

THE BUS STRUCTURE FOR A POLYMORPHIC

COMPUTER SYSTEM

By

Andrew Kennedy Roach B.Sc.(Hons)

This Thesis is submitted in partial

fulfilment for the Degree of M.Phil under

the regulations of the CNAA

Department of Mathematics and Computing

The Polytechnic Of Wales

In collaboration with MITEL Corp.

February 1986

Statement

I hereby declare that the work embodied in this Thesis
are the results of my own independant investigations unless
otherwise stated. This work has not been, nor is it
currently being, submitted in consideration for any other
degree.

Candidate -- A. K. Roach

Director of Studies -- G. E. Quick

ii

Acknowledgement

I wish to express my appreciation to the following, who
provided me with guidance, help and support throughout my
research.

Dr. Gerry Quick, Head of School of Computer Studies,
West Glamorgan Institute of Higher Education, Swansea, whose
initial work this Thesis is a continuation of.

All the members of the Department of Mathematics and
Computing at the Polytechnic of Wales; especially
Mr.D.J.Green, Dave Eyres, John Ellis, Colin and Chris

Bowring; all of whom made my stay a pleasant and eventful
one.

Finally my parents, Leslie and Valerie, for without
their financial support this research would not have been
possible.

iii

ABSTRACT

The Bus Structure for a Polymorphic Computer System

A.K.Roach B.Sc(Hons) M.Phil Thesis

The proposed advances in fifth Generation Computing
Systems aim to provide an Intelligent Image to the system
user. While such images are software based, written in
languages such as Prolog and LISP, much of the proposed
hardware architecture has lacked innovation and vision. This
Thesis addresses these two important points by providing an
insight into bus interaction for various scheduling schemes
and system configurations, in order that these unique system
architectures may evolve.

This Thesis discusses the issues relavent to the
application of cellular computer systems and their projected
performance characteristics. The cellular computer system
under study is the Group Processor System, which is a
TRANSPUTER like computer architecture.

The Group Processor System is simulated, and important
results are illustrated in graphical form. These graphs are
analysed, and the conclusions drawn are of use to computer
architects who wish to design and construct Group Processor
Systems. The results may also be of use to those architects
wishing to develop TRANSPUTER based computer systems.

As a result of the simulation, a major design fault in
the original Group Processor proposal resulted in a severe
'bottle-neck' in input-output processing. This has been
greatly improved by the provision of the Terminal
Environment Switching System; which is also detailed in this
Thesis. The result of this research has yielded a more
flexible Group Processor System which may be targetted for
applications in Intelligent and Knowledge Based Systems.

The relevance of current architecture is discussed in
the context of proposed fifth Generation computing needs.

iv

CONTENTS

Title

Statement

Acknowledgement

Abstract

Table Of Figures

CHAPTER

1 INTRODUCTION

1
1

e i
WM RO

.5
.6

Introduction

Computer Architecture

The Von-Neumann Architecture

Von-Neumann Architectural Implementations
Fifth Generation Computer Research

1.4.1 Japanese Activity
1.4.2 The Alvey Programme

Thesis Plan
Scope of Thesis

2 THE FOUNDATIONS OF COMPUTER ARCHITECTURE

NNN

NN
gk Ww

.0
.1
.2

Introduction
Why a new Generation
The Semantic Gap

2.2.1 The Operating System Semantic Gap
2.2.2 The Programming Environment Gap
2.2.3 The Storage Semantic Gap

2.2.4 Consequences of the Sematic Gap

The Von-Neumann Architecture
Parallel Systems
Multi-Processor Systems and Attributes

2.5.1 Multi-Processor Computer Systems
2.5.2 Tightly Coupled Computer Systems
2.5.3 Loosely Coupled Computer Systems
Multi Processor Classifications
Bounded Parallel Systems

Unbounded Parallel Systems

Engineered Bounded Systems

2.9.1 DEC VAX-11/782
2.9.2 B5000
2.9.3 iAPX-432

PAGE

ii

iii

iv

NNDNDN NN
1 1

|
NN O (6,14 I~ WK =

l\)t?)l\)

NNN
I
OO

2-15

2-15
2-21
2-22

2.9.3.1 Overview of the iAPX432
2.9.3.2 Components - Configurations
2.9.4 Carnegie Mellon Machines

2.9.4.1 C.mmp

2.9.4.1 The Hardware
2.9.4.3 The Software Base
2.9.4.4 Success and Failure

2.10 Engineered Unbounded Systems

2.10.1 Cm*
2.10.2 MPP
2.10.3 The Transputer

2.11 Summary

3 FIFTH GENERATION NEEDS

Introduction

Background

Fifth Generation Systems

Application Areas

Processor Architecture Exploiting VLSI
Needs and Uses

WWWWwww
(G -V SN o]

1 Industrial Automation

2 Office Automation

3 Science and Engineering

4 Computer Hardware and Software
5 Military
6
7
8
9
1

Aerospace

Retail and Service Industries
Education

Health Care

0 Leisure

wwwwwwwwww
01010101010101010101

¢ & s s s & v s s s

6 Involved Countries
7 Concerns and Goals

3.7.1 Japan and ICOT
3.8 Designing the Next Generation

3.8.1 Exploiting Parallelism
3.8.2 VLSI: The Solution?

3.9 The Problems to be Encountered

3.9.1 Physical Limitations
3.9.2 Conceptual Limitations

3.10 Future Computer Architecture

vi

2-22
2-24

2-26
2-26
2-27
2-29
2-29
2-31
2-31
2-35
2-37

2-41

| T T |
BOWNR PR

I
HEERPBOOVUONOU

wwwwwwwwclooo WWWwww
wWwNhErO

3-17
3-17

3-18

4 BUS ARBITRATION CONCEPTS

Background

Introduction

Current Computer Architecture
Bus Arbitration Objectives
Current Arbitration Techniques
Centralised Arbitration

bR
Ok wWwhhEO

4.5.1 Daisy Chain
4.5.2 Polling
4.5.3 Independant Requests

4.6 Distributed Arbitration
4.6.1 Distributed Daisy Chain
4.6.2 Distributed Polling
4.6.3 Distributed Independant Requests

The Universal Arbiter
Summary

S
[se BN}

5 THE GROUP PROCESSOR ARCHITECTURE

Introduction

High Level System Description
Peripheral Interface Environment
Group Processor Environment
Module External Input Output
Logical Bus Structure

Bus Structures

Inter-Module Bus Structure
Single Use Environment

Multi User Environment

The Group Processor Operating System
Distributed Control

HFREREROONOOORWNEO

WwNNr o

goaoaaaaaoaoaoaoog

Group Processor System Summary

6 THE SIMULATION ENVIRONMENT

6.0 Introduction
6.1 The Modelling Approach

6.1.1 Synthetic Benchmarks
6.1.2 Live Benchmarks

6.1.3 Simulation

6.1.4 Mathematical Modelling

6.2 The Case For Simulation
6.3 Computer Structure, Resource Application

6.3.1 What is a resource?
6.3.2 Definitions

vii

High Level Operating System Representation

| N T I I I |
()& S Il

o

I
=
s8]

1
Y
SN[NP N

¢>? N O N #h?wh I N N N '
- = 0 O,
N

|
N
1N

i
FROOOWR P

]
=
NNON

goooaoaaaaon
1

5-19
5-20
5-23
5-23

11
(e

(o)) (o)W e W e We)) [e)W e)]
1

1
B W WWNN

[e) o)}
\
(6,6

6.4 Simulation Architecture

OO O
L] []
(oI N e)

6.

6.10

9

6.11
6.12
6.13

7 RESULTS

NNNSNNNNNNY

.

NSO WNEO

6.4.1 System Architecture Components

6.4.1.1 Buses

6.4.1.2 Bus Arbiters
6.4.1.3 Cells
6.4.1.4 Modules

6.4.2 The Group Processor

6.4.3 Bus Interconnection Schemes

Bus Arbitration

Bus Requests
Actioning Bus Requests
The Simulator Program

6.8.1 System Parameters
6.8.2 Major Parameters
6.8.3 Tuning Parameters

The Simulation Environment

6.9.1 The Job Scheduler
6.9.2 The Job Server
6.9.3 System Loading

Range of Results

6.10.1 vVariation of Physical Constants
6.10.2 vVariation of Cell Numbers
6.10.3 Variation of Module Numbers
6.10.4 vVariation of Inter-module bus
6.10.5 vVariation of Intra-module bus
6.10.6 Variation of Soft Constants
6.10.7 Bus Request Rate

6.10.8 Ratio of Jobs

6.10.9 Time Required as Bus Master
6.10.10 Message Length

Simulation Goals
Limiting Factors
Conclusion

AND IMPLICATIONS

Introduction

Table of Results

Basic Group Processor System
Extended Group Processor System
Operating System Constraints
Off-loading Factor

Segmemted Input/Output
Dedicated Systems

Closer Analysis

viii

7.
7.

8.1 Effects of Bus Contention
8.2 Inter-Cell Communication

7.9 Software Considerations
7.10 Conclusions

8 GROUP PROCESSOR ARCHITECTURAL ENHANCEMENTS

00 00 00 00 00 0O 00 0O 0O

e e L] . L[] * 0 .
OO WNEO

Introduction
Group Processor System Problems

T.
T.
T.

E.S.S. Outline
E.S.S. Objectives
E.S.S. Operations

Module/Channel Interface
Crossbar Operation

Bus Arbitration

Summary

9 CONCLUSION AND FURTHER RESEARCH

Introduction

Research Initatives
Computer Architecture

The Group Processor System

T.

E.S.S.

Future Research
Summary

APPENDIX ONE: Simulator Graphical Output

APPENDIX TWO: Simulator Program Listing

ix

00 00 0000 m® W
[
00BN

Ui

O WOOWOOOYO
|
ONNORWE -

>

[
I

[

Ly

IS
I

'—J

Figure No. Figure Title Page No.

2.1a Single User Global Memory 2-8
2.1b Single user Global + Local Memory 2-8
2.2 Single user Loosely Coupled 2-11
2.3 Multi-user Multi-processor 2-12
2.4 VAX-11/782 Connections 2-16
2.5 VAX Architectures 2-18
2.6 Dual VAX Configuration 2-20
2.7 4 Processor iAPX-432 Configuration 2-25
2.8 C.mmp 2-28
2.9 5 Cluster Cm* 2-32
2.10 Cm* individual cluster 2-33
2.11 MPP 2-36
2.12 The Transputer 2-39
4.1 Simple Parallel System 4-3
4.2 Centralised Daisy Chain 4-7
4.3 Centralised Polling 4-9
4.4 Centralised Independant Requests 4-11
4.5 Bus Arbiter Types 4-13
4.6 Distributed Daisy Chain 4-15
4.7 Digtributed Polling 4-16
4.8 Distributed Independant Requests 4-18
4.9 Hierarchical Arbitration 4-20
4.10 Linear Priority Arbitration 4-21
4.11 Fifth Generation Arbitration 4-23
5.1 Functional Composition of G.P.S 5-2
5.2 Group Processor Module 5-4
5.3 Module Component Architecture 5-5
5.4 Inter-module Bus Structure 5-7
5.5 Data Bus Architecture 5-9
5.6 Module Coupling Architecture 5-11
5.7 Single User System 5-13
5.8 Multi User System 5-14
5.9 Multi User Environment 5-18
5.10 Distributed Operating System 5-22
6.1 Simulator Schematic 6-12
7.1 Table of Results 1 7-4
7.2 Table of Results 2 7-5
7.3 Table of Results 3 7-6
7.4 Table of Results 4 7-7
7.5 Table of Results 5 7-8
8.1 Multi User System 8-3
8.2 T.E.S.S Architecture Outline 8-5
8.3 Terminal Alternatives 8-7
8.4 Ported Memory Concepts 8-9
8.5 Four Terminal/Crossbar Module 8-11
Interconnection
8.6 Module/Crossbar Interconnection 8-13
Network
8.7 Crossbar Addressing Mechanism 8-16
8.8 Crossbar Functional Diagram 8-12

CHAPTER ONE

CHAPTER ONE

INTRODUCTION

1.0 Introduction

There is a general consensus among the computer science
fraternity that the 1990's will see the end of the
traditional Von-Neumann architecture machine, and that a new
generation of general purpose computing machines will

evolve.

