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ABSTRACT

The Bus Structure for a Polymorphic Computer System 

A.K.Roach B.Sc(Hons) M.Phil Thesis

The proposed advances in fifth Generation Computing 
Systems aim to provide an Intelligent Image to the system 
user. While such images are software based, written in 
languages such as Prolog and LISP, much of the proposed 
hardware architecture has lacked innovation and vision. This 
Thesis addresses these two important points by providing an 
insight into bus interaction for various scheduling schemes 
and system configurations, in order that these unique system 
architectures may evolve.

This Thesis discusses the issues relavent to the 
application of cellular computer systems and their projected 
performance characteristics. The cellular computer system 
under study is the Group Processor System, which is a 
TRANSPUTER like computer architecture.

The Group Processor System is simulated, and important 
results are illustrated in graphical form. These graphs are 
analysed, and the conclusions drawn are of use to computer 
architects who wish to design and construct Group Processor 
Systems. The results may also be of use to those architects 
wishing to develop TRANSPUTER based computer systems.

As a result of the simulation, a major design fault in 
the original Group Processor proposal resulted in a severe 
'bottle-neck' in input-output processing. This has been 
greatly improved by the provision of the Terminal 
Environment Switching System; which is also detailed in this 
Thesis. The result of this research has yielded a more 
flexible Group Processor System which may be targetted for 
applications in Intelligent and Knowledge Based Systems.

The relevance of current architecture is discussed in 
the context of proposed fifth Generation computing needs.
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CHAPTER ONE 

INTRODUCTION

1.0 Introduction

There is a general consensus among the computer science 

fraternity that the 1990's will see the end of the 

traditional Von-Neumann architecture machine, and that a new 

generation of general purpose computing machines will 

evolve.

Most computer architects also see a need for a new 

generation of system design. Unfortunately, few truly new 

inititives are forthcoming, as most 'new' designs are based 

on a limited extension of the classical Von-Neumann 

computing machine. The research set out in this Thesis has 

set as its aim a divergence from classical views on computer 

architecture, to views which may seem radical. This research 

sees as its starting point the abandonment of classical 

bounded multi processor computing systems, consisting of say 

64 processors. Only with seemingly unbounded systems can we 

say that computer architecture has developed a new Fifth 

Generation of computing machinery.

1.1 Computer Architecture

Defining what is meant by Computer Architecture is not 

a simple task. Computer Architecture is not restricted to 

the sole aspects of hardware. Building black-boxes from
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registers, memory devices etc., is certainly part of the 

process, so is the interconnection of these boxes via buses, 

switches and controllers. A blend of hardware and software 

features which make the machine operate must also be 

included. Computer architecture may be defined as the design 

of the integrated system which provides a useful tool to the 

programmer. Computer architecture may be defined to mean:-

The internal workings of the black-boxes which are 

the main components of the system and the means of 

interconnecting these boxes, their parallel 

activites and cooperation.

1.2 The Von-Neumann Architecture

The first major architecture was proposed by John 

Von-Neumann et al. in their 1946 paper, 'Preliminary 

Discussions of the Logic Design of an Electronic Computing 

Instrument 1 [5]. Even with the advent of modern machines [4] 

most computer architectures bear the mark of this design. 

Therefore before embarking on any description of the 

generations of computer architecture, a brief description of 

the Von-Neumann architectural model is essential.

The Von-Neumann architectural model was conceived for a 

specific purpose, that of providing a simple stored program 

execution mechanism to carry out the computations for the 

solutions of differential equations. The architecture can be 

said to have the following properties:-
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1) A single, sequentially addressed memory. The program and 

its associated data are stored in a single memory, the 

memory being referenced with sequential (0, 1, 2, 3,...) 

addresses.

2) A linear memory. The memory is one dimensional, that is, 

it has the appearance of a vector of words.

3) No explicit distinction between instructions and data. 

Instructions and data are distinguished implicitly by the 

operations directed toward them.

4) Meaning is not part of the data. There is nothing that 

explicitly distinguishes a set of bits representing a 

floating-point number from those representing a character 

string. The meaning of the data is assigned by the program 

logic.

1.3 Von-Neumann Architectural Implementations

Computer architecture has developed much in the last 30 

years, from the Manchester Mark-1 to Seymour Cray's Cray 

X-MP/2 [13].

The Mark 1 is of historical importance as it was the 

world's first stored-program computer. The machine marked 

the beginning of a new technological era. In todays terms 

the machine posessed the following hardware features:
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1) A 32-bit word length.

2) Serial binary arithmetic (2's complement).

3) A main store of 32 words (expandable to 8192).

The main emphasis of the project was to prove the 

practicability of the Williams Tube for realising the stored 

program concept and as a result the logic was kept as simple 

as possible. The subtracter was the only arithmetic element 

included, as it can perform complements and additions 

without modification.

The next major step was the prototype construction of 

the Atlas machines at Manchester University in the 1950's 

[2]. Atlas-1 and Atlas-2 were eventually produced by the 

Ferranti Corp. Atlas featured multiple index registers, 

interrupt processing of I/O devices. Two original features 

of Atlas, namely a one-level storage and extracode have been 

copied in many other machines. The one level store is common 

to most time-shared or multi programmed computers.

Significant features of the Atlas system were:-

1) Provision of a virtual address space greater than the 

physical address space.

2) Implementation of a one level store using a mixture of 

core and drum memories.

3) Interrupt system and method of peripheral control.

4) Realisation at the design stage that there would be a 

complex operating system and provision in the hardware of 

specific features needed to assist such an operating system.
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Computer systems have usually been designed via the 

'hardware' route. Subsequent to design, these systems have 

been handed over to a systems programming team for the 

development of a package to facilitate the use of the 

hardware. However the Burroughs B5000 [3] was designed from 

top to bottom as a total hardware/software system.

The B5000 achieves a unique physical and operational 

modularity through the use of switches which logically 

function as crossbar switches. The B5000 was designed as an 

integrated hardware/software system which offered 

multiprocessing and parallel processing.

The Digital Equipment Corporation's PDP-8 is of 

importance as it was the first true minicomputer. The PDP-8 

was a single address 8 bit computer. It was the first of a 

family called the 'OMNIBUS' machines. Like its predecesor, 

the PDP-5, the PDP-8 was a single address 12-bit [10] 

computer designed for 'task' environments with a minimum of 

arithmetic computing and and small memory requirements, i.e 

process control.

The early constraints placed on computer architects, 

created computers with what we now regard as faults or 

weaknesses, namely:-

1) Limited addressing capability

2) Few registers

3) No hardware stack facilities

4) Limited priority interrupt structures

5) No byte string handling
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6) No ROM facilities

7) Little I/O processing

8) No simple hardware upgrade

9) High programming costs (All users use machine code)

The DEC PDP-11 was designed with the above in mind, and 

successfully [9] overcame these limitations. This was due 

mainly to the fact that semiconductor technology became 

available to solve the problems at low cost.

The VAX-11/780 computer system is the first 

implementation of the [11] VAX-11 architecture, a Virtual 

Address extension to the PDP-11 architecture. The most 

distinctive feature of the VAX is the extension of the 

virtual address from 16 bits, as on the PDP-11, to 32 bits; 

giving an address space of some 4.3 gigabytes. Since maximum 

PDP-11 compatibility was a design objective, the VAX 

includes a compatibility mode which provides the basic 

PDP-11 instruction set, without the privileged instructions.

The IBM System/360 and System/370

The System 360 was the first planned computer family to 

cover a range [1] of cost and performance. The 360 

predecessor, the 7090, ran into problems later encounterd by 

the PDP-8, namely limited growth potential. Rather than 

'fiddle 1 with the architecture IBM planned a family of 

processors with growth potential for the future. The initial 

family plan called for a wide range of cost and performance 

implementations, microcode being used to provide emulation 

support for prior systems.
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The motivation to extend the 360 architecture came from 

two main sources:-

1) The experience of the 360 achitecture has identified a 

number of bottlenecks and limitations in the efficiency of 

system use has pointed out areas where additional machines 

were needed.

2) The lowering of the cost of technology made it 

economically possible to include functions that did not 

appear justified in the original 360 architecture.

The most interesting aspect of the 360-370 design is 

achieving a performance range and a primary memory size 

range in excess of 100:1.Thus the user is given a very large 

range of configuration alternatives.

1.4 Fifth Generation Computer Research

Japan's capability for producing high quality 

electronic products is well known. It therefore came as a 

shock when in 1981 the Japanese announced to the World a 

programme of research into Fifth Generation computing 

systems. This was the responsibility of The Japanese 

Ministry of International Trade and Industry, MITI [8].

1.4.1 Japanese Activity

In 1982 Supercomputers were an American exclusive. 

Today, Japanese firms are offering machines that challenge, 

and in some ways exceed, the performance of those American 

machines. This has been due mainly to the fact that MITI
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has decided that Japan must learn to innovate, not just copy 

and improve on existing technology.

MITI's development plans for fifth Generation computers 

started in 1982. The budget for the years 1982-1984 being 

some 10 billion Yen. The Institute for New Generation 

Computer Technology (ICOT) has been created to spearhead 

Japanese efforts in the field, and has been succesful in 

designing and building an Inference Machine and a Database 

Machine.

However, NTT is the only Japanese company trying to 

develop a true [12] parallel processor. Two types of 

dataflow are under study; one is a highly parallel array 

processor for scientific calculations, the other is an 

architecture designed to apply data-flow techniques to list 

processing.

1.4.2 The Alvey Programme

The Japanese initative produced a number of responses 

around the word. The most notable was The UK's Alvey 

Committee, which producd a number of goals for Britan's 

involvements in fifth Generation computing systems. The 

Alvey Programme was set up as a result of the Alvey 

Committee report, (A Programme for Advanced Information 

Technology), in 1982. The Programme aims to mobilise the 

United Kingdom's strengths in Information Technology, (IT), 

in order to improve the UK's competitive position in the 

World's IT market.
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The research programme is a collaborative effort 

between Government, industry, academic and commercial 

research units. The Programme combines projects in four main 

technology areas.

The four enabling areas are:-

1) VLSI

The requirement for massively parallel systems demands 

a VLSI approach to building systems. VLSI gives the 

capability of interconnecting the very large number of logic 

elements required for data and signal processing.

2) Software Engineering

Fifth generation computing systems will tend to be more 

complex than present day systems. This will result in a 

longer time delay in generating and maintaining proposed 

fifth generation programs. Therefore, Software Engineering 

is aimed at improving the efficiency of the specification, 

generation and maintenance of the program instructions for 

IT systems.

3) Intelligent Knowledge Based Systems

One major area of activity is the design of intelligent 

machine/software systems. These systems should be adaptive 

systems capable of learning. The object is to produce 

inference systems that can be incorporated in education, 

medicine, military, etc.
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4) The Man-Machine Interface

The proposals of 'Alvey' clearly imply that computing 

systems will be applied to new application areas, possibly 

with new methods for input and output. The wider aspects of 

the involvement include psychological aspects of using 

complex systems.

Specifically, this section covers visual, speech, touch 

input-output devices and the better understanding of the 

nature of communication between the user and the machine.

Following Japan's initative, the United States and 

Europe have started various research programmes into fifth 

Generation design. Most countries are in an early stage of 

development and are desperately trying to catch up on 

Japan's early lead. One question remains unanswered; are the 

claimed fifth Generation systems truly advances on the older 

technologies, or simply refinements of proven systems?

1.5 Thesis Plan

Following a brief introduction to Computer Architecture 

and the area of the proposed fifth Generation computing in 

chapter 1, chapter 2 presents a critique of architectures 

from the previous generations presenting a new possible 

classification scheme for the architectural generations, 

independant of technology. The chapter also examines the 

reasons why the Von-Neumann architecture is in need of 

replacement, and examines some of the machines which have 

tried to overcome its limitations.
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Chapter 3 looks at the new application requirements of 

a fifth Generation computer system, and criticises some of 

the so called fifth Generation machines.

Chapter 4 examines the problems of bus contention 

brought about by large numbers of processors and offers some 

solutions to this problem. This chapter presents bus 

interconnection patterns in the context of maximising bus 

traffic in fully distributed systems.

In chapter 5, an introduction to a Polymorphic, Space 

Sharing [6] Computer System, called the Group Processor 

System, is given. Details of the functions performed within 

the components of the Group Processor's homogenous 

architecture and the interaction within the organisational 

structure are presented. The design claims to overcome the 

two basic problems isolated by the Data Flow Group at 

U.C. Irvine [7] namely data localisation and concurrent bus 

access. This architecture is able to emulate a data driven 

machine.

Chapter 6 presents an introduction to the various 

methods of system performance measurement and gives a 

detailed simulation environment for hierarchical system 

interconnection. Moreover, the simulator is concerned with 

the dynamic environment generated by the execution Group 

Processor System environment.

Chapter 7 examines results from the simulator for 

various system configurations. The simulator provides a 

'window' on the program environment within the Group
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Processor System, this yields important data used to 

optimise the Group Processor System architecture. This 

chapter highlights one major weakness of Quick's original 

design concept for the Group Processor System, that of real 

time input/output under heavy loading.

The proposed architecture presented by Quick [6] 

provided detail into the working architecture of the basic 

Group Processor System. However, many areas of the bus 

system were left for refinement, and these are studied in 

this Thesis. The results of the study have enabled the next 

chapter, chapter 8, to propose many important system tuning 

features to be employed in engineering the Group Processor 

System. The chapter proposes a new design for the 

input/output system of the Group Processor System.

The final chapter, chapter 9, contains conclusions 

drawn from this research. Specifically, the areas of 

computer architecture, fifth Generation Computer 

Architecture, system simulation and system performance are 

discussed.

Each chapter is complete with references at the end of 

the chapter. The references are presented in the UNIX 

format.

1.6 Scope of the Thesis.

This research continues the abandonment of the 

Von-Neumann architecture, for an architecture more radical 

in concept. Polymorphic systems provide the necessary degree
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of reliability needed for real time control systems coupled 

with a high degree of resource utilisation. The major 

advantages of the Polymorphic 'Group Processor System' is 

its massive parallelism. While the Group Processor System 

seems to offer a solution to current problems in IKBS, some 

potential problems arise when 'engineering' the system. 

These areas are addressed in this Thesis by simulating the 

bus interaction for various bus scheduling schemes and 

system configurations. The results drawn from this Thesis 

provide the information needed to proceed with the next 

stage of the Group Processor System, namely circuit and 

software design.
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CHAPTER TWO

THE FOUNDATIONS OF COMPUTER ARCHITECTURE

2.0 Introduction

Many of the designs for computing systems have been 

centred on a typical system architecture comprising of a 

central processor (or some finite multiple up to say 16), 

random access memory, input-output processors, and some 

backup storage such as magnetic disk or tape. Highly 

reliable systems, such as the Tandem [17] have been an 

extension to these systems by incorporating some form of 

redundancy in one or more parts of the design.

The more "classical" designs are based on Von-Neumann's 

architecture, which have received criticism from some 

researchers [3,21,7]. A number of variations on the 

Von-Neumann architecture has resulted in many 

multi-processor and multi-computer organisations 

[1,4,24,14,19,30,32,33]. In developing an alternative 

design, researchers have proposed several alternative 

architectures [2,8,13,26,28]. These architectures can be 

best described as non sequential; they have tried to deviate 

from the classical Von-Neumann machine.
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2.1 Why a new generation of computers?

With few exceptions, there have been no advances in 

computer architecture of current systems since the 1950's.

An argument against this is the introduction of such 

concepts as microprogramming, VLSI, pipelining and cache 

memories. However, these do not represent architectural 

concepts, but merely advances in the implementation of 

particular current architectures.

In comparing the architectures of the most widely used 

machines;

e.g. IBM S/370 S/34, DEC PDP/11, VAX etc

to the EDSAC and EDVAC, the first electronic stored program 

computers, all the significant differences will be found to 

have originated in the 1960's. Which were:-

1) Index registers

2) General purpose registers

3) Floating point data representation

4) Indirect addressing

5) Interrupts

6) Asynchronous input-output

7) Virtual storage

8) Multi-tasking

Although current systems differ significantly from 

their predecessors in terms of cost, speed, reliability, 

internal organisation and circuit technology, the computer

Page 2-2



architecture of most current systems has not advanced beyond 

the concepts of the 1950's.

Given this state of affairs the following must be 

asked:-

1) Are the architectures of the 40's and 50's the optimal 

ones for today?

2) Is not todays world different, measured in cost of logic, 

speed, sophistication of computer application and magnitude 

of the software problem, and that changes in computer 

architecture are needed?

If the above points are valid, we must put forward some 

evidence why a new approach is necessary.

2.2 The Semantic Gap

Most of the shortcomings in todays machines are due to 

the 'Semantic Gap'. The Semantic Gap was originally defined 

to be a measure of the difference between concepts in 

current high level languages and the underlying concepts in 

computer architecture [20].

Todays systems have an uncomfortable semantic gap in 

that objects and operations reflected in their architecture 

are rarely closely related to the objects and operations 

provided by the programming languages. In broadening the 

definition of the semantic gap, it may be said that there is 

a large gap in semantics between programming environments
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and their representation of the program concepts at the 

architectural level.

2.2.1 The Operating System Semantic Gap

The operating system is an integral part of most 

computing systems. In general the operating system has four 

purposes:-

1) Providing utility services to other programs, such as 

storage allocation for the execution of large programs.

2) Shielding programs from such items as interrupts, machine 

interfaces etc. for software portability.

3) Providing, at varying levels of sophistication, a 

"virtual machine' concept.

4) Creating and enforcing system managemant policies.

A case can be built for a gap between the operating 

system concepts and the underlying machine. For instance, 

many operating systems designers recognise that the working 

set model is crucial to managing a storage hierarchy in a 

close to optimal manner. Although instrumentation required 

to do this has been identified it exists in no commercial 

architectures.

2.2.2 The Programming Environment Semantic Gap

Evidence can be found of a large gap between 

fundamental notions of programming and most computer
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architectures. For instance, such concepts as modularity, 

abstract data types [22], information hiding, and monitors 

are important in the design of large software systems, but 

support for these concepts is missing from today's 

architectures.

2.2.3 The Storage Semantic Gap

This gap is more difficult to see as it represents a 

gap that does not exist. The operating system architects 

have obscured the gap by falling into it. The issue here is 

the lack of a uniform concept of storage. The programmer is 

faced with a visable hierarchy of registers, stacks, RAM, 

tapes etc. Each medium has a different addressing mechanism, 

allocation machanism etc. It is for the wrong reason that 

the gap does not exist. Rather than presenting the high 

level language programmer with a uniform notion of storage, 

one is presented with a number of inconsistent concepts 

which are technology dependant.

2.2.4 Consequences of the Semantic Gap

The semantic gap is a significant contributor to 

software unreliability in the sense that a large set of 

programming errors that could be theoretically prevented or 

detected by the computing system are not prevented or even 

detected in current systems, i.e array bound checks, 

references to undefined or unset variables.
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2.3 The Von-Neuniann Architecture

The basic reason for the semantic gap in current 

systems is that their architectures do not significantly 

differ from the Von-Neumann model developed in the 1940's. 

