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If you do not understand a particular word in a piece
of technical writing, ignore it. The piece will
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Abstract

The ability of semiconductor process simulation to analyse the physical effects
of individual fabrication steps and their interaction within an entire process has
gained increasing recognition within the industry. Simulation has been applied to
the synthesis of nominal operating points and has offered substantial reductions
in both time and expenditure when compared to experimental runs for this role.
Semiconductor companies are also realising that both performance and manufac-
turability must be designed into new technologies from their inception. This con-
cept of Design for Manufacturability (DFM) can be implemented by linking process
simulation with statistically based experimental design and analysis tools. However,
neither the software framework nor the underlying computational resource cur-
rently exist to provide the level of system integration required to support DFM

within a commercial environment.

This Thesis first introduces a method for enhancing the performance of
process simulation software by utilising the power of parallel computing offered by
the INMOS transputer. A parallel implementation of the one-dimensional simu-
lator SUPREM-II has been developed which demonstrates the computational
performance that is economically éttéinable and readily scalable using this
technology. The system has then been extended to provide a fully functional DFM
environment by automatically integrating the parallel process simulation capability

with the experimental design and analysis software, RS/1.

A review of parallel computing systems, semiconductor fabrication control,
processsimulation and experimental design/analysisisalso provided to compliment

the presentation of the original contributions outlined above.
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Inan R & D orbit, only 2 of the following parameters
may be simultaneously defined:- task, time and

resources.

If a task is defined and its timescale for completion

known, then its cost can not be estimated.

If the timescale and resources are clearly defined,
then it is impossible to know what R & D task

will be performed.

If a task is defined and allocated a budget, then it is
impossible to predict if and when the goal has

been met.

If fortune prevails and it is possible to accurately
define all three parameters at once, then what-
ever is being dealt with does not lie within the

realmsof R & D.



Chapter 1

Introduction

The semiconductor industry has grown significantly in recent years and now
holds a prominent and influential position within the sphere of international
commerce. The fabrication of integrated circuits (ICs) forms an intrinsic part of
this and must itself be regarded as an important, high volume industry, with an
average of 8 ICs produced for every person in the world during 1990. Whilst this
market has obviously expanded, so too has the level of technology and the economic

performance required to service it in a commercially viable manner.,

The manufacture of ICs is extremely capital intensive and requires an
immense initial investment in production facilities before fabrication can even
begin [1]. This is further compounded by the similarly high costs which are asso-
ciated with the development of new processes [2] that is necessary to suppor"t
diminishing device geometries. The recovery of such development costs is
complicated by these continual advances in technology, which have tended to
shorten produét life cycles and demands the implementation of a production policy
which realises a high yield of reliable ICs on schedule. Profit margins are forever
being eroded by increasing competition and can not afford to be further sacrificed
unnecessarily. The significance of market forces must not be underestimated, as
can be seen from table 1.1, which illustrates the substantial loss of revenue which

can be incurred by a delayed market entry.

As a consequence of these technical and financial considerations, semicon-
ductor companies have become increasingly aware that new technologies must be
designed with both performance and manufacturability in mind. Thishas prompted
them to re-assess the manner in which new processes are developed and has seen
the emergence of advanced methodologies specifically aimed at addressing the

issues of Design for Manufacture (DFM) and Design for Quality (DFQ).



Market Window (months)

Delay 6 12 18 24 30 36

{months)

1 24% 12% 8% 6% 5% 4%
2 44% 24% 16% 12% 10% 8%
3 63% 34% 24% 18% 15% 12%
4 8% 44% 31% 24% 19% 16%
5 90% b4% 38% 29% 24% 20%
6 100% 63% 44% 34% 28% 24%
7 100% 70% 51% 39% 32% 27%
8 100% 78% b57% 44% 36% 31%
9 100% 84% 63% 49% 41% 34%
10 100% 90% 68% b4% 44% 38%
11 100% 95% 73% 58% 48% ) 41%
12

100% 100% 78% 63% 52% 44%

Table 1.1. Lost revenue for late arrival to marketplace. Taken from [3].

1.1 Design Methodology

The goal of every manufacturing facility has been and still remains that of
producing the right product for the right price at the right time [4]. What has
changed, however, is the means by which this is achieved. There are in essence
three interrelated factors which influence the semiconductor manufacturing pro-
cess: quality, manufacturability and economics, with the latter usually haviﬁg the
right of veto. Figure 1.1 provides a graphical representation of the way in which

the issue of quality control has evolved in recent times.

The use of in-line and post-process inspection alone is very wasteful and more
importantly makes no effort to improve the inherent quality of the process. More
recently, this hasbeen supplemented on a wide scale by the use of Statistical Process
Control (SPC) techniques [5] which attempt to control and minimise variabilities

within the process. This might involve redesigning an offending process step or
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purchasing a superior piece of equipment, neither of which are particularly time
efficient or cost effective. The logical extension of this is to design the product to
be as insensitive as possible to these inevitable process variations and it is this
concept which forms the basis of DFM, |

The strategy employed under DFM is to concentrate investment at the design
phase when alterations are most easily made and inflict minimal financial penalty.
In the past, the stumbling block with DFM has been the large number of experi-
ments required to characterise a process in terms of its sensitivity to random
manufacturing variations. If however, a few split lot runs are used to calibrate a
process simulator, then instead it may be linked with the relevant experimental
design and analysis tools to provide the desired process evaluation. The use of

Response Surface Methodology (RSM)[6] and Taguchi[7] analysis then enables



processes to be designed for optimal performance and manufacturability, with little
orno loss of peak device performance, by the prediction and subsequent elimination

of manufacturing problems before they occur.

Ultimately, wide spread acceptance of this powerful methodology by the
semiconductor industry is dependent on evidence of its success and also the
availability of a suitable system. The justification of DFM may be illustrated by
figure 1.2 which compares the timing and quantity of design changes associated for
a particular product line. It can be seen that the cost of the design associated with
DFM is relatively lower, with the greatest proportion of the changes being incurred
at an earlier stage. However, it is important to realise that there is also an increase

in the perceived quality since the product is more stable when it is launched into

the market.
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Figure 1.2. The effect of DFM on design changes. Taken from [8].



Although many of the statistical tools required to support DFM have been
available individually for some time, the lack of an integrated system has not made
the technique attractive in the commercial world. The investigations performed

during this Ph.D. have therefore been aimed at redressing this situation.

1.2 Motivation

At the outset of this Ph.D. the investigation concentrated entirely on the
application of parallel computing techniques to process simulation. The research
goal being in the provision of a viable source of corﬁputation which would encourage
the widespread use of process simulation required by the design of modern IC
fabrication processes. Duringthe course of thisinvestigation the limited capabilities
of the available parallel software tools became apparent, making the already com-

plex task of customised parallelisation even harder.

_Although process simulation has previously been employed to synthesise a
nominal process operatiﬁgrpoirit, this failed t-o reéognise the nétural procésg vari-I
ations that occur during fabrication. HoWever, the physical effect of process steps
and their interaction within a complete process can be explored using process
simulation. Therefore the emphasis of the research altered to combine this capacity

with the previously proven power offered by a transputer based system.

The demonstration of a complete structured process design system was seen
as an important step in affirming the role that DFM and DFQ have to play in
ensuring the economic success and survival of the semiconductor fabrication

industry.

1.3 Thesis Structure

This chapter has provided a brief introduction to the employment of struc-
tured design methodologies during the development of semiconductor processes.
A more detailed discussion of IC fabrication control is presented in chapter 2 and
proposes that the application of process simulation is suited to analysis of the
complex interactions involved. A review of semiconductor process simulation is

provided in chapter 3 and highlights the limitations which are often placed on its



widespread use due to the intense level of computation concerned. In anticipation
of the solution offered by this research to the aforementioned dilemma, chapter 4
presents an overview of parallel computing concepts and systems before concen-
trating on one particular example of this technology, the INMOS transputer. In
chapter 5, the work performed to apply the powerful transputer technology to one
specific process simulator is described. This approach provides the computational
resource required to support large scale simulation but still falls short of the
structured design methods required. Chapter 6 illustrates how a combination of
process simulation, experimental design and analysis techniques can 'provide a
framework that promotes DFM and DFQ. The design of a transputer based system
to support the simulations required by this strategy is described in chapter 7.
Finally, some conclusions are drawn on the work which has been presented in this

Thesis and a number suggestions for further work are briefly outlined.
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Under the most rigourously controlled conditions of
pressure, temperature, volume, humidity and -
other variables, the process will do as it damn

well pleases.



Chapter 2
~ Process Control in IC Fabrication

2.1 Introduction

Integrated Circuit (IC) manufacturing is a relatively new industry, lnaving
evolved since the development of the first IC produced in 1958 by Kilby [1]. Since
its inception, this industry has expanded rapidly from the production of experi-
mental devices into one of the most capital intensive world-wide manufacturing
scenarios of the present day. The main impetus for this swift growth has come from
three principal djrectioné. Firstly, many powerful systems have been initially
conceived and developed in software (e.g. Digital signal processing systems) but
require much more advanced manufacturing technologies if they were to be pro-
duced to meet realistic size and cost constraints. Secondly there was the motivation
within the industry to _develoi) new technologies in order to maintain or acquire a
leading edge commercially and technologically. Thirdly, therewas initia.lly astrong
economy within this market sector to support such development, though formi-
dable competition, investment and overheads have forced a much more éautious
and structured approach in recent times. Throughout this evelution, there hasbeen
a limitation on systems development and production. This limitation is largely
imposed by the available technology. Two restraints exist which oppose the driving
forces mentioned above. Economic considerations can prevent the frequent
refurbishment of production facilities often required to fabricate a new process as
this may run to many millions of dollars. Secondly there are times when a new

process could be implemented, but the market is not in a position to accept it.

The system performance available from a given technology is determined by
the characteristics of the devices which implement the circuit functions. In turn
the device performance is defined by the processing technology used in its fabri-
cation. Thus, it can be seen that IC process technology is a prime factor governing
the scope of the next generation systems. There is continual pressure to increase

the functional performance of such systenls. To satisfy this, device packing density



must be increased by reducing device feature sizes, which in turn requires the
development of new or modified processes. As processes have evolved, so too has

the complexity associated with their production schedules.

Each IC device and production technology has inherent physical character-
istics which determine its performance and hence its appropriate application. The
main technologies are based on silicon although materials such as GaAs are finding
increased application in specialised areas. A more detailed description of the dif-
ferent technologies may be found in Hillenius [2]. At present and for the foreseeable
future (5-10 years) the greatest volume of IC production will continue to utilise
MOS technology and this thesis therefore concentrates on nMOS and CMOS

processes.

This chapter first provides a brief description of the main process steps within
an MOS fabrication schedule, The implementation and function of each step within
wafer fabrication is discused aldng with 1ts assbc;iatgd control and monitor para-
meters. Then the integration of these steps to perform a complete process __is_con-
sidered from a contrel and stability perspective. Finally the influence of step

interactions on designing a manufacturable process is demonstrated.

2.2 Process Steps

The complexity of current semiconductor fabrication processes is very high
due to both the number of individual steps involved and the interrelated nature of
these steps. The overall objective of constructing functional electrical circuitry
across the wafer surface with a high yield and low cost has remained constant.
However, as technologies have advanced the tolerances and economic constraints
placed upon the semiconductor manufacturing industry have been severely tigh-
tened. In order to meet these conditions, a full underétanding of each process step

and its role within the overall process must be gained.

2.2.1 Oxidation

Silicon oxidation plays a very significant role during the IC manufacturing

process. The properties of silicon dioxide, SiOg , and in particular its physical



attributes, have had a major influence on the development of planar processing
technologies. SiOg performs many functions within the fabrication schedule: as a
masking layer against implant or diffusion of dopants into silicon; as an inter- and
intra-device isolation layer or region and to provide surface passivation. However,
it is imperative that the formation of high-quality oxides is a controllable and
repeatable operation to enable silicon IC manufacturing technologies to be suc-
cessfully scaled down to submicron levels. For this, a deep and formal understanding

of oxide formation, its physical and its electrical properties is required.

There are various methods of producing oxides, each having its optimum
application; such as wet anodisation, vapour deposition, plasma ancdisation and
thermal oxidation. Although the latter is the most widely used and preferred
technique for the growth of high-quality, low-charge density oxides, chemical
vapour deposition (CVD) is also essential. (E.g. in the formation of an oxide layer
onto a metalisation layer where no silicon exists to be oxidised by thermal process).

Thermal oxidation can be described by two chemical reactions, each pertaining
to a different set of external conditions.

Si+0, -> Si0, .' @.1)
Si+2H,0 -> Si0,+2H, (2.2)

The former equation is referred to as dry oxidation and the latter as wet
oxidation. Which techniqueis chosen dependson the thickness and oxide properties
required. Dry oxidation is generally employed for relatively thin oxides (< 0.5um)
and/or those that need a low interface charge density. In addition to this, HCl may
be included in the reaction if there is a risk of sodium ion contamination. Wet
oxidation techniques are applied for the growth of thicker oxides due to the

increased growth rate at moderate temperatures.

Wafers must be cleaned to remove any organic and inorganic residues from
previous processing operations or from handling around the facility. Such con-
tamination can degrade the electrical characteristics of the devices and increase
the defect density in the finished product. Typical cleaning procedures are
described by Burkman [3]. After cleaning, oxidation can then be performed inside

10
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a diffusion/oxidation furnace tube, which will be microprocessor controlled to
provide repeatable sequencing, temperature control and gas flow (mass flow con-
trol). It is vital to maintain consistent process conditions throughout the oxidation
to achieve uniform oxide growth. The microprocessor provides a versatile feedback

control loop to continually adjust any necessary parameters as is required.

Dry oxidation is a relatively simple operation using microprocessor controlled
equipment and produces a slow rate of oxide growth at moderate temperatures ( c.
950°C).Modification of the ambient parameters may lead to enhanced oxide growth
rates, for example raising the temperature will result in a thicker oxide for the same
time. However, such a move will considerably alter the redistribution of dopants
and this fact must be considered. Alternatively an increase in pressure ambient will
positively affect the growth rate, and this time the dopant redistribution will be

more or less unaltered.

The wet ambient for wet oxidation can be produced by one of two techniques,
namely pyrogenic or steam oxidation, In the formerhigh-quality steamis generated
by the direct combination of Hg and Og within the furnace tube with microprocessor -
controlled gas flow. Steam oxidation requires that oxygen be bubbled through hot
water before entering the furnace. Although both methods provide an enhanced
oxide growth rate in comparison to dry oxidation, concern for water vapour purity
tendstoview the steam technique less favourably due to the possible contamination
within the bubbler system. As with dry oxidation, growth rates may be enhanced
by the use of elevated temperatures and pressures.

So far consideration has only been given to enhancing the éxide growth rate.
However as device geometries shrink to one micron and submicron levels, there is
a necessity to produce very high qlfality thin oxides in the 50-200 A range. These
have a much, é’rquqr sensit'ivi'ty_tq structural defects and uflderlying non-uni-
fql_'nﬁty. Both wet and dry oxidation techniques can be modified to produce thin .
oxit}_es. For dry oxidation a combination of reduced temperatures and pressures has |
beep_succes§fglly used to overcome the problem of the initial rapid growth of around

200 A, For wet oxidations it has been found that consistent low growth rates can



achieved at lower temperatures in a high pressure steam ambient. As will become
apparent in the next section, which discusses the diffusion of dopants, the use of
lower temperatures is essential fo reduce the lateral impurity redistribution in
small geometry devices. Rapid thermal processing is therefore becoming a much
more popular technique and a review of this technology may be found in Sedg-
wick[4].

Monitoring the thickness of a grown oxide and its uniformity at both wafer
and batch levels is performed using reflective/refractive techniques such as spec-

troscopy and elipsometry on the product wafers [5].

As can be seen from the brief description of the oxidation process there are
many parameters which can influence the oxide growth rate and the resulting
quality, The prime parameters are those of temperature, pressure, ambient
conditions and gas / silicon quality. It is therefore paramount that their role in this
process is fully understood so that a set of optimum conditions may be derived for

any desired oxide. A development of this topic can be found in chapter 3. .

2.2.2 Diffusion

The introduction and subsequent redistribution of impurity atoms within the
silicon crystal structure is an important procedure in IC processing. The type and
electrical conductivity of silicon can be modified by adjusting the dopant element,
concentration and distribution. This principle is used to form the base and emitter
of integrated bipolar transistors and to form the source/drain regions of field effect
transistors and dope polysilicon in MOS technologies. Therefore it is vital that
diffusion of dopantsiscontrollable, uniformand reproducible if device specifications

are to be met.
Dopantsare commonly introduced into silicon by one of the following methods:

(1)  diffusion from a chemical source in a vapour phase at

high temperature.
(2) diffusion from a doped-oxide source.

(3) and diffusion and annealing from an ion-implanted layer.

12



The choice of technique is dependant on the desired impurity profile and
surface concentration. Two distinct doping profiles can be achieved. These depend
on the surface concentration of the dopant during its exposure to thermal oper-
ations, which take place in furnace tubes under similar conditions to those used for
oxidation. The use of ion implantation of impurity atoms will be considered

separately in §2.2.3.

Diffusion steps that are performed with a constant surface concentration are
normally referred to as pre-deposition steps. These are normalljr carried out at
temperatures around 900-1000°Cfor 30-60 minutes and result in a complementary -

error function (erfc) distribution of the dopant.

' X (2.3)
C(x,t)=Cyerfc zm +Cy

CB = Background doping concentration

Co = Surface doping concentration
D = Diffusion constant
Dopant sources used for pre-deposition can be solids, liquids or gases. Phos-
phorus and boron are generally deposited in the form of their respective oxides,
P9O5 and BoOg, which react with silicon to release the dopant atoms. Wafers of
phosphorus oxidg orboronnitride are interleav‘edwith the product waferstoprovide

a uniform distribution across the surface. Arsenic compounds, due to their

_ excessively toxic nature, are usually deposited by ion implantation.

Once the _calcu]ated quantity of dopant atoms has been introduced to the
silicon surface, it is then necessary toredistribute them to give the required junction
depth. This process called drive-in is generally performed at temperatures of

1000-1200°C in gither inert or oxidising ambients, and results in a gaussian dis-

tribution profile.

.__Q (—x?-) . 2.4)
C(x,t)= expl.
( ‘) JnDt I fl'Dt ,

Q= Numher of impurity atoms deposited
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This high temperature process not only disperses the dopant atoms but also
electricallyactivates them (i.e. places them in substitutional sites within the silicon

lattice [6]) and the technique is referred to as annealing.

Diffusion of dopants through not only single-crystal silicon but materials such
as polysilicon and silicon dioxide also needs to be considered. Polysilicon is used
both as a conductor between semiconductor layers and for self-aligned gates. Boron,
phosphorus or arsenic doping of polysilicon is frequently used to reduce the
resistivity of polysilicon. Silicon dioxide is often used to provide barrier regions and
thus enable the silicon to be selectively doped. The diffusion of most dopants
through silicon dioxide is fortunately comparatively slow and thus the use of a
suitably thick layer of oxide will prevent doping of the substrate where this is not
desired. A detailed discussion of dopant distribution in silicon is given by Fair (7).

It has been assumed so far that any redistribution of the dopants has been
caused by vertical diffusion alone (i.e. normal to the silicon surface), however sig-
nificant lateral diffusion will also be associated with any high temperature pro-
cessing performed. At large device geometries (> 5um) one-dimensional analysis is
sufficiently accurate that such lateral effects may be considered to be negligibie.
Once geometries approach 1uym then lateral analysis is vital. For example, when
fabricating short channel MOS devices, it is imperative that the source and drain
diffused regions do not meet during or after the drive-in, otherwise a short circuit
will result. Depending on the precise drive-in conditions the lateral diffusion will
occur for approximately 75% of the vertical diffusion extent. Such issues emphasise

the need for analysing process steps in at least two dimensions in small geometry
VLSI devices.

Another problem associated with the pre-deposition of dopantsis that it tends
to result in high surface concentrations which in turn means that the formation of

shallow junctions is difficult to perform.

Monitoring diffusion operations involves the measurement of the doping
profile, junction depth and sheet resistance of the wafer once the process step has

been completed. Analysis of the dopant concentration profiles may be performed
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by use of (i) the spreading resistance technique [8], (ii) the Secondary Ton Mass
Spectrometry (SIMS) [9] or (iii) capacitance-voltage (CV) [10] technique. In general
the analysis of the doping profiles is only performed while a process is being

developed or characterised.

Junction depths can be mewﬂed by the bevel and stain technique where a
wedge is ground from the wafer and subsequent staining of the exposed sample
allows the p- and n- type materials to be identified. The problem with this test is
that, being both slow and destructive, it can only be applied to test wafers.

The use of four-point probes or Van der Pauw techniques [11] for the
measurement of sheet resistance provides a quick and non-destructive method,

which can be performed in-line on product wafers.

The deposition and diffusion of impurities in silicon are both dependant on
temperature, time and concentration and, if uniform and reproducible diffusion
profiles are to be achieved, then the influence and control of these parameters must
be understood. Of the three variables, concentration is the least versatile if uni-
formity is not to be sacrificed. Henry’s Law felates the dopant concentration in the
gas phase to the surface concentration [12), Thus altering the partial gas pressure
of the dopant will enable the surface concentration to be varied up to the point
where the solid solubility of the dopant under the deposition conditions is reached.
Therefore to achieve reproducible diffusion result simply it is necessary to ensure
that the surface concentration be maintained at this solid solubility level.

The control of and dependence on temperature and time are generally the
same as for oxidation since the drive-in stage is usually associated with the formation
of field or passivation oxides. Also the wafers will be exposed to temperature
ramp-up and ramp-down at each end of the process and this must be considered

along with the respective timing,

2.2.3 Ion Implantation

Ion implantation is a highly controllable and reproducible method of intro-

ducing dopant atoms into semiconductor materials and brovides an alternative to
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the dopant diffusion technique discussed in §2.2.2. It has now become the
predominant technique used in the fabrication of MOS ICs, especially at VLSI

geometries (< 3um), due to the degree of control required at these device sizes.

Ion implantation involves the vaporisation of dopant gas molecules into
charged fragments, which are then selectively accelerated to a specified energy.
The ions are collimated into a focussed beam which is electrostatically deflected so
as to scan the entire wafer surface. The process is accomplished in a high vacuum

environment (¢ 10-6 Torr) to minimise ion scattering.

The dopant accepting areas of the wafer can be defined by photoresist, silicon
oxide, silicon nitride or polysilicon masking layers. The thickness of the mask
required to prevent penetration depends on the material used and the ion beam
energy. For example, a 100KeV boron implant requires the following minimum
mask thicknesses : 0.4um SigNy4, 0.55 yum SiOg, 0.7um photoresist. To first order,
- the energy of the ion beam defines the depth of penetration and the beam current
defines the dose impianted, and this_ gives rise to 2 high degree of control in the
resulting total dose, jﬁnction depth, doping profile and uniformity.

As a result of superior controllability, it is -possible to perform accurate and
reproducible low dose pre-depositions ( <1015 atoms/cm2) by the use of low beam
currents. This is in contrast to chemical pre-deposition where the surface dopant
concentration was maintained at solid solubility to achieve reproducibility. These
low dose implants (c. 1012 atoms/cm2) are typically used in MOS processing to
perform threshold voltage adjustment. Higher dose implants (up to 1018
atoms/cm?) are also used to provide accurate source/drain implants and well
implants. Implantation energies vary from 1KeV to around 1MeV, giving rise to
average dopant depthsrunning from 100A to 10m. This means that this technology
is capable of producing buried conductors and insulators.

There are a number of problems, including nuclear scattering damage to the
silicon lattice, ion channelling, recoil damage and surface charging, which can effect
theyield ofimplanted devices. Lattice damageis c.ﬁusad bytheimpact of theincident

dopant ions displacing target atoms in the wafer and can partially amorphise the
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implanted region. Sﬁch atomic disorder can be annealed out or prevented by
applying a thin layer of oxide, nitride or photoresist before implantation. The
regular atomic structure of a crystalline target means that in certain planes there
are open spaces through which the implanted ions can travel without any significant
scattering. Consequently, they will travel much further into the lattice before
coming to rest as compared to an amorphous target and the final device doping
profile may well vary considerably from that intended, unless this effect is taken
into consideration. This effect can be avoided by tilting the wafer so that the ions
strike the surface at approximately 7°-10°from the normal, at which angles the
lattice appears like an amorphous sample. Recoil damage is concerned with the
displacement of target atoms from one layer into the neighbouring layer, in the
case when the target consists of two layers. In such instances, it is typically oxygen
or nitrogen atoms which become deposited into the silicon from a thin oxide or
nitride surface layer. High surface doses of oxygen can seriously degrade carrier
mobilities. However receil mixing can alzo be used paositively to introduce dopant
atoms for which no ion implantation source is readily available but that can be
deposited in a thin film. If the wafer is not well grounded, it can charge up and the
resulting field will distort the ion beam leading to irregularities in the dopant
distribution. By directing a low-energy beam onto the wafer surface, these charge
build-ups can be neutralised.

Depending on the energy of the incident ion-beam, the wafer may be subjected
to kinetic heating. This can be beneficial in providing a self-annealing effect to
counter the lattice damage as it occurs though, if particularly high energies are
employed, it may also result in parasitic thermal diffusion. Although ion implan-
tation places dopant atoms into silicon, they must be electrically activated before
they will alter the characteristics of a functional device. The wafers are annealed
in furnace tubes in an inert ambient at ¢, 900°-1000°C for times of the order of tens
of minutes. Rapid Thermal Annealing (RTA)is also used as an alternative technique

for annealing and encompasses a variety of methods, which involve heating the
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wafers for times between hundreds of seconds down to a few nanoseconds, thus
enabling lattice repairs with minimal diffusion. The heating can be provided by

high-energy laser pulses, electron beams or tungsten-halogen lamps.

Monitoring and evaluating the quality of ion implantation processing can be
done by the same family of techniques that are applied to thermal diffusion (see
§2.2.2). In addition thermal wave analysis can provide information on the extent of
crystal damage and has the advantage of being a non-contact, non-destructive

method. _

‘The use-of ion implantation in VLSI technologies is continuing to expand as
new applicétions are found, which require the level of control, reproducibility and
versatility to scaling which it offers. The major drawback it poses, in compariéon to
thermal diffusion, is that of low throughput. This is being ameliorated by the
automation of the wafer load, unload .and transport operations. Furthermore, it is
most important to refine the control methodologies employed in order to incor-

porate real-time feed-back capabilities.

2.2.4 Deposition

During the course of fabricating a particular IC technology, many materials
are deposited as films to provide electrical conduction or insulation regions in the
device structure. Deposited films include silicon dioxide, silicon nitride, polycrys-
taline silicon and aluminium based metallisation alloys. Commonly used methods
for deposition in current fabrication processes can be classed as either physical or
chemical deposition. Physical methods encompass evaporation and sputtering
principles, whilst chemical methods cover the family of vapour deposition tech-
niques (CVD). Whichever process is used, the resulting film must have good
adhesive qualities, uniform thickness across devices and wafers, and consistent
 composition and structure. These attributes must be controllable and reproducible
and preferably scalable so as to necessitate as few changes in processing methods

and equipment when geometries shrink.



Evaporation processes involve the vaporisation of the film material from a
solid or liquid source by thermal means and its subsequent condensation on the
target surface. Thermal agitation is commonly provided by resistive heating for
widespread coverage or by electron or laser beam for local heating. Evaporation is
usually performed under a low pressure (c. 10-5 - 10-6 Torr) to enable the atoms to
undergo avirtually collisionless path to the target. This technique is most effective
for depositing low melting point materials such as aluminium and can achieve high
depositionrates. However, problems arise when attempting to deposit alloys or high

melting point materials by this method.

These difficulties can be overcome by the use of sputtering. This technique
can be regarded as an extension of the evaporation method discussed, in which the
source material is subjected toion bombardment instead of thermal heating. Kinetic
energy is exchanged and particles of the target material are ejected from the surface
of its source and are deposited on the wafer surface. The incident species on the
source material are usually heavy inert gasions, the most commoniy found being
Argon, Ion generation can either be performed by glow discharge plasmas, most
frequently using magnetrons, or by the use of ion beams. Magnetron sputtering
produces a plasma glow of charged atoms which are then accelerated towards the
target material dislodging the surface atoms which then travel to the wafer surfaces.
High throughput, good step coverage and minimal substrate heating make this
technique very popular. In the alternative method of ion beam sputtering, the inert
gasions are directed at the source material which then sputters on to the substrates
as before. The deposited films which result are very pure, but the method suffers
the major drawback of a low throughput, so is less commonly employed than that
of magnetron sputtering. '

Sputtering, in contrast to evaporation, can deposit films of metals, alloys,
semiconductors and insulators in a highly controlled fashion making it a universally
popular technique. This difference arises from the mechanical, as opposed to
thermal or chemical, nature of vaporising the coating material. The limited damage

to the wafer surface can be removed by a short low temperature anneal. Despite
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the universality of this technique, the primary applications are associated with
interconnect metallisation using aluminium or aluminium alloy films, Variation of
chamber pressure, wafer temperature and substrate bias provide effective control
of the resulting film thickness and deposition rate. Discussion of further sputtering

techniques such as RF and Reactive sputtering may be found in [13]

CVD is extensively used in semiconductor processing to deposit pure silicon,
its compounds and metallisation films on wafer surfaces. The source material is
introducedtothereaction chamberinthe gas phase. When thisambient is subjected
to a high temperature a chemical reaction occurs which results in the desired film
being deposited on the wafer surface. Most of the reactions are based on the oxi-
dation of silane, SiHy, or reaction of diclorosilane, SiClaoHg with nitrous oxide, NoO.
CVD can be classed under one of three basic groups: atmospheric deposition
(ATCVD), low pressure deposition (LPCVD) and plasma-enhanced deposition
(PECVD). By introducing dopant species into the gas system it is possible to deposit
layers with controlied impurity concentrations.

ATCVDis rarely aséociated with the fabrication of MOS device structures, but
iz ofimportance in bipolar processes. In this case it is used to deposit epitaxial silicon
layers with the identical crystal orientation as the substrate. VSuch a process is
typically achieved at temperatures around 1000° to 1200°C and results in poor
thickness uniformity. It is also possible to selectively deposit expitaxial silicon by

the use of silicon dioxide to block nucleation sites on the substrate [14]

Polysilicon, silicon nitride and silicon dioxide are deposited by the use of
LPCVD which is performed at lower temperatures around 800°C. The precise
temperature used depends on the chemical reaction chosen to produce the
deposition material. LPCVD provides superior step coverage to both evaporation
and sputtering, especially for metallisation layers, so it is favoured for formation of
multi-layer interconnect. PECVD also has a faster deposition rate and produces

improved uniformity of the layer thickness and composition than ATCVD.
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PECVDisa complex process and is only used when low temperature processing
is a necessity. The gaseous reactions occur in a plasma at around 150° te 350°C and
silicon nitride and silicon dioxide can be deposited in this manner. Due to the
complexity of this process it is very hard to control and provide reproducibility

across wafer batches.

In order to provide accurate control mechanisms throughout deposition steps
& combination of on-line monitoring of film growth and post-processing film
thickness assessment must be used. Techniques such as mass spectrometry, elip-
sometry and partial pressure measurement of individual gas species may be used
to monitor or infer the film thickness and deposition rate. Non-distructive testing
of film thicknesses at the completion of the processing step use the reflective/re-
fractive properties of the materials to provide data. Electrical four-point probe
measurements and other destructive methods may be applied to test wafers to gain

further information.

CVD techniques have a substantially higher capital cost associated with their
equipment requirements when compared to evaporation or sputtering, However,
as device geometries shrink beyond one micron, the required quality and
throughput of device fabrication is placing & greater emphasis on the use of CVD
techniquesforlayer deposition. For MOS technologies this means that in the future

there will be an increase in the use of LPCVD and PECVD.

2.2,5 Lithography

Lithography is a multi-process step which enables circuit designs to be
transferred from a software database onto the surface of the wafer. Each iteration
of this step defines a feature, such as the gate or contacts, within the particular

material layer once it has been grown or deposited. The main processes within a

lithographic step are :
(1) Spin coating the wafer with a film of resist.
(i) Soft bake of the resist (c. 100°C for 30 min).
(iii) Exposure of the resist to the image pattern.
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(iv) Development of resist pattern to remove unwanted areas.
(v) Hard bake resist (c. 130°C for 30 min).

(vi) Perform desired action on patterned wafer. ( e.g. source/drain

implant or etching an oxide or nitride layer).
(vii) Strip remaining resist from wafer surface.

Resists can be classed as either positive or negative. The former becomes more
soluble in developer after exposure whilst the latter becomes less soluble. Due to
the nature of the chemical reactions that occur when a resist is exposed, positive
resist enable higher resolutions to be attained [15] and are therefore more com-

monly used.

Many methods for wafer exposure have been developed for transferring the
mask image onto the wafer surface, including optical, electron and ion-beam and
X-ray techniques. Technological and economic factors will influence the actual
choice, though the primary requirement is that the method must be capable of
achieving the registratibn tolérance and resoluﬁon demanded by the particular
product at an economic yield. Visible or ultra-violet radiation is most frequently
used to expose the wafers through a glass/chromium or glass/emulsion mask. This
technology is capable of resolving images down to the wavelengths used (c. 0.4um)
which is more than adequate for current feature sizes in commercial production

facilities,

The significant parameters in assessing a printer are resolution, layer-to-layer
alignment, throughput, depth of focus and cost. Within optical lithography, a choice
of contact, proximity or projection printing techniques is available. Contact printing
uses a 1:1 mask which is préssed against the resist during exposure and offers a
high throughput for arelatively low capital cost. Thisis offset by the defects induced
in both the mask and the wafer by the contact which significantly reduces the yield
if masks are not frequently replaced or cleaned. Proximity printing provides a
separation of around 25um between the mask and the wafer which increases the
mask life but reduces the resolution available due to Fresnel diffraction effects.

Projection printing improves both the resolution and the mask life by projecting
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the image onto the wafer through a system of lenses rather than using a shadow
casting technique. This may be performed by a whole-wafer 1:1 projection system
or by a direct-step-on-wafer (DSW) system which use a step-and-repeat technique
to provide a 5X or 10X reduction of the image reticule onto the wafer surface at
each die site. DSW offers very good resolution and superior layer-layer alignment
than contact, proximity or whole-wafer projection systems, although it suffers from
a lower throughput rate and higher cost. These drawbacks are justified for small

geometry processing by the returned increase in yield.

Lithographic process monitoring is primarily associated with the measure-
mentoflinewidths in the developed resist which provides resolution and uniformity
information. Optical microscopy or the use of Van der Pauw structures provide
optical or electrical methods of attaining therelevant linewidth data. The remaining
parameters such as baking times and temperatures and resist spin speeds are
generally specified by the materialsand equipment used and therefore stay constant

- once they have been established for a particular combination. Exposure and develop-
times are typically generated empirically by performing a matrix of tests over a

range of probable values.

As process specifications incorporate tighter tolerances on layer-layer align-
ment, linewidth control and critical dimensions DSW printing will become the
predominant optical technique. Their high capital cost and relatively low
throughput is offset by the better processing quality and the resulting improvement
in yield. Further developments of this technique, in the form of 'flash-on-the-fly’
DSW printing, is progressing with the aim of improving wafer throughput. Electron,
X-ray [16] and ion lithography all offer higher resolutions than optical methodsand
so will become important, once new technologies demand feature sizes less than
approximately 0.4um, the best optical systems can provide. Until this limitation is
reached, these methods will remain peripheral to mainstream processing teéh-

niques.



2.2.6 Etching

After a pattern has been defined by a lithographic step in photoresist on the
wafer surface (see §2.2.5), it must be transferred to the material layer itself. This
requires the removal of the unwanted regions of the layer (i.e. those not covered
by resist in the case of a positive resist). This is most commonly performed by an
etch step. During the course of fabricating an MOS device many such lithographic
and etch steps are performed to selectively remove areas of deposited or grown
layers. Therefore techniques must exist to etch all the materials used throughout
the fabrication process. For example, silicon dioxide must be removed to expose the
silicon surface prior to an ion implantation or pre-deposition step and metallisation
areas need to be removed to leave the desired interconnect structure. There are a
number of methods available and the choice is dependant on the required feature

size and profile as well as the material concerned.

Etching techniques can be broken down into two classes of process, namely
wet and dry. Wet etching is the most fundamental technique used and involves
immersing the prepared wafer in a solution of the appropriate chemicals for a
predetermined time. Most liquid etches attack the layer surface in all directions at
an equal rate and such an etch is said to be isotropic. Providing the feature linewidth
and spacing is greater than the respective height then the unwanted horizontal
feature narrowing can be compensated for in the mask dimensions once the error
magnitude has been established. Wet etch performance may be controlled by
variation of the chemical concentration, temperature, time and application of agi-
tation. The choice of chemical and conditions depends on factors such as etch rate,
selectivity, resist adhesion as well as the material to be removed. Wet etching also
suffers from poor uniformity across wafers and although this can be improved by
agitation, it typically requires the routine use of over-etch to ensure complete
clearance of the relevant material. The simplistic nature of the process results in
a high throughput which means that it is well suited to production environments.
However, on reaching VLSI geometries where feature heights are comparable to

their linewidths and spacing, mask compensation is no longer applicable to counter
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the isotropic nature of the etch. The routine over-etches also demand a high sel-
ectivity with respect to both the mask and the substrate to ensure neither are
subjected to unacceptable damage. For these reasons, anisotropic etching

techniques are a prerequisite in VLSI device processing.

Dry etching techniques are based on the ability of a plas;na discharge to
fragment and ionise a relatively inert input gas, producing species which are highly
reactive in both gas and solid phases. When these species combine with any exposed
surfaces volatile products are formed, which are subsequently vented out of the
reaction chamber, Careful choice of the plasma composition enables etch processes
to be defined for all materials commonly found in semiconductor wafer fabrication.
Highly directional motion of the reactive species can be induced by the use of r.f.
power to excite the plasma, thus produc{ng very anisotropic etches. Consequently,
dry etching techniques are most appropriate for defining critical VLSI device fea-
tures such as MOS gates. ' R - :

There are two classes of dry etchers, termed plasma or reactive ion etchers,
which differ in the polarity of the electrode that supports the wafers immediately
below the plasma. In Reactive Ion Etching (RIE), the wafers are held on the r.f.-
driven electrode. RIE is performed with lower operating pressures and higher
energy ions than plasma etching and consequently has a higher etch rate making
it preferential in production environments. However, it is found that within dry
etching there is a trade-off between the selectivity and anisotropic performance
[17]. Selectivity arises from the chemical reactions occurring and favours the higher
pressure ambient of plasma etchers. On the other hand, the presence of higher
energyionswithin the low pressure RIE ambient increases the degree of anisotropic
etching, but also reduces the selectivity by the resulting physical sputtering. By
sharing the r.f. power between both electrodes, a blend of etch characteristics can
be produced for specific process requirements and such & machine is known as a

"flexible" etcher [18].



For both classes of etcher, the primary control parameters are those of r.f.
frequency and power, input and output gas flow rate and the chamber pressure.
The mechanisms involved in dry etching are very complex and as yet are not fully
understood, which makes the etch rate difficult to coﬁtml. Aswith all process steps
it is vital to maintain good intra- and inter-wafer uniformity. Typically, dry etching
is performed on a batch basis with the chamber being vented to atmospheric
pressure for the load/unload operations. This reduces the overall throughput
capability and also permits the adsorption of contaminants which may alter the
etch rates as well as introducing particle defects onto the wafer surface. As a result,
single wafer dry etching, where the wafers are automatically loaded and unloaded
through a load-lock, is often used [19]. This provides a cleaner reaction ambient
and, with only intra-wafer uniformity being optimised, should provide enhanced

etch performance.