Most computer architects also see a need for a new
generation of system design. Unfortunately, few truly new
inititives are forthcoming, as most 'new' designs are based
on a 1limited extension of the classical Von-Neumann
computing machine. The research set out in this Thesis has
set as its aim a divergence from classical views on computer
architecture, to views which may seem radical. This research
sees as 1its starting point the abandonment of classical
bounded multi processor computing systems, consisting of say
64 processors. Only with seemingly unbounded systems can we
say that computer architecture has developed a new Fifth

Generation of computing machinery.

1.1 Computer Architecture

Defining what is meant by Computer Architecture is not
a simple task. Computer Architecture is not restricted to

the sole aspects of hardware. Building black-boxes from

Page 1-1

registers, memory devices etc., 1is certainly part of the
process, so is the interconnection of these boxes via buses,
switches and controllers. A blend of hardware and software
features which make the machine operate must also be
included. Computer architecture may be defined as the design
of the integrated system which provides a useful tool to the

programmer. Computer architecture may be defined to mean:-

The internal workings of the black-boxes which are
the main components of the system and the means of
interconnecting these boxes, their parallel

activites and cooperation.

1.2 The Von-Neumann Architecture

The first major architecture was proposed by John
Von-Neumann et al. in their 1946 paper, 'Preliminary
Discussions of the Logic Design of an Electronic Computing
Instrument' [5]. Even with the advent of modern machines [4]
most computer architectures bear the mark of this design.
Therefore before embarking on any description of the
generations of computer architecture, a brief description of

the Von-Neumann architectural model is essential.

The Von-Neumann architectural model was conceived for a
specific purpose, that of providing a simple stored program
execution mechanism to carry out the computations for the
solutions of differential equations. The architecture can be

said to have the following properties:-

Page 1-2

1) A single, sequentially addressed memory. The program and
its associated data are stored 1in a single memory, the
memory being referenced with sequential (O, 1, 2, 3,...)

addresses.

2) A linear memory. The memory is one dimensional, that is,

it has the appearance of a vector of words.

3) No explicit distinction between instructions and data.
Instructions and data are distinguished implicitly by the

operations directed toward them.

4) Meaning is not part of the data. There is nothing that
explicitly distinguishes a set of bits representing a
floating-point number from those representing a character
string. The meaning of the data is assigned by the program

logic.

1.3 Von-Neumann Architectural Implementations

Computer architecture has developed much in the last 30
years, from the Manchester Mark-1 to Seymour Cray's Cray

X-MP/2 [13].

The Mark 1 is of historical importance as it was the
world's first stored-program computer. The machine marked
the beginning of a new technological era. In todays terms

the machine posessed the following hardware features:

Page 1-3

1) A 32-bit word length.
2) Serial binary arithmetic (2's complement).

3) A main store of 32 words (expandable to 8192).

The main emphasis of the project was to prove the
practicability of the Williams Tube for realising the stored
program concept and as a result the logic was kept as simple
as possible. The subtractor was the only arithmetic element
included, as it can perform complements and additions

without modification.

The next major step was the prototype construction of
the Atlas machines at Manchester University in the 1950's
[2]. Atlas-1 and Atlas-2 were eventually produced by the
Ferranti Corp. Atlas featured multiple index registers,
interrupt processing of I/0 devices. Two original features
of Atlas, namely a one-level storage and extracode have been
copied in many other machines. The one level store is common

to most time-shared or multi programmed computers.
Significant features of the Atlas system were:-

1) Provision of a virtual address space greater than the
physical address space.

2) Implementation of a one level store wusing a mixture of
core and drum memories.

3) Interrupt system and method of peripheral control.

4) Realisation at the design stage that there would be a
complex operating system and provision in the hardware of

specific features needed to assist such an operating system.

Page 1-4

Computer systems have usually been designed via the
'hardware' route. Subsequent to design, these systems have
been handed over to a systems programming team for the
development of a package to facilitate the wuse of the
hardware. However the Burroughs B5000 [3] was designed from

top to bottom as a total hardware/software system.

The B5000 achieves a unique physical and operational
modularity through the wuse of switches which 1logically
function as crossbar switches. The B5000 was designed as an
integrated hardware/software system which offered

multiprocessing and parallel processing.

The Digital Equipment Corporation's PDP-8 is of
importance as it was the first true minicomputer. The PDP-8
was a single address 8 bit computer. It was the first of a
family called the 'OMNIBUS' machines. Like its predecesor,
the PDP-5, the PDP-8 was a single address 12-bit [10]
computer designed for 'task' environments with a minimum of
arithmetic computing and and small memory requirements, i.e

process control.

The early constraints placed on computer architects,
created computers with what we now regard as faults or

weaknesses, namely:-

1) Limited addressing capability

2) Few registers

3) No hardware stack facilities

4) Limited priority interrupt structures

5) No byte string handling

Page 1-5

6) No ROM facilities
7) Little I/0 processing
8) No simple hardware upgrade

9) High programming costs (All users use machine code)

The DEC PDP-11 was designed with the above in mind, and
successfully [9] overcame these limitations. This was due
mainly to the fact that semiconductor technology Dbecame

available to solve the problems at low cost.

The VAX-11/780 computer system is the first
implementation of the [11] VAX-1l1l architecture, a Virtual
Address eXtension to the PDP-11 architecture. The most
distinctive feature of the VAX is the extension of the
virtual address from 16 bits, as on the PDP-11, to 32 bits;
giving an address space of some 4.3 gigabytes. Since maximum
PDP-11 compatibility was a design objective, the VAX
includes a compatibility mode which provides the basic

PDP-11 instruction set, without the privileged instructions.

The IBM System/360 and System/370

The System 360 was the first planned computer family to
cover a range [l] of cost and performance. The 360
predecessor, the 7090, ran into problems later encounterd by
the PDP-8, namely 1limited growth potential. Rather than
'fiddle' with the architecture IBM planned a family of
processors with growth potential for the future. The initial
family plan called for a wide range of cost and performance
implementations, microcode being used to provide emulation

support for prior systems.

Page 1-6

The motivation to extend the 360 architecture came from

two main sources:-

1) The experience of the 360 achitecture has identified a
number of bottlenecks and 1limitations in the efficiency of
system use has pointed out areas where additional machines

were needed.

2) The 1lowering of the cost of technology made it
economically possible to include functions that did not

appear justified in the original 360 architecture.

The most interesting aspect of the 360-370 design is
achieving a performance range and a primary memory size
range in excess of 100:1.Thus the user is given a very large

range of configuration alternatives.

1.4 Fifth Generation Computer Research

Japan's capability for producing high quality
electronic products is well known. It therefore came as a
shock when in 1981 the Japanese announced to the World a
programme of research into Fifth Generation computing
systems. This was the responsibility of The Japanese

Ministry of International Trade and Industry, MITI [8].

1.4.1 Japanese Activity

In 1982 Supercomputers were an American exclusive.
Today, Japanese firms are offering machines that challenge,
and in some ways exceed, the performance of those American

machines. This has been due mainly to the fact that MITI

Page 1-7

has decided that Japan must learn to innovate, not just copy

and improve on existing technology.

MITI's development plans for fifth Generation computers
started in 1982. The budget for the years 1982-1984 being
some 10 billion Yen. The Institute for New Generation
Computer Technology (ICOT) has been created to spearhead
Japanese efforts in the field, and has been succesful in
designing and building an Inference Machine and a Database

Machine.

However, NTT 1is the only Japanese company trying to
develop a true [12] parallel processor. Two types of
dataflow are under study; one is a highly parallel array
processor for scientific calculations, the other is an
architecture designed to apply data-flow techniques to 1list

processing.

1.4.2 The Alvey Programme

The Japanese initative produced a number of responses
around the word. The most notable was The UK's Alvey
Committee, which producd a number of goals for Britan's
involvements in fifth Generation computing systems. The
Alvey Programme was set up as a result of the Alvey
Committee report, (A Programme for Advanced Information
Technology), in 1982. The Programme aims to mobilise the
United Kingdom's strengths in Information Technology, (IT),
in order to improve the UK's competitive position in the

World's 1T market.

Page 1-8

The research programme is a collaborative effort
between Government, industry, academic and commercial
research units. The Programme combines projects in four main

technology areas.
The four enabling areas are:-
1) VLsI

The requirement for massively parallel systems demands
a VLSI approach to building systems. VLSI gives the
capability of interconnecting the very large number of logic

elements required for data and signal processing.
2) Software Engineering

Fifth generation computing systems will tend to be more
complex than present day systems. This will result in a
longer time delay in generating and maintaining proposed
fifth generation programs. Therefore, Software Engineering
is aimed at improving the efficiency of the specification,
generation and maintenance of the program instructions for

IT systems.
3) Intelligent Knowledge Based Systems

One major area of activity is the design of intelligent
machine/software systems. These systems should be adaptive
systems capable of 1learning. The object is to produce
inference systems that can be incorporated in education,

medicine, military, etc.

Page 1-9

4) The Man-Machine Interface

The proposals of 'Alvey' clearly imply that computing
systems will be applied to new application areas, possibly

with new methods for input and output. The wider aspects of

the involvement include psychological aspects of using

complex systems.

Specifically, this section covers visual, speech, touch
input-output devices and the better understanding of the

nature of communication between the user and the machine.

Following Japan's initative, the United States and
Europe have started various research programmes into fifth
Generation design. Most countries are in an early stage of
development and are desperately trying to catch up on
Japan's early lead. One question remains unanswered; are the
claimed fifth Generation systems truly advances on the older

technologies, or simply refinements of proven systems?

1.5 Thesis Plan

Following a brief introduction to Computer Architecture
and the area of the proposed fifth Generation computing in
chapter 1, chapter 2 presents a critique of architectures
from the previous generations presenting a new possible
classification scheme for the architectural generations,
independant of technology. The chapter also examines the
reasons why the Von-Neumann architecture is in need of
replacement, and examines some of the machines which have

tried to overcome its limitations.

Page 1-10

Chapter 3 looks at the new application requirements of
a fifth Generation computer system, and criticises some of

the so0 called fifth Generation machines.

Chapter 4 examines the problems of bus contention
brought about by large numbers of processors and offers some
solutions to this problem. This chapter presents bus
interconnection patterns in the context of maximising bus

traffic in fully distributed systems.

In chapter 5, an introduction to a Polymorphic, Space
Sharing [6] Computer System, called the Group Processor
System, is given. Details of the functions performed within
the components of the Group Processor's homogenous
architecture and the interaction within the organisational
structure are presented. The design claims to overcome the
two basic problems isolated by the Data Flow Group at
U.C. Irvine [7] namely data localisation and concurrent bus
access. This architecture is able to emulate a data driven

machine.

Chapter 6 presents an introduction to the various
methods of system performance measurement and gives a
detailed simulation environment for hierarchical system
interconnection. Moreover, the simulator is concerned with
the dynamic environment generated by the execution Group

Processor System environment.

Chapter 7 examines results from the simulator for
various system configurations. The simulator provides a

'window' on the program environment within the Group

Page 1-11

Processor System, this yields important data wused to
optimise +the Group Processor System architecture. This
chapter highlights one major weakness of Quick's original
design concept for the Group Processor System, that of real

time input/output under heavy loading.

