cannot be over-emphasised.

Chapter 2 provides a description of the six basic process operations related to IC

fabrication, with a bias towards the physical parameters that are associated with

their control and which may be altered by the process engineer.

Throughout the past two decades software models have been developed which

describe the physical effects of performing a process step on a wafer. These models

have been combined together to form complete process simulation packages that

can be used to investigate the interactions that take place between process steps

and calculate doping profiles, electrical characteristics and structural features of

the fabricated devices. Physical process simulation has been primarily applied to

date by process engineers in order to simplify the development and optimisation

of'fabrication processes by reducing the number of experimental runs required to

meet a particular specification. Simulators are now available to perform one-, two-

and three-dimensional process modelling. The models associated with one-di-

mensional simulation, which considers a section normal to the wafer surface, are

208

much simpler and more robust than their advanced two- and three-dimensional

counterparts. However, once geometries approach micron and sub-micron levels,

it is no longer possible to neglect effects relating to the second and third dimensions,

which are in the plane of the wafer. Although these advanced models are less

physically complex and robust than their predecessors, their enormous numerical

complexity means that immense computational power is required to solve them.

Chapter 3 first presents the one-dimensional numerical models that have been

developed for each of the process steps, before providing a more general discussion

of advanced process models and quantification of their respective computational

requirements. Few semiconductor companies possess the necessary resources to

support the widespread application of these simulators that is demanded by the

advances in processing technology. Hence an investigation was made into alter-

native sources of economic computational power to act as a dedicated simulation

engine.

The regular, grid-oriented structure which lies at the heart of all these

simulators directed the research towards the promised power afforded by parallel

computing technologies. Abrief summary of both sequential and parallel computing

paradigms introduces a more detailed view of the various parallel technologies

available today that is provided in Chapter 4. Parallel technology extends from the

traditional and prohibitive supercomputers, to a number of comparatively

inexpensive desktop systems based around familiar microprocessor units. However,

the relatively cheap, flexible and scalable computing power offered by the INMOS

Transputer appeared to be the most suitable for this application. With this tech-

nology, sufficient computational resources could now be made available to the

process engineers either as a large, dedicated simulation engine supported by the

original host system or alternatively as a single extension board in each desktop PC

or workstation.

Obviously, the simulation software requires to be adapted in order to take

advantage of the parallel technology and the one-dimensional process simulator

SUPREM-II, predecessor to the widely used SUPREM-3, was chosen as a demon-

209

stration. Numerically, SUPREM-il bears a close resemblance its successor which

is important for the inference of results and although its physical capabilities are

much less, this manifests itself more in the computational load rather than the

choice of algorithms.

Ultimately, the overall objective of any parallel implementation is to increase

the throughput of these advanced simulation tools. This objective maybe realised

by either reducing the cycle time associated with each simulation or by performing

multiple simulations at once. The former approach has the advantage that the

performance of every simulation will be improved, regardless of the number in total.

Unfortunately, the penalty to be paid for this fully customised software is in the

effort required to adapt the original code, which is highly manpower intensive and

this obviously reflects in the overall project cost. Chapter 5 documents the work

done in developing a parallel implementation of SUPREM-]El to run on an arbitrarily

sized transputer network. This task was far from straightforward to perform since,

at that time, the software development tools available were not particularly com-

prehensive. This situation has been successfully remedied during the intervening

years and there is now an extensive choice of development tools and environments.

Other difficulties related to the partitioning of both code and data, inter-processor

communications and substitution of algorithms were encountered, all of which are

typical of custom developments. Once these obstacles were surmounted, an

approximately linear increase in simulation performance was obtained as further

processors were added to the system. This parallel methodology may well become

essential for the excessively intensive computation that is expected-of three-di- - -

mensional simulations or where the performance of a limited number of tasks is

crucial. However, for most applications, the developmenttime and costwill continue

to outweigh the benefits returned until such time as intelligent parallel compilation

can automatically perform this role.

Simulation has usually been employed to assist engineers establish the

nominal process operating points required by their fabrication technologies. No

conclusions can be drawn as to the suitability of this nominal operating point from

210

such a design synthesis. If, however, a design can be made insensitive to realistic

processing perturbations, then additional savings can be obtained on unnecessarily

expensive fabrication equipment, potential process control problems, lost yield and

engineering time spent tuning the process. With simulation, all of this is achievable

before the technology is ever manufactured. This design analysis role for simula-

tion, which combines both engineering and statistical functions, plays a vital part

in the overall concept of designing for manufacturability. Although the

experimental design and statistical techniques described in chapter 6 minimise the

number of simulations required to design a manufacturable process, the overall

tally still makes a substantial demand on computational resources. Obviously, the

additional simulation throughput afforded by a parallel implementation of the

relevant software, as discussed in chapter 5, offers one solution.

However, due to the large number of independent simulation involved, an

alternative strategy avails itself whereby each processor runs a single simulation

autenomously. Chapter 7 describes the design and operation of such a transputer

based simulation network, with particular emphasis on the supporting communi-

cations system and infrastructure. The advantages associated with this task/arm

approach to simulations include: no custom software development is required for

each simulator, most programs can be compiled for the transputer, different soft-

ware can run on each processor and both the architecture and performance scale

in a simple linear fashion. In order to produce a usable engineering tool, an interface

was developed between the statistical software packages, RS/DISCOVER and

RS/EXPLORE, and the transputer taskfarm which manages the creation, execu-

tion and analysis of all the simulation data.

The software developed during this project significantly enhances the role of

process simulation in the promotion of DFM and DFQ within the semiconductor

industry. However, a great merit of the taskfarm system as it stands, is that it may

be applied to any scenario, for which suitable software exists, without any alter-

ations. It is also worthy to note that although a transputer based solution was

211

selected for this project, there are a number of other similar parallel or concurrent

systems which are equally applicable and the final choice for a particular application

will probably be dependent on existing technology.

The advances in simulation technology and systems described within this

Thesis provide a significant basis for the support of the DFM and DFQ methodol-

ogies in the semiconductor fabrication industry. However, the infancy and enormity

of this field mean that many issues remain unresearched. The most logical

continuation of this workwould be to expand the horizons of the taskfarmed design

analysis to include parameter extraction, device and circuit simulation. This would

require a more sophisticated management facility than presently exists, but would

vastly extend design capabilities. Currently the inclusion of device simulation is

being investigated in the Edinburgh Microfabrication Facility by G. J. Gaston.

Previous work performed by A. J. MacDonald in this facility has investigated the

integration of process simulation and the Computer Aided Manufacturing (CAM)

system, COMETS(WORKSTREAM), though poor simulation perforuiwncc pre-

vented real-time control issues being tackled. A worthwhile supplement to this

work, utilising the performance of customised parallel simulations, could now

investigate the application of expert systems to the control of process simulation

in providing on-line analysis and control of fabrication processes. Another area

which might be investigated is the incorporation of process simulation into

manufacturing simulation software, which is already used by the semiconductor

industry. However, unlike the more traditional manufacturing scenarios for which

it was originally designed, the process flow within IC fabrication bears a greater

relationship to the process itself rather than the equipment or its layout. The

integration of a process modelling capability in describing particular aspects of the

manufacturing operation could vastly enhance the overall simulation capacity.

212

If builders built buildings the way programmers wrote

programs, then the first woodpecker that came along

would destroy civilisation.

Appendix A

Reprints of Published Papers

213

"The Implementation of Process Simulation on Transputers for the Produc-

tion of ASIC's", Microelectronics '89, Brisbane, Australia, July 1989.

St AushtEn Ca,$wWC,

0 hiltrositic"DrAof
B.tos,, 12-14 MY ¶fl

The Implementation of Process Simulation on
Transputers for the Production of ASICs

WJ.C. ALEXANDER
Ph D. Student. University of Edinburgh. U.K.

A.J. WALTON
Reader, University 01 Edinburgh, U.K.

J.M. ROBERSTON
Lothian Professor, Microeleclonics. University of Edinburgh, U.K.

R.J. HOLWILL
Director, Edinburgh Microlabrication Facility, University of Edinburgh, U.K.

SUMMARY The role of process simulation in the semiconductor industry and the restrictions imposed
on its use due to the computational requirements are discussed. The use of parallel computing techniques
implemented on a transputer network is proposed as a solution, and results from a parallel version of
the one-dimensional process simulator. SUPREM-lI, are presented.

1. INTRODUCTION
The reduction in device geometries and the

introduction of low-volume Application Specific
Integrated Circuits (ASIC) is changing the role of process
simulation within the semiconductor industry. To date.
process simulation has largely been viewed as a tool for
use within a research environment, and has therefore not
been widely used by process engineers. However, with
the current market climate dictating a last, punctual and
economic design turnaround, the margin of error has
been reduced and the process must meet the full
specification first time. To this end, process simulation
can be employed to help ensure that these goals are
achieved. Process modelling software has the major
disadvantage that it is very CPU intensive and
consequently only limited access has been available to
process engineers. This paper details how parallel
computing techniques can provide a cost effective process
simulation system which will enable these tools to be
used to their full potential.