Wet etch rates are not generally monitored, the chemical immersion time of
he wafers being empirically determined with visual confirmation of etch comple-
tion. However, in dry etching end-point detection by the use of optical spectroscopy
or mass spectrometry can be implemented to monitor and control the progress of
the etch. These techniques do not guarantee complete and uniform removal of all

the required material and so a minimal over-etch period is usually included.

Within VLSI device fabrication, dry etching techniques are superseding wet
etching with the exception of large feature processing. The necessity for improving
yiéld and throughput whilst maintaining consistent inter-wafer etching advocates
the use of single-wafer techniques. This is further supported by the ability to

automate wafer movement and provide in-situ process monitoring.

2.3 Process Control and Design

The production of semiconductor ICs is an inherently serial process, with
several hundred individual steps being performed in order to arrive at the desired
circuit implementation in the silicon wafer. Each of these steps, as discussed in
§2.2.1to §2.2.6, can significantly influence other steps in the fabrication sequence.

For example, any step involving a raised thermal ambient will cause redistribution
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of any existing dopants within the silicon structure. Likewise, the presence of an
oxide or nitride region will prevent the ingress of dopant atoms to areas shielded
in this way. There are also more subtle effects such as the existence of oxide regions

which promote enhanced diffusion of dopant atoms in the silicon beneath.

Before any step can become part of manufacturing process, careful consider-
ation must be given to its control parameters so that the resulting actions fit in
with the complete process schedule. A corresponding set of monitor parameters also
needs to be defined, so that post-processing verification of the step performance
can be made by test measurements on the final product and/or test wafers. The
data returned from these measurements will be used to monitor the processing

quality and provide process control feedback.

This simple control methodology enables deviations from process specifica-
tions to signal the need for an investigation into the current process parameters.
In the short term, this can indicate where a temporary alteration to processing
* conditions should provide coirective action for future batches and on a longer term
basis, it points to where more robust and permanent modifications need to be made.
However, this procedure can be very difficult to implement, firstly in that it may
not be easy to pin-point the source of variation and secondly, re-tuning the process
can be a highly time consuming exercise. In either case, the time and yield lost
during theinvestigation and subsequent rectification will represent alarge financial

loss.

In a production , as opposed to aresearch, environment where there are many
products and different batches within a product line to be tracked, the volume of
engineering data generated by a facility is vast. The distribution and analysis of this
data, if performed efficiently, can provide substantial benefits to the overall pro-
duction management. Equally, it can be catastrophic if inefficiency or misuse
persist. Computer Aided Manufacturing (CAM) software packages such as
COMETS(WORKSTREAM)® and PROMIS®, have been specifically designed for
the manufacturing industry and are widely used to provide extensive data man-

agement services throughout the entire facility for engineers and management
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alike. Although such Systéms enable process enéineers to t‘_réck; ﬁloﬂitdr and control
processing, they only provide one half of the ultimate requirement for ensuring
that accurate processing is achieved consistently. The other half can be obtained
by investigating a priori, the effect which any excursions from the specified para-
meter levels will have on the final device characferistics. In this way, an inherently
stable process can be designed which will be less sensitive to parametric variations

and therefore return a significantly higher yield.

This process design concept requires that the variation and sensitivity of each
output parameter to changes in the input conditions must, as a minimum be
qualified and preferably be quantified. Over the past two decades a wealth of process
models have been developed which describe the physical changes that occur during
each of the major process steps discussed in this chapter. These software models
are usually linked together within asingle package to provide the means to simulate
an entire fabrication process or just those steps of interest for a given problem.
Chapter 3 discusses some of the models available, their merits and drawbacks and
their growing importance in current and future semiconductor processing. Obvi-
ously, if the effect of input parameter variations is to be quantified, a number of

these simulations will have to be performed over the desired range of possible

conditions, Although some process parameters only affect a single device char-.

acteristic, more commonly they influence numerous characteristics and also
interact with each other in complex ways. Therefore a rigourous and structured
analysis Qf the simulation results is essential in order to extract an informative and
quantitative set of relations between the process parameters and the device char-
acteristics. The application of experimental design and analysis techniques to this
field is covered in detail within chapter 6. The combination of process simulation
and experimental design provides a very powerful and vital route to achieving a
structured process design in which potential control problems are indentified and

hopefully avoided before manufacture,
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As device features diminish in size and processing tolerances tighten there is
a greater need to fully understand the interaction of process steps with each other
and to consider many of the physical characteristics which were of little conse-
quence at larger geometries. Coupled with the increasing trend towards the use of
Application Specific ICs (ASICs) and the emergence of low volume IC production,

structured process design and control has never been more important

2.4 Summary

In this chapter, on overview of silicon wafer fabrication has been given in the
form of an outline of the basic steps employed within a typical process. These steps,
described in terms of how they are performed and their function, have been pres-
ented to emphasise their control and monitoring requirements. The concepts of
process control and process design have been introduced and their importance
demonstrated, especially with demands for ever-increasing yield and reliability -

whilst scaling device geometries into the submicon range.
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Any given program, when running, is obsolete.

Any given program costs more and tikes longer.”~ <" —

- if a program is useful, it will have to be changed. . —
Ifaprogramis uséless, itwill have to be documented.
Any given program will expand to fill the available
memory.
Thevalue of a program is pmporﬁonél to the weight
of its output.
Program complexity grows- until it exceeds the

capability of the person who must maintain it.



Chapter 3
Process Simulation

3.1 Introduction

The fabrication of silicon ICs involves an inherently complex set of operations,
with a typical process comprising several hundred individual steps. In each new
generation of IC, device geometries have been shrunk in both planar and vertical
dimensionsin order to meet the continual demand for greater circuit performance
and packing density, With the reduction in feature sizes to micron and submicron
dimensions, the development of new technologies and fabrication processes has

become increasingly more difficult, time consuming and expensive.

The use of computer aided design (CAD) tools has emerged as a powerful way
inwhich to assist in the development of the technologies required to.approach these
levels of circuit complexity. Such tools nof only cover circuit layout, but also process,
device and circuit simulation. Together these can pfovide a mdre or 1es;s con_n'pllete
simulation system for the development of semiconductor products. A large number
of numerical and analytical models have been developed over the past two decades
to simulate each of the steps within a fabricatibn process. These models are gen-
erally implemented as a set of modular subprograms which are controlléd by a
supervisory shell program. This sofiware provides the facility to calculate the
impurity distributions and structural features of a fabricated device fromasequence

of process steps with their respective control parameters.

Computer based modelling of semiconductor fabrication was first introduced
in the 1960’s to attempt to predict the process dependencies associated with the
fabrication of the high speed double-diffused bipolar technology [1]. However, it
was not until MOS technologies began to dominate the market during the late
1970’s and early 1980’s that ‘the importance of rapid development in process

modelling and simulation was fully perceived and acknowledged.
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The most commonly used simulators are one dimensional, modeling a 1-D
section of the device structure normal to the wafer surface, such as depicted in
figure 3.1. One dimensional models provide sufficient accuracy and information for
large geometry processes, where the minimum feature size exceeds 3uym. These
models have been continually researched and improved since the introduction of
process modelling and thus are much more *mature’ than their two dimensional

counterparts.

Field Oxide Polysilicon Gate

Gate Oxide Source/Drain Region

Enhancement Channel

Figure 3.1. Section through an nMOS enhancement mode transistor.

However, once feature sizes begin to drop below the 3um level, it becomes
important to model the two dimensional effects that occur during the wafer pro-
cessing, such as lateral dopant diffusion under field oxides or gate regions. The
models used within 2-D simulators are less comprehensive than found in a 1-D
system, but the solution times are still much longer (typically by a factor of 70-500
[2]). It is also anticipated that for accurate and constructive simulation of submicron

geometries, the use of three dimensional modelling will be required [3],[4].
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One major application of process simulation has been in the development of
new fabrication processes. Traditionally, this was achieved by an iterative schedule
of process modification, experimental fabrication and parametric test until the
desired criteria were attained. With each cycle taking in the order of 6 to 8 weeks,
this was a time consuming procedure. Economic pressures coupled with the
increased demands being placed by the Application Specific IC (ASIC) market have
led to a requirement for more rapid process development and design turn-round
times. The need to simulate processes has become essential in low volume pro-
duction if economic yields are to be achieved from the first batch of production
wafers. Simulation not only provides a faster and cheaper development cycle, but
it also enables process engineers to ’see’ inside the device and observer features
which are not directly visible in the physical structure, such as doping profiles. This
feature can assist engineers in finding the cause of an anomalous device char-

acteristic.

Another use which has emerged more recently is in the statistical control of
VLSI fabrication processes. In its simplest form, simulators such as FABRICS [5]
are used to assess the sensitivity of a particular process to the inherent variations
found in the input parameters within- a manufacturing environment. This
methodology has also been expanded te incorporate this information into
Computer-Aided Manufacturing (CAM) systems to provide additional on-line
control functions [6]. This concept has also been illustrated with the incorporation
of SUPREM II and COMETS™ [7] to provide look-ahead and what-if functions for
process development and maintenance [8]. By offering the possibility of corrective
processing to wafers which have been diagnosed as misprocessed at any point in
the fabrication schedule, an opportunity is presented to improve the overall yield

of the process.

Alternatively, a combination of process simulation and classical experimental
design techniques can be used to observe the sensitivity of a given process to
parameter variations and optimise that process for a particular set of performance

goals. In this manner, any problems with the process can be ironed out before it
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ever commences fabrication and an acceptable yield is assured for every batch of
wafers so processed. The powerful nature of this technique isonlynowbeingrealised
with the considerable increase in design turn-round and economic pressures facing

the semiconductor industry today.

3.2 One Dimensional Simulation

Simulation, by its very nature, can not exactly model all the events that are
found in the real world. For the case of process simulation, a series of conceptual
models have been developed which approximate the physics associated with each
of the process steps described in the previous chapter. From these conceptﬁal
models arise a corresponding set of mathematical models which provide a
description of the physical processes that are occurring within the semiconductor
structure. These mathematical models fall into one of two categories, namely
numerical or analytical. The latter can provide a rapid solution which is accurate
only within a range of values for which it has been verified, whereas the former
provides a more comprehensive approﬁch but d;)es éonsu_mé a far greater compu-
tational resource. This issue is of such importance to the future of process simu-
lation that it will be discussed in detailin §3.4. Such modelling techniques introduce
limitationsand hence errors, in the results attained from the simulations. However,
if the models are applied judiciously, it is still possible to obtain quantitatively
meaningful results.

Each mathematical model, be it numeric or analytic, contains a variable
element in the form of adjustable coefficients so that it can be calibrated to a par-
ticular set of experimental data. Thus if it is important for a particular application
that accurate quantitative results are obtained, then the process in question must
be fully characterised to enable the relevant coefficients to be changed. This process
characterisation comprises measurement or estimation of the model parameters.
However for many applications, such as sensitivity analysis or trend analysis [9], an
exact solution is not necessary and thus the default parameter values will provide

the required data.
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The largest simplification that can be made is to assess only the vertical
dimension for the study of layer formation and dopant distribution. This is done by
modelling a single one-dimensional section normal to the wafer surface at a time.
In order to simulate the effect of the entire fabrication process over a whole device,
a number of such sections through the major regions of the device will need to be
simulated. As an example, consider figure 3.2 which illustrates a cross-section of

an nMOS invertor structure with the significant regions requiring simulations

highlighted.

Enhancement #  Depletion
section section

¥
‘

Contact : Source/Drain  Field
section section ~  section

Figuré-ii.?... Cross-.s‘.écl;ib;&;ﬁbahowing 1-D simulation regions.

The consequences of this simplification are that the models possess a much
reduced;garameter set and require considerably less computation. It is desirable
for the models to be general-purpose and therefore theoretically physical based
models rather than empirical models are favoured. Although this incurs substan-
tially more computation, in the case of analytic models, it is too easy to operate

qut‘.side the calibrated range of empirical models and thus incur large errors.
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It is useful to point out a few of the general features of process simulators
before examining one package in detail. In order to simulate any structure the

following basic information is required:

e Initial wafer material type, orientation, and doping level.

e Definition of the semiconductor structure by means of a grid to
provide a discretised simulation space in which the solution of

the numerical models is performed.

o Specification of the necessary process steps in the order that they

appear in the relevant fabrication schedule.

Each simulator has its own control language in which the structural initiali-
sation and subsequent processing informationis-defined; as'well -as specification of ~ - - -~~~
the output format. An excerpt from a typical input file is shown in figure 3.3 and
the link between the input synta# and ’-basic equipment control parameters that

would be found on an actual process runsheet, can be noted.

COMMENT Grow pad oxide

DIFFUSICN TEMPERATURE=1050  THICKNESS=0.05 DRYOZ2
COMMENT Deposit nitride masking layer

DEPOSIT NITRIDE THICKMESS=0.2 DX=0.02 SPACES=10
COMMENT Grow field oxide under high pressure
DIFFUSION TEMPERATURE=1000 TIME=30 STEAM PRESSURE=S
COMMENT Etch oxide and nitride layers

ETCH OXIDE

ETCH NITRIDE

ETCH OXIDE

Figure 3.3 SUPREM III input statements taken from an
MOS device simulation. Structural initialisa-

tion data has been omitted for clarity.
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The output from the simulators provides physical, electrical and structural
information pertaining to the device at the chosen pointin the processing sequence.

Such information includes:

e layer thicknesses and charge densities -
e sheet resistivities and threshold voltages (where appropriate)

‘e graphical plots of the structure and doping profiles from the
simulation space. This information may also be exported

directly into certain device simulators [10]

The first process simulator to be widely used by industry and academia alike,

was SUPREM II [11] and is capable of modelling both bipolar and MOS processes

in one-dimension, This simulator-was developed at Stanford University, California, _...

in the mid 1970’s and came as the first of a family of process simulators. The models
it incorporates are mature and well understood which, coupled with public domain
source code, has continued its widespread use in both commercial and academic
environments. These models use a mixture of physical and empirical solutions for

ion implantation, oxidation, diffusion, epitaxy and etching. Default models for the

distribution of boron, phosphorous and arsenic are included, but their use only

pertains to silicon and silicon dioxide layers which is a severe limitation in the light

of current technologies.

SUPREM III [12] was released in the early 1980’s to replace SUPREM II and
has substantially greater capabilities. The most important of which must be that
simulated structures may contain up to ten material layers selected from silicon,
silicon dioxide, polysilicon, silicon nitride and photoresist or user-defined materials.
This feature, coupled with a revised set of physical models for the major process
steps discussed in the previous chapter, has enabled SUPREM III to model most
current process technologies. Table 3.1 provides a brief comparison of SUPREM II
and SUPREM III.
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SUPREM II SUPREM III
2 layers 10 layers
default material for default material for
implant & diffusion implant & diffusion
silicon silicon
silicon dioxide silicon dioxide
polysilicon
silicon nitride
aluminium
no additional additional materials
material types may be defined
3 dopant types 4 dopant types
default dopants default dopants
antimony antimony
arsenic _ arsenic
boron " boron/BFg- -
phosphorous phosphorous
oxidation of oxidation of
silicon silicon
‘ polysilicon
gilicon nitride

Table 3.1. SUPREM II versus SUPREM III

The ensuing sections provide a brief discussion of the scope and limitations
of SUPREM III'’s one-dimensional models and reflecting the relationship between
its control language format and typical equipment control parameters for each

process.
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3.2.1 Oxidation

The rate of SiOg growth has traditionally been described by the linear-pa-
rabolic Deal and Grove equation [13], the basic form of which is given in equation
3.1, Within SUPREM 11, this has been further developed to account for the oxide
growth on both silicon and polysilicon [14].

Xo-XP | Xo-X, B.D
B B/A
where :-
Xo = _ oxide thickness at time t
Xy = initial oxide thickness (if any) att = 0
B = parabolic growth rate
B/A = linear growth rate
t = -time

The parabolic and linear growth rates are given in their general form by
equations 3.2 and 3.3 respectively, When solved with SUPREM III, terms for wet,
dry or HCl ambients, pressure, substrate orientation and rapid initial growth are

also included [15].

B = 2.D.C'/N, (3.2)
B/A = C/N, 39)
(17k) + (1/n)
where :-
D = Oxidant diffusion coefficient in oxide
o= equilibrium oxidising species concentration

Ny = number of oxidant molecules per unit volume

kg = oxide / ambient interface reaction rate constant

n = Si / Si09 interface reaction rate constant

All the factors which influence the growth of an oxide are modelled physically

with the exception of HCl which is empirically implemented since no quantitative



physical model yet exists. Due to the almost entirely physical basis of the oxidation
models, they are capable of simulating many different process conditions, ranging

from short gate oxide growths to long isolation oxide formations.

In order to invoke an oxidation step from within SUPREM III, a DIFFUSION
statement is used, whose parameters must include an oxidising ambient such as
pure oxygen, pyrogenic steam or pure steam, as well as a suitable time and tem-
perature. Figure 3.4 provides an example of a typical DIFFUSION statement in
which the gas flows into the furnace have been directly épecified. This option is

most usefulwhen relating a simulation to an actual set of manufacturing conditions,

DIFFUSION TIME=30 TEMPERATURE=1000 F.02=2 F.H2=2 F.N2=2 F.H20=1

Figure 3.4 SUPREM III input statements for an oxida-
tion in which the ambient gas flows have
been specified as ratios.

The ability to simulate processing condition used in practice, is further
enhanced by the option to supply additional parameters to indicate the growth of
doped oxides and elevation or reduction in furnace pressure from the default
atmospheric ambient. Both temperature and pressure may also be ramped at a

user-specified rate,

3.2.2 Diffusion

One of the prime tasks of a process simulator is the generation of impurity
doping profiles. Since great importance is placed on the resulting profiles, it is vital
that the models associated with their evaluation are highly accurate. In the case of
SUPREM 111, diffusion models are present for the redistribution of antimony,
arsenic, boron and phosphorous within polysilicon, nitride, silicon and silicon
dioxide layers. For each of the listed impurities there is a set of physical models

which are solved numerically.
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Dopant redistribution occurs during every heat step used in the fabrication
process, including oxidation, deposition and annealing, Thus the diffusion models
within SUPREM Il are required during the simulation of many different processes

under a variety of ambients, temperatures and times.

Simulation of diffusion processes must therefore involve the solution of the

complete one-dimensional continuity equation:

3C 2 aC g o[, ~ 9 (3.4)
ot X (Dax) * kT aX(DC ax)
where :- a
D = i} effective diffusivity
C = l' total impurity concentration
c =, electrically charged impurity concentration
The potential $ is:
oy I52  -4
b = Iﬂ_l n At
q Ty

where n and n; are the electron and intrinsic carrier concentrations respectively,
at the diffusion temperature, There are four major diffusion mechanisms, namely
vacancy-assisted, interstitial-assisted, interstitialcy and crowdion, which can con-
tribute to the re-distribution of dopants in a semiconductor [16]. Within SUPREM
III, equation 3.4 models the diffusion by the vacancy-assisted mechanism under
non-oxidising conditions. In addition, account is also taken of high phosphorous
concentrations, the presence of oxidising silicon or polysilicon surfaces, and
transient diffusivity enhancement which may result from implant damage, for
example. For multi-layer structures, dopant transport and segregation across
materialinterfacesis also included in the relevant diffusion models. A more detailed

discussion of the models used for diffusion in SUPREM III may be found in [17].

Explicit simulation of dopant diffusion through a semiconductor structure is
performed using the DIFFUSION statement from the SUPREM Il input language.

As can be seen in figure 3.5, the processing conditions requiring specification are
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those of temperature, time, and ambient. This includes the oxidising ambients as
described in section 3.2.1 or an inert ambient such as nitrogen. As with oxidation,
the diffusion rate will be affected by any temperature ramping thatis present during

the processstep, but in contrast, there isno dependency on the pressure coefficient.

DIFFUSION TEMPERATURE=1160  TIME=45 INERT

Figure 3.5 SUPREM III input stateﬁlents for an inert

diffusion.

It is most unusual under conventional manufacturing techniques simply to
perform a diffusion without an associated oxidation or growth of a layer, and thus
the models are generally called automatically during the simulation of these other
process steps. However, the ability to explicitly simulate the consequences of the
thermal component of a step, withont its asgociated growth or oxidation, can be

useful during process development and fault-finding.

3.2.3 Ion Implantation

Traditionally, initial dopant concentrations within a semiconductor structure
have been obtained by either pre-deposition or ion implantation. Pre-deposition
can be modelled as a conventional diffusion step with Dirichlet boundary conditions
[18]. However, the fabrication of small geometry devices requires a far greater
control of doping profiles than is available from a pre-deposition step and ion
implantation also permits a wider range of impurity ions to be introduced into the
structure. In addition, the fabrication of shallow or low concentration doped regions
such as might be required in the formation of small geometry source and drain
regions, with sufficient efficiency and reproducibility is only attainable by ion
implantation, Dopants can also be implanted through multiple layers of a structure.

Thus there is an almost universal use of ion implantation for this process step.
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It is very important that the outcome of this step is accurately predicted,
because the implanted profiles form the initial conditions for all subsequent
diffusion processes. This operation is modelled by either an analytical or numerical
technique depending on the trade-off between speed and accuracy that is acceptable

to the end-user.

SUPREM I took the analytical approach and utilised a series of look-up tables
based on the established LSS theory [19] to produce predicted range distributions
for the implanted ions. On this basis of the LSS theory, the simplest resulting
distribution is a symmetrical Gaussian curve with experimental data providing the
projected range, Ry, and standard deviation, s, for a variety of ion-target combi-
nations. Asymmetric profiles are found experimentally for many ions and are
obtained by using the 3rd central moment for range information [20]. Thése
distributions can be represented by 2-sided Gaussian profiles which are charac-
terised by two standard deviations, 51 and $g for arsenic, antimony and phesphorous.
Boron requires the use of a modified Pearson distribution with an exponential tail
added in order to account for the channelling effects. The major limitation of the |
basic LSS theory is that it assumes a homogeneous target, and hence is not apph-
cable to the simulation of multi-layer structures. It has been reported [21] that the
assumption of a homogeneous target has been removed, but this is not the case for
the currently available simulators which incorporate this modelling technique.
Additionally, LSS theory is unable to model recoil effects such as secondary
implantation. The general analytical calculations represent an impurity distribu-

tion I(x) as shown in equation 3.5

1(x) = N.[£(x)*f(x)] (3.6)
where :-
N = dopant concentration / dose from implanter
flx) = normalised distribution (Gaussian / Pearson)
fix) = exponential tail added to f(x) in silicon



Numerical modeling methods are based either on the Boltzman Transport
Equation (BTE) or on Monte-Carlo (MC) techniques. The primary method incor-
porated in most of the available simulators at the present is based on the solution
of the Boltzman transport equation from work by Cristel et al [22]. In this model,
the scattering of the ions is described by changes in the statistical momentum
distribution function. BTE can model recoil implantation effects and damage
mechanisms, but like the analytical models, is based on an amorphous target and

therefore can not explicitly model channelling effects.

Monte-Carlo methods on the other hand are based on the simulation of
individual particles and their collisions in the target structure. By summing the
nuclear and electronic stopping events in a large sample of ions (preferably 1000 or
more), the range parameters for both primary and secondary recolls and any
associated damage can be obtained. This methodology has the advantage that any
ion/target combination can be modelled due to the-entirely physical approach.
Models for both amorphous and crystalline targets are available [23], thus a.llow_ing
channelling effects to be included. Monte-Carlo simulations are highly computa-
tional when a sufficient number of samples are included to provide the necessary

accuracy for small geometry devices.

SUPREM 111 offers revised analytical models incorporating Pearson IV/V/VI
distributions [24] depending on the conditions pertaining to the step. It also has
the numerical BTE method included, though in order to reduce the computational
overhead the recoil and damage models have been omitted [25]. Implantations are
invoked by the IMPLANT statement and require information on the dopant species,
concentration/dose of the implanted ions, their acceleration energy and the sol-
ution method to be employed. Although any dopant may be used for the numerical
solution, range characteristics only exist for arsenic, antimony, boron and
phosphorous when utilising the analytic solution. Figure 3.6 provides an example
of a typical IMPLANT statement from SUPREM III and indicated the close links

between the simulation and fabrication parameter specifications
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IMPLANT BORON DOSE=1E13 ENERGY=50 2-GAUSSIAN

Figure 3.6 SUPREM III input statements for a boron
IMPLANT using a two-sided gaussian dis-

tribution function.

Analytical techniques are extremely efficient, but the simulation of small
geometry devices requires the additional accuracy provided by the numerical BTE
or MC techniques and has to be paid for in terms of the additional computational

overheads.

3.2.4 Deposition

Modelling of deposition ﬁrocesses within most one-dimensional simulators is
highly simplified, with the most common approach being to consider the step as
the addition of an extra layer to the top of the current structure. Such a procedure
may be justified by the fact that one-dimensional simulation does not include any

detailed topographical information,

'SUPREM III contains default models for the deposition of silicon, silicon.
dioxide, silicon nitride, polysilicon aluminium and photoresist. With the exception
of polysilicon, there are no analytic or numerical modelsincluded to explicitly model
the deposition processes, which enables a wide range of techniques to be nominally
modelled by SUPREM III. Thus processes such as CVD, sputtering, resist spin-on
and prefdeposition, aswell asthe presence of polysilicon gates or metal interconnect
may be included in a simulation through the DEPOSITION statement. In order for
this generalised method to operate, it is necessary to. specify the desired end
thickness or growth rate and time for the particular material layer. For low tem-
peraturesteps, this simply resultsin the specificmaterialbeing added to the current
structure. In the case of high temperature steps, the diffusion models are also
triggered in order to account for the motion of any dopants already present in the

structure. The deposited layers may also be specified to contain impurity elements



such as antimony, arsenic, boron and phosphorous. For low temperature steps, this
will result in a uniform dopant concentration throughout the new layer and a
pre-deposition process is modelled by a high temperature step, where the specified
dopant concentration will exist in the ambient gas.

The increasing role of polysilicon in IC circuits as a gate material and an
interconnect has lead to the inclusion of a series of models for the growth of
polysilicon films in SUPREM III [26]. In addition to the previously mentioned
parameters requiring specification, either the ambient pressure or an initial grain
size must be included. Segregation at the material interfaces, carrier trapping and
grain growth are all included in these models.

Figures 3.7 shows examples of three different DEPOSITION statements from
SUPREM III illustrating a low temperature deposition, doped silicon and a

polysilicon deposition respectively.

DEPOSIT KITRIDE  THICKNESS=0.2
DEPQSIT SILICON  <100> THICKNESS=0.1 RESISTIVITY  BORON=5

DEPOSIT POLYSILICON  THICKNESS=0.5 TEMPERATURE=650 PRESSURE=1

Figure 3.7. SUPREM III input statements for nitride,
doped silicon and polysilicon DEPOSITIONS.

Ashasbeen demonstrated, SUPREM I possesses a vastly simplified approach
to deposition processes and the simulation parameters bear only alimited relevance
to their counterparts in the fabrication cycle. More complex and comprehensive
modelling is required when considering two-dimensional analysis and is available
within most 2-D simulators as well as through separate programs such as DEPICT-1
{271, DEPICT-2 [28] and SAMPLE [29].
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3.2.5 Etch

Etching processes within one-dimensional simulation are, like the deposition
processes, highly simplified and in effect can be viewed as the direct inverse of
deposition with no explicit treatment of the separate wet, dry or even ion beam
milling etch techniques found in fabrication. Within SUPREM III, an ETCH step
enables the removal of all, or part, of a specified material from the top of the current
structure. Default models for the etching of silicon, silicon dioxide, silicon nitride,
polysilicon, aluminium and resist are included and the presence of dopants within

the layer has no effect.

Since there are no physical or empirical models associated with the simulation
ofan etch,it isnecessary to know the outcome of a particular fabrication etch process
in advance ifit is to be modelled. Once this ’calibration’ hasbeen achieved, SUPREM
III is then capable of simulating any etch process that might be performed in a
fabrication process. As with deposition, both low and high temperature steps can
be modelled, with the diffusion models being solved for any impurities present in
the structure during a high temperature step.

As an example of the ETCH statement, figure 3.8 illustrates a simple oxide
removal from an MOS gate structure, with figures 3.9 and 3.10 showing the

structure hefore and after the etch.

ETCH OXIDE THICKMESS=(0.2

Figure 3.8 SUPREM III input statements showing the

removal of an oxide layer.
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Enhancement
section

Figure 3.9. MOS gate region in Suprem III prior to ETCH statement.

Enhancement

section

Figure 3.10. MOS gate region in Suprem III afterl(ETCH gtatement.

If effective use is to be made of the ETCH and DEPOSITION steps within
SUPREM 111, it is vital to make sure that they are well characterised in ‘advance,
otherwise significant errorswill arise. This becomes of particular importance when,

for example, the effects of over- or under-etching are being investigated. In such
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circumstances it might be more beneficial to perform a two-dimensional analysis
using one of the dedicated topographical simulators, such as DEPICT-1/2, to pro-
vide the detail required.

3.2.6 Electrical

An important use of process simulation is to provide process and device
engineers with the electrical performance of devices fabricated using a specific
sequence of process steps. Ashasbeen seen in the preceding sections (3.2.1through
to 3.2.5), process simulation calculates the physical structure and its associated
doping profiles for a given set of fabrication steps. These can then be analysed to

provide basic electrical information such as

e electron / hole concentrations

e layer conductivity / resistivity
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e threshold voltage for MOS device

For amore accurate and detalled analysis, such aswould be required for dewce

optimisation, dedicated device slmulators exist Wthh prowde 1-D [30] and 2-D [31]
data. These programs may be interfaced directly to process simulators such as
SUPREMIII or SUPRA allowing the transfer of doping profiles and device structure.
Aswith all the simulation programs discussed so far, it is important to calibrate the
electrical simulations to a given fabrication process if quantitative process analysis

is to be performed.

The electrical parameters obtained from SUPREM III are calculated from a
numerical solution to Poisson’s equation as shown in equation 3.“'{_under a series

of bias conditions.

3.7
{()aw(y)> . . @7

-g{p-n+N,-N,} semiconductor

=0 insulator
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where :-

N, =

dielectric constant of material
potential

hole concentration

electron concentration

electrically active donor ion concentration

electrically active acceptor ion concentration

In SUPREM 111, it is the ELECTRICAL statement which indicates the start

of a solution to Poisson’s equation. If VT is te be calculated then a series of bias

points will need to be spéecified since the threshold voltage-is calculated by

extrapolating the conductance versus bias curve tangentially to zero from the point

of maximum slope. By default, layers are biased to zero volts, but can be individually

biassed by use of the BIAS statement. In addii:i;:)n, the presence qf any surface charge '_ _
on the substrate can be specified by the QSS statement. An END.ELECTRICAL

statement signifies the end of the solution to Poisson’s equation. Figure 3.11shows

the electrical statements required to calculate VT for an MOS transistor structure.

ELECTRICAL STEPS=18 VTH.ELEC  LAYER=1

BIAS
ass

LAYER=3 v=-0.2 DV=0.1 ABSCISSA
LAYER=1  CONC=3E10

END.ELECTRICAL

Figure 3.11

SUPREM III input statements to perform a
threshold voltage calculation.

As can be seen, these commands bear little relation to any real on- or off-line

threshold voltage measurement technique, but they can be used to assist in the

initial calibration of the simulator to a particular process.




3.3 Two Dimensional Simulation

Asdevice geometries scale down below 1.5 - 2.0um, two-dimensional modelling
of impurity distributions and surface topology become critical in assessing device
performance.

The basic operation of MOS device involves the field effects imposed by
electrodes on doped silicon regions. Analysis of these devices requires a minimum
of 2-D and preferably 3-D [32] solutions to Poisson’s equation (see §3.2.6) if accurate
modelling of their performance and sensitivity to fabrication technology is to be
assessed. Most variations in fabrication processing result in subtle 2-D effects which
enforce the need for 2-D process modelling to provide sufficient resolution for these
imperfections to be reflected in the structural and doping information.

A number of 2-D simulators such as SUPRA [33], SUPREM-4 [34], COM-
POSITE [35], BICEPS [36], RECIPE [37} and ROMANS-II [38] have therefore been
developed with the intention of providing general purpose small geometry process
simulation capabilities, All of these have their respective limitations, some of which
will be highlighted in the course of this section, making it important to ensure that

the correct simulator is used for a given modelling problem.

The major difficulty associated with the development of 2-D process models
is in the consideration of the moving boundary cohditions fdr diffusion during
thermal oxidations. There are several methods available to surmount this difficulty,
though none is without compromise. By using an analytic solution to the impurity
diffusion during oxidation, the issue of spatial discretisation can be avoided and
calculations can be achieved quickly. This rapid response is obtained at the expense
of flexibility, in that analytic models are generally only valid for low concentration
diffusions. Alternatively, finite element and finite difference techniques, with or

without moving boundaries may be employed.

The problem associated with the numerical solutions is that of producing a
grid system around which the semiconductor structure can be defined and the
required equations solved. One way to solve this preblemis to discretise the physical

simulation region at each time step and then solve the resulting nonlinear equa-
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tions. In order to cope with the fact that one of the boundaries is moving, a new
spatial discretisation and an associated interpolation from the old discretisation to
the new one is needed at each time step. Another approach is to transform the
diffusion equations and their respective boundary conditions from a physical
co-ordinate system to a co-ordinate system where the moving boundary appears
stationary in the time domain. In this way, the solution region is simplified at the
expense of making the underlying diffusion equations more complicated.

SUPRA established itself as one of the first commercially available two-di-
mensional process simulators. Many of the models are based on those of SUPREM
ITT and allow the simulation of ion implantation, silicon oxidation, inert drive-ins
and low temperature deposition and etching, Although the structure may comprise
up to ten layers from six material types, impurity distribution is only calculated in
silicon and silicon dioxide layers. Thermal oxidation must be solved anﬂyticdly,
and diffusions in doped inert ambients must be solved numerically, but the
remaining madels may use either method, However, ane severe constraint is that
numerical solutions may be performed after analytic, but not visa versa, which
seriously limits the scope for simulating entire processes.

SUPREM-IV [39] is a still more recent two-dimensional simulator which
includes an advanced set of numerical and analytic models. A numerical thermal
oxidation model is now included. This eliminates many of the constraints applied
to SUPRA, though it does dramatically alter the overall computational intensity.
Impurities are now simulated in all layers, though the total is now limited to four
from silicon, silicon dioxide, nitride and pqusilicbn.

In contrast to these two packages is COMPOSITE. This possess a completely
different development background from the Stanford/TMA family of simulators,
coming from the Fraunhofer-Institut. fiir Festkbrpertechnologie in Munich. The
models included are two-dimensional extensions of those found in SUPREM II1,
however physical modelling of deposition, etching and lithography steps are also

incorporated, giving a genuine ability to model an entire MOS fabrication process.
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Neither SUPRA or SUPREM-IV have any physically based topographical capabil-
ities, though SUPRA does have a bidirectional interface with DEPICT / SAMPLE

to provide these facilities.

All of the simulators mentioned during the course of this section produce
two-dimensional structural and impurity concentration data. However unlike their
one-dimensional counterparts, a dedicated device simulator such as PISCES-2B or
CANDE (40] is required to provide the resulting electrical characteristics. .

By comparison with one-dimensional analysis, two-dimensional process
simulation is far more complex to use efficiently and successfully. A knowledge of
the inherent limitations of each simulator is required to prevent erroneous results.
More crucially, a careful choice of grid structures is essential for the numerical
modes so that sufficient detail can be achieved in the active parts of the device. It
should also be noted that, compared to a one-dimensional simulator, less accurate
vertical doping profiles will be produced given the reduced number of grid points
in the vertical dimension and the use of less mature and comprehensive models.
For example, SUPRA may use up to 100 nodes in a given dimension, whereas
SUPREM III could use up to 500 in the vertical dimension. Nevertheless, the
requirement for two-dimensional simulation can not be regarded as anything other
than essential, if useful qualitative and quantitative analysis of small geometry

devices is to be achieved,

3.4 Computational Requirements of Process Simulation

The application and importance of both one and two-dimensional process
simulation in designing, developing and debugging VLSI fabrication processes has
been highlighted in the preceding sections of this chapter. However, before any
conclusions can be drawn on the overall benefit of process simulation, it is necessary
that the computing resources demanded by the relevant software be presented and

assessed,

In the past, these software packages wrere typically run on multi-user main-
frame machines, such as the VAX™ 11/750 or on a minicomputer, such as one of

the MicroVAX™ series of machines. In their day, these machines were very popular,
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but were not cheap to buy or maintain, Even with efficient virtual memory man-
agement systems, the number of users that could concurrently access these large
programs concurrently, without the time spent swapping tasks dominating, is quite
low (typically 2-6 depending of the software). At present, personal workstations,
such as the SUN 3™, 4™, or IPX™ range of machines, are capable of providing com-
puting powers in the order of 10-30 times that of their predecessors, for a fraction
of the costs. However, even these technological advances are not sufficient to meet
the demands bein'g placed on simulation machines due theincrease in the utilisation
of process simulation and by the move towards 2-D and 3;D simulation that is

required to model present and future processes.

This information highlights the problems associated with this hardware
arrangement. It does not lead to an efficient process simulation environment in
which each process / device engineer who could benefit from access to the software
would actually be able to use it. The problem is further compounded by the fact
that as device geometries scale down, not only is there a greater need for more
simulation but additionally, each simulation becomes more computationally
intensive. In the extreme, the use of three-dimensional modelling, which has been
proposed for submicron processes, would render conventional simulation pro-
cedures unusable. Therefore, a fresh approach is required to. provide a suitable
computing environment which allows relatively cost-effective access to the

necessary software by all the relevant engineers.

There are two aspects which could lead to the significant improvements which
are needed. Firstly, an economic source of superior computing power, which is
preferably available in a desktop format, would deliver a more immediate solution,
though emphasis has to be placed on the ’economic’ constraint if global access to
the engineering community is to be met. This proviso rules out the alternative
range of computing platforms in the CRAY™ style of supercomputing platforms
which are extremely expensive to both purchase and maintain. Secondly, on a more

long term basis, the development of improved numerical algorithm’s within the
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solution of the physical models would produce a lower loading on both existing and
future computational platforms. This route must not be ignored, but it is unlikely

to produce significant advances in the short term.

Although SUPREM II is only a one-diménsiona’l process simulator which
presents a relatively low load on a processor, the availability of source code has
allowed execution on a variety of computing platforms to be compared. Table 3.2
presents a series of CPU times for a typical CMOS gate region simulation on a
number of processing elements, along with an estimate of their respective costs.

These results do provide a clear indicator as to where a possible solution may exist.

Hardware Platform [CPU Times |Approx. Costs |Remarks
(secs) (£) (1990)

VAX 11/750 4460 55000 plus maintenance(~10%)

SUN 3 2070 6000 plus maintenance(~10%)

PC-AT 80286  |6170 {2500 'AT’ Compatible

PC-AT + IMST414 15580 . 2700 INMOS Trangputer -
with no floating point
unit

PC-AT + IMST800 |312 3100 INMOS Transputer -
with floating point unit

Table 3.2. Comparison

3.5 Summary

This chapter has presented a brief synopsis of process simulation within the
semiconductor manufacturing environment. The main physical and electrical
models as contained in a particular one-dimensional simulator, SUPREM III, have

been described along with examples of their respective input data formats

This chapter has presented a brief review of process simulation and its role
within the semiconductor fabrication environment. The merits and limitations of

both one- and two-dimensional simulation are then considered in the light of cur-
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rent processes and their future trends, SUPREM III is then examined in detail as
an example of a typical one-dimensidnal simulator with a discussion of its main
physical and electrical models and their respective input and output data formats.
Although two-dimensional simulation is vital in order to model the lateral effects
that become significant in small geometry device processing, it is shown to lack in
the accuracy obtainable from one-dimensional modelling and require considerably
greater computational resources. The issue of computational overheads is then
expanded upon and shown to severely limit access to this software. With this in
mind, a comparison of various hardware platforms, in terms of both cost and per-
formance, is used to focus on a possible simulation environment which would enable

its full potential to be exploited.
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Chapter 4
Parallel Computational Systems

4.1 Introduction

The von Neumann model for computer architectures as shown in figure 4.1
or a variation there-on, has remained the dominant serial micro-architecture for
many decades. Although computational theory proposed that this model could
provide the means to solve most existing numerical problems, it has been the
technology required to realise this in hardware that has proved to be the funda-

mental limiting factor over much of its life.