The proposed architecture presented by Quick [6]
provided detail into the working architecture of the basic
Group Processor System. However, many areas of the bus
system were left for refinement, and these are studied in
this Thesis. The results of the study have enabled the next
chapter, chapter 8, to propose many important system +tuning
features to be employed in engineering the Group Processor
System. The chapter proposes a new design for the

input/output system of the Group Processor System.

The final chapter, chapter 9, contains conclusions
drawn from this research. Specifically, the areas of
computer architecture, fifth Generation Computer
Architecture, system simulation and system performance are

discussed.

Each chapter is complete with references at the end of
the chapter. The references are presented in the UNIX

format.

1.6 Scope of the Thesis.

This research continues the abandonment of the
von-Neumann architecture, for an architecture more radical

in concept. Polymorphic systems provide the necessary degree

Page 1-12

of reliability needed for real time control systems coupled
with a high degree of resource utilisation. The major
advantages of the Polymorphic 'Group Processor System' is
its massive parallelism. While the Group Processor System
seems to offer a solution to current problems in IKBS, some
potential problems arise when 'engineering' the system.
These areas are addressed in this Thesis by simulating the
bus interaction for various bus scheduling schemes and
system configurations. The results drawn from this Thesis
provide the information needed +to proceed with +the next
stage of the Group Processor System, namely circuit and

software design.

Page 1-13

References - Chapter 1

1. IBM Corporation, "A Guide to the IBM System/370", 5th
Edition 1976.

2, SUMNER, F., HALEY, G., AND CHEN, E., "The Central
Control Unit of th ATLAS Computer"”, PROC IFIP 1962.

3. LONERGAN, W., AND KING, P., "Design of the B5000",
Datamation V7 N5 1961.

4, SIEWIOREK, D., BELL, G., AND NEWELL, A., "Computer
Structure: Principles and Examples", McGraw-Hill 1982

5. BURKS, A.W., GOLDSTINE, H.H., AND VON-NEUMANN, J.,
"Preliminary Discussion of the Logic Design of an

Electronic Computing Instrument", Pt 1. No.l, Princeton
N.J. 1946.

6. QUICK, G.E., "The Group Processor Approach Computer
Architecture", Ph.D Thesis, UC Swansea 1982.

7. GOSTELOW, K.P. AND THOMAS, R.E., "Performance of a
Dataflow Computer.," UC Irvine TR 127a.

8. MOTO-OKA, T., "Fifth Generation Systems,"” North Holland
1982.

9. DIGITAL, "PDP-11 Hardware Handbook", 1977.

10 BELL, G., MUDGE, J., AND McNAMARA, J., "A DEC View of
Hardware System Design", Digital Press 1978.

11. DIGITAL, "VAX-11/780 Hardware Handbook", 1982-3.

12. NATO Conference on Relational Database Architecture,
Les Arcs, France 1985.

13. LUBEK, O., MOOR, J. AND MENDEX, R., "A Benchmark of

Three Supercomputers: Fujitsu VP-200, Hitachi S810/20
and Cray X-MP/2", I1EEE Computer 1984

Page 1-14

CHAPTER TWO

CHAPTER TWO

THE FOUNDATIONS OF COMPUTER ARCHITECTURE

2.0 Introduction

Many of the designs for computing systems have been
centred on a typical system architecture comprising of a
central processor (or some finite multiple up to say 16),
random access memory, input-output processors, and some
backup storage such as magnetic disk or tape. Highly
reliable systems, such as the Tandem [17] have been an
extension to these systems by incorporating some form of

redundancy in one or more parts of the design.

The more "classical" designs are based on Von-Neumann's
architecture, which have received criticism from some
researchers [3,21,7]. A number of wvariations on the
Von-Neumann architecture has resulted in many
multi-processor and multi-computer organisations
[1,4,24,14,19,30,32,33]. In developing an alternative
design, researchers have proposed several alternative
architectures [2,8,13,26,28]. These architectures can be
best described as non sequential; they have tried to deviate

from the classical Von-Neumann machine.

Page 2-1

2.1 Why a new generation of computers?

With few exceptions, there have been no advances in

computer architecture of current systems since the 1950's.

An argument against this is the introduction of such
concepts as microprogramming, VLSI, pipelining and cache
memories. However, +these do not represent architectural
concepts, but merely advances in the implementation of

particular current architectures.

In comparing the architectures of the most widely wused

machines:;

e.g. IBM S$/370 S/34, DEC PDP/1l1, VAX etc

to the EDSAC and EDVAC, the first electronic stored program
computers, all the significant differences will be found to

have originated in the 1960's. Which were:-

1) Index registers

2) General purpose registers

3) Floating point data representation
4) Indirect addressing

5) Interrupts

6) Asynchronous input-output

7) Virtual storage

8) Multi-tasking

Although current systems differ significantly from
their predecessors in terms of cost, speed, reliability,

internal organisation and circuit technology, the computer

Page 2-2

architecture of most current systems has not advanced beyond

the concepts of the 1950's.

Given this state of affairs the following must be

asked: -

1) Are the architectures of the 40's and 50's the optimal
ones for today?

2) Is not todays world different, measured in cost of logic,
speed, sophistication of computer application and magnitude
of the software problem, and that changes in computer

architecture are needed?

If the above points are valid, we must put forward some

evidence why a new approach is necessary.

2.2 The Semantic Gap

Most of the shortcomings in todays machines are due to
the 'Semantic Gap'. The Semantic Gap was originally defined
to be a measure of the difference between concepts in
current high level languages and the underlying concepts in

computer architecture [20].

Todays systems have an uncomfortable semantic gap in
that objects and operations reflected in their architecture
are rarely closely related to the objects and operations
provided by the programming languages. In broadening the
definition of the semantic gap, it may be said that there is

a large gap in semantics between programming environments

Page 2-3

and their representation of the program concepts at the

architectural level.

2.2.1 The Operating System Semantic Gap

The operating system is an integral part of most
computing systems. In general the operating system has four

purposes: -

1) Providing utility services to other programs, such as

storage allocation for the execution of large programs.

2) Shielding programs from such items as interrupts, machine

interfaces etc. for software portability.

3) Providing, at varying 1levels of sophistication, a

'virtual machine' concept.

4) Creating and enforcing system managemant policies.

A case can be built for a gap between the operating
system concepts and the underlying machine. For instance,
many operating systems designers recognise that the working
set model is crucial +to managing a storage hierarchy in a
close to optimal manner. Although instrumentation required
to do this has been identified it exists in no commercial

architectures.

2.2.2 The Programming Environment Semantic Gap

Evidence can be found of a 1large gap between

fundamental notions of programming and most computer

Page 2-4

architectures. For instance, such concepts as modularity,
abstract data types [22], information hiding, and monitors
are important in the design of large software systems, but
support for these concepts 1is missing from today's

architectures.

2.2.3 The Storage Semantic Gap

This gap is more difficult to see as it represents a
gap that does not exist. The operating system architects
have obscured the gap by falling into it. The issue here is
the lack of a uniform concept of storage. The programmer is
faced with a visable hierarchy of registers, stacks, RAM,
tapes etc. Each medium has a different addressing mechanism,
allocation machanism etc. It is for +the wrong reason that
the gap does not exist. Rather than presenting the high
level language programmer with a uniform notion of storage,
one is presented with a number of inconsistent concepts

which are technology dependant.

2.2.4 Consequences of the Semantic Gap

The semantic gap is a significant contributor to
software unreliability in the sense that a large set of
programming errors that could be theoretically prevented or
detected by the computing system are not prevented or even
detected in current systems, i.e array bound checks,

references to undefined or unset variables.

Page 2-5

2.3 The Von-Neumann Architecture

The basic reason for the semantic gap in current
systems is that their architectures do not significantly
differ from the Von-Neumann model developed in the 1940's.
We may class all current machines as being of the

Von-Neumann type.

Although the von Neumann architecture was a reasonable
architecture for the first stored-program computer, it is
alien to the execution of programs writen in high 1level

languages.

In contrast to the four main characteristics of a
Von-Neumann architecture given in Chapter-1, high 1level

languages have the following characteristics:-

1) Storage 1is presented as a set of discrete named
variables. There is no concept of one variable being 'next'
to another. There is no reason to believe that wvariables in
one subroutine are located in the same storage device as the
variables in another. In short, the concept of a single
sequential storage bears little resemblance to the concept

of storage in programming languages.

2) Programming languages deal with multi-dimensional, not

just linear, data types.

3) In programming languages there is a sharp distinction

between data and instructions.

Page 2-6

2.4 Parallel Systems

Some of the architectures which have moved away from
the Von-Neumann mode are multi-processor and multi-computer
systems. However, there is some confusion as to the
definition of such term. Some clarification and extension of

notation is first required.

2.5 Multi-Processor Systems And Attributes

One of the fundamental problems with traditional
multi-processor configurations is the interconnection of
memories and processors, and also their interconection to
the outside world. This section analyses the attributes of

multi-processor computer systems.

2.5.1 Multi-Procssor Computer Systems

This section discusses the clasification of wvarious
multi processor computer system schemes available to the
computer architect, with reference to reliability. A "black
box" approach, synonymous with the integrated circuit will
be used to represent the micro partitioning of systems, e.g.
processor, memory, etc. Macro partitioning is wused to
represent a stand alone general purpose, i.e. non
specialised, computer system. The figures in this section,
i.e. figures 2.1. and 2.2., are single user systems which

are either a host mainframe or user terminal.

Page 2-7

P1| |P2| |P3|----|Pn

Global Memory

(a) Totally Shared Memory

M M2| [M3|----|Mn

P1| |P2| |P3|----|Pn

Global Memory

(b) Limited Shared Memory

Figure 2.1 Single User Tightly
Coupled Computer System

Page 2-8

2.5.2 Tightly Coupled Computer Systems

A tightly coupled Computer System [17], is a multiple
processor, shared memory, computer system. Figure 2.1.a.
shows a "totally shared memory" structure, while figure

2.1.b. shows a "limited shared memory" structure.

The major advantage of the totally shared memory is its
inherent flexibility. This is best illustrated by
considering a processor, say P2, as failed. From figure
2.1.a., any other processor may address each others memory
space during a recovery process. By comparison, recovery is
difficult in figure 2.1.b, where the recovery process has to
access the local memory, i.e. M2. However, the provision of
local memory does provide a closed process environment,
resulting in the confinement of processing errors to the
local memory. Local memory provides an additional speedup
[33] in computation, because contention for shared memory

access is reduced.

2.5.3 Loosely Coupled Computer Systems

Loosely Coupled Systems [10] are multiple computer
systems in which there is no shared memory, and all inter
processor communication takes place through input-output

channels.

Loosely Coupled Systems have more structure than
Tightly Coupled Systems because their inter processor
communication is intelligent. This enables intelligent inter

process communication between communicating processes, at

Page 2-9

the machine level, e.g. through input-output channels. This
is not possible in Tightly Coupled Computer Systems, as any
processor may access any location in the shared memory, e.gq.
when a faulty processor writes to an output area of another

processor, producing systemic process corruption.

2.6 Multi-Processor Classifications

Multi-Processor Classification has enabled a
classification scheme to represent inherent qualities of two
dissimilar system structures. When considering the execution
of a program, as an execution of communicating processes in
the single user systems of figure 2.1. and 2.2., the Tightly
Coupled Computer Sytems offers a more reliable programming
environment through its closed, 1i.e. local, memory

architecture.

In a multi user interactive system, employing a
multi-processor architecture, the input-output to the user
terminals is performed by a fast, uni-processor based,
communication processor. This type of system is shown in
figure 2.3. While the execution environment of figure 2.3 is
more reliable than the conventional uniprocessor systems,
the reliability of the front-end communication processor is
a single point of failure. With this in mind, the 1ideal
multi-user, multi-processor machine provides a process
execution environment which is loosely coupled, together

with a loosely coupled input-output to the system users.