Semiconductor process simulation has two principal
roles within the fabrication and production environment.
Firstly, it is an essential component in the design and
development of new processor optimisation of current
one. Process development involves the generation of a
sequence of fabrication steps to produce a specified device
structure, while still remaining within the constraints of
the chosen technology and the available fabrication
hardware. Traditionally this has been achieved
empirically by performing sets of experiments and then
following an iterative loop of measurement, modification
and refabrication. Thishowever, is a costly and inefficient
approach since prototype production costs are high and
may take up to eight weeks to perform. If process
simulation is used for the initial iterations, then only a
reduced prototype fabrication schedule is necessary, and
this offers vast savings in both time and money.

Secondly, there is the ability to integrate process
simulation with Computer Aided Manufacturing (CAM)
systems to enable on-line analysis of any production
batches held within the CAM database (MacDonald et al,
1989). Thus the potential exists to perform real time
process monitoring together with the opportunity to
provide corrective modifications for subsequent steps if
poor or wrongly processed samples are detected. For this
role in particular, it is paramount that software execution
times remain low so as to produce a marginal
computational overhead on the CAM host system.

The computational complexity of process simulation
packages obviously depends on the sophistication of the
incorporated models ! and modern packages are now
reaching the limits of acceptable CPU times. Although
such simulations are still quicker than the equivalent
experimental turnaround, this factor still discourages
process engineers from using these tools to their full
potential. One solution to this dilema is to draw on the
resources made available by parallel computat.onal
techniques, and in particular those suitable for
implementation on realistically priced hardware. The
transputer fulfills these criteria and increased computing
power can be provided by the simple addition of more
transputers.

This paper first discusses process simulation.
detailing the various models found within such packages
and highlighting the balance that must be achieved
between accuracy and speed. There follows an overview
to the transputer concept and how it can be beneficially
employed in improving the execution time of process
simulation tasks. The objective of producing a parallel
version of one presently available simulator is then
explained, demonstrating some of the problems which
have been encountered. Lastly, consideration will be
given to the future potential of this concept particularly
with relevance to the ASIC production cycle.

2. PROCESS SIMULATION
Process simulation programs contain a series of

numeric, and in some cases analytic, models which
attempt to describe the effect of each fabrication step on
the dopant concentrations and characteristics of each
material. They generally include modules to cover ion
implantation, chemical predepostion, diffusion, oxidation
and epitaxial growth, which are linked together by a
controlling shell. The fundamental factor separating the
available simulators is the provision of one or
two-dimensional analysis, and to a lesser extent the
number and types of layers that can be modelled.
One-dimensional models analyse sections of the
structure normal to the silicon surface, hence a number
of these are required to fully model the device. The
models in these simulators are generally more highly
developed than those in their two-dimensional
counterparts, and once calibrated provide an accurate
picture of a given process. Figure 1 shows a section of an
MOS transistor and the regions which must be simulated
in 1-fl to fully model the device. Figure 2 shows a I-fl
section corresponding to one of these regions.

53

ton

Field Sccon

Figure 1 NMOS device structure plan, indicating all
four sections requiring 1-D simulation.

.0Q Conc. (cs-li

e

LI

.......

1s1 335fl 'C

7Q'f'

-

13 4

12

.0.78 1 	34 	3 	1' .7 	27 	0.36 5.3

3et iacrons,

Figure 2 One-Dimensional profile of the depletion
region from an NMOS inverter.

{ N
'I, ,

LN

1 2

ii

•__/ / 	 H
-t

When device geometries are relatively large (around
5 microns), one-dimensional models such as SUPREM-11,
SUPREM-Ill and ICECREM provide sufficiently
accurate data to understand the impurity behaviour. As
feature sizes have reduced to 2 microns and below, short
channel effects can no longer be ignored and the
two-dimensional simulators such as SUPREM-[V,
SUPRA and COMPOSITE are required. Figure 3 shows
a 2-D profile for a typical MOS structure.

In progressing to 2-D simulation, grid resolutions and
model complexity are traded-off to compensate for the
increased computational requirement. Consequently to
gain a more complete understanding of a small feature
size device , it is often advantageous to also perform a
series of t-D simulations. As device geometries shrink
still further, 3-0 modelling will become necessary and
run.timeswhich already pose a problem in 2-D simulation
(24 hours of CPU time (Singer, 1987)) will require even
greater computational power.

If process simulation is to be used in a monitoring
role, then the models must be calibrated to the particular
process which they are to simulate.Once this is done, the
process engineer will then have the confidence to use the
software in a predictive role. Process simulation can also
be used in a diagnostic role to 'look inside' the devices and
observe parameters such as potential distributions and
lateral impurity profiles. This capability often provides
the solution to otherwise unexplained characteristics.

3. TRANSPUTER CONCEPT
The transputer provides a complete microprocessor

computing surface including CPU, on-board RAM and
four fast 1/0 links within a single chip. The general
transputer architectureis shown in figure 4 and covers a
family of products with differing bus and memory
specifications.

pm P1

System 	 . 	H
Services ___ 	___

I;

P
Link

Interface
On-chip

H 	•

Application Specific Interface

Figure 3 Two-dimensional MOS transistor contour
plot showing the source, drain and field
implant profiles. Figure 4 General transputer architecture.

54

Of particular interest here are the T414 and T800
32-bit devices, whose primary difference is the inclusion
of a dedicated Floating Point Unit (FPU) on the T800
(Inmos, 1988). These may either be used as a single high
performance processor system, or connected together
using the links to form a point-to-point communicating
network as seen in figure 5 with each machine directly
linked to a maximum of four others.

Figure 5 Arbitary transputer network showing the
point-to-point communication links.

Multi-transputer systems possess many advantages
over more traditional bus based multi-processor s ystems,
reflecting the nature of these asynchronous serial links.
Firstly, the point-to-point links eliminate all possibility
of communication contention. Secondly, the memory and
communicalon bandwidths are directly proportional to
the number of processors in the system, meaning that
the addition of fu r th er transputers to the system will not
produce performance limiting bottle-necks. This last
feature leads to the freedom to design arbitrary network
architectures that optimise the data flow for a given
problem, and to simply increase the computing power by
adding extra transputers to the network.

The transputer family operates in a very flexible
software environment, by being programmable in
standard high-level languages such as FORTRAN,
PASCAL or C. Concurrency can be achieved by the use of
an OCCAM harness to link modules of code written in one
or more of these languages, but to exploit the maximum
potential the entire transputer system should be
programmed in OCCAM.

4. PARALLEL PROGRAMJIIIJNG

The concept of parallel processingis simple in theory,
but much care and attention must be paid to the
Particular problem in order to achieve an efficient
solution. It is quite possible for a multiprocessor solution
to take longer to execute than on a uniprocessor if
coordination of the individual processor tasks is not
considered. Additionally, there are certain operations
which are inherently sequential, such as disk and console
I/O (custom graphics interfaces are of course an
exception to this), and hence it is pointless attempting to
Parallelise them. Thus to map a problem onto a parallel

architecture, the task must be divided into segments that
will execute in parallel, and then determine the method
of inter-processor communication (Howe and Moxon,
1987).

The distribution of these parallel tasks can heavily
influence the efficiency of the scheme, so the degree of
parallelism or granularity (Almasi, 1985) of the
application must bear a direct relation to the
communicative performance of the target hardware. The
transputer network architecture shown earlier uses
message passing for interprocessor communication,
which means that any global broadcasting of information
must involve the temporary synchronisation of all nodes.
As a result local communication should be used since little
processing overhead is required. making it very efficient.

The final issue in deciding how to coordinate the
entire parallel scheme is whether there are any external
constraints be applied to the system. If compatabilitv
with an existing code structure is required this may well
force particular approaches to be taken which are not
optimally suited to the overall parallel design. Depending
on the magnitude of these constraints, it may prove
beneficial to maintain the desired parallel format and
incorporate additional pre- and post-processing elements
to the system which provide interface compatability.
Obviously the solution to this will be highly application
specific.

5. PARSIJP-I1

SI.JPREM-1I (Antoniadis and Dutton, 1979) was one
of the early process simulation packages to be developed
at Stanford University during the mid-seventies. It is a
one-dimensional model capable of analysing all of the
process steps mentioned earlier. Since its introduction
2-1) simulators have generally become available, but the
underlying algorithmic concepts have not changed
significantly and the availability of the source code made
it an obvious to choice for this project.

Referringthe above analysis to the process modelling
environment it becomes rapidly evident that the CPU
intensive area is concerned with the diffusion of impurity
atoms throughout the structure. Considering the
problem in one dimension, it is found the diffusive flux of
impurities, F 0 (j) can be formulated by a modified
version of Ficks first law.

F 0 (j) = - RDn.0

where D(/) is the diffusion coefficient of the impurity.
If uniform diffusivity is assumed. then Fick's second law
is obtained.

:c ''C

Although this law is adequate for low concentrations
of impurity, the approximation fails for impurity
concentrations at or above that of the intrinsic carrier
'Dutton, 1983). Under these conditions the diffusion
coefficient becomes a complex function involving
impurity concentration dependancies. Thus it can clearly
he seen that the formation and subsequent solution of
this partial differential equation system becomes a
complex and computationally intensive task.

At its simplest level, the solution of diffusion models is
concerned with the generation and subsequent solution
of the following matrix system.

where A represents the diffusion coefficients, b, the
current impurity concentrations and x, the new
concentrations after the process step.