------ Memory

? i

3

instructions data

l

Processor . data —" 1/O Device
4

instructions

. Control

Figure 4.1. The von Neumann computer architecture.

However, continﬁea progress in fal_Jrication, device and circ-liit; design tec;h-
niques has led to greatly enhanced CPU speeds, instruction set, memory sizes and
access tiﬁes. In this way, VLSI technology has lifted many of the hardware
limitationswhich wereloriginally so restrictive on computing achievements and has

enabled greater potential to be extracted from this architecture. Consequently,
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families of devices have emerged which offer a wide range of performance and
provide a simple path for upgrading machine capability. A prime example of this is
the Intel 80x86 microprocessor family (8086 - 80486) which powers the IBM PC

series of computers.

Because of the basic architectural consistency throughout this continual
development, end users have been able to place relatively little importance in
architectural detail and a high degree of software compatibility and portability
between hardware platforms has resulted. This has been accompanied by the cre-
ation of a vast pool of knowledge and expertise in both hardware and software. A
huge investment has been made over thils period into the development of many
immense software packages for use by academic and commercial establishments
alike - a factor which has continually influenced and hindered the course of alter-

native developments.

Unfortunately, although advancing technologies have altered or removed
many of the constraints which influenced the von Neumann design since its
inception, it is becoming increasingly difficult to obtain yet more performance from
this time-honoured model. It is the architecture itself which is now the limiting
factor due to the various communication and processing bottlenecks that are
associated with it and the time has come for new appreaches to be researched and

applied to the computational problems being faced today and in the future.

The knowledge that parallelism could provide a means to improve computer
performance has been around since before the introduction of the first electronic
computers, However, it is only more recently that the technology with which to
implement such concepts has become available. This progressive technology has
led to arepeal of Grosch’s law [1], which stated that the best cost-performance ratic
would always be obtained from a powerful uniprocessor. No longer is it true that a
single large processor will necessarily outperform a number of smaller processors,
given the same capital cost. VLSI fabrication technology already enables the entire
functionality of complex microprocessors to be realised on a single chip. Similarly,

multiple processing elements, albeit of a less elaborate nature, have also been
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produced in single chip formats. If the cost-effectiveness associated with volume
IC fabrication is to be harnessed, then parallelism must be exploited on an extensive
scale. Consequently, the construction of parallel computers from a large number
of relatively small, cooperating processing elements, provides an attractive alter-
native to the high budgets associated with the serial supercomputers of teday. Such
levels of system integration are already being achieved and have resulted in the
introduction of affordable multiple processor computing platforms. Although much
work remains to be done with respect to the processing technology, a significant
proportion of the current technological research is altering its emphasis towards
that of processor interconnection. Experience has provided the evidence that this
factor is highly influential in overall system performance and suitability to par-

ticular applications.

However, although parallelism appears to be a natural concept when observing
the way humans tackle problems, traditional computational skills and strategies
havemoulded the conceptiual appreach to thisfield into a highly sequential manner.
With this in mind, a parallel programmer has a vast array of new concepts to grasp
and additional responsibilities when developing such software. These commitments

relate to such issues as the distribution of tasks amongst the available processors

and the communications between tasks-and processors. Ideally, it should be.the . ____

function of software tools to assist in determining how a program will run on the
hardware and permit the designer to describe what the program will accomplish.
To date, such tools have been virtually nonexistent due to insufficient underlying
theory andonly now are the first generation of suitably comprehensive development
environments becoming available,

Parallel programming is non-trivial and requires the development of many
new algorithms and protocols torealise its potential benefits. The porting of existing
serial software onto parallel platforms is typically time consuming and highly
application dependent, if maximum performance is to be extracted. At present, few
compilation facilities exist which can successfully automate this process whilst

retaining a sufficient performance advantage over the serial version. Commercial
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software developmentin thisfield haslagged behind that of the hardware, especially
in the provision of complete parallel programming environments which support
both program development and itsapplication thereafter. This hasleft the academic
community floundering in its attempt to gain the much needed support required
to prove the genuine benefits afforded by this technology and presents an all too

familiar catch-22 situation.

The field of parallel processing has seen many players come and go throughout
its relatively short existence as each has attempted to produce competitive and
marketable systems. This sadly reflects the complexity and cost of the resources
associated with the developing efficient and affordable parallel computing facilities.
It also highlights the failure of the industry as a whole to demonstrate and convince

the open market of the real benefits that can be provided by this technology.

This chapter intends to provide a brief overview of parallel computing archi-
tectures, charting their progress from von Neumann’s serial model through to the
present mulitiple processor architectures. Then, as an exainpie of one of these and
as an introduction to the computing technology associated with this work, a more
detailed description of the Inmos transputer will be presented. This section will

cover both hardware and software aspects of the transputer technology and then

proceed to highlight a few of the factors which have hindered its widespread

application to parallel problems.

4.2 Parallel Computer Architectures

Many attempts have been made to pr(;wide athorough classification of parallel
~architectures, though the two most commonly referred to are those by Flynn [2]
and Shore [3]. The former based his evaluation on how a particular machine related
its instructions to the data that they process, whilst the latter considered the
structural organisation of the architecture itself. Terminology associated with both
of these classifications has become very much part of the general computer science
language used throughout the field. Flynn’s taxonomy identifies four distinct
classes of processing machines which are listed below and illustrated schematically

in figure 4.2.
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Figure 4.2. SISD, SIMD, MISD and MIMD Architectures.
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However, before going on to examine each of the aforementioned architectural
classes, it is important to decide how individual systems can be objectively assessed
in relation to one and other. Such areviewwill obﬁously include a measure of sheer
computational performance, but must also consider more wide-ranging issues
relating to its implementation and operational requirements. Processor and mul-
tiple processor performance is generally quoted in terms of either MIPS (millions
of instructions per second) or MFLOPS (millions of floating point operations per
second) when considering scientific calculations. The latter is usually highlighted
by manufacturers if a dedicated floating point unit (FPU) is included, be it as part
of a chipset, as with the Intel 80x86 and 80x87 chip sets, or included on-chip, asin -

the case of the T800 transputer series of devices.

Comparison of these performance figures can be highly misleading in that the
relationship between the instruction execution rate and the resulting arithmetic

performance is dependent on both the function and the processor. This then
hecomes additionally complicated when beth CISC (complex instruction set com-
puters) and RISC (reduced instruction set computers) machine architectures are
being compared since a RISC processor can be expected to execute more instructions
for a given function than its CISC counterpart. The rationale behind the RISC
concept is one of’ -ﬁrovid—i—ng high performance-support for programs written in high
level languages [4] and reducing system interrupt latency. One further problem
with these figures is that they relate to a peak performance, which can only be
realised under highly specific or even theoretical conditions. Bearing this in mind,
it is therefore far more constructive to combine this peak performance data with
results from a number of representative benchmark calculations. There are a
number of these standard benchmarks, each tailored to highlight a particular
computational process. In this way, a genuine and attainable measure of the pro-
cessor performance can be obtained and it becomes possible to match processing

systems to their prospective applications.
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4.2.1 SISD

This is the conventional serial von Neumann computer architecture in which
there is a single stream of instructions which are performed on a single data set.
Aswas mentioned earlier, a nominal degree of parallelism has been introduced into
this model and thus it is worth briefly highlighting the evolutionary course of the
serial computer concept and architecture. The earliest designs worked on a bit-
serial approach using a single processor to perform all the computations on the
required operands, bit at a time. This later gave way to word-serial processing units,
which operated on multiple bit words, though still maintained the serial time-se-
quencing of the instructions. The final development saw the introduction of pipe-
lined processor architectures where individual arithmetic processes wére
implemented in separate specialised hardware units. Thus, as each data set passed
from one process to the next, the hardware process would receive a new data set in
its place and hence a number of data sets rippled through the processing units at
oue time. In this manner, muliiple data sets could be simultaneously operated upon
by different processes.

This class includes machines ranging in performance from the ubiquitous
desktop P.C. through the familiar SUN workstations to the IBM and DEC mini-
computers and finally to the very fast serial supercompufers. Exa:ﬁp_les_ of thesé
supercomputers are the CRAY-x series of machines from Cray Research and the
ETA GF-10from the now defunct Engineering TechnologyAssociétes. Both ofthese
processor families offer performance in the order of GFLOPs by immersing the
processing units in liquid nitrogen.

A great advantage with these concepts is that no modifications to existing user
software were called upon, making them very attractive propositions. However, if
explicit knowledge of task independence prevails, then this may be used to induce
further performance by vectorising regions of the code for execution on a vector

supercomputer. Unfortunately, the running costs of these supercomputer pro-
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cessors is extremely high due to their power consumption and liquid nitrogen
cooling requirements. Consequently they are generally found only within large

commercial organisation whose budgets can justify and support these running costs.

4,2.2 SIMD

This architecture follows the simplest approach to constructing a massively
parallel computer by connecting a large number of identical processing elements
(PEs) together in a multidimensional array, with a single host processor controlling
the network. Instructions are then broadcast simultaneously to all of the PEs which
then execute these on theirlocally stored data sets. Typically, the network geometry
is both fixed and regular in its nature and this can result in long inter-processor
communication paths, For example, in a 64 by 64 two-dimensional array, there can
be up to 61 intermediate PEs between the source and destination. The commonest
geometries are either a taurus, as shown in figure 4.3, or a hypercube, as shown in
figure 4.4. Almasi et al[5] provide a fuller discuss@on of other geometries which are

application to both SIMD and MIMD machines.

Figure 4.3. SIMD Taurus Geometry.

One very important aspect to consider in large multiprocessor computers is
that of redundancy. In the basic geometries illustrated so far, if any processing

elements fail then the entire computer becomes inoperable, which is not at all
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Figure 4.4. SIMD 4-D Hypercube Geometry.

desirable. Most commercial machines therefore tend to include an extra row(s) or
column(s) of PEs which can be switched in by software to replace a faulty device
and hence provide a more robust operational environment.

Thé most familiar example of such a machine is the ICL DAP (Distributed
Array Processor). The first generation of these machines comprised a 64 x 64 array
of PEs constructed from MSI components, each with 4 Kbits of RAM, and performed
bit-serial arithmetic at 4MHz. Both the host and PEs are programmed in FOR-
TRAN, albeit with a special version used on the PEs, and the fesulting pérformance
is in the order of 200Mflops.

Advanced Memory Technology (AMT) now produce an LSI/VLSI version of
the DAP which incorporates a 32 x 32 array of 12MHz PEs hosted by a MicroVAX
or Sun workstation. Unlike its predecessor, the AMT DAP incorporates a duplicate
set of PEs for redundancy. These sets operate simultaneously until a fault is

detected, when the functioning set continues and the faulty set is taken off line.

Other examples of well known SIMD machines include University College of
London’s CLIP (Cellular Logic Image Processor), Thinking Machines’ Connection
Machine[6] and Goodyear’s Massively Parallel Processor (MPP)[7]. Most of these

machines are built as one-off's and are used for specialised tasks within academic
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or commercial research and development environments. Most of the previously
mentioned machines are programmed in sub- or super-sets of one of the high level

serial languages (i.e. C, FORTRAN or PASCAL),

4.2.3 MISD

According to Flynn’s taxonomy, machines of this type permit multiple
instructions to be executed on every data set. It might therefore appear that this
class is somewhat academic since there are in fact no genuiné examples of it.
However, it may be considered in terms of a macro pipelined architecture where
each processor executes a different set of instructions on one data set which would

presumably be stored in global memory.

4.2.4 MIMD

MIMD computers are an evolutionary step forward from the first generation
SISD machines and contain several independent processors. These processors are
usually identical and each executes its own program, which may or may not be the
same for all the processors. In order to contrast this with the parallelism exhibited
by SIMD machines, the term coﬁcurrency is often used with respect to MIMD

computers.

MIMD architectures may be classified according to many characteristics, but

the two most important and distinctive features are those listed below :-
L The number and power of the processors used.
. The processor to memory relationship and connectivity.

The first classification separates machines with a small number of very
powerful processors from those which contain a larger number of relatively smaller
processors. Of these, the former have generally evolved from existing serial com-
puters and have the advantage that they can continue to support much of their
original software with little or no modification - a highly significant feature for many
vendors and potential customers alike. The Cray XMP and YMP series of machines
are good examples of this technology and consist of 2, 4 or 8 vector processors

combined in a single machine,
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The second classification concerns the use of distributed (local) or shared
(global) memory amongst the processors and leads to the terms, loosely-coupled and
tightly-coupled in describing MIMD architectures. In a tightly-coupled machine,
the available memory is shared by all the processors, with the exception of limited
local caches in specific instances. This requires the use of very fast, complex
switching networks or a high bandwidth bus to form all of the processor to memory
connections. Machines which incorporate physically shared memory posses one
major disadvantage in particular in that they can not be scaled up indefinitely, since
there will be an ever increasing contention amongst the processors in attempting

to access the memory [8].

The loosely-coupled archltecture prowdes an alternative approach by dis-
trlbutmg tho memory among the processors and thereby reducmg the reqmrodj
memory bandmdth The problem 1;,11_0_“; one of accessing memory 1ocatlons on J
remote nodes and requires a suitable connection strategy. The use of a single bus
or switch only leads to the communications bottleneck discussed previously.
Similarly, since the total number of possible connections rises with the square of
the number of processors, it is equally unfeasible to achieve 100% connectivity.
Needless to say, the commonest solution involves the connection of each processor
toasubset of the remainder within the system. The general hypercube architecture,
as pioneered by CalTech [9], is one of the most frequently used interconnection
topologies in current generation machines. The basis of a d-dimensional hypercube

is that each processor has d connections to its neighbouring processors as can be

seen in figure 4.5 which illustrates the simplest members of the series.

The Intel iPSC family of machines use a hypercube architecture as their basis
and consist of up to 7-dimensional cubes of 80286/7 or 80386/7 processor sets. The
original iPSC/1 used a store-and-forward routing strategy which left much to be
desired and this was replaced by a hybrid circuit switching and packet switching
system in their iPSC/2[10]. This offer a ten times improvement in message latency
over the iPSC/1.
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Figure 4.5. The first five members of the hypercube series.

An alternative to this concept of fixed topologies has been taken by Meiko and
Parsytecin connecting the processors through switching chips which allowsvariable
topologies to be constructed under software coﬁtrol. When this is combined with
an adaptivé routing software package, such as TINY[11] which is discussed laterin
§4.3.3, then application codes can be designed independently of the underlying
processor topology. This in turn permits topological variations to be constructed

and tested for a particular application.

The range of MIMD machines available at the present time is too large to be
successfully highlighted within the scope of this work. Hockney [12] provides a
comprehensive survey of these machines ahd an equally full and more recent survey

of SISD, SIMD and MIMD machines is given by Trew and Wilson [13].
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4.3 The Inmos Transputer

4.3.1 Architecture and Concepts

The term transputer refers to a unique family of VLSI microprocessor devices
produced by Inmos Ltd, all of which adhere te a common architecture. The trans-
puter hardware and its associated programming language, OCCAM, were both
designed specifically to address the issue of parallel processing and alleviate many
of the constraints imposed by conventional system:s. The transputer can be con-
sidered as the first genuine single chip microcomputer since processor, memory
and communication links are all integrated into a single device. As can be seen from
figure 4.6 which illustrates the general transputer architecture, each product also
contains an application specific interface which enables it to be customised for a

particular purpose.

At the present there are three main members to the first generation of
iransputer products and the main features of these are highlighted in table 4.1. As
will be discussed later in this chapter, a second generation transputer has been

launched [14] by INMOS but this will not be available until early 1592,

T212 T414 T800 | - T9000
Processor 16 bit 32 bit 32 bit 32 bit
Floating point support n/a ucode FPU FPU
On-chip RAM 2 Kbyte | 2 Kbﬁe 4 Kbyte 16 Kbytt-z“
Max Clock Freq. 20 MHz | 20 MHz | 30 MHz 50 MHz
MIPS (pk/sustain) 20/10 20/10 30/15 200/70
MFLOPS (pk/sustain) n/a n/a 2.9/2.25 25/15

Table 4.1. Summary of basic transputer features.
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Figure 4.6. The general transputer architecture,

The processor itself follows a RISC-like philosophy by using a small core of
very fast, simple instructions to boost performance whilst minimising the CPU
complexity. In general, this approach results in a larger code for a given task than
would have been required by a conventional CISC architecture. However, in the

case of the tra.nsputef this has been overcome by the use of a single-byte basic
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instruction format. This can be extended to multi-byte instructions where
necessary, with each byteretaining the same format [15]. Not only does thisimprove
the effectiveness of the instruction fetching mechanism, but it also means that code

can be run on both the 16 and 32 bit transputers without any recompilation.

Unlike conventional RISC machines, the transputer instruction set is not
hard-wired, but is instead contained in microcode so that’application specific
functionality can be simply included with no loss of performance. It is through this
approach that the floating point and graphies capabilities of the T800 have been
offered. The transputer also benefits from the RISC philosophy in terms of very
fast process switching [16] due to the small number of registers involved, namely
three stack and tl;ree control [17]. The processes being switched may be low level
or complete high level user processes and in this manner transputérs can execute
multiple processes on a single processor, which provides an economic route to
system development. In the support of high level languages, procedure calls are

dealt with in a similar manner, with each precedure being allocated its own work-

space,

The reduced complexity of the CPU which is afforded by the RISC-like phil-
osophy means that only 25% of the silicon area on the T414 is occupied by the CPU,
which enables sufficient memory and the I/O links to be included on the same
device. The inclusion of on-chip memory permits considerable architectural free-
dom when designing multiple processor systems. It may also be sufficient to store
the entire code required by many embedded applications and thus remove the need
for any external memory. The second important feature of transputers is that of
their serial links which provide inter-processor communication paths. There are
up to four bidirectional links on each transputer which operate asynchronously at
speéds up to 20 Mbit/s. In real terms this means that it is possible to transfer up'
to 1.5 Mbytes of useful data per second on each of the two wires which constitute

a link [18]. The link drivers are directly implemented in silicon and operate
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autonomously. The sending and receiving processes remain unscheduled untilboth
are ready, at which point communication is established and data will be transferred
in parallel with CPU (and FPU where applicable) operations.

The point to point communication links enable direct connections to be made
to two (T212) or four (T414/T800) other machines or components, facilitating the
construction of processor networks with arbitrary topology and size. Figure 4.7

illustrates how these simple links enable arbitrary network configurations to be

easily constructed.

Figure 4.7. Construction of an arbitrary network configuration.

The serial nature of the links simplifies the physical connections to a twisted
pair of wires between basic plugs and sockets, rather than the complex backplane
technologyassociated with bus-based systems. The wire links also enable processors

to be distributed between a number of cabinets and/or act as a local area network.

In contrast to multiprocessor buses, the asynchronicity of these links elim-
~ inates contention for the communication mechanism, regardless of the network
‘size. Additionally, both memory and communicationshandwidthsscale directlywith

the number of transputers in the system and neither saturate with network
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expansion [19]. This last feature, coupled with the process-oriented nature of the
original operating language, OCCAM, permits systems to be reconfigured inde-
pendently from their application software and thus simplify the task of finding an
optimum configuration for a given application. Hence transputer systems offer truly
scalable performance as well as a controlled performance degradation in the event
of processor failures - a feature of great importance in complex real-time systems.
Such flexibility in terms of system development, expansion capability and fault
tolerant redundancy makes transputer based parallél systems an attractive option
for abroad spectrum of applications. These range from high performance embedded
controllers through real-time graphics and simulation to application specific
accelerators. It is this final category which broadly describes their role within the

work which will be presented in the following chapters.

4.3.2 Parallel Algorithms

There are many advantages to be gained from fragmenting an application into
a set of concurrent modules which may be executed on a multiple processor com-
puting system. However, as will be highlighted by the work presented in Chapter
B, parallelising an existing application is generally a non-trivial task. The extent of
these difficulties and the resulting parallel performance is very dependent on the
application concerned and how it was originally structured. Ideally, programs should
run N times faster when executed on N processors compared to their execution a
single processor. But in reality the speedup will range anywhere from a poor log N,
through the common N/log N response and on to N itself [20]. Unfortunately it is
possible in some instances to realise a speedup of less than I as a consequence of
poor programming, which is exacerbated on a parallel machine. Finally, in a few
cases, speedups in excess of N have also been reported [21], but these are the
exception rather than the rule,

Although the choice of algorithm is hnﬁortant in determining the true
speedup, it is only one of many factors which may influence the program running
time. As was originally noted by Amdahl [22], the compute time for an application
may be divided into parallel and serial portions. The resultant speedup will be
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asymptotically limited by the latter, no matter how efficient the former can be
made. For example, consider a particular task which requires a total of 100 oper-
ations to be performed, of which 80 can be done in parallel but the remaining 20
require serial execution. Then the maximum speedup attainable by using 80 or
even 100 processors, compared to a single processor, is 5 (limited by the 20/100

serial operations) and not 80 (the parallel content),

The crux of the matter is not in writing or re-writing the application, but in
how it is mapped on to the chosen hardware architecture. Sadly, parallel computers
are not particularly forgiving and the difference in performance between programs
which have been written well or not, is far greater than would be obtained from a
serial architeclture. This can be taken to the extent that in an extreme case, a
multiprocessor version may run more slowly than the original serial program. A
successful and efficient solution requires the ability to think parallel. This entails
'taking the distribution of both data, computation and inter-processor communi-
cations into account. The idea bheing to match the program/algorithm parallelism
to that of the target architecture, which if achieved successfully, will positively

influence the overall system performance[23][24].

Programs typically exhibit many levels of parallelism and the term granularity
is often used to indicate the level of independent computation that each processor -
can perform in relation to its communication needs. A course-grained application
is one which may be divided into logical parts involving relatively long independent
processing sequences with little synchronisation or communication. In contrast to
this, few instructions are executed between inter-processor communications in a
fine-grained application. The concept of granularity may be shown schematically
by figure 4.8 which illustrates how a program may be split up into subtasks, using

a cubic representation.

However this split is achieved, it is vital that the overall system efficiency be
maximised by balancing the loads placed on each processor. This is to ensure that

they are performing useful work as much of the time as is possible and are not idle
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Figure 4.8, Course- and Fine-grained task granularity

whilst waiting for other processors to catch up. Hence as can be seen from equations

4.1 and 4.2, there is a close tie between the efficiency of an entire parallel system

and the resulting speedup.
Effici ot (4.1)
iciency = - ~
T, (4.2)
Speedup = o

N

Load balancing is a complex issue in its own right and discussions have been
presented on the matter [25]. But, in simple terms, loads can be more effectively
balanced for a large number of small tasks [26], where there are many more tasks
than processors. Unfortunately, this conflicts with thel drive for a higher compu-
tation to communication ratio, which requires a reduced number of larger tasks, in
order to improve the system efﬁcieﬁcy. Although communication technology has
seen many improvements of recent, many fine-grained applications still become

communication bound and thus fail to attain their potential performance.
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The resulting trade-off is yet one more of the challenges which must be faced
when high performance parallel applications are being developed. Until such times
as intelligent compilers are capable of efficiently mapping applications to particular
architectures automatically, it will be left for the developer to exploit existing
parallelism rather than attempt to introduce more. This parallelism can usually be

classified under one of the following headings :-

° Geometric parallelism
. Algorithmic parallelism
® Event parallelism

Geometric parallelism is said to exist when the problem space, be it linear,
quadratic or cubic in nature, is divided up with each region being assigned to an
individual processor. Computations pertaining to -the data within each region may
then proceed concurrently until inter-processor communication is needed for the
exchange of boundary values. In order to minimise the overhead of these com-
munications, it is favourable for the target architecture to match that of the problem
space concerned. Thus a linear problem is suited to a chain of processors and a
quadratic problem space is best mapped onto a 2-dimensional processor array and

so on. This form of parallelism is frequently associated with image processing

problems or simulations of physicaliph'enomena, such as those described in chaprirserr o

3.

The second form of parallelism to be exploited is that of algorithmic paral-
lelism. In this case, the algorithm itself is decomposed into a number of functions,
each of which is assigned to a different processor. The processorsare then connected
together, typically in the form of a pipeline, through which all of the data will flow
in turn. Thus at any one moment, each processor will be working on a separate data
set and the degree of parallelism which can be obtained overall will depend on the
. number of sub tasks available. This approach is well suited to production or process
simulations, butis considered tobe difficult toimplement. Unless theload balancing
of each function is carefully tuned, bottlenecks will arise which will limit the system

response as a whole. In addition, the optimum processor configuration for one
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problem is unlikely to be appropriate for another, making for an inflexible system.
This last problem can be overcome by incorporating dynamically reconfigurable

links hetween processors, so that the topology can be altered under software control.

The final form of parallelism is that of event parallelism and this is frequently
the simplest and most efficient approach for exploiting the benefits of parallel
processing. Providing that the original problem can be broken down into a large
number of independent tasks, then these can be farmed out to a number of slave
processors for computation under the control of a single master processor. Such a
configurafion is usually referred to as a task farm. In its simplest form, each slave
executes the same serial code onitslocal data set. The familiar ray-tracing problems
are an example of this, where each processor is given a small patch of the overall
image to compute at any time. However, as will be seen in chapter 7, the incor-
poration of a more sophisticated operating system permits different programs to
be run across the task farm. Whichever level of complexity is deemed suitable for
a particular application, the benefit of event parallelism comes from the increase
in throughput rather than an increase in the performance realised by one instance
of the program. This is in contrast to the response of the two other cases previously
discussed. This distinguishing feature often indicates the suitability of one par-
ticular algorithm over another for a given application. For example, a task farm is
the obvious solution for a large batch of independent simulations or calculations,
but is totally unsuitable for reducing the execution time of a single intensive

application.

4.3.3 Parallel Software - Languages and Tools

In one respect, parallel computers are no different from conventional serial
machines in that by themselves they do little more than convert electrical energy
into heat somewhat inefficiently! What transforms them into highly valuable assets
is the software that runs on them and this is one area in particular where the state
of serial and parallel products differs substantially. To date, powerful and robust
programming environments for the parallel software engineer have been notable,

primarily by their absence. This strongly contrasts their serial counterparts for
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which there is an abundance of products serving most computing fields. By
examining the nature and needs of todays computer users, the reason for this state
of affairs becomes apparent. The computing community can be coarsely broken

down into three groups of users whose needs may be summarised as follows.

. Basic data processing services, such as word processing.
. Scientific 'number crunching’ in research and development.
. General application codes for individual user communities.

Under this classification, users from the first of these groups actually don’t
even want to use computers per se, but wish access to the facilities they provide.
Their major concern is in the response time of the application packages; which can
usually be satisfied by the use of serial computing platforms, and hence will not be
considered further at this point. It should also be noted that this group accounts
for approximately 90% of the total user community, which helps place the bar-

gaining power of the remaining two groups into perspective.

Thesecond group provided many of the original usersin the parallel processing
community and was centred around the stage of academic and commercial research
into fields such as aerodynamics or quantum physics, Although scientific pro-
grammers appreciate good software tools, the overall goa_\l of maximising perform-
ance has in the pést frequently overruled such luxuries As a result of this and the
relatively small community size, these users have created a very limited demand

for the development of comprehensive parallel programming environments.

It is from the final group that the second generation of parallel processing
users is emerging and whose needs require particular consideration. The applica-
tion programming community is sufficiently large and loquacious that its impres-
sion and success with parallel processing is probably the key issue in opening up a
volume market in this product area. It has therefore become the responsibility of
parallel software and hardware manufacturers alike to provide a satisfactory route
for these progrmnmefs to take advantage of the attractive price/performance
offered by parallel computers. For the companies concerned the cost of failure is

high and the writing is very much on the wall for all to see with the demise of past
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competitors, such as ETA Systems, Multiflow and Myrias Research. The parallel
processingarenaistoolarge to assessinits entirety in terms of the software available
within the scope of this chapter and so the remainder of this section will concentrate
on the evolution of software tools for the INMOS transputer since its arrival on the

market.

Originally, the primary language for the development of transputer based
parallel systems was intended to be OCCAM [27], which was designed along with
the hardware itself. INMOS provided their Transputer Development System (TDS)
[28] as an integrated environment for the programming of transputer networks
under OCCAM. In its initial release, it comprised of a powerful editor, compiler,
file manager and runtime facility which was available for both IBM and NEC PC
hosts. Although this was a good tool, it sadly lacked any debugging facilities or
support forforeign languages which limited its capability. The provision of anetwork
debugger was included in subsequent releases of the TDS. The process-oriented
nature of the language is directly reflected in the transputer architecture and this
enables efficient design and execution of parallel] systems written in this manner
[29]. However, as much as these benefits were seen as being of great importance to

the design of high performance parallel systems, OCCAM has never gained an

impressive level .of popularity amongst the parallel computing community,

especially outside the realm of academia. The reasons for this are two-fold. Firstly
there was a general reluctance amongst programmers to learn another language,
albeit veryakin to a conventional high level language with the addition of constructs
with which to express parallelism. Secondly, vast resources of software already
existed which would never be re-coded in OCCAM, regardless of the possible gain
in performance. Thus, transputers may also be programmed in most conventional
high level languages, such as C, Fortran and Pascal. Ada, which can also be con-
sidered as another concurrent programming language [30], was supported in order
to attract military orders on both sides of the Atlantic. In addition, individual

processes may be coded in the optimum language for its given role and these pro-
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cessesmay then be linked together under an QCCAM harness to produce the overall
system. This multi-lingual capability is depicted in figure 4.9 and substantially

facilitates the parallel implementation of existing codes.

Figure 4.9. The use of multiple languages within a transputer system.

The OCCAM support required for these foreign languages necessitates the- -
use of the INMOS OCCAM Toolset [31], rather than the TDS, which provides a
much simplified operating environment with fewer facilities to assist with task of

investigating development problems.

The use of these products, whether it be in a single or multiple language
system, still requires explicit .control of all inter-process communications by the
programmer. Because of the fact that there are only four physical links for
inter-processor communications, this either limits the interconnection strategy or
requires the design of custom multiplexors to increase the number of virtual
channels using each link. Both of these options are undesirable as they compromise
the abilityto alter the partitioning of processes across the network without recoding

the communications. As aresult of these deficiencies, a number of communications
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harnesses have been developed for inclusion within high level codes, examples of
which are CSTOOLS[32], FORTNET(33]} and TINY[34], which is discussed in detail
during chapter 7. These harnesses enable any process to communicate directly with
any other processin the system, regardless of where either actually resides and are
a valuable addition to the conventional language constructs. Consequently any
repartitioning of processes can be achieved within the definition of the system
configurationand no recoding hecomes necessary. However, even with the inclusion
of these improved facilities, the use of these tools is most suited to porting existing
applications to a transputer environment or developing new applications of limited
complexity. In addition, they are intended primarily for use in single user systems
and inherently support the OCCAM model of concurrency[35]. Although thismodel
is generally the most applicable for typical parallel developments, there are alter-
native models, such as that of tuple space as supported by Linda[36], which may be
better suited for particular application fields such as transaction processing and
database operations.

Because there ar.e a; numi)t;;' of-' hos;ts Whicﬁ é{xpport transputer i)roducts (i.e.
PC compatible, Sun 3, Apple MacIntosh, MicroVAX), compatibility has limited the
facilities which can be provided on all the systems. As a consequence, a number of
host specific tools have arisen which can aid developers in their particular envi-
ronment. These include performance estimation[37], run-time graphical repre-
sentations[38] or multi-window debugging[39]. An early step in the right direction
was the Windows File Server (WFS) from Nexis Technology Ltd[40]. This provided
windowed support for the 3L compilers, the INMOS TDS and Toolset by providing
a version of the transputer file server running under Microsoft Windows. The
development of such tools is highly commendable, but unfortunately does nothing
to direct effort into the provis_ioh of a unified development environment which is
supported by multiple host platforms. However the need for such facilities was
confirmed with the introduction of multi-user transputer based systems, where the
parallel resources within a single machine could be shared by a number of users at
any given time. A static allocation of resources is supported by the Meiko range of

computing surfaces, such as installed in the Edinburgh Parallel Computing
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Centre[41], whereas a dynamic .strat;egy is taken by the Parsytec range of
machines(42]. The former scheme partitions the available resources into a number
of fixed domains, which appear to the user asa self-coﬁtained machine, These may
only be altered in size by reconfiguring the physical links of the relevant processors
and thenrebooting the machine. Thisis obviously an inefficient and rather limif;ing
method of partitioning the resources. The dynamic approach permits new users to
access any unused resources and then releases these again when the session is
terminated. Over a period of time, this generally permits a far high degree of
processor utilisation by a larger number of users. Both of the above systems are
designed around the manufacturers own hardware units and the resulting systems
usually employ a large number of processors. An alternative to this is to host an
independent set of transputers operating under “Helios[43]. This provides a
multi-user, multitasking environment with a UNIX-like user interface. It is a
genuinely distributed operating system based on the client-server model, com-
municating with host svstems via servers running on a variety of operating systems,
including MS-DOS, SunOS, UNIX and AppleOS. Helios supports dynamic processor
allocation to multiple users under the control of a special network server and thus

a possible system configuration might take the form of that depicted in figure 4.10.

Helios supportsawide range of programming languages (C, FORTRAN, Pascal,
Modula II, STRAND), all of which can call each other and system libraries
directly[44]. The parallelism of programs written in these languages is specified
using the Helios Component Distribution Language (CDL) which defines the
required communication topolegy. The software is then automatically distributed
across the physical processor network on a dynamic basis. This means that appli-
cations can be run on variable size, variable configuration networks with no code
amendments, which is an invaluably powerful feature. Multi language, source level
debugger, macro assembler and performance monitoring tools are all available to
assist with application development. Graphics support is provided with both X
Windows and Windows 3.0[45) interfaces.
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Figure 4.10. Multi-user transputer system running Hehos.

An ethernet support package which includes a TCP/IP server enables trans-_

puter systems running Helios to be integrated into other computer networks. This
facility means that users no longer require a direct connection to the transputer
system and has many implications for potential system applications. Hence system
configurations may take the general form shown in figure 4.11 with the transputers

appearing as another shared system resource.

This remote, networked processing capability has substantial appeal for
off-loading computationally intensive tasks from conventional machines, as might
be the case in simulation oriented environments. One such application for this
approach is discussed in chapter 7 which describes how the combination of
experimental design techniques and suitable simulation software leads to improved

semiconductor fabrication processes. Another suitable environment is in the
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Figure 4.11. Ethernet based multi-user transputer system.

addition of simulation facilities to Computer Aided Manufacturing CAM systems
to provide a what if capability in the event of mis-processed products being found

[46].

The Express parallel programming environment from the ParaSoft Corpor-
ation[47] is another tool which has gained support, particularly through its port-
ability to a number of parallel computer platforms. At present, implementations
are available for most transputer based systems, NCube’s hypercube, Intel’s iPSC
hypercube, Meiko’s Computing Surface, Sun-3/4/386i networks and even some
shared-memory machines such as the Cray Y-MP. The basic Express system pro-
vides a comprehensive message-passing communications harness which is made

available throﬁgh an extensive set of FORTRAN and C libraries. Program
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decomposition and optimisation tools and low level graphics support for PC or X
Windows are also provided with the system, all of which are controlled through a
menu-driven front-end on the host. A number of additional tools, such as source
level debuggers, a simple automatic C and FORTRAN paralleliser and profiling
utilities are supported by ParaSoft which produces a comprehensive programming

environment,

The IDRIS parallel operating system[48], as developed by Parsys for their
SuperNode (SN) series of transputer based machines, provides a multi-user,
multitasking operating system. However, unlike Helios, it has specifically been
developed for use on the SN series of machines. Thisisa UNIX compatible operating
system that conforms to the IEEE POSIX standards and as such, enables many
commercial aﬁplications to be ported to a parallel operating environment. Although
it employs a distributed client-server model, many system calls can be serviced
locally due to the placement of an IDRIS kernel on every processor. This increases
performance and reduces the loading on inter-processor communications. Because
the kernel is compact and requires no memory management facilities[49], it is
ideally suited to a transputer based implementation. User programs may be written

using the 3L compilers or the INMOS TDS, with an automated process placement

similar to Helios. X Windows and TCP/IP ethernet support-are also provided as - ~-

standard under IDRIS enabling complete integration of the resource into existing
facilities. As a consequence of the distributed UNIX environment, Parsys have been
able to provide a suitable platform for the porting of Oracle’s distributed database
system. The significance of this development is far greater than the obviousbenefits
available to Oracle users, in that it is probably the first port of a genuinely com-
mercial package to a transputer based parallel processing system. The IDRIS
operatingsystem offers the same potential upgrade route to many other commercial
packages. If even a small number of additional ports are successfully achieved this
could finally create the critical mass required to encourage large-scale use of parallel

processing in the commercial sector.
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There are many alternative software products available for transputer sys-
tems, both in terms of operating systems and application development tools, to
those discussed in thissection. However, it doesillustrate the trends and limitations
associated with the evolution of this product area. In conclusion, advances in this
area lag far behind that of the hardware and this has seriously inhibited the levels
of progress and acceptability of parallel computing systems to date.

4.3.4 The Future

INMOS first announced their transputer concept in 1984 - the computer on a
chip - and the T414 appeared on the market two years later, to be followed by the
T212 and T800 members of the family. The micro-architecture of these devices, as
shown in §4.3.1, was distinctly unconventional when compared the existing
microprocessors and was met scornful criticism in general. But time is often a better
judge of these issues and five years on, the transputer concept has matured into a
most credible force with sales makir}g it. the top 32-bit RISC microprocessor of
1989[50]. Much of this credit is due to its unique architecture which has enabled
transputers to take a substantial share in both the system CPU and embedded

processor markets.

However, not to be seen to be standing still, the next-generation transputer,.
codenamed the H1, was announced in September 1989[51] and viewed as the first
member in a new family of transputer devices. INMOS and their new owners,
SGS-Thomson, were convinced that parallel and multiprocessing would be the
future for microprocessors and that to meet this their next generation transputer
would be designed to support more general purpose parallel computing applications.
Formal announcement of the new transputer, the T9000, was given in April 1991
along with the release of its technical specifications. These had every intention of
continuing the success of the transputer concept well into the 1990’s and fight off
the challenge posed by Intel’s i860 processor which would lead it in terms of raw
performance and time to market. The T9000 is probably the most deterministic
microprocessdr designed to date[52], especially with respeét to its new communi-

cations system. When considering embedded applications in particular, deter-
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minism is often of much greater importance than sheer computing performance
which should enable transputers to maintain their edge over the competition, as it

has done in the past.

The architecture of the T9000, as shown in figure 4.12, contains many new
features, compared to that of the T800, which provide the additional functionality
and performance that the new device promises and yet maintain binary compati-

bility with existing products.

At the heart of the T9000 is what INMOS describe as a pipelined superscalar
processor, whose performance peaks at 200MIPS and 26 MFLOPS whilst sustaining
in excess of 70MIPS and 15MFLOPS[53]. The five stage pipeline operates on a
50MHz clock and can execute groups of up to eight instructions at one time. In this
way the T9000 running at 50MHz can execute T805 binary code approximately 10
times faster than on the original 20MHz T805. The 16Kbytes of on-chip RAM is
. programmable as RAM, cache or as 8Kbytes of each. For many embedded applica-
tions, be they single or multiprocessor systems, the full RAM option may be
sufficient so as to require no external memory and greatly simplify the overall
design. It is the totally new three layer metal sub-micron ¢cMOS process which

permits the large on-chip memory capacity as well as the high clock speed.