Page 2-10

Computer Sys 1 CS 2 CS3 t {1 CSn

e e | S I

Communication Channels

Inter Computer Comms Network

|
Users

Figure 2.2 Single User
Loosely Coupled System

Page 2-11

Tightly/Loosely
Coupled Computer
System

Multiplexed
Frontend
Processor

Users

Figure 2.3 Multi-User Multi-Processor
Computer System

Page 2-12

Quick proposes a change in the system classifcation
scheme which includes [12] input-output architecture to the
execution environment. The Tightly/Loosely Coupled Computer
Systems shown here, together with Flynn's classification
[11] e.g. Multi Instruction Multi Data - MIMD, require

extension, or clarification.

The extended classification is:-

1 (a) Tightly Coupled, Single I/0 (i.e. Single channel I/0)
(b) Tightly Coupled, Parallel I/0 (i.e. Multiple channel

I/0)

2 (a) Loosely Coupled, Single I/0 (i.e. Single channel I/O)
(b) Loosely Coupled, Parallel I/0 (i.e. Multiple channel

I1/0)

Relating the above classifications to fifth generation
requirement; the system structure would have the

input-output equivalent of 1(b) or 2(b).

The proposals for fifth generation architectures
requires a move away from the multiplexed front-end
processor. The multiplexed input-output channel does not
offer the speed required for the fifth generation human
interface. Dedicated input-output channels seem to be the
only mechanism capable of matching applications to

architectural requirement.

Page 2-13

2.7 Bounded Parallel Systems

A machine architecture is bounded if there are up to,
say 64 processors where the architecture is defined in terms
of maximum system configuration. That is, the maximum number

of processors that can be integrated into the system is 64.

The limiting factors here are based on technological
limitations such as pinout numbers on integrated circuits.
Bounded systems tend to be cheaper designs than more

flexible unbounded systems.

2.8 Unbounded Parallel Systems

A machine architecture is unbounded if it is designed
with maximum flexibility and extensibility as a fundamental
system requirement. Such systems should be capable of
supporting in excess of 10,000 processors, and ideally
millions of processors. In reality; it is difficult to
design systems that are +truly unbounded. The physical
interconnection of the main components require a fixed
number of hardwired connections. An unbounded
interconnection scheme demands maximum flexibility in the
interconnection, and hence requires soft and not hard
connections. It can be said that they approach the unbounded

state.

Page 2-14

2.9 Engineered Bounded Systems

Four architectures which have moved away from the

classical uni-processor architecture.

1) The VAX-11/782
2) The Burroughs B5000
3) The iAPX-432

4) C.mmp

2.9.1 Multi-processor Configurations of the VAX-11/780

The simplest multi-processor configuration of the VAX
family is the [35] vVvAX-11/782, a tightly coupled
asymmetrical multi-processor. The 782 is based on two 780
processors using the MA780 shared memory subsystem (Figure

2.4).

At the centre of all VAX multi-processors is the
multiport memory. This enables up to four VAX processors to
share a bank of memory. This feature allows VAX users to
develop multi computer configurations for very high

throughput or enhanced availability.

Applications built around multiple cooperating
processes can be configured to run on multi-processor
systems with no programming modification. Processes in
shared memory can be moved from one procecssor to another

with complete transparency to the programs involved.

Page 2-15

HONIN
1¥I01

198

08./11
- XVYA

140d

¥ ¢ amnbiy

AHON3N

1HOJILINNA

140d

081/11
—XVA

195

AHONIN
1301

Page 2-16

An interesting point to note is that each processor in
the multiport system operates independantly using its own
copy of the operating system stored in its local memory.
This 'local operating system' is discussed further in

chapter 5.

Port Arbitration

The high throughput of VAX multi-processor
configurations is due to each port having a buffer for
commands and data. Each port is served on a demand basis,
that is, first-in first-served. No time is wasted in polling
inactive ports. A serving algorithm guarantees that no port
waits more than three memory cycles to gain access to shared

memory.

A problem associated with multiport memory is that of
one processor trying to read a location at the same time
another is trying to modify it. The VAX eliminated this
contention by 1locking out the second processor until the

first has completed the transaction.

Parallel and Sequential Procesing

The multiport memory of the VAX can enhance system

performance via two configurations:-

1) Parallel or 2) Pipeline processing.

Page 2-17

G ¢ a1nby

SNOILVHNDIINOD
XVA TVILNIND3S ANV 1311vHVd

TVILININD3S

1nd li.!i 1naw

13T1vHvd

<

Page 2-18

In the parallel mode; two or more processors divide the
task between them, allowing processors to pool resources.
Pipelining can increase total system throughput by allowing

instantaneous data exchange between processors that are

handling the sequential parts of an application. The
following figure (Fig 2.5) illustrates possible
configurations.

Although the VAX can be configured to run as a
multi-processor, its design is that of a uniprocessor. This
leads to several major problems on throughput. In the
tightly coupled system, processors execute the same copy of
the operating system and share the same data structures.
Asymmetric processors cannot execute the entire operating
system code at the same time. In a dual processor
configuration, figure 2.6, all Kkernal mode and interrupt
code 1is executed by the primary processor. Also all
Input/Output is conducted by the primary processor. These
design features can lead to the second processor being
almost inactive due to the primary being input-output bound.
Therefore every time the secondary processor generates a
page fault, the primary processor must halt its current

activity and service the attached processor.

Due to the above problems the 782 is only 'in its
element' when handling primarily compute bound jobs. This
leaves the primary processor free to handle all Input-Output

at a reasonable throughput.

Page 2-19

2.9.2 The Design of the Burroughs B5000

Computing systems have usually been designed via the
hardware route; i.e. design the physical machine first and

then implement the software at a later date.

A contrast to this was the design of the B5000. From
the initial design, the system was thought of as a total

hardware-software system.

Design Objectives and Criteria

The fundamental objective of the system was the
reduction of total problem through-put +time. A second
objective, and in terms of this Thesis the more significant,
was the provision of facilities to change both programs and

system configuration.

Early in the design phase of the system major

principles were established:

1) Multi-tasking and true parallel processing, requiring
multiple processors should be provided.
2) System reconfiguration, within reasonable limits, should
not require any systems reprogramming.

3) Data and programs should be independant of location.

Page 2-21

2.9.3 The Intel iAPX-432. An Advanced Microprocessor

The 1iAPX-432 microprocessor was designed with the aim
of reducing the software development problems created by the

Semantic Gap.

With this in mind likely application areas for the 432

are:

1) Low volume applications where the programming investment
is high.

2) High volume applications where programming is more than a
one time occurence.

3) Those areas with a high degree of concurrency.

It is this 1last area which is of significance to this
Thesis. Other aims of the 432 design were incremental system
performance, or the ability to tune the performance of the
system by adding or subtracting processors without the need
to modify software. The final two aims of the system were
the ability of the system to provide 'shadow' redundant
processors to check system integrity and support for the ADA

language at a fairly low level.

2.9.3.1 Overview of the iAPX-432

Many of the architectural attributes of the 432 are
similar to that of the SWARD architecture [36], the major
difference being that the 432 1is not a tagged-storage

machine.

Page 2-22

The fundamental concept of the architecture is that of
an 'object' [25]. An object 1is a collection of related
information which, with a set of applicable operators, forms

an abstraction.

The main features of the 432 are:

1) Capability Based Addressing

The 432 employs the addressing and protection concept
of capabilities. A capability, or access descriptor, refers
to an object and contains sets of access rights to that

object.

2) Garbage Collection
3) Small Protection Domains
4) Automatic Subroutine Management

5) Process and Processor Objects

In the 432 concurrent processes and processors are
represented by objects. This provide the system with a high
degree of flexibility and regularity. Inherent in the 432

architecture is a high degree of support for concurrent

processes and multiple processors. This includes
interprocess and interprocessor synchronisation and
communication.

These features are enabled by having a 'pool' of
processors to which processes are dispatched from a central
queue, that is the 432 is a polymorphic system. The 432
provides an effective and highly flexible means of

controlling and dispatching of processes to processors. In

Page 2-23

general, low level decisions are taken by the hardware but
the progress of processes 1is controllable by the operating
system by setting a variety of parameters in the process

objects.

6) Send and Receive Mechanism

Inter-process communication is provided by a

communication port which is itself an object.

7) Large Address Space

The 432 provides a large address space, in terms of

both objects and physical store.

8) Flexible Operand addressing.

9) Extensive Floating-point Facilities

2.9.3.2 Components and Configurations

Currently the 1iAPX-432 system consist of three
component types. The 43201 and 43202 make up a General Data
Processor. The 43201 fetches and decodes instructions while
the 43202 provides addressing and logic functions. The two
devices are tightly coupled via a microinstruction bus. The
final component is the 43203, the interface processor. This
serves as an input-output channel. The following figure

shows a four processor system, figure 2.7.

Page 2-24

Memory]

43201
43202
43201
43202
43201
43202
_ 43201
43202
S ’ (43203
Subsystem Muitibus | P
43203
Communlication
Subsysiem 1P
Process Control 43203
Subsystem |
Multibus IP
Figure 2.7

Page 2-25

Packet
Bus

In a multi-processor configuration, memory inter-facing
is a key concern. With a single memory bus the upper 1limit
on processors seems to be five processors [23] beyond this
memory interference is such that additional processors add

little to system performance.

2.9.4 Multi-Processor Research At Carnegie-Mellon University

In 1971 a research project was started to examine
multi-processor architectures, a main centre for the
research being those architectures which share a common

address space [33].

The first project, C.mmp is a relatively straight
forward multi-processor. Began in 1972 in connects up to 16

prcessors to a shared memory via a crosspoint switch.

2.9.4.1 C.mmp

Four main design criteria influenced the design of the

machine:

1) Minicomputers would be used as the processing elements.
2) The machine would have no 'master-slave' relationships
between the processors.

3) A large address space would be provided.

4) As much commercially available hardware would be used,

as was available.

Page 2-26

2.9.4.2 The Hardware

C.mmp is an asynchronous, MIMD multi-processor [5],
composed of slightly modified PDP-11/40 processors,
augmented by a writable control store, figure 2.8. Up to 16
of these processors can be connected to up to 16 shared
memory modules via a 16 x 16 crosspoint switch. A path
through the switch is independantly established for each
memory request and upto 16 paths may exist simultaneously.

Control signals are carried via an independant bus called

the IP-bus.

The memory modules provide a maximum physical address
space of 32 megabytes. All processors are capable of
accessing all memory, though the PDP-11's 16-bit
architecture 1limits the amount of directly addressable
memory at any one time to 64 kilobytes. In addition to the
shared memory each processor has 8 kilobytes of private
'local' memory. This space being used for context-swaps,
synchronisation etc. Input-Output devices are connected to
individual processor UNI-BUSES, and are controlled by the

individual processor.

Page 2-27

2.9.4.3 The Software Base

Hydra is the kernel operating system for C.mmp [15]. It
does not provide files, command language or even a
scheduler. Rather, Hydra provides an environment in which it
is intended that the user should write programs that supply

these facilities.

Hydra, which was a research project itself [34] , uses

a capability-based protection structure.

2.9.4.4 Successes and Failures

The sucesses include then design and implementation of

a cost-effective multi-processor.

Drawbacks

C.mmp had its drawbacks though, these fall into three

groups: -

1) Hardware reliability.

Approximately two thirds of all system failures were
due to hardware problems. This being due to insufficient
error detection being built into the hardware. The systems
hub, the crosspoint switch, was too reliant on other
devices, i.e. processors and memory. The switch could be

rendered inoperative by a malfunction in one of these units.

Page 2-29

2) The small address space.

The PDP-11 restricts all addresses generated by user
programs to 16 bits long. This address space restricts the
memory size addressed to 64K. To overcome this problem C.mmp
provides a facility to divide +the address space into 8
pages, the addressing mechanism being similar to the 'base

registers' on the IBM 360/370 style machines.
3) Partitioning.