We may class all current machines as being of the 

Von-Neumann type.

Although the von Neumann architecture was a reasonable 

architecture for the first stored-program computer, it is 

alien to the execution of programs writen in high level 

languages.

In contrast to the four main characteristics of a 

Von-Neumann architecture given in Chapter-1, high level 

languages have the following characteristics:-

1) Storage is presented as a set of discrete named 

variables. There is no concept of one variable being 'next' 

to another. There is no reason to believe that variables in 

one subroutine are located in the same storage device as the 

variables in another. In short, the concept of a single 

sequential storage bears little resemblance to the concept 

of storage in programming languages.

2) Programming languages deal with multi-dimensional, not 

just linear, data types.

3) In programming languages there is a sharp distinction 

between data and instructions.
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2.4 Parallel Systems

Some of the architectures which have moved away from 

the Von-Neumann mode are multi-processor and multi-computer 

systems. However, there is some confusion as to the 

definition of such term. Some clarification and extension of 

notation is first required.

2.5 Multi-Processor Systems And Attributes

One of the fundamental problems with traditional 

multi-processor configurations is the interconnection of 

memories and processors, and also their interconection to 

the outside world. This section analyses the attributes of 

multi-processor computer systems.

2.5.1 Multi-Procssor Computer Systems

This section discusses the clasification of various 

multi processor computer system schemes available to the 

computer architect, with reference to reliability. A "black 

box" approach, synonymous with the integrated circuit will 

be used to represent the micro partitioning of systems, e.g. 

processor, memory, etc. Macro partitioning is used to 

represent a stand alone general purpose, i.e. non 

specialised, computer system. The figures in this section, 

i.e. figures 2.1. and 2.2., are single user systems which 

are either a host mainframe or user terminal.
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2.5.2 Tightly Coupled Computer Systems

A tightly coupled Computer System [17], is a multiple 

processor, shared memory, computer system. Figure 2.1.a. 

shows a "totally shared memory" structure, while figure 

2.1.b. shows a "limited shared memory" structure.

The major advantage of the totally shared memory is its 

inherent flexibility. This is best illustrated by 

considering a processor, say P2, as failed. From figure 

2.1.a., any other processor may address each others memory 

space during a recovery process. By comparison, recovery is 

difficult in figure 2.1.b, where the recovery process has to 

access the local memory, i.e. M2. However, the provision of 

local memory does provide a closed process environment, 

resulting in the confinement of processing errors to the 

local memory. Local memory provides an additional speedup 

[33] in computation, because contention for shared memory 

access is reduced.

2.5.3 Loosely Coupled Computer Systems

Loosely Coupled Systems [10] are multiple computer 

systems in which there is no shared memory, and all inter 

processor communication takes place through input-output 

channels.

Loosely Coupled Systems have more structure than 

Tightly Coupled Systems because their inter processor 

communication is intelligent. This enables intelligent inter 

process communication between communicating processes, at
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the machine level, e.g. through input-output channels. This 

is not possible in Tightly Coupled Computer Systems, as any 

processor may access any location in the shared memory, e.g. 

when a faulty processor writes to an output area of another 

processor, producing systemic process corruption.

2.6 Multi-Processor Classifications

Multi-Processor Classification has enabled a 

classification scheme to represent inherent qualities of two 

dissimilar system structures. When considering the execution 

of a program, as an execution of communicating processes in 

the single user systems of figure 2.1. and 2.2., the Tightly 

Coupled Computer Sytems offers a more reliable programming 

environment through its closed, i.e. local, memory 

architecture.

In a multi user interactive system, employing a 

multi-processor architecture, the input-output to the user 

terminals is performed by a fast, uni-processor based, 

communication processor. This type of system is shown in 

figure 2.3. While the execution environment of figure 2.3 is 

more reliable than the conventional uniprocessor systems, 

the reliability of the front-end communication processor is 

a single point of failure. With this in mind, the ideal 

multi-user, multi-processor machine provides a process 

execution environment which is loosely coupled, together 

with a loosely coupled input-output to the system users.
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Quick proposes a change in the system classifcation 

scheme which includes [12] input-output architecture to the 

execution environment. The Tightly/Loosely Coupled Computer 

Systems shown here, together with Flynn's classification 

[11] e.g. Multi Instruction Multi Data - MIMD, require 

extension, or clarification.

The extended classification is:-

1 (a) Tightly Coupled, Single I/O (i.e. Single channel I/O)

(b) Tightly Coupled, Parallel I/O (i.e. Multiple channel 

I/O)

2 (a) Loosely Coupled, Single I/O (i.e. Single channel I/O)

(b) Loosely Coupled, Parallel I/O (i.e. Multiple channel 

I/O)

Relating the above classifications to fifth generation 

requirement; the system structure would have the 

input-output equivalent of l(b) or 2(b).

The proposals for fifth generation architectures 

requires a move away from the multiplexed front-end 

processor. The multiplexed input-output channel does not 

offer the speed required for the fifth generation human 

interface. Dedicated input-output channels seem to be the 

only mechanism capable of matching applications to 

architectural requirement.
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2.7 Bounded Parallel Systems

A machine architecture is bounded if there are up to, 

say 64 processors where the architecture is defined in terms 

of maximum system configuration. That is, the maximum number 

of processors that can be integrated into the system is 64.

The limiting factors here are based on technological 

limitations such as pinout numbers on integrated circuits. 

Bounded systems tend to be cheaper designs than more 

flexible unbounded systems.

2.8 Unbounded Parallel Systems

A machine architecture is unbounded if it is designed 

with maximum flexibility and extensibility as a fundamental 

system requirement. Such systems should be capable of 

supporting in excess of 10,000 processors, and ideally 

millions of processors. In reality; it is difficult to 

design systems that are truly unbounded. The physical 

interconnection of the main components require a fixed 

number of hardwired connections. An unbounded 

interconnection scheme demands maximum flexibility in the 

interconnection, and hence requires soft and not hard 

connections. It can be said that they approach the unbounded 

state.
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2.9 Engineered Bounded Systems

Four architectures which have moved away from the 

classical uni-processor architecture.

1) The VAX-11/782

2) The Burroughs B5000

3) The iAPX-432

4) C.mmp

2.9.1 Multi-processor Configurations of the VAX-11/780

The simplest multi-processor configuration of the VAX 

family is the [35] VAX-11/782, a tightly coupled 

asymmetrical multi-processor. The 782 is based on two 780 

processors using the MA780 shared memory subsystem (Figure 

2.4).

At the centre of all VAX multi-processors is the 

multiport memory. This enables up to four VAX processors to 

share a bank of memory. This feature allows VAX users to 

develop multi computer configurations for very high 

throughput or enhanced availability.

Applications built around multiple cooperating 

processes can be configured to run on multi-processor 

systems with no programming modification. Processes in 

shared memory can be moved from one procecssor to another 

with complete transparency to the programs involved.
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An interesting point to note is that each processor in 

the multiport system operates independantly using its own 

copy of the operating system stored in its local memory. 

This 'local operating system 1 is discussed further in 

chapter 5.

Port Arbitration

The high throughput of VAX multi-processor 

configurations is due to each port having a buffer for 

commands and data. Each port is served on a demand basis, 

that is, first-in first-served. No time is wasted in polling 

inactive ports. A serving algorithm guarantees that no port 

waits more than three memory cycles to gain access to shared 

memory.

A problem associated with multiport memory is that of 

one processor trying to read a location at the same time 

another is trying to modify it. The VAX eliminated this 

contention by locking out the second processor until the 

first has completed the transaction.

Parallel and Sequential Procesing

The multiport memory of the VAX can enhance system 

performance via two configurations:-

1) Parallel or 2) Pipeline processing.
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In the parallel mode; two or more processors divide the 

task between them, allowing processors to pool resources. 

Pipelining can increase total system throughput by allowing 

instantaneous data exchange between processors that are 

handling the sequential parts of an application. The 

following figure (Fig 2.5) illustrates possible 

configurations.

Although the VAX can be configured to run as a 

multi-processor, its design is that of a uniprocessor. This 

leads to several major problems on throughput. In the 

tightly coupled system, processors execute the same copy of 

the operating system and share the same data structures. 

Asymmetric processors cannot execute the entire operating 

system code at the same time. In a dual processor 

configuration, figure 2.6, all kernal mode and interrupt 

code is executed by the primary processor. Also all 

Input/Output is conducted by the primary processor. These 

design features can lead to the second processor being 

almost inactive due to the primary being input-output bound. 

Therefore every time the secondary processor generates a 

page fault, the primary processor must halt its current 

activity and service the attached processor.

Due to the above problems the 782 is only 'in its 

element' when handling primarily compute bound jobs. This 

leaves the primary processor free to handle all Input-Output 

at a reasonable throughput.
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2.9.2 The Design of the Burroughs B5000

Computing systems have usually been designed via the 
hardware route; i.e. design the physical machine first and 
then implement the software at a later date.

A contrast to this was the design of the B5000. From 
the initial design, the system was thought of as a total 
hardware-software system.

Design Objectives and Criteria

The fundamental objective of the system was the 
reduction of total problem through-put time. A second 
objective, and in terms of this Thesis the more significant, 
was the provision of facilities to change both programs and 
system configuration.

Early in the design phase of the system major 
principles were established:

1) Multi-tasking and true parallel processing, requiring 
multiple processors should be provided.

2) System reconfiguration, within reasonable limits, should 
not require any systems reprogramming.

3) Data and programs should be independant of location.
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2.9.3 The Intel iAPX-432. An Advanced Microprocessor

The iAPX-432 microprocessor was designed with the aim 

of reducing the software development problems created by the 

Semantic Gap.

With this in mind likely application areas for the 432 

are:

1) Low volume applications where the programming investment 

is high.

2) High volume applications where programming is more than a 

one time occurence.

3) Those areas with a high degree of concurrency.

It is this last area which is of significance to this 

Thesis. Other aims of the 432 design were incremental system 

performance, or the ability to tune the performance of the 

system by adding or subtracting processors without the need 

to modify software. The final two aims of the system were 

the ability of the system to provide 'shadow' redundant 

processors to check system integrity and support for the ADA 

language at a fairly low level.

2.9.3.1 Overview of the iAPX-432

Many of the architectural attributes of the 432 are 

similar to that of the SWARD architecture [36], the major 

difference being that the 432 is not a tagged-storage 

machine.
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The fundamental concept of the architecture is that of 

an 'object' [25]. An object is a collection of related 

information which, with a set of applicable operators, forms 

an abstraction.

The main features of the 432 are:

1) Capability Based Addressing

The 432 employs the addressing and protection concept 

of capabilities. A capability, or access descriptor, refers 

to an object and contains sets of access rights to that 

object.

2) Garbage Collection

3) Small Protection Domains

4) Automatic Subroutine Management

5) Process and Processor Objects

In the 432 concurrent processes and processors are 

represented by objects. This provide the system with a high 

degree of flexibility and regularity. Inherent in the 432 

architecture is a high degree of support for concurrent 

processes and multiple processors. This includes 

interprocess and interprocessor synchronisation and 

communication.

These features are enabled by having a 'pool' of 

processors to which processes are dispatched from a central 

queue, that is the 432 is a polymorphic system. The 432 

provides an effective and highly flexible means of 

controlling and dispatching of processes to processors. In
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general, low level decisions are taken by the hardware but 

the progress of processes is controllable by the operating 

system by setting a variety of parameters in the process 

objects.

6) Send and Receive Mechanism

Inter-process communication is provided by a 

communication port which is itself an object.

7) Large Address Space

The 432 provides a large address space, in terms of 

both objects and physical store.

8) Flexible Operand addressing.

9) Extensive Floating-point Facilities

2.9.3.2 Components and Configurations

Currently the iAPX-432 system consist of three 

component types. The 43201 and 43202 make up a General Data 

Processor. The 43201 fetches and decodes instructions while 

the 43202 provides addressing and logic functions. The two 

devices are tightly coupled via a microinstruction bus. The 

final component is the 43203, the interface processor. This 

serves as an input-output channel. The following figure 

shows a four processor system, figure 2.7.
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In a multi-processor configuration, memory inter-facing 

is a key concern. With a single memory bus the upper limit 

on processors seems to be five processors [23] beyond this 

memory interference is such that additional processors add 

little to system performance.

2.9.4 Multi-Processor Research At Carnegie-Mellon University

In 1971 a research project was started to examine 

multi-processor architectures, a main centre for the 

research being those architectures which share a common 

address space [33].

The first project, C.mmp is a relatively straight 

forward multi-processor. Began in 1972 in connects up to 16 

prcessors to a shared memory via a crosspoint switch.

2.9.4.1 C.mmp

Four main design criteria influenced the design of the 

machine:

1) Minicomputers would be used as the processing elements.

2) The machine would have no 'master-slave' relationships 

between the processors.

3) A large address space would be provided.

4) As much commercially available hardware would be used, 

as was available.
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2.9.4.2 The Hardware

C.mmp is an asynchronous, MIMD multi-processor [5], 

composed of slightly modified PDP-11/40 processors, 

augmented by a writable control store, figure 2.8. Up to 16 

of these processors can be connected to up to 16 shared 

memory modules via a 16 x 16 crosspoint switch. A path 

through the switch is independantly established for each 

memory request and upto 16 paths may exist simultaneously. 

Control signals are carried via an independant bus called 

the IP-bus.

The memory modules provide a maximum physical address 

space of 32 megabytes. All processors are capable of 

accessing all memory, though the PDP-11's 16-bit 

architecture limits the amount of directly addressable 

memory at any one time to 64 kilobytes. In addition to the 

shared memory each processor has 8 kilobytes of private 

'local' memory. This space being used for context-swaps, 

synchronisation etc. Input-Output devices are connected to 

individual processor UNI-BUSES, and are controlled by the 

individual processor.
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2.9.4.3 The Software Base

Hydra is the kernel operating system for C.mmp [15]. It 

does not provide files, command language or even a 

scheduler. Rather, Hydra provides an environment in which it 

is intended that the user should write programs that supply 

these facilities.

Hydra, which was a research project itself [34] , uses 

a capability-based protection structure.

2.9.4.4 Successes and Failures

The sucesses include then design and implementation of 

a cost-effective multi-processor.

Drawbacks

C.mmp had its drawbacks though, these fall into three 

groups:-

1) Hardware reliability.

Approximately two thirds of all system failures were 

due to hardware problems. This being due to insufficient 

error detection being built into the hardware. The systems 

hub, the crosspoint switch, was too reliant on other 

devices, i.e. processors and memory. The switch could be 

rendered inoperative by a malfunction in one of these units.
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2) The small address space.

The PDP-11 restricts all addresses generated by user 

programs to 16 bits long. This address space restricts the 

memory size addressed to 64K. To overcome this problem C.mmp 

provides a facility to divide the address space into 8 

pages, the addressing mechanism being similar to the 'base 

registers' on the IBM 360/370 style machines.

3) Partitioning.

C.mmp is able to partition processors and memory, 

however it is not possible to run the operating system, 

HYDRA, in more than one partition. C.mmp can be partitioned 

in such a way that some processors and memories can undergo 

maintenance and run stand-alone diagnostics without 

interfering with the larger partition running HYDRA. This 

means that disjoint time must be allocated for users and 

maintenance.

This system serves as a excellent example of a bounded 

parallel system, and its design must be seen as a success.

It is interesting to note the performance bottlenecks. 

There is a too high operating system overhead of 500 

microseconds on entering and leaving the kernel. Memory 

contention caused by multiple processors is another problem. 

This is caused by several processors trying to access the 

same page in memory. The problem was mainly due to 

multiprocess applications sharing the same code amongst 

processors.
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2.10 Engineered Unbounded Systems

In 1975 a second multi-processor project was started at 

CMU [6]. Cm* replaced the crosspoint switch of C.mmp with a 

distributed bus orientated interconnection scheme between 

processor-memory pairs.

2.10.1 The Structure of Cm*

One of the main features of Cm* which distinguishes it 

from other multi-processor architectures is that the shared 

memory is not disjoint from the processing elements, but a 

unit of memory and a processor are closely coupled in a 

module and a network of buses gives a processor access to 

non-local memory, figure 2.9.

This structure gives modular expansion without rapid 

interconnection costs. Memory can be shared even though 

there is no direct physical link between the requesting 

processor and memory. A Computer Module or Cm providing the 

processing power, primary memory and Input-Output 

connections for the system, figure 2.10.

The processor is a DEC LSI-11, this is a 16 bit 

microprocessor cluster (See below). It also provides 

interprocessor commnication, device interrupts, address 

spaces etc. The Cm's are combined into a cluster via the Map 

bus. This is a special purpose, packet switched bus.
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The Kmap is a special purpose 'mapping controller' 

which is shared by a cluster of Cm's. Clusters are connected 

via Inter-cluster buses. All non-local memory references in 

Cm* are handled by one or more Kmaps.

The Kmaps provide address expansion and mapping, both 

within a cluster and between clusters. The contents of a 

Kmap are:-

The Kbus, which provides an interface between the Map bus 

and the Pmap and controls all transactions on the Map bus.

The Pmap, a mapping processor.

The Line, an interface between two inter-cluster buses. 

The Kmaps and Slocals form the distributed switch.

The Structure of Cm*.

The way in which Cm*'s processors share primary memory 

was chosen as it offers a closer degree of coupling, or 

communication between processors, than would a multi 

computer or network configuration. The main feature of the 

switch structure is that shared memory is not separated from 

the processing elements, but rather a unit of memory and a 

processor are closely coupled in each module and a network 

of buses gives a processor access to non-local memory.

The Extensibility of Cm*.

Processing power can be expanded by increasing the 

number of Cm's per cluster of by adding additional clusters 

of Cm's. Memory capacity can be increased by either adding
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it to an existing Cm or by adding additional Cm's. The 

communication bandwidth of an individual processor Cm* is 

limited by both its own performance and the bandwidth of the 

map bus and intercluster buses. Because there is no central 

bus or switching mechanism the machine can be virtually 

indefinitly extended.

2.10.2 The Massively Parallel Processor (MPP)

The MPP is a SIMD parallel computer with 16K 

processors, figure 2.11.

The MPP consists of 3 main elements:-

1) The sequential controller

2) The Parallel array

3) Staging memory

The controller is a high speed seqential computer with 

its own logic and arithmetic functions. Its primary function 

being to store and sequence through programs.

The controller is connected to the array via a set of 

interface registers.

The array consists of 16384 processors in a 128x128 

configuration. Each processor acts on data in its own 

dedicated memory.

The array and staging memory is connected to peripherals via 

a high speed Input-Output bus. The staging memory acts as a 

data buffer between the arrays and the outside world.
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2.10.3 The INMOS TRANSPUTER

The word TRANSPUTER [31] was coined to be a hybrid of 

'transistor' and computer. The implication being that the 

device is both a component and a computer. With the 

TRANSPUTER, Inmos has suggested an even higher level of 

abstraction then the VLSI circuit.