It is however, the complefely new communications system emplbyed by the
T9000 which will be regarded as the most important improvement over its prede-
cessors. Although the existing limit of four physical communications links is
retained, these now operate at 100Mbit/s (c.f. 20Mbit/s) and in conjunction with
the Virtual Channel Processor (VCP) enable channels to exist between two pro-
cesses located on any transputer, A typical interconnection problem, as depicted in
figure 4.13, shows the need for three channels to pass over the single link between

the two transputers in order to provide the desired inter-process communications.
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Figure 4.12. T9000 system level architecture.

Existing transputer systems overcome this problem by the use of software
communications harnesses supported either as part of the operating environment,
as with Helios, or as an explicit utility such as TINY. Figure 4.14 illustrates one
solution using TINY and shows the routing processes that run concurrently with

the user processes on each network processor.
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Figure 4.13. A typical interconnection problem.

.

Software
Multiplexors

Figure 4.14. The use of TINY to provide virtual communication channels.

The T9000 solution adds the necessary multiplexing capability to permit any
number of processes to access each link and transparently share the physical link.
This is achieved through a dedicated hardware process which runs concurrently
with the CPU and supports a large number of virtual channels on each link. These
virtual channels behave in the same manner as the soft channels which form the

inter-process links on a single transputer and thus the T9000 has effectively
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removed any differentiation between software and hardware channels. Therefore
ataschematiclevel, asshownin figure 4.15, the T9000 solution to the above problem

looks very similar to that delivered by TINY.

Hardware
Multiptexors

However the hardware provision of virtual channels relieves the need for

software routing harnesses such as TINY, thus improving communications per-

formance whilst reducing the code required on each processor. A special purpose - —

routing chip, the C104, permits large arbitrary and hierarchical networks to be
built, Message routing through the network is determined using an inferval
labelling algorithm[54] which claims to provide an inherently deadlock free com-

munications strategy.

From an operational aspect, the T9000 will retain its support for all of the
existing transputer languages and toolsets by ﬁrtue of the instruction set com-
patibility. A range of system software in terms of operating systems and real-time
kernels will also be supported, particularly reflecting the needs of the embedded
systems market. These include VRTX32 from Ready Systems and a distributed
UNIX environment from Chorus[55].
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Even though a complete technical specification will only be documented and
made available with the release of T9000 silicon in 1992, it should be more than
apparent from existing data that the combination of processing power, multipro-
cessing capabilities, standard and custom software support will take the T9000
successfullyinto the 1990’s, But as with all new products, the key toits good fortune,
lies not only in its capability and cost, but equally in the marketing policies adopted
tosellit. Tothisend INMOS will have towork very hard to stave offthe competition.

4.4 Summary

For all that parallelism is inherent in so many problems, it is not always easy
tovisualise, especially for a newcomer to the field, and it often requires a fresh train |
of thought to be applied before it can be successfully harnessed. The difference in
performance that can be observed between an efficiently and inefficiently coded
parallel program is generally far greater than for a sequential program. A fact which
is all too often borne out with personal experience. At present, the development of
parallel processing hardware is far in advance of its associated software and until
there is a concerted effort in producing portable development tools and operating
environments which abstract the programmer from the specific architectural

details, then the true power of this technology will fail to be realised.

This chapter has provided a brief overview of various type of vector, parallel
and multiprocessor computing facilities as they exist at the present time. It has
also looked at the hardware and software development for one parallel processing
machine in particular, the INMOS transputer, and suggests how this relates to the
current status of the parallel applications market. Finally, a description of the next
generation transputer, the T9000, has been given with an assessment of how this
device will broaden the use of parallel and multiprocessing facilities outwith its
traditional home ground of academic and industrial research. The next chapter
focuses on a specific application of the INMOS transputer and illustrates how the
benefits and drawbacks presented above manifest themselves in a commercial

problem.
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Chapter 5
Parallel Implementation of Process
Simulation Code

5.1 Introduction

The requirement for and application of process simulation to the development
and manufacture of semiconductor products has been highlighted in previous
chapters. However, as was illustrated in chapter 3, the CPU usage and/or elapsed
execution times for a typical modelling task provides a substantial disincentive to
perform a rigourous simulation schedule for a given problem. With this in mind,
there is good reason to find a suitable alternative computing strategy and envi-
ronment which will enable the full potential to be gained from process simulation

techniques.

The relatively regular structure of process simulations suggested that the use
of either vector or parallel techniques might be profitable, It was therefore decided
to investigate the suitability of the cheap parallel performance available in trans-
puter based systems for the computational requirements of process simulation.

The software chosen to be investigated during the course of this work was
SUPREM II from Stanford University. A one-dimensional simulator was chosen
because this provided a less complex problem to partition and it was invisaged that
the methodologies used could be generalised to two-dimensions at a later date.
Although this program has limitations in the light of current fabrication technol-
ogies, such as the ability to model only silicon and silicon diexide layers, this does
not affect the basic concepts which are of importance to producinga parallei version
of the code. The models included in the software are mature and relatively well
unders'todd and are solved numerically using finite difference techniques, in
common with most of the other one-dimensional simulators available. Finally, the

easy access to source code (which is public domain) made SUPREM II a favoured
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choice, in contrast to SUPREM 3 where the source code is only available under
licence from the vendor at an exorbitant cost over an above that of the executable

code.

In order to obtain superior performance from the new version of SUPREM II
without disproportionate investment of resources, a few basic issues must be
investigated before redeveloping the software. The prime task was to determine
the most computationally intensive sections of the algorithms, since these would
gain the greatest benefit from parallel execution. Another important issue was to
assess how much of the original FORTRAN would need to be re-written or changed
into OCCAM to achieve an operational package. The OCCAM compiler produces
more efficient code than the FORTRAN compiler, in terms of execution time, by a.
factor of approximately two. However, it would have been wgsteful of time tore-write
excessive quantities of SUPREM II, especially given the inherently serial nature
of so many of the operatioﬁs. The final major issue to be resolved was that of
partitioning the relevant parallel modules over an arbitrary network of fransputers
to ensure simple and efficient inter-process communications and enable the net-

work to be simply expanded if so required.

This chgpter addresses all of these points with respect to SUPREMII. It then
reports on the results obtained from the particular solution implemented and
discusses these in the light of the knowledge gained during the re-development of
the software. Finally some ideas on how a future version could be improved are also

provided.

5.2 One-Dimensional Simulation

The continuous physical processes modelled by SUPREM Il are approximated
numerically using finite difference techniques. Each layer of the physical structure
is divided into a series of cells which are associated with the nodes on a one-di-
mensional grid. Information is then stored about the impurity concentrations for

each dopant type associated with a cell in the structure. Every cell in the interior
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of a layer is centred about a single node on the grid. The cells at the ends of a layer
have one cell boundary at the end node and the other boundary exists halfway

between the end node and the adjacent interior node as shown in figure 5.1.

Oxide Silicon

Concentration

Depth
Figure 5.1. Cell/Node structure within SUPREM IL.

The silicon wafer is represented in SUPREM II by up to 400 nodes divided
into three regions, each of which may possess a different grid structure. One region
is allocated for any oxide which may be present and two silicon regions may be
defined. This permits a fine grid to be placed close to the silicon - silicon dioxide
interface for an accurate representation of steep or narrow impurity profiles, whilst
a course grid can be retained for the bulk, so using fewer grid points in total. Thus
the overall grid structure takes the form of that shown in figure 5.2 below.

This grid structure can and does change during the course of a simulation with
the addition or removal of nodes from the oxide region or the movement of the
silicon/silicon dioxide interface as an oxide region is grown. Additionally, the extent
of the simulation region may be altered as simulations proceed and the relevant
grid spacings altered by the user as well as by the program.

The other important issue which will influence what modifications must be
made to the code, is that of the data-structures. All the information pertinent to

the structure during the simulation must be retained and remain accessible by all
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Material: Oxide Silicon: region 1 - Sllicon: region 2

Figure 5.2. Grid structure within SUPREM IL

the relevant processors. The SUPREM II data structure is divided into five main
blocks, of which four are actively used during program execution and the remaining
one was reserved for an optimisation routine which did not materialise before
SUPREM II was superseded by SUPREM III. These are held as common blocks
within the FORTRAN enabling global access to the data contained within them by
all subroutines. Whilst thisisan established and well-proven method of datastorage
within the sequential programming community, it does present difficulties when
applied to parallel programming architectures. Those which possess no shared
system memory, as found in a standard transputer network, cannot implement this
style of data storage efficiently and alternative methodologies are therefore
necessary. At the present point in the discussion, the data structures will be
introduced in their sequential format and any modifications will be presented at a

later stage.

The first data block contains six individual arrays, each of 450 real words. Four
of these arrays use the first 400 points to store up to four individual dopant con-
centrations in each cell and the remaining 50 points contain global information
pertaining to the respective element. The fifth array is a ’scratch’ space for general
calculations. The last array contains the spatial information for all the data points
showing the physical distance between adjacent nodes on the grid which uses 400
points and the last 50 points contain physical parameter pertaining to the current

step, such as temperatures and times.
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The second data block contains three arrays of type logical, integer and real
respectively, which describe grid, substrate and I/O details. The third data block
holds all the model parameters, which are initialised to SUPREM II's default values
on program start-up but can be subsequently revised during program execution.
The final data block consists of four 410 word arrays which are used as general
working arrays by any routines needing such data storage throughout program

execution.

In order to partition these data blocks, it is important to establish what
information may be required by each routine throughout a particular simulation.
Additionally, it will be necessary to ascertain which data segments are required by
the entire simulation region, i.e. global, and which are only relevant to a given
physical region, i.e. local. As a starting point for this latter exercise, it is beneficial
to visualise the data structures and figure 5.3 displays each of the four main data
blocks, indicating the global and local seg-ments within them,

0 400 401 450

| Impurity No.1 : Cell Concentrations [ Coefficients |
| Impurity No.2 : Cell Concentrations I Coefficlents |
| Impurtty No.3 : Cell Gongentrations [ Cosficlerts |
| Arsenic : Cell Concentrations ] Coetiicients ]
| Working array I l
[ Grid Spacing [ Amblentinfo, |

Figure 5.3, SUPREM II Common Block layout.

5.3 Partitioning SUPREM II code

As has been mentioned, many operations within process simulation are
inherently sequential, such asinput/output routines, and therefore cannot be made
to benefit from parallel execution. Although such routines could be re-written in
OCCAM to take advantage of the superior compiler performance, the time required
to achieve this is not justified by the additional performance attained. On this basis
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it is necessary to assess each of the major program models in terms of their
computational requirements and of the suitability of the algorithms to parallel
execution. From this, it will then be possible to partition the program up into
sequential and parallel segments and subsequently decide how to distribute the

parallel segments over a transputer network,

Ion implanted impurity distributions are described by either Gaussian or
Pearson distribution functions. These distributions are described by the first two
orthree centralmomentswhich are the projected range, Ry, and one or two standard
deviations, $1 and Sg, depending whether a one- or two-sided profileisbeing utilised.
These moments are calculated from LSS theory and extracted at runtime from
look-up tables within the code and hence the model is very quick to execute and

requires little computation,

Thermal oxidation is described by the familiar Deal and Grove formula [1]
given in chapter 3, with the linear and parabolic coefficients being determined for
each time step during the total oxidising time. Since this process requires an
elevated temperature, its evocation is from within the diffusion modﬂe whilst
calculating the redistribution of any dopants already present within the structure.
Although the coefficients include terms for many more process parameters than
was originally specified, this still does not constitute a particularly computationally

intensive operation.

Etching steps simply involve the removal of all or part of the existing oxide
layer from the structure. If an elevated temperature is speéiﬁed then the diffusion
models are invoked as well to cover any dopant redistribution that may occur,
otherwise there is no genuine computation associated with this step. There is only
alow temperature oxide deposition step within SUPREM II, which merely adds the
desired quantity of doped or undoped oxide to the top of the current structure, By
nature of the enforced low temperature, there is no need to even consider dopant

redistribution during the operation.
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In terms of computational requirements, the diffusion model provides a
contrast to those models already mentioned. The algorithm for this model will be
expanded later in this section, but involves solving the one-dimensional continuity
equation with time- and concentration-dependant diffusion coefficients for each
time step, Ft,throughout the entire course of a high temperature step. Numerically,
this is achieved by the formation of a large sparse matrix of diffusion coefficients
from which the updated impurity concentrations can be calculated in terms of their
current concentrations. This then becomes both a data and numerically intensive
operation to perform. In addition, the diffusion models can be invoked during any
high temperature steps during the process to be simulated, which means that the

computational performance of this step may dominate that of the entire simulation.

The elapsed times for each of the major program models within SUPREM II
are tabulated below and have been taken from a typical CMOS process simulation.
Measurements are presented for simulations run on both T414 and T800 trans-
puters (i.e. without and with floating point units (FPU) respectively). These sub-
stantiate the relative computational complexities of the individual models, as
proposed by analysis of the underlying algorithms. It is also important to note the
performance gained by use of the dedicated FPU hardware. This factor is obviously
dependant on the data types used within a pafticul’ar application, but with pre-
dominant use of real data in process simulation, it provides a significant perform-

ance increase from a marginal increase in hardware cost.
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Program Model T414 T800
" (secs) (secs)
Ion Implantation - 05 0.2
30 min Diffusion - no oxidation 311 0.58
30 min Diffusion - oxidation 35.2 0.68
300 min Diffusion - no oxidation 364.2 18.7
300 min Diffusion - oxidation 4175 5| 2145
1pm Si0Og etch - low temperature 0.1 0.05
1pm Si09 etch - 280°C 0.1 0.06
1pm SiOg deposition 0.1 0.05

Table 5.1  SUPREM II execution times for a typical
- CMOS process on T414 and T800 trans-

puters.

As can be seen, it is the diffusion algerithm which assumes the most compu-
tationally intensive part of SUPREM II, Given that the oxidation routines are also
called from within this module, when applicable, it rapidly becomes apparent that
this code segment would benefit greatly from some means of increased performance.
Therefore it was decided to split the execution of the code at a high level such that
the diffusion model and any associated routines would run in parallel and the
remainder of the code would continue to be executed serially on a single processor.
This means that at each occurrence of a diffusion step in the simulation input file,
the necessary data-structures will have to be downloaded onto the transputer
network, the calculations performed and then all the data-structures loaded back

up on to the main processor.

The next step in partitioning the code is to assess each stage of the diffusion
algorithm from a suitably high level and to consider the data requirements and
likely frequency of execution. In order to assist with this task, it is best to view the
algorithmin both a pseudo;code format and diagramatically from the point of the
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routines involved and from where they are called. Figure 5.4 shows a brief outline
of the diffusion algorithm in a pseudo-code form, whilst figure 5.5 displays the
hierarchy of the software subroutines involved. An explanation as to the function

of each of the subroutines is then presented.

WHILE time.so.far < total.step.time
calculate next time step - Ft
If oxidising ambient
calculate additional oxide thickness
calculate global diffusion parameters
DO for each impurity present
form diffusion coefficient matrix
solve matrix system for new dopant concentrations
update impurity concentrations database
.time.so.far = time.so.far + Ft

Figure 5.4
DIFOX
L SITHI
OXTHI
L OXDEP
DIFPR
L INTRP
COEF1
L DFPB
DFFY
L PREQ
SOLVE
PRINT
Figure 5.5

A brief summary of each of the subroutines mentioned above is presented to

assist understanding of the partitioning of this code segment.

DIFOX  Top level routine for oxidation/diffusion segment. Calcu-
lates the time step, Ft, for each iteration and calls DIFPR

with the relevant data for all the impurities present.
SITHI Calculates thickness of unconsumed silicon.
OXTHI  Calculates oxide growth for time step Ft.

OXDEP Calculates the linear and parabolic oxide growth rate con-
stants.

DIFPR  Controls diffusion calculation for each impurity in turn.
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INTRP  Interpolates for dopant concentration values around moving
oxide/silicon interface during oxide growth.
COEF1  Sets up diffusion coefficients for matrix system representing

the discretised continuity equation.
DFPB Prepares diffusion coefficients in presence of phosphorous.
DFFY Prepares diffusion coefficients in absence of phosphorous,
PREQ Modifies diffusivity due to effect of the clustering of impur-
ity atoms.
SOLVE  Solves the matrix system for new dopant concentration

values,
PRINT  Prints summary of matrix solution.

Within this set of subroutines, the only computationally intensive one is the
matrix solver, SOLVE, This is instanced once for each impurity present during
avery timestep, Ft, and accounts for the majority of the CPUtime during a diffusion
calculation. If SOLVE is the only routine to be converted to run in parallel, then
the entire dopant concentration data-structure and any relevant global parameters
would have to be transferred into and out of the transputer network up to four
times per time step (since the maximum number of impurities is limited to four).
Although this would require the least amount of code to be re-written in OCCAM,
theinefficiency caused by the excess data communications would seriously impinge
on any performance benefit achieved in the calculation time. Were it possible to
use sharedmemory amongst the processor network, then this datatransfer becomes
superfluous and such a methodology would provide a quick and efficient test of
SUPREM II's suitability for parallel execution. However, this is not the case and

an alternative partitioning point must be found.

The next possible breakpoint that might prove more efficient, when viewing
the hierarchy of subroutines displayed above, is to perform all the calculations for
a given time-step before transferring the necessary data-structures. This would
involve converting DIFPR aﬁd all its associated subroutines to run in parallel.

However, a typical diffusion process performed under an oxidising ambient may
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require around 100 time steps, Ft, in order to achieve the total step time, whilét
constraining any errors occurring in the numerical solution. So although 4 data
transfers can be eliminated per time step, this option does not eliminate the
communication bound problem already being faced; thus a yet higher level of

partitioning appears to be required.

The next and final choice remaining open at this point is to transfer all
computation to a parallel mode as soon as a diffusion/oxidation process step is
invoked. Under this scheme, only a single data transfer to and from the transputer
network is required for the calculation, regardless of the number of impurities
present or the number of time steps necessary. Therefore all code associated with
DIFOX has to be re-written in OCCAM to facilitate the inter-process communi-
cations needed throughout its execution. Although basic communications exten-
sions have been provided in the transputer release of FORTRAN, these do not

provide the same comprehensive capabilities that are available from OCCAM.

Giventhat the bfeakpoint between sequential and parallel execution has been
established, it is now necessary to determine how the physical problem can best be
partitioned into an arbitrary number of processes. Then these processes must be
configured to run on a number of actual processors with, as yet, undefined con-
nectivity. There can be much to be gained in partitioning a problem into a particular
number of processes, whether or not that number of processors is available because
any subsequent expansion or contraction of the transputer network only requires
altering the number of processes running on each processor. For the process
simulation problem, the simplest partitioning scheme is to divide the semicon-
ductor structure up into a particular number of abutting segments, each containing
a proportion of the 400 nodes on the one-dimensional grid. The actual number of
cells per segment is flexible, providing the total workload per processor ensures
that a sufficiently high computation to communication ratio is maintained. The
most basic and coarse partitioning is to divide the 400 nodes as evenly as possible

over the number of available processors. This can be achieved statically, but a more
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even distribution of tasks will result if it is done dynamically each time a diffusion
step is performed. In this way any change in the number of nodes actually used will

bhe taken into consideration.

Using this simple partitioning scheme, the data requirements for each pro-
cessor can be surmised as follows. Firstly, every processor will require a copy of all
the global parameters, common to all sections of the simulation and this will also
need to be updated on all processors whenever a change is made on a particular
machine. Secondly, each processor requires a local data set, pertaining to the par-
ticular section of the simulation which it is performing and also access to the
boundary data, for its nearest neighbours. Where possible it is preferable for each
machine to retain a copy of the data referring to the first one or two nodes on the
adjacent machines, thus creating an overlap which can prevent the need for some
inter-processor communications. Hence the data stored across the processor net-

work can be thought of in terms of figure 5.6.

Root Worker 1 Worker 2 Worker n-2 Worker n-1 Worker n

[ H Cavlatrnd : H Carlolerss H [T b Camllaianis H
[T : [T TS : : Covmaina : v : Conpoms H
Siveltriitt R T : Ctarris O - Covaorss :
Comsieny : Corgiarns : i Coslbews | Covasiania H Costouris :
Amiseet i 3 Armbient i : H ey H A . : el iy :
: e e i : il i :
H i : H n - :

Coefficients
Coaefficlants
Coaefficlants
Coefficlents

Impurity No.1:: Call Concentrations
Impurity No.2 : Celi Concentrations
impurity No.3 : Cell Concentrations
Arsenic : Call Concentrations
Working array :

Grid Spacing

Ambient Info.

Figure 5.6. Partitioned SUPREM II data-structures.
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The modifications required to the original software in order to achieve this
partitioning come in four main areas. Firstly, there is a series of additional com-
munication modules which transmit and receive the common data blocks between
the single serially executing processor and the processor network operating in
parallel. Secondly, there is another set of communication routines, this time
dedicated to data exchange between the processors executing in parallel. Thirdly,
there is the incorporation of additional logic within the scope of the original sub-
routines which ascertains whether a particular operation is relevant to the par-
ticular physical segment being modelled on that processor. For example, the
calculation of oxide growth is only relevant to processors which contain the nodes
from the surface down to the oxide/silicon interface and may be omitted on the
remaining processors. The final area of changeisin the inclusion of a parallel matrix
solution algorithm to replace the gaussian elimination scheme presently employed
by SUPREM 1], since this ﬁossesses no inherent parallelism and would in fact run
siower across a transputer network.,

These modifications could be coded up in the FORTRAN of the original
software, but it was decided to re-write all those routines which execute in parallel
in OCCAM. This would not only improve their speed of execution, but also enable
code debugging to be performed in an entirely OCCAM based envireonment. The
problem associated with this task is that the translation of unstructured FORTRAN
constructs, such as loosely used GOTQ’s, into the structured OCCAM syntax is not
always that simple. Within OCCAM, this often requires the use of many conditional
constructsin order to enable the program flow to be replicated. As was found under
these circumstances, 15-20 lines of FORTRAN could easily result in the generation
of 60-100 lines of OCCAM. Thus the final parallel code required 8500 lines of
OCCAM to be written and debugged in order to implement the parallel version of
SUPREM-IL
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5.4 Parallel Matrix Solution Method

It has been shown that dopant re-distribution throughout the semiconductor
structure may be modelled by the one-dimensional continuity equation. The
numerical solution to this partial differential equation can be represented by the
following basic matrix system where A represents the diffusion coefficients, u, the
present impurity concentrations and x, the new concentrations after a given time
period.

A.x=u (5.1)

The one-dimensional nature of the problem means that the impurity con-
centration within a given cell is only dependant on its nearest neighbours and hence
equation 5.1 may be expanded into a sparse, tri-diagonal matrix system asindicated

within figure 5.7.

/a1 b.1 . . - . - X1 \ / U, \
c, a, b, X, u, \

c; az by X3 Uy

bn—] xn—l u’n—l
Cﬂ. bn . xn un

Figure 5.7. Tri-diagonal matrix system.

Many methods for solving these tri-diagonal matrix systems have been
reported for both vector and parallel computers [2],{3],[4]. A partition method by
Wang [5] designed for tridiagonal systems has also been extended by Meier [6] for
general banded systems of equations, Wang’s method was chosen for this work

because of the similarity in its partitioning scheme with that proposed for the
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data-structures in SUPREM II. A brief outline of the method will be presented
below, though a fuller description and assessment of the computational require-

ments should be obtained from [5].

The basic algorithm involves five passes of the matrix system to eliminate the
upper and lower diagonals and ultimately provide a solution in terms of the main
diagonal set of elements, Operations can be independently carried out on each block
in parallel, except for the calculation of the bordering nodes which requires
inter-partition communications. Firstly, the matrix A is partitioned in to L sub-
blocks of size, K, which need not necessarily be identically sized. As an example, a

matrix A of order 12, will be partitioned into 3 blocks of 4 elements as shown in

figure 5.8.
a, b, X, i,
c; a; b, Xz U,
€3 a3z b, X3 Uy
c, a, b, Xg Uy
Cs a; ‘b‘s | ’ Xg Ug
e Q¢ by Xe Ug
c, a; b, Xz - U
Cg Q5 by Xs LU,
Cs “C}-; bg xo- Uy
Cig @y by X0 U
ey @y, by X1 Uy
Cyz Ty X 12 Uy

Figure 5.8. Partitioned block matrix.

The lower diagonal elements are then eliminated within each block except for
a set of fillins, f;.This leaves a more-or-less lower triangular matrix as shown in

figure 5.9

The upper diagonal elements are now eliminated in parallel, except for an

additional set of fillins, gj, leaving the matrix in the form shown in figure 5.10.
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Faz a,; Xz Uz

a, g, X Ly
a, 92 X2 U,
a; by Xy Uz

a, 9 X4 Uy,

cg Os Os Xy Ly

fe Qg T Xo |1 HYe

fz a; b, Xq U,

fs Cg s Xg Ug

Cy Oy 9o Xg Ug

fo Qi J10 X 10 Uyp

fa a,; by X Uy,

fiz a2 X1z U,

Figure 5.10, Main diagonal matrix, with fill-ins, f, and g.

Two further passes of this system provide the elimination of the fillins, fj and
gi, leaving only a main diagonal of elements, as seen in figure 5.11, which permits
x to be solved for in terms of 1. This final step can obviously be achieved indepen-

dently in each partition.
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a, X4 Uy
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a6 X g U.6

Qs Xy - Uq

as Xg U-s

Qg Xg Ug

Qo X0 Uy

ay, X1 Uy

a; Xz Uz

Figure 5.11. Final diagonal matrix, with no fill-ins.

The simplest partition scheme for this method places one block of elements
on each processor in the network, with each block / prdééssor containing k rows from
the above matrix system. The actual value of k£ will depend on the number of cells
being used by SUPREM II at the time of the diffusion process and the number of

processors being used.

5.5 Hardware Architectures

The one-dimensional nature of the simulation problem, coupled with the
proposed method of partitioning the computation, would suggest that a one-di-
mensional network of processors could be a productive hardware architecture.
Without becoming extremely convoluted, there are only two general ways of
arranging the processors to provide a one-dimensional array of computational
worker nodes. These are loosely termed the spaceline and pipeline architectures.
These present a similar array of intercqnnected processors for performing simu-
lation, but differ in their approach to the communication of the major data-struc-
tures between the worker nodes and the single root processor which performs the

serial operations.
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Figure 5.12. Spaceline transputer network architecture.

The spaceline architecture, as depicted in figure 5.12, takes the basic form of
a tertiary tree structure as dictated by the four communication links available on
each transputer. This produces a hierarchical network of processors linking the
root to the leaf/worker nodes through a number of branch processors, with each
levelhaving a particular funcﬁon to perform. There maybe multiplelevels of branch
processors, whose sole task is to partition the data-structures and distribute them
tothenextlevel down. Similarly these processorsalso performthereverse operation
of combining the data partitions on their return to the root processor. Obviously
this results in an extremely rapid load/unload of the worker processors, since the
distribution is being performed in parallel across each level of the spaceline. The
nearest neighbour communicationsare also very efficient, with direct linksbetween
every worker node. However, it does produce a somewhat inefficient use of pro-
cessors, in that for a total of N processors, (g + 1) are wasted in terms of the actual
computation associated with the simulation. Furthermore, this architecture is

extremely inflexible with respect to expansion because it requires transputers to
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be added on in groups consisting of n processors, where n is a power of three. This
last issue entirely defeats one of the major benefits of transputer based systems,
which is that of simple re-configuration to run variable sized networks. Prolific
amounts of complex logic are required to ensure that the spaceline architecture

can be expanded or contracted with little or no user assistance.

In spite of these criticisms and because of pre-conceived worries over com-
munication performance, this architecture was implemented initially using a total
of nine processors (i.e. with six worker nodes for the simulation). Sufficient
hardware existed for this size of network and it operated successfully. However,
due to the number of nominally *wasted’ processors within the system, a larger
network of nine worker nodes was not attainable with the available hardware. As
willbecomeevidentin §5.6,it was importanf toinvestigate the network performance
over a wider number of processors and so an alternative architecture had to be
implemented which could make greater use of the total number of available pro-

cessors. Therefore, tlie pipeline architecture as shown in figure 5.13 was also

&
—

Y

)
Y

-

Root Worker 1 Worker 2 Worker n-2 Worker n-1 Workern

Figure 5.13. Pipeline transputer network architecture.

The major published drawback with this architecture is that it results in a
slower load/unload of the transputer network which will eventually dominate
overall systems performance as the pipeline length isincreased . The actual length
of the pipeline at which this occurs depends on the computational and communi-
cationrequirementsof the computation, However, in favour of the use of this system
is the fact that for the spaceline architecture, the total load/unload time for the
data-structures was only 60ms [7} in comparison to a computational time of 10mins

or 10s on the T414 and T800 transputers respectively. This overhead can be
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regarded as negligible, providing that the network size remains at this order of
magnitude. The pipeline architecture has a far higher degree of processor utilisa-
tion in computational terms than the previously mentioned design, with at most
one processor not being available as a worker node. In common with the spaceline

system, nearest neighbour communications are efficient to implement.

Conceptually, each transputer has four bidirectional links with which to
communicate to either other transputers or other peripheral devices. Therefore,
depending on the access to all the transputer links, a duplicate communications
path can be created to provide extra performance or redundancy in the event of a
failure. When applied to the pipeline system, this means that two independent
Dphysical links with each neighbouring processor can be made, one to provide global
network-wide data communications and the other to provide nearest neighbour
communications, as shown in figure 5.14. This scheme greatly simplifies the pro-
tocols necessary to send and receive any data from around the network. The local
data channel requires only a very basic protocol to inform the recipient node the
data type and number of data items within a message. The global channel still
requires this information, but in addition the recipient node number/address must

be encoded with the data.

Root Worker 1 Worker 2 Worker n-1 Worker n
L

—_— Global communication links
------------ - Local communication links
i -~ File server communication links

Figure 5.14. Global and local inter-transputer communication links,

120



The physical nature of these links is emphasised, because it is quite possible
to provide a communications harness, which is transparent to the user, but that
allows multiple soft links to be mapped onto the physical links. Communication
harnesses such as TINY or TITCH, as developed on the Edinburgh Concurrent
Supercomputer (ECS) [8],[9] enable applications to use many independent com-
munication links between processes, whether they are mapped onto the same or
different processors. Obviously if such harnesses are to be efficient and are not to
degrade the computational performance of a network, they must be extremely
carefully developed, in close association with the transputer hardware and low level

system routines.

Due to the relatively simple nature of the communications demanded by the
partitioning of SUPREM II, it was decided to use just the two physical channels
between each processor along with the primitive protocols necessary. Initially, the
network was constructed from a set of T414 transputers which made all four links
available for the user to connect at will. Thereafter, the networ-k was upgraded to
run on T800 transputers in order to gain the benefit of the floating point unit.
However, these came on a set of prefabricated BOO3™ boards, each of which con-
tained four transputers and some external memory. The problem with these boards
is that two of the four links on every transputer are hardwired together to form a
ring system, as depicted in figure 5.15.

This constraint means that there were insufficient free links with which to

. form two independent communication channels between every node in the pipeline
and so a single communication path had to be used. This also involved producing a
substantially more complex protocol for the associated controllers, in order to
combine all the necessary data traffic onto the one path. The effect was to reduce
the communication performance in two ways, Firstly, the more comprehensive logic.
associated with the communication controllers ran slower. Secondly, the existence

of only one physical data path meant that global and local communications could
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Figure 5.15. Schematic layout of BOO3™ transputer board.

no longer run in parallel over their previously independent links. The reduced
communications performance was still insignificant compared to the computation -

times and so could be deemed acceptable.

5.6 Results

In assessing the resulting performance of the parallel version of SUPREM I,
there were two main levels at which investigations were made. Firstly, the para]leli
matrix solver was tested without the remainder of the diffusion related subroutines
being called. In order to provide the solver with a valid data set, this was loaded
from the filing system where the relevant matrix coefficients had been stored from
previous runs, This test would enable the increased performance over the modified
gaussian elimination algorithm used by the sequential SUPREM II, tb be observed.
The second test case, was to analyse the performance of the complete diffusion

algorithm from the point at which it was initially called in the sequential portion
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of the simulation code. This would then indicate the total speed-up which had been -
realised by the parallel version of SUPREM II. The execution time of the original
FORTRAN version of SUPREM II on a single transputer was taken as the control
value on which all calculations were based. This provides a set of results which is
then representative of the benefit gained solely from the change to parallel
execution. Obviously, given the absolute performance of transputer hardware
systems, as shown in chapter 4, the actual increase in execution times over many

of the traditionally used hardware platforms will be even greater.

The next problem lies in finding a reliable method of measuring the per-
formance of the transputer network. Unlike most multi-user operating systems
such as UNIX™ or VMS™, there are no CPU monitoring functions inherently built
into the system and an alternative method isrequired. OCCAM concerns itself with
the time dimensicn in a far deeper manner than most conventional languages and
provides an explicit TIMER object within its syntax[10]. This behaves like a normal
communication channel except for its uni-directional nature. It can only provide
an input to a variable, i.e. a user can not set a TIMER, but only read its value, Also,
unlike normal channels, more than one process may input from a given TIMER,
which is a necessity in order to provide time related information about a series of
concurrent processes. By the use of modulo arithmetic, time differences can be
measured with a resolution of 644s on most implementations. Time delays can also
be built in using the same construct, a feature which can be helpful in locating
marginal communication problems.

The results in figure 5.16 show the pefformance of the parallel matrix solver
described previously in §5.4. The matrix dimensions were varied to model a
one-dimensional grid of lengths from 50 to 1000 nodes and the solution performed
using between 3 and 8 transputers. The time for the serial gaussian based solution
within SUPREM I for the same datasets has also been included to provide a ref-

erence benchmark.
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Figure 5.16. Parallel matrix solution results, shov;ing how the execution time

varies with the number of cells in the matrix for varying number of

processors.

There are various aspects of this figure which deserve an explanation. Firstly,
for a given number of transputers in the network, the solutién time is linear with
respect to the magnitude of the problem domain. The significance of this trend lies
in the fact that if an imbalanced distribution of the nodes ever arises during a real
simulation then the performance penalty will not be excgssive. Secondly, and of
greater importance from a general problem partitioning aspect, is the relevance of
the relative performance of the serial algorithm. It must be noted that for the
paralle] algorithm implemented here, in excess of four transputers are required to
provide an improved performance. This can be explained by the fact that there are
many additional overheads concerned with the parallel algorithm. This can be in
terms of the data communications to load and unload the network with the
necessary data-structures and also those associated with globally updating any of
the common para.metefs,r throughout the course of the solution, which must be

available across the network.
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5.7 Discussion

This chapter has described the complete operation of taking an existing
one-dimensional process simulation package, SUPREM II, and re-developing the
code where applicable, to run with superior performance on a transputer network.
This goal has been successfully achieved, as indicated by the results shown in §5.6,
though it must be emphasised that this particular implementation should not be
considered to be definitive or the most efﬁcieﬁt. However, the priﬁ&e motive behind
the project brief was of feasibility rather than ultimate performance. In assessing
the work accomplished and results attained, there are many points which arise that

- require clarification or expansion,

In general, problems whidh possess either algorithmic or geometric parallelism
require a solution which is entirely application specific in order to become con-
current. As with any individual solution, this consumes vast amounts of resources
in comparison to a standard ’off-the-shelf’ solution which may require little or no
alteration. The performance gained from fhe parallel version of SUPREM II
required many man-months of software development. Even allowing for the inef-
ficiencies caused by traversing the learning curve for the new software and hardware
environments at the outset of the project, the superior execution time has been
extremely costly to realise. To put thé rnagnituder of the task into perspective,
approximately 16 man-months were needed to produce to final operating version
of the software used to realise the results outlined in §5.6. If 50% of this were
discarded to allow for the acquisition of sufficient skill in using the transputer
hardware and software development packages, this still leaves 8 man-months of
‘proficient’ software development which might appear excessive for the modifica-

tion of the few subroutines discussed in §5.3.

As aresult of electing to re-code the relevant diffusion related subroutines in
OCCAM, it was necessary to understand the original FORTRAN code to a far greater
depth than would otherwise have been required. In light of the experience gained
during this work, a much reduced volume of re-coding would be undertaken for a

similar project in the future, which would save a lot of time. The actual re-writing
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of the FORTRAN was made particularly difficult due toits extremely unstructured
and undocumented nature and hence failure fo map elegantly into the structured
OCCAM syntax. Coupled to this was the fact that OCCAM and FORTRAN store
any multidimensional data-structures in conflicting formats which entailed a
conversion whenever large arrays were being passed between the two languages.
FORTRAN uses a column major format whereas OCCAM uses a row major format.

Initially, because the code was being re-written, it wasintended to alter any relevant
array subscripts within the OCCAM version, thus saving the need for a conversion
process. However,in order to efﬁciently part:itim_l the data-structuresinto segments
[11] for each transputer, OCCAM required the alternative data storage scheme to

be used, making data conversion a prerequisite.

The next major item which required attention was that of trouble-shooting
and debugging a parallel system. The concurrent execution of processes provides
an additional group of stumbling blecks, such as communication deadlocks etc,
which can cause a set of parallel processes to hang, Apart from tracking down where
the system has stopped, it then became vital to be able to differentiate between
which process caused the stoppage and which were hanging because of that failed
process. Obviously, such debugging facilities require direct access to the transputer
hardware and a comprehensive symbolic map of the entire parallel system. From
these it is then possible to build up a picture of each processor in the system and
assess at what point in the code it has stopped. When this project commenced, the
OCCAM deyelopment software environment needed to interface with other lan-
guages (i.e. FORTRAN in this case) had no debugging facility whatsoever, as this
was still under development and not available for general release. This omission
forced the use of very primitive incremental programming techniques in order to
establish what processes were causing a particular hang upin the system. Although
debugging facilities have now been included in the latest release of the OCCAM
Toolset™, theirnonexistence during the re-development ofthe SUPREM Il software
drastically elongated the project timescale.
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The afore-mentioned constituted the main issues pertinent to the timespan
of the software re-development. The other area which requires comment is that
associated with further improving the performance of the concurrent system. The
ﬁrst-section of the software which would benefit from further investigation is that
of the parallel matrix solution algorithm. The direct block-based method implem-
ented to date is less favoured in the literature than the family of iterative solution
techniques based around the conjugate gradient method{12]. However, it was
considered that it would be more worthwhile to pursue development of other
applications of parallel techniques to process simulation rather than re-implement
SUPREM II using these alternative algorithms. Commercially, SUPREM II had
been overtaken by the introduction of SUPREM III and IV which provide much
greater process modelling capabilities. Therefore any further development of the
SUPREM II code would have primarily been an academic exercise and access to
commerecial versions of SUPREM III and IV was not possible at this time, which

ruled out the possibility of continuing with these updated codes.

In producing the parallel version of SUPREM II, the largest problem was that
surrounding the data transfers necessary to provide all the processors with a
complete set of local and global information. This arises because the transputer
architecture is based on local memory alone and relies on effective communication -
policies to ensure that all the processors contain valid data. Therefore, another area
for future research would be an investigation into the benefits of using a shared
memory multiprocessing architecture, such as the BBN Butterfly[13], to provide
a suitable parallel computing surface for data iﬁtensive applications. Whichever
architecture is chosen for the production of a parallel version of software similar

"to SUPREM ITin terms of data and computational requirements, it can be seen that
the task is very expensive in terms of the application specific development time.
For many applications, which are only ever run on a limited number of datasets at
a time, this is the only way in which parallel computing techniques can provide
additional performance. However, if it can be foreseen that an application would be
exercised on a large number of datasets, then an alternative parallel strategy may

be employed. This is commonly referred to as the task farm approach. In brief

127



though, it involves running a number of independent jobs in parallel on the relevant
computing hardware, with each job executing serially on an individual p.rocessor.
In this fashion, assuming that there are a large number of jobs to be performed
compared to the number of processors available, then alinear performance increase
equal to the number of processors employed can be expected. The only overhead
associated with this approach, is that invelving a single master processor which is
responsible for allocating jobs to each worker processor and collating the returned
data. The application and implementation of a task farm will be discussed in detail

in chapter 7.
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Chapter 6
Process Optimisation

6.1 Introduction - Design for Manufacturability

Throughout the evolution of the IC manufacturing 'mdustry'the market has
gradually altered from being supply-driven to demand-driven, largely as a result of
the relatively small number of major companies involved globally, each attempting
to retain or acquire a leading market position. Consequently, an extremely com-
petitive edge to both the production and marketing philosophies has evolved, in
terms of both price and quality. From a manufacturing point of view, this can be
seenin the ever-increasingimportance that hasbeen placed onyield and turn-round

times in order to increase the viability of a particular process design.