Consequently, the following parallel methodology
was chosen for distributing the diffusion process across
the transputer network. The main bulk of the
SUPREM-11 code (written in FORTRAN) executes
sequentially on a single root transputer, and when a
diffusion step is encountered, the relevant data
structures are downloaded into the network for the
parallel stage to proceed. On completion of the diffusion
calculation, these data structures are returned to the root
processor which continues with any subsequent steps.
This approach, represented in figure 6, ensures that
investment is not wasted in sections of the software not
suitable for parallelisation.

A pipelined approach can maintain an efficient
one-way data flow, but its performance degrades on the
introduction of two-way flow if large amounts of data are
being communicated. For real problems such as those
found in SUPREM-11 where relatively large data
structures must be passed between the root processor
and the target system, architectural modification is
required to present an improved load/unload facility for
the pipeline through the addition of intermediate
branches. The resulting spaceline architecture is shown
below in figure 8 using a tertiary tree approach as dictated
by the limit of 4 links from any one transputer.

ROOT

P. C. NETWORK 	 -.

- •-i MANC44 BRANCH

a
Main

SUPREM-11 Code ______ ______ . 	 LEAF - LEAF H- LEAF - LEAF— LEAF -. LEAF

Parallel Diffusion Code
Figure 8 Spaceline network architecture

Figure 6 Distribution of the SUPREM-11 code
between the root and network processors

The partial differential equation can be formulated
as a sparse matrix, so the first step was to select a suitable
parallel matrix solution algorithm (Wang, 1981) and map
this onto a network. A simple pipeline architecture was
chosen for this task and the resulting execution times
showed an almost linear improvement as the number of
processors was increased. Figure 7 displays the
performance attained in this application.

Speed up

This architecture enables the entire SUPREM-li
data structure to be distributed to each of the leaf
processors which execute the parallel code, and returned
to the global data structure oil completion of the entire
step in under 60 milliseconds * . Within each leaf node, a
subset of the diffusion matrix system for a particular
section is analysed, communicating with its neighbouring
nodes whenever information regarding the boundaries is
under consideration. Each leaf contains a complete and
continually updated version of the global parameters
required to control the conditional stages of the program.

6. APPLICATION OF PARSUP-il
So far the implementation of PARSUP-11 has been 5 -----

discussed but no reference has been made as to its
. operatingenvironnient. One of the features of this system

4 - the is its high degree of portability resulting from the
substantial range of computers which support the
transputer. The host only provides me serving and

3
.

console functions, with the entire processing being
- performed by the transputers. Hence, the requirement

2 - to have large mainframes to run this CPU intensive task
no longer exists, and a Personal Computer (PC) of
IBM-AT or similar specifications is more than capable of -
hosting such a system. Since many functions within the
process engineers scope are already PC based, this makes
it feasible for each engineer to have a personal and

. 0 	 --
1 	2 	3 	4 	5 	6 	7 completely autonomous simulation system, without any

of the drawbacks of the current multiuser approach.
No 	of Processors

Figure 7 Pipeline solution speedup attained against
the number of processors used. This is
referenced to a sequential algorithm
running on one processor.

Typical execution times for a diffusion step are in
the order of 10's of minutes on the T414 and 10's of
seconds on the T800. A full process has approximately ten
processing steps involving diffusion, so even small speed
improvements lead to a significant reduction in the total
execution time.

56

To place the performance of such a system in context, a
PC with a single T800 transputer provides greater
computing power than a VAX 11/780 system, at a fraction
of the initial capital outlay and perennial rnaintainance
costs.

The only criterion attached to the host choice is that
a suitable transputer interface exists, but as these are
available for PC's. VAX/VMS and VME based systems, a
suitable host probably exist within most potential user
environments. When considering the integration of
process simulation with CAM to furnish the
manufacturing system with real-time analysis, the
transputer based approach has much to offer. Given the
complexity of CAM tasks, there is a strong incentive to
farm the simulation out to a network to be run in parallel
with the ongoing CAM transactions, rather than impose
further loading on the CAM host.

7. CONCLUSIONS

This paper has presented some of the reasons for the
greater utilisation of process simulation within the
semiconductor fabrication cycle, especially with respect
to low-volume and multi-product production runs
necessitated by the ASIC market. The drawbacks of
current process simulation environments have been
highlighted and a solution incorporating transputers has
been proposed. This parallel process simulation concept
has been demonstrated; indicating the improvement in
run-times which can be achieved and although this has
only been verified using a 1-D code, its potential in 2-D is
self-evident. On the basis of these results, high
perfromance and economic process simulation systems
can be produced, enabling the full potential of this tool to
be exploited in the semiconductor fabrication
environment. Work is now in progress to extend this
concept to 2-D process simulation software.

ACKNOWLEDGMENTS

The authors would like to thank INMOS (Bristol)
Ltd, who have provided the transputer hardware and
relevant software for this project. Additional support has
been provided by the UK Science and Engineering
Research Council (SERC). Sandy Alexander would also
like to acknowledge financial assistance from SERC and
IN MOS.

REFERENCES

Almasi, G.S. (1985): Overview of parallel processing.
Parallel Computing, vol 2, ppl9I-203.

Antoniadis, D.A and Dutton, RW. (1979): Models for
computer simulation of complete IC fabrication process.
Electron Devices, Trans. IEEE. Vol ED-26, No. 4. April.
pp490-500.

Dutton, R.W. (1983): Modeling of the silicon
tntegrated.circuuit design and manufacture process.
Electron Devices, Trans. IEEE. Vol ED-30. No. 9. Sept.
Pp 968-986.

Howe, C.J. and Moxon, B. (1987): How to program parallel
processors. Spectrum. IEEE. Sept, pp36-41.

MacDonald, kJ. and Walton, A. J. and Robertson, J.M.
and f-Iolwili, R.J. (1989): Integrating computer aided
manufacturing and process simulation for controlling the
production of ASIC's. Proc. 8th Aust. Conf. on
Microelectronics. To be published.

INMOS Ltd (1988): Transputer refer ence manual.
Prentice Hall. 	-

Singer, P.H. (1987): Process modelling and simulation.
Semiconductor International. Feb. pp 74-80.

Wang. H.H. (1981): A parallel method for tridiaginal
equations. Math. Software Trans. ACM. Vol 7 No. 2. June.
pp 170-183.

57

"Use of Process Simulators to Assist in the Design of Processes for Manufac-

turability", Cont Proc. IEEE Advanced Semiconductor Manufacturing Con-

ference, 1990.

USE OF PROCESS SIMULATORS
TO ASSIST IN THE DESIGN

OF PROCESSES FOR M ANUFACTUR ABILITY

Michael K. Kump and Steve W. Mytroit
Technology Modeling Associates. 300 Hamilton Avenue, Palo Alto, CA

WJ.C. Alexander and AJ. Walton

Edinburgh Mtcrofabncacion Facility, University of Edinburgh. Edinburgh. Scotland

3 S iiTW I

Increasing recognition of the role of random process variations

in semiconductor manufacturing has led to wide use of statistical
process control (SPC) techniques during the last decade. A com-

panion to SPC that has seen ouch less acceptance to date is Design
for Manufacrurabilitv (DEM). While SEC methods seek to control

the variabilities in a process, DEM asks the question "How can the

yield of a process be maximized, given the inherent variability in

the underlying process steps"

One of the factors limiting the use of DEM has been the large

number of experiments reouL'td to characterize a process in terms

of its sensitivities to random variations in its component steps.

Liniting process and device smulators with experimental design

and analysis software such as KS/I can greatly reduce the time and
exoense required to do a Resnonse Surface Methodology (RSM)

or Taguchi analysis of a process. Only a few split lot experimental

runs are required for calibration purposes, with the majority of the

experiments being done with simulators.

Applying these methods to several manufacturing problems has

shown how minor process tuning can improve parametric yield and

reduce variability with only a minor loss in peak device perfor-
mance.

I. INTRODUCTION

Semiconductor companies are increasingly recognizing that to

remain competitive, they must design new technologies nor only

for high performance, but also for optimal manufacturabilirv. Af-

ter all, a technology that has the utmost performance but cannot

be manufactured with yield is of little value. Combined with this
need for manufacturable processes is the exorbitant cost of new

process development, which is forcing semiconductor companies

to reevaluate the manner in which they develop new processes.

Gordon Moore, Chairman of the Board of Intel, has estimated the

cost of new process development at roughly 510) million, with the

cost expected to increase in the future [I]. This paper will show

how semiconductor process simulation, by replacing numerous run-

splits, can be a cost-effective 32" to design new technologies for

both optimal performance and cnanufacturabilitv.

H. DFM CASE STUDIES

We will illustrate the use of process and device simulators for

designing for manufacturabiiirv by considering two examples, both

drawn from experiences in actual semiconductor manufacturing.

The first is the design of a high sheet resistivity implanted resistor

to minimize its variability. The second is the design of certain

aspects of an LDD MOS process to both optimize the intrinsic
device performance and to improve its manufacnirability.

A. High-value Resistor Control
The objective of this study was to increase the percentage of

die that qualified as high performance parts. This bipolar part was

sorted into several product grades based on its switching speed and
power consumption, with the market price of the product varying

widely as a function of grade. The primary circuit design factor
influencing the speed and power performance of the part was the

bias current level of the devices on the chip. This current level was

established by a high sheet resistivity implanted resistor.