C.mmp is able to partition processors and memory,
however it is not possible to run the operating system,
HYDRA, in more than one partition. C.mmp can be partitioned
in such a way that some processors and memories can undergo
maintenance and run stand-alone diagnostics without
interfering with the 1larger partition running HYDRA. This
means that disjoint time must be allocated for users and

maintenance.

This system serves as a excellent example of a bounded

parallel system, and its design must be seen as a success.

It is interesting to note the performance Dbottlenecks.
There is a too high operating system overhead of 500
microseconds on entering and leaving the kernel. Memory
contention caused by multiple processors is another problem.
This is caused by several processors trying to access the
same page in memory. The problem was mainly due to
multiprocess applications sharing the same code amongst

processors.

Page 2-30

2.10 Engineered Unbounded Systems

In 1975 a second multi-processor project was started at
CMU [6]. Cm* replaced the crosspoint switch of C.mmp with a
distributed bus orientated interconnection scheme between

processor-memory pairs.

2.10.1 The Structure of Cm*

One of the main features of Cm* which distinguishes it
from other multi-processor architectures is that the shared
memory is not disjoint from the processing elements, but a
unit of memory and a processor are closely coupled in a
module and a network of buses gives a processor access to

non-local memory, figure 2.9.

This structure gives modular expansion without rapid
interconnection costs. Memory can be shared even though
there is no direct physical 1link between the requesting
processor and memory. A Computer Module or Cm providing the
processing power, primary memory and Input-Output

connections for the system, figure 2.10.

The processor is a DEC LSI-11, this is a 16 bit
microprocessor cluster (See below). It also provides
interprocessor commnication, device interrupts, address
spaces etc. The Cm's are combined into a cluster via the Map

bus. This is a special purpose, packet switched bus.

Page 2-31

H31SN1D / IINAON WD JTONIS

S331A30 AHONIN

(oo
9018 /\ LL-1ST
sng L1-1S7 \
/1\\\\
sng dv
dVIY

Figure2.10
Page 2-33

SNY Y31SNTI-HILNI

The Kmap is a special purpose 'mapping controller’
which is shared by a cluster of Cm's. Clusters are connected
via Inter-cluster buses. All non-local memory references in

Cm* are handled by one or more Kmaps.

The Kmaps provide address expansion and mapping, both
within a cluster and between clusters. The contents of a

Kmap are:-

The Kbus, which provides an interface between the Map bus

and the Pmap and controls all transactions on the Map bus.

The Pmap, a mapping processor.

The Linc, an interface between two inter-cluster buses.

The Kmaps and Slocals form the distributed switch.

The Structure of Cm¥*.

The way in which Cm*'s processors share primary memory
was chosen as it offers a closer degree of coupling, or
communication between processors, than would a multi
computer or network configuration. The main feature of the
switch structure is that shared memory is not separated from
the processing elements, but rather a unit of memory and a
processor are closely coupled in each module and a network

of buses gives a processor access to non-local memory.

The Extensibility of Cm*,

Processing power can be expanded by increasing the
number of Cm's per cluster of by adding additional clusters

of Cm's. Memory capacity can be increased by either adding

Page 2-34

it to an existing Cm or by adding additional Cm's. The
communication bandwidth of an individual processor Cm* is
limited by both its own performance and the bandwidth of the
map bus and intercluster buses. Because there is no central
bus or switching mechanism the machine can be virtually

indefinitly extended.

2.10.2 The Massively Parallel Processor (MPP)

The MPP is a SIMD parallel computer with 16K

processors, figure 2.11.

The MPP consists of 3 main elements:-

1) The sequential controller
2) The Parallel array

3) Staging memory

The controller is a high speed segential computer with
its own logic and arithmetic functions. Its primary function

being to store and sequence through programs.

The controller is connected to the array via a set of

interface registers.

The array consists of 16384 processors in a 128x128
configuration. Each processor acts on data in its own

dedicated memory.

The array and staging memory is connected to peripherals via
a high speed Input-Output bus. The staging memory acts as a

data buffer between the arrays and the outside world.

Page 2-35

SEQUENTIAL 128 x 128
CONTROL m— PROCESSOR

ARRAY
HIGH SPEED G nsn?nﬁl)Nne
INPUT — OUTPUT

Basic Organisation of MPP

Figure2.11

Page 2-36

2.10.3 The INMOS TRANSPUTER

The word TRANSPUTER [31] was coined to be a hybrid of
'transistor' and computer. The implication being that the
device 1is both a component and a computer. With the
TRANSPUTER, Inmos has suggested an even higher 1level of

abstraction then the VLSI circuit.

TRANSPUTER's can themselves be used as basic cells and
connected into networks, 1in which each node is a complete
processor. Therefore the TRANSPUTER has been designed as a
programmable component for building extended, parallel
computing systems with a language, Occam, which allows such

systems to be efficiently programmed.

The Device

The TRANSPUTER chip is a complex piece of silicon. The
chip includes a high-speed, reduced instruction set, RISC,
processor, 4k of static RAM, an Input-Output controller and
memory controller all on a single slice of silicon. The
inclusion of the Input-Output and memory controllers is

similar to that of the iAPX design.

The Input-Output controller section is responsible for
the four INMOS Links and an 8-bit peripheral interface bus.
The net effect of this being that the TRANSPUTER can control

or be controlled by existing peripheral devices.

The memory management unit allows each TRANSPUTER to

address up to 4 gigabytes of off chip memory in addition to

Page 2-37

its own RAM. One of the important decisions taken at design
time was to abandon virtual memory, on the assumption that
RAM is Dbecoming cheaper more quickly than mass storage
devices. As a result the address space in completely uniform

thus alleviating any addressing problems.

The slightly faster on-chip memory is multi-ported so

that the processor and INMOS Links can have access to it.

Possible Architectures

The real potential of the TRANSPUTER 1lies in truly
parallel systems where a number of TRANSPUTERs share the

workload.

The TRANSPUTER lends itself to many interconnection
schemes. An obvious architecture is to connect the devices
in the form of a two dimensional array, or possibly a three
dimensional one, as each TRANSPUTER has 4 Links, figure

2.12.
Communication Links

The connecting of many 'conventional' microprocessors
has brought several bus interconnection problems. Namely
control of system interrupts; Intel's Multibus-II has five
different bus structures and complex bus arbitration 1logic;
this is mainly brought about by microprocessors being
designed as uni-processors. The TRANSPUTER solves the
communication problem by divorcing intercell communication
from conventional memory addressing and data transfer

functions, which take place via a 'conventional' bus.

Page 2-38

BYTE ALIGNER
MICRO -
SEQUENCE
CONTROLLER
INSTRUCTION BUFFER
REGISTERS
CONTROL ALU
READ — ONLY
MEMORY INSTRUCTION ADDRESS
DATA ADDRESS
T
l ADORESS

TRANSPUTER PROCESSOR ORGANISATION

PERIPHERAL

INTERFACE
MEMORY LINK / 1/
4K Bytes ’
50ns }

1 [p— EOUR LINKS

— f 1.5MBYTES/Sec
UNK

J
| o
//

Z PROCESSOR
32 Bit
Memory All links are 32 bits wide
interface 10 MIP (e:o:l:':)t)lor perhiperal interface
‘ t]
Figure 2.12

Page 2-39

Communication between cells 1is accomplished via high
speed serial links which operate independantly of the bus.
Each TRANSPUTER has four of these links. Each is capable of
operating concurrently with the others and with the

processor.

The four 1links are a physical form of +the Occam
'channel’, which processes use to send data to one another

[(18].

The idea behind the architecture is that TRANSPUTERSs

will be as easy to interconnect as TTL devices.
Dataflow and Systolic Machines

The main aspect of dataflow is its elimination of the
fundamental properties of conventional programming languages
and machine architectures. In a data-flow architecture there
is no concept of passive data storage and in a dataflow
language there 1is no concept of variables; rather, data
values move from one instruction to another as the program
executes. There is no concept of flow control, counters or

branching. Instead the instructions are 'Data driven'.
Dataflow Machines.

A dataflow/systolic system consists of a set of
inter-connected cells, each capable of some simple
operation. Because simple, regular communication and control

structures have substantial advantages over complicated ones

Page 2-40

in design and implementation. Hence, cells in a systolic

system are usually interconnected too form an array or tree.

2.11 Summary

This chapter has presented an overview of existing
multi-processor architectures. However all of these, with
the exception of the INMOS TRANSPUTER, have built in design
limitations which restrict the creation of unbounded
systems. Therefore before designing new architectures it may
be better to examine the applications to which these new
machines will Dbe put. This will give us a better

understanding of the architectures required.

Page 2-41

References - Chapter 2

1. ALEXY, G. and KATZ, B.J., "Multiprocessing Increases
Power of Inexpensive Microprocessor Designs," EDN 1980.

2. AMIKURA, K., "A Logic Design for the Cell Block of a
Data Flow Processor," MIT/LCS/TM 93 1977.

3. BACKUS, J., "Can Programming be liberated from the
Von-Neumann Style? A Functional Style and its Algebra
of Programs.," Communications of the ACM V21 N641 1978.

4. BAILEY, B., "Ceramic Chip Carriers - A New Standard in
Packaging, " Electronic Engineering V52 V21 N8 1978.

5. WULF, W., AND BELL, G.,"C.mmp: A Multi-Mini-Processor",
AFIPS FJCC V41 1972

6. SWAN, R., "The Switching Structure and Addressing
Architecture of an Extensible Multiprocessor Cm*" |
Ph.D. Thesis CMU 1978

7. DENNING, P.J., "Fault Tolerant Operating System,"
Computing Serveys V8 N4 1976.

8. DOMAN, A., "PARADOCS: A Highly Parallel Data Flow
Computer and its Dataflow Language," Euromicro V7 N1
1981.

9,10.ENSLOW, P.H., "Multiprocessr Organisation - A

Survey, " Computing Surveys V9 N1 1977.

11 FLYNN, M.J., "Very High Speed Computing Systems", PROC.
of the IEEE. Dec 1966.

12. QUICK, G.E., "The Group Processor Approach to Computer
Architecture", Ph.D Thesis, UC Swansea 1982.

13. GOSTELOW, K.P, and THOMAS, R.E. "An Asynchronous
Programming Language and Computing Machine," UC Irvine
TR 127a.

14. I1.E.E.E,, "Special Issue on Array Processor

Architecture," Computer V14 N9 1981.

15. WULF, W. et al., "Hydra: The Kernel of a Multiprocessor
Operating System", Comm. ACM V17 1974.

16. KUCK, D.Jd., "The Structure of Computers and
Computation, Vol. 1," John Wiley 1978.

17. LEVY, J.V., "A Multiple Computer System for Reliable
Transaction Processing," SigSmall Newsletter v4 N5

1978.

Page 2-42

18 INMOS, "Occam Programming Manual", INMOS 1983

19. MILLS, D.L., "The Basic Operating System for the
Distributed Computer Network", SigSmall Newsletter v4
N5 19778

20-23. MYERS, G., "Advances in Computer Architecture 2nd
Edition," Addison Wesley 1982.

24. COMPUTER ARCHITECTURE NEWS, "Conference Proceedings 7th

Annual Symposium on Computer Architecture, " Sigarch
News V8 N3 1980.