TRANSPUTER'S can themselves be used as basic cells and 

connected into networks, in which each node is a complete 

processor. Therefore the TRANSPUTER has been designed as a 

programmable component for building extended, parallel 

computing systems with a language, Occam, which allows such 

systems to be efficiently programmed.

The Device

The TRANSPUTER chip is a complex piece of silicon. The 

chip includes a high-speed, reduced instruction set, RISC, 

processor, 4k of static RAM, an Input-Output controller and 

memory controller all on a single slice of silicon. The 

inclusion of the Input-Output and memory controllers is 

similar to that of the iAPX design.

The Input-Output controller section is responsible for 

the four INMOS Links and an 8-bit peripheral interface bus. 

The net effect of this being that the TRANSPUTER can control 

or be controlled by existing peripheral devices.

The memory management unit allows each TRANSPUTER to 

address up to 4 gigabytes of off chip memory in addition to
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its own RAM. One of the important decisions taken at design 

time was to abandon virtual memory, on the assumption that 

RAM is becoming cheaper more quickly than mass storage 

devices. As a result the address space in completely uniform 

thus alleviating any addressing problems.

The slightly faster on-chip memory is multi-ported so 

that the processor and INMOS Links can have access to it.

Possible Architectures

The real potential of the TRANSPUTER lies in truly 

parallel systems where a number of TRANSPUTERS share the 

workload.

The TRANSPUTER lends itself to many interconnection 

schemes. An obvious architecture is to connect the devices 

in the form of a two dimensional array, or possibly a three 

dimensional one, as each TRANSPUTER has 4 Links, figure 

2.12.

Communication Links

The connecting of many 'conventional' microprocessors 

has brought several bus interconnection problems. Namely 

control of system interrupts; Intel's Multibus-II has five 

different bus structures and complex bus arbitration logic; 

this is mainly brought about by microprocessors being 

designed as uni-processors. The TRANSPUTER solves the 

communication problem by divorcing intercell communication 

from conventional memory addressing and data transfer 

functions, which take place via a 'conventional' bus.
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Communication between cells is accomplished via high 

speed serial links which operate independantly of the bus. 

Each TRANSPUTER has four of these links. Each is capable of 

operating concurrently with the others and with the 

processor.

The four links are a physical form of the Occam 

'channel', which processes use to send data to one another 

[18].

The idea behind the architecture is that TRANSPUTERS 

will be as easy to interconnect as TTL devices.

Dataflow and Systolic Machines

The main aspect of dataflow is its elimination of the 

fundamental properties of conventional programming languages 

and machine architectures. In a data-flow architecture there 

is no concept of passive data storage and in a dataflow 

language there is no concept of variables; rather, data 

values move from one instruction to another as the program 

executes. There is no concept of flow control, counters or 

branching. Instead the instructions are 'Data driven'.

Dataflow Machines.

A dataflow/systolic system consists of a set of 

inter-connected cells, each capable of some simple 

operation. Because simple, regular communication and control 

structures have substantial advantages over complicated ones
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in design and implementation. Hence, cells in a systolic 

system are usually interconnected too form an array or tree.

2.11 Summary

This chapter has presented an overview of existing 

multi-processor architectures. However all of these, with 

the exception of the INMOS TRANSPUTER, have built in design 

limitations which restrict the creation of unbounded 

systems. Therefore before designing new architectures it may 

be better to examine the applications to which these new 

machines will be put. This will give us a better 

understanding of the architectures required.
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CHAPTER THREE

FIFTH GENERATION NEEDS

3.0 Introduction

The proposed advanced fifth generation computer systems 

should incorporate all the advances made in computer 

technology over the last 20 years. With fifth generation 

computers, however, the expected changes will be more 

generic changes, involving not only device technology but 

also simultaneous changes in design philosophy and in 

envisioned applications. This technological change is so 

great that we could even call fifth generation systems 

new-era computers. These advances, such as high reliability, 

high availability, coupled with VLSI implementation impose 

severe difficulties for the computer architect. These 

difficulties are further compounded when unbounded 

parallelism is exploited.

This chapter discusses many aspects of fifth generation 

system design, and proposals for the new areas of activity.

3.1 Background

The general consensus that the computer of the 1990's 

will be a non Von-Neumann architecture will be substantiated 

by [12] application needs. Fifth generation computing
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machines will be established, supporting the following 

application areas:

1) Knowledge based information processing systems.

2) Distributed computer systems based on wide as well as 

local area networks, and integrated parallel architecture.

3) Data and demand driven computers. User oriented self 

programming systems supporting very high level programmming 

languages.

4) VLSI implementation of dedicated processors exploiting 

miniaturisation.

3.2 Fifth Generation Computer Systems

These new machines will replace the outdated machines 

of the past, just as the electronic calculator replaced the 

Engineer's sliderule, or the wordprocessor replaced the 

typewriter.

In the analysis of current system architectures for 

fifth generation applications, a list of 'needs' may be 

established. The 'needs list' represents a detailed 

breakdown of the functional requirement of the application, 

and therefore provide the first stage in the top down design 

process.

Page 3-2



3.3 Application Areas

Fifth generation computers are knowledge information 

processing systems and processors. These systems are the 

artifical intelligence community's view of the image 

presented by future computers. Three areas of research have 

been identified by various researchers [11, 1, 3]

1) Knowledge based expert systems.

2) Human orientated I/O.

3) Very high level languages.

Communication and computers represents Wide Area 

Networks, Local Area Networks and parallel computers. In the 

past network and parallel machines have been developed 

separately [6], the advancement in each being sustained by 

development in semiconductor technology [7]. However, it has 

long been advocated that the spectrum of decentralised 

systems should be fully integrated. Therefore to achieve 

this it is necessary for all components to conform to a 

common decentralised system architecture.

3.4 Processor Architecture Exploiting VLSI

Processor architectures to exploit VLSI define a new 

generation of VLSI building blocks to succeed the 

microprocessor. Traditional microprocessors such as the 

iAPX-432, which contains over 100,000 transistors, are 

starting to become commonplace. However, attempting to make 

larger scale single processors in VLSI becomes self
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defeating due to communication problems and escalating cost. 

A solution is miniature computers which can be replicated 

such as memory cells and orientated as a multiprocessor 

architecture [8,4]. These machines are implemented by only a 

few different types of simple cells, and use extensive 

pipelining and parallel-processing to achieve high 

performance.

The only device to be designed with these criteria is 

the Inmos Transputer.

3.5 Needs and Uses

It is reasonable to assume that research into fifth 

generation systems using technology currently available will 

begin to produce results by the early 1990's. This 

assumption raises an important question. Where are the 

application areas and who will be the users of the new 

technology?

The Japanese see almost everybody as users, with new 

applications touching almost every aspect of human life. At 

the present time ten broad catagories of application have 

been identified. These are:

1) Industrial Automation.

2) Office Automation.

3) Science and Engineering.

4) Computer hardware and software.

5) Military.

6) Aerospace.
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7) Retail and Service Industuries.

8) Education.

9) Health.

10) The Arts, Culture and Leisure.

All these areas have had applications demonstrated in a 

research setting, but none have been transferred to the 

commercial market. All applications shown rely in advances 

in the four areas mentioned at the beginning of this 

chapter.

3.5.1 Industrial Automation

This area is seen as one of the 'prime' application 

control areas for fifth generation technology. Prospective 

users include manufacturers of goods, designers of 

manufactured products, product and plant engineers.

Some aspects of industrial automation already exist, 

i.e automatic control systems, production line robots; 

however new application now become possible; i.e. automated 

factories, computer aided design, aomputer aided 

manufacturing, robotics, inventory management, product-cost 

estimates, control and routing of production runs, expert 

systems for design.

The resources needed to support these applications are 

common to all fifth generation requirements, namely high 

speed parallel data-base machines, parallel processors and 

high quality CAD-CAM workstations.
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The last ten years have seen an explosion in the number 

of industrial robots and in the number of companies using 

CAD-CAM techniques. Significant advances have been made in 

sensors for robots, such as computer vision systems, and 

high level languages for controlling robots. The new 

generation of computers will integrate these components to 

achieve a highly automated manufacturing plant.

3.5.2 Office Automation

Of all the possible application areas office automation 

will probably provide the most financially rewarding area. 

The section heading might better be called 'Business 

Automation', covering all aspects of a non-manufacturing 

nature.

Application areas are only limited by the diversity of 

businesses, but management, administrators and secretaries 

will be the major users of such systems.

The new generation in computing will not only supply 

the hardware and software technology to support information 

management, it will also use better techniques for using 

these systems. The user will be able to interact with the 

system via natural language I/O and expert systems will give 

advice on how to use computing systems and will assist in 

recovering the relevant information.

The components for office automation will undoubtedly 

include wideband networks and local area networks. The use 

of word processors and electronic filing systems in offices
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is now commonplace. Similarly the use of electronic mail, 

spreadsheets, appointment calendars and database management 

systems is becoming more popular. The technology to totally 

automate the office already exists, its components must now 

be integrated into complete systems. These components 

include specialised database processors, expert systems and 

improved I/O systems.

3.5.3 Science and Engineering

To date scientists and engineers have always been the 

first to employ the use of new technology [9]. There is no 

reason why this group of people will not do so again.

Once again the application areas are only limited by 

the depth of current knowledge, but suitable areas include: 

expert systems for fault diagnosis, capturing and applying 

scientific expertise.

The systems technologists will employ powerful database 

management systems, parallel database and expert system 

processors. Scientists will use new generation equipment in 

a variety of ways. With new hardware and improved user 

interfaces, fifth generation systems will be able to take 

advantage of expert systems to capture and apply scientific 

knowledge. Expert systems are already beginning to support 

scientific research.
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3.5.4 Computer Hardware and Sofware

To enable advances in the fields described in this 

chapter, fifth generation computer hardware and software 

must first be developed.

This will enable programmers, analysts and engineers to 

develop the packages required by the end user.

Possible applications which effect every computer users 

include semi automatic design and development of programs, 

specalised architecture for implementing firmware and expert 

systems for fault diagnosis of computer hardware.

The tools necessary for future development include very 

high level languages and hardware specification languages, 

that is, languages one or two steps further removed from 

LISP and PROLOG. Other required components are integrated 

software development environments, Silicon compilers, 

parallel processors, dataflow languages and machines, 

parallel programming languages, compilers and operating 

systems.

One of the main aims of current research is to reduce 

the cost of producing software. Writing, debugging and 

testing current systems is a highly labour intensive 

process. There is much interest in automatic programming. 

Complete, general purpose automatic programing will probably 

take many years of fundamental research; however automatic 

programming in specalised areas may be more realistic.
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A major area for fifth generation systems will be that 

of automated VLSI design. The very complexity of devices 

that VLSI permits, require that automated techniques are 

employed for managing this complexity. One of the most 

important applications of new technology will be the 

simulation of computer assisted design of even newer 

generations of machine.

3.5.5 Military

The military have always been large investors in computing 

technology [14], innovating many new designs and products. 

In the US most of financing has been via the DARPA scheme.

The new technology will be used in all existing areas 

of military computing as well as some new fields i.e. 

aspects of planning, decision support; command and control 

systems; supply and support logistics; intelligent 

autonomous weapons systems, parallel architectures for 

analysing RADAR and SONAR images.

Applications for military uses fall into two 

catagories. The first includes information management 

systems and expert systems that support military systems in 

terms of planning etc. The second comprises of the guidance 

and targetting of autonomous weapons.

3.5.6 Aerospace

The aerospace industry has always been a prolific user 

of new technology; pioneering several new designs. NASA has
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been the funding body of many new architectural designs, 

i.e. the ILLIAC-IV [10], Pilots, air traffic control, 

scientists and engineers studying space and remotely sensed 

earth resources, will be able to employ new generation tools 

such as: air traffic control monitors, deep space 

exploration probes, earth resource monitors and 

semi-autonmous space ground based sensors, expert systems 

for fault diagnosis in space craft, self replicating 

machines for space manufacturing.

The components used in this field will include large 

scale distributed data bases for automatic data reduction 

from a network of ground sensors, expert systems for fault 

diagnosis in space craft and self replicating machines for 

space manufacturing.

The new generation of computers will be applied to 

aerospace in areas such as air traffic control, information 

management for pilots and control of autonomous aircraft. 

Even though todays most advanced aircraft are already 

controlled by embedded computer systems, the pilot must 

still cope with a large quantity of information from 

instruments and displays. Techniques such as voice 

recognition, speech output will aid the pilot to select and 

interpret the most vital information.

3.5.7 Retail and Service Industries

Consumers, retailers, advertisers, market development, 

service companies, lawyers, travel agents etc. will benefit
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from systems such as computer based catalogues, remote 

ordering and shopping, teleconferences, accounting, billing 

and invoicing systems, automated information systems, expert 

system for a mass of uses.

Hardware will be required to support multimedia 

information systems combining graphical, image and textual 

data, natural language Input/Output systems for inquiry 

systems, wideband networks for communication between 

systems.

Consumers will be able to shop and buy goods using an 

online catalogue, which handles fund transfer, billing, 

shipping and reordering. The greatest abundance of new 

applications will come in the area of information service 

industries.

The components to handle these advances have existed 

for some time, but not as an integrated system. More 

attention must be paid to developing more natural user 

interfaces for both accessing and updating information.

3.5.8 Education

Students at all levels will be able to use intelligent 

computer-aided instruction (CAI) systems which permit the 

student to direct and contol the presentation of course 

material. Computer based training for adults and 

professionals, computer based assistants which explain how 

to use computing systems.
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Software and specalised processors to support voice 

I/O, specalised hardware for graphics and images, and 

libraries available via digital networks will be needed to 

support such education.

CAI systems are currently in use at all levels of 

education and training. More advanced developments in CAI 

will enable intelligent CAI systems, enabling natural 

language to control the lessons.

3.5.9 Health Care

In the past computers in medicine have been limited to 

applications such as patient administration [13] and other 

accounting tasks. Today however, one of the first 

application areas for expert systems has been in the field 

of medical diagnosis.

The users in this field include: Doctors, hospitals, 

patients, the handicapped and disabled.

Other areas of use include: expert systems for 

diagnosis and prescripion, data base systems for medical 

records, management and monitoring of patients, automatic 

analysis of experiment, reading machines for the blind and 

sensory prosthesis.

Applications in medical environments will continue to 

be mainly in expert systems. Such systems have some of their 

first and most successful applications. There are, however,
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a number of research and social issues to be resolved; 

i.e. medical liability of expert programs.

New generation technology will also support aids for 

the handicapped and disabled. Reading machines, sensors and 

computer controlled wheelchairs are some of the applications 

directed toward the younger generations of society. However 

the public at large should be involved in fifth generation 

applications i.e large scale storage systems, wideband 

networks to access cultural information, high resolution 

digital sound, graphical I/O devices such as electronic 

paint brushes and solid state cameras.

3.5.10 Leisure

A large proportion of the income that the entertainment 

industry has been able to gather during the last ten years 

has come through computer based video games. If this is 

indicative of the potential for new generation technology 

then this area may be the most financially rewarding.

3.6 Involved Countries

Within the last two to three years, Japan, the United 

States and Europe have initiated significant research 

programmes in fifth generation computing, all feeling that 

the first to market a commercial fifth generation system 

will permanently have a lead on the others.

In a way, all concerned parties are involved in a 

strategy of mutual catching up. Japan has the
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longest-running, formal national programme. Its Fifth 

Generation Computer Systems Project was officially launched 

in 1981, but its aim is to catch up with the United States, 

which has been funding key research areas for some twenty 

years. However, it was not until the Japanese had announced 

their formal research project that the United States 

initiated its own concerted national projects.

With the advent of Fifth Generation Computing Systems 

[11], Japan effectively announced to the World that it would 

no longer be taking existing Western technology and 

improving on it, but that it was determined to take a lead 

in the research and development of unprecedented systems.

3.7 Concerns and Goals

The various countries differ in their concerns and 

purpose of their research, and the aims of each project are 

distinct.

3.7.1 Japan and ICOT

At the center of Japan's research effort is the 

Institute for New Generation Computer Technology (ICOT). 

ICOT's objective is to research and develop computer 

technology that can perform more humanlike intellectual 

functions, namely, inference, association and learning.

To achieve this objective ICOT is finding ways to 

supplant traditional sequential processing with parallel 

processing; as only the great speed and capacity of parallel
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processing are sufficient for developing the new application 

areas. The net result of Japan's Fifth Generation Computer 

Systems project will be the basic technology and 

demonstration systems to build true fifth generation 

systems.

The ICOT research centre plans to approach the aim of a 

true fifth generation system by pursuing two intermediate 

hardware projects. These are a parallel inference machine 

and a knowledge-based machine.

The parallel inference machine is a system that follows 

a line of reasoning to arrive at, or infer, a conclusion on 

the basis of the facts presented to it. The knowledge based 

machine is a system that efficiently manages large amounts 

of data. Both machines employ forms of data flow processing.

3.8 Designing the Next Generation

Much of the technology required to achieve the aims of 

fifth generation computer scientists can be accomplished by 

advances in the current state of the art of conventional 

Von-Neumann computing. But certain areas, such as natural 

language input/output, can only be tackled with thousands or 

millions of times more processing power than current 

technology permits, and by software markedly different from 

todays programs.
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3.8.1 Exploiting Parallelism

The only feasible answer to the above problem is 

massive parallelism. There are, however, problems with 

parallelism; matching algorithms to parallel systems is one, 

and getting all the processors in a parallel system to work 

efficiently is another.

Various parallel architectures have been discussed by 

computer scientists, including trees, square and cubic 

arrays and data-flow systems. Some researchers have 

suggested that a general purpose parallel processor is the 

best way to approach the problem, others have decided to 

work out parallel solutions to problems and then implement 

an architecture around it.

3.8.2 VLSI: The Solution?

Architectures consisting of many simple processors, 

each with a small amount of local memory are made feasible 

by VLSI technology. Once the initial circuit specification 

has been accomplished many processors can be placed on the 

same chip, and a number of chips fabricated with ease. 

However, designing such circuitry is not easy. Therefore, 

VLSI design tools, silicon compilers, are a required factor 

in fifth generation computing efforts.
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3.9 The Problems to be Encountered

There are several major obstacles to be overcome before 

any fifth generation system is built. These include both 

conceptual limitations and physical ones.

3.9.1 Physical Limitations

Over the last decade, chip densities have been 

increasing at a fairly constant rate. However current VLSI 

techniques can produce paths two micrometers wide. At this 

level inpurities in the base material come into effect. One 

proposed solution is to move to wafer scale integration. If 

a number of devices are fabricated on one wafer then all 

non-working devices can be 'cut' out of the system 

electrically

3.9.2 Conceputual Limitations

Processes which execute concurrently may occasionally 

make simultaneous demands on shared system resources. 