In this marufacturing area the part was a medium volume prod-
tact. Its volume did not provide sufficient data to allow the use of

classical SEC techniques for yield improvement, nor could it jus-

tify a major yield enhancement project. However the lower yield

of high performance parts represented a considerable revenue loss.

During a four month period in which 17 runs of this part were

processed, over 22% of the die produced were functional but un-

saleable because either the switching speed or power consumption

was outside specification limits. An additional four percent of

the the where down-graded to lower priced parts due to marginal

switching speed or power consumption. The net result was a 27%

yield loss due to process varibiliry.
Initial yield improvement efforts had focused on improving the

dimensional control in the masking process used to define the re-

sistor. These efforts had little effect on the output product mix. As

a result, an effort using process simulation and DFM techniques

was undertaken to identify improvements in the process or in the

process control limits that could improve the product's yield.

1. Process description
The resistor was fabricated by implanting a p-type layer into the

n-type collector region of the circuit. Boron was implanted through

the 320 tim of oxide grown during the previous base diffusion steps.

Openings in a photoresiest layer delineated the resistor geometry.

The implant was annealed during the subsequent emitter deposition

and anneal furnace cycles. The SUPREM-3 process simulator [2]

was used to simulate the resistor impurity profile, with a typical

result shown in Figure 1.

2, Sensitivity Analysis

Based on an analysis of the historic yield data and the simulated
impurity profile, the following five parameters were selected as the

most likely sources of the observed variability in the resistor sheer

resisuvi ry:

CH281 O-0t90i000- 0015 51.00 C1990 IEEE 	 15 	 199) tEEESE%Al Aavarrs Senar-ac Man4nn. Catarce

Implanted Resistor Cross Section

19
-S

18

217
0

4.)
C
Is

2

,Res istar

16

U
C
0

Epi

15

• epitaxial layer thickness

• epitaxial layer resistivity

• oxide thickness

• resistor implant energy

• resistor implant dose

The process specificiatiom and equipment engineers were con-
sulted to obtain estimates of the typical ranges of these variables.
The values used in this analysis are listed in Table I.

To limit the number of variables to be examined, the RS/Discover
software (3) was used to design a fractional factorial screening ex-
periment 141. A recently announced ThM interface between the
KS/I series of software products and IMA's SUPREM•3 pro-
gram automatically modified the process variables in a genetic

I parameter name nominal minimum J maximum I I

I 	epi resistivity 0490/sq 0440/sq
I

	

C. 	thickness 	I
I 034f2/sq I 	- 	$

44 t
I

4-2um 3.85pm 455pm 	I
0 00 . I oxide thickness I 3200A 3(X0)A I 	3400A 	I

implant energy 135 KrV 115 Key 125 KeV
implant dose 2.5 x 10 2.3 x Io' 2.8 	io'

2.00 	 4.00
Distance (Microns)

Table I: Estimated variable control limits.

SIJPREM-3 process simuiatioti Ailput file, ran the required
lations. and loaded the results into the RS/DISCOVER experimen-
tal worksheet. Once the generic SUPREM-3 input file was es-
tablished, the "simulated experiments" with SUPREM-3 took less
than an hour to run on a SUN SPARCstation 1 workstation. The
experimental analysis tools in KS/EXPLORE were then used to fit
linear response surfaces to the simulated sheet resistances and to
calculate the sensitivity of the sheer resistivity to each parameter.
Based on the results of this analysis, the cpitaxial thickness was
found to have the least effect on sheet resistivity and was discarded
as a factor. KS/DISCOVER was then used to generate a central
composite design for the experiments required to form a quadratic
response surface for the four remaining factors. The TMA-RSII
interface was again used to run the SUPREM-3 simulations and
load the results into the worksheet. Finally, the multiple regression
capabilities in KS/EXPLORE were used to fit a response surface
to the simulation results. The response surface showed that the
largest source of variability was the dose control in the implanter,
producing a resistivity spread of 300Cl/sq for the estimated varia-
tion in dose. The other three factors each contributed a variability
of about 500/sq each (see Figure 2).

t Process Centering
Once the response surface for sheet resistivity is fit, we can

use it for design centering. Our goal is to achieve both a target
resistivity- of lSOOfl/sq and to minimize variabilities, so we define
a composite response as

CR = weight(I' - 1500) +

IORS\ 2 Ia/isV fe/iSV 13/ic
+1—] + 1—! +f---

\OJDJ kfi!E) 	IÔOT) 	8ER1

where R5 = sheet resistivity-, ID = implant dose. JE = implant en-
ergv. Or = oxide thickness, and ER = epiuxial resistivity, weight
is a weighting factor specifying the relative importance of attaining
the target resistivity and minimizing the variabilities. (The value
used for this study was IC.) The oxidation and diffusion steps

Figure 1: Resistor impurity profile predicted by SUPRESI-3

- a

Figure 2: Sensitivity of sheet resistivity to each process factor.

16 	 19% IEEESEMI Adenced 5ennno- MartAacDrnQ Cate'e!ce

used to fabricate this part are shared with a number of other parts

manufactured in this fabncaaon area, whereas the implant step is
unique to this product. In addition, changes in the implant would

only affect the resistor, while changes in the Oxidation or diffusion

steps would affect all the devices in the circuit. For these reasons,
the parameters to be varied during the optimization were limited to
the implant dose and energy

The optimization algorithm in RS/EXPLORE was used to min-

imize this function, subject to the constraint that the deviation of

the resistor sheet resistance from 15(YJQ/sq should be less than
900 1/sq. The result showed that the current implant conditions.
while not opomal. were not far from optimal. The most significant

improvement that could be expected was a reduction of the spread
in the mean sheet resistance from 4200/sq to 3800/sq.

Feed-Forward Process Control

Since the epitaxial resistivity and oxide thickness are known

from in-process measurements before the resistor implant step is

undertaken, the possibility exists to use an optimization based on

the response surface to adjust the implant parameters to minimize

process variation. Optimization showed that the variation in the

mean value of the sheet resistivity could be reduced from 1300/sq

to 550/sq if the adjustment were based on the measured epitaxial

msistiviry alone and to 300/sq if both the epitaxial resistivity and
oxide thickness were used to establish the implant dose.

Conclusion

By using process simulation coupled with statistical design of

experiment tools, the dominant factors causing sheet resistance
variation were identified in a few hours without any silicon runs.
Improved dose control in the implanter was identified as the fac-

tor that would yield the greatest improvement in process control.

A minor decrease in variability was found from process centering,

but a very significant reduction was possible if the response surface

was used in a feed-forward manner based upon in-line epit.axial re-
sistivity and oxide thickness measurements.

E. MOS LDD Design
The second case study is that of optimizing certain aspects of an

n-channel LDD MOS device. A partial list of the process variables
that can be varied to optimize device performance might be

• drawn gate length

• gate polvsilicon thickness

gate polysiuicon edge slope (8)

LOD implant dose (DLDD)

- LDD implant energy (ELDD)

• deposited oxide spacer thickness

• etched oxide thickness

• source/drain implant dose and energy

• drive-in time and temperature

We coulc create an equally long list of device characteristics that

We Would like to simultaneously optimize, a subset being

- minimize series resistance (R.)

minimize peak electric field (E,..)

maximize transconductance (j.)

- ensure punchthrough voltage (V,,) > 10 volts

• maintain specified threshold voltage

• maximize subthreshold slope

• minimize junction and overlap capacitances

minimize all sensitivities(
8R 	8RUtr 8E.k -

Some process variables are Local and will have a straightforward

influence on only a single device characteristic. Stir example, in-

ceasing the dose of a source/drain implant in this LOt) process

will primarily simply decrease the series resistance of the device.

Other process variables are global and will influence numerals de-

vice characteristics, and changes in one of these process variables

may interact with others in a complex way. It is for these complex

interactions in which the designer has to juggle many trade-offs that

DFM using response surface methodology (RSM) is most useful

In particular, the process variables considered for this case study

are those indicated with arrows in the previous list of variables. The
first variable is the slope of the polysilicon sidewall. This slope

has an important influence on a number of device characteristics,

and manufacturing engineers had indicated that sidewall slope was
not controlled as well as they would like. The other two vasiabes

are the dose and energy of the LDD implant- These variables wiH

interact with the poly sidewall slope and will affect the grading of

the source/drain region and the effective channel length.
For this study, the responses that were of most interest were

those indicated with arrows in the list of responses. The problem

is to select the optimal set of the three process variables that si-

multaneously minimize H,, minimize the peak electric field E,,,,,.
(so as to minimize hot electron injection), maximize g..,. ensure

V,, greater than 10 volts, and also, to improve manufacturabiiiv,

minimize the sensitivities of all responses to all variables. Even
this subset of the design problem would be quite formidable with-

out a systematic approach. The myriad u -ade-offs in optimizing the

design can be virtually impossible for the designer to keep in mind
simultaneously.