25. ALMES, G., "Garbage Collection in an Object-Oriented
System", Ph.D Thesis CMU 1980.

26. ROSENFIELD, A., Error Recovery and Process
Communication," Stanford University Ph.D 1976.

27. MYERS, G., "Advances in Computer Architecture 2nd
Edition," Addison Wesley 1982.

28. SCHINDLER, M., "New Architectures Keep Pace with
Throughput Needs," Electronic Design May 14 1981.

29. SHARP, J.A., "Some Thoughts on Data Flow Computer
Architectures, " Sigarch News V8 N4 1980.

30 SWAN, R.J., "CM* - A Modular multi-~processor", AFIPS
V46

31. INMOS, "The TRANSPUTER", Advance Information 1982.

32. WEITZMAN, C., "Distributed Micro/Minicomputer Systems",
Prentice-Hall 1980.

33. WULF, W.A. AND HARBISON, S.P, "Reflections in a Pool of
Processors, " CMU-CS-78-103.

34. WULF, W.A., LEVIN, R., and PIERSON, C., "Overview of
the Hydra Operating System", Proceedings of the 5th
Symposium on Operating System Principles. 1975.

35. DIGITAL EQUIPMENT CORP., "VAX-11/780 Hardware Handbook,
1983

36. MYERS, G., "Advances in Computer Architecture 2nd
Edition," Addison Wesley 1982.

Page 2-43

CHAPTER THREE

CHAPTER THREE

FIFTH GENERATION NEEDS

3.0 Introduction

The proposed advanced fifth generation computer systems
should incorporate all the advances made in computer
technology over the last 20 years. With fifth generation
computers, however, the expected changes will be more
generic changes, involving not only device technology but
also simultaneous changes in design philosophy and in
envisioned applications. This technological change 1is so
great that we could even call fifth generation systems
new-era computers. These advances, such as high reliability,
high availability, coupled with VLSI implementation impose
severe difficulties for the computer architect. These
difficulties are further compounded when unbounded

parallelism is exploited.

This chapter discusses many aspects of fifth generation

system design, and proposals for the new areas of activity.

3.1 Background

The general consensus that the computer of the 1990's
will be a non Von-Neumann architecture will be substantiated

by [12] application needs. Fifth generation computing

Page 3-1

machines will be established, supporting the following

application areas:

1) Knowledge based information processing systems.

2) Distributed computer systems based on wide as well as

local area networks, and integrated parallel architecture.

3) Data and demand driven computers. User oriented self
programming systems supporting very high level programmming

languages.

4) VLSI implementation of dedicated processors exploiting

miniaturisation.

3.2 Fifth Generation Computer Systems

These new machines will replace the outdated machines
of the past, just as the electronic calculator replaced the
Engineer's sliderule, or the wordprocessor replaced the

typewriter.

In the analysis of current system architectures for
fifth generation applications, a 1list of 'needs' may be
established. The 'needs 1list' represents a detailed
breakdown of the functional requirement of the application,
and therefore provide the first stage in the top down design

process.

Page 3-2

3.3 Application Areas

Fifth generation computers are knowledge information
processing systems and processors. These systems are the
artifical intelligence community's view of the image
presented by future computers. Three areas of research have

been identified by various researchers [11, 1, 3]

1) Knowledge based expert systems.
2) Human orientated 1/0.

3) Very high level languages.

Communication and computers represents Wide Area
Networks, Local Area Networks and parallel computers. In the
past network and parallel machines have been developed
separately [6], the advancement in each being sustained by
development in semiconductor technology [7]. However, it has
long been advocated that +the spectrum of decentralised
systems should be fully integrated. Therefore +to achieve
this it is necessary for all components to conform to a

common decentralised system architecture.

3.4 Processor Architecture Exploiting VLSI

Processor architectures to exploit VLSI define a new
generation of VLSI building blocks to succeed the
microprocessor. Traditional microprocessors such as the
iAPX-432, which contains over 100,000 transistors, are
starting to become commonplace. However, attempting to make

larger scale single processors in VLSI becomes self

Page 3-3

defeating due to communication problems and escalating cost.
A solution is miniature computers which can be replicated
such as memory cells and orientated as a multiprocessor
architecture [8,4]. These machines are implemented by only a
few different types of simple cells, and use extensive
pipelining and parallel-processing to achieve high

performance.

The only device to be designed with these criteria is

the Inmos Transputer.

3.5 Needs and Uses

It is reasonable to assume that research into fifth
generation systems using technology currently available will
begin to produce results by the early 1990's. This
assumption raises an important question. Where are the
application areas and who will be the users of the new

technology?

The Japanese see almost everybody as users, with new
applications touching almost every aspect of human life. At
the present time ten broad catagories of application have

been identified. These are:

1) Industrial Automation.

2) Office Automation.

3) Science and Engineering.

4) Computer hardware and software.
5) Military.

6) Aerospace.

Page 3-4

7) Retail and Service Industuries.
8) Education.
9) Health.

10) The Arts, Culture and Leisure.

All these areas have had applications demonstrated in a
research setting, but none have been transferred to the
commercial market. All applications shown rely in advances
in the four areas mentioned at the beginning of this

chapter.

3.5.1 Industrial Automation

This area is seen as one of the 'prime' application
control areas for fifth generation technology. Prospective
users include manufacturers of goods, designers of

manufactured products, product and plant engineers.

Some aspects of industrial automation already exist,
i.e automatic control systems, production 1line robots;
however new application now become possible; i.e. automated
factories, computer aided design, aomputer aided
manufacturing, robotics, inventory management, product-cost
estimates, control and routing of production runs, expert

systems for design.

The resources needed to support these applications are
common to all fifth generation requirements, namely high
speed parallel data-base machines, parallel processors and

high quality CAD-CAM workstations.

Page 3-5

The last ten years have seen an explosion in the number
of industrial robots and in the number of companies wusing
CAD-CAM techniques. Significant advances have been made in
sensors for robots, such as computer wvision systems, and
high 1level 1languages for controlling robots. The new
generation of computers will integrate these components +to

achieve a highly automated manufacturing plant.

3.5.2 Office Automation

Of all the possible application areas office automation
will probably provide the most financially rewarding area.
The section heading might better be called 'Business
Automation', covering all aspects of a non-manufacturing

nature.

Application areas are only limited by the diversity of
businesses, but management, administrators and secretaries

will be the major users of such systems.

The new generation in computing will not only supply
the hardware and software technology to support information
management, it will also use better techniques for using
these systems. The user will be able to interact with the
system via natural language I/0 and expert systems will give
advice on how to use computing systems and will assist in

recovering the relevant information.

The components for office automation will undoubtedly
include wideband networks and local area networks. The wuse

of word processors and electronic filing systems in offices

Page 3-6

is now commonplace. Similarly the use of electronic mail,
spreadsheets, appointment calendars and database management
systems is becoming more popular. The technology to totally
automate the office already exists, its components must now
be integrated into complete systems. These components
include specialised database processors, expert systems and

improved I/0 systems.

3.5.3 Science and Engineering

To date scientists and engineers have always been the
first to employ the use of new technology [9]. There is no

reason why this group of people will not do so again.

Once again the application areas are only limited by
the depth of current knowledge, but suitable areas include:
expert systems for fault diagnosis, capturing and applying

scientific expertise.

The systems technologists will employ powerful database
management systems, parallel database and expert system
processors. Scientists will use new generation equipment in
a variety of ways. With new hardware and improved user
interfaces, fifth generation systems will be able to take
advantage of expert systems to capture and apply scientific
knowledge. Expert systems are already beginning to support

scientific research.

Page 3-7

3.5.4 Computer Hardware and Sofware

To enable advances in the fields described in this
chapter, fifth generation computer hardware and software

must first be developed.

This will enable programmers, analysts and engineers to

develop the packages required by the end user.

Possible applications which effect every computer users
include semi automatic design and development of programs,
specalised architecture for implementing firmware and expert

systems for fault diagnosis of computer hardware.

The tools necessary for future development include very
high level languages and hardware specification languages,
that is, languages one or two steps further removed from
LISP and PROLOG. Other required components are integrated
software development environments, Silicon compilers,
parallel processors, dataflow languages and machines,
parallel programming languages, compilers and operating

systems.

One of the main aims of current research is to reduce
the cost of producing software. Writing, debugging and
testing current systems is a highly 1labour intensive
process. There is much interest in automatic programming.
Complete, general purpose automatic programing will probably
take many years of fundamental research; however automatic

programming in specalised areas may be more realistic.

Page 3-8

A major area for fifth generation systems will be that
of automated VLSI design. The very complexity of devices
that VLSI permits, require that automated techniques are
employed for managing this complexity. One of the most
important applications of new technology will be the
simulation of computer assisted design of even newer

generations of machine.

3.5.5 Military

The military have always been large investors in computing
technology [14], innovating many new designs and products.

In the US most of financing has been via the DARPA scheme.

The new technology will be used in all existing areas
of military computing as well as some new fields i.e.
aspects of planning, decision support; command and control
systems; supply and support logistics; intelligent
autonomous weapons systems, parallel architectures for

analysing RADAR and SONAR images.

Applications for military wuses fall into two
catagories. The first includes information management
systems and expert systems that support military systems in
terms of planning etc. The second comprises of the guidance

and targetting of autonomous weapons.

3.5.6 Aerospace

The aerospace industry has always been a prolific wuser

of new technology:; pioneering several new designs. NASA has

Page 3-9

been the funding body of many new architectural designs,
i.e. the ILLIAC-IV [10], Pilots, air traffic control,
scientists and engineers studying space and remotely sensed
earth resources, will be able to employ new generation tools
such as: air traffic control monitors, deep space
exploration probes, earth resource monitors and
semi-autonmous space ground based sensors, expert systems
for fault diagnosis in space craft, self replicating

machines for space manufacturing.

The components used in this field will include 1large
scale distributed data bases for automatic data reduction
from a network of ground sensors, expert systems for fault
diagnosis in space craft and self replicating machines for

space manufacturing.

The new generation of computers will be applied to
aerospace in areas such as air traffic control, information
management for pilots and control of autonomous aircraft.
Even though todays most advanced aircraft are already
controlled by embedded computer systems, +the pilot must
still cope with a 1large quantity of information from
instruments and displays. Techniques such as voice
recognition, speech output will aid the pilot to select and

interpret the most vital information.

3.5.7 Retail and Service Industries

Consumers, retailers, advertisers, market development,

service companies, lawyers, travel agents etc. will benefit

Page 3-10

from systems such as computer based catalogues, remote
ordering and shopping, teleconferences, accounting, billing
and invoicing systems, automated information systems, expert

system for a mass of uses.

Hardware will be required to support multimedia
information systems combining graphical, image and textual
data, natural 1language Input/Output systems for inquiry
systems, wideband networks for communication between

systems.

Consumers will be able to shop and buy goods using an
online catalogue, which handles fund transfer, billing,
shipping and reordering. The greatest abundance of new
applications will come in the area of information service

industries.

The components to handle these advances have existed
for some time, but not as an integrated system. More
attention must be paid to developing more natural user

interfaces for both accessing and updating information.

3.5.8 Education

Students at all levels will be able to use intelligent
computer-aided instruction (CAI) systems which permit the
student to direct and contol the presentation of course
material. Computer based training for adults and
professionals, computer based assistants which explain how

to use computing systems.

Page 3-11

Software and specalised processors to support voice
1/0, specalised hardware for graphics and images, and
libraries available via digital networks will be needed to

support such education.

CAI systems are currently in wuse at all levels of
education and training. More advanced developments in CAI
will enable intelligent CAI systems, enabling natural

language to control the lessons.

3.5.9 Health Care

In the past computers in medicine have been limited to
applications such as patient administration [13] and other
accounting tasks. Today however, one of the first
application areas for expert systems has been in the field

of medical diagnosis.

The users in this field include: Doctors, hospitals,

patients, the handicapped and disabled.

Other areas of use include: expert systems for
diagnosis and prescripion, data base systems for medical
records, management and monitoring of patients, automatic
analysis of experiment, reading machines for the blind and

sensory prosthesis.

Applications in medical environments will continue to
be mainly in expert systems. Such systems have some of their

first and most successful applications. There are, however,

Page 3-12

a number of research and social issues to be resolved;

i.e. medical liability of expert programs.