Communication is a critial issue in concurrent machine 

architectures. Long delays in communication may result in 

performance degradation to a point where the potential speed 

of concurrency is negated. Therefore the design of the bus 

architecture is the key choice in linking thousands of 

processors.

Processes which execute concurrently may occasionally 

make simultaneous demands on shared system resources. When 

such contention is present, simultaneous demands are
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serviced in a serial order, and so some processes must 

experience delayed access to the resource. Such contention 

introduces a coupling among processes because the activities 

of one process can effect the performance of other processes 

that share the resource with the first.

Shared resources are those for which two or more 

concurrently executing processes can make simultaneous 

demands.

For multi processor systems, interest is primarily 

directed at shared buses and switching devices. Contention 

for shared resources results in queueing delays at critical 

resources [2]. By their very nature, the individual 

components of a multiprocessor must share some of the 

physical resources of the machine. By definition some or all 

of the memory must be shared, but use of other structures, 

interconnect paths etc. may be critical.

For each element in the system there is a maximum 

demand that it can serve per unit time. In addition, any 

time two or more processes make simultaneous demands, 

performance will suffer unless the resource can serve 

multiple requests in parallel.

Therefore the critical area of design is not the 

processing cell, but the interconnection scheme of the cells 

and arbitration mechanism governing the cells.

Page 3-18



3.10 Future Computer Architecture

The application of fifth generation computer systems in 

such are as Artifical Intelligence, Image Processing, 

Real-Time Language Translation etc. demand the fusion of 

thousands of Processing Cells. The potential advantages of 

cellular computer systems are in increased system throughput 

by the simple addition of more processing cells. With this 

in mind, bus arbitration must be distributed particularly 

when the simple multi-processor system is expanded to a 

fully distributed cellular processing environment consisting 

of thousands of processing cells. These Processing Cells are 

conceptually contained in a system module, currently 

realised as a printed circuit board. The purpose of the bus 

controller is to support inter module communication at one 

"level", and intra module communication at another "level". 

As many Cells share the common buses, the bus arbiter must 

be fast in operation. Another very imporant requirement in 

the bus arbiter is expandability; as a system grows in the 

number of modules, so must the bus arbitration grow with it.
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CHAPTER FOUR 

BUS ARBITRATION CONCEPTS

4.0 Background

The proposed advances in fifth generation Computing 

Systems aim to provide an Intelligent Image to the system 

user. While such images are software based, written in 

languages such as Prolog and LISP, much of the proposed 

hardware architecture has lacked innovation and vision. This 

chapter addresses these two important points by providing an 

insight into modern Bus architectures for cellular systems. 

In order that unique system architectures may evolve, a 

hierarchical bus arbitration structure is proposed.

The section on bus arbitration is extraced from Quick's 

Thesis and is included in this Thesis so as to provide a 

fuller understanding of bus arbitration concepts and as 

background reading to the discussion on the Group Processor 

System Architecture.

4.1 Introduction

A cloud of uncertainty hangs over the physical image 

that fifth generation computing systems will adopt. 

Therefore in this chapter, the structure of a computer 

system is presented as a functional module structure, 

together with its operation. This presentation is oriented 

towards VLSI realisation of the various modules that will
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eventually make up a typical fifth generation computer 

system. These modules will become sub-system components that 

will be integrated into an overall system architecture 

supporting hardware and software extensibility. These 

separate, but coupled modules, are interconnected by the 

common bus structure and supervised by the Bus Arbitration 

Mechanism.

4.2 Current Computer Architecture

In any simple parallel system, Figure-4.1, containing 

two or more processing cells, e.g. central-processor and I/O 

processor, a bus controlling mechanism is required to 

resolve the simultaneous requests for the use of a system 

resource [1,3,4,5]. A basic requirement of any controller is 

to allow only one system element or cell, the ability to 

gain access, i.e. write, to the shared bus. However, systems 

can be configured for multiple reads on a common data 

stream, on a common bus system.

The bus arbitration mechanism may be seen as the 

unifying factor in any multiprocessor system architecture, 

resolving simultaneous bus request conflicts. Alternatively, 

Bus Arbitration may be conceived as either the system's hub, 

or the achilles heel, as all communication between 

intelligent cells are scheduled for bus access by this 

mechanism.
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4.3 Bus Arbitration Objectives

According to Plummer [6] the design of arbiters is 

somewhat harder than most logic circuits because traditional 

design approaches are vastly too cumbersome. The usual 

design assumptions are that inputs are allowed to change 

only if the circuit is in a stable state and only one input 

at a time will change. Arbiters violate both of these 

assumptions.

The basic functional requirement of any integrated bus 

arbiter must satisfy five basic design operations which 

are: -

(1) The operation of mapping one, and only one, output to 

the corresponding input request must be executed in finite 

time. That is, the delay in allocation must be seen as 

transparent to the requesting resource.

(2) The arbiter must be independent of the communication 

between the communicating cells, during all communication 

activities. That is, the communicating data should not 

control the allocation, it should be directed by the system 

control structure.

(3) The interconnection of arbiters should provide for both 

equal and priority based arbitration [2]. This allows the 

operating system to gain control of the system hardware when 

required.
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(4) Mechanisms must be available for the dynamic locking out 

of an arbiter. This enables a degree of added reliability 

when arbiter cells become unserviceable.

(5) The maximum number of cells, and system architectures, 

should be able to share a common arbiter design. That is, 

the design should not be tailored to a unique architecture 

enabling the replication of cells to a high degree.

4.4 Current Arbitration Techniques

Several methods have been implemented to realise the 

resolving of bus conflicts. The different control schemes 

can be roughly classified as being either "Centralised" or 

"Distributed". If the hardware for passing bus control from 

one cell to another is largely concentrated in one location, 

it is called "centralised", while in a distributed system 

the control logic is spread throughout the cells on the bus. 

Most arbiters use combinations or modifications of the 

following three schemes:-

1. Daisy Chaining.

2. Polling.

3. Independant Requests.
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4.5 Centralised Arbitration

With centralised arbitration, a single hardware unit is 

used to recognise and grant requests for use of the bus. 

While this system has many advantages, such as much simpler 

hardware design, it clearly can impose severe limitations 

when the number of processors expands dramatically.

4.5.1 Daisy Chaining

Each cell on the bus can generate a request via a 

common Bus Request line, Figure 4.2. Whenever the Bus 

Controller receives a request on the Bus Request line, it 

returns a signal on the Bus Available line, which is daisy 

chained through each cell. If a cell receives the Bus 

Available signal and does not require it, then it is passed 

on to the next cell in the line. If a cell does require 

control of the bus then the bus available signal is not 

propagated to the next in line. The requesting cell raises 

the bus busy line and drops its bus request line. The cell 

then starts to write to the bus. The Busy line keeps the Bus 

Available line up until the end of transmission when the Bus 

Busy and Bus Available lines are lowered.
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The advantages of this system are in its simplicity as 

very few control lines are needed, and additional cells can 

be added by simply connecting them into the bus. A 

disadvantage of the system is its susceptability to failure. 

If a failure occurs in the Bus Available circuitry, it could 

prevent succeeding cells from ever obtaining control of the 

bus. Another problem is the fixed priority structure. Cells 

which are "closer" to the bus controller always receive 

control of the bus in preference to those "further" away. 

Clearly, mapping important software physically near to the 

arbitration reduces the machines desirability, as most 

software would have to be written so as to be position 

dependant. Clearly this is a non-goal of fifth generation 

needs, although it may be felt desirable to place the 

operating system in this high priority position.

4.5.2 Polling

As in the previous system; each cell on the bus, Figure 

4.3, can place a signal on the Bus Request line. When the 

Bus Controller receives a request it starts polling the 

cells to determine which one made the request. The polling 

is done by issuing addresses on the polling lines. When the 

address corresponds to a requesting cell, that cell raises 

the Bus Busy line. The controller stops polling until the 

cell has completed its transmission and removed the Busy 

signal. If there is another request, the addressing may 

start from zero or continue from where it stopped.
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Starting from zero fixes the priority of the system, so 

that the most important software must be located near the 

low addresses. Continuing from the stopping point gives each 

cell an equal chance. Placing intelligence within the 

arbiter enables greater flexibility in scheduling the 

physical addresses of high priority software, but adds 

greatly to the cost of the arbiter.

The advantages of this mechanism are that polling does 

not suffer from reliability or physical displacement 

problems, but the number of cells is limited by the number 

of polling lines. The use of 100's of thousands of 

processing elements would imply that a corresponding number 

of lines must be available for each cell. This is clearly 

not acceptable, as the number of lines at some point must be 

finite, if only to constrain the location of such lines to 

within a single cabinet of acceptable size.

4.5.3 Independent Requests

In this method each cell has a pair of Bus Request and 

Bus Grant lines, which it uses for communication with the 

Bus Controller. When a cell requires use of the bus, it 

sends its Bus Request to the controller. The controller 

selects the cell to be serviced and sends a Bus Grant to it. 

The selected cell lowers its Bus Request and raises the Bus 

Assigned line, indicating to all other users that the bus is 

busy. After transmission, the cell lowers the Bus Assigned 

and the Bus Controller removes the Bus Grant signal and 

selects the next requesting cell. (See figure 4.4)
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This method has the advantage of lower overheads when 

allocating the bus, since all bus requests are presented 

simultaneously to the Bus Controller. In addition, there is 

complete flexibility for selecting the next requesting cell 

as the system is performing a true first in first out 

sequence.

The major disadvantage of this system is the number of 

lines and connectors needed for contol. There must be a pair 

of Bus request/Bus grant lines for each cell, although if 

bus grant speed were not important they could be multiplexed 

onto one line. The complexity of the allocation algorithm 

will also be reflected in the amount of Bus Controller 

hardware available to the cell. As an indication; for 

application areas that require redundancy, three 

communication buses may be required, with corresponding 

three Bus request/Bus grant lines. Clearly, in a system with 

only 1000 processing cells this would result in 3000 

request/grant lines, a figure too large so as to be 

feasible.

4.6 Distributed Arbitration

The block diagram of a typical arbiter network is 

illustrated, showing the complexity of the interconnection 

of the various module interface/inter module bus cells, 

figure 4.5.

Within a distributed system; the bus control logic is 

primarily spread throughout all the cells on the bus.
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4.6.1 Distributed Daisy Chain

A distributed Daisy Chain may be constructed from a 

centralised one by omitting the Bus Busy line and connecting 

the common Bus Request line to the "first" Bus Avalable. A 

cell requests service by raising its Bus Request line if the 

incoming Bus Available is low. When a Bus Available signal 

is received, a cell that is not requesting the bus passes 

the signal on. The first cell which is requesting does not 

propagate the Bus Available, and keep its Bus Request up 

until it has finished with the bus. Lowering the Bus Request 

lowers the Bus Available if no successive cells also have 

high Bus Requests, in which case the "first" cell that wants 

the bus gets it. However, if some cell "beyond" this has a 

Bus Request, control propagates to it. Therefore allocation 

is on a round-robin basis, figure 4.6.

4.6.2 Distributed Polling

When a cell is willing to release the bus, it puts an 

address on the polling lines and raises Bus Available. If 

the address corresponds to that of another cell which 

requires the bus, that cell responds with Bus Accept. The 

former cell drops the polling and Bus Available lines and 

the latter cell lowers the Bus Accept and begins using the 

bus. If the polling cell does not receive a Bus Accept, it 

changes the address according to some allocation algorithm 

and tries again. This method requires that exactly one cell 

be granted bus control when the system is initialised.
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The system uses more hardware due to every cell having 

the same allocation hardware as the centralised system. 

However, this improves reliability as the failure of a cell 

does not usually degrade bus operation, figure 4.7.

4.6.3 Distributed Independant Requests

Any cell needing the bus raises its Bus Request line, 

which corresponds to its priority. When the current bus 

master releases the bus by dropping the Bus Assigned, all 

requesting cells examine all active requests. The cell which 

recognises itself as the highest priority requestor obtains 

control of the bus by raising the Bus Assigned. This causes 

all other requesting cells to lower their Bus Requests. The 

logic in the distributed system is simpler than that of its 

centralised counterpart, but the number of lines and 

connectors is high, figure 4.8.

4.7 Universal Arbiter

The uncertainty that exists in the physical image of 

fifth generation machines, requires generality in the 

topology of a 'universal arbiter'. Clearly system bus 

architectures of various types have to be considered in 

order that the arbiter be integrated into a single 

integrated circuit.
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By providing a distributed but universal arbiter 

design, the overall bus arbiter design becomes more complex, 

as part of the design must cater for a priority based 

architecture. As an example of this consider an equal 

priority general design. In reality no such design exists, 

as a simultaneous demand, e.g. two simultaneous bus 

requests, are conflicting and hence require arbitration.

The design topology illustrates a hierarchical 

arbitration structure, Figure-4.9. Conceptually, each bus 

request has equal priority, within bus arbiter 1 for 

example. Similarly, bus arbiter 2 and bus arbiter "n" have 

equal priority in the centralised, or root arbiter. The 

centralised arbiter is in effect an overall arbiter to the 

other arbiters below it in the hierarchy. Although only 24 

inputs are shown; the hierarchy is infinitely extendable 

with seemingly equal priority, by organising the 

interconnections as a hierarchical tree structure.

By comparison the daisy chain, i.e semi-linear priority 

scheme of figure 4.10, makes line 8 of bus arbiter 1, the 

lowest priority, and line 1 of bus arbiter "n" the highest 

priority. It is conceiveable from this topology that in a 

long daisy chain; the lowest priority may take a long time 

to get served, due to repeated requests by higher priority 

requests.
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In terms of fifth generation multi-processor systems; 

the daisy chain has certain advantages over an equal 

priority design. The most important of these is the ability 

to give

a higher priority to the user and the operating system. In 

reality a totally daisy chained system is impractical as all 

user oriented modules should have equal priority. In this 

case a mixture of daisy chaining and equal priority topology 

may be accepted as providing the degree of operation 

required, for rapid intervention to the operating system, 

and equal priority for the user modules. It is also 

conceivable, that in fifth generation operating systems, 

that bus arbitration logic is visualised as shown in figure 

4.11., where, in conflict conditions, line 1 has a higher 

priority over line 2 in the system arbiter. Similarly, the 

nearer to the lower numbered lines a module is connected, 

the higher the conflict priority.
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4.8 Summary

In this chapter, the architecture of a computer system 

has been presented as a functional module structure that 

represents a hardware/software environment for the execution 

of user programs. This presentation has been orientated 

toward a true fifth generation machine architecture, through 

the consideration that machines will be constructed from 

100's of thousands of processing cells. These separate, but 

coupled cells, need a flexible and extensible bus 

arbitration network. Such a network has been outlined as a 

first stage in understanding the complexities that exist 

when the burden of design and implementaion of a fifth 

generation machine is placed on the computer architect.

When complex bus structures are studied in depth; there 

is a realisation that long and involved research effort is 

needed into the wider aspects of bus structures. The 

interaction of operating systems and the cell design will 

result in a much closer working attitude between the 

computer architect and software engineer. Additionally, the 

practicality of these systems can only be gauged through 

real design efforts resulting in VLSI cells being produced.
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CHAPTER FIVE

THE GROUP PROCESSOR CONCEPT

5.0 Introduction

This chapter introduces the Group Processor System [9] 

as viewed from a single-user, multi-user and operating 

system viewpoint. It also describes the cell, module and bus 

design in detail. The work described in this chapter draws 

heavily on the work undertaken by Quick [10] and is a 

summary of the work undertaken on the Group Processor 

System. The terminology used by Quick is maintained in this 

chapter.

5.1 High Level System Description

The Group Processor concept is not a total system 

design, but an environment for process execution. The 

realisation of the architecture for a computing system is 

based on systems principles. That is, the complete system is 

built up of sub-systems of common elements, which are cells 

and modules. Figure 5.1. shows the functional components of 

the Group Processor System.
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The user interfaces to the Group Processor through a 

dedicated software based frontend processor. The frontend 

processor performs many operations on objects (programs and 

data); e.g. editing and language translation, during the 

development of user programs. The main software features 

supported within the software based frontend processor, 

termed the 'peripheral interface environment', is the 

ability to schedule and transmit the communication between 

user terminals and Group Processor Modules that make up the 

Group Processor System.

5.2 Peripheral Interface Environment

The peripheral interface environment is constructed 

from the same module architecture, shown diagrammatically in 

figure 5.2, as the Group Processor Environment.

Such a uniform hardware design is a feature of the 

Group Processor System and minimises the variations of 

printed circuit board design, which results in lower 

production costs. The cellular structure of the module, 

illustrated in figure 5.3., executes it's processes in the 

cells in the Group Processor environment. The executing 

process within the cells of each module is the only 

difference between the Group Processor environment and the 

peripheral interface environment, and as a result both 

environment types are interchangeable.
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The architecture of the Group Processor environment is 

identical to that of the peripheral interface environment, 

and consists of identical parts programmed to accept tasks 

which perform operations on objects.

5.3 Group Processor Environment

The operations performed within the peripheral 

interface environment and group processor environment, which 

correspond to either a frontend or backend system 

requirement, are executed by groups of cells configured to 

work groups, are achieved by allowing each member to 

communicate with other members via the common bus structure. 

This structure consists of a number of functionally 

dedicated buses that are available for use by any cell.

5.4 Module External Input Output

The internal data routing of the inter-module bus does 

not perform any input-output to the system user, as can be 

seen from figure 5.4., although the system may be configured 

so as to provide such a function using dummy modules, which 

are then directly linked to the user. The input-output 

described in this section concentrates on the interface 

between the Peripheral Interface Environment and the user 

terminal.
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The architecture of the cell and the module interface 

enables the various internal systems to communicate via the 

numerous system buses. The communication to the outside 

world takes place through an external access port, mounted 

on the module. This access port is a cell, identical to the 

other cells on the module, but the three inter module bus 

ports are dedicated to external module communication.

The external cell architecture is illustrated in figure 

5.5., where the cell's three intra module bus ports are 

physically connected to the intra module bus, the inter 

module bus ports are connected to the segmented inter module 

bus. The global bus is connected to all cells. A personality 

pin indicates what function the device is dedicated to, i.e. 

cell or external module I/O processor.

5.5 Logical Bus Structure

The logical coupling of the various software work 

groups relates to the input and output to each process. This 

is reflected in the actual communication on the various 

system buses. For example; where one work group resides in 

one module and communicates with another work group in 

another module, a bus functionally dedicated to inter module 

transmission provides the logical bus communication 

structure.
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Where both work groups reside within the same module 

boundary, the logical bus structure does not require the 

services of the inter module transmission system. In this 

module, a localised bus system conveys the logical 

information. The operation of the communication system for 

updating the various work groups that use the system 

information, e.g resource schedulers, utilize a dedicated 

bus for global transmission of data objects. This bus may, 

if required, be used for the global query of the data stored 

in each cell.