L Simulation Procedure

This process was simulated with the TSIIPREM-4 [5) process

simulator, which produces a two-dimensional cross-section of the

device. The electrical performance of the device was then analyzed

with the PISCES-2B [61 device simulator. Punchthmugh voltage
(Vs) was determined by applying 0 volts to the gate and ramping

the drain up until I nA of current flowed. The peak electric field

(E') was found with 5 volts on the drain and 3 volts on the gate,

a bias condition that will likely be near the peak hot electron in-

jection conditions. Finally, the gate I-V characteristics for different

channel length devices were generated. These characteristics were

fed into the TOPEX [7] parameter extraction program in extract

series resistance (H,) and peak transconductanee (,g,.).
Figures 3 and 4 are the structures from TSUPREM-4 core-

onding to the two extremes of polysilicon sidewall angle th,t

were investigated. With a polysilicon angle of 70° we have a wide

spacer, and the LIX) implant does not even extend to the gate edge,

so the series resistance will be high in this case. At the other ex-
treme, with a sidewall slope of 110°, we have a thin oxide spacer

and good penetration of the implant under the gate. So, series

resistance will be lower, but the peak electric held will be higher

in this case. The optimal poiysilicon slope will likely lie between

these two extremes.

17 	 199C IEEESEMI Aevarcad Santanu Martdacttnç Caitaste

2.30

Z:stcnce 	n::on)

Figure 3: TSUPREM-4 simulation with ba polysilicon edge slope.

(Slope is measured from the horizontal axis.)

nJ

0

2.32

Z:stcn:e 	r.:zonst

Figure 4: TSUPRE.M-4 simulation with I lOc polysilicon edge

slope.

2. Single Factor Analysis
The most obvious way to start optimizing this device structure

would be termed single factor analysis." in which we look at the

influence of one design variable at a time, holding the remaining

variables constanL This is the appropriate approach when we are

just starting the design—to ensure that the values of the design

variables are at least of the correct order of magnitude. So it is the

convenient approach for an initial, rough design.

With single factor analysis we can roughly center the design

about an optimum device and determine reasonable variable ranges

in which a more sophisticated search for an optimal design should

be conducted Also, response surface methodology will involve

fitting a polynomial model to the responses, so at this stage we

can judge roughly what order of polynomial will be sufficient for

the model- Typically a quadratic model is used, but a higher order

model could be used if necessary.

Figure 5 shows single factor plots of R. for the device under

consideration. R. is plotted versus sidewall slope with LDD im-

plant energy as a parameter. We can see that R, decreases rather

sharply as a function of slope- If our design criterion is to have R.
less than 500Q, we can see what combinations of design variables

would give us that result, and we can see which variables most

strongly affect ft.
However, the disadvantages of this approach are numerous:

Fins, it is awkward to treat multiple process variables. Fig-

we 5 is only one plane through this 3D parameter space.

so much of the behavior cannot be seen. For example. this

plot is for an LDD dose of 5 x lOcrn. The behavior

might be quite different its dose or lOhic rir, but we must

perform another set of simulations and another graph to see

that. To investigate all possible combinations of the three

process variables in this study would require a full factorial

number of simulations and a rat number of plots. The sit -
nation might be acceptable for three variables, but it quickly

becomes unacceptable if we want to consider five or six pro-

cess variables.

Secondly, we do not know which combination of process

variables is the optimal one for simultaneously optimizing

the other responses. We could plot on top of Figure 5 the

curves for g_. £,t.h, and tc, but the number of curves

grows rapidly, and quickly becomes more confusing than

informative.

• Finally, if we want to minimize sensitivities as well as opti-
mize the device performance, we have no quantitative way of

doing that—we can only look at the slopes of the numerous

curves and somehow judge which set of process variables is

best.

PS vs. slope

fl-
in 	LOD øose5e12 cii-?

S
—c
4

&0

C

Un

80 	100

siope (degrees)

Figure 5: Single factor plots of series resistance.

3. Response Surface Methodology
A solution to this difficulty is the use of response surface

methodology, which is a well-known approach to efficient experi-

ment design and analysis that is increasingly being used in semi-
conductor process design- The novel aspect about the present ap-

proach is that experiment design methods are applied to efficiently
analyze simulated experiments rather than actual fab line expen-

menu. But the goal is the same—to obtain maximum information

from a minimum number of simulations and then to optimize the

performance of the process-
RSM analysis provides a structured, systematic approach to

multi.panmeter/multi-response optimization It is no longer nec-

essary for the designer to juggle all the made-offs in his head or

work with myriad ID plots. This method easily handles a large

C

a
-J

-

=

18 	 1990 EEESEMI A&Ianmd $entott1t% MarLJractJvc Cade*

number of process variables and their interactions. We axe only
considering 3 process variables in this case, but we could easily
neat twice that number.

i. Simulation Point Selection

The next step is to pick the points for our RSM analysis. The

brute force approach is to do a full factorial experiment, which,

for a quadratic function in 3 variables would require 27 simulation

uns. This may be acceptable for 3 variables, but for 6 variables

the number of simulations is 729—clearlv unacceptable. A more

efficient approach is the central composite design, which is one of

the most common designs used for fitting RSM surfaces. For fining

* quadratic in each dimension of our 3 variable space, the central

composite design consists of I center point. 6 axial points, and B so-

called "factorial" points, where the axes of our 3D parameter space

are poly sidewall slope. LDD dose, and LDL) energy. We already

had the axial and center points available from our single factor

analysis. so we had only to add the factorial points to complete the

design. From the results of the single factor analysis. we picked

ranges for the variables in which we thought an optimal design
would exist

S. Response Function Fitting

After performing the simulations at the RSM points, the next

step is to fit a multi-variable polynomial to each response The

polynomial has the form

response = a+ °t9"GDL,DD +a,ELDC +

+arDtvo + aEj0t +

aI:ODLDD +at,OELDD • anDLDDELDD

We M a separate polynomial for each response, in our case, for
fi.. E,,,. peak g,,,, and V,V TOPEX was used to determine the

optimum values of ao through °r that best fit the polynomial to

the simulated responses.

6. Composite Response 	 -

The power of the RSM approach lies in the fact that since
we now have a mathematical description of our responses, we can

combine them so find a composite response, or overall figure of

ment, which we can optimize.

The composite response (CR 1) is constructed such that the op-

timal design will be at its minimum. It is given by

CR1 = (weightR,)R. + (weight,)E.1 +

All responses axe normalized by their value at the center point of

the parameter space, so units and relative magnitudes are factored

Out. The weights can then be selected solely on the basis of which

response is most important to optimize for our particular applica-
tion.

The composite response function is shown in Figure 6. Our op-

timal operating condition will be at the minimum of this composite

response, which is again found with TOPEX.

The trade-off, primarily between R. and Es,.., has left a valley

near the middle of the design space. At the minimum, the optimal

Process variables and corresponding optimal device characteristics
are

• I trsa'r

W4'

Figure 6: Composite response surface.

optimal process variables: 	optimal responses:

9=104' 	 R,t352D

DLDD = 3.5 x 10 	-2 	E.k = 5.08 x lO5 VJcm

ELDD = 65 Key 	 g,, =
= 12.6 V

In a sense, selecting the optimal device design is now complete.

However, we should also place constraints on specific output char-

acteristics. depending upon the constraints imposed by the circuit

application for this device.

7. Feasible Operating Region

For our particular application, the circuit design places the fol-

lowing constraints on the device characteristics: /?, S 500 ohms.

E. :5 6 x j5 V/cm, g,, ? SpS/pm. and t' ? 10 V. These

constraints form a feasible operating region in which the design

must be centered (see Figure 7). This feasible operating region

is found by plotting the contours corresponding to each constraint

on top of the composite response and noting on which side of the

contour we should operate. TOPEX can then search only within

this constrained region for its minimum.

In this case, the minimum is well within the feasible operating

region. so the operating point did not have to be moved to abide

by the constraints.

& Safe Operating Region

Now, to ensure that this technology will be manufacturable,

we want to not only operate within the feasible region, but also

within some margins inside the feasible operating region. This de-
fines what might be called a safe operating region, which is the

region defined by moving in 3c in each of the parameter directions

from the edges of the feasible operating region. From experience

with the particular manufacturing facility in which this device is

produced, we have estimates for the standard deviations of each

process variable. Sidewall slope is a likely control problem, with a

rather large standard deviation of 2.5'. The implant is better con-

trolled, with dose controllable to within 5% of its nominal value

and energy to within 1%. These standard deviations define a nthcr

narrow safe operating region. as indicated in Figure 8. If we center

our design within this region, we will have a high degree of confl-

19 	 1993 IEEEJSEMI Mvarcsd SeitMst MaSn''q Conte'exe

j/jHjiIf Ii
clii ! p

''-
I'•\\\\ 	\J

'Hi N

Ii

\\ \H\\ \ 	\ Tc

2 	92 	100 	itO
ice.! : •1oe Cdeçrees

S
S

S

C

S

0
t

0

Figure 7: Feasible operating region. The optimal operating point.

indicated by the cross, is not affected by the circuit constraints.

N

— I 	F

•'HL H
H I

I41
Figure 8: Safe operating region. The optimal operating point that
is safely within the circuit constrai nts is indicated with the cross.

dence that for all manufacturing variations, the circuit requirements

will be met, The optimal process variables and corresponding de-
vice characteristics that are safely within the circuit constraints are

optimal process variables: 	optimal resoonses:
B = 104.3° 	 R. = 348Q

= 3.A x Wi: —2 	 = 5.10 x 105 V/cm

ELDD = 65 Key 	 9, = 9.69 ,S/um
= 12.6 V

At least in this case we have a safe operating region. If the

standard deviations had been slightly larger, we would have had no

safe operating region. which would have been a signal that we may

have manufacturing problems. In that case, we had better either

reconsider building our device with this process, or we should
investigate making whatever changes are necessary to reduce the

standard deviations. With this pmàdure we have a clear indication

which standard deviations axe the cause of the control problem and
a quantitative measure of how much they need to be reduced to

make the technology manufacturable.