Typically, processes are presently designed round a set of nominal parameter
values which have been found, either by experiment, simulation or a comhination
of both, to lead to the desired device specifications. The methodology commonly
used to obtain these nominal values has already been discussed in chapter 3.
However, during any actual fabrication cycle, variations in these process parameter
values will be experienced due to for example, fluctuations in the operating
conditions within the processing equipment. These variations obviously translate
into variations in the resulting device parameters and therefore require to be
investigated to ensure that the spread across the final product remains within the
pre-defined, acceptable range of the process specification. In short this places a
large responsibility upon the quality assurance aspects of the production facility
and may result in an unnecessarily low yield because even functional devices may
still fail to meet the actual product specifications. By briefly viewing the progress
and changes in quality assurance policies within the IC manufacturing industry,

possible means to improve this state of affairs become apparent.

The first attempts at quality assurance in the manufacturing process simply
involved a post-fabrication inspection, with any faulty or under-spec samples being

discarded. A slight improvement on this was made by bringing the point of
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inspection forward, with the introduction of in-line testing. Now at any test point
there was the option of scrapping poor samples or re-working marginal cases, which
could at least reduce the volume of discarded products. However, rejection of
product wafers is a costly procedure and such principles do not enhance the built-in
productien quality, but merely ensure that those samples available for the market

meet their specification.

The next stage associated with quality assurance was to alter the emphasis
from product inspection to process control, with the idea of minimising sources of
manufacturing variations. This was done by assessing each process step in isolation
and where necessary, attempting to reduce any variability by perhaps redesigning
the step or purchasing new equipment with superior uniformity and control
characteristics, This approach has many disadvantages associated with it. The task
of actually pin-pointing the sources of variability is generally non-trivial, and once

found, it may be difficult or impossible to fix by way of process re-design, The capital

cogt agsociated with replacing fahrication hardware is ales extromely high, Lastls
r~© =] T & J )

it can be a time consuming activity, taking months or years to slowly tune a process
for satisfactory yield, in which time large sums of money will have been lost.
Hence, there is a definite need for designing a manufacturable processin order
that specifications may be met-first time  with acceptable yield levels, ‘This is
essential when considering the ASIC market, where low-volume, one-off production
runs are commonly found and would be financially beneficial for all IC manufac-
turing environments, especially given the present economic climate within the
semiconducfor industry. This leads to the introduction of the term design for
manufacturability, that is, designing a product in order to make it as insensitive to
manufactming variations as is possible. In complete contrast to all the previcusly
mentioned techniques, this is performed during the design phase rather than
during manufactull'e. By taking such an approach, quality is actually being built into
the product and any possible production problems can hopefully be highlighted and

ironed out before the first silicon is committed to fabrication. Assuming the goal of
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minimising the design sensitivity to processing variations is met, then financial
gains are obtained from the reduction in lost yield, time spent tuning the process

and on expensive fabrication equipment. -

Therefore, it is necessary to assess the response of any device characteristics
which are deemed critical for a given situation, in terms of the respective input
parameters. Once this characterisation in terms of the process parameters has been
achieved, then their values may be optimised to the point where least sensitivity
in the required device specifications is achieved. Now, small fluctuations in these
parameter values throughout the fabrication process should not cause a significant

+loss of yield in the final product.

Conceptuaily, this appears a sound policy to follow, but it does require that
the relationship between the device responses and the processing parameters used
in fabrication must be determined. There are two possible routes to provide this
information. Firstly by conducting a series of experimental fabrication runs under
a variety of process conditions which refiect any likely variations found under
normal fabrication conditions. This is an extremely costly and time consuming
approach with each process run taking around four weeks to perform and costing
many tens of thousands of dollars in terms of material and labour alone. Secondly,
the same exhaustive set of experiments could be performed using some of the
process simulators discussed previously. Although much quicker and cheaper than
the experimental procedure, this still consumes many weeks of CPU time on typical
computing platforms. As a result of this, the use of statistical experimental design

techniques has been proposed in order to produce a suitable set of experimen-

tal/simulation points and perform the subsequent analysis of the results.

This chapter first introduces the ideas associated with experimental design
techniques, By briefly discussing some of the classical approaches to defining the
required experiments and three of the main design ohjectives used to analyse the
data, the extremely powerful nature of this technique is demonstrated. Next an
overview of one particular commercially available software package_, RS/1™ (BBN

Software Products Inc), is presented. This package provides a complete software
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shell under which statistical experiments may be designed and subsequently ana-
lysed. The applicati;)n of these techniques to IC process design and optimisation is
then discussed and presented through using a simple case study. Finally, a few
conclusions as to the implementation of these tools are presented. This provides a

background to the experimental work described in the next chapter.

6.2 Experimental Design

Experimental design is a strategy for the effective management of experi-
mentation, It is based around the use of a planned program of experiments which
employ statistical techniques for their design and analysis [1],[2]. As a consequence,
much more useful data can be extracted from a smaller number of runs than would
normally be feasible if an unstructured approach were to be used. Traditional
experimental techniques tended to employ unsystematic variations on the input
parameter set, which were based on previous results. Such an approach can lead to
conflicting results, especially when many factors are being simultaneously
observed. Additionally, it is all too easy for many implicit assumptions to be sub-
consciously inferred throughout the procedure. In contrast, experimental design
starts with a few basic informed assumptions and provides a complete set of
experimental runsin advance, which will cover the entire range of interest [3]. This
ensures that all possible conditions are investigated and maximises the chance of

finding the best operating region for a particular set of goals,

Experimental design techniques provide many benefits which assist an
engineer toreduce the product design time and cost, so reducing the overall lifetime
costs of that particular process. The most appé.rent of these is that of enabling
quality and robustness to be built into the process from the initial design stage. In
achieving these goals, any factors which may prove important with respect to
process control issues will be automatically highlighted and can therefore be given
careful examination during the fabrication cycle. Additionally, the relative effects
of variations in any of the processing parameters is known prior to fabrication and
hence emphasis can be placed on the controlability and uniformity of the equipment

pertinent to these factors,
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There are six identifiable stages involved in an experimental design problem

and these can be summarised as follows:

e Problem definition. The factors to be varied and responses to be
observed must be established. In addition, the objective of the

experimental analysis must be determined (see §6.2.1).

e Model specification. The type of model describes the general form
of the equation (i.e. linear, quadratic, cubic etc.) which will be
fitted to the experimental results during their analysis. The
model type will affect the number of runs required and hence

has to be determined in advance of the experimental work.

e Design Specification. Either a classical or computer-generated
design must be selected in order to establish the actual
experiments which are required to be performed (see §6.ﬁ.2).
The choice is dependant on the experiment objective previ-

“vusly specified and will be one of the following :-
Plackett-Burman
Full Factorial
Fractional Factorial
" Box-Behnken
Box-Wilson

e Experimental work. The necessary experiments may be carried out

in either a standard/structured or randem order,

Standard - Run order is organised by variation in fac-
tors. This approach produces a runsheet
which is simpler to follow.

Random - Byrandomisingthe run order, possible bias
effects can be eliminated from the results
and it also reduces the effects of factors
which are not being explicitly considered in

the experiment
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¢ Analysis of the results. The model(s) must be fitted to the
experimental data either directly or by the use of regressional
techniques. Usually an iterative refinement process is then
appliedin order to confirm the model validity and quality-of-fit.
On this basis, a requirement for additional model coefficients

or the inclusion of extra factors may be highlighted.

e Interpretation of the results. Response surfaces and statistical
results may be calculated and displayed graphically, Response
values for factor settings within the operating region, but not
experimentally determined, may then be predicted using the
fitted models. This permits the optimum factor settings for a

particular experimental goal to be established.

Although each of these stages can be considered individuallywhilst illustrating

their role within the overall methodology, their fﬁnct-i-c;nality Isinlyre:ahsgfi oncel
they have been integrated into one compiete system. This requires that a solid set
of data structures and interfaces must be developed to fully support the operations
mvolved. The following two sections provide a brief introduction to concepts

assoclated with the design objectives and templates.

6.2.1 Design Objectives

There are three main design objectives which may be called upon to analyse
the data from a particular set of experiments. These are Screening, Response
Surface Methodology[4] and Taguchi[5][6]. Each objective enables a different set
of information to be efficiently extracted from the experimental results. Conse-
quently, the selection of design objective influences the choice of the template (see

§6.2.2) used to allocate the experimental points within the region of interest.

Screening is speciﬁca]ly intended for the investigation of a large number of
factors (e.g. more than 10), in order to find the most significant factors within a
minimum number of runs. A Plackett-Burman design is normally used to produce
the experimental points for this case and typically requires only one, two or three

more runs than the number of factors to be screened [7]. Naturally, such a reduction
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cannot be achieved without trade-off’s. In this case the penalty for minimising the
number of runsis an inability to estimate any possible interactions between factors.
However, once a suitably reduced set of significant factors has been obtained, they
can be more comprehensively investigated using one of the following alternative

techniques.

Response Surface Methodology (RSM), is a technique for providing a more
detailed anélysis of a limited number of factors over their respective operating
ranges. Interactions between factors can be assessed and a series of linear or
polynomial relationships linking the responses to the factors can be determined.
The model relationships are then able to predict responses at any point within the
operating region. By combining the individual responses into one composite
response, an optimised set of factor values may be found which meet a particular
design goal. This technique provides a systematic approach to a
multi—factof/multi-response optimisation problem. Consequently all the complex
trade-offs which were traditionally made in a designers head or via a vast number
of 1-D plots, can now be considered in a structured manner and presented in one

or two contour or 3-D surface plots,

The Taguchi technique, like RSM, provides a series of relationships between
the féctors and responses concerned. As before this enables response values to be
predicted for factor settings which lie within the chosen operating region but have
notbeen explicitly determined by experimentation. In addition, the method permits
the inclusion of small perturbations on each factor value to investigate explicitly

any problems that may arise from poorly controlled or non-uniform factors.

Both RSM and Taguchi require a reasonable number of runs to be performed
in order that the direct and interactive relationships between factors and responses
may be determined. On this basis, it is not advisable to consider more than six or
seven factors using fhese techniques since the number of runs will rapidly become
excessive. Hence an initial screening experiment is comlﬁonly used to produce a
suitable set of significant factors from a much wider range of factors associated with

the process concerned.
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6.2.2 Design Templates

There are a number of classical experimental designs, all of which have fixed
properties such as the number of runs, number and type of factors and the
appropriate models. For situations where this becomes too restrictive, there is also
a more flexible, but also computationally intensive, D-Optimal design. A brief
summary of each design type is presented in the following paragraphs (further
details may be found in [8]).

The simplest design is the Plackett-Burman design which is most commonly
used for screening objectives. It results in the minimum number of runs to assess
the importance of each factor. As shown in table 6.1, the total number of runs is of
the same magnitude as the factors, even for a large factor count. Once more than
ten factors are included, the choice of experimental points assumes a significant

similarity to that attained using a fractional factorial design and the number of runs

rises slightly.
Number of Factors Minimum
number of
runs
e g | —g -
9 12
15 16
17 20
23 24
27 28
29 32

Table 6.1. Plackett-Burman Designs
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The second category of design comes under the heading of factorial designs[9],
of which there are two classes, full and fractional. These permit both the main
effects and interactions between several factors to be investigated at once, Using
two levels for each factor, then a full factorial design is appropriate for up to five
factors and results in 2K runs for k factors. This generalisés to mK runs for k factors
each at m levels. In other words, all possible cdmbinations of factor settings are
incorporated into the design. Geometrically, a full factorial design may be repre-
sented by the diagram in figure 6.1.

Figure 6.1. Geometric Representation of a Full Factorial Design,

Hence when considering six to eight factors, a fractional factorial design may
provide a more convenient way to reduce the number of runs from that required
by the full factorial design. The price to be paid for this reduction is the loss of
capability to measure some of the inter-parameter interactions. Figure 6.2 shows

the geometric representation of a fractional factorial design.

As was mentioned earlier, once the original factor count exceeds eight, then
it is probably worthwhile performing an initial screening exercise to find which of
these are of greatest interest to the problem under investigation. Neither of the
factorial designs include centre points (i.e. points located about (0,0) on the axes

shown above). This means that mathematical techniques cannot be used to assess
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\

Figure 6.2. Geometric Representation of a Fractional Factorial Design.

the quality of fit of the models to the data, nor can any estimate for the curvature
of the response surface be obtained. Hence the factorial designs are termed limited

response surfuace designs.

The remaining two design types are termed ficll response surface designs in
that they include three level factoring plus centre points. The first of these, called
the Box-Wilson design, is a central composite design[10]. The basis of this design,

=t

s e ——

as can be seen in figures 6.3 and 6.4, is a central box of points formed from a factorial
scheme which is then augmented by a series of axial outlying points. Depending on
the span of these axial points, two different designs can be_achieved, namely Central
Compesite Inscribed (CCI) or Central Composite Circumscribed (CCC). If all the
points lie within the factor ranges, then a CCI design is produced. If, on the other
hand, the axial points lie outside the féctqr range, then a CCC design is produced
which enables the optimisation and prediction of responses over the entire factor

range.
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Region enclosed by Factor settings

Figure 6.3. Geometric Representation of a Box-Wilson CCI Design.

Region enclosed by Factor settings

Figure 6.4. Geometric Representation of a Box-Wilson CCC Design.
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The second of the full response surface design is the Box-Behnken design[11].
This provides precise, quality predictions over operating regions where linear,
interactive and curvature effects are expected. Three level factor settings are used
resulting in a series of replicated centre points. Figure 6.5 shows the geometric
representation of a Box-Behnken design, in which the points can be seen to lie on
the mid-points of each edge of a multidimensional cube that defines the operating

region.

Figure 6.5. Geometric Representafion of a Box Behnken Design.

6.3 RS/1

In the preceding sections of this chapter, the powerful nature of experimental
design has been indicated and a brief resumé of both the theory and practise of
applying the technique has been presented. However, in order to support efficient
use of such methods, a comprehensive set of data management, statistics, modelling
and graphics utilities are required. These facilities can be made available through
a multitude of existing software packages, though this frequently results in the
usual interfacing problems found under such circumstances. Alternatively, a
complete software system, offering all of these facilities under an interactive
menu-driven environment, is available from BBN Software Corporation. The ‘RS’

series of software is produced as a set of three fully integrated subsystems, RS/ 1™,
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RS/Discover™ and RS/Explore™, all of which are presently available for both
VAX/VMS™ and UNIX™ operating systems. In addition, a version of RS/1™ is
available for operation on PC compatible computers running MS-DOS™.

RS/1 provides the main data structures and management modules, which also
includes cbmprehensive statistical data analysisroutines. RS/Discover providesthe
main experimental design functionality, covering the experiment definition, data
analysis and data visualisation aspects. RS/Explore provides additional statistical
capabilities to enhance the depth of information available from the basic RS/1 data
structures and RS/Discover experiments. A general user interface to the host filing
system allows data to be imported from or exported to other software applications.
In common with most commercial database and spreadsheet systems, RS/1 has its
own powerful programming language, called RPL, which enables many application
specific operations to be conveniently automated. RPL’é major limitation is that its
capabilities do not extend to the control of RS/Discover, which requires all oper-
ations to be performed via the menu-driven interface. Various aspects of the 'RS’
software directly relevant to this woerk will be discussed in the course of §6.4, but

fully comprehensive details of the software are available in the appropriate manuals

[12], [13], [14].

6.4 Optimised Process Design

In the manufacture of VLSI circuits, process induced variations of device
characteristics can drastically reduce the performance of fabricated products. It is
therefore most desirable from yield, time and economic considerations, that process
conditionsare optimised so as to minimise the device sensitivity to these variations.
Strategies, mainly based on engineering judgement (guess-work!) do exist for
producing devices which work at a nominal operating point. However, few strategies
have been commercially implemented which go to the extent of analysing the
operating point and its sensitivity to perturbations in the processing conditions.
Thus many processes exist which are probably not as robust or viable as they could
be, a fact which is hardly altogether surprising given the complex nature of the

effects and interactions between the magnitude of process variables.
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The experimental design procedures discussed previously in this chapter, lend
themselvesideally to the cause of optimising a process towards a set of performance
and sensitivity goals. Under most conditions, these goals, as set by the process and
device engineers, are known in advance and hence a list of probable factors and
responses requiring investigation can be drawn up. An initial consideration of the
process parameters will most likely result in a substantial number of variables which
could influence the characteristics of the fabricated devices. Therefore, as men-
tioned previously, it is advisable to perform a prelimin,éry screening exercise to
establish the five or six most significant parameters relevant to the application.
Thereafter, a full response surface design could be produced, again using RS/Dis-

cover, to cover the chosen factors and responses in greater detail.

The use of RSM techniques to provide an efficient, structured design and
analysis strategy has been well-known for several decades, However, its application
to the semiconductor industry is much more recent and can be viewed in a novel -
manner by applying the methods to simulated results rather than genuine
experimental results[15]. Although the use of experimental fabrication runs to
provide the data is perfectly valid, it is an extremely expensive and slow approach
by comparison. Thus the results are obtained from the combined use of process
simulators such as SUPREM II, SUPREM III, SUPRA and device simnulators like
PISCES and MINIMOS as discussed in chapter 3. Obviously, it is important that
the simulators have been well characterised for the particular process before the
absolute values of their results can be conﬁdently relied upon. The simulation
resultsarethen entered into the RS\Discover database where upon a multi-variable
polynomial is fitted to each response to permit subsequent analysis. Each response
can then be displayed through contour or 3-D plots obtained using the fitted models,
in terms of any of the relevant process pafameters. Such visualisation of the indi-
vidual responses allows each one to be assessed in terms of optimum performance,
however, this is more than likely to produce conflicting options which will require
toberesolved. A flow diagram for the basic steps involved in this procedure is shown

in figure 6.6.
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RS/Discover
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Experimental
Settings
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Simulation
PROCESS
TOPOGRAPHY
DEVICE
EXTRACTION

'

RS/Explore

1

Individual
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mining a safe operating region.

Figure 6.6. Basic flow diagram for simulation based optimisation.

The strength of RSM is that it enables composite responses to be produced
which comprise a combination of the individual responses already produced. These
composite responses can then be minimised or maximised as necessary using both
visual and mathematical techniques, thus resolving any of the conflicts observed
in the individual analysis previously undertaken. The optimal solution to the given
constraints is then provided by the then relevant maxima or minima. In addition,
it is very simple to incorporate further qualifications in order to guarantee a safe
operating region. The final item which is easily performed with RSM is that of
sensitivity analysis. By including terms for the gradient of the composite response
and variances of the process concerned in the analysis, the response sensitivity to

input parameter variations can be incorporated in the final assessment for deter-
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Although these experimental design techniques substantially reduce the
number of simulations required for a given problem, there are stilla large number
of repetitive file and system operations involved. Whilst these may all be performed
manually, this is wasteful in terms of time and also provides much scope for
Introducing errors. Therefore, a more realistic flow diagram for an integrated
optimisation system is shown in figure 6.7 and illustrates the additional features
which have been included to automate the interface betwéen RS/1and the relevant
simulators. The early develospment of this additional functionality is discussed in
§6.5 by way of a worked example, however a more detailed discussion of these

facilities may be found in [16] and [17].

AS{Discover |
Gensnc . E> Experimenta/
Input Fifes ﬁ\ f Settings
! Data Generstion !

Simulation <):r| l—_l—_(> Simutation
Command File j f Input Files
Simuiation
PROCESS
TOPOGRAPHY
DEVICE
EXTRACTION

I—I:(> Simuiation

f Restills Files
| Data Eraction |

RPL Command, l_‘:,'> Experimential

FProcadure File ﬁ f Resulls

RS/EXplore f

Lf> Individual

& Composile

Responses

Figure 6.7. Complete flow diagram for simulation based optimisation.
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Theimportant point to be appreciated from the concept of experimental design
is that the entire process can be thoroughly analysed before fabrication is com-
menced. In this manner most of the problems associated with production can be
investigated and eliminated during design, which once frozen, should provide a
robust, high-yielding fabrication schedule.

6.5 Optimisation Study

The procedures associated with a complete optimisation schedule, as illus-
trated in figure 6.7 above, may be divided into five distinct se.ctions, of which only
three (1, 3 and 5) are directly involved with the optimisation itself. The remaining
two (2 and 4) have been included to automate the interface between RS/1 and the
relevant simulation software with the intention of improving the time taken to
handle all of the necessary simulation files. The procedures also reduce the scope
for error whilst manipulating all of the appropriate simulation input and output

data, the results of which would necessarily be obvious in the subsequent. analysis.

Experimental Design RS/1
Simulation input file generation RPL and Fortran/C

Data Extraction from simulation output RPL and Fortran/C-

1
2
3.. Simulation
4
5 Results Analysis RS/1

A discussion of esch of til_e‘sé,s—t—eY)-sTsB_esTplro—vided by following through a
typical optimisation problem and thus illustrating their role in the overall pro-
c'edure. The problem to be analysed during this case study involves the simulation
of a ¢cMOS IC fabrication process.:The factors to be varied and responses to be

observed are listed below:

Factors Implant Eﬁergy
Implant Dose
Gate polysilicon slope

- ey e




Responses Series resistance
Peak electric field
Transconductance

Punchthrough voltage

With these parameters in mind, the first task is to produce the required
experimental design using RS/DISCOVER. This requires that the range of values
for all the factors and responses are nominated. Then when the particular design
specification is chosen, a table will be produced which lists all the appropriate
experimental points. Figure 6.8 shows the summary screen provided once the
design process has been completed and highlights the significant design features

and experimental status.

' ™
Summary of THESLIS: Process Optimisation Example I FACTORS
(Created 09-AUG-92 16:05:48) 2 SPECIFICATIONS
3 RESPONSES
Controlled factors: SLOPE, DOSE, ENERGY 4 PERF_STAT
Responses: PUNCHTHROUGH_¥OLTAGE, FEAK_FIELD, 5 MOUEL
Formulas: COMPOSITE _RESPONSE 6 DESIGN
7 WORKSHEET
Objective: RSM 8 AUTOGEN
Design Type: FULL-FACTORIAL 9 NEXT

Model Type: QUADRATIC

MODEL..,.... 10 terms
DESIGN. ... .. 27 runs

WORKSHEET... 27 total runs (0 completed)

Generating expanded terms.

Generating FULL-FACTORIAL design.
Generating standard ordered worksheet,
EXPER.DEFINE>

Figure 6.8. Summary of Experimental Design details

RS/1keeps much of its information stored in the form of tables, some of which
are directly accessed by the user, some which can be indirectly accessed and others
which are for its own use only. The new design is stored in the WORKSHEET table
and this has sufficient space allocated to store all of the assigned factors and the
responses, which are as yet unknown. Figure 6.9 illustrates part of this table,

showing the design data and the space for the results to placed in due course.
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0 I SLOPE 2 DOSE 3 ENERGY 4 PUNCHTHROUGH_VOLTAGE
(DEGY (ATOMS /CM*3) (Ke¥) {VOLTS)
1 70 le+13 30
2 90 le+13 30
3 1o le+13 30
4 70 Se+ld 30
5 90 Se+14 30
6 tio Se+14 30
7 70 let15 30
8 90 letl5 30
9 110 let15 30
10 70 le+13 60
11 90 le+13 60
12 1o le+13 60
13 70 Se+14 60
14 90 Se+l4 50
15 110 Se+14 650
16 70 le+15 50
17 90 le+15 69
Enter /JHELP for command explanations.
Row I Column 3: [30]

Figure 6.9. Part-filled experiment worksheet table

Within this worksheet, the data in one line contains the values for each factor
for one particular simulation, Although this could be manually transferred into an
appropriate simulation text file, the task lends itself to automation. Unfortunately,
RS/1 stores all of its table data in a machine readable form, so it can not simply be
accessed directly and it must first be exported to the host filing system as an ASCII

file, as shown in figure 6.10.

RS/Discover

|\:;> Experimental

Seltings

Figure 6.10. Flow diagram for exporting RS/1 design data

As mentioned previously, RS/1 contains a very powerful programming lan-
guage, RPL, which enables the user to write mini-programs, called procedures, that

can perform most RS/1 operations. Thus a short procedure was written, which
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exports the design data to an ASCII file after performing a number of checks on
both the data and the file system. An excerpt of this procedure is shown in figure
6.11 and the resulting text file is displayed in figure 6.12.

/* Thls procedure allows the user to create a system flle to dump the the input$

f* , the file created can then be used in generate H
Procedure;

temptable = “oops™; /* name of temporary table to create */

expname = getobject{"Enter experiment name: °, “experiment®);

If obj$exists{expname, "experiment”) then
/% case when experiment exists */
begin;
designtb] = cat( expname, "@worksheet™):
if tableexists(designtbl)then
/* case when worksheet exists */
begin:
factortbl = cat(expname, "@factors”);
Il tabhleexnists({factortbl} then

/* case when factoers table exlsts */

== MicroEMACS 3.9%e (WRAP EXACT ASAYE) == edit.tmp == File: fu3/wjca/rsuserhome/$

Figure 6.11. Extract from the "DUMPTABLE" RPL Procedure

‘ N
703 1e+13130 - - - .- - e - ) - .
90} 1e+13130 :

11031e+13}30
7015.05e+14330
90]5.05e+14!130
110}5.05e+14{30
70{le+15]30

90 1e+15}30
110} 1e+15}30
70]le+13}60
90| 1e+13]60
110} le+ 1360
7015.05e+14}60
9015.05e+14}60
110}5.05e+14]590
70jle+15]60
90iilet15]60
110] 1e+15)60
70} )e+13)90

90 1e+13}90
110} 1e+13190
70{5.05e+14}90
90{5.05e+14]90
=-More--{85%)

Figure 6.12. ASCII design data file
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‘Fhe next task, as depicted in figure 6.13, is to produce an input file for the
appropriate simi.i\iitag‘from the data in each line of this ASCII file and also produce
a batch command ﬁl&t\g\ ‘actually perform all the simulations. Originally, this was
achieved using a prograﬁi\;vfitte_gz_in FORTRAN 77, a language chosen not for its
lexical capabilities, but because of cdhﬁs‘fm{xz(ts applied by the VMS operating system
in use at the time, The software was subsgdﬁénj;l_y‘reqwritten in ’C’ and endowed
with greater functionality and robustness on returﬁiﬁ'g taa _UNQ( platform towards

-

the end of the project. ' N

Th

- Generic Experimental

B nptit Files ﬁ f Settings

Data Generation

Simutation <:J—J . rl:;> Simulation

Command File nput Fites

Figure 6.13. Flow diagram for generation of simulation files

This process requires the following information in order to produce the
necessary simulation files for the correct simulation package: a generic simulation
input file, ilighlighting the factors to be varied; the design data itself; general
information pertaining to file name conventions, the simulator to be used, data
directories and other details which will be discussed later, The generic simulation
file contains a full description of the process to be modelled with the exception that
the parameters under observation are replaced by a marker symbol, "?n", as can be
seen in the file sample shown in figure 6.14 (?1 and 72). These markers are then

replaced by the necessary experimental values taken from the ASCII design file.

The generalised procedure data file contains all the information required to
control the entire "generation’ sequence and as will be seen later, the subsequent

‘extraction’ process. It is this file which provides much of the flexibility offered by
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TITLE THESIS Process Optimisation Example

H inltialise the silicon substrate,.

INITIALEZE <100> SILICON PHOSPHOR=10 RESISTIV

+ THICKNESS=10.0 XDX=0.5 DX=0.002 SPACES=800
5 GATE Oxide

DIFFUSION TIME=5 TEMPERAT=850 T.FINAL=900 F.N2=0.0 F.02=21.1
DIFFUSION TIME=S TEMPERAT=900 F.N2=0.0 F.02=21.0

3 Palysilicon deposition 550A

DEPOSIT POLYSILICON TEMPERAT=600 THICKNESS=0,055 SPACES=10
H Enhancement implant

MASK APPLY NAME=ENHANCE

IMPLANT BORON DOSE=71 ENERGY=72

MASK REMOVE

=* MitroEMACS 3.9e (WRAP EXACT ASAVE) =~ generic.dat == Flle; generic.dat ===san

Figure 6.14. Generic simulation input file

this system and enables it to be used for virtually any application under a number
of host environments. A segment of this data file pertaining to the generation

process is shown in figure 6.15.

FRAREHAERRERIREERAA4E BECIN OF CONTROL FILE WERURZREREEENNEENRENNINQINIRIAEREAINS
JRUNRE Title of experiment: BRRRRRQZRIREEERREREEERERFRRRTRRtRnINNRRERREitnREiies
title Thesis Process Optlmisation Example

VIEENIE Simulator name:{one word cnly) SEQERERREENIERRE0EERERRNRRRRERRRNRERNNNES
simulatoer suprem

BEEREE Design file name:(ie file In which data to stmulator is stored IRRRREEEES
design_name exdesign.dat

1M Generle file name: (ie file which simulater accepts and contain search_va$
genetrlic_name relgen.dat

FRRIAY Preflx for drive (stmulation) file name: BRSERRERRIRIRERISHIRIB00RNEIAES
prefix run

FEARELL Extenslon for drive (simulation) file name: SRERBSE4RIREIE80988000800ES
extension .dat

HHEARM No. of drilve (simulation) files to be generated: REARARRGARTERUEEELERELS
no_runftles 27

BIEEENY No. of input factors being varied in experiment: SERRRRRRRRRSRNRERELELES
no_factors 3

JEAIREL Names of factors to be varled in experiment: (separated by spaces) kizi2]
factors dose energy slope

SEREEEE Delimiter separating data values In design file: (one character only)#is
dellmiter |

EERVAAE Variable to search for in generic file: (one character only) SEN4433914%
v= MicroEMACS 3.9¢ (WRAP EXACT ASAVE) == control.dat == File: control.dat mewess

Figure 6.15, "Generate.dat" - Overall procedure details
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Once the GENERATE process has been performed, a full complement of
simulation input files, each containing a unique set of experimental settings, will

exist, as can be seen in figure 6.16 where the values, "1e12" and "30" have replaced

the marker symbols.
TITLE THES1S Process Optlmlsation Example A
$ Initialise the sillcon substrate.
INITIALIZE <100> SILICON PHOSPHOR=10 RESISTIV
+ THICKNESS=10.0 XDX=0.5 DX=0.002 SPACES=800
3 GATE Oxide

DIFFUSION TIME=S TEMPERAT=850 T.FINAL=900 F.N2=0.0 F.02=2].1
DIFFUSION TIME=S TEMPERAT=900 F.N2=0.0 F.02~2]1.0

H Polysilicon depositlon 55048

DEPOSIT POLYSILICON TEMPERAT=600 THICKNESS=0,085 SPACES=10

3 Enhancement tmplant

MASK AFPLY NAME=ENHANCE

IMPLANT BORON DOSE=IE12 ENERGY=30

MASK REMOVE

=* MicroEMACS 3.9e (WRAP EXACT ASAVE) e« run(l.dat.== File: runfl dat e-e-creowe=s

Figure 6.16. Completed simulation input file

In addition to producing all the simulation files, GENERATE also creates a
batch file to perform all of the simulations and uniquely rename all of the output
files for subsequent perusal. Figure 6.17 shows part of this batch file for the current
example. The syntax for this batch file is of course system dependent and hence

there is an entry in the general data file for the operating system in use.

Allthenecessaryinformation has nowbeen produced to enable the simulations
to be performed. This is done by executing the batch file produced by the GEN-
ERATE software, The value gained by this approach is that the methodology can
be applied to almost any repetitive or batch-oriented process since all the required
details are contained with the data file "generate.dat". Once all of the simulations

have been performed, the appropriate information must be extracted from each
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gcho START OF SIMULATION

ed .

suprem . /runQ0l.dat

my . /s3out ./s3outrunb0l.dat

my . /RESULTS ./RESULTSrun00l.dat
rm optim

cp . fOPTIM ./optim

suprem ./run002.dat

my . fsJout . /s3outrun002.dat

my . SRESULTS ./RESULTSrun002.dat
myv ,foptim ./tempfile

cat ./tempflle ./OPTIM > ./optim
suprem ./run0@e3.dat

my ./s3out ./s3outrun03,. dat

mv . /RESULTS . /RESULTSrun003.dat
my .foptim ./tempfile

cal ./tempfile ./OPTIM > ./optim
suprem . /run04.dat

myv . /s3out ./sJoutrun004.dat

my . /RESULTS ./RESULTSrun004.dat
my _/feptim ./tempfile

cat ./tempfile ,/OPTIM > ./optim

== MictreEMACS 3.9¢ (WRAP EXACT ASAVE) == runflle == File; runfile sassvassamamun

Figure 6.17. Simulation batch command file

output file and returned to the RS/1 worksheet. As before, this involves two pro-

cesses, the first of which is depicted by figure 6.18 and is concerned with extracting

the chosen response information from the simulation output.

.- ) - - B Simulation

f Rasufls Files

Data Extraction

b Experimental

Hesulls

Figure 6.18. Flow diagram of data extraction process

Extracting the correct data from each simulation file is not a trivial process,

since the location of a given piece of information may vary depending on how the

simulation proceeded. Early versions of the extraction software used a similar

method to that employed to generate the input files, namely a generic output file,

with the chosen responses marked as before, Although this worked more often than
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not, it was not a robust or flexible solution and was dropped in favour of the current
lexical matchingtechnique. Thisrequired the user tostipulate a charactersequence
pertaining to the required result, plus the number of words and/or lines between
these characters and the actual response. Because many phrases, for example
"Oxide Thickness", may be repeated a number of times within the output file, the
user can specify which occurrence to search fc;r. Other information such as which
files to perform the extraction on and which file each extracted response is to be

placed is all kept in the latter part of "generate.dat", as can be seen in figure 6.19.

final_commands echo STOP

FREEERE No. of files to put extracted data FERSESRI0EIRERERRRRERRaERERRREELELENS
no_extract_files 1

FERIEEN Names of files to put extracted data: (separate by spaces) FREEREEEREEES
extract_names rsl

ERIANAE No. of responses in experiment: SAA0BII49000HII 0000008 ERRRLTEERELS
no_responses 4

EBREAXE Names of responses:(separate by spaces) DESRARERAANTTINENIERRRRRANERERES
responses resistance pkfleld gm vpt

FERRRAN Strings to search for to locate data: BEEERERENEERNEEREEIRREARTRTTRRNELS
search_strings Resistance Electric Transconductance Punchthrough

S5E0ENL No. of occurrence of each string: (count as ame §f string occurs more ¥$

eccurrence 1 | 2 1

4442 No. of lines at which data Is ON after string occurrence has been found: §$
data_line_ne 1 0 2 4

¥R¥E% position of data i.e. an which no. of word of the line Is data situated; $
data_position S 6 4 2

T¥RE44E At which file should extracted data be written to : BEDRANERREREINNEENELS
QRRFEXE (lgnore If no, of extact flle s only one) SESEEEREREESNURNRNUNTSNNINNES
extract_destinatlon rsl

SEREITEERNARE END OF CONTROL FILE BERERSABRRRRERRRR8 08 e et et et nnnnnnnnees
=' MicroEMACS 3.9e (WRAP EXACT ASAYE) == control.dat == File: control.dat =emmaw

Figure 6.19. "Generate.dat" - extraction information.

A second program, again written in 'C’, performs all the requested data
extractions and places the results into the specified ASCII text files. The current
version of this EXTRACT software informs the user of any unsuccessful extraction
attempts and performs a great number of error checks to ensure robustness. The
final task to be performed is that of importing all of the results back into the RS/1
experiment worksheet, as depicted by figure 6.20.

This process is performed by executing another RPL procedure, similar to the

export one discussed earlier, which reads in the response values from the
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APL Command Experimental

Procedure File ﬁ f  Resuits

RS/Explore

Figure 6.20. Flow diagram for importing results to RS/1

user-specified ASCII file directly into the appropriate columns within the experi-
ment worksheet. Once this has been achieved, the completed worksheet table takes

on the appearance of that shown in figure 6.21.

~
0 4 PUNCHTHROUGH_VOLTAGE 5 PEAK_FIELD 6 TRANSCONDUCTANCE
(VOLTS) (KV) (Mhaos)
1 19.80 280 5.20
2 17.80 340 6.70
3 14.80 560 8.80
4 19.79 310 6.20
S 16,72 - - 420 - 7.TE -
[ 12.70 640 9.80
7 16.30 370 8.00
8 14,30 480 9.50
9 11.30 770 11,60
to 17.90 2649 6.20
1§ 14.90 320 7.70
12 11.90 530 9.80
13 16.60 290 7.20
14 13.60 400 8.70
15 10.60. ~ =620 — 10.89 - . -
16 14,20 360 8.30
17 11,20 470 9.80
Enter /HELP for command explanatians.
Row | Celumn S: [280])

Figure 6.21. Complete experiment worksheet table

Now that all the simulation data is residing within RS/1, it must be prepared
for analysis by fitting a model to each one of the responses in turn and confirming
that the fit is acceptable. RS/EXPLORE, the statistical analysis part of RS/1, can
performthis task automatically, only pausing to inform the user when discrepancies

are found. It is very important that this process is carried out if any confidence is
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to be placed in any analysis of the simulation data, One erroneous data point is not
necessarily obvious to the eye and yet can make an appreciable alteration to the

model coefficients.

Once the models have been successfully fitted to all the responses, then
Response Surfaces may be displayed as a contourplot for each response in terms of
the various input factors. The two-dimensional nature of these contourplots means
that there can be two variable factors along the x- and y-axes, and any other factors
must be specified at a fixed value. Figures 6.22 and 6.23 show two particular response
surfaces for the punchthrough voltage. This individual surface is plotted against
the full range of implant dose and energy values, but at a fixed value for the

polysilicon slope in each case.
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It is then possible to interpolate the value for a particular response over any

part of the simulation region using the model coefficients and so obtain response

~ _values for points where no simulation was actually performed. Although it is
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" therefore possible to produce a large number of these individual surfaces for ea(.;h

response, it is not necessarily inherently obvious how each factor may be traded loﬁ'
against another in order to arrive at a particular set of response conditions. This is
of course the underlying concept of process optimisation and it is rarely possible to
visually assess all of the parameter interactions. However, apart from displaying
individual responses, it is also p;)ssible to produce a Composite Response which
incorporates any number of responses and/or functions of responses, into a single
surface. In this way, it becomes feasible to find a set of input conditions which will
maximise or minimise each response as desired and hence arrive at a suitable
operating region. For the optimisation example illustrated, it hasbeen decided that

optimal device performanc'e will result when the following response conditions be

met.
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. Maximised punchthrough voltage

] Minimised peak electric field
] Maximised transconductance
. Minimised series resistance

The method employed in constructing a composite response is to produce an
overall expression which can either be minimised or maximised. For this example
it was decided to minimise the value for the composite response, and therefore it
becomes necessary to convert any expression which needs to be maximised into a
form requiring minimisation, i.e. minimise the inverse expression. Hence the
approximate form taken by the composite response is shown in equation 6.1, where

a, b, c and d are weighting factors.

I Epk l Rg (6.1)
CR:a'(v:)*b'(‘x“)“'(m)*d'(T)

It is also advisable to normalise all the responses by their mean values, so that
the issues of scaling or units of each quantity may be ignored. Equation 6.2 shows
the final form for the composite response, where all factors have been equally

weighted and then normalised about their mean values.
CR=(13.I3)+(E“)+(8.79)+( Rs) (6.2)
Vot 447 Gm 675

Figure 6.24 illustrates the composite response which has been plotted against

the implant dose and energy at the fixed 90° polysilicon slope value. From this plot,
it can be seen that an operating point selected from the lower, right-hand region

of the display will meet the conditions previously set.