The buses supported here are therefore related to 

logical communication between processes, but influenced by 

the physical location of the communicating processes. The 

three inter module buses are capable of being scheduled as 

to pass-on, distribute, or block, terminate, communication, 

i.e to provide partitioning zones of bus segmentation.

Consider the system bus structure of figure 5.6, this 

illustrates that all modules are connected to the common 

inter module communication system. If however, modules 1 and 

2 were segmented from cells 3 and 4, then the inter module 

communication bus system would be physically broken between 

modules 2 and 3. This enables parallel access of the inter 

module bus for write operations by any one cell, in each 

segmented zone.
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The scheduling of the three segmented buses is 

controlled by the operating system and performed by the 

module interface. Each bus has its own control intelligence 

which enables three levels of communication to take place 

simultaneously, corresponding to each of the three buses.

Entry to a module interface is by single entry to each 

controller, thereby providing parallel access to the module 

interface, in inter cell communication.

5.6 Bus Structures

In most of the multiprocessor configurations developed 

in recent years [2,14] bus contention has been a major 

system overhead. In this area, the proposed modular design 

enables parallel access of the system bus through the use of 

inter module bus segmentation, as seen in figures 5.3 and 

5.6. The proposed bus structure overcomes the two basic 

problems isolated by the Data Flow Group at U.C. Irvine [3], 

namely data localisation and concurrent bus access.

Communication buses are used to transfer control, 

timing and data signals between the module sub-systems. 

These buses are designed to provide physical and electrical 

isolation and provide for the simple addition of module 

units.
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The transmission of data between modules is the 

function of the inter module transmission system, which can 

connect modules in a number of unique ways. Dummy modules 

may be incorporated, thereby enabling peripherals to be 

interfaced directly to the system bus, and not attached to a 

module input-output channel.

5.7 Inter-Module Bus Structure

Cooperation between work groups is achieved by allowing 

each member to communicate to others via the common bus 

structure. This structure consists of a number of 

functionally dedicated buses that are available for use by 

any cell.

These buses are:

(a) Intra-Module Bus

(b) Segmented Inter-Module Buses 

(in "X" & "Y" directions)

(c) Non-segmented Global Bus

(d) Control Bus/Lines

For a minimal system structured on reliability 

concepts; seven segmented buses are incorporated in this 

Thesis, although only one is required as a minimum 

configuration. The control bus is transparent to the user, 

as its function is to aid the electronic operation of the 

system [6]. The actions on the control bus are detailed in 

the next two sections.
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The inter module bus structure is "set up" by 

addressing the module interfaces using the global bus. There 

are three basic hardware set up structures:-

1) Distribute

2) Block

3) Unique

The basic distribute and block structures enable the 

hardware to pass data along the bus, distribute, or create 

separate, segregated, buses.

When the system is initialised, by a reset signal, the 

bus segmentation switches are set in a high impedance mode, 

i.e the bus segmentation switches are in an off state. No 

inter module dialogue is permitted during the reset phase, 

as all message requests are inhibited until the module 

interface sucessfully performs an error checking routine.

When a module requests the inter-module bus, a request 

is sent to the bus controller unit, which assesses whether 

the path from the source to the destination is available. If 

not available the request is queued, otherwise the bus is 

allocated.

A typical section, e.g. modules 1 to 5 in figure 5.5, 

illustrates the inter module bus structure. The broken 

arrows in this figure serve to indicate that a segmentation 

zone exists at that point, i.e. between module 1 and 0, and 

module 5 and 6.
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5.8 Single User Environment

The single user environment consists of the hardware, 

as illustrated by boxes in figure 5.7, and the software 

support structures. This environment supports the user's 

work space in which the programmer executes the program.

The basic integration of the general system of figure

5.7 into an extensible computer system, is shown in figure

5.8 as a single user hardware architecture. This 

architecture enables segmentation schemes to be set-up in 

both X and Y directions.

5.9 Multi-User Environment

The single user environment of figure 5.7 may be 

extended to provide a multi-user system. In a conventional 

multi-user time share system, processor time is shared 

(multiplexed) between users, whereas the multi-user Group 

Processor System does not time share, but shares the 

processor space among many users in the same time interval. 

This results in a faster user response time compared to 

conventional time multiplexed system design as each user has 

his own machine, and not the illusion of being the only user 

on the machine. Although the Group Processor is a space 

share design, the system may support a time share mode of 

operation.
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Figure 5.9
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In figure 5.9 the various users' work space 

environments are shown as an enclosed spaces. These are not 

physical boundaries in the general sense of the word, only 

conceptual, as each user's abstract machine may grow into 

anothers user's free work space, simply by extending one 

user's segmented zone, and contracting adjacent zones. 

However, each user should always maintain the very minimum 

of resources, called the first level processor.

As with the single user concept, the multi user system 

may be extended in both X and Y directions. Also, when a 

dynamic Group Processor system is visualised, the user 

terminal may be either the top-most level as the Group 

Processsor or peripheral interface environment. The program 

execution space may then expand into lower levels, but 

should occupy contiguous dynamic address spaces, in order to 

simplify storage management.

5.10 The Group Processor Operating System

The operating system of any uniprocessor machine, and a 

very bounded multiprocessor machine for that matter, is 

inherently sequential in nature. Bounded multiprocessor 

systems have tended to be a "rehash" of the uniprocessor 

machine [15], with the corresponding rehash of the original 

operating system. The main reason for this has been greatly 

reduced development costs for the operating system.

The ideal environment requirement for the support of 

the Group Processor operating system image is one that is
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truly dynamic. That is to say, user's abstract machines are 

given the power to allocate, or de-allocate, resources at 

will. A dynamic system can be viewed as a decentralised 

environment in which there is a control component, and a 

centralised arbitration mechanism, but no central control. 

The only known related system is Medusa [7,4]. STAROS and 

the now dismantled distributed computing system at the 

Universty of California, Irvine [12] are too far removed 

from utilising the architecture of the Group Processor 

System.

The Group Processor is a loosely coupled logical 

structure and, because of its looseness, to maintain system 

reliability the operating system must maintain 'tight' 

control. The interaction of processes may be strictly 

controlled through the generous use of interface, or context 

changing processes, possibly with a corresponding reduction 

in execution time. When context is changed, say from user to 

operating system process, it is due to the action of the 

'context changer', as processes should not communicate 

implicitly.

5.11 Distributed Control

In this Thesis "a system is distributed if it consists 

of many small physically independent entities, that 

cooperate closely by the receiving of objects, which in turn 

may create further objects, which offer a single service 

image to other systems, including itself". By treating the 

execution of the user's program as the execution of disjoint
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processes (or tasks), a non-hierarchical structure of 

currently active application, control and service routines, 

may be realised. The use of context changers allows for the 

dynamic activation of related, as well as unrelated, logical 

processes. This is achieved by threading processes together 

by the passing of objects through the logical routine 

templates, thus building up the required application and 

operating system context states.

A conceptual relationship between the common control 

software to the user's system is shown in figure 5.9. The 

main executive program, i.e. the control system envelope, 

dispenses the control of resources following system reset 

procedures, to software created abstract machines. The 

abstract machines, in turn, dispense control to their many 

abstract first level processors, thereby creating a fully 

distributed environment. It should be remembered, that every 

active process is an abstract processor whether dedicated to 

user or operating system functions.

The single user system maintains a one to one mapping 

between the user's work space and the system control 

terminal as the user terminal. A many to one relationship is 

supported in the multi-user group processor system machine, 

because each user's work space is an abstract machine, which 

maintains its own independent link to each user's terminal 

image.
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There also exists a many to one relationship between 

the abstract machine and the control system envelope in the 

multi-user mode. The multi-user machine consists of many 

single user machines residing side by side (see figure 5.8). 

As there are no physical boundaries between these machines, 

only segmentation switches, the user's work space may freely 

expand into adjacent free modules during processing.

5.12 High Level Operating System Representation

Due to the Group Processors inherent flexibility and 

dynamic nature, the operating system is difficult to 

represent diagrammatically. Figure 5.10 gives a possible 

snapshot of the system configuration, where the various 

activities are being executed in parallel, within their own 

hardware environment. This is significantly different to the 

multi-programmed environment of the hierarchical 

uniprocessor operating system.

5.13 Group Processor System Summary

This chapter has been dedicated to the functional 

hardware description of a flexible general purpose cell, 

module and communication architecture. This communication 

structure is simpler than that found in Cm* [16] yet being 

extensible. In a commercial machine, Quick suggests certain 

factors must be considered relative to their functional 

application requirement, and integrated into the module, or 

cell architecture, and hence become implementation
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considerations. It is the intention of this Thesis to 

investigate these application architectures so that a 

clearer understanding of system performance may be 

established.
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CHAPTER SIX

THE SIMULATION ENVIRONMENT

6.0 Introduction

The performance evaluation of a computer system plays 

an important part in determining the success of the system. 

This chapter introduces the various methods of estimating 

system performance and explains in depth the 'Simulation 

Environment' for the Group Processor System.

The output from the simulator is presented in graphical 

form. This output quickly allows potential system architects 

an appreciation of the performance limiting factors 

associated with various bus interconnection and scheduling 

schemes. The graphs are a general representation of bus 

performance and should be used by system architects as a 

guide to system performance.

6.1 The Modelling Approach

Performance measurement techniques can be grouped under 

the characterisation of models. These models, or benchmarks, 

can be studied instead of the entire workload, thus reducing 

the cost of evaluating a wide range of architectures. The 

models can be divided into four areas:-
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1) Synthetic benchmarks

2) Live benchmarks

3) Simulation

4) Mathematical modelling

6.1.1 Synthetic Benchmarks

A synthetic benchmark is a program which within it has 

the ability to use the resources of the system under test, 

according to specific parameters, i.e read 1000 lines of 

text from a specified disk file.

The advantage of such a benchmark is that it is easy to 

construct, and relatively easy to convert from machine to 

machine. However, it has the major disadvantage in that it 

is very difficult to demonstrate that a synthetic benchmark 

is truly representative of the entire system workload.

6.1.2 Live Benchmarks

A live benchmark is a set of programs drawn from the 

current user's workload, and is taken as to represent the 

entire workload. The advantages of such benchmarking is that 

is uses 'real' programs. The disadvantages include the cost 

of porting the code to other machines and ensuring that the 

benchmark represents a future typical workload.
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6.1.3 Simulation

In the simulation approach, a program simulates the 

hardware and operating system of the target system. The 

simulator is fed data, which are taken to be the workload 

being used for the evaluation.

The main advantage of simulation is also its major 

disadvantage, namely its inherent flexibility. Simulation is 

particularly useful in the prototyping of new machines, or 

the evaluation of systems that have yet to reach the 

detailed design stage. The main disadvantage is that the 

system which will run the users workload is not being 

directly tested, only the projected capacity of the machine.

6.1.4 Mathematical Modelling

Some attempts have been made to model system performance 

by the techniques of mathematical programming. The prospects 

for the general use of such methods do not appear good. 

Many dynamic interactions in systems, e.g user interacion 

and speed of software execution, are difficult to represent 

mathematically, Sharpe [3].

6.2 The Case for Simulation

There is some controversy in respect to the relative 

merits of simulation and benchmarks. Howard, [4], draws the 

following conclusions:-

Page 6-3



"The fact of the matter is that there is a place for 

both approches. Benchmarks have their place in situations 

involving upgrades and replacement. Benchmarks are also 

important where performance of the workload is of primary 

consideration. Simulation may be preferred where new 

applications or processing approaches are involved. 

Simulation is also preferred where the proposed hardware is 

not available for benchmarking".

Therefore in this Thesis, as the proposed Group 

Processor System hardware does not exist, simulation is the 

only feasible solution. Several sucessful simulations of 

proposed hardware have been carried out. Two notable 

examples being the Data General MV8000 and the simulation of 

Cm* on the C.mmp machine at Carnegie Mellon University 

[2,5].

6.3 Computer Structure, Resources and Application

The Group Processor System consists of a number of 

units each of which is capable of operation at specified 

rates. These units represent the resources of the system. 

The Group Processor is examined from the point of view of 

these resources rather than the view point of the functions 

performed by the component units. In the Group Processor 

System, resources are categorised into types and the 

relations between resources have been qualitatively 

examined.
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6.3.1 What is a Resource?

The various units which comprise the Group Processor 

System represent the resources; these resources are measured 

by one or more parameters, such as execution rate or 

capacity. Thus memory has two such resource parameters: 

access time and memory capacity.

In this Thesis the term 'resource' is taken to be the 

one defined by Beizer [1]:-

"The term 'resource' will be used to mean "resource 

parameter', where the specific parameter is obvious from the 

context".

A resource may be created by software. These are called 

'synthetic' resources; i.e Processing time can be subdivided 

into microseconds or other convenient time slices, creating 

a processing resource which is available at a rate of one 

million per second. Ultimately all synthetic resources must 

be expressed in terms of physical resources.

Physical resources have the additional property that 

they are available only in a finite quantity. Resource 

parameters can only have positive quantities.

6.3.2 Some Definitions.

Utilisation is the percentage of time that a resource is in 

use divided by the total observation time.
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Usage is the quantity of a resource required for a specific 

task.

Demand Rate is the rate at which requests for the resource 

are being made.

Relative Demand is the ratio of demand to the available 

resource.

Saturation occurs when the utilisation equals one.

Efficiency is the ratio of relative demand to the 

utilisation.

6.4.0 Simulation Architecture

In this section we present the architecture of the 

simulator model. The simulator is viewed from the 

architectural viewpoint, not the PASCAL program view.

The architecture of the simulation model is identical 

to that given in Chapter 5. In addition, a number of 

alternative bus interconnection patterns are available which 

enable the simulation of various Group Processor 

configurations.

6.4.1 System Architecture Components

The Group Processor System consists of six main 

components:-
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6.4.1.1 Buses

The simulator has no representation of any physical bus 

in the system; rather, a bus is inferred to exist by the 

introduction of transmission delays built into transfer 

rates of various subsystem components.

6.4.1.2 Bus Arbiters

For every bus in the system there is a bus arbiter 

dedicated to the resolution of bus requests for that bus.

All arbiters in the system are identical in structure 

and function.

6.4.1.3 Cells

A cell is the fundamental processing element in the 

simulation. In this simulation the cell is not implemented 

as a real device, rather it is an object capable of 

controlling its own bus activity and performing local 

housekeeping.

6.4.1.4 Modules

A module is the circuit board level of the simulator. A 

module may contain an arbitrary number of cells.

6.4.2 The Group Processor

The Group Processor comprises a number of modules, 

buses and arbiters.
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6.4.3 Bus Interconnection Schemes

The bus interconnection scheme determines the physical 

form the Group Processor takes at a given time. It is an 

interconnection pattern for Cells, Modules, Buses and 

Arbiters.

The interconnection scheme is totally flexible and 

provides for an arbitrary number of:-

a) Cells per module

b) Modules per system

c) Number and type of bus

6.4.4 Simulator Mechanics

This section deals with the mechanisms by which the 

simulator executes the hardware model being studied. Its 

major sections are:-

6.5 Bus Arbitration

All the bus arbiters in the system have the same 

function and behave according to the following rules:-

1) For distinct bus requests, the arbiters act as FIFO's, 

gueueing requests for bus access in the order in which they 

arrive.

2) The arbiters provide a method for resolving simultaneous 

bus demands. When two or more cells, at the same clock tick, 

request bus access via a common arbiter, then the bus
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arbiter actions the cell with the lowest physical address. 

This provides a mechanism for ultimate arbitration.

6.6 Bus Requsts by Cells

When a cell requests a bus of a given type, it queues a 

bus request on all such buses in the system. It maintains 

this state until one of the bus arbiters grants the cell bus 

access. At this time, the cell drops all of its outstanding 

requests and becomes bus master.

6.7 Actioning Bus Requests

On gaining control of the bus, the cell starts 

execution of its current task. After completion, control is 

returned to the bus arbitration logic for the next request 

to be processed.

6.8 The Simulator Program

The simulator detailed so far has the basic abilities 

to perform low level functions associated with the hardware.

The remainder of this chapter details the software 

which drives these low level features, and provides a 

complete view of the system simulator.

The Group Processor System simulator environment is 

constructed in such a way that changes in architecture can 

be achieved without the need for reprogramming. 

Architectural modification is accomplished via sets of 

system parameters which define the layout of the simulator.
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6.8.1 System Parameters

The parameters provided by the simulation environment 

enable minor tuning of the architecture under investigation 

or major architectural changes to be made. Available 

parameters fall into these two groups.

6.8.2 Major Parameters

1) The number of cells per module (MAXCELLS)

2) The number of modules in the Group Processor (MAXMODULES)

3) The number of global buses (MAXGLOBALBUS)

4) The number of intra-module buses (MAXINTRABUS)

5) The number of inter-module buses(MAXINTERBUS)

6) The size of global memory (MXMEMORY)

7) The percentage of actual requests to the system 

(REQUESTCONST)

6.8.3 Tuning Parameters

1) The duration of the simulation (MAXSIMTIME)

2) A loading factor for the simulator (LOADFACTOR)

3) A time range for memory requests (MEMCONT)

4) A time range for I/O requests (IORCONST)

5) A time range for CPU requests (CPUCONST)

6) A time range for operating system calls (OSCONST)

7) A time range for cell activity (PROCESSINGCONST)

8) The probability of a cell failing (CELLFAILCONST)

9) The probability of a module failing (MODULEFAILCONST)
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6.9 Main Sections of the Simulation Environment

At the heart of the simulation environment are a set of 

procedures which generate jobs for the system and 

subsequently handle the execution of these events.

6.9.1 The Job Scheduler (SETUPQUEUES)

The job scheduler has the task of asking every cell in 

the system if it requires access to any of the system's 

buses. The procedure decides which type of request a cell 

wishes to make and queues the request on the appropriate bus 

arbiter(s).

The possible requests on the system are:

1) Do nothing, continue present activity

2) Generate a compute bound job requiring no bus access.

3) Generate a request for an additional Cell. Either for 

more processing power or for more memory. This places calls 

on all inter and intra module bus arbiters.

4) Request intervention from the global operating system. 

This places calls on the global bus arbiter.

5) Request intervention from the local operating system. 

This places a call on all intra module bus arbiters.

6) Generate a request for a slice of global memory. This 

places a call on the global bus arbiter.

7) Generate an input-output bound job. This places a call on 

all bus arbiters in the system.

The job scheduler calls a routine, JOBSELECTION, to 

determine which of the above options are to be used. Only
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REQUESTCONST percent of all possible bus requests are ever 

actioned as a request gan be generated by every cell at 

every clock tick.

The following is a schematic layout of the jobscheduler, 

figure 6.1.

System Setup System Initalisation

JOB CREATION MECHANISM

CELL MANAGER

JOB SELECTION PROCEDURES

BUS QUEUE MANAGEMENT SYSTEM

BUS ARBITER MECHANISM

Figure 6.1 Group Processor Simulator 
Schematic Diagram
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6.9.2 The Job Server

The second major section of the simulator is the job 

server. This has the function of monitoring all the bus 

arbiters and ensuring the correct bus 

request/grant/relinquish sequence.