9. Composite Response with Sensitivities

Now, to improve the manufacturabiliry, of the technology, we

can also recenter the design to make the technology less sensitive

to manufacturing fluctuations. We can do that simply by including

a measure of the variability into the composite response. We have

defined a second composite response. CR3, which is equal to the
original composite response. CR 1 , with the addition of a weighting
factor dines the product of the gradient of the composite response

and the variances for our manufacturing line

CR2 CR+ weight_,,[VCRT(variances)t"CRt]

The gradient of the composite response (VCR,) is the vector of
partial derivatives with respect to each process variable, and (vari-

ances) is a matrix with the process variances on the diagonal and
cross'corytlations off the diagonal. If we now operate at the mm-

imum of this new composite response, but still within the circuit
constraints (Figure 9), we will be at a point with reduced var].
abilities. We will be sacrificing some device performance for this

decreased variability. The process settings and corresponding de-

vice characteristics with decreased sensitivity are
optimal process variab le s: 	optimal responses:

6=106° 	 R1 =362ci
DLDD = 2.3 x 10 cm 	E 5 . = 5.12 x I0° VIcm
ELDD = 65 KeV 	 = 9.71pS/pm

= 12.3 V

Figure 9: Composite response including variabilirv estimate. The
optimal operating point with reduced sensitivity is indicated by the
cross.

r ... lbl. Do,-.tin; Regor

\\ k V 	
\"

i
72 	 S2 	 92 	 fl

	
lie

.io. (dc;r ...)

/- -- .\\\\N

Wh/

W~A

\ 	:J
82 	 92 	 ifl 	lie
Sloe..! 	.00e tøt;rt, 5

20 	 1990 EEESEMI Mar Sancorcuctu Mnitac.trq Co,re'erce

LII. SUMMARY
Simulation can be used to evaluate the manufacturabilirv of

a new technology before it ever enters manufacturing. So we can
know before we make a large investment in tab equipment whether

a proposed technology is feasible. Also, we can know what the

control problems will be and where we should invest our resources
to make the technology more rnanufactunble. Process and device

simulation, combined with RSM analysis, provides an ideal way of
making these evaluations.

Also, after a technology is in manufacturing, the case studies

in this paper have shown that process and device simulation, com-

bined with RSM analysis, can help diagnose control problems and

can improve manufacrurability with a minimum of actual tab line

experiments.

References

[I] Gordon Moore. in an address to the 1990 Symposium on

VLSI Technology, Honolulu. Hawaii, June, 1990.

TM.4 SUPREM-3 User's Manual. Technology Modeling As-

sociates, Palo Alto. California.

RSil, RSJDISCO VER, and RS'EXPWRE User's Guides, ERN

Software Products Corporation. Cambridge. Massachusetts

G.E.P. Box. W.G. Hunter, and J.S. Hunter. S:arLszscs for Ex-
perimenters, New York: John Wiley, 1978,

TSUPREM-4 Users Manual, Technology Modeling Asso-
ciates, Palo Alto, California-

16) TMA PISCES-2B User's Manual. Technology Modeling As-
sociates, Palo Alto, California,

[7] TOPEX User's Manuai. Technology Modeling Associates,
Palo Alto. California.

RS/l. RS/DISCOVER, and RS/EXPLORE an trademarks of BBN

Software Products Corporation.

SUPREM and PISCES are registered trademarks of the Board of

Trustees of the Leland Stanford Junior University.

TOPEX is a trademark of Technology Modeling Associates, Inc.

21 	 1990 IEEEJSEMf frcyaiesc Ssncnc Mn4nwi Cade'wce

"PARTICS: A Parallel Taskf'arm for Integrated Circuit Simulation", Edinburgh

Parallel Computing Centre Technical Report, EPCC-TR91-08, 1991.

PARTICS: A PARallel Taskfarm for Integrated Circuit Simulators

G.J. Gaston, W.J.C. Alexander, L.J. Clarke f and A.J. Walton.

Edinburgh Microfabrication Facility; Department of Electrical Engineering,
University of Edinburgh, The King's Buildings, Edinburgh, UK, E119 3JL.

Edinburgh Parallel Computing Centre, University of Edinburgh, The King's
Buildings, Edinburgh, UK, EH9 33L.

ABSTRACT

Statistical methods used in the manufacture of integrated circuits are dis-
cussed. A parallel taskfarm system, PARTICS, is outlined. It is shown how this
system can easily and effectively be used to reduce the time taken for perform-
ing CPU intensive process and device simulations. The system gives an almost
linear speed up is inherently flexible, and can be used with any application. Two
different hardware platforms, an IBM PC compatible and a MEiKO computing
surface are presented.

I. INTRODUCTION

As a result of the trends towards greater complexity and miniaturisation
of VLSI devices, modern Integrated Circuits (IC's) are becoming increasingly
susceptible to fluctuations in the manufacturing process. It is such complexities
that have heralded the use of Computer-Aided Design (CAD) tools for process
and device simulation. From quiet beginnings these tools are now widely used
in the semiconductor industry.

The major advantage of these simulation programs is that costly prototype
production runs, which can take months to complete, can be replaced by simu-
lated experiments. These simulations can be completed in a matter of hours or
days, depending on the processing capability of the computer and the type of
simulation involved. As a result the length of the product development cycle is
kept to a minimum, a critical aim of all semiconductor maufacturers.

Statistical methods, known as design centering or response surface method-
ology, are used to reduce the number of simulations required, in order to arrive
at optimum settings for the manufacturing equipment [1,2]. Thus a set of input
factors are varied and their effect on some output responses are analysed. Using
RS/1 ' a set of experiments is designed, containing different settings for each
control factor. There may be upwards of 50 separate simulations that need to
be carried out to determine the optimum setting, depending on the number of
factors to be varied.

Although simulations reduce the time greatly, when compared to prototype
runs, they can still be very CPU intensive and each simulation may take hours to

'A statistical package from BBN Software

complete. Since there are say, 50 different simulations to be executed, this lends
itself greatly to a parallel taskfarm approach on transputers. Each transputer,
called a slave or worker, in an array receives a task from a master transputer or
driver and on completion the slave then receives the next job information.

2. SIMULATION

2.1. Process Simulation

As a result of the need to reduce the costs of prototype production runs,
process simulation has become an essential tool in the process engineer's tool kit.
Process simulation is particularly important in the evaluation of new structures
or in the improvement of existing structures. These improvements may include
changes for increased manufacturability.

Such programs can be divided into 1-D and 2-D process models. The l-D
programs such as SUPREM3 [3], have very sophisticated models for the different
procedures in the manufacturing process. Accurate results can thus be obtained,
but only a 1-D section through the structure can be simulated.

The 2-D programs such as SUPREM4 [4], SUPRA [5], are essential for
analysing small geometry process, where 2-D effects become more important.
These simulations arc, however, more CPU intensive. -

The structure and doping profile calculated by process simulation, provide
essential information required by device simulation, in order that accurate device
characteristics can be simulated.

2.1. Device Simulation

The results of the device simulator are obviously profoundly affected by the
input data generated by the process simulator. As the name suggests, device
simulation is concerned with the device characteristics of the final product,
eg I-V curves. Essentially, device simulation involves the solving of the basic
semiconductor equations, which govern the static and dynamic behaviour of
carriers in semiconductors under the influence of external fields [6]. There are
a large number of device simulators available at present [7-9].

The output of the device simulator, in the form of I-V curves, enables circuit
parameters to be extracted for use with circuit simulation programs. Such
parameters include, threshold voltage, series resistance or trnsconductance.

Fig 1 shows the relationship between process, device and circuit simulation
programs.

layout

impurity
profile

process device circuit

simulator simulator device
simulator

e.g. sheet
resistivity, parameters. e.g.

4 function B,. I
depth V4,. TF , I

c-c I

process device circuit

measurements measurements measurements
-

[

circuit parameters,

e.g. DC - V05. l. I s __
AC—(T.GM.PM
transient - stew rate. 1R' tF

Figure 1: Relationship between process, device and circuit simulation

3. RESPONSE SURFACE METHODOLOGY AND
EXPERIMENTAL DESIGN

Response Surface Methodology (R.SM) techniques have been employed in order
to reduce the number of simulations that are required to give the necessary
information about a particular process.

As Box states, these techniques are essentially addressing the following ques-
tions [1]:

• How is a particular response affected by a given set of input variables over
some specified region of interest?

• What settings, if any, of the inputs will give a product simultaneously
satisfying desired specifications?

• What values of the inputs will yield a maximum for a specific response,
and what is the response surface like close to this maximum?

The program RS/1, is used for setting up the experimental design. It enables
the user not only to specify the required factors and responses to investigate,
but also the ability to define a number of different attributes for each factor, eg

tolerance, settings, precision. It is also possible to model several responses in
one experiment.