This technique can then be further extended to assess the sensitivity of these
responses to variations in each factor by displaying the appropriate response
derivativesinstead of the responses themselves. Hence the potential exists to locate
an operating point for the fabrication process which meets a number of specified
constraints and yet remain relatively undisturbed by small, but realistic, variations
in the input conditions. It is important to remember that this analysis is only as

accurate as the simulation data it has been provided with, but if the simulation
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Figure 6.24. Contourplot of a composite response

packages have been fully calibrated then an acceptable level of confidence may be
placed on any analysis undertaken and the concept of design for manufacturability

has been fully implemented.

6.6 Suminary

This chapter has introduced the concept of experimental design methods and
a brief explanation of their underlying techniques has been presented. One par-
ticular software system, namely RS/1™, which implements experimental design
techniques and manages the necessary databases is discussed and reviewed. The _
application of this simple, but powerful methodology, to present and future VLSI
processing is then shown with the unusual approach of employing calibrated
simulations to provide the results instead of experimental data. In this role,
experimental design can not only ensure more robust process designs, but also

enable them tobe easily optimised against a set of performance criteriawhich might
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pertain to a particular application. It is important to appreciate that the compu-
tational requirements are still excessive and that results are slow to acquire.
However, if this hurdle can be overcome, then widespread use of this powe.rful
strategy must be opeﬂly welcomed in commercial operations in order to ensure
more economic and efficient fabrication processes. The next chapter will describe
research carried out on a method of reducing the problem of computational costs

in this area.
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Chapter 7
Parallel Implementation of Process
Optimisation

7.1 Introduction

Theimportant role of simulation proceduresin the design and/or optimisation
of semiconductor fabrication schedules has been illustrated during the preceding
chapters and requires little elaboration here. It has also been shown that the
application of experimental design techniques enables a reduced data set to provide
comprehensive analysis over the entire region of interest. However, even on this
minimised data set, it is not hard to envisage how the total number of simulatiéns
can escalate, give;l that each design point may require many different simulations

(e.g. process, device, parameter extraction, etc).

To date these simulations, when attempted_, would generally have been per-
formed as one single serial batch process on an available workstation or minicom-
puter system within an engineering facility. Unfortunately, this approach has a
number of drawbacks associated with it. The most obvious of these is the CPU
limitation and consequently the elapsed time between batch submission and
completion. Additionally, the memory and disk space claimed by such software
usually renders most typical hardware platforms more or less useless for all but the
smallest of other applications, due to the inefficiencies of continually swapping
probesses. Realistically, this either necessitates the provision of a dedicated
simulation machine or enforces a limit on the frequency and size of the tasks
submitted. Neither approach is particularly desirable or constructive for a com-

mercial manufacturing or development establishment.

The second problem lies in the enormous number of data files which need
verification and unique identities before each individual simulation is performed.
Unless arebust method for controlling the file system is employed, then great scope
exists for the wrong files to be used for one or more simulations leading to totally

erroneous results.
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One solution to this may be found by applying the research discussed during
the course of Chapter 5, whereby a parallel version of each software package runs
on a transputer network. This dedicated performance port can substantially reduce
the overall computation time by accelerating every simulation and in addition it
relieves the host machine of the most intensive computation. However, the
resourcesrequired to develop paraliel codes for all the software packages that might
be required becomes excessively costly in economic and manpower terms as was
clearly illustrated in Chapter 5, when a parallel version of SUPRE‘M II was under

development.

An alternative strategy can be considered for multiple simulations associated
with the experimental design techniques previously described, since the problem
can be broken down into subsets of independent task. Such a scenario may be
referred to as operational parallelism and is ideally suited to a task farm solution
(see Chapter 4.). Here, the individual tasks are performed on any available processor
in a given network, each of which executes a serial program on a number of data
sets. Using this approach, an approximately linear increase in the overall per-
formance can virtually always be assured as the number of computational processors
isincreased. A more detailed analysis of the attainable performance and its limiting

factors is provided later in this chapter.

The application of atask farm system to the compu'tational problems presented
by the Design For Manufacturability (DFM) issue, provides many advantages over
its rival solutions. Each application software package only has to be compiled for
serial execution on a single processor. Porting such software generally presents
relatively few difficulties providingthatthe code doesnot rely extensively on system
dependent features. An objective evaluation of the packages that would typically
require porting for the particular application under consideration is made, then the
issue of system dependence should not create many problems. The individual
packages are frequently supported on a variety of platforms and thus it is in the
vendors’ own interests to minimise such dependencies. With this in mind, under

most circumstances it is therefore relatively simple to create a comprehensive
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library of binary codes capable of running on the farm. The one outstanding issue
which prevents progress is the availability of the source code. However, although
most software vendors are understandably unwilling to release their source code,
other than at extortionate prices, they can be more amenable to providing

cross-compiled binary code for the transputer.

Little imagination is required to see how it is then feasible to preduce an very
flexible computing environment, whose scope ranges far beyond the bounds of
applying DFM to the semiconductor industry. A selection of such applications will
be proposed and discussed later in this chapter (§7.4).

This chapter discusses the design and development of one task farm system
to provide an efficient and economic environment within which the DFM concept
previously presented can be pwsued. Firstly an overview of the entire hardware
and software s&stem will be provided, followed by a more detailed discussion of the
constituent modules. Thereafter, the link with the RS /1™ experimental design tools
wiil be shown. This automates the generation of the simulation data files, the
subsequent program execution and extraction of the desired output data, as
required by a particular experiment. Finally, the system performance will be
demonstrated using a mixture of SUPREM II simulations and a set of programs
designed specifically to enable the effect of altering the balance betweeln com-
munication and computation to be observed. Consequently, this allows thé overall
system performance to be concisely specified and permit users to maximise the data

throughput for each application.

7.2 System Overview

The design of the task farm architecture is most effectively illustrated by
investigating, in the first instance, the system services required to port a serial
application onto a single transputer. Then the subsequent replication of these
services for multiple applications enables the modular structure of the complete
systemto be defined. Figure 7.1 showsthe starting point for this work by illustrating

a general application running within its original host environment. Although a PC
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host has been depicted in the following illustrations, any of the hosts currently
available to support transputer systems may be used. At present these are IBM PC

or compatibles, NEC PC, DEC MicroVAX II or Sun-3 [1].

=

PC Host

&
db
Keyboard

Figure 7.1. Application running within host environment,

~ There are two particular points rto be highlighted in this generalised view of
a typical application. Firstly, the only assumption made of the host is that the
application only accesses the screen, keyboard and file system facilities by standard
calls to the run-time library. Secondly, it is significant that this scheme provides
no access to host-dependent interfacing features. As will be discussed in §7.2.1.3
such facilities can be made available indirectly. Figure 7.2 shows the system once
the application has been ported in its entirety across to a single transputer. This
may be described as a flat port, in the sense that the program structure remains

completely unaltered.

The transputer communicates with the host along a single link which is
connected to the host bus via a dedicated link adaptor. A simple server program
runs on the host at the same time as the transpﬁter-based application in order to
provide access to the screen, keyboard and filing system. A master/slave relation-
ship exists between the transputer and host, with the transputer assuming the
master status and initiating all the communication messages, Within this system
architecture, the transputer connected directly to the host busis known as the root

transputer, Additional transputers can be connected to the root transputer using
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Figure 7.2. Serial port to a single transputer,

any ofits vacant links. However, regardless of the number of processors in a network,
the single link to the host bus provides the sole route for all system service access.
The:é;?ect £ this will vary depending on the functionality of the processes placed
on each processor. For example, if an application lends itself to algorithmic
parallglisation, (i.e. employing concurrent execution of separate functional mod-
ules) then wherever possible, all the I/O modules would be placed on the root
processor where direct access to the host busis available. Equally, in certain parallel
application such as ray-tracing there is no system I/O required by the computing
modules and aéain ne problem exists. Unfortunately, the generalised task farm
system which is being designed here, requires that all the computing processors
have access to the system I/O just as though it were running either on the host or
on the root transputer and thus possessed a direct link to the system services. A
solution to this may be found by providing a multiplexing facility on the root
transputer which provides each processor attached to it a communication path with

the server process on the host. Thus, the system now appears as depicted in figure

7.3.

167



Host Root

Figure 7.3. System structure showing I/O multiplexor.

Within a task farm environment, each of the computing processorsis generally
referred to as a worker and the controlling process as either the farmer, master or
driver process. With only four physical links on the Txxx series of transputers, a
maximum of three workers may be directly attached to the root processor, which
somewhat limits the computing power available. Therefore, is becomes essential to
introduce a method of routing messages around a transputer network from pro-
cess(or) to process(or) to increase the number of workers. Such routing facilities
may be simple, topology-dependent tasks or far more intelligent,
topology—independeﬁt processes. The issue of inter-process(or) commq_nications
will be discussed later in §7.2.1. The systém now stands as shown in figure 7.4 which

includes all the modules presented up to this poeint.

Host Root Worker

Figure 7.4. System structure showing worker and routing processes.
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The performance attainable from a task farm system should be linearly related
to the number of processors in the farm system. However, by multiplexing all of
the standard system I/O channels onto a single channel pair, a potential com-
munications bottle-neck has been introduced. The actual degradation in system
performance will of course depend on the volume of traffic on these links and hence
it is essential to minimise this. In considering this matter, it is important to reflect
on the volume of communication traffic in relation to the computation done in
between. Aswill be explained in §7.2.1.3, the data protocol supported by both of the
standard server processes available, is excessively complex and verbose. It is,
however possible to simplify the data transmissions across the farm channels, since
the protocol is fully documented [2],[3] and the precise format of every command
is known in advance. Each worker therefore has ar process running concurrently
with the application which compacts the out-going server data for transmission
across the farm channels and expands the in-coming data before passing it back to
the application. Obviously, this procedure is repeated in reverse on the driver

processor for communication with the server process across the host bus interface.

The last major module lies only on the driver processor and this controls the
farm’s operation - a manager process, This takes responsibility for supplying each

- workerwith therelevant program code and datawhen required as well as monitoring
the status and performance of each worker. A more detailed explanation of the
manager functionsis provided in §7.2.4. Amuch simplified manager process resides
on each worker to supervise the loading and execution of the program codes passed

to it.

Hence, the overall system design may be schematically represented by figure
7.5. In the following sections of this chapter, the function and implementation of

each module will be reviewed in detail.
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Host Roof Worker

Figure 7.5. Schematic representation of the overall system architecture.

7.2.1 Communication Procedures

7.2.1.1 Introduction

Before discussing the communication requirements and capabilities of the
Txxx series of transputers, there are a few background concepts relating to this

issue which would be most appropriately explained at this juncture.

The rationale behind the design of a transputer based system is closely linked
to the relationship between the software and hardware architectural models.
OCCAM may be considered as a ’process-oriented’ language which enables con-
current systems to be defined in terms of an interconﬁecteci set of prﬁéeése;; These
processes can be regarded as black boxes which can be specified completely in terms
of their communication requirements along the point-to-point channels which link
them together. Internally, each process can then be designed as a further set of
communicating processes, thus automatically generating an inherently hier-
archical design structure as illustrated in figure 7.6.

For the sake of completeness, it should be pointed out that although proéesses
may be written in any supported language, any non-OCCAM ones are subsequently
encapsulated by a simple OCCAM harness. This serves to make them appear as an
equivalent OCCAM process and relieves any possibility of restricting their use

within a multi-process (and hence multi-language) environment.
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Figure 7.6. A collection of communicating processes.

This OCCAM programming model is implemented in hardware by the
transputer itself. Within the bounds of a single processor, concurrent processes
share the CPU/FPU time and inter-process communications are performed by data
transfer inmemory. Where multiple processors are involved, then the inter-process
communications are directly implemented by the physical links. However, the
important notion supported by OCCAM is that the logical behaviour of the software
is independent of the mapping of processes to processors, This allows for flexibility
and incremental expansion of transputer based systems. Figure 7.7 demonstrates

this by showing two possible implementations of a three process system.

Logically, these two systems are identical, but will differ with respect to their
real-time response. Consequently, a program may be designed and tested on asingle
transputerbefore being transferred to a network. Additionally, this also allows extra
processors to be added to a network or alternative transputer configurations to be
investigated without any alteration to the process definition of the system. How-
ever, there is one limiting difference between the OCCAM model and the Trxx
hardware architecture which, under certain circumstances, can prevent the
completely arbitrary process to processor mappings suggested above. The OCCAM
point-to-point process interconnection scheme is simply supported for concurrent
processes on a given processor, since the channels are implemented by memory

locations. Hence it is possible to define and use a large number of channels within
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Figure 7.7. Different process-to-processor mappings with identic;al logical results.

the confines of a single processor. If on the other hand, some of these processes are

now placed on neighbouring processors, there are only four physical links onto
which the relevant channels may be mapped and there-in lies the problem. Pri-
marily, there are three potential solutions to this dilemma, of which two arerelevant
to the Txxx transputer series. Firstly and least favourably, this hazard may be
considered at the process design stage and the number of inter-process channels
limited at all levels in the hierarchy. This then permits total freedomin the process

to processor mappings when the system is subsequently configured. A variation on

this concept, is only to limit the channel usage at partlcular ﬁroéess hierarchies and

in this case it is the selection of permissible process to processor mappings which
becomes limited. Both scenarios compromise the conceptual freedom of system
design and implementation built into the OCCAM langusage and are thus unde-
sirable. The second approeach is to produce a dedicated communications harness
which automatically multiplexes the users’ channels onto the available links. Two
examples of such harness’ which have been developed on the Meiko Computing

Surface at Edinburgh University are TITCH[4] and TINY([5). The former was
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OCCAM based and the through-routmg overheads associated with it were fmrly

h1gh - in excess of 330 microseconds[6]. The development of TINY evolved away

from tradltlonal OCCAM programmmg Wlth processes, sharmg databuffers and was

subsequently written in a combination of C and transputer assembler alone W1th
these improvements, the overhead was reduced to 20 microseconds, a value that
could only be further diminished by hardware modifications within the transputer
itselfl7]. TINY was chosen as the harness for this task farm system and consequently
it will be discussed in greater detail in §7.2.1.2. The final solution is only applicable
to the recently announced T9000 transputer, which is capable of supporting virtual
channels across its four physical links through the use of avirtual channel processor
within the hardware architecture[8]. This permits channels to be defined between
any two processes using hardware as opposed to the software solution provided by

TINY. Apart from the upgraded performance to be attained from the T9000, this

virtual channel capability must be the greatest single improvement over the Txxx

series of transputer.

Throughout the course of the following subsections, an outline of the role and
structure of each major process within the system will be presented. Although the
system has been entirely coded, compiled and configured using 3L Parallel C [9],

_ " OCCAM hasbeen used for the sake of clarityin many of the pictorial representations

of code segmentssince it can explicitly display concurrencyusing the PAR construct.

| Any code examples provided within the following text have been written with the

intention that no particular knowledge of the lahguage bé required for their com-

prehensien. However, a complete definition and thorough tutorial of the language
may be found in [10] and [11]. '

7.2.1.2 The TINY Communications Harness

" Theissue of communication posesone of the greatest challenges to the parallel
computing applications programmer. This is especially true in the case of distrib-
uted memory MIMD machines, such as a multiple transputer network. When
messages only need to be exchanges between directly coupled processes or a

predetermined pattern of communications exists, then it is not that difficult to
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create a suitable communications system. HoWever, once the situation involves
disjoint processes O.I‘ indeterminate communications patterns, then the solution no
longer can be considered triﬁal and may seem virtually intractable, Under these
circumstances, the inclusion of a general purpose communications harness capable
of forwarding messages from any user process to any other process, becomes highly

sensible, if not essential,

There are two approaches to the provision of such communications facilities.
The first is to write and run the application under a dedicated parallel programming
environment such as CSTOOLS from Meiko [12], Helios from Distributed Software
Ltd [13] or TAOS from TAO Systems [14] all of which inherently implement the
required logical process connectivity. With respect to this work, use of either of the
latter two options would have required the acquisition of the respective operating
system for both the development and subsequent use of the application, whilst the
first would have constrained the system to a Meiko computing surface, Whilst these
restrictions are surmountable, it must also be noted that at the outset of the project,
none of the previously mentioned tools was openly available in a fully operational
form and thus this route was discarded. The second approach is to access a library
of procedures which are callable from a variety of user programming lahguages such
as the TINY harness ) ':-'E,developed at Edinburgh. This then allows complete
portability of the software and retains the desired independence from any particular
operating system. With these factors in mind and the ready availability of the TINY
libraries for inclusion in 3L Parallel C programs, this harness was therefore chosen
for development of the task farm system being presented here.

The basic concept behind a topology independent communications harness
can be illustrated by figure 7.8, which shows the processes residing on every pro-
Cessor.

Each user process is connected to a harness process whose responsibility it is

to provide a data path between all the user processes whilst minimising message

latency, CPU impact and avoidance of deadlock conditions. Details of how TINY
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Figure 7.8. Process structure within the harness environment.

concerns itself with these issues is presented in [15]. The remainder of this section
will provide a brief summary of the TINY harness and its application to the task
farm.

TINY is available as a set of library procedures in either C or OCCAM, which
call an underlying series of C functions to perform the following tasks.

L Determine the processor topology
L Determine the process mapping

. Calculate the routing tables

. Spawn the router process

® Read and Write messages

Each user process is given a unique integer address for indentification pur-
poses throughout the network. In addition, either a single or multiple channel
interface to the local routing process may be specified, where every channel may
have separate properties assigned to it in terms of message synchrony and

read/write permission (channels can be defined for read only, write only or
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read/write operations). Thus a portion of a configured network could take the fqrm
shown in figure 7.9, which illustrates two processors each of which is supporting a

number of differently defined user processes.

)
III

. Router 0

Figure 7.9. Process structure within part of a configured network.

Three different routing strategies are supported under TINY, which are
referred to as broadcast, sequential and adaptive respectively. The function of the
first is fairly straightforward. The message is forwarded to all other user processes
in the network, with the distribution ensuring that only one copy of the rﬁessage
is received by any no.de in the system. With sequential transmission, the message
is forwarded along a fixed and predetermined path to its eventualrdestination, thus
ensuring that message ordering is preserved. Finally, with adaptive transmissions,
the message is forwarded initially over the same path as used for the sequential
case, but then branches along the least busy path whenever a choice of equidistant
routes exists. In this way, an attempt to balance the overall network traffic is made
at the expense of message ordering which can no longer be guaranti%d. Figure 7.10
shows an example of each transmission strategy along with their associated datatype
definitions, as would be instanced using a C syntax: It is assumed that TINY has

been successfully initialised previously within the code.
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#include “tiny.h"
int ok; f* Success or failure error code */

int type,dest,length;
int *source;

void *data;
ok = t_sseq(lype,dest,data,length);

ok =t_recv(type,source,data,length);

Figure 7.10. Example of TINY message transmit and receive strategies.

The transmit or receive buffer may take any valid C data type providing the
user ensures the length is specified in terms of bytes and not multiples of the
particular data type. Thus for use within the task farm, a unique buffer structure
was defined for each message type ﬂlat would be transfeired across TINIY from a
worker process to the driver and back again. Figure 7.11 shows an example of one
such buffer and figure 7.12 illustrates how all the buffer structures are brought

together using the C union construct.

stract aféOpenFile
{

int  accessMethod;

int openMode;

int  existMode;

int recordLength;

int nameLength;

int priorityLevel;

char fileName[MAX RECORDI;
b

Figure 7.11. Buffer structure for OpenFile file server command.
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struct afsBuffer

{

int tag; /* Command(to.server) or Result{from.server) value */

union

siruct  afsOpenFile OpenFile;
struct afsReadBlockReadBlock;

} data;
|5

| Figure 7.12. Complete buffer structure for all file server commands.

In this way, the required command and parameter values could be easily
packetised and unpacketised into the correct formats. Finally, all message trans-
missions use the sequential transmission strategy since the ordering of messages

is vital,

7.2.1.3 The INMOS Alien File Server Protocol

Aswas indicated in §7.2.1.1, an interface exists between user processes on the
root transputer and the hosts’ operating system. The host executes a simple server
process which supports a two-tier communications protocol which enables the
transputer processes to access the appropriate host services. The original INMOS
Alien File Server (AFS), afserver, supports access from the D705A OCCAM toolset
and scientific language processes, The OCCAM-2 toolsets use a different server
process, iserver, which permits binary-level platform portability and is therefore
recommended [16]. However, the afserver source code is supplied along with its
associated compilers which facilitates user modifications and hence was chosen for
this system. It is intended to provide only a brief overview of this server protocol
at this point, to serve as sufficient background for discussing its modification and
subsequent implementation ‘over TINY within the task farm system. A more

complete description is available in [17], [18].
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The basic protocol between processes consists of an explicitly tagged protocol,
where the tags indicate the data type of the value which follows immediately, There
are 13-tags within the full protocol specification, although only a reduced subset of
_ these are actually implemented in current servers. For ease of programming it is
customary to define all of these as constants within a header file which can be
included where necessary. An excerpt from an OCCAM definition of the tags is
shown in figure 7.13. At present, only the final three tags are supported, though

the remainder are reserved for use in future implementations of the server.

bool.value IS BYTE o:
byte.value IS BYTE 1:
i-nt32.valuc IS BYTE 4:
s-lilrecomd.vnlue IS BYTE 8
record32 value 1S BYTE 12:

Figure 7.13. OCCAM definition of AFS tag values.

Thus the basic integer and record data types can be produced from these tag
variantsasshown in figure 7.14. This indicates how an integeris sent as int32.value
(showing that a 4 byte integer is about to be sent) followed by the actual integer
value. Similarly a record of bytes is transferred by first sending, record32.value,
then a4 byte integer representing the number of bytes in the record and finally

the appropriate sequence of bytes.

integer int32.value ; INT32

record

record32.value ; INT32 :: [JBYTE

nilrecord.value

Figure 7.14. Tagged definition of integer and record data types.
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As can be seen, a means to send zero-length record has been incorporated to
maintain continuity. In this case, the nilrecord.value tag is sent with no following

sequence of bytes,

AFS commands all consist of an integer command value followed by a prede-
termined set of integer and/or record parameters. The server will respond to this
command information and return an appropriate group of integer and/or record
values. There will always be & minimum of one integer result returned from the
server, whose value indicates the success or failure of the operation. In the same
manner as with the basic data tags, it is normal to define all the command values
and their associated constant parameters in a header file. Figure 7.15 shows a few
such definitions, whilst figure 7.16 illustrates the syntax of some commands. Both
of these figures use OCCAM definitions, as seen previously, but the concept is
transferable to whatever language is being employed for a given process. A full

listing of all the available command values and their respective syntax is given in

= a=

OpenFile
to.server=0OpenFile.Cmd filename access.method open.mode exist.mode record.length

integer  record  integer integer  integer integer

from.server = stream.id result

integer integer

ReadBlock :

to.server = ReadBlock.Cmd stream.id record.length
integer  integer integer
from.server = record result

record integer

Figure 7.16. AFS Command syntax.

When the basic tagged protocol is added to this AFS protocol, the extreme
verbosity of this syntax becomes fully apparent. This is illustrated in figure 7.17
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OpenFile.Cmd IS I: — Commands

OpenTemp .Cmd IS 2

OpenlnpuiStream.Cmd IS 3:

ReadBlock.Cmd IS 12

Terminate.Cmd 8 24

RunTimeData.Cmd 15 34

TextByteStream. Access Is 1: — File access and
Read.Mode Is 0: -~ Open modes
Write. Mode IS 1:

OperationOk IS 0: - Error conditions
EndQfFilz - - - is i — Server errors -
FileNameTooLong . Err 15 3:

File AlreadyOpen.Err 1S 10 2:~ Host errors

Figure 7.15. AFS Command value definitions.

below where an example of one AFS command is shown in full. The total number
of bytes for the given operation are also indicated with each appropriate value and

parameter,

The negative aspect of this verbose syntax is further compounded by the fact
that link communications operate by the transmission of single bytes [20] rather
than by packets of data as has been incorporated into the T9000 communications
protocol [21]. Hence, even when only a single process is communicating with the
server, the number of byte transmissions will be substantial. However, if, as in the
case of the task farm, there are many independent processes each attempting to
access the link adaptor, then the motivation to compress each message is very

apparent.

181



to.server = OpenFile.Cmd integer int32.value;OpenFile.Cmd

filename record record32.value;12::*"TESTFILE.DAT"
access.method integer in132 . value;TextByteStream. Access
open.mode integer int32.value;Update. Mode
exist.mode integer int32.value;OldFile
record.length integer int32.value; 16

" from.server = stream.id integer int32.value;5
result integer int32.value;OperationOk

. . B el .
Figure 7.17. An entire AFS command”__ jshowing both protocols.

If the above example of an AFS command in its expanded form is briefly
examined, then it can be seen that the information provided by the basic protocol
tagsis actuallyredundant. The length of the message to the server could be reduced
from 42 bytes to 36 bytes and that from the server from 10 to 8, by stripping the

tags from the data transmission, - -

7.2.2 Worker Process

The worker process resides on all but the root transputer and is responsible
for runningany application available for the system. Figure7.18 shows the processes

that go to make this worker and their associated communication channels.

In terms of these sub-processes, TINY has already been discussed in §7.2.1.2,
leaving this section to cover the application itself along with the basic manager and
its protocol translation process. The application maybe simply considered as ablack
boxwith apair of communication channelswhich the process assumesare connected
to the server, but which are in fact attached to an intermediate translation task
before being routed te the server via TINY. This view of the application illustrates
the concept behind the OCCAM model of concurrent programming mentioned
previously. The role of the manager is perhaps most suitably explained by first

looking at a simplified OCCAM description of its operation, as shown in figure 7.19.
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Figure 7.18. Worker processes and communication channels.

— initialise router

initialise Tiny

— main job loop
WHILE (Jobs to be done)

SEQ
IF
New program
Receive code details
Receive code
Receive job details
Current program
Receive job details
PAR

slart program
link AFS protocol to TINY

inform DRIVER when program has finished

Figure 7.19. Pseudo-OCCAM description the manager process.
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The design and functionality of this process could have been much simplified
by electing to nominate a single application at the compilation stage and thus
statically including it in the overall worker process. However, this compromises
much of the flexibility that could otherwise be offered by a task farm system.
Therefore it was decided to permit different applications to be nominated as
required at run-time and consequently this influences much of the logic within the

process.

When the task farm is initially bo;)ted up, it is necessary for TINY to be
initialised on each processor and so enable system intercommunications to proceed.
If for any reason this initialisation fail, then the entire system will shut down and
inform the user to this effect. Assuming TINY initialises successfully then
system-wide process communications will be available until an explicit terminate
procedure is activated at the end of all the required computation. All subsequent
communications received by the worker will be with respect to loading, starting and
running the users applications. |

Before discussing the basic operation of the worker, it is beneficial to provide
a brief summary of the various modes of communication available to a particular
process. Depending on the harness and run-time libraries that are linked to the
process binary image, one of three alternative communication schemes can be
invoked, each of which requires to be handled differently. A more comprehensive
discussion of these task variants may be found in [22].

The first case is that of the Standalone task, which may be considered as per
ﬁgﬁre 7.20. Such a task can only communicate using channel I/O functions (e.g.
chan_in word in 3L C) and not with the standard I/O functions (e.g. printf in C).
This is because it is linked with a special standalone version of the run-time library
of the relevant language which includes no support for these functions. Within this
task farm system, the worker process would be configured as a standalone task,
since it only communicates with neighbouring tasks and never directly to the server

itself,
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Figure 7.20. Standalone task communications.

The second case is the Supported task, as shown in figure 7.21. This task again
uses the 3}. 7hairng_s_s_as with the standalone task above, ‘but now includes a full
version of the run-time library to permit standard stream and file I/O using the
standard File Service Protocol. The driver process from this task farm system would
be configured in this manner since it is required to communicate directly with the

server and with the workers attached to it,

Figure 7.21. Supported task communications.
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The final case is that of the Inmos task which is illustrated in figure 7.22.
Whilst the full run-time library is incorporated, it is combined with a different
harness which only permits direct communications with a server over a specified
channel pair. These channels adhere to a modified version of the Inmos tagged File
Service Protocol, adjusted to be tolerant of a problem with T414 Rev A transputers

which is incapable of sending one-byte messages over its links.

INMOS Hamess

ONLY to INMOS AFS |
INMOS S
server

TASK

stand-alone
run-time fibrary

protocol

Figure 7.22. Inmos task communications.

It may be noted that this task is identical to the basic flat port of a general
application to asingle transputer environment which was presented earlier. Indeed,
the same code m:iy be used to boot and run the application in such a fashion in
addition to being loaded and run from within another task as required by the task
farm. On the basis on this last feature, the Inmos task is preferable to the supported
task for use within the proposed system.

One other general point of some importance is that of the run-time implica-
tionsbrought about by theinclusion of either the full or standalone run-time library.
If the full run-time library is linked to the task binary code to permit use of the
standard I/O functions, then certain procedures are automatically invoked when
the application is booted up. There are normally four standard streams associated

with these functions - two input and two output, whose roles can be listed as follows.
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Standard input stream 0 This is the regular input stream which is
usually associated with keyboard input It may be
redirected on the command line by the operating
system, This is the stdin stream within the C syn-
tax,

Standard input stream 1 This -is a character buffer cbntaining any
command line parameters supplied by the user for
use within a program.

Standard output stream 0 This is usually reserved for the screen output,
though may also be redirected from the command

line. The stdout stream within C.

Standard output stream 1 The output stream usually reserved for
sending error messages to the user on the screen.

The stderr stream from C.

Therun-time library endeavours to open all four of these streams and allocated |
stream identifiers to them for later use by the calls to functions using them. In the
case of the command line stream, an attempt is made to read in any characters that
may be present in the relevant buffer and then the stream is closed. Obviously, it
is therefore vital that any task using this library has access to the server, in order
for these operations to succeed. Alternatively, any task which is not able to access

the server, must not be linked with the full run-time library.

The final significant issue to be discussed at this time pertains to the access
of these standard streams and the general filing system within a multiple appli-
cation environment, Little imagination is required to envisage the chaos that could
ensue when a number of applications all tried to write to the screen or read from
the same file or the keyboard at once. Although two of the standard streams can
be simply redirected via the operating system, the remaining two can not. In
addition many programs use fixed, predefined filenames for specific dﬁta output
such as debuginformation which again can not be easily be altered without changing

the source code, which is compromising one of the original targets. It was therefore
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decided that between the worker and driver processes, a suitable solution could be
incorporated, thus leaving the application process unaltered and none the wiser of
how and where it is being executed. As will be indicated in §7.2.4, with each appli-
cation that is submitted to the task farm, a number of stream and filename alter-
ationsare supplied to provide unique stream and file identities for every application.

With the preceding background information in mind, it is now intended to
continue with details of the manager process operation as shown earlier in this
section. With TINY initialised, the manager must now load and then invoke the

application task (as an Inmos task). The following actions must be performed for

this to be done.
L] Allocate memory for application code and workspace
° Load application code
° Arrange communication channels to/from application
. Start application task |
. Handle application task communications

Information pertaining to the task memory requirements can be extracted
from the executable code and are passed to.the manager from the driver in advance
of the actual code itself. Obviously, this only occurs when a new application isneeded
on a particular processor since the stored code may be invoked as often as is
demanded. However, for every job, the manager requires a list of stream and file-
name translations to ensure unique identities are maintained throughout the
system. In addition to thislist, details of any command line parameters for standard
input stream 1 are also included. A more detailed examination of this data will be
presentedin §7.2.3 and §7.2.4. The precise details of invoking the code may be found
in [23]. In parallel with the application task, is the process which links the AFS task
. channels to TINY, adapting the format and content of all messages as necessary,
The basic operation of this protocol interface process may be summarised by the

pseudo-OCCAM description provided in figure 7.23.
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WHILE task running

Receive AFS command value from task channel
SWITCH(AFS command value)

CASE OPENINPUTSTREAM_CMD: IF stream_1
ignore — see later
IF stream 0

apply stdin translation
fill TINY buffer with OPENFILE_CMD
break

CASE General CMD : read in remaining parameters
apply any translations necessary
fill TINY buffer with CMD info

break
END SWITCH
send TINY buffer to DRIVER
receive TINY buffer from DRIVER
SWITCH{AFS command value)
CASE GENERAL_CMD :  unpacketise TINY buffer

undo any translations applied
send results in AFS protocol to task
break

END SWITCH

Send TERMINATE_CMD 1o DRIVER

Figure 7.23. Pseudo-OCCAM description of protocol-translation process.

The majority of the AFS commands require some alterations to be performed
whilst packing up the information into the TINY buffer structure. Obviously any
involving filenames require this string to be changed to its new unique value

on-the-fly, and likewise any filenames being returned from the driver must be
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translatedback to theirlocal value. However, one or two commandsrequire aslightly
more subtle approach tobe taken. For example, take the RunTimeData.Cmd, which
would normally read the command line buffer from standard input stream 1 (which,
for a genuine standalone task would already have been opened). In this case, the
request toopen this stream is merely ignored, and the subsequent 'read’ is replaced
by copying the contents of the command line buffer sent down with the job details
directly to the task.

A moredevioustechnique is necessary to deal with the OpenInputStream.Cmd
with reference to input stream 0 (i.e. keyboard). Here, the command is changed to
an OpenFile.Cmd with the filename being the translation for stdin supplied with
the job details, It is important to note that however much a particular command
may be altered for transmission to the driver, the result which is returned to the

applicationmust acknowledge the original command, so as not to lead to confusion.

The only other command which is added to, rather than altered, is the
each application run. This is returned to the
driver along with a number of extra parameters relating to system performance and
errors applicable to that particular job. These parameters are then used to produce
formal system log files for the user when the system is ﬁnz;lly shut down. Although
on a single transputer application, this command would also be used to terminate
the host server process, within this system it merely signifies to the driver that a
particular worker is available for the next task to be performed. Only when all the
Jobs submitted to the system have been processed, will the server be instructed to

terminate and return control to the host operating system.

7.2.3 Driver Process

The driver process resides on the root processor and.-is responsible for man-
aging and monitoring the entire system operation. Therefore, it provides each
worker with continual stream of jobs, automatically ensuring that the correct
application code resides within the respective workers and then multiplexes all the
TINY communications from each task onto the server channels, The basic process

structure along with the communication links is shown in figure 7.24.
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Figure 7.24. Driver processes and communication channels.

This figure includes one extra process, filesys, over and above those previously
illustrated for the driver. As will be explained shortly, this process is required to
overcoinie specific linitations imposed by the host operating system. Of the
remaining processes, TINY has already been discussed in §7.2.1.2 and the mux
process will be shown to be inherently contained within the scope of the basic
manager logic. It is best to lead into the discussion of this logic by considering the

simplified OCCAM description of its algorithm shown in figure 7.25.

The details of the command file from which system instructions are taken will
be presented in §7.2.4. Hopefully, it is also possible to see how the manager
inherently multiplexes the incoming application messages by not reading another
TINY buffer until the previous message has been replied to. In this respect, TINY
not only services the system communications, but also provides an implicit message

buffer for all the processes it supports by the nature of its internal operation.

In contrast to the worker, very few AFS commands require direct modification
before being passed on to the server itself, mainly because this has already been
dbne prior to their transmission. Equally, certain commands will never be received
by the driver since they will have been trapped and dealt with within the confines
of the worker (well that is the plan !). Obvious examples of these are the Openln-
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initialise TINY

open batch command file
WHILE jobs to do

receive message buffer from TINY
IF AFS message
IF OPENFILE_CMD
IF files open > MAX_OPEN_FILES
close a lower priority file
END IF
unpacketise TINY buffer & send 1o server in AFS protocol
get result back from server
packetise result into TINY buffer

return buffer to respective worker

ELSE
— node awaits new job
read batch file entry
IF program not on this worker
send out new code

send out job details

update screen with system and job slatus

Figure 7.25. Pseudo-OCCAM description of the manager process.

putStream.Cmd and OpenOutputStream.Cmd commands which will either have
been transformed to OpenFile.Cmd or dropped altogether on reaching the driver

as indicated in §7.2.2.

However, it is on account of limitations placed on run-time file system access
by the operating system, that the most demanding process, filesys, need be intro-
duced. Most operating systems place a limit on the number of files which may be
opened at any given time. For SunQS™ this value is 64, although mechanisms exist
for extending this in some cases [24], but for (MS)DOS™ the value is set at 16, This

low value becomes somewhat limiting in a multi-application system where each
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task is trying to open its own complete portfolio of files under the pretext of being
the sole application accessing the file system. In short this means that OpenFi-
le.Cmd’s can not be simply passed directly to the server, since the operation will
fail once all the available file handles have been allocated. However, the application
will be expecting a successful outcome and most tasks will either exit or crash should
failure be detected. Consequently, it is necessary to produce and maintain a logical
file system within the driver, which is capable of supporting as many files as may
be required by all the applications. In this way, each application will be given results
which enable it to assume that these file operations have been successful and that

the relevant files are currently in an open state.

In order to achieve this logical file system, the driver maintains a file table for
each application running under the system. Whenever this requests an OpenFi-
le.Cmd, the file is temporarily opened and an entry made in the respective file table
as to its genuine file identifier, the pseudo identifier returned to the application,
the file pointer position, the file access mode (read/write/append) and type (hi-
nary/text) gnd its true open/closed state, The file isthen actually closed. Whenever
subsequent operations are required on this file (except CloseFile.Cmd, obviously)
it is reopened, the file pointer correctly positioned and the resulting pseudo
identifier used to enable the desired operation to proceed. Again on completion of
the action, the file pointer entry in the correct file table is updated and the file is
then reclosed. Unfortunately but hardly surprisingly, this open file, move pointer,
act, update pointer and close file cycle is substantially slower to execute than the
original file operation. This can dra.maticélly influence the overall performance of
batches which make continual use of the file system during the course of their
operation. As a compromise, it is therefore desirable to keep as many files genuinely
open and only perform this open/act/close routine when the system file limit has
been reached. In this way the maximum performance can be attained for a given
file limit. The logic required to implement this would be trivial if it were not for
the fact that an intelligent method of allocating the available open files amongst
all the application must be included. |
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To this end, two steps in particular were taken. Firstly, it was decided that
without prior knowledge of the file usage of all the applications that might be
running on the system at a given time, an equal allocation of the available files-
would be made to all workers. This allocation is made during system initialisation,
with each worker being given (maximum system files/No. workers) files. Secondly,
the files relevant to each application would be given one of two priority levels with
respect to it remaining open for as much of the time as possible. In this manner, it
was intended to keep as many of the frequently used files open across the system
so as to incur the least performance degradation. The specification of a files’ priority

then becomes part of the job description within the batch command file, as will be

~will attempt to close files in the fq’_llowing fashion.

illustratedin §7.2.4. Thus when the genuine file system is at full capacity, the driver .

18t Low priority files on same worker.

and Low priority files on other workers.

3rd High priority files on same worker.

4th  High priority files on other workers.

By following this approach, it is possible to maintain virtually the maximum
attainable performance for a given file system capacity, without either prior
knowledge of the applications requirements or the use of a complex optimisation
algorithm. By monitoring the system performance, it was possible to confirm that
the incorporation of this pseudo file system concept did indeed boost the file access

time and results to this effect are presented in §7.3.

7.2.4 Control Procedures

The previous sections have provided a brief summary of the structure and
function of all the main process modules which form the task farm system. It is now
necessary to consider the way in which the user specifies the operation of the
system. The driver process receives all the required details from a single control
file which isspecified when invoking the system from the host. There are two levels
of information contained within this control file. Firstly, there are groups of data
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statements pertaining to each job requiring to be processed. Figure 7.26 shows the
basic format of the statements required to describe a single job whilst in figure 7.27,

example statements for a SUPREM II job are illustrated.