Once the Server has given a cell bus control it 

inquires of the cell to what purpose it is required for and 

acts accordingly. Possible actions available to the server 

are:

1) If the bus is idle then execute the request

2) If the cell has finished with the bus then queue next 

request

3) If a cell is actively using the bus then do nothing

The Job server calls several routines during its 

execution these are:

1) A process which starts bus activity (STARTQUEUE)

2) A process which removes unwanted arbiter entries 

(REMOVEENTRYS)

3) A process which initiates a new bus master (SERVECELL)

On system boot each cell, module and bus is given a 

percentage chance of failure. Any defective components are 

marked as defective and take no further part in the 

simulation.
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6.9.3 System Loading

After system initialisation the simulator queues a 

large quantity of bus requests upon the arbiters. This takes 

place before the bus system becomes operational. This 

initial loading represents the system examining its startup 

configuration.

6.10 Range of Results

The Group Processor simulator has been designed to give 

a range of results, specified by specific parameters, for a 

single program run. This is achieved by varying the 

specified parameter as the program executes and placing the 

resultant data in one of ten specific directories.

6.10.1 Variation of 'Physical Constants'

In the simulator a 'Physical Constant' is taken 

specifically to be one of the following:

1) The number of Global Buses

2) The number of Inter-module Buses

3) The number of Intra-module Buses

4) The number of Cells per Module

5) The number of Modules per Machine

6) The number of Input/Output buses
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6.10.2 Variation of Cell Numbers

For a given number of Global, Intra and Inter-module 

buses and modules, the number of cells per module were 

varied in ten steps from 2 to 1024.

6.10.3 Variation of Module Numbers

For a given number of Global, Intra, Inter and I/O 

buses and cells per module, the number of modules per 

configuration was varied from 1 to 16.

The single module environment represented the smallest 

machine configuration. The 16 module environment constituted 

a machine with some 67,108,864 bytes of memory. These 

configurations represented the single user system. A 

multi-user mode was also simulated with varying number of 

modules in each users work-space, as well as a random number 

of modules per user.

6.10.4 Variation of Inter-module bus Numbers

For a given number of Modules, Cells, Global and 

Intra-bus numbers, the number of Inter-module bus numbers 

was varied from 1 to the number of Modules present.

6.10.5 Variation of Module numbers and Inter-module buses

For a given number of Cells per module, Global and 

Intra-module buses, the number of Inter-module buses and 

Modules were increased from 1 to 64 in equal amounts.
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6.10.6 Variation of 'Soft Constants'

A soft constant is defined to be one of the following:

1) Rate of production of bus requests

2) Ratio of I/O, CPU, Memory, Cell requests and memory 

requests

3) Time required by a cell as bus master

4) Message transmission time (message length)

6.10.7 Bus Request Rate

The rate at which the simulator (CELLS) demand the bus 

was varied from 1 per clock cycle to 1 per 100 clock cycles.

6.10.8 Ratio of Jobs

The simulator is able to vary the job load of the 

system. Available jobs include:

1) Cpu bound jobs

2) Input-output bound jobs

3) A mix of (1) and (2)

4) Memory request

5) Cell request

6.10.9 Time Required as Bus Master

This is the time for which a cell will have exclusive 

control of a particular bus.
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6.10.10 Message Length

This will be the amount of time it takes a cell to 

broadcast its message over the bus system.

6.11 Simulation Goals

The original aims of the simulation were:-

1) To show the Group Processor System works.

2) Given the throughput and resources, determine system 

performance.

3) Given the throughput and target performance, determine 

the system configuration to achieve that performance.

4) Given a system configuration, determine the throughput of 

the system.

6.12 Limiting Factors

The following chapter presents the results of the 

simulation. But what are the limiting factors of the 

simulator presented in this chapter?

The simulator used random numbers to gain an 

understanding of typical system workload and operation. In 

real life, a user's needs may be more predictable over a 

given length of time. This would result in a much more 

highly tuned machine than simulated. However, the main 

objective of the simulation is to identify typical bus 

interconnection patterns for particular application areas. 

Chapter 7 examines these interconnections in detail. In this 

area the simulation provides useful information.
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6.13 Conclusion

The simplicity, yet complex nature of the simulator 

make it impossible to try all possible permutations of 

system parameter. Therefore only those factors influencing 

major architectural features have been modified:-

1) The number and type of buses

2) Message Length

3) Off loading factor

4) Numbers of modules and cells

5) Single vs. Multi-user Systems

While the aims of the research were very important, a 

number of technical and time related problems existed. The 

original aims were too demanding for the research time 

allowed. However, careful analysis proved that most of the 

information needed for further development of the Group 

Processor System could be obtained with the eventual 

simulation environment. A further move to the current 

simulator resulted in the time required to execute just one 

run of the simulator dropping to acceptable scales. The 

fully developed simulator would exhaust the available 

processing equipment available for the research.
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CHAPTER SEVEN

ANALYSIS OF GROUP PROCESSOR 

SYSTEM SIMULATION

7.0 Introduction

In this chapter the output from the simulation of the 

Group Processor System is analysed. The conclusions drawn 

from this output will aid computer architects design more 

efficient cellular systems of the Group Processor type, as 

the simulator provides a window on the executing Group 

Processor System.

The simulation produces an abundance of results, as a 

result only those results of significant value are presented 

in this chapter. A fuller listing of results is available in 

appendix 2, which provides the reader with a much more wide 

spread comparision of results. A much fuller set of output 

listings is available for viewing, the sheer volume of 

output listings makes it impractical to include them in this 

Thesis.

This chapter is organised into two sections. Section 

one provides a general analysis of a summary of the 

simulation results. These results are provided in tabular 

form and give the reader an overview of the simulation 

results taken from each architecture under investigation.
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Section one is mainly concerned with the number, and 

"type, of buses connected to each cell. Section two looks 

much closer at key output graphs from the simulation. The 

relative performance of each architecture is compared 

throughout the simulation time, and major defects and 

features of the overall architecture are identified.

7.1 Table of Results

A summary of results in tabular form enables the reader 

to quickly compare the the various systems and strategies 

that have been tested. These tables have been broken down 

under five main headings, some further sub-divided where 

different variables have been used to tune the basic 

architecture under examination.

These architectures are grouped as tables 1-5, and 

describe:-

1. The basic Group Processor System, as described by Quick, 

with little or no variation in operating system variables. 

This basic architecture is a fundamental building block for 

further system variations.

2. This architecture represents the first variation on the 

basic Group Processor System. While this is a table with 

only one entry, it is most significant with respect to the 

architectural design of the future Group Processor System. 

In this configuration, the basic cell has an extra bus added 

in the form of a dedicated Input-Output bus.
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3. This architecture outlines the variations in bus 
scheduling, and its corresponding effects it has on system 
performance on the architecture found in 2 above. The 
architecture of that found in this system is complex, as it 
shows how the change in operating system variables can have 
a profound influence on the efficient running of the 
finished design.

4. One of the basic Group Processor's features is that of 
system segmentation. The output in table 7.4 shows how this 
feature can affect the performance of the Input-Output bus.

5. Lastly, this architecture tries to evaluate the 
performance of a typical multi-user Group Processor System.
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7.2 Basic Group Processor System

The main problem with the projected Group Processor 

System is the potential bottleneck on the system buses. Any 

problems at this level will manifest itself as waiting time 

for any cell wishing to gain access to the bus, and will 

result in increased processing time for any program. With 

this in mind, a number of key tables are coompared which 

will serve to identify the architectural features most 

likely to slow down processing at the system level.

The three entries in table 7.1 identify a number of key 

variables which are pursued throughout the analysis of the 

simulation results. The first variable relates to the length 

of message allowed by each cell at any one time. The 

variables used here are 5 and 10. These are in effect 

lengths of time slots for any one cell to transmit on a bus, 

after which it must relinquish the bus. If a cell wishes to 

send a very long message, then the cell must make repeated 

calls on the system buses.

The second variable relates to the amount of 

input-output processing that the system is performing, the 

higher the Input-Output constant the more Input-Output bound 

the system is. In the context of the tables shown here, the 

figure of 100 proved in reality to be the equivalent of 

infinity. Similarly, the Time heading in table 7.1, relates 

to the amount of processing done within a cell. Ideally, the 

higher the processing time constant the more memory a cell 

has. In reality, this may not be true as it may be an
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indication of whether the cell makes repeated calls to the 

internal memory within the cell, or whether the cell 

persistantly makes calls to the system buses. The underlying 

theory behind this is, the less memory a cell has, the more 

calls it will make to other cells for services, e.g. to 

store data.

In analysing the results from the simulation of the 

basic Group Processor System; the third entry in table 7.1 

can be disregard. This entry was so bad that by the end of 

the simulation period, nearly every cell within the system 

was waiting for a system bus. Clearly, the high Input-Output 

constant of 100 made this an architecture targetted for 

application in IKBS. From the poor Input-Output performance 

result, the basic Group Processor System is not suitable for 

application in IKBS.

Even with the Input-Output constant greatly reduced, the 

system has a poor service rate. The second entry shows the 

performance for a system configuration of small memory size 

and low Input-Output processing. This configuration still 

produces very high bus waiting times, with an added degrade 

in the average number of buses being used, i.e. only six out 

of seven being utilised at any one time.

An additional consideration is the use of the global 

operating system bus for Input-Output calls. From Table 7.1 

there is a very serious degrade in Input-Output performance 

if all Input-Output calls are mapped to the global bus. This 

configuration also degrades the operating system calls from
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a service rate of 100% down to 33%. Clearly this 

configuration is not desirable.

7.3 Extended Group Processor System

The major problem associated with the basic Group 

Processor System is the relatively poor bus service rate. 

One important requirement in any cellular system is that of 

immediate communication with other cells within the 

execution environment. Another requirement is to provide a 

very fast Input-Output system both to the user and to the 

program execution environment.

The need for fast turn-around in Input-Output traffic 

cannot be met with the current cell design. With this in 

mind the provision of an dedicated Input-Output bus offers a 

"potential" speedup in Input-Output communication. It is 

important to note here that an additional bus has been 

provided to each cell within the system. No other system 

changes have been made.

From table 7.2; there is a marked increase in service 

rates on all the basic system configuration's buses. 

However, there is a marked degrade in the processing of 

Input-Output calls. On face value this would appear to be 

contradictory to providing a dedicated bus for Input-Output 

operation. The Input-Output degrade is quite simple; whereas 

the basic Group Processor System queued all Input-Output bus 

requests on all system buses, excluding the global bus, the 

new configuration reduced the number of channels available
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for Input-Output from the 6 in the basic system down to only 

one in the new configuration, i.e. the dedicated 

Input-Output bus.

If we are to compare the original Group Processor 

System proposed by Quick, and the expanded system proposed 

here, then it has to be admitted that Quick's original 

design averages out quite well for bus service requests.

7.4 Operating System Constraints

Up to this stage the variations that can be imposed by 

the operating system have been ignored. We have concerned 

ourselves with only adding physical resources, i.e. the 

addition of a single Input-Output bus. In this section the 

extended view of the system, which as a result includes in 

the picture the role of the operating system is taken into 

account.

A number of operating system variables will be 

examined, and what influences these play on the simulation 

output will be examined. From table 7.3 a number of hardware 

architectures, e.g. 1,3,3,1, which represent the number of 

buses that are available to each cell. In addition to these 

hardware resources a new operating system variable is 

introduced, this being an "Off-Loading Factor".

The Off-loading Factor is a recognition of the value 

that the basic Group Processor System had in providing a 

relatively high bus service rate, it is the cut off point at 

which bus requests are redirected to 'other' buses, and also
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the importance of providing a dedicated Input-Output bus 

system. Together the basic Group Processor System provides a 

good beginning, while the introduction of the dedicated 

Input-Output bus provided a high degree of tuning on the 

main system buses. What would be ideal would be the 

maintenance of the 100% service rates on the main system 

buses, coupled with a great improvement in the capability of 

the dedicated Input-Output bus.

In table 7.3 are the results from the above scenario. 

The results from the additional Input-Output bus coupled 

with Quick's original Input-Output sharing scheme provides 

the system with a greatly improved system performance. This 

table provides most of the architectural information needed 

for designing and configuring a Group Processor based on the 

original concepts outlineb by Quick. From this table five 

important entriescan be identified, which are:-

Bus Configuration I/O Constant Off-loading

1, 3, 3, 1 20 50 

1, 3, 3, 1, 5 50

1, 2, 3, 1, 5 50

1, 2, 2, 1 5 60

1, 2, 2, 1 20 60

The above entries represent the main cell 

inter-connection patterns available to the system architect. 

There is one other which is the 1,1,1,1, but this system we
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shall ignore for now because it represents a "bare bones" 

Group Processor System. The first two inter-connections are 

based on the 1,3,3,1 pattern, which have proved so far to be 

the best inter-connection pattern. The service times for these 

patterns are very high, many being well in excess of 80%. The 

most important entry in this area of the table is number 4, 

where the service rates are very high with at least 95% 

service rates on all buses. However, this entry represents a 

small Input-Output loading comparable to a processor bound 

job. For a corresponding high Input-Output traffic bound job 

there is a 10% drop off in bus service rates.

The mapping of the Input-Output calls to the global bus 

in Table 7.1 produced disappointing results. In Table 7.3 the 

same concept is extended by adding the Input-Output bus to the 

basic system configuration of 1,3,3. In this configuration the 

Input-Output calls are mapped to the Input-Output bus until 

they reach 50 entries, after which they are mapped onto the 

global operating system bus. As with the 1,3,3 

inter-connection scheme, this Input-Output queuing pattern 

proved to be undesirable.

The other important consideration is in table 7.3; 

consider the average number of cells Waiting and Active during 

the simulation run. The first entry above, averaged 336 cells 

waiting for the system buses. This represented a high 

Input-Output bound job compared to the lower Input-Output 

traffic which yielded only 115 waiting cells. It is 

interesting to note these values as percentages, the first 

being 48% and the second being 13% illustrate a different way
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in which Input-Output traffic affects bus waiting time in this 

system configuration.

The last two entries above denote a Group Processor 

System with less buses. The overall performance of these 

inter-connection and bus scheduling strategies provides a 

useful system configuration if technological constraints 

impose a limitation on the number of available buses. If a 

prototype Group Processor System were to be constructed, with 

the corresponding limitations in costs and complexity, then 

the 1,2,2,1 system configuration would be a good starting 

point for system development. However, this system would not 

be seen as a high availability, high integrity system design 

as there would not be any form of triple modular redundancy at 

the bus level. With this in mind the 1,2,3,1 configuration is 

suitable, with a corresponding increase in system performance. 

The three Inter Module Buses would allow Triple Modular 

Redundant communication anywhere within the system, whereas 

three Intra Module Buses in the 1,3,2,1 configuration would 

only allow triple modular redundant communication within each 

module.

7.5 Off-loading Factor

The Off-loading factor initially seemed to be a critical 

section for improving system performance. This turned out to 

be not the case. Within the Input-Output queue length range of 

30 to 70 there was very little variation in system 

performance. The lower the Off-loading Factor the better the 

Input-Output performance, but at the cost of a decrease in
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other bus performance. For systems that need higher 

Input-Output throughput an Off-loading Factor of 30 is 

recommended.

7.6 Segmented Input-Output

The most interesting results relate to the segmentation 

of the Input-Output bus. The segmentation of the Input-Output 

bus enables each module to have its own dedicated Input-Output 

system. This Input-Output system can be coupled together to 

provide either general purpose or dedicated Group Processor 

Systems.

From table 7.4 a number of interesting observations can 

be made, the most important of these is the Input-Output 

constant. This constant is high at 20, and extremely high at 

50. The readers attention is also drawn to the 100 constant, 

which is seen as infinity. The overall performance of this 

inter-connection scheme is a positive indicator of a typical 

engineered system architecture.

Taking the 1,3,3 scheme first; the addition of 16 

Input-Output buses produces Bus Service Rates approaching 

100%. Clearly, this system design could be used for real time 

IKBS as there is little or no cell waiting time. If we take 

the 1,2,3 inter-connection scheme, this scheme offers very 

good performance figures in excess of 95%. In fact, the cell 

Input-Output has to go as low as the 1,1,1 inter-connection 

scheme before we see a marked degrade in system performance.
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The ratio of cells active to those waiting for a bus at 

any one time during the simulation is also very interesting in 

this system configuration. The 1,3,3 scheme has a ratio of 

only 0.06, compared to the previous 1,3,3 in table 7.3 of 

0.54.

7.7 Dedicated Systems

The inter-connection schemes that have been presented so 

far have been based on regular module inter-connection 

schemes. In real life applications there may be one or more 

modules dedicated to supporting a number of execution 

environments. In table 7.5 the high performance 

inter-connection scheme, i.e. the 1,3,3. inter-connection are 

analysed.

The important consideration here is that the system 

supports segmented Input-Output buses. As a result of this, 

coupled with the fact that Off-loading is also used, the 

system performance is very good indeed. Service Rates of 99% 

clearly indicate that irregular system inter-connection is 

acceptable.

This system can also be considered in the same light as a 

general purpose system. From time to time it is perfectly 

feasible that a bus inter-connection scheme in a multi user 

Group Processor System would take on the appearance of figure 

8.3. Therefore, the highest performance figures obtainable in 

a multi user system would be 1,3,3 in table 7.4 (service rates
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of 100%) and the worst case of 1,3,3 in table 7.2 ( with 

average service rates of 90% ).

7.8. Closer Analysis

In this section we take a closer look at the graphs 

generated during the simulation. A number of observations 

concerning interesting points can be identified within each of 

the graphs presented. The architecture under consideration 

consists of 16 modules, each module containing 64 cells.

7.8.1. Effects of Bus Contention

Graphs 7.1.a. to 7.I.e. compare the average number of 

cells waiting for a bus. Graph 7.1.a. represents the basic 

Group Processor System compared to graph 7.1.b. which 

represents the extended Group Processor with only one 

dedicated Input-Output bus. There is always a very high demand 

for a bus in the basic system and clearly points to a major 

system design flaw. The extended system design produces a 

graph which falls off in bus demand early on in the 

simulation, indicating the beneficial nature of the dedicated 

Input-Output bus. The bus demands increase as time progresses 

through the simulation. This is because of the bottleneck of 

placing all Input-Output operations on the single Input-Output 

bus.
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Graph 7.I.e. shows how the Operating System can play an 

important role in the efficient running of the Group Processor 

System. This graph reduces the cells waiting for a bus to one 

third that of the basic Group Processor System. Compared to 

the extended Group Processor System, there is a reduction in 

the number of cells waiting for a bus after 600 time slots. 

This graph is predictable over a wide spread of the 

simulation, which is a useful feature when calculating system 

response times.

Graphs 7.1.d. and 7.I.e. represent a segmented 

Input-Output bus structure. From the graphs there is a very 

low number of cells waiting for a bus. On average only ten 

cells are waiting for a bus, compared to the basic Group 

Processor System of some 950 cells waiting at any one time. 