New generation technology will also support aids for
the handicapped and disabled. Reading machines, sensors and
computer controlled wheelchairs are some of the applications
directed toward the younger generations of society. However
the public at large should be involved in fifth generation
applications i.e 1large scale storage systems, wideband
networks to access cultural information, high resolution
digital sound, graphical 1I/0 devices such as electronic

paint brushes and solid state cameras.

3.5.10 Leisure

A large proportion of the income that the entertainment
industry has been able to gather during the last ten vyears
has come through computer based video games. If this is
indicative of the potential for new generation technology

then this area may be the most financially rewarding.

3.6 Involved Countries

Within the 1last two to three years, Japan, the United
States and Europe have initiated significant research
programmes in fifth generation computing, all feeling that
the first +to market a commercial fifth generation system

will permanently have a lead on the others.

In a way, all concerned parties are involved in a

strategy of mutual catching up. Japan has the

Page 3-13

longest-running, formal national programme. Its Fifth
Generation Computer Systems Project was officially 1launched
in 1981, but its aim is to catch up with the United States,
which has been funding key research areas for some twenty
years. However, it was not until the Japanese had announced
their formal research project that +the United States

initiated its own concerted national projects.

With the advent of Fifth Generation Computing Systems
[11], Japan effectively announced to the World that it would
no 1longer be taking existing Western technology and
improving on it, but that it was determined to take a 1lead

in the research and development of unprecedented systems.

3.7 Concerns and Goals

The various countries differ in their concerns and
purpose of their research, and the aims of each project are

distinct.

3.7.1 Japan and ICOT

At the center of Japan's research effort is the
Institute for New Generation Computer Technology (ICOT).
ICOT's objective is to research and develop computer
technology that can perform more humanlike intellectual

functions, namely, inference, association and learning.

To achieve this objective ICOT is finding ways to
supplant traditional sequential processing with parallel

processing; as only the great speed and capacity of parallel

Page 3-14

processing are sufficient for developing the new application
areas. The net result of Japan's Fifth Generation Computer
Systems project will be the basic technology and
demonstration systems to build true fifth generation

systens.

The ICOT research centre plans to approach the aim of a
true fifth generation system by pursuing two intermediate
hardware projects. These are a parallel inference machine

and a knowledge-based machine.

The parallel inference machine is a system that follows
a line of reasoning to arrive at, or infer, a conclusion on
the basis of the facts presented to it. The knowledge based
machine is a system that efficiently manages large amounts

of data. Both machines employ forms of data flow processing.

3.8 Designing the Next Generation

Much of the technology required to achieve the aims of
fifth generation computer scientists can be accomplished by
advances in the current state of the art of conventional
Von-Neumann computing. But certain areas, such as natural
language input/output, can only be tackled with thousands or
millions of times more processing power than current
technology permits, and by software markedly different from

todays programs.

Page 3-15

3.8.1 Exploiting Parallelism

The only feasible answer to the above problem is
massive parallelism. There are, however, problems with
parallelism; matching algorithms to parallel systems is one,
and getting all the processors in a parallel system to work

efficiently is another.

Various parallel architectures have been discussed by
computer scientists, including trees, square and cubic
arrays and data-flow systems. Some researchers have
suggested that a general purpose parallel processor is the
best way to approach the problem, others have decided to
work out parallel solutions to problems and then implement

an architecture around it.

3.8.2 VLSI: The Solution?

Architectures consisting of many simple processors,
each with a small amount of local memory are made feasible
by VLSI technology. Once the initial circuit specification
has been accomplished many processors can be placed on the
same chip, and a number of chips fabricated with ease.
However, designing such circuitry is not easy. Therefore,
VLSI design tools, silicon compilers, are a required factor

in fifth generation computing efforts.

Page 3-16

3.9 The Problems to be Encountered

There are several major obstacles to be overcome before
any fifth generation system is built. These include both

conceptual limitations and physical ones.

3.9.1 Physical Limitations

Over the 1last decade, chip densities have been
increasing at a fairly constant rate. However current VLSI
techniques can produce paths two micrometers wide. At this
level inpurities in the base material come into effect. One
proposed solution is to move to wafer scale integration. If
a number of devices are fabricated on one wafer then all
non-working devices can be 'cut' out of the system

electrically

3.9.2 Conceputual Limitations

Processes which execute concurrently may occasionally
make simultaneous demands on shared system resources.
Communication is a critial issue in concurrent machine
architectures. Long delays in communication may result in
performance degradation to a point where the potential speed
of concurrency is negated. Therefore the design of the bus
architecture is the key choice in 1linking thousands of

processors.

Processes which execute concurrently may occasionally
make simultaneous demands on shared system resources. When

such contention is present, simultaneous demands are

Page 3-17

serviced in a serial order, and so some processes must
experience delayed access to the resource. Such contention
introduces a coupling among processes because the activities
of one process can effect the performance of other processes

that share the resource with the first.

Shared resources are those for which two or more
concurrently executing processes can make simultaneous

demands.

For multi processor systems, interest is primarily
directed at shared buses and switching devices. Contention
for shared resources results in queueing delays at critical
resources [2]. By their very nature, the individual
components of a multiprocessor must share some of the
physical resources of the machine. By definition some or all
of the memory must be shared, but use of other structures,

interconnect paths etc. may be critical.

For each element in the system there is a maximum
demand that it can serve per unit time. In addition, any
time two or more processes make simultaneous demands,
performance will suffer unless the resource can serve

multiple requests in parallel.

Therefore the critical area of design is not the
processing cell, but the interconnection scheme of the cells

and arbitration mechanism governing the cells.

Page 3-18

3.10 Future Computer Architecture

The application of fifth generation computer systems in
such are as Artifical 1Intelligence, Image Processing,
Real-Time Language Translation etc. demand the fusion of
thousands of Processing Cells. The potential advantages of
cellular computer systems are in increased system throughput
by the simple addition of more processing cells. With this
in mind, bus arbitration must be distributed particularly
when the simple multi-processor system is expanded to a
fully distributed cellular processing environment consisting
of thousands of processing cells. These Processing Cells are
conceptually contained in a system module, currently
realised as a printed circuit board. The purpose of the bus
controller is to support inter module communication at one
"level", and intra module communication at another "level".
As many Cells share the common buses, the bus arbiter must
be fast in operation. Another very imporant requirement in
the bus arbiter is expandability; as a system grows in the

number of modules, so must the bus arbitration grow with it.

Page 3-19

References - Chapter 3

1. HMSO, "The Report of the Alvey Committee", (HMSO Ref.
ISBN 0 11 5136533)

2. CHANSLER, R.J., "Coupling Systems with Many
Processors", CMU-CS-82-131 1982.

3. FUCHI, K., "The Direction the 5GCS Project Will Take".
New Generation Computing V1 N1

4. INMOS, "The Transputer Technical Reference Manual"
5. KUNG, H.T., "Why Systolic Architectures," IEEE Computer
Jan 1982

6,7. PERKIN-ELMER, "PENnet R0O3 Network Introduction Manual"

8. QUICK, G.E., "The Group Processor Approach to
Multiprocessor Architecture," Ph.D. Thesis UC Swansea
1982.

9. METROPOLIS, N., HOWLETT, J. and ROTA G., "A History of

Computing in the Twentieth Century", Academic Press
1980

10. SIEWIOREK., D.P., BELL., C.G., AND NEWELL., A.,
"Computer Structures: Principles and Examples",
McGraw-Hill

11. TRELEAVEN, P., AND LIMA, I., "Japan's Fifth Generation
Computer Systems", IEEE Computer Aug 1982

12. PASEMAN, W., "Applying Dataflow in the Real World",
BYTE May 1985.

13. IEEE Editorial, "THE DoD STARS Programme", IEEE
Computer Nov 1983

Page 3-20

CHAPTER FOUR

CHAPTER FOUR

BUS ARBITRATION CONCEPTS

4.0 Background

The proposed advances in fifth generation Computing
Systems aim to provide an Intelligent Image to the system
user. While such 1images are software based, written in
languages such as Prolog and LISP, much of the proposed
hardware architecture has lacked innovation and vision. This
chapter addresses these two important points by providing an
insight into modern Bus architectures for cellular systems.
In order that unique system architectures may evolve, a

hierarchical bus arbitration structure is proposed.

The section on bus arbitration is extraced from Quick's
Thesis and is included in this Thesis so as to provide a
fuller understanding of bus arbitration concepts and as
background reading to the discussion on the Group Processor

System Architecture.

4.1 Introduction

A cloud of uncertainty hangs over the physical image
that fifth generation computing systems will adopt.
Therefore in this chapter, the structure of a computer
system 1is presented as a functional module structure,
together with its operation. This presentation is oriented

towards VLSI realisation of the various modules that will

Page 4-1

eventually make up a typical fifth generation computer
system. These modules will become sub-system components that
will be integrated into an overall system architecture
supporting hardware and software extensibility. These
separate, but coupled modules, are interconnected by the
common bus structure and supervised by the Bus Arbitration

Mechanism.

4.2 Current Computer Architecture

In any simple parallel system, Figure-4.1, containing
two or more processing cells, e.g. central-processor and I/0
processor, a bus controlling mechanism is required to
resolve the simultaneous requests for the use of a system
resource [1,3,4,5]. A basic regquirement of any controller is
to allow only one system element or cell, the ability to
gain access, i.e. write, to the shared bus. However, systems
can be configured for multiple reads on a common data

stream, on a common bus system.

The bus arbitration mechanism may be seen as the
unifying factor in any multiprocessor system architecture,
resolving simultaneous bus request conflicts. Alternatively,
Bus Arbitration may be conceived as either the system's hub,
or the achilles heel, as all communication between
intelligent cells are scheduled for bus access by this

mechanism.

Page 4-2

Main [/0
Processor Processor

SHARED SYSTEM BUS

Figure 4.1 A Simple Parallel System

Page 4-3

4.3 Bus Arbitration Objectives

According to Plummer [6] the design of arbiters is
somewhat harder than most logic circuits because traditional
design approaches are vastly too cumbersome. The usual
design assumptions are that inputs are allowed to change
only if the circuit is in a stable state and only one input
at a time will change. Arbiters violate both of these

assumptions.

The basic functional requirement of any integrated bus
arbiter must satisfy five basic design operations which

are: -

(1) The operation of mapping one, and only one, output to
the corresponding input request must be executed in finite
time. That is, the delay in allocation must be seen as

transparent to the requesting resource.

(2) The arbiter must be independent of the communication
between the communicating cells, during all communication
activities. That is, the communicating data should not
control the allocation, it should be directed by the system

control structure.

(3) The interconnection of arbiters should provide for both
equal and priority based arbitration [2]. This allows the
operating system to gain control of the system hardware when

required.

Page 4-4

(4) Mechanisms must be available for the dynamic locking out
of an arbiter. This enables a degree of added reliability

when arbiter cells become unserviceable.

(5) The maximum number of cells, and system architectures,
should be able to share a common arbiter design. That 1is,
the design should not be tailored to a unique architecture

enabling the replication of cells to a high degree.

4.4 Current Arbitration Techniques

Several methods have been implemented to realise the
resolving of bus conflicts. The different control schemes
can be roughly classified as being either "Centralised" or
"Distributed". If the hardware for passing bus control from
one cell to another is largely concentrated in one location,
it is called ‘"centralised", while in a distributed system
the control logic is spread throughout the cells on the bus.
Most arbiters use combinations or modifications of the

following three schemes:-

1. Daisy Chaining.
2. Polling.

3. Independant Requests.

Page 4-5

4.5 Centralised Arbitration

With centralised arbitration, a single hardware unit is
used to recognise and grant requests for use of the bus.
While this system has many advantages, such as much simpler
hardware design, it clearly can impose severe limitations

when the number of processors expands dramatically.