Do program name  command line
Assign filename-1 new filename-1
Asgign filename-n new filename-n
Stdin redirected  filename

Sidout redivected filename

Done

Figure 7.26. General format of control file statements.

Do suprem2.b4

Assign SUPSEG SUPSEGO1
Assign . . SUPSYNT .. SUPSYNTO1
Assign SUPDEBUG SUPDEBUGO1
Stdin RUNOI.IN

Stdout RUNO1.QUT

Done

Do suprem2.b4

Assign SUPSEG SUPSEG02
Assign SUPSYNT SUPSYNT21
Assign SUPDEBUG SUPDEBUG02
Stdin RUNO2,IN

Stdout RUNO2.0OUT

Done

Figure 7.27. Control file statements for two SUPREM II jobs.

Around these’job’ statements can be placed a series of ’block’ statements which
can divide the jobs up into sub groups which must be completed before then next
sub group is commenced. In this way, it is possible to ensure that, for example, all

the process simulations are completed before the device simulations depending on
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their output are started. This concept can be considered to be analogous to the
dependencies listed in the make file for a software package. This 'block’ concept is

shown in figure 7.28, where the particular job details have been omitted for clarity.

Begin BLOCK-1 — first block name
Do
- job No. 1
Done
Do
— job No.2
Done
End
Begin BLOCK-2

— more job assignments.
End

Figure 7.28. Block structure within control files.

As discussed previously in §7.2.3, the priority of any particular file is given by
its order within the job description, with the highest priority being defined first.
When the driver reads the final job description from the control file, it awaits
termination of any outstanding applications on the system before shutting each
worker process down in turn.

The final point to be mentioned concerns the link between an experimental
design within RS/1™ and the production of its associated control file and all the
simulator files required by each job. The repetitive nature of all these files is highly
apparent and thus their production lends itself to automation. Taking a SUPREM
IT experiment as an example, it can be seen that the following files will be needed
to successfully run the batch.

. SUPREM II data files for each experimental point

] Control file for entire batch
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The former are produced from a single SUPREM 1I template file, where the
relevant parameters have been replaced by an identifiable character sequence. For
each experimental point, the data is read out from RS/1™ and used to replace the
relevant parameters within the simulation template file. An incremental name \is
then applied to this file and this is also written into the control file as the translation
for stdin. The remaining details for the control file come from another template
- file which describes the actual simulator in terms of its filename and command line
requirements. Again any standard application files are. given incremental names
for individualidentification. Hence, a simple user program can be used to call RS/1™
and produce the desired experimént. It can then generate all the necessary files
from two generic templates and then instruct the task farm to run this batch. On
completion of all the jobs concerned, a similar approach is used to extract the desired
results from the simulation output files and return them to RS/1™ for subsequent

analysis,

7.3 System Performance

OCCAM and its complimentary set of parallel scientific language develop-
ments all consider the real-time aspects often associated with concurrent system,
to a high degree. Therefore ways of measuring and apportioning time have been
included in these languages using the TIMER construct [25].

The task farm performance was thus able to be measured by including a
number of these timers throughout the driver and worker processes. From the
results returned from these, the time associated with loading in the application
code, subsequent application server communication and with the application
computation can be individually identified for each job performed. In addition the
elapsed time for an entire batch of tasks to be performed is measured. The results
relating to each task are passed back to the driver process as part of the modified
AFS Terminate.Cmd command and placed in the main system log file for later

assessment.
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The screen image shown in figure 7.29, illustrates the user interface whilst
thesystemisinthe midst; of processing a particular batch. It can be seen that details
are provided for both the system as a whole and the current state of each worker
in turn. In this way should any worker cease to function then this will quickly be
picked up.

oy
14:435:0%

Syatem fole Tasgl Infe

System ¥odes @ S
Kodes Busy 3
Kedes Rendy @ 2 Curfent Block : Block-| .
Kedes Dead L] ' Jobs completed: 2 *
Code §n Liemory: Cputest.bé

Tast Fike Tocputest.ie

Nede Progiom  Rendy Eusy  Jobo deoe

cputest. b4 |
cputEst, be )
cputest. b4+ 0

- Ccputest.be 0
cputest. a4 0
3

2

.
BT R A

Mesgage fiom
Leszage to

roten 20 :: tag 2
v lea 4 ::otag O

. - . . e . . ‘)

Figure 7.25. Screen image captured during system operation.

In order to showboth the performance and shortcomings of the system, results
from a series of experimental batches are presented. Each batch has been produced
with the intention of highlighting a different feature of the system. However the
first objective was to compare the execution of a representative application on a
number of typical computing surfaces. Therefore the elapsed times for five similar
SUPREM II simulations run on three different systems are shown in table 7.1. All

the times quoted are in seconds.

Various points should be noted in terms of these results. Firstly, all times
‘represent the time between issuing the initial host command and control being
returned to the host command line. Secondly, the overall elapsed time in the case
of the task farm includes the time taken for the system to be booted up. Unfortu-
nately, because the T800 boards available outside the PC host only possess 256
Kbytes of memory, SUPREM II could not be run on them and so the slower T414
boards which possess 2 Mbytes RAM had to be used. Because SUPREM II relies
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Simulation |

Root

VAX | Tandon | Worker
file 11/750 | 286 PC T414 T800
RUN-01 502.5 695.6 1823 —_—
RUN-02 416.3 672.1 1834 —
RUN-03 524.3 692.3 1812 e
RUN-04 433.5 715.4 1776 R
RUN-05 493.8 940.5 1754 —
Elapsed Thne 2,370.40 | 3,715.90 | 1875.00

Table 7.1. Comparison of SUPREM II simulation times.

heavily on floating point arithmetic, there is a dramatic performance loss sustained

when using the non-floating point T414 transputers. Therefore conciusions should

not be drawn from the dlrect companson of the last two columns in thls table.

—_— .

Whllst Stl]l consuiermg the system performance relating to these SUPREM

I s1mu1at10ns, the next issue to conmder is how the reported elapsed time is

apportioned between commumcatxon and computatlon Flgure 7 30 shows the

system log file for the above simulations which includes the worker monitoring

data.

‘Two particular points arise from this data. The first of which is the time taken

to load all five copies of the application code onto their respective workers. The

second is the ratio of communication te computation times, which are excessively

out of balance. When these results were taken, each worker loaded its code directly

from the host file system. Unfortunately, all block data transfers between the host

and the root transputer have a maximum block size of 512 bytes which is set within

the run-time library. Thus, no matter what size of data block the user requests, if

this is in excess of 512 bytes then the run-time library will automatically perform

multiple block transfers until the desired limit is reached. The application code for

199



Edinburgh Microfabrication Facility
Simulation Taskfarm System
System Nodes : S

Batch File : supremb.rc

Node Program Calc Comm Load Misc
1 suprem. b4 628 1164 27 0
2 suprem. b4 638 1165 27 0
3 suprem.b4 642 1140 27 0
4 suprem b4 632 1113 27 0
5 suprem. b4 644 1079 27 ]

Completed 5 jobs : Elapsed time 1875 seconds

Figure 7.30. System log for SUPREM II simulations,

SUPREM II occupies just over 300 Kbytes which requires in excess of 600 block
transfers, and leads to the: - .27 second load time. When applicatiohs such as
SUPREM IV and PISCES are conéidered, the problem is even worse, as both of
these codes occupy over 2.5 Mbytes at which point the initial code loading time
would outweigh much or all of the advantages to be gained in using the high per-
formance T800. The driver logic was therefore altered so as to store the loaded
application code in its memory, assuming sufficient capacity, and load any other
workers requiring this code directly from memory, thus cutting out the slow disk
transfer. Only when a new code is needed does the slow file system transfer have
to be repeated. In this manner, the above system log now takes the form shown in
figure 7.31, where the load times reduce from 27 seconds down to 4 seconds for all
but the first node and the elapsed system time now becomes 1787 seconds.

It is apparent that the time spent by the application communicating with the
host server via TINY is somewhat disproportionate to the onboard computation.
One major factor behind this imbalance is the way the driver handles the file
system. As was discussed in §7.2.3, (MS)DOS™ places a limit on the number of files
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Edinburgh Microfabrication Facility
Simulation Taskfarm System
System Nodes : 5

Batch File : supremb.rc

Node Program Calc Comm Load Misc
1 suprem. b4 628 1164 27 0
2 suprefn. b4 638 1165 5 0
3 suprem. b4 642 1140 5 0
4 suprem. b4 632 113 5 0
5 suprem. b4 644 1079 5 0

Completed 5 jobs : Elapsed time 1787 seconds

Figure 7.31. System log with reduced loading times.

which may be open at any one time. The above results were taken when all the
files were open and closed around every operation introducing substantial delays.

Table 7.2 shows the times once the driver maintains its full capacity of open files.

Although this table confirms a moderate improvement in file handing per-
formance, it must be noted that there are 30 files (6 per worker) competing for the
13 system files available (The PC requires 3 of the 16 for its own stdin, stdout and
stderr). Thus many file operations require the inefficient open and close actions.
In order to confirm this assumption, a further batch of simulations was processed
with 3 jobs which meant that there were 18 files competing for the 13 available
slots. As can be seen in table 7.3, this produces a substantial performance increase

over the original system.
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Data | Comms.| Comms. | Comms. | Total Total Total
file Nofiles | Max. % No files | Max %
open |open files| increase | open open increase
files
RUNO1 | 1164 1025 119 1823 1689 7.4
RUNO2 | 1165 1079 7.4 1834 1753 44
RUNO3 | 1140 1002 12,1 1812 1680 7.3
RUNO4 1113 984 10.7 1776 1652 54
RUNO5 | 1079 940 129 1754 1620 7.6
Table 7.2. Improved file system performance.
Data | Comms. | Comms. Total Total Total
file No open | Max, open | No files | Max. open %
files files open files increase
RUNO1 1164 379 1823 1053 422
RUNO2 1165 442 1834 1106 39.7
RUNO3 11490 367 1812 1045 42.3

Table 7.3. Performance with full file system access.

The method of server communication over TINY with its associated message

packetising and unpacketising on both worker and driver, does degrade system

performance. Butit hasbeen shown that by carefully selecting the use of application

files, this can be minimised so that a more acceptable communication to compu-

tation ratio is attained. It should also be noted that in all the examples above, each

SUPREM 1I job writes out approximately 250 Kbytes of debug files and only 20
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Kbytes of user data. This means that only 12.5% of the communications are actually
necessary. In the case of SUPREM II, the user has no control over the volume of
the ancillary files generated, but this is not the situation for most of the commercial
simulation packages now in use. Simulators such as SUPREM III & IV and PISCES
all permit users to define what files are generated for a given job, and hence much

of the inefficiency identified within the above results can be limited.

7.4 Conclusioné

This chapter has presented the practical design of a transputer based task
farm system, with particular application to semiconductor process simulations. The
structure of each major software process has been discussed in turn, with a special
emphasis being placed on the means by which every worker gains what it considers
to be unique access to the host system functions. There is at least one AFS channel
multiplexor available, provided with the 3L scientific language software packages
[26], which permits each attached process to access the server. However, it does
not provide the additional support required to alter filenames on-the-fly or operate
with restricted access to the file system. Consequently, an entirely genersl
multi-processing computing environment has been developed which enables large
batches of independent or senﬁ-independant programs to be efficiently executed
with no alterations to the application software. In particular, it is this last feature
which particularly enhances the attraction to its use. In support of this, the most
suitable applications for execution under such a system, are usually highly
numerically intensive and havea relativlely lowutilisation of 1/0 servicesin general,
The majority of currently used software which falls into this category is written in
one of the common high-level scientific languages for which transputer compilers
already exist and so can be simply ported across to this environment. Thus a
comprehensive selection of applications can be rapidly generated and made avail-

able.

This system is also extremely flexible in terms of the number of processors
available for use at any one time. No alterations are required in order to remove or

insert processors as circumstances dictate, since every time the system is booted
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up, the routing process establishes the size and connectivity of the attached net-
work. With respect to the hardware requirements, there is only one big djfference.
between this approach and that suggested in chapter 5, where each instance of the
application was partitioned across the multi-processor network. In most cases, this
distribution of modulesresults in the data structures held within each module being
diminished. However, in the case of the task farm, every processor contains the
entire dataset and thus the memory requirements do not reduce. When considering
the simulation packages used within the semiconductor industry, this places fairly
large demands on the available memory, with a minimum configuration being 4 or

8 Mbytes per transputer.

The results presented during the course of this chapter, confirm the benefits
which the system can provide, especially when applied to the large batches of
repetitive simulations demanded by the experimental design techniques discussed
earlier. Although the system was hosted by a standalone IBM compatible PC for
this work, there are many advantages in using a multi-uger or networked host. In
the first instance, multi-user operating sjzstems generally permit more generous
access to the file system, thus removing one of the main limitations of the present
environment. However, in terms of future system development, the most flexible
and beneficial operating environment would be provided by permanently running
the task farm as an additional networked deﬁce, much like a printer or plotter,
using the INMOS B407 ethernet interface card. In this way, simulations or any
other suitable tasks can be spooled into a dynamic version of the present control
file and multi-user access to the system has been achieved. The farm could then
be interfaced either directly to the host or via an ethernet link enabling it to be
operated remotely from the host.

Whether a single- or multi-user system is acquired, an economic solution to
providing flexible, high performance facilities for computationally intensive tasks
has been proposed. This will enable the full potential of DFM and other similar
methods to be commercially applied to development and production problems

industry-wide.
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Chapter 8

Conclusions

The concepts of Design for Manufacture (DFM) and Design for Quality (DFQ)
are now recognised by the major semiconductor companies as vital to the success
and survival of their IC manufacturing operations. The implementation of these
methodologies has considerably altered the importance and the role of computer
simulation techniques during the design of IC fabrication processes. Under such
strategies, computer simulation would no longer be employed in an ad hoc manner,
but would instead be coupled with statistical design and analysis techniques to
provide a structured approach to the design of IC fabrication processes. It is

therefore necessary that a system be developed whlch  supports and promotes this

concept. Thework undertaken during this project has concentrated onthe provision

of an aﬂ'ordable and flexible 31mu1at10n env1ronment which has then been inte-

grated w1th the reqm31te statlstlcal tools to obtam an operatmnal and functmna.l
design system. A brief synopsis of the work which was carried out is presented here
and highlights some of the major issues that have arisen and their significance to
the project as a whole. Some areas for future research efforts are then indicated to

conclude this discussion.

The international market for semiconductors is highly competitive, volatile
and fickle, which may be attributed to its demand-driven nature and the conse-
quential susceptibility to influence from a variety of external forces, On account of
this, manufacturers are being placed under increasing pressure to respond more
rapidly to market demands. This can only be acnieved by the adoption of flexible
manufacturing technologies, in contrast to the more traditionally established
production environment. The ability to switch between existing processes and
introduce new ones at frequent intervals is essential for servicing the rising demand
for low volume application specific IC (ASIC) production. Similarly, technological

trends towards smaller device geometries, higher packing densities, greater yields

207



and shorter product lead-times place an enormous strain on equipment capability
and process control. The overall consequence of these issues is that semiconductor
manufacturers must expand their design criteria to include manufacturability as

well as performance.

The fabrication of IC’s is one of the most complex manufacturing processes
currently performed, with a typical MOS process consisting of many hundreds of
individual steps. Although there is only a limited set of basic process operations, 6
In total, it is the sheer number involved which, when coupled with their inter-de-
pendencies, leads to the degree of complexity concerned. If IC fabrication processes
are to be accurately controlled then it is essential that each operation is fully
understood both in isolation and more vitally, with respect to its influence on the
' final product. The yield of any process, considered in terms of both product spec-
ification and functionality, is dependant on the control parameters associated with
each operation as well as the accuracy of the processing equipment. Since the
spportunity to perform in-line wafer tegting in order to verify individual process
operationsis limited, the importance of process control cannot be over-emphasised.
Chapter 2 provides a description of the six basic process operations related to IC
fabrication, with a bias towards the physical parameters that are associated with

their control and which may be altered by the process engineer.

Throughout the past two decades software models have been developed which
describe the physical effects of performing a process step on a wafer. These models
have been combined together to form complete process simulation packages that
can be used to investigate the interactions that take place between process steps -
and calculate doping profiles, electrical characteristics and structural features of
the fabricated devices. Physical process simulation has been primarily applied to
date by process engineers in order to simplify the development and optimisation
of fabrication processes by reducing the number of experimental runs required to
meet a particular specification. Simulators are now available to perform one-, two-
and three-dimensional process modelling. The models associated with one-di-

mensional simulation, which considers a section normal to the wafer surface, are
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much simpler and more robust than their advanced two- and three-dimensional
counterparts. However, once geometries approach micron and sub-micron levels,
itisnolonger possible to neglect effectsrelating to the second and third dimensions,
which are in the plane of the wafer. Although these advanced models are less
physically complex and robust than their predecessors, their enormous numerical
complexity means that immense computational power is required to solve them.
Chapter 3 first presents the one-dimensional numerical models that have been
developed for each of the process steps, before providing a more general discussion
of advanced process models and quantification of their respective computational
requirements. Few semiconductor companies possess the necessary resources to
support the widespread application of these simulators that is demanded by the
advances in processing technology. Hence an investigation was made into alter-
native sources of economic computational pewer to act as a dedicated simulation
engine.

The regular, grid-oriented structure which lies at the heart of all these
simulators directed the research towards the promised power afforded by parallel
computingtechnologies. Abrief summary of both sequential and parallel computing
paradigms introduces a more detailed view of tﬁe various parallel technologies
available today that is provided in Chapter 4. Parallel technology extends from the
traditional and prohibitive supercomputers, to a number of compératively
inexpensive deéktop systems based around familiar microprocessor units. However,
the relatively cheap, flexible and scalable computing power offered by the INMOS
Transputer appeared to be the most suitable for this application. With this tech-
nology, sufficient computational resources could now be made available to the
process engineers either as a large, dedicated simulation engine supported by the
original host system or alternatively as a single extension board in each desktop PC

or workstation.

Obviously, the simulation software requireé to be adapted in order to take
advantage of the parallel technology and the one-dimensional process simulator
SUPREM-II, predecessor to the widely used SUPREM-3, was chosen as a demon-
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stration. Numerically, SUPREM-II bears a close resemblance its successor which
is important for the inference of results and although its physical capabilities are
much less, this manifests itself more in the computational load rather than the

choice of algorithms.

Ultimately, the overall objective of any parallel implementation is to increase
the throughput of these advanced simulation tools. This objective may be realised
by either reducing the cycle time associated with each simulation or by performing
multiple simulations at once. The former approach has the advantage that the
performance of every simulation will be improved, regardless of the number in total.
Unfortunately, the penalty to be paid for this fully customised software is in the
effort required to adapt the original code, which is highly manpower intensive and
this obviously reflects in the overall preject cost, Chapter 5 documents the work
done in developing a parallel implementation of SUPREM-II to run on an arbitrarily
sized transputer network. This ta_sk was far from straightforward to perform since,
at that time, the software development tools available were not particularly com-
prehensive. This situation has been successfully remedied during the intervening
years and there is now an extensive choice of development tools and environments.
Other difficulties related to the partitioning of both code and data, inter-processor
communications and substitution of algorithms were encountered, all of which are
typical of custom developments. Once these obstacles were surmounted, an

approximately linear increase in simulation performance was obtained as further

processors were added to the system. This parallel methodology may well become

essential for the excessively intensive computation that is expected of three-di-- ~---

mensional simulations or where the performance of a limited number of tasks is
crucial. However, for most applications, the development time and cost will continue
to outweigh the benefits returned until such time asintelligent parallel compilation

can automatically perform this role.

Simulation has usually been employed to assist engineers establish the
nominal process operating points required by their fabrication technologies. No

conclusions can be drawn as to the suitability of this nominal operating point from
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such a design synthesis. If, however, a design can be made insensitive to realistic
processing perturbations, then additional savings can be obtained on unnecessarily
expensive fabrication equipment, potential process control problems, lost yield and
engineering time spent tuning the process. With simulation, all of this is achievable
before the technology is ever manufactured. This design analysis role for simula-
tion, which combines both engineering and statistical functions, plays a vital part
in the overall concept of designing for manufacturability. Although the
experimental design and statistical techniques described in chapter 6 minimise the
number of simulations required to design a manufacturable process, the overall
tally still makes a substantial demand on computational resources. Obviously, the
additional simulation throughput afforded by a parallel implementation of the

relevant software, as discussed in chapter 5, offers one solution.

However, due to the large number of independent simulation involved, an
alternative strategy avails itself whereby each processor runs a single simulation
autonemously. Chapter 7 describes the design and operation of such a transputef
based simulation network, with particular emphasis on the supporting communi-
cations system and infrastructure. The advantages associated with this taskfarm
approach to simulations include: no custom software development is required for
each simulator, most programs can be compiled for the transputer, different soft-
ware can run on each processor and both the architecture and performance scale
inasimplelinear fashion. In order to produce a usable engineering tool, an interface
was developed between the statistical software packages, RS/DISCOVER and
RS/EXPLORE, and the transputer taskfarm which manages the creation, execu- -

tion and analysis of all the simulation data.

The software developed during this project significantly enhances the role of
process simulation in the promotion of DFM and DFQ within the semiconductor
industry, However, a great merit of the taskfarm system as it stands, is that it may
be applied to any scenario, for which suitable software exists, without any alter-

ations. It is also worthy to note that although a transputer based solution was
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selected for this project, there are a number of other similar parallel or concurrent
systemswhich are equally applicable and the final choice for a particular application

will probably be dependent on existing technology.

The advances in simulation technology and systems described within this
Thesis provide a significant basis for the support of the DFM and DFQ methodol-
ogiesin the semiconductor fabrication industry. However, the infancy and enormity
of this field mean that many issues remain unresearched. The most logical
continuation of this work would be to expand the horizons of the taskfarmed design
analysis to include parameter extraction, device and circuit simulation. This would
require a more sophisticated management facility than presently exists, but would
vastly extend design capabilities. Currently the inclusion of device simulation is
- being investigéted in the Edinburgh Microfabrication Facility by G. J. Gaston.
Previous work performed by A. J. MacDonald in this facility has investigated the
integration of process simulation and the Computer Aided Manufacturing (CAM)
system, COMETS(WORKSTREAM), though poor simulation perforinance pre-
vented real-time control issues being tackled. A worthwhile supplement to this
work, utilising the i)erformance of customised parallel simulations, could now
investigate the application of expert systems to the control of process simulation
in providing on-line analysis and control of fabrication processes. Another area
which might be investigated is the incorporation of process simulation into
manufacturing simulation software, which is already used by the semiconductor
industry. However, unlike the more traditional manufacturing scenarios for which
it was originally designed, the process flow within IC fabrication bears a greater
relationship to the process itself rather than the equipment or its layout. The
integration of a process modelling capability in describing particular aspects of the

manufacturing operation could vastly enhance the overall simulation capacity.
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If builders built buildings the way programmers wrote
programs, then the first woodpecker that came along

would destroy eivilisation.



Appendix A
Reprints of Published Papers

213



"“The Implementation of Process Simulation on Transputers for the Produc-

tion of ASIC’s", Microelectronics *89, Brisbane, Australia, July 1989,



Bt Australian Confersnce
on Microsiectronics
Brisbane 12-14 July 1980

The Implementation of Process Simulation on
Transputers for the Production of ASICs

W.J.C. ALEXANDER
Ph D. Student. University of Edinburgh, UK.
A.J. WALTON
Reader, Uruversity of Edinburgh, U K.
J.M. ROBERSTON
Lothian Professor, Microelectonics. University of Edinburgh, U K.
R.J. HOLWILL
Director, Edinburgh Microlabrication Facitity, University of Edinburgh, U.K.

SUMMARY The role of process simulation in the semiconductor industry and the restrictions imposed
onits use due to thecomputational requirements are discussed. The use of parallel computing techniques
implemented on a transputer network is proposed as a solution. and results from a parallel version of
the one-dimensional process simulator, SUPREM-11, are presented. -

1. INTRODUCTION

The reduction in device geometries and the
introduction of low-volume Application Specific
Integrated Circuits (ASIC)is changing the role of process
simulation within the semiconductor industry. To date.
process simulation has largely been viewed as a tool for
use within aresearch environment, and hastherefore not
been widely used by process engineers. However, with
the current market climate dictating a fast, punctual and
economic design turnaround, the margin of error has
been reduced and the process must meet the full
specification first time. To this end. process simulation
can be emploved to help ensure that these goals are
achieved. Procesz modelling software has the major
disadvantage that it is very CPU intensive and
consequently onlyv limited access has been available to
process engineers. This paper details how parallel
computing techniques can provide a cost effective process
simulation system which will enable these tools to be
used to their full potential.

Sermniconductor process simulation has two principal
roles within the fabrication and production environment.
Firstly, it is an essential component in the design and
development of a new process or optimisation of a current
one. Process development involves the generation of a
sequence of fabrication steps to produce a specified device
structure, while still remaining within the constraints of
the chosen technology and the available fabrication
hardware. Traditionally this has been achieved
empirically by performing sets of experiments and then
following an iterative loop of measurement, modification
andrefabrication. This however, is a costiy and inefficient
approach since prototype production costs are high and
may take up to eight weeks to perform. If process
simulation is used for the initial iterations, then only a
reduced prototype fabrication schedule is necessary, and
this offers vast savings in both time and money.

Secondly, there is the ability to integrate process
simulation with Computer Aided Manufacturing (CAM)
systems to enable on-line analysis of any production
batches held within the CAM database (MacDonald et al,

1889). Thus the potential exists to perform real time

process monitoring together with the opportunity to
provide corrective modifications for subsequent steps if
poor or wrongly processed samples are detected. For this
role in particular, it is paramount that soft ware execution
times remain low so as to produce a marginal
computational overhead on the CAM host system.

The computational complexity of process simulation
packages obviously depends on the sophistication of the
incorporated models, and modern packages are now
reaching the limits of acceptable CPU times. Although
such simulations are still quicker than the equivalent
experimental turnaround, this factor still discourages
process engineers from using these tools to their full
potential. One solution to this dilema is to draw on the
resources made available by parallel computational
techniques, and in particular those suitable for
implementation on realistically priced hardware. The
transputer fulfills these criteria and increased computing
power can be provided by the simple addition of more
transputers.

This paper first discusses process simulation.
detailing the various models found within such packages
and highlighting the balance that must be achieved
between accuracy and speed. There follows an overview
to the transputer concept and how it can be beneficially
emploved in improving the execution time of process
simulation tasks. The objective of producing a parallel
version of one presently available simulator is then
explained, demonstrating some of the problems which
have been encountered. Lastly, consideration will be
given to the future potential of this concept particularly
with relevance to the ASIC production cycle.

2. PROCESS SIMULATION

Process simulation programs contaip a series of
numeric, and in some cases analytic, models which
attempt to describe the effect of each fabrication step on
the dopant concentrations and characteristics of each
material. They generally include modules to cover ion
implantation, chemical predepostion, diffusion. oxidation
and epitaxial growth, which are linked together by a
controlling shell. The fundamental factor separating the
available simulators is the provision of one or
two-dimensional analysis, and to a lesser extent the
number and types of layers that can be modelied
One-dimensional models analyse sections of the
structure normal to the silicon surface, hence a number
of these are required to fully mode! the device. The
models in these simulators are generally more highly
developed than those in their two-dimensional
counterparts, and once calibrated provide an accurate
picture of a given process. Figure 1 shows a section of an
MOS transistor and the regions which must be simulated
in 1-D to fully model the device. Figure 2 shows a 1-D
section corresponding to one of these regions.
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Figure 1 NMOS device structure plan, indicating all
four sections requiring 1-D simulation.
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Figure 2 One-Dimensional profile of the depletion
region from an NMOS inverter.
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Figure 3 Two-dimensional MOS transistor contour
plot showing the source, drain and field
impiant profiles.
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When device geometries are relatively large {(around
5 microns), one-dimensional models such as SUPREM-11,
SUPREM-III and ICECREM provide sufficiently
accurate data to understand the impurity behaviour. As
feature sizes have reduced to 2 microns and below, short
channel effects can no longer be ignored and the
two-dimensional simulators such as SUPREM-IV,
SUPRA and COMPOSITE are required. Figure 3 shows
a 2-D profile for a typical MOS structure.

In progressing to 2-D simulation, grid resolutions and
model complexity are traded-off to compensate for the
increased computational requirement. Consequently to
gain a more complete understanding of a small feature
size device , it is often advantageous to also perform a
series of 1-D simulations. As device geometries shrink
<till further, 3-D medelling will become necessary and
run-times which already pose a problem in 2-D simulation
(24 hours of CPU time (Singer, 1987)) will require even
greater computational power.

If process simulation is to be used in a monitoring
role, then the models must be calibrated to the particular
process which they are to simulate.Once this is done, the
process engineer will then have the confidence to use the
software in a predictive role. Process simulation can also
be used in a diagnostic role to lock inside’ the devices and
observe parameters such as potential distributions and
lateral impurity profiles. This capability often provides
the solution to otherwise unexplained characteristics.

3. TRANSPUTER CONCEPT

The transputer provides a complete microprocessor
computing surface including CPU, on-board RAM and
four fast 1/O links within a single chip. The general
transputer architecture.is shown in figure 4 and coversa
family of products with differing bus and memory
specifications.

i :
System | - : . .
Services i  C.P.U.,
: - | !
P
?
I Link '
_ i Interface |
“On-chip +"__— ‘ :
RAM ®
— p
®

‘ Application Specific Interface

Figure 4 General transputer architecture.



Of particular interest here are the T414 and T800
32-bit devices, whose primary difference is the inclusion
of a dedicated Floating Point Unit (FPU) on the T800
(Inmos, 1988). These may either be used as a single high
performance processor system, or connected together
using the links to form a point-to-point communicating
network as seen in figure 5 with each machine directly
linked to a maximum of four others.

Figure 5 Arbitary transputer network showing the
peint-to-point communication links.

Multi-transputer systems possess many advantages
over more traditional bus based multi-processor systems,
reflecting the nature of these asynchronous serial links.
Firstly, the point-to-point links eliminate all possibility
of communication contention. Secondly. the memory and
tommunicaion bandwidths are directly proportional to
the number of processors in the system, meaning that
the addition of further transputersto the system will not
produce performance limiting bottle-necks. This last
feature leads to the freedom to design arbitrary network
architectures that optimise the data flow for a given
problem, and to simply increase the computing power by
adding extra transputers to the network.

The transputer family operates in a very flexible
software environment, by being programmable in
standard high-level languages such as FORTRAN,

PASCAL or C. Concurrency can be achieved by the use of

an OCCAM harness to link modules of code written in one
or more of these languages. but to exploit the maximum
potential the entire transputer system should be
programmed in OCCAM,

4. PARALLEL PROGRAMMING

The concept of parallel processingis simple intheory,
but much care and attention must be paid to the
particular problem in order to achieve an efficient
solution. It is quite possible for a multiprocessor solution

to take longer to execute than on a uniprocessor if

coordination of the individual processor tasks is not
considered. Additionally, there are certain operations
which are inherently sequential, such as disk and console
I/0 (custom graphics interfaces are of course an
€Xception to this), and henceit is pointless attempting to
Parallelise them. Thus to map a problem onto a parallel

architecture, the task must be divided into segments that
will execute in parallel, and then determine the method
of inter-processor communication (Howe and Moxon,
1987).

The distribution of these parallel tasks can heavily
influence the efficiency of the scheme, so the degree of
parallelism or granularity (Almasi, 1985) of the
application must bear a direct relation to the
communicative performance of the target hardware. The
transputer network architecture shown earlier uses
message passing for interprocessor communication,
which means that any global broadeasting of information
must involve the temporary synchronisation of all nodes.
Asaresult local communication should be used since little
processing overhead is required. making it very efficient.

The final issue in deciding how to coordinate the
entire parallel scheme is whether there are any external
constraints be applied to the system. If compatability
with an existing code structure is required this may well
force particular approaches to be taken which are not
optimally suited to the overall parallel design. Depending
on the magnitude of these constraints, it may prove
beneficial to maintain the desired parallel format and
incorporate additional pre- and post-processing elements
to the system which provide interface compatability.
Obviously the solution to this will be highly application
specific.

5. PARSUP-O

SUPREM-II (Antoniadis and Dutton, 1979) was one
of the early process simuiation packages to be developed
at Stanford University during the mid-seventies. It is a
one-dimensional mode! capable of analysing all of the
process steps mentioned earlier, Since its introduction
2.D simulators have generally become available, but the
underlying algorithmic concepts have not changed
significantly and the availability of the source code made
it an obvious to choice for this project.

Referring the above analysis to the process modelling
environment it becomes rapidly evident that the CPU
intensive area 1s concerned with the diffusion of impurity
atoms throughout the structure. Considering the
problem in one dimension, it is found the diffusive lux of
impurities, Fy( /) can be formulated by a modified

version of Fick’s first law.
Fo(/)=-Z(D(/).C(/)) (1

where D('/) is the diffusion coefficient of the impurity.
If uniform diffusivity is assumed , then Fick’s second law
is obtained.
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Although this law is adequate for low concentrations
of impurity, the approximation fails for impurity
concentrations at or above that of the intrinsic carrier
{Dutton, 1983). Under these conditions the diffusicn
coefficient becomes a complex function involving
impurity concentration dependancies. Thus it can clearly
be seen that the formation and subsequent solution of
this partial differential equation system becomes a
camplex and computationally intensive task.

At its simplest level, the solution of diffusion models is
concerned with the generation and subsequent solution
of the following matrix system.

A.x=b (3



where A represents the diffusion coefficients, b, the
current impurity concentrations and x, the new
concentrations after the process step.

Consequently, the following parailel methodology
was chosen for distributing the diffusion process across
the transputer network. The main bulk of the
SUPREM-[1 code ( written in FORTRAN ) executes
sequentially on a single root transputer, and when a
diffusion step is encountered, the relevant data
structures are downloaded into the network for the
parallel stage to proceed. On completion of the diffusion
calculation, these datastructures arereturned tothe root
processor which continues with any subsequent steps.
This approach, represented in figure 6, ensures that
investment is not wasted in sections of the software not
suitable for parallelisation.

Code

.. P.C. . NETWORK
Main £ =
SUPREM-H . ‘ . -

Parallel Diffusion Code

Figure 8 Distributicn of the SUPREM-II code
between the root and network processors

The partial differential equation can be formulated
as a sparse matrix, so the first step was to select a suitable
parallel matrix solution algorithm (Wang, 1981) and map
this onto a network. A stmple pipeline architecture was
chosen for this task and the resulting execution times
showed an almost linear improvement as the number of
processors was increased. Figure 7 displays the
performance attained in this application.

Speed up

1 2 3 4 5 8 7
No . of Processors

Figure 7 Pipeline solution speed up attained against
the number of processors used. This is
referenced to a sequential algorithm
running on one processor.

A pipelined approach’ can maintain an efficient
one-way data flow, but its performance degrades on the
introduction of two-way flow if large amounts of data are
being communicated. For real problems such as those
found in SUPREM-II where relatively large data
structures must be passed between the root processor
and the target system, architectural modification is
required to present an improved load/ unload facility for
the pipeline through the addition of intermediate
branches. The resulting spaceline architecture is shown
below in figure 8 using a tertiary tree approach as dictated
by the limit of 4 links from any one transputer.
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Figure 8 Spaceline network architecture

This architecture enables the entire SUPREM-ii
data structure to be distributed to each of the leaf
processors which execute the parallel code, and returned
to the global data structure op completion of the entire
step in under 60 milliseconds”. Within each leaf node, a
subset of the diffusion matrix system for a particular
section is analysed, communicating with its neighbouring
nodes whenever information regarding the boundaries is
under consideration. Each leaf contains a complete and
continually updated version of the global parameters
required to control the conditional stages of the program.

6. APPLICATION OF PARSUP-II

So far the implementation of PARSUP-II has been
discussed but no reference has been made as to its
operatingenvironment. One of the featuresof thissystem
is its high degree of portability resulting from the
substantial range of computers which support the root
transputer. The host only provides file serving and
console functions, with the entire processing being
performed by the transputers. Hence, the requirement
to have large mainframes to run this CPU intensive task
no longer exists, and a Personal Computer (PC) of
IBM-AT or similar specifications is more than capable of
hosting such a system. Since many functions within the
process engineers scope are already PC based, this makes
it feasible for each engineer to have a personal and
completely autonomous simulation system, without any
of the drawbacks of the current multiuser approach.

y ical execution times for a diffusion step are in

the order of 10's of minutes on the T414 and 10’s of
seconds on the T800. A full process has approximately ten
processing steps involving diffusion, so even smal} speed
improvements lead to a significant reduction in the total
execution time.



To place the performance of such a system in context, a
PC with a single T800 transputer provides greater
computingpower thana VAX [ 1/780 system, at a fraction
of the initial capital outlay and perennial maintainance
costs.

The only criterion attached to the host choice is that
a suitable transputer interface exists, but as these are
available for PC’s, VAX/VMS and VME based systems, a
suitable host probably exist within most potential user
environments. When considering the integration of
process simulation with CAM to furnish the
manufacturing system with real-time analysis, the
transputer based approach has much to offer. Given the
complexity of CAM tasks, there is a strong incentive to
farm the simulation out to a network to be run in parallel
with the ongoing CAM transactions, rather than impose
further loading on the CAM host.

7. CONCLUSIONS

This paper has presented some of the reasons for the
greater utilisation of process simulation within the
semiconductor fabrication cycle. especially with respect
to low-volume and multi-product production runs
necessitated by the ASIC market. The drawbacks of
current process simulation envirenments have been
highlighted and a sclution incorporating transputers has
been proposed. This parallel process simulation concept
has been demonstrated, indicating the improvement in
run-times which can be achieved and although this has
only been verified using a 1-D code, its potential in 2-D is
self-evident. On the basis of these results, high
perfromance and economic process simulation systems
can be produced. enabling the full potential of this tool to
be exploited in the semiconductor fabrication
environment. Work is now in progress to extend this
concept to 2-D process simulation software.

————
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ABSTRACT

Increasing recognition of the role of random process variations
in semiconducior manufacturing has led 10 wide use of stanstical
process contol (SPC) wechniques during the last decade. A com-
panion w SPC thai has seen much less acceptance to date is Design
for Manufacrurability (DFM). While SPC methods seck to control
the variabiliues in a process, DFM asks the question “How can the
vield of a process be maximized, giver the inherent variabiliry in
the underlying process steps””

One of the factors limiting the use of DFM has been the large
number of experiments regutred 1o characterize a process in 1emms
of its sensitivities to random varations in its componen: sieps.
Linking process and device simulaiors with experimenial design
and analysis software such as RS/ can greatly reduce the time and
expense required 1w do a Remonse Surface Methodology (RSM)
or Taguchi analysis of a process. Only 2 few split lot experimental
runs are required for calibranon purposes, with the majority of the
experiments being done with simuiators.

Applying these methods 1o several manufacturing problems has
shown how minor process tuning can improve paramemic yield and
reduce variability with oniy a2 minor loss in peak device perfor-
mance.

I. INTRODUCTION

Semiconductor companies are increasingly. recognizing that to
remain compettve, they mus: design new technologies not only
for high performance, but also for opimal manufacturability. Af-
ter all, a technology that has the utmost performance but cannot
b¢ manufactured with yield is of Linle value. Combined with this
need for manufacnirable processes is the exorbitant cost of new
process development, which s forcing semiconductor companies
10 reevaivate the manner in which they develop new processes.
Gordon Moore, Chairman of the Board of Intel, has estimated the
cost of new process development ar roughly $100 million, with the
cost expected to increase in the funre [1]. This paper will show
how semiconductor process simulation, by replacing numerous run-
splits, can be a cost-effective way 10 design new rechnologies for
both optimal performance and manufacturability.