Depending on the choice of design, it is possible to greatly reduce the number
of simulations that need to be executed. The design types that can be used
in RS/1 include Full-Factorial, Box-Behnken and Central Composite design.
Utilising RS/1 one can, therefore, use a planned program of experimentation
(simulation) to obtain a complete response surface for all combinations of input
factors from a reduced number of runs. An unstructured approach will not only
be significantly heavier on CPU time, but also will not necessarily point to the
optimum processing conditions.

RSM can be used to fit response surfaces, to analyse and interpret the results
obtained from the simulations. The data may be visualised using graphical
techniques, analysis of variance performed and models fitted to the results.
Routines can be written using RPL, the RS/1 programming language, to enable
quick and efficient transfer of files, tables etc. The RPL can thus be used as an
interface between RS/1 and the simulation results.

Figure 2 shows a very simple response surface plot, showing the variation of
theshold voltage and oxidation against dose and oxidation time.

4. SOFTWARE SYSTEM

Figure 3 shows how an the software system is used to automate the proce-
dure. This is essential if human errors are to be avoided and the elapsed time
for the procedure minimised. In the case of the example shown in Figure 2,
31 different control factor settings were generated using the experimental de-
sign capability of RS/1. This obviously requires 31 different simulations to be
performed and the software automatically reads the factor settings from RS/1
and generates 31 different input data files for the process simulator, with the
appropriate control factor setting. These 31 files are taken and farmed out on
the parallel transputer system, using PARTICS.

4.1. Taskfarm

The taskfarm has been implemented on two different hardware platforms,
namely an IBM PC compatible and the Edinburgh Parallel Computing Centre's
MEiKO Computing Surface. The former system consists of an array of 5 T414
transputers, each with 2 MBytes of RAM, or 8 T800 transputers, each with
256 KBytes of RAM. For a modest sum, therefore, supercomputing power is
available on the desktop. An array of 17 T800 tranputers, with 4 MBytes of
RAM, was used on the MEiKO Computing Surface, although the total system
has over 400 T800's available.

The taskfarm approach to parallel processing is often referred to as event
parallelism. The configuration consists of a master processor which allocates the

HLA
xri.

dfrGfXO

ul

oQ

-t
CD

t,1
k
l3

CD

0

C,
0

0

-S

0

B
S
0
a

oe - BwiCxo log AOW3N3
HStJH.LTh N31MFX0

T eSed go :g; 1;6-9B4-a;
	

955p :;otdanouo3

AS/Discover

Generic 	 I 	Exp er/mental

Input Files 	- 	 rTh 1 SeftThgs

Data oenerationj
rn

Simulation 	 simulation

Command File ii 	Input Files j

Simulation

PROCESS
TOPOGRAPHY

DEVICE
EXTRACTION

=Procedur:e:F11e

ah 	
IL 	Simulation

 H 	
Results Files

EE:)AS 	
j

Individual

& Composite

Responses

Figure 3: Complete software system

tasks to a number of slave processors and then collates the data when the slaves

are finished. This process continues until all tasks have been allocated- The

simplist analogy is when the slave processor executes the same executable serial

code only on a different set of data points, as is the case in this system. This

is obviously very efficient as there is almost linear speed up for each transputer

added to the configuration.

The main objective behind PARTICS, was to place a "shell" around the

executable code, running on each transputer. Thus no modifictions would be

required to the source code to enable each simulation to proceed. Consequently

the system is simulator independent. The major problem to overcome was that

each transputer on the farm tries to read from stdin (keyboard) and write to

stdout (screen). This required the formation of a jobfile which contains basic

information concerning renaming of files. eg stdout, stdin and any other files

opened by the simulator. An example of such a jobfile for running a batch of

SUPREM files is outlined below:

begin BLOCK-1

do suprem.b4

assign SUPSEG SUPSEGI

assign SUPDEBUG SUPOBUG1

assign SUPSYNT SUPSYRT1

stdin ru.nOl.in

stdout ru.nOi.out

done

do suprem.b4

assign SUPSEG SUPSEG2

assign SUPDEBUG SUPDBUG2

assign SUPSYNT SUPSYNT2

stdin runO2.in

stdout run02.out

done

end

This specifies that slave transputer number 1 will receive input from runOl.in,

print output to runOl.out (rather than the screen) and assign any other files

created by SUPREM to a unique name eg. SUPSEC to SUPSEG1 etc. The

jobfile is specified in blocks, the next block will not be started until the previous

block is finished. This adds an element of control over the order or preference

in which the simulations are executed.

While this system was designed primarily for optimising the IC process,

it was deliberately configured so that it was neither simulator nor application

specific. As a result it is extremely flexible and can easily be used with any user

program.

4.2 TINY

In order to be able to open and assign different names to files, it is essential

that each slave transputer has access to the filing system. To facilitate this, an

efficient message passing is used to transfer messages from the slave to the master

transputer. The system used was called TINY [10], a product of the Edinburgh

Parallel Computing Centre. TINY can be used to determine processor topology,

process mapping, calculate the routing tables and read and write messages. It

has a specific protocol which is used to send and receive messages. To send a

message the message type must be specified, along with the destination, and

the name and size of the buffer to be sent.

4.2. Fileserver Protocol

A problem arises in that the simulation program will communicate with the

filing system at a low level, using a file server protocol, but to pass messages

around the network it is essential to use the TINY protocol. The file system

expects to receive information in the following file protocol format [11]. For

example a 32 bit integer is sent as iut32. value; 1N132, where int32.valne

indicates that a 32 bit integer is about to be sent and 11T32 contains the actual

value. A record is sent as recorda2. value; 1NT32: : [I BM, meaning a record

is aboout to be sent, followed by the size of the record, followed by the record

itself.

integer is defined as mt 32. value; 1E132

record is defined as nilrecord. value or record32. value; 11T32:: OBYTE

This can best be illustrated by taking an example of the OpenFile com-

mand. As the name suggests this is sent to the filing system from the slave

transputer each time a file needs to be opened in the simulation program. Fig-

ure 4 outlines the route this command must take to reach the PC (the filing

system), or the host transputer in the case of the MEiKO. The SUPREM3

program requests to open a file. The filer protocol, as outlined in [11], needs

to send the following parameters to the filing system: openfile.cmd, filename,

access.method, open.mode, exist.mode and record.length. These represent a

variety of int32.va].ues and record32.values. This information is, there-

fore, stored in a buffer and sent down the TINY message passing system. This

effectively changes the fileserver or AFS protocol to the TINY protocol.

At the master transputer the message is received and converted back into

the fileserver protocol and the necessary file opened at the filing system. An

Tiny

.11

iiny

Client

(Suprern

I
SLAVE

• 	Tiny Protocol
AFS Protocol

Figure 4: Outline of protocols and message transfer

14:45:39

System 	info Task Info

System Nodes : 	S Task File 	: cputest.rc
Nodes 	Busy 3
Nodes 	Ready : 	2 - Current 	Block 	: Block-1
Nodes 	Dead : 	0 Jobs completed: 2

Code in Memory: cputest.b4

Node Program 	Ready Busy Jobs 	done

1 cputest.b4 I 0
2 cputest.b4 I 0
3 cputest.b4 0 1 0
4 cputest.b4 0 I 0
S cputest.b4 0 I 0

Message 	from 3 	: len 20 	: : 	tag 	24
- Message 	to 2 	:: len 4 	:: 	tag 	0

Figure 5: System screen information

acknowledgement is then sent back to the slave, with details of the ID number
associated with that particular file, again changing from fiieserver protocol to
TINY protocol and back.

Figure 5 shows the information provided by the system at runtime. The 5
nodes refer to the 5 slave transputers on the PC system. In order to speed up
the loading of large executable codes, they are loaded from memory, if they are
already resident. This speeds up the total execution time as disk access is much
slower.

With regards to the simulations, the 31 process simulations can be carried
out, either on the 5 transputers on the PC or the 17 on the MEiICO. Once they
are completed then the results can be fed into a device simulator and 31 device
simulations carried out in a similar fashion to the process simulations. All this
can be controlled from the jobfile.

Table 1 shows the comparisons between the PC system, (using both T4 and
T8 transputers), the MEiKO system, and a SUN3. Three different programs,
were run five times on each system and the execution times recorded. This was
carried out in parallel for the transputer systems, and sequentially in the case of
the SUN3. The MEiKO times are superior to the PC T8 times, due to reduced
communications overheads.

PC T8 PC 14 •MESKO 78 SU113

Progi 5.2 min 93 sin 4 sin 34.5 sin

Prog2 2.5 mm 37.7 sin 1.7 sin 13.2 sin
Proga 0.9 sin 4.4 sin 0.3 sin 1.3 sin

Table 1: Execution times.

5. CONCLUSIONS

In conclusion PARTICS offers almost lineai speed up for each transputer
added to the system configuration. It is not essential to change the source code of
the application software and the "shell" allows redirection of the necessary files.
The jobfile concept allows ease and flexibility, resulting in different simulation
code running concurrently on different transputers. To use the system with a
particular application, all that is required is a minor editing change to the jobfile
and the system can be utilised with any user program.

The use of PARTICS has a very significant improvement on the elapsed
time to optimise a process, reducing a week of CPU time to that of only a few
hours. This can be achieved using a supercomputer like the MEiKO Computing
Surface. A PC system can also be used to reduce the execution time, thereby
reducing computing costs.