4.5.1 Daisy Chaining

Each cell on the bus can generate a request via a
common Bus Request 1line, Figure 4.2. Whenever the Bus
Controller receives a request on the Bus Request line, it
returns a signal on the Bus Available line, which is daisy
chained through each cell. If a <c¢ell receives the Bus
Available signal and does not require it, then it is passed
on to the next cell 1in the line. If a cell does require
control of +the bus then the bus available signal is not
propagated to the next in 1line. The requesting cell raises
the bus busy line and drops its bus request line. The cell
then starts to write to the bus. The Busy line keeps the Bus
Available line up until the end of transmission when the Bus

Busy and Bus Available lines are lowered.

Page 4-6

Bus Cet1 0 |_._._J Celln
- Available
2
°
s
et
o
U Bus !
g Request
e o] Bus
Busy

Figure 4.2 Centralised Bus Control
Daisy Chain

Page 4-7

The advantages of this system are in its simplicity as
very few control lines are needed, and additional cells can
be added by simply connecting them into the bus. A
disadvantage of the system is its susceptability to failure.
If a failure occurs in the Bus Available circuitry, it could
prevent succeeding cells from ever obtaining control of the
bus. Another problem is the fixed priority structure. Cells
which are "closer" to the bus controller always receive
control of the bus in preference to those "further" away.
Clearly, mapping important software physically near to the
arbitration reduces the machines desirability, as most
software would have to be written so as to be position
dependant. Clearly this is a non-goal of fifth generation
needs, although it may be felt desirable +to place the

operating system in this high priority position.

4.5.2 Polling

As in the previous system; each cell on the bus, Figure
4.3, can place a signal on the Bus Request line. When the
Bus Controller receives a request it starts polling the
cells to determine which one made the request. The polling
is done by issuing addresses on the polling lines. When the
address corresponds to a requesting cell, that cell raises
the Bus Busy line. The controller stops polling until the
cell has completed its transmission and removed the Busy
signal. If there is another request, the addressing may

start from zero or continue from where it stopped.

Page 4-8

Cell O Cell n

Bus Controller

Bus L I
Available

Bus

o

Poll

Count

Figure 4.3 Centralised Bus Control
Polling With Global Counters

Page 4-9

Starting from zero fixes the priority of the system, so
that the most important software must be located near the
low addresses. Continuing from the stopping point gives each
cell an equal chance. Placing intelligence within the
arbiter enables greater flexibility in scheduling the
physical addresses of high priority software, Dbut adds

greatly to the cost of the arbiter.

The advantages of this mechanism are that polling does
not suffer from reliability or physical displacement
problems, but the number of cells is limited by the number
of polling 1lines. The wuse of 100's of thousands of
processing elements would imply that a corresponding number
of lines must be available for each «cell. This is clearly
not acceptable, as the number of lines at some point must be
finite, if only to constrain the location of such lines to

within a single cabinet of acceptable size.

4.5.3 Independant Requests

In this method each cell has a pair of Bus Request and
Bus Grant lines, which it uses for communication with the
Bus Controller. When a cell requires use of the bus, it
sends its Bus Request to the controller. The controller
selects the cell to be serviced and sends a Bus Grant to it.
The selected cell lowers its Bus Request and raises the Bus
Assigned line, indicating to all other users that the bus is
busy. After transmission, the cell lowers the Bus Assigned
and the Bus Controller removes the Bus Grant signal and

selects the next requesting cell. (See figure 4.4)

Page 4-10

Bus Controller

Bus Req O

Cell O

............

Bus Grant O

Cell n

Bus Req.nn

Bus Grant n

Bus Assigned

Figure 4.4 Centralised Bus Control

Independant Requests

Page 4-11

This method has the advantage of lower overheads when
allocating the bus, since all bus requests are presented
simultaneously to the Bus Controller. In addition, there 1is
complete flexibility for selecting the next requesting cell
as the system is performing a true first in first out

sequence.

The major disadvantage of this system is the number of
lines and connectors needed for contol. There must be a pair
of Bus request/Bus grant lines for each cell, although if
bus grant speed were not important they could be multiplexed
onto one line. The complexity of the allocation algorithm
will also be reflected in +the amount of Bus Controller
hardware available to the cell. As an indication; for
application areas that require redundancy, three
communication buses may be required, with corresponding
three Bus request/Bus grant lines. Clearly, in a system with
only 1000 processing cells this would result in 3000
request/grant 1lines, a figure too 1large so as to be

feasible.

4.6 Distributed Arbitration

The block diagram of a typical arbiter network is
illustrated, showing the complexity of the interconnection
of the various module interface/inter module bus cells,

figure 4.5.

Within a distributed system; the bus control logic 1is

primarily spread throughout all the cells on the bus.

Page 4-12

4.6.1 Distributed Daisy Chain

A distributed Daisy Chain may be constructed from a
centralised one by omitting the Bus Busy line and connecting
the common Bus Request line +to the "first" Bus Avalable. A
cell requests service by raising its Bus Request line if the
incoming Bus Available is low. When a Bus Available signal
is received, a cell that is not requesting the bus passes
the signal on. The first cell which is requesting does not
propagate the Bus Available, and keep its Bus Request up
until it has finished with the bus. Lowering the Bus Request
lowers the Bus Available if no successive cells also have
high Bus Requests, in which case the "first" cell that wants
the bus gets it. However, if some cell "beyond" this has a
Bus Request, control propagates to it. Therefore allocation

is on a round-robin basis, figure 4.6.

4.6.2 Distributed Polling

When a cell is willing to release the bus, it puts an
address on the polling lines and raises Bus Available. If
the address corresponds to that of another cell which
requires the bus, that cell responds with Bus Accept. The
former cell drops the polling and Bus Available lines and
the latter cell lowers the Bus Accept and begins using the
bus. If the polling cell does not receive a Bus Accept, it
changes the address according to some allocation algorithm
and tries again. This method requires that exactly one cell

be granted bus control when the system is initialised.

Page 4-14

Bus

Available

CELL 0

Bus

Request O

— . — CELLn

Bus
Request n

Figure 4.6 Decentralised
Daisy Chain

Page 4-15

K

ELL O

Polling Code

Bus Available

Bus Accept

Figure 4.7 Decentralised

Polling

Page 4-16

The system uses more hardware due to every cell having
the same allocation hardware as the centralised system.
However, this improves reliability as the failure of a cell

does not usually degrade bus operation, figure 4.7.

4.6.3 Distributed Independant Requests

Any cell needing the bus raises its Bus Request 1line,
which corresponds +to its priority. When the current bus
master releases the bus by dropping the Bus Assigned, all
requesting cells examine all active requests. The cell which
recognises itself as the highest priority requestor obtains
control of the bus by raising the Bus Assigned. This causes
all other requesting cells to lower their Bus Requests. The
logic in the distributed system is simpler than that of its
centralised counterpart, but the number of 1lines and

connectors is high, figure 4.8.

4.7 Universal Arbiter

The uncertainty that exists in the physical image of
fifth generation machines, requires generality in the
topology of a ‘'universal arbiter'. Clearly system bus
architectures of various types have to be considered in
order that the arbiter be integrated into a single

integrated circuit.

Page 4-17

LCELL 0 b t CELL n
H Bus Requests H

Bus Assigned

Figure 4.8 Decentralised
Independant Requests

Page 4-18

By providing a distributed but universal arbiter
design, the overall bus arbiter design becomes more complex,
as part of the design must cater for a priority based
architecture. As an example of this consider an equal
priority general design. In reality no such design exists,
as a simultaneous demand, e.g. two simultaneous bus

requests, are conflicting and hence require arbitration.

The design topology illustrates a hierarchical
arbitration structure, Figure-4.9. Conceptually, each bus
request has equal priority, within bus arbiter 1 for
example. Similarly, bus arbiter 2 and bus arbiter "n" have
equal priority in the centralised, or root arbiter. The
centralised arbiter is in effect an overall arbiter to the
other arbiters below it in the hierarchy. Although only 24
inputs are shown; the hierarchy is infinitely extendable
with seemingly equal priority, by organising the

interconnections as a hierarchical tree structure.

By comparison the daisy chain, i.e semi-linear priority
scheme of figure 4.10, makes line 8 of bus arbiter 1, the
lowest priority, and line 1 of bus arbiter "n" the highest
priority. It is conceiveable from this topology that in a
long daisy chain; the lowest priority may take a long time
to get served, due to repeated requests by higher priority

requests.

Page 4-19

In terms of fifth generation multi-processor systems;
the daisy chain has certain advantages over an equal
priority design. The most important of these is the ability
to give
a higher priority to the wuser and the operating system. 1In
reality a totally daisy chained system is impractical as all
user oriented modules should have equal priority. In this
case a mixture of daisy chaining and equal priority topology
may be accepted as providing the degree of operation
required, for rapid intervention to the operating system,
and equal priority for the wuser modules. It is also
conceivable, that in fifth generation operating systems,
that bus arbitration logic is visualised as shown in figure
4.11., where, in conflict conditions, line 1 has a higher
priority over line 2 in the system arbiter. Similarly, the
nearer to the 1lower numbered lines a module is connected,

the higher the conflict priority.

Page 4-22

4.8 Summary

In this chapter, the architecture of a computer system
has been presented as a functional module structure that
represents a hardware/software environment for the execution
of user programs. This presentation has been orientated
toward a true fifth generation machine architecture, through
the consideration that machines will be constructed from
100's of thousands of processing cells. These separate, but
coupled cells, need a flexible and extensible bus
arbitration network. Such a network has been outlined as a
first stage in understanding the complexities that exist
when the burden of design and implementaion of a fifth

generation machine is placed on the computer architect.

When complex bus structures are studied in depth; there
is a realisation that long and involved research effort is
needed into the wider aspects of bus structures. The
interaction of operating systems and the cell design will
result in a much closer working attitude Dbetween the
computer architect and software engineer. Additionally, the
practicality of these systems can only be gauged through

real design efforts resulting in VLSI cells being produced.

Page 4-24

References - Chapter 4

1. FARBER, G., "A Decentralised Fair Bus Arbiter", EuroMicro
V7 N1 1981

2. KOVALESKI, A.B., "High Speed Bus Arbiter for
MultiProcessors," I.E.E.E. Proc. V130 N2 1983
3. NADIR, J. AND MCCORMICK, B., "Bus Arbiter Streamlines
Multi-Processor Design," Computer Design V19 N6 1980.

4. PETRIU, E., "N-Channel Asynchronous Arbiters Resolves

Resource Allocation Conflicts," Computer Design V19 N8
1972.

5,6. PLUMMER, W.W., "Asynchronous Arbiters," I.E.E.E.
Transactions on Computers V21 N1 1972.

Page 4-25

CHAPTER FIVE

CHAPTER FIVE

THE GROUP PROCESSOR CONCEPT

5.0 Introduction

This chapter introduces the Group Processor System [9]
as viewed from a single-user, multi-user and operating
system viewpoint. It also describes the cell, module and bus
design in detail. The work described in this chapter draws
heavily on the work undertaken by Quick [10] and is a
summary of the work undertaken on the Group Processor
System. The terminology used by Quick is maintained in this

chapter.

5.1 High Level System Description

The Group Processor concept is not a total system
design, but an environment for process execution. The
realisation of the architecture for a computing system is
based on systems principles. That is, the complete system is
built up of sub-systems of common elements, which are cells
and modules. Figure 5.1. shows the functional components of

the Group Processor System.

Page 5-1

The user interfaces to the Group Processor through a
dedicated software based frontend processor. The frontend
processor performs many operations on objects (programs and
data); e.g. editing and 1language translation, during the
development of wuser programs. The main software features
supported within the software based frontend processor,
termed the 'peripheral interface environment', is the
ability to schedule and transmit the communication between
user terminals and Group Processor Modules that make up the

Group Processor System.

5.2 Peripheral Interface Environment

The peripheral interface environment i<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>