The spread of the graph in 7.1.d. is between 6 and 18 cell 

waiting for a bus. However, graph 7.I.e. has a spread from 7 

to 13. Both of these graphs illustrate architectures which 

have highly responsive bus systems.

7.8.2 Inter-cell Communication

The performance of any Group Processor System ultimately 

depends on the communication delays incurred during message 

passing. While this is more often than not communication 

delays between executing functions within cells, there can 

also be delays incurred in communication between cells and the 

Input-Output channels.
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The graphs of 7.2. show the merits of the architectures 

for minimising communication delays. The basic architecture of 

7.2.a. shows that this system architecture is very bad in 

minimising the transmission of data/functions between cells. 

The graph climbs steadily upwards, until about one third of 

the way into the simulation. Unfortunately the graph does not 

decline, but continues horizontally for the remaining life of 

the simulation, and averages out at approximately 400 time 

units for a cell to gain bus access.

The provision of an Input-Output bus within the 

architecture does have a dramatic effect in the early stages 

of the simulation. However, whereas graph 7.2.a. had a spread 

of about 900 time units at the end of the simulation, graph 

7.2.b. has a spread of some 1500 at the end. The density of 

the "ink" on these two graphs gives an indication of the 

relative merits of these two architectures. Graph 7.2.a. has 

much more density of waiting time towards the top of the 

graph. Graph 7.2.b. has the ink density towards the bottom of 

the graph, and as result show the usefulness of the 

Input-Output bus on system performance.
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The most remarkable graph is 7.2.c. in terms of the 

general system configuration, together with the additional one 

Input-Output bus. The overall performance of this system 

architecture in minimising communication delay is it's 

relatively predictable performance. The average time a cell 

has to wait for system bus is some 200 time units. Throughout 

the simulation, the architecture presents a very horizontal 

averaging, with some very occasional wide spread fluctuation. 

The average spread is 400. Clearly, this architecture is very 

predictable and suitable for a wide range of applications 

which require fast inter-cell communication.

While the general Group Processor System with a dedicated 

Input-Output system gives reasonable performance for fast 

inter-cell communication, it is the Group Processor System 

with a segmented Input-Output system which provides the most 

dramatic inter-cell communication capability. Graph 7.2.d. 

shows the architecture of such as system with an almost 

idealised graphical output. The linear form of this graph, 

together with it's minimal spread of just a few time units, 

provides a clear conclusion that where possible, Group 

Processor Systems with segmented bus systems should be used.

Graph 7.2.e. is a compromise between the architecture of 

the Group Processor System with a dedicated Input-Output bus, 

and the Group Processor System with a segmented Input-Output 

bus system. Between these two inter-connection schemes graph 

7.2.e. gives an insight into a randomly generated time 

probability for inter-cell communication. While this
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architecture is not generating the idealised graph of 7.2.d., 

it certainly does approach 7.2.d.'s shape or form.

7.9. Software Considerations

In this section of the chapter, the overall policies of 

the Operating System are analysed. This analysis looks at each 

architecture during the life of the simulation and tries to 

draw important conclusions with respect to bus scheduling and 

inter-cell communication. The problem of maintaining a high 

Input-Output bandwidth is also addressed.

The basic Group Processor System makes very high demands 

on system buses. The Inter Module Bus has a low bus queue 

compared with the Intra Module Bus because, a cell that wishes 

to communicate with another cell within a module can queue on 

both bus types, as both Inter and Intra Module Buses connect 

all cells within a module. A cell that wishes to communicate 

with cells on other modules can only queue on the Inter Module 

Bus. Graphs 7.3.1.a. and 7.3.1.b. represent the performance of 

the basic Group Processor System.

The basic Group Processor System has little opportunity 

for varying system parameters. The extended Group Processor 

System has more opportunity for fine tuning system performance 

outside that of the simple provision of more system buses. 

Graphs 7.3.2. and 7.3.3. show the effects of changing the 

scheduling parameters. The low Inter and Intra Module bus 

queues are very desirable features within any Group Processor 

System. On the other hand, the upward spiral of the
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Input-Output queue is not a desirable feature. Graphs 7.3.3. 

provide a different picture. The low bus queues of the 

previous graphs give way to seemingly undesirable Inter and 

Intra Module graphs in 7.3.3.

The differences in the graphs above show the effect of 

off-loading the demand for the Input-Output bus onto the Inter 

Module bus, and the subsequent knock-on effects that this has 

on the queue lengths for Intra Module bus queues. Graph 

7.3.3.C. shows that throughout the simulation, the 

Input-Output bus was used for a high percentage of the time. 

This high Input-Output bus utilisation is a desired feature, 

with this graph giving possible optimum performance that could 

be expected from a non-segmented Input-Output bus system.
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7.10. Conclusions

To understand the conclusions that lay behind the Group 

Processor System typical applications of the system must be 

considered. A Group Processor System which is being used as a 

database machine will require very fast searches of wide 

variety of databases. These systems do not require 

Input-Output operations as found in conventional system 

architectures. While on the other hand, real time process 

control systems demand a very high Input-Output bandwidth. The 

conclusion drawn from this chapter is that the Group Processor 

System can cater for both types of applications.

The concepts behind the Input-Output architecture of the 

Group Processor System is very similar to more conventional 

Input-Output systems. The main dissimilar feature is the 

distribution of terminals, as found in a multi-user system, to 

each of the many Modules that would make up a typical system 

design. The extension of the Input-Output system provided much 

needed flexibility for the whole Group Processor System.

The most important consideration when designing cellular 

systems is the need for at least one dedicated Input-Output 

bus. From the results, the Input-Output bus provision 

increased the capacity considerably. More importantly, 

Input-Output bus segmentation is needed to further maximise 

Input-Output system throughput.

In section 7.4; the 1,1,1,1 inter-connection 

interpretation was postponed until now. One conclusion which
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must be drawn from the simulation is that this scheme has no 

value for IKBS. As this system is identical to the TRANSPUTER, 

it must be stated that as a result of these findings, the 

TRANSPUTER is not suitable as a cell in the Group Processor 

System. It is doubtful whether the TRANSPUTER does have a wide 

range of applications with which to be configured.

But what about the limitations of the simulation? Within 

the limitations of the equipment executing the simulation 

program; the simulation provided a wide range of results. The 

main problem that was encountered was the capacity of the 

computing equipment to process the simulation in real time. 

Another limitation was the Languages available on the 

machines. All in all, three mainframe/supermini computer 

systems were used to process the simulation. These systems 

proved to be lacking in many areas, the biggest problem was 

that of space limitations within the machines.
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CHAPTER EIGHT

GROUP PROCESSOR 

ARCHITECTURAL ENHANCEMENTS

8.0 Introduction

The Group Processor System has one major design 

problem. This problem relates to the functional attributes 

of the system when the user is interacting with many 

abstract processors. In this chapter this problem is 

analysed and a solution is proposed which overcomes most of 

the foreseen problems associated with the bus system.

8.1 Group Processor System Problems

To analyse the functional problems associated with 

interacting with many abstract processors the problems 

associated with user inter-action should first be 

understood. In this section typical terminal usage will be 

described.

When a user first interacts with the Group Processor 

System a number of abstract processors are made available. 

These abstract processors contain programs which may be 

invoked by sending the equivalent of a "start signal" to 

initiate program execution. Where there is a database 

located in the abstract processor the user may send a query 

to interrogate the database. These messages are sent along 

the system buses from the first level processor to the
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abstract processor which stores the file. The main problem 

with the Group Processor System is that where files are very 

remote from the first level processor, complex 

inter-connection paths have to be set up on the Inter Module 

Bus.

These communication paths are often made more complex 

when they cross the communication paths of other users or 

other executing abstract processors. All too often there are 

considerable time delays between invoking the request to 

send a message to these remote abstract processors, and the 

time they are actually executed. The setting and re-setting 

of bus segmentation switches is very dynamic, and hence 

difficult to optimise for efficient bus performance.

Figure 8.1 illustrates the above problem when mapped 

onto a typical multi user machine. The many users within 

this machine architecture conflict for the two database 

areas. The main problems associated with user inter-action 

is when parallel access to these often remote areas results 

in bus contention. In the basic Group Processor System, bus 

contention will occur on the Inter-Module bus systems, 

although the bus system is triplicated. What is required in 

the bus system is a hierarchy of bus inter-connections which 

allows a high degree of system flexibility and structure.

8.2 T.E.S.S. Outline

The bus structure that is presented in this Thesis does 

not change the basic Group Processor System module
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inter-connection. An additional bus system is added to the 

front-end, that is the interface to the user, which provides 

the flexible hierarchy needed in the Input-Output system as 

well as providing a number of extra benefits. This system is 

the Transaction Environment Switching System, or T.E.S.S. 

for short.

T.E.S.S. allows the user to link together many modules 

whose location is often random in location. T.E.S.S. has 

also changed the way in which the user's terminal is 

inter-connected to the modules. The terminal is no longer 

directly coupled to the module but is linked indirectly 

through a series of Input-Output switches mounted directly 

on each module. These Input-Output switches perform a form 

of Input-Output segmentation similar to that of the Inter 

Module bus.

A general comparison may be made between the basic 

Group Processor System, shown in figure 5.8, and the 

T.E.S.S. architecture shown in figure 8.2. The Terminal 

Crossbar Switch Network allows any terminal to access any 

one or more terminal Input-Output channels. It will be shown 

later that many complex Input-Output switch 

inter-connections may be set up.

8.3 T.E.S.S. Objectives

The T.E.S.S. provides the Group Processor System with 

two methods of Terminal inter-action. The first; 

communication paths are available to the users along the
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system-wide Input-Output route, that is the terminal 

Input-Output channels, providing users with a method of 

global interaction with cells. This provision is important 

where the user is interfacing with a database system for 

query or updating, this method is not supported in the basic 

Group Processor System. The second; direct terminal input to 

the module can result in information being transmitted 

between the machine and the user in the fastest possible 

time. These two dissimilar routes for terminal communication 

allows maximum flexibility for global interaction while 

maintaining direct access to cells for immediate update or 

query.

The application of these approaches can be visualised 

by considering the use of such a system in a fighting ship, 

an application not too dissimilar from the system outlined 

in figure 8.1. The Captain and senior members of the crew 

need instant access to information regarding the whole 

theatre of war. This information would be stored in cells 

immediately accessible to the peripheral devices, these 

cells would contain the software functions dedicated to 

updating the database. Both the Captain and the direct input 

devices use different methods of Input-Output communication 

paths because each user, either the Captain or the 

peripheral, have different speed requirements.

The Captain has a slow speed requirement compared to 

the high speed data input from, for instance, the ship's 

radar system. Therefore, the Captain uses the system wide 

Input-Output bus, that is the terminal Input-Output channel,
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whereas the peripheral uses the conventional method of 

direct access to the module. Both of these two methods of 

Input-Output are shown in figure 8.3. The important 

objective here is, the requirement for a dedicated function 

of the peripheral resulting in optimised performance, and 

the generality and speed reduction of the T.E.S.S.

8.4 T.E.S.S. Operation

Each cell within the Group Processor System has an 

Input-Output bus. This bus handles most Input-Output traffic 

and serves Input-Output requests on a first in first out 

basis. This first in first out queue is identical to the 

queuing processor on the other system buses as described by 

Quick.

To understand the operation of the T.E.S.S, it is 

useful to study the actions of a crossbar switching system. 

A crossbar switching system allows many processors to 

communicate with many memory units. Figure 8.4.a. shows the 

crossbar architecture as many processors on the left side of 

the diagram, while the memory units are located at the 

bottom of the diagram.

Additional units e.g. Input-Output channels may also be 

coupled to the crossbar so as to form an integrated system 

environment which conforms to the polymorphic rules, that 

is, any computing requirement may be constructed from a 

mixture of processors, memory and Input-Output unit by the
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enabling/disabling the communication between these units. 

The crosspoint switch performs this switching function.

The main problem with this classic architecture is that 

the crossbar is a single point of failure. A more normal 

implementation of the crossbar mechanism is to partition the 

crossbar into it's many crosspoint constituent parts, and 

distribute these to the memory units. This forms the basis 

of the multi-ported memory concept of figure 8.4.b. In this 

Thesis the processor unit no longer exists, as the many 

processors are distributed to the cells within the Group 

Processor System Module.

The overall architecture of the T.E.S.S, shown in 

figure 8.4.C., illustrates a typical structure of the 

Input-Output bus, and its inter-connection to each module. 

Each cell has a number of serial Input-Output lines which 

provide the many inter-connection patterns that are needed 

in the T.E.S.S. These Input-Output lines are driven from a 

single Input-Output channel within the cell, and the 

Input-Output line is mapped to the cell when the cell 

receives its dedicated function. This Input-Output mapping 

informs each cell which has to perform user Input-Output 

operations, and which of the cell Input-Output ports to use 

when performing Input-Output functions. Technological 

limitations are the only consideration which the computer 

architect has to contemplate when designing T.E.S.S. into 

any Group Processor System.
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The four serial lines to the Terminal & System 

Input-Output Ports, figure 8.5, may provide maximum triple 

modular redundancy to the terminal. This can be achieved by 

either sending output along three serial lines from the cell 

or, by mapping any of the Inter/Intra Module buses to the 

serial lines radiating to the user terminals.

8.5 Module/Channel Interface

The Module/Channel Input-Output architecture, which is 

mounted on the module, is shown in figure 8.6. The Inter and 

Intra module buses, together with the serial Input-Output 

lines from each cell terminate at the T.E.S.S./module 

network interface. From there on, the communication lines 

are all serial, ultimately converging at the user's 

terminal. This parallel to serial convertion allows 

Off-loading to take place on the Inter/Intra Module buses. 

The addressing mechanism sets/resets the segmentation 

switches within the channel interface. These switches can 

have one of many configurations set, so that they can pass 

data along the serial lines to and from the user's terminal. 

These switch states are controlled by the Global Operating 

System by passing messages to the module Input-Output 

channel attached to the module containing the Global 

Operating System. Figure 8.8 shows these switch states and 

the channel interface addressing mechanism.

The module Input-Output Inter-connection Network is 

also a crossbar system. The operation of this 

inter-connection network is very similar to the crossbar
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operation described above. Whereas the mapping of the 

Terminal Communication Lines to each Module is performed 

through the Module Input-Output Inter-connection Network, 

the Module Input-Output Inter-connection Network itself is 

controlled and set up by the Global Operating System via the 

Global Operating System Bus. If there is a failure in this 

bus, the Global Operating System may use the alternative 

Inter/Intra Module Buses.

8.6 Crossbar Operation

The architecture of the crossbar switch includes an 

assembly of crosspoints and a control memory. This 

architecture is shown in figure 8.6, where the crossbar 

contains a 4 X 4 assembly of crosspoints and a 4 to 16 line 

address decoder. There are 16 latch circuits needed to 

maintain the crosspoints in the required state. Any one of 

the sixteen crosspoints may by selected by applying a 

logical one or zero. Any number of crosspoints can be ON at 

any one time.

The basic architecture of the crossbar and the 

module/Input-Output channel is extensible. That is, 

additional crossbar systems can be added to the basic 

architecture without any modification to the 

module/Input-Output channel interface. While it is possible 

to add as many Terminal lines as possible to the basic 

crossbar, in reality there is a limitation to the maximum 

number because it is a direct relationship with the number 

of select lines that make up the overall crossbar addressing
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mechanism. Figures 8.7 and 8.8 show the control of the 

module Input-Output Inter-connection Network in more detail.

8.7 Bus Arbitration

The simple distributed bus arbitration system in the 

basic Group Processor System provides a high degree of bus 

segmentation. However, the flow of bus requests is always to 

the root arbiter which, in the basic system, is physically 

located at the module which is the root module. This system 

seems inflexible, if the the root module fails then the 

user's whole environment fails. This system limitation 

should be refined so that the failure of the root bus 

arbiter, does not produce systemic failure of the user's 

environment

In this Thesis it is proposed to keep the overall bus 

arbitration network of the basic Group Processor System, but 

to add a bus request line in the other direction. That is, 

if the root arbiter fails than the system can reconfigure 

itself so that the next module (root + 1) takes over as the 

root arbiter. The practical implementation of the additional 

bus request line would not result in an additional physical 

line, as the existing bus request line can be re-directed 

when it reaches the the bus arbiter.

The bus arbitration network would have maximum 

flexibility to respond to bus inter-connection request if 

the arbitration was refined. The current bus arbitration 

architecture does not allow for separating the functional
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roles of the Inter Module Bus and the bus arbitration. With 

the new bus arbitration mechanism, the root arbiter for any 

abstract processor, abstract machine, or the whole machine 

for that matter, can be relocated anywhere within the 

machine. The basic Group Processor System architecture does 

not have the flexibility to re-designate the priority of the 

arbiters. This could be important for defense systems where 

the centre of action within the computing system changes 

from a semi-leisure state, where the computation demands are 

usually centred on the stores and entertainments, to the war 

situation where the stores and liesure are of the lowest 

importance.

8.8 Summary

The simple bus architecture presented by Quick is 

suitable for VLSI implementation. With this Thesis, the bus 

architecture is further refined by adding increased 

Input-Output reliability and increased flexibility with 

T.E.S.o.

The provision of the Transaction Environment Switching 

System gives the system architect a useful method of 

swapping between abstract machines, as well as coupling many 

abstract machines together. T.E.S.S. has the ability to 

build many hierarchical abstract machines within the Group 

Processor System. The simulation has proved that T.E.S.S. 

can work in a real time application, such as those found in 

IKBS.
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The architecture of T.E.S.S. solves a number of 

problems for potential users of Group Processor 

architectures. While these problems have been discussed 

above, there still remains the problem of whether the 

addition of T.E.S.S. will enhance or degrade the performance 

of the Group Processor System. As well as modelling the 

overall architecture of the Group Processor System, the 

simulation of the Group Processor System has given a 

realistic feedback on the potential performance of T.E.S.S.

The refinement of the bus arbitration system makes the 

Group Proceesor System a highly desirable re-configureable 

fully distributed machine. The enhanced capability of the 

new arbitration system makes the Group Processor System more 

flexible from the system programmers viewpoint, as the 

user's execution environment can be manipulated to support 

almost any module inter-connection pattern.

The most important addition to the Group Processor's 

Cell is the addition of a dedicated Input-Output bus, which 

is connected to each and every cell in the system. While 

this further complicates an already complex integrated 

circuit design, it is important that at least one dedicated 

Input-Output bus is incorporated in the final cell design.
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CHAPTER NINE 

CONCLUSIONS AND FURTHER RESEARCH

9.0 Introduction

This research has considered many existing and new 

issues relating to fifth generation computing systems. The 

Thesis has continued the abandonment of the Von-Neumann 

architecture by considering the Group Processor System as a 

viable system for further refinement, suitable for 

applications in Intelligent and Knowledge Based Systems.