II. DFM CASE STUDIES
We wil] illusuate the use of process and device simulators for

designing for manufacturabiliry by considering two examples., both
drawn from experiences in actual semiconductor manufacruring.
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The First is the design of 3 high sheel resistivity implanted resistor
o minimize its vanability. The second is the design of certain
aspecs of an LDD MOS process 10 both opumize the inTinsic
device performance and to improve its manufacturability.

A. High-value Resistor Control

The objecove of this sty was 10 increase the percentage of
die that qualified as high performance parts. This bipolar part was
sorted into several product grades based on its swiching speed and
power consumption, with the market price of the product varying
widely as a function of grade. The primary circuit design factor
influencing the speed and power performance of the part was the
bias current {evel of the devices on the chip. This current level was
established by a high sheet resistivity implanted resistor.

In this marufacturing ares the part was a medium voiume prod-
uct. Its volume did not provide sufficient dan to allow the use of
classical SPC 1echniques for yieid improvement, nor couid it jus-
tify a major yield enhancement project. However the lower yield
of high performance pans represented 2 considerable revenue loss.
During 2 four month period in which 17 runs of this pan werz
processed, over 22G of the die produced were functional but un-
saleable because either the swiching speed or power consumpLon
was outside specification limits. An additional four percent of
the dic where down-graded to lower priced parts due 1o marginal
switching speed or power consumption. The net result was 3 27%
yicld loss due w0 process vanbility. ‘

Initial yield improvement efforts had focused on improving the
dimensional congol in the masking process used to define the re-
sistor. These efforts had littie effect on the output product mix. As
a resull an effor using process simulation-and DFM techniques
was undertzken 0 identify improvements in the process or in the
process control limits that could improve the product’s yield,

1. Process description

The resistor was fabricated by implanting a p-type layer into the
n-type collecior region of the circuit. Boron was implanted through
the 320 nm of oxide grown during the previous base diffusion steps.
Openings in a photoresiest layer delineated the resistor geomemy.
The implant was annealed during the subsequent emitter depositon
and annea! fumnace cvcles. The SUPREM-3 process simulator {2]
was used 1o simulaie the resistor impurity profile, with a typica
resuit shown in Figure 1.

2. Sensitivity Analysis

Based on an analysis of the historic yieid daiz and the simulated
impuriry profile. the following five parameters were seiecled as the
most likely sources of the observed variability in the resistor shee:
resisoviry: ‘
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+ epiwaxial layer thickness
Implanted Resistor Cross Section

s epitaxial layer resisuvity

e oxide thickness _ 15 I ; R
™ ] i ' .
e resistor implant energy 3 { , ;
o 5187 3 : i
* resistor implant dosc S 3 "l" . ; .i
The process specificistions and equipment engineers were con- - 1 : . i 1
sulted 10 obtain estimates of the typical ranges of these variables. 5 174 : N fEE'_C'éf" 1
The values used in this analysis are listed in Table 1. = §: dmplanted : i
To Limit the number of variables 1o be cxamined, the RS/Discover © ; Resistar ! i
sofrware [3] was used o design a fractional factorial screening ex- 164y : Lottt 1
perimen: [4). A recenty announced TMA imerface between the SR T Epi 3
RS/1 series of softwar products and TMA's SUPREM.-3 pro- s 1 ;
gram automatically modified the process variables in a generic 154 : ‘; 1;
parameter name | npominal [ minimum | maximum 8" 1! ] i
epi resistiviry ‘ 0.49Q/sq | 04402/sq | 0.345}/sq Tl o 1
epi thickness 4 2um 385um 455um 6.00 > 00 ] 10”
oxide thickness | 32004 | 3000A | 3400A : biseance (Micronsl
implant energy | 135 KeV | 115 Kev | 125 KeV o R
implant dose 2.5 x 107 | 23 x 10" | 2.8 = 10"

f : 1 i i fil dicted by SUPREM-3
Table 1: Esumated vanable congol Limits, Figure 1: Resisior impunty prohle preci - e

SUPREM-3 process simulation inpui ile, mn the required simu.
lations, and loaded the results into the RS/DISCOVER experimen-
tal workshee: Once the generic SUPREM-3 input file was es- ,
tablished, the “simulatsd experiments™ with SUPREM-3 wok less
than an hour 10 run on a SUN SPARCsuauon | workstaton. The
experimenta analysis tools in RS/EXPLORE were then used o fit
linear response surfaces 1o the simulated sheet resistances and

calculate the sensiuviry of the sheer resisuviry 1o each parameicr. = air Y & S e 1e vt
Based on the results of this analysis, the epitaxial thickness was a—r - L —_— e e viaer oo
found to have the least effect on sheet resistivity and was discarded . oo

as a factor. RS/DISCOVER was then used to generate 3 central y ek

composite design for the experiments required 1o form a quadraric

response surface for the four remaining factors. The TMA-RS/1 - bt

interface was again used 0 run the SUPREM-3 simulations and Eu* :u*-1

load the resulis into the worksheet. Finally, the multipic regression T isem : u.’\‘_\‘
capabilides in RS/EXPLORE were used 1o fit & response surface D L

w the simulation resuls. The response surface showed that the ' .

largest source of variability was the dose contol in the implanter, - -

producing a resistvity spread of 300€2/5q for the estimated varia- L Lo

non in dose. The other three faciors each contribured a variability P T e e M ST
of about SOQ,’sq each (see F:gurc 2} Bariart sk tariae OmRc:

3. Process Centering

Once the response surface for sheer resisdwviry is fit, we can
use it for design centering. Qur goal is to achieve both a targer 10081
resisdviry of 1500£2/sq and 10 minimize variabilides, so we defins
a composiie response as

_ii_s/u LE

CR = weight(RS - 1500)° + sl
BRSY 3RS‘2+('8R5 ., BRS\: _ e
(a‘w ) 31E ) 307/ *\3ER, -
where RS = sheet l':SiSE-Vi[}', ID = unplam dose, ]E = U“pia-r“ en- e W RN T T Tar e 1k tb L s T

ergy, OT = oxide thickness, and E R = epitaxiai resistivity. weigh!
is a weighting factor specifying the relative importance of atiaining
the targer resistvity and minimizing the vanabilines. (The value
used for this study was 10} The oxidanon and diffusion steps Figure 2: Sensitiviry of shee: resistiviry to each process factor.
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‘used 1o fabricate this pan are shared with & number of other pans
manufactured in this fabncavon ares, whereas the implant swep is
umgque to this product. In addinon. changes in the implam would
only affect the resistor, while changes in the oxidation or diffusion
steps would affect all the devices in the circuit. For these reasons,
the parameters 10 be vanied during the opumization were limited to
the implant dose and energy

The opumization algorithm in RS/EXPLORE was used to min-
imize this function, subject 10 the constraint that the deviation of
the resisior sheet resistance from 1500£2/sq should be less than

/sq. The result showed that the cwment implant conditions.
while not opumal. were not far from optimal. The most significan
improvement thar could be expected was 8 reduction of the spread
in the mean sheet resistance from 42002 /sq t 38002 /3q.

4. Feed-Forward Process Controt

Since the epitaxial resisuviry and oxide thickness are known
from in-process measurements before the resistor implan step is
undertaken, the possibility exists W usc an optmization based on
the resporse surface 1o adjust the implant parameters o minimize
process variation. Optimization showed thar the variation in the
mean value of the sheet resistivity could be reduced from 13002,sq
10 35£2/sq if the adjustment were based on the measured cpitaxial
resistiviry alone and to 30£/sq if both the epitaxial resistivity and
oxide thickness were used 10 esublish the implan: dose.

5. Conclusion

By using process simulation coupled with statistcal design of
experiment 100ls, the dominant factors causing sheet resismnce
variauon were identfied in a few bours without any silicon runs.
Improved dose control in the implanter was identified as the fac-
tor that would yieid the greates: improvement in process conol.
A minor decrease in variability was found from process cenienng,
but a very significant reduction was possible if the response surface
was used in a feed-forward manner based upon in-line epitaxial re-
sistiviry and oxide thickness measurements.

B. MOS LDD Design

The second case study is that of optimizing certain aspects of an
n-channel DD MOS device. A partial list of the process variables
thai can be varied to optimize device performance might be

» drawn gate length

s gate polysilicon thickness
= pawe polysilicon edge slope (8)
= LDD impiant dose (D pp)
= LDD implant energy (F pp)

¢ deposited oxide spacer thickness

s ciched oxide thickness
® source/drain implant dose and energy

® drive-in bme and temperature

We could create an equally long list of device characteristcs that
we would tike 10 simulianeously optimize, a subset being

= minimize series resistance (R,)

= minimize peak electric field (E£pae)

17

maximize gansconductance (ga,)
ensure punchthrough voltage (V,,} > 10 volts
s maintain specified threshold voliage

maximize subthreshold slope

minimize junction and overlap capacitances

minimize all sensitividies (35, E'D_“ Lpur

Some process variables are local and will have 2 swaightforward
influence on only & single device characwernistic. For example, in-
creasing the dose of 2 source/drain implant in this LDD process
wil! primarily simply decrease the series resistance of the device.
Other process variables are global and will influence numerous ds-
vice characteristics, and changes in one of these process variables
may inileract with others in a complex way. It is for these complex
interactions in which the designer has 1o juggle many rade offs that
DFM using response surface methodology (RSM) is most useful

In particular, the process variables considered for this case study
are those indicated with arrows in the previous list of variables. The
firs: variable is the slope of the polysiiicon sidewall. This slope
has an impaonant influence on a number of device charactenstcs,
and manufacturing engineers had indicated that sidewall slope was
not contolled as well as they would like. The other two vanablcs
are the dose and energy of the LDD implant. These vanables wilt
interact with the poly sidewall slope and will affeci the grading of
the source/fdrain region and the effective channel length.

For this study, the responses tha: were of most interest wers
those indicated with arrows in the list of responses. The problem
1s to sclect the opumal set of the three process variables thar si-
mulaneousty minimize R,, minimize the peak electric field E,...
(so as to minimize hot elecoon injection), maximize gm.. cnsure
V. greater than 10 volts, and also, to improve manufacturabilicy,
minimize the sensitviues of all responses o all variables. Ewven
this subset of the design problem would be quite formidabie with-
out a systematic approach. The myriad trade-offs in pptimizing the
design can be virtwally impossible for the designer 10 keep in mind
simultancously.

=

1. Simulation Procedure

This process was simulated with the TSUPREM-4 [5] process
simulator, which produces a two-dimensional cross-section of the
device. The clectrical performance of the device was then analyzed
with the PISCES-2B [6] device simulator. Punchthrough voltage
{V,) was determined by applying 0 volts to the gate and ramping
the drain up until I nA of current flowed. The peak electric field
{Epear) was found with 5 volts on the drain and 3 volis on the gare,
a bias condition that will likely be near the peak hot ¢lecmon in-

© jecton conditions. Finally. the gate I-V characienistics for differen:

channel length devices were generated. These characreristics were
fed inio the TOPEX (7] parameler exmaction program I extarc:
series resistance (R,) and peak mansconducance (g, ).

Figures 3 and 4 are the smuctures from TSUPREM-4 corre-
sponding to the two exmemes of polysilicon sidewall angle tha:
were invesupated. With a polysilicon angie of 70° we have a wids
spacer, and the LDD implant does not even extend 10 the gate edge.,
5o the series mesistance will be high in this case. At the other ex-
weme, with & sidewall siope of 110°, we have a thin oxide space:
and good penctation of the implant under the gate. So, senies
resistance will be iower, but the peak elecmc field will be highsr
in this case. The optimal poiysilicon slope will Likely lic berwesn
these two exmremes.
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2. Single Factor Analysis

The most obvious way to start optimizing this device spucture
would be termed “single factor analtysis,” in which we look at the
influence of one design variable ar a time, holding the remaining
variables constani. This is the appropriate approach when we arc
just siarting the design—1o cnsurc thar the values of the design
variables are at least of the correct order of magnitude. So it is the
convenient approach for an inidal, rough design.

With single factor analysis we can roughly center the design
about an optimum device and determine reasonabic variable ranges
in which a more sophisticated search for an optimal design should
be conducted  Also, response surface methodology will involve
firding a poiynomial model 10 the responses, so at this stage we
can judge roughly what order of polynomial will be sufficient for
the model. Typically a quadratuc model is used, but a higher order
mode! could be used if necessary.

Figure 5 shows single facior plows of £, for the device under
consideradon. R, is plotted versus sidewal! slope with LDD im-
piant energy as a parameter. We can see that R, decreases rather
sharply as a functica of slope. If our design criterion is 1o have R,
less than 500€), we can sc¢ what! combinations of design variables
would give us that resull, and we can scc which vanables most
suongly affect R,.

However, the disadvantages of this approach are numerous:
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¢ FEirst, it is awkward to oeat multiple process variables. Fig-
wre § is only onc planc through this 3D parameter space.
so much of the behavior cannot be seen. For example, this
piot is for an LDD dose of § x 107 ¢m=%. The behavios
might be quite different a1 a dose of 10" ¢m =3, but we must
perform another set of simulations and ancther graph to sec
that To invesugaie ail possible combinations of the three
process variables in this study would require a full factorial
number of simulations and a great number of piows. The sit-
uation might be accepuble for three variables, but it quickly
becomes unacceptable if we want 1o consider five or six pro-
cess variables.

e Secondly, we do not know which combination of process
variables is the optimal one for simultancously optminng
the other responses. We could plot on top of Figure 5 the
curves for gn. Epa. tnd b, but the number of curves
grows rapidly, and quickly becomes more confusing than
informative.

s Finally, if we want to minimize sensitivities as well as opti-
mize the device performance, we have no quantiative way of
" doing thai—we can only look &t the slopes of the aumerous
curves and somehow judge which set of process vanables is

best.
Rs vs. slope
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Figure 5: Single factor plots of series resistance.

3. Response Surface Methodology

A solution 10 this difficulty is the use of response surface
methodology, which is 2 well-known approach to efficient expen-
ment design and analtysis that is increasingly being used in semi-
conductor process design. The novel aspect about the present ap-
proach is that experiment design methods are applied 10 efficiently
analyze simulaied experiments rather than, actual fab line expen-
ments. But the goal is the same—1o oblain maximum information
from a minimum number of simulatons and then 1o opdmize the
performance of the process.

RSM analysis provides a structured, systematic approach 1o
mult-parameter/muld-response optimization. It is no longer nec-
essary for the designer to juggle all the rade-offs in his head or
work with myriad 1D plots. This method easily handles a large
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number of process vanabics and their interactons. We are only
considering 3 process vanables in this case. but we could easily
meat twice that number.

4. Simulation Point Selection

The next step is to pick the points for our RSM analysis. The
brute force approach is 1o do & full factorial experiment, which,
for a quadratic function in 3 variables would require 27 simulation
runs. This may be acceptable for 3 variables, but for 6 variables
the number of simulations is 729—<clearly unacceptable. A more
efficient approach is the central composite design, which is one of
the most common designs used for fitting RSM surfaces. For fiting
a quadratic in each dimension of our 3 variable space, the central
composite design consists of 1 center point, 6 axial points, and 8§ so-
called “factorial™ points, where the axes of our 3D parameter space
are poly sidewall siope. LDD dose, and LDD energy. We already
had the axial and center points available from our single factor
analysis. so we had only 1o add the factorial points o complete the
design. From the results of the single facior analysis, we picked
ranges for the variables in which we thought an optimal design
would exist ‘

L. Response Function Fitting

Afier performing the simuiasons at the RSM points, the next
step is to fit 2 mult-variabie polvnomial w each response. The
polynomial has the form

response = ep+aif~a:Dipp+ ok pp+

- 4 -
an® +anlipp venEipp +
andDipp +anbEipp +anlippEipo

We fit a separate polynomial for each response, in our case. for
R, Epesir peak g, and V,,. TOPEX was used to determine the

optimum values of ap through ap that best fit the polynomial to
the simulatwed responses.

6. Composite Response
The power of the RSM approach lies in the fact that since
we now have @ mathematical desctipnon of our responses, we can
combine them o find a composite response, or overall figurc of
merit, which we can optimize.
The composite response (CR) is consoucted such that the op-
tmal design will be at its minimum. It is given by
CR; = (weightp )R, +(weightg, ) Epai *
. 1A . 1
(weighz,) (-—) + (weighty,,) (‘F)
Gm »
All responses arc normalized by their value ar the center point of
the parameier space, so units and relative magnitdes are factored
out. The weights can then be selected solely on the basis of whick
response is most imponant o opamize for our parucuar applica-
non.
The composiie response function is shown in Figure 6. Owr op-
tima] operating condition will be at the minimum of this compaosite
response. which is agair found with TOPEX.

The wade-off, primarily berween R, and E,.... has left a valiey
near the middle of the design space. At the minimum, the optimal
process variables and corresponding optimal device charactenstcs
are
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Figure 6: Composite responsc surface.

opumal process variabies: opuma! responses:

&=104° R, = 3520
Dipp=3.5 » 107 em=? Epeus = 5.08 x 10°Y/cm
Eipp = 65 KeV gm = 9688 /um

V=126V
In & sense, selecting the optimal device design is now complete.
However, we should also place consmraints on specific output char-
acteristics, depending upon the constraints imposed by the circuit
application for this device.

7. Feasible Operating Region

For our pardcular application, the circuit design places the fol-
lowing constraints on the device characenstics: R, < 500 ohms.
Epear € 6 x 10° Vicm, g, > 8u4S/um. and V,, > 10 V. These
constraints form a feasible operating region in which the design
must be centered (see Figure 7). This feasible operating region
is found by ploming the contours corresponding 1o each constraint
on twp of the composite response and noting on which side of the
comour we should operate. TOPEX can then search only within
this constrained region for its minimum., '

In this case, the minimum is weli within the feasible operating
region. so the operating point did not have 10 be moved 1o abids
by the constraints.

8. Safe Operating Region

Now, 0 ensure that this technology will be manufacturable,
we want 0 not only operate within the feasibie region, but aiso
within some margins inside the feasibie operating region. This ge-
fines whar might be called a safe operating region, which is the
region defined by moving in 3¢ in each of the parameter directions
from the edges of the feasible operating region. From expericncs
with the particular manufacturing facility in which this device is
produced, we have esumaies {or the standard deviatons of cach
process variable. Sidewal! slope is a likely control problem, with 2
rather large standard deviadon of 2.5°. The implant is betier con-
wrolled, with dose conwoliable o within 5% of its nominal vaive
and energy to within 1%. These smandard deviations define a rather
narrow safe operating region. as indicated in Figure 8. If we center
our design within this region, we will have a high degree of confi-
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dence that for all manufacturing variations. the circui requirements

will be met. The optimal process variables and corresponding de-

vice characteristics that are safely within the circuit constraints are
optimal process variables: optimal responses:

= 104.3° R, = 3480
pr 34 x 10" em™? Epeei =5.10 x 10°V/em
Eipp =63 KeV Om = 9.69:5 /um

V=126V
Al least in this casc we have a safe operatng region. If the
standard deviadons had been slighty larger, we would have had no
safe operating region. which would have been a signal that we may

Coerat:

ne

0

have manufacturing probiems. In that case. we had better either
reconsider building our device with this process, or we should
investigale making whatever changes are necessary 10 reduce the
standard deviations. With this procedure we have a2 clear indication
which standard deviations are the cause of the control problem and
a quantiative measure of how much they need w be reduced 106
make the technology manufacturabic.

9. Composite Response wilth Sensitivities

Now, to improve the manufacturability of the technology, we
can also recenter the design to make the technology less sensitive
to manufacturing Auctuations. We can do that simply by including
a measure of the variability into the composite response. We have
defined a second composite response, CR;, which is equal 10 the
original composiie response, CR, with the addition of 2 weighting
factor umes the product of the gradient of the compostte response
and the vaniances for our manufacturing line

CR; = CR, + weight,..,{ CCRT (variances)TCR;]

The gradient of the composite response (VCR,) is the vector of
partial derivatives with respect 10 each process variable, and (van-
ances) is a marrix with the process variances on the diagonal and
cross-correlations off the diagonal. If we now operatz at the min-
imum of this new composite response, but still within the circuit
constraints (Figure 9}, we will be at a point with reduced van-
abilites. We will be sacrificing some device performance for this
decreased variability. The process settings and corresponding de-
vice characteristics with decreased sensitivity are
opumal process variabies: oplmal fesponses.
= 106° R, = 3620}
Dipp =23 x 10" em~? Epeot =5.12 x 10°V/em
E;pn=065KeV gm =9.70uSum
V=123V
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Figure 9: Composite response including variabiliry estimate. The
opamal operating point with reduced sensitivity s indicated by the
CTOsS.
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ITL. SUMMARY .

Simulation can be used w evajuale the manufacturability of
a new wchnology before it ever enters manufaciuring. So we can
know before we make a large investment in fab equipment whether
a proposed wechnology is feasible. Also, we can know where the
congol problems will be and where we should invest our resources
“w make the technology more manufacturabie. Process and device
nimulaoon, combined with RSM analysis, provides an ideal way of
making these evaluations.

Also. aficr a technoiogy is in manufacturing, the case studies
in this paper have shown that process and device simulation, com-
bined with RSM analysis, can help diagnose control problems and
can improve manufacturability with s minimum of acwal fab lipe
experiments.
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ABSTRACT

Statistical methods used in the manufacture of integrated circuits are dis-
cussed. A parallel taskfarm system, PARTICS, is outlined. It is shown how this
system can easily and effectively be used to reduce the time taken for perform-
ing CPU intensive process-and device simulations. The system gives an almost
linear speed up is inherently flexible, and can be used with any application. Twa
different hardware platforms, an IBM PC compatible and a MEIKO computing
surface are presented.

1. INTRODUCTION

As a result of the trends towards greater complexity and miniaturisation
of VLSI devices, modern Integrated Circuits (IC’s) are becoming increasingly
susceptible to fluctuations in the manufacturing process. It is such complexities
that have heralded the use of Computer-Aided Design (CAD) tools for process
and device simulation. From quiet beginnings these tools are now widely used
in the semiconductor industry.

The major advantage of these simulation programs is that costly prototype
production runs, which can take months to complete, can be replaced by simu-
lated experiments. These simulations can be completed in a matter of hours or
days, depending on the processing capability of the computer and the type of
sirnulation involved. As a result the length of the product development cycle is
kept to a minimum, a critical aim of all semiconductor maufacturers.

Statistical methods, known as design centering or response surface method-
ology, are used to reduce the number of simulations required, in order to arrive
at optimum settings for the manufacturing equipment [1,2}. Thus a set of input
factors are varied and their effect on some output responses are analysed. Using
RS/1 ! a set of experiments is designed, containing different settings for each
control factor. There may be upwards of 50 separate simulations that need to
be carried out to determine the optimum setting, depending on the number of
factors to be varied.

Although simulations reduce the time greatly, when compared to prototype
runs, they can still be very CPU intensive and each simulation may take hours to

1A statistical package from BBN Software



éomplete. Since there are say, 50 different simulations to be executed, this lends
itself greatly to a parallel taskfarm approach on transputers. Each transputer,
called a slave or worker, in an array receives a task from a master transputer or
driver and on completion the slave then receives the next job information.

2. SIMULATION

2.1. Process Simulation

As a result of the need to reduce the costs of prototype production runs,
process simulation has become an essential tool in the process engineer’s tool kit.
Process simulation is particularly important in the evaluation of new structures
or in the improvement of existing structures. These improvements may include
changes for increased manufacturability.

Such programs can be divided inte 1-D and 2-D process models. The 1-D
prograrms such as SUPREM3 [3], have very sophisticated models for the different
procedures in the manufacturing process. Accurate results can thus be obtained,
but only a 1-D section through the structure can be simulated.

The 2-D programs such as SUPREM4 [4], SUPRA [5], are essential for
analysing small geometry processes, where 2-D effects become more important.
These simulations a arc, huvn.,h:j. more CPU intensive.

The structure and doping proﬁle calculated by process simulation, provide
essential information required by device simulation, in order that accurate device
characteristics can be simulated.

2.1. Device Simulation

The results of the device simulator are obviously profoundly affected by the
input data generated by the process simulator. As the name suggests, device
simulation is concerned with the device characteristics of the final product,
eg I-V curves. Essentially, device simulation involves the solving of the basic
semiconductor equations, which govern the static and dynamic behaviour of
¢arriers in semiconductors under the influence of external fields [6]. There are
a large number of device simulators available at present [7-9].

The output of the device simulator, in the form of I-V curves, enables circuit
parameters to be extracted for use with circuit simulation programs. Such
parameters include, threshold voltage, series resistance or transconductance.

Fig 1 shows the relationship between process, device and circuit stmulation
programs.
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Figure 1; Reiationship between process, device and circuit simulation

3. RESPONSE SURFACE METHODOLOGY AND
EXPERIMENTAL DESIGN

Response Surface Methodology (RSM) techniques have been employed in order
to reduce the number of simulations that are required to give the necessary
information about a particular process.

As Box states, these techniques are essentially addressing the following ques-
tions1]:

¢ How is a particular response affected by a given set of input variables over
some specified region of interest?

e What settings, if any, of the inputs will give a product simultaneously
satisfying desired specifications?

¢ What values of the inputs will yield a maximum for a specific response,
and what is the response surface like close to this maximum?

The program RS/1, is used for setting up the experimental design. It enables
the user not only to specify the required factors and responses to investigate,
but also the ability to define a number of different attributes for each factor, eg




tolerance, settings, precision. [t is also possible to model several responses in
one experiment.

Depending on the choice of design, it is possible to greatly reduce the number
of simulations that need to be executed. The design types that can be used
in RS/1 include Full-Factorial, Box-Behnken and Central Composite design.
Utilising RS/1 one can, therefore, use a planned program of experimentation
(simulation) to obtain a complete response surface for all combinations of input
factors from a reduced number of runs. An unstructured approach will not only
be significantly heavier on CPU time, but also will not necessarily point to the
optimum processing conditions.

RSM can be used to fit response surfaces, to analyse and interpret the results
obtained from the simulations. The data may be visualised using graphical
techniques, analysis of variance performed and models fitted to the results.
Routines can be written using RPL, the RS/1 programming language, to enable
quick and efficient transfer of files, tables etc. The RPL can thus be used as an
interface between RS/1 and the simulation results.

Figure 2 shows a very simple response surface plot, showing the variation of
theshold voltage and oxidation against dose and oxidation time.

4. SOFTWARE SYSTEM

Figure 3 shows how an the software system is used to automate the proce-
dure. This is essential if human errors are to be avoided and the elapsed time
for the procedure minimised, In the case of the example shown in Figure 2,
31 different control factor settings were generated using the experimental de-
sign capability of RS/1. This obviously requires 31 different simulations to be
performed and the software automatically reads the factor settings from RS/1
and generates 31 different input data files for the process simulator, with the
appropriate control factor setting. These 31 files are taken and farmed out on
the parallel transputer system, using PARTICS.

4.1, Taskfarm

The taskfarm has been implemented on two different hardware platforms,
namely an IBM PC compatible and the Edinburgh Parallel Computing Centre's
MEIKO Computing Surface. The former system consists of an array of 5 T414
transputers, each with 2 MBytes of RAM, or 8 T800 transputers, each with
256 KBytes of RAM. For a modest sum, therefore, supercomputing power is
available on the desktop. An array of 17 T800 tranputers, with 4 MBytes of
RAM, was used on the MEiKO Computing Surface, although the total system
has over 400 T800’s available. '

The taskfarm approach to parallel processing is often referred to as event
parallelism. The configuration consists of a master processor which allocates the
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Figure 2: Example of an RS/1 contourplot



RS/Discover

Generic ~ Experimental
Inpr Files — | — Setﬁngs
< = =~
Data Generation
Simulation ! ] | ‘——J> Simulation
Command File —— | | — 1 [Input Files
. 2L L d
Simulation
PROCESS
TOPOGRAPHY
DEVICE
EXTRACTION
RPL Command i ~ Simulation
Procedure File *_:\1 — Results Files
RS/Explore

L
———>  Individual

& Composite
Responses

Figure 3: Complete software system




tasks to a number of slave processors and then collates the data when the slaves
are finished. This process continues until all tasks have been allocated. The
simplist analogy is when the slave processor executes the same executable serial
code only on a different set of data points, as is the case in this system. This
is obvicusly very efficient as there is almost linear speed up for each transputer
added to the configuration.

The main objective behind PARTICS, was to place a shell” around the
executable code, running on each transputer. Thus no modifictions would be
required to the source code to enable each simulation to proceed. Consequently
the system is simulator independent. The major problem to overcome was that
each transputer on the farm tries to read from stdin {keyboard) and write to
stdout (screen). This required the formation of a jobfile which contains basic
information concerning renaming of files. eg stdout, stdin and any other files
opened by the simulator. An example of such a jobfile for running a batch of
SUPREM files is outlined below:

begin BLOCK-1

do suprem.b4d

assign SUPSEG SUPSEG!

assign SUPDEBUG SUPDBUG! . - -
assign SUPSYNT SUPSYNT1

stdin rundt.in

stdout Tunodi.out

done

do suprem.bd

assign SUPSEG SUPSEG2
assign SUPDEBUG SUPDBUG2
assign SUPSYNT SUPSYNT2
stdin run02.in

stdout run02.ocut

done

end

This specifies that slave transputer number 1 will receive input from run01.in,
print output to runOl.out {rather than the screen) and assign any other files
created by SUPREM to a unique name eg. SUPSEG to SUPSEGI] etc. The
Jobfile is specified in blocks, the next block will not be started until the previous
block is finished. This adds an element of control over the order or preference

in which the simulations are executed.
While this system was designed primarily for optimising the IC process,



it was deliberately configured so that it was neither simulator nor application
specific. As a result it is extremely flexible and can easily be used with any user
program.

4.2. TINY

In order to be able to open and assign different names to files, it is essential
that each slave transputer has access to the filing system. To facilitate this, an
efficient message passing is used to transfer messages from the slave to the master
transputer. The system used was called TINY [10], a product of the Edinburgh
Parallel Computing Centre. TINY can be used to determine processor topology,
process mapping, calculate the routing tables and read and write messages. It
has a specific protocol which is used to send and receive messages. To send a
message the message type must be specified, along with the destination, and
the name and size of the buffer to be sent.

4.2. Fileserver Protocol

A problem arises in that the simulation program will communicate with the
filing system at a low level, using a file server protocol, but to pass messages
around the network it is essential to use the TINY protocol. The file system
expects to receive information in the following file protocol format {11]. For
example a 32 bit integer is sent as int32.value;INT32, where int32.value
indicates that a 32 bit integer is about to be sent and I¥T32 contains the actual
value. A record is sent as record32.value; INT32:: [OBYTE, meaning a record
is aboout to be sent, followed by the size of the record, followed by the record
itself.

integer is defined as int 32.value; INT32

tecord is defined as nilrecord. value or record32.value; INT32:: [JBYTE

This can best be illustrated by taking an example of the OpenFile com-
mand. As the name suggests this is sent to the filing system from the slave
transputer each time a file needs to be opened in the simulation program. Fig-
ure 4 outlines the route this command maust take to reach the PC {the filing
system), or the host transputer in the case of the MEIKO. The SUPREM3
program requests to open a file. The filer protocol, as outlined in {11}, needs
to send the following parameters to the filing system: openfile.cmd, filename,
access.method, open.mode, exist.mode and record.length. These represent a
variety of int32.values and record32.values. This information is, there-
fore, stored in a buffer and sent down the TINY message passing system. This
effectively changes the fileserver or AFS protacol to the TINY protocol.

At the master transputer the message is received and converted back into
the fileserver protocol and the necessary file opened at the filing system. An
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acknowledgement is then sent back to the slave, with details of the ID number
associated with that particular file, again changing from fileserver protocol to
TINY protocol and back.

Figure 5 shows the information provided by the system at runtime. The 5
nodes refer to the 5 slave transputers on the PC system. In order to speed up
the loading of large executable codes, they are loaded from memory, if they are
already resident. This speeds up the total execution time as disk access is much
slower.

With regards to the simulations, the 31 process simulations can be carried
out, either on the 5 transputers on the PC or the 17 on the MEIKO. Once they
are completed then the results can be fed into a device simulator and 31 device
simulations carried out in a similar fashion to the process simulations. All this
can be controlled from the jobfile.

Table 1 shows the comparisons between the PC system, (using both T4 and
T8 transputers), the MEiKO system, and a SUN3. Three different programs,
were run five times on each system and the execution times recorded. This was
carried out in parallel for the transputer systems, and sequentially in the case of
the SUN3. The MEiKQ times are superior to the PC T8 times, due to reduced
communications overheads.



PC T8 PC T4 | MEiKO T8 sSy¥3
Progl | 5.2 min { 93 min 4 min 34.5 min
Prog2 | 2.6 min | 37.7 min | 1.7 min | 13.2 min
Prog3 | 0.9 min | 4.4 min | 0.3 min 1.3 min

Table 1: Execution times.

5. CONCLUSIONS

In conclusion PARTICS offers almost lineaf speed up for each transputer
added to the system configuration. It is not essential to change the source code of
the application software and the “shell” allows redirection of the necessary files.
The jobfile concept allows ease and flexibility, resulting in different simulation
code running concurrently on different transputers. To use the system with a
particular application, all that is required is a minor editing change to the jobfile
and the system can be utilised with any user program.

The use of PARTICS has a very significant improvement on the elapsed
time to optimise a process, reducing a week of CPU time to that of only a few
hours. This can be achieved using a supercomputer like the MEiKO Computing
Surface. A PC system can also be used to reduce the execution time, thereby
reducing computing costs.
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1. Introduction

Semiconductor fabrication technology has now increased to the level of several mil-
lion transistors on a single silicon chip. Original methods of experimentation by trial
and error to create a new process or to optimise an existing one are no longer financial-
ly viable. To alleviate these problems, the major semiconductor fabrication companies
are now using simulation software to establish processes and to reduce the number of
real experimental evaluations that would otherwise be required. Although simulations
reduce the time greatly, when compared to prototype runs, they can still be very CPU
intensive and each simulation may take hours or days to complete.

It is the purpose of this paper to outline a taskfarming environment on an array
of transputers at the Edinburgh Parallel Computing Centre. The computer used is a
MEiKO Computing Surface. The taskfarm operates in the mode of a master transputer
allocating tasks to a number of worker transputers, taking the from of a pipeline.

2. General Outline Of Taskfarm
2.1. Taskfarm Regquirements

The following‘ is an outline of the salient features that were required in the design
and construction of the taskfarm system:

o There should be no changes to the user source code to facilitate the operation of
the system. '

o The systern should be flexible to use with any user software.

e One file should control all user interaction.

As noted above, it was considered important to be able to have a general taskfarm
system that could be easily adapted to be used with any user software. This would
again reduce the time and effort required in porting code onto parallel machines.

By providing the facility of a control file, any changes that are then required to the
system can be implemented by a minor editing change of a single file.

2.2 Problems to Overcome

Given the strict guidelines outlined in the previous section, many problems presented
themselves. The following section describes the major problems to be overcome. Section
3 explains how these complications were surmounted.

1. Due to an identical copy of the code running on each worker transputer, all workers
would try to read from the keyboard, write to the screen and read/write from/to
the same files. It was essential that any solution would remove such a scenario.



'2. Since each worker thinks that it is the only code running and that it alone has
complete access to the filing system, all workers must be given a pseudo access to
the filing system. This will require some form of communication system to pass
file requests to and from the filing system from each worker.

3. For large jobs ie. with a large number of worker transputers, there may be a
system limit to the number of files that can be kept open at any one time. It is
important that this limitation should be allowed for in the taskfarm. '

For the purposes of this taskfarm the semiconductor fabrication simulation software,
SSUPREM1 [1] was the code used. This particular package comes under the generic
name of a process simulator.

3. Operation Of Taskfarm
3.1. Jobfile

In order to overcome the problem of each worker reading the keyboard and writing
to the screen etc. it was necessary to define a convention for the renaming of files. This
lead to the formation of a jobfile which details the renaming convention eg. redirection
of stdin, stdout and any other files peculiar to the user code. Part of such a file is
outlined as follows, eg. stdout run01.out.

This specifies that worker transputer number 1 will print output to run01.out (rather
than the screen).

3.2. TINY

In order to be able to open and assign different names to files, it is essential that
each worker transputer has access to the filing system. To facilitate this, an efficient
message passing is used to transfer messages from the worker to the master transputer.
The system used was called TINY [2], a product of the Edinburgh Parallel Computing
Centre. It has a specific protocol which is used to send and receive messages. To send a
message the message type must be specified, along with the destination, and the name
and size of the buffer to be sent. eg. t_sseq(AFS_TYPE,dest,Buf,sizeof(Buf)). A
similar convention is used to receive data except the routine t_recv is called.

3.53. Fileserver Protocol

SSUPREM4, which is written in C, was compiled on the transputers using 3L Par-
allel C [3]. Using 3L utilities, namely the afserver, (which is part of the Parallel C
package) SSUPREM4 will communicate with the filing system at a low level, using a
fileserver protocol. In order to pass messages around the network it is essential to use
the TINY protocol. The file system expects to receive information in a file protocol for-
mat [4]. This file protocol information is, therefore, stored in a buffer and sent down the
TINY message passing system. This effectively changes the fileserver or AFS protocol
to the TINY protocol. This is outlined in figure 1.

At the master transputer the message is received and converted back into the file-
server protocol and the necessary file opened at the filing system. An acknowledgement
is then sent back to the worker, with details of the ID number associated with that
particular file, again changing from fileserver protocol to TINY protocol and back.
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Figure 1: Outline of protocols and message transfer

3.4. General Structure of Program

As can be seen from figure 1 there are two main parts to the taskfarm, namely the
driver and the client.

Driver Essentially the driver receives TINY protocol commands from the worker,
converts them to an AFS Protocol, executes the required AFS function eg. openfile
command and sends a TINY protocol acknowledge back to the worker.

It is also used to coordinate the allocation of tasks, collection of results, reading of
the jobfile, etc. In addition the driver program is responsible for checking the maximum
number of open files allowable on the system and comparing this with the number
actually open at present. if, on receipt of an openfile command, the system number
will be exceeded then it is the function of the driver to close a file to facilitate the
opening of the new file. A priority is given to each file and thus low priority files will
always be closed before a high priority file.

Client The client program receives AFS protocol commands from SSUPREM4, makes
any necessary changes to the filename, converts the AFS protocol to a TINY Protocol,
sends the command to the driver and finally receives an acknowledge from the driver.

The client is also responsible for translation of filenames as outlined in the jobfile.
For example on request of an openfile for SSUP4USKEY on worker number 2, the client
will translate this to an openfile for SSUP4USKEY?2, and this information sent on to
the driver as normal.

4. Results

Figure 2 shows the results obtained when using the taskfarm with SSUPREM4 and
different data files. The results are for a farm of 10 transputers and the time for a
SUN4 is the total time taken to run 10 sequential jobs. As the task number increases,



so does the computational requirements of the job. As a result any communications
overhead of the transputer system becomes less and less significant as the cpu times
increase. This is evident by comparing the elapsed times for task 1 and task 4 for the

two different systems.
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Figure 2: Comprarison of taskfarm and SUN4

The above results were only obtained using relatively small simulations and if a
complete process was to be simulated then the cpu time is likely to be in hours or days
rather than minutes. Thus the speedup of the taskfarm system would be even more

beneficial.

5. Conclusions

In conclusion the taskfarm offers almost linear speed up for each transputer added
to the system configuration. It is not essential to change the source code of the appli-
cation software and the “shell” allows redirection of the necessary files. The potential
commercial value to this is obvious as no inherent knowledge about parallel computing
is required, just the ability to recompile existing code. The jobfile concept allows ease
and flexibility, resulting in different simulation code running concurrently on different
transputers if required. To use the system with a particular application, all that is
required is a minor editing change to the jobfile and the system can be utilised with
any user program.

The use of the taskfarm has a very significant improvement on the elapsed time to
simulate a process, reducing a week of CPU time to that of only a few hours. This can
be achieved using a supercomputer like the MEIKO Computing Surface. This system

“has also been implemented on a PC system with very similar performance and at a
system cost that is affordable for small companies.
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