7. ACKNOWLEDGMENTS

The authors would like to thank the Dept.of Education N.Ireland for the funding
of the project, INMOS (Bristol) for their help and support and the Edinburgh
Parallel Computing Centre for the provision of the message passing system,
TINY.

8. REFERENCES

G.E.P.Box and W.G.Hunter and J.S.11unter. Statistics for experimenters
An introduction to design, data analysis and model building New York: Wiley

1978.
A.R.Alvarez et al. Application of statistical design and response surface

methods to computer-aided VLSI device design. IEEE Transactions on Com-
puter Aided Design 7(2): 272-278, 1988.

C.P.Ho and J.D.Plummer and S.E.Hansen and R.W.Dutton. VLSI Process
modeling - SUPREM III. IEEE Transactions on Electron Devices 30(11):1438

1983.
SUPREM4 - Stanford University.
SUPRA - Stanford University.
S.Selberherr Analysis and Simulation of Semiconductor Devices Springer-

Verlag Wien New York, 1984.
PISCES - Stanford University.
S.Setberherr and A.Shultz and H.W.Potzl. MINIMOS - A two-dimensional

MOS transistor analyser IEEE Transactions on Electron Devices 27(8):1540-
1550, 1980.

Z.P.Yu and R.W.Dutton. SEDAN-3 User's Manual. Technical report, 1985.
L.J.Clarke, Ph D. Thesis, University of Edinburgh 1990.
INMOS Limited. Occam Toolset User Manual 1988.

"A General Taskfarming Tool: Its Application to Semiconductor Fabrication",

European Workshop on Parallel Computing, Barcelona, March 1992.

A General Taskfarming Tool: Its Application to Semiconductor
Fabrication

G.J. Gaston, W.J.C. Alexander, L.J. Clarke t and A.J. Walton.

Edinburgh Microfabrication Facility, Department of Electrical Engineering, University
of Edinburgh, The King's Buildings, Edinburgh, UK, E119 3JL.

f Edinburgh Parallel Computing Centre, University of Edinburgh, The King's
Buildings, Edinburgh, UK, EH9 3.JL.

Introduction

Semiconductor fabrication technology has now increased to the level of several mil-
lion transistors on a single silicon chip. Original methods of experimentation by trial
and error to create a new process or to optimise an existing one are no longer financial-
ly viable. To alleviate these problems, the major semiconductor fabrication companies
are now using simulation software to establish processes and to reduce the number of
real experimental evaluations that would otherwise be required. Although simulations
reduce the time greatly, when compared to prototype runs, they can still be very CPU
intensive and each simulation may take hours or days to complete.

It is the purpose of this paper to outline a taskfarming environment on an array
of transputers at the Edinburgh Parallel Computing Centre. The computer used is a
MEiKO Computing Surface. The taskfarrn operates in the mode of a master transputer
allocating tasks to a number of worker transputers, taking the from of a pipeline.

General Outline Of Taskfarm

2.1. Taskfarmflequirernents

The following is an outline of the salient features that were required in the design
and construction of the taskfarm system:

• There should be no changes to the user source code to facilitate the operation of
the system.

• The system should be flexible to use with any user software.

• One file should control all user interaction.

As noted above, it was considered important to be able to have a general taskfarm
system that could be easily adapted to be used with any user software. This would
again reduce the time and effort required in porting code onto parallel machines.

By providing the facility of a control file, any changes that are then required to the
system can be implemented by a minor editing change of a single file.

2.2. Problems to Overcome

Given the strict guidelines outlined in the previous section, many problems presented
themselves. The following section describes the major problems to be overcome. Section
3 explains how these complications were surmounted.

1. Due to an identical copy of the code running on each worker transputer, all workers
would try to read from the keyboard, write to the screen and read/write from/to
the same files. It was essential that any solution would remove such a scenario.

Since each worker thinks that it is the only code running and that it alone has
complete access to the filing system, all workers must be given a pseudo access to
the filing system. This will require some form of communication system to pass
file requests to and from the filing system from each worker.

For large jobs ie. with a large number of worker transputers, there may be a
system limit to the number of files that can be kept open at any one time. It is
important that this limitation should be allowed for in the taskfarm.

For the purposes of this taskfarm the semiconductor fabrication simulation software,
SSUPREM4 [1] was the code used. This particular package comes under the generic
name of a process simulator.

3. Operation Of Taskfarm

3.1. Jobflle

In order to overcome the problem of each worker reading the keyboard and writing
to the screen etc. it was necessary to define a convention for the renaming of files. This
lead to the formation of a jobfile which details the renaming convention eg. redirection
of stdin, stdout and any other files peculiar to the user code. Part of such a file is
outlined as follows, eg. stdout runOl .out.

This specifies that worker transputer number 1 will print output to runOl .out (rather
than the screen).

3.2. TINY

In order to be able to open and assign different names to files, it is essential that
each worker transputer has access to the filing system. To facilitate this, an efficient
message passing is used to transfer messages from the worker to the master transputer.
The system used was called TINY [2], a product of the Edinburgh Parallel Computing
Centre. It has a specific protocol which is used to send and receive messages. To send a
message the message type must be specified, along with the destination, and the name
and size of the buffer to be sent. eg . t..sseq(AFS_flPE,dest,Buf,sizeot(Buf)). A
similar convention is used to receive data except the routine t..recv is called.

3.3. Fileserver Protocol

SSUPREM4, which is written in C, was compiled on the transputers using 3L Par-
allel C I3) Using 3L utilities, namely the afserver, (which is part of the Parallel C
package) SSUPREM4 will communicate with the filing system at a low level, using a
fileserver protocol. In order to pass messages around the network it is essential to use
the TINY protocol. The file system expects to receive information in a file protocol for-
mat [4]. This file protocol information is, therefore, stored in a buffer and sent down the
TINY message passing system. This effectively changes the fileserver or AFS protocol
to the TINY protocol. This is outlined in figure 1.

At the master transputer the message is received and converted back into the file-
server protocol and the necessary file opened at the filing system. An acknowledgement
is then sent back to the worker, with details of the ID number associated with that
particular file, again changing from fileserver protocol to TINY protocol and back.

Jot?iji HOST

MASTER

SLAVE

- Tiny Protocol
--- AFS Protocol

Figure 1: Outline of protocols and message transfer

3.4. General Structure of Program

As can be seen from figure 1 there are two main parts to the taskfarm, namely the
driver and the client.

Driver Essentially the driver receives TINY protocol commands from the worker,
converts them to an AFS Protocol, executes the required AFS function eg. openfile
command and sends a TINY protocol acknowledge back to the worker.

It is also used to coordinate the allocation of tasks, collection of results, reading of
the jobfile, etc. In addition the driver program is responsible for checking the maximum
number of open files allowable on the system and comparing this with the number
actually open at present. If, on receipt of an openfile command, the system number
will be exceeded then it is the function of the driver to close a file to facilitate the
opening of the new file. A priority is given to each file and thus low priority files will
always be closed before a high priority file.

Client The client program receives AFS protocol commands from SSUPREM4, makes
any necessary changes to the filename, converts the AFS protocol to a TINY Protocol,
sends the command to the driver and finally receives an acknowledge from the driver.

The client is also responsible for translation of filenames as outlined in the jobfile.
For example on request of an openfile for SSUP4USKEY on worker number 2, the client
will translate this to an openfile for SSUP4USKEY2, and this information sent on to
the driver as normal.

4. Results

Figure 2 shows the results obtained when using the taskfarm with SSUPREM4 and
different data files. The results are for a farm of 10 transputers and the time for a
SUN4 is the total time taken to run 10 sequential jobs. As the task number increases,

so does the computational requirements of the job. As a result any communications
overhead of the transputer system becomes less and less significant as the cpu times
increase. This is evident by comparing the elapsed times for task 1 and task 4 for the

two different systems.

i ask
71 T800SUN4

Figure 2: Comparison of taskfarm and SUN4

The above results were only obtained using relatively small simulations and if a
complete process was to be simulated then the cpu time is likely to be in hours or days
rather than minutes. Thus the speedup of the taskfarm system would be even more
beneficial.

Conclusions

In conclusion the taskfarm offers almost linear speed up for each transputer added
to the system configuration. It is not essential to change the source code of the appli-
cation software and the "shell" allows redirection of the necessary files. The potential
commercial value to this is obvious as no inherent knowledge about parallel computing
is required, just the ability to recompile existing code. The jobfile concept allows ease
and flexibility, resulting in different simulation code running concurrently on different
transputers if required. To use the system with a particular application, all that is
required is a minor editing change to the jobfile and the system can be utilised with
any user program.

The use of the taskfarm has a very significant improvement on the elapsed time to
simulate a process, reducing a week of CPU time to that of only a few hours. This can
be achieved using a supercomputer like the MEiKO Computing Surface. This system
has also been implemented on a PC system with very similar performance and at a
system cost that is affordable for small companies.

References

SSUPREM4 Silvaco Data Systems 1991.
L.J.Clarke, Ph D. Thesis, University of Edinburgh 1990.
3L Parallel C Manual V2.1.
INMOS Limited. Occarn Toolset User Manual 1988.

1,200

1,000

E Boo

0
C

E 6w

4CO
m
W

200