In this chapter, we conclude the Thesis by identifying 

the design enhancements made to the Group Processor System 

concept. Typical performance characteristcs are also 

summarised for cellular computer systems, as applied to the 

Group Processor System architecture. The chapter also 

summarises the significant issues which computer architects 

must overcome if they are to design very high performance 

fifth generation computer systems.

9.1 Research Initatives

The research initiatives of Japan, the U.S. and Alvey 

seem to approach different areas of investigation. While 

this is useful from a pure research point of view, there is 

a possibility that the final battle for the commercial 

exploitation of the research may go, by default, to Japan.
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Japan has concentrated on the hardware aspects of the 

research, while Alvey seem content to concentrate on 

software issues. Consequently, the Japanese are likely to be 

the major manufacturers of computing equipment in the 

future.

The ten major application categories outlined by the 

Japanese demand very flexible Input-Output systems which 

must respond to user interaction in real time. One of the 

conclusions drawn from this research is that machines which 

have the power to process Intelligent and Knowledge Based 

System programs are not that responsive to terminal 

interaction. At least one paper "Down grading to a VAX", 

published by the DEC User's Group, suggests that the older 

PDF 11/70 was more of an interactive machine than the more 

modern VAX. It is surprising therefore, that the current 

Intelligent and Knowledge Based System community, within in 

the U.K., sees the VAX machine as THE machine for 

Intelligent and Knowledge Base System research.

The direction that the British research community is 

currently taking must change. The direction with which to 

approach the next five years, if the U.K. wishes to be 

considered a manufacturer of computing equipment, is to 

provide more initiative for the development of hardware. A 

starting point for this would be the stimulation of research 

into computer architecture, and not to concentrate purely on 

VLSI development. Failure to do this will almost certainly 

result in the U.K. being a net importer of computing 

equipment.
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Future research must consider a wider range of activity 

if the British computer industry is to have a future on as 

wider front as possible.

9.2 Computer Architecture

There has been little advance in the design of new 

computer architectures. Current state of the art designs 

have been refinements of advances made many years ago. The 

only advances that have been made are related to 

technological advances made in VLSI. Computer manufacturers 

have capitalised on VLSI advances at the expense of 

maintaining architectural advances. The exception to this 

has been INMOS's TRANSPUTER.

It has been shown in this Thesis that the TRANSPUTER 

suffers from major design imperfections which will limit the 

device's application in many Intelligent and Knowledge Based 

System areas. The TRANSPUTER has an application base, but 

the simulations undertaken in this research have clearly 

indicated that the TRANSPUTER is not a device for modern 

interactive Intelligent and Knowledge Based Systems. The 

TRANSPUTER can work effectively only when configured as a 

backend processor attached to a conventional computing 

system.

The TRANSPUTER has to be refined in a number of areas 

before it can be accepted for Intelligent and Knowledge 

Based Systems. The number of communication buses has to be 

dramatically increased before the device can be thought of
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as a useful fifth generation product. However, the 

TRANSPUTER does provide researchers will a starting point 

with which to design and build cellular computing equipment. 

As these systems will be inadequate in terms of processing 

power, it is excuseable that many researchers many see the 

development of cellular systems based on the TRANSPUTER as a 

waste of time.

9.3 The Group Processor System

The basic Group Processor System suggested by Quick has 

a number of limitations. The most important of these 

limitations are the severe restrictions on performance. By 

comparision, the basic Group Processor System does have 

major performance advantages over the TRANSPUTER.

A wide range of Group Processor architectures were 

simulated in this Thesis. The result of the simulations can 

summarised as follows.

The basic Group Processor System, as described by 

Quick, has little opportunity for varying the state 

variables within either the architecture or the operating 

system. The major problem associated with the basic Group 

Processor System is the relatively poor bus service rate. 

This basic Group Processor architecture is seen only as a 

fundamental building block for design variations on the 

original Group Processor concept. The only variation that 

can take place with this configuration is routing 

Input-Output operations to all buses.

Page 9-4



One important requirement in any cellular system is 

that of immediate communication with other cells within the 

execution environment. Another requirement is to provide a 

very fast Input-Output system both to the user and to the 

program execution environment.

The need for fast turn-around in Input-Output traffic 

cannot be met with the current cell design. With this in 

mind, the provision of an dedicated Input-Output bus offers 

a "potential" speedup in Input-Output communication. It is 

important to note here that an additional bus has been 

provided to each cell within the system.

The extended Group Processor architecture represents 

the first variation on the basic Group Processor System. The 

architecture found in this system is more complex than the 

basic Group Processor System. In this configuration, the 

basic cell has an extra bus added in the form of a dedicated 

Input-Output bus. This configuration provides the systems 

programmer with a wider range of variables with which to 

fine tune system performance. This architecture provides a 

compromise in system complexity, and the results of the 

simulation proves that the variations in bus scheduling, 

have a profound effect on system performance.

The multi user Group Processor highlights one of the 

Group Processor's basic features, that is system 

segmentation both at the program execution level within the 

Group Processor System, as well as in the Input-Output 

system. The performance of the Input-Output system is the
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one factor which limits the Group Processor System's 

application in Intelligent and Knowledge Based Systems. The 

results of the simulation have clearly shown that system 

segmentation greatly reduces bus contention, and 

consequently improves system performance.

The provision of an Off-loading factor was critical for 

improving system performance. The most important 

consideration when incorporating an Off-loading Factor is 

maintaining moderation in the length of the Input-Output 

queue. The lower the Off-loading Factor the better the 

Input-Output performance, but this has the effect of 

decreasing other bus performance. For systems that need 

higher Input-Output throughput an Off-loading Factor of 30 

is recommended.

9.4 T.E.S.S.

The major architectural contributions made by this 

research is in the design of T.E.S.S.. T.E.S.S., the 

Transaction Environment Switching System, provides the 

solution to a number of important problems which have 

limited advances in the Group Processor System. The most 

interesting results relate to the segmentation of the 

Input-Output bus. The segmentation of the Input-Output 

system enables each module to have its own dedicated 

Input-Output channel. This Input-Output system can be 

coupled together to provide either general purpose 

networking facilities or dedicated individual user 

interfaces to the Group Processor System.
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The concepts behind the Input-Output architecture of 

the Group Processor System is very similar to more 

conventional Input-Output systems. The main dissimilar 

feature is the inter-connection of terminals to each of the 

many Modules that would make up a typical system design. The 

extension of the Input-Output system provides much needed 

flexibility for the whole Group Processor System.

The provision of the Transaction Environment Switching 

System gives the system architect a useful method of 

swapping between abstract machines, as well as coupling many 

abstract machines together. T.E.S.S. has the ability to 

build many hierarchical abstract machines within the Group 

Processor System. The simulation has indicated that T.E.S.S. 

can work in a real time application, such as those found in 

IKBS.

9.5 Future Research

This research has highlighted a number of important 

issues which can be further developed. On the software side, 

there is a need for a more realistic execution environment 

within the simulated Group Processor System. Such realistic 

execution will provide more accurate figures with which to 

fine tune the Group Processor System. The simulation at the 

instruction level, while being very desirable, is not 

realistic with the current computing machinery available to 

the research team. This simulation would give very accurate 

feedback on the performance of a real Group Processor
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System, particularly if the simulation was supporting the 

language and operating system level.

On the hardware side there is a need for more detailed 

design. While the current researchers have the capability to 

undertake a more detailed study, it would be a waste of 

research effort if the finalised design were not integrated 

into silicon. Therefore, very little detailed hardware need 

progress until there is a commitment to implement the final 

design. While designing a cellular system around the 

TRANSPUTER would be of limited value; there would be a 

definite advantage for designing a very general bus 

inter-connection system which could support may devices of 

various kinds. These devices would be specialist processors 

dedicated to either general purpose computing functions, or 

more specialist design to optimise performance e.g. sorting 

or search engines.

On the wider aspects of software development for the 

Group Processor System; research into language translation 

should consider the relative performance of data driven and 

demand driven systems. While the computer architect can 

optimise the hardware facilities within the overall system 

design, it is the programmer who provides the useful 

features to the system users. Inefficient programming and/or 

concepts at the software level can render the hardware 

optimisation useless. Therefore, the analysis of the general 

performance of the Group Processor System is considered 

complete with this Thesis.
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9.6 Summary

The Thesis has proposed a number of new ideas which 

have considerably increased the overall performance of the 

Group Processor System.

This research has concluded an important phase in the 

development of cellular systems of the Group Processor 

System type, and a number of important advances made. Most 

of the problems encountered during this time have been 

either limitation of current computer systems, or the 

problems associated with communicating ideas with other 

researchers. The problems associated with the computing 

machinery can only be solved by building a Group Processor 

System, thereby providing the ideal environment with which 

to investigate a massively parallel Group Processor System. 

The problems associated with communication can only be 

solved by maintaining a team effort in developing Group 

Processor Systems.
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APPENDIX TWO



UNIVERSITY OP SHEFFIELD PASCAL COMPILER (1.8.1) ON 16/09/85 AT 10:42:37 

OPTIONS CHOSEN : 64V WITH CHECKS NODEBUG

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
13
19
20
21
22

23

24
25
26
27

28

29

30

31
32
33

34
35
36
37

38

39

40

41

42

43

44

45

001000 program simulator(input, output, rsystem. rcell. qfile. qlength, cfile. snapshot);

This is a simulation of the CELLULAR COMPUTER SYSTEM •)

It simulates a CELLULAR computer in that it can have an arbitary •)
number of MODULES. CELLS and BUSES •)

This program is written in SHEFFIELD PASCAL running under PRIMOS *)
in WCIHE. Summer 1985 •)

(• 
(•
(* 
<* 
(•

const
startseed • 49631; 
maxcells • 64; 
maxmodules • 16: 
maxglobaLbus • 1: 
maxintrabu* • 3: 
maxinterbus - 3: 
maxiobus • 1: 
tickperiod - 0.000001: 
maxsimtime • 0.002; 
maxmemory • 100000000; 
sendconst • 0.000005: 
ioconst • 0.000020; 
cellconst • 0.000010: 
osconst » 0.000001; 
memsizeconst - 1000: 
modfailconst - 999: 
cellfailconst • 990; 
processingconst • 0.000200; 
requestconst • 5:

(• Number of cells per module *) 
(* Number of modules in system •) 
(• Number of global buses •) 
(* Number of intra buses *) 
(• Number of inter buses *)

(• One microsecond clock •)
(• Duration of simulation •)
(• 100 Megabytes of main memory *)
(* Time range constant for sending message requests •)
(* Time range constant for io requests •)
(* Time range constant for cell requests •)
(* Time range constant for operating system requests *)
(• Memory requirement constant •)
(* Chance of a module not powering up - out of 1000 •)
(* Chance of a cell not powering up - out of 1000 •)
(* Time range for cell processing *)
(* 10-n out of 10 requests will be looked at *)

type
message • packed array [1..15] of char: 
statustype » (idle. acti. wait, comm, dead): 
request type • (io. sendre. oscall. celreq. cpujob): 
bustype • (global, intra. inter, ioline): 
qhead - ' event;

event •

(* For passing messages *)
(« The states a cell can be in •)
(• What a cell wants to do *)
(* Which bus a cell requires *)

(• This record defines a request for

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

61

record
busrequest: real; 
busrelease: real; 
busgrant: real: 
waitingtime: real; 
mastertime: real: 
moduleno: integer; 
cellno: integer; 
calltype: requesttype: 
link: qhead 

end;

•*••»)
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62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

95

96
97
98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113
114

115
116
117
118

119
120
121
122
123
124
125
126
127

(• All the queues in the system are implemented as • linear linked •)
(• list. With pointers HEAD «nd TAIL indicating the front and rear •)

(* of each queue *'
(• *' 
/»«««,.,,,»»»»»•«•«••••••••»«*•••««••••••«*••••••••••••••••••••*••*••«•*••••)

queuepointers •
record

heed: qhead: 
tail: qhead: 
•tatus: atatustype

end;

cellelement - 
record

status: integer:
prevstatus: integer:
globalcall: integer:
intracall: integer:
intercall: integer:
systimes:
qtimes:

glocall:
celcall:
sencall:
iocall:

(• This record defines the structure of a cell •)

integer: 
integer: 
integer: 
integer: 
integer: 
integer: 

memreqsize: integer: 
entersys: real: 
enterqueue: real: 
exitqueue: real; 
processing: real: 
lastreq: requesttype; 
queue: boolean 

end:

moduleelement • 
record

status: statustype 
end;

modules • array (1..naxcells) of cellelement:

(• What is the module doing •)

(• How many cells per module *)

Var
seed: integer:
»imtime: real:
globalbus: integer:
intrabus: integer:
interbus: integer:
iobus: integer:

qfile: text: 
cfile: text: 
qlength: text: 
rcell: text: 
rsystem: text: 
snapshot:text:

(• System clock «)

(• File of time spent.in queue *)
(• File of time spent in system *)
(• File of number in queues *)
(* File of cell processing results *)
(* File of system results *)
(* File of cell states *)

globalq: array (1..maxglobalbus) of queuepointers;
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128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

148
149
ISO

151
152
153
154
155
156
157
158
159
160

161
162
163
164
165
166
167

168
169
170
171
172
173

174
175
176
177
178
179

180
181

183 (*
184 (*

185 <•
186 (*' 
187
188

189

190 001420
191 001445

192 001466
193 001475

intraq: array [1. .maxintrabus) of cjueuepointan;
interq: array (1. .mexinterbus) of queuepointers:
iobusq: array [1. .maxiobua] of queuepointers:
computer: array (1. .majosodules) of nodules:

snap: integer:
tiM: integer:
•napcouat: integer:
averageacti: integer:
averegeidle: integer:
averagevalt: integer:
averagecom: integer:
aver agedead: integer:

avsystimes: array [1. .maxmodules] of integer:
avqtimes: array [1. .maxmodules] of integer:
avglocall: array [ 1 . . maxmodules ] of integer:
avcelcall: array (1. .maxmodules] of integer:
avsencall: array [1. .maxmodules] of integer:
aviocall: array [1. .naxmodules] of integer:
avcpujobs: array [1. .maxmodules) of integer;
avglobalcall: array (1. .maxmodules) of integer:
avint recall: array (1. .maxmodules] of integer:
avintercall: array (1. .maxmodules] of integer:

module: integer:
cell: integer:
loedfactor: integer:
run: integer:
globalmem: integer;
numof removals: integer:
cellmiss: integer:

iocount : integer:
sencount: integer:
oscount: integer:
celcount: integer:

iorequest: integer:
sendrequest: integer:
osrequest: Integer:
cellrequest: integer:

ioqcount: integer:
morerequests: boolean:
param: array [1..10] of integer:

Now start all the functions useful to the system

,*»»»•««*«•«*«*••«* »••••••••••••••»•••*••••••••••••••••••••

function random (x : real ): real;
begin

seed:-(13849»25173»seed) mod 65536:
random: •seed/65536:

end:

•)
*)
•)

****** j
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194

195
196
197

198

199
200
201
202 001500
203 001S20
204 001524
205 001535
206 001545
207 00154S

208 001550
209 001550
210
211
212
213
214
215
216
217
218 001554
219 001574
220 001600
221 001611
222 001621
223 001621
224 001624
225 001624

226
227
228
229
230

231
232
233
234
235 001630
236 001654
237 001660
238 001661
239 001661
240 001661

241 001661
242 001672

243 001672
244 001703

245 001703

246 001714
247 001714

248 001725

249 001725
250 001725
251 001743
252 001743
253
254
259
256
257
258
259

(unction modultfail: boolean: 
var

dummy: real:
rnd: integer:

begin
dummy :• 32.31:
rnd :- trune(random(dummy) • 1000):
if rnd > modfailconat than

modulafail :• true 
•Is*

modulefail :• false 
•nd: ( modulefail }

function cellfail: boolean: 
var

dummy: real:
rnd: integer:

begin
dummy :• 32.14:

rnd :• trune(random(dummy) * 1000):
if rnd > cellfailconst then

cellfail :• true 
else

cellfail :* false 
end: ( cellfail )

function bustime!request: requesttype) : real:
(* This function generates the bus time required by a cell *)

var
rnd: real:
dummyvalue: real:

begin
dummyvalue :> 29.1: 
case request of

(* Decide what type of request it ia •)
(* The time constants need to be different Cor each type of request *)

io:
rnd :• random(dummyvalue) * ioconst: 

sendre:
rnd :- random(dummyvalue) * sendconst: 

oscall:
rnd :- random(dummyvalue) * osconst: 

celreq:
rnd :- random(dummyvalue) * cellconst: 

cpujob:
(• do nothing *) 

end: (* End the case •) 
bustime :• rnd 

end: { bustime }

function jobselection: integer:
(• This determine* if a bus request is required if so the *)
(• function returns the value of the type of bus request •)

var
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260
261
262
263 001752
264 001772
265 001776
266 002007
267 002017
268 002026
269 002031
270 002034
271 002040
272
273
274
275
276
277
278
279
280 002043
281 002063
282 002067
283 002076
284
285
286
287
288
289
290
291
292
293 002103
294 002123
295 002127
296 002137
297 002137
298
299
300
301
302
303

305 (*
306 (•
307 (*
308 (•• 
309
310
311
312 00214ft
313 002166
314 002205
315
316
317
318
319 002206
320 002226
321 002240
322
323
324
325

test: integer;
dummyvalue: real;

begin
dummyvalue :• 23.1:
test :• trunc(randoeKdummyvalue) * 10):
if test >• request const then

te*t :• trunc(rando«(dummyvalue) • 10)
•lie

test :• 0;
jobselection :• teat:

end: ( jobselection }

function memsize: integer:
(* This calculates the amount of global memory required by a cell •)
var

dummyvalue: real;

begin
dumnyvalue :• 32.1:
memsize :• trunc ( random (dunsyvalue) • mwuizeconst }

end: { memsize )

function processlngload: real:
(• This function generates the processing time required by a cell *)
var

rnd: real;
dummyvalue: real;

begin
dumnyvalue :• 29.1:
rnd :- random (dummyvalue) * processingconst;
procassingload :» rnd

end; ( processingload )

*)
Now start all the procedures used in the simulator ')

*)

procedure clear:
begin

write(chr(155),'.'>
end: ( clear }

procedure home;
begin

write(chrU58) )
end: ( horn* >

procedure openf ilestdirectory: integer) :
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326
327
328 002241
329 002266
330 002267
331 002267
332 002267
333 002277
334 002307
335 002317
336 002327
337 002337
338 002347
339
340 0023SO
341 0023SO
342 002350
343 002360
344 002370
345 002400
346 002410
347 002420
348 002430
349
350 002431
351 002431
352 002431

353 002441
354 002451
355 002461
356 002471

357 002501

358 002511

359

360 002512

361 002512

362 002512

363 002522

364 002532

365 002542

366 002552

367 002562
368 002572

369
370 002573

371 002573
372 002573

373 002603

374 002613

375 002623

376 002633

377 002643

378 002653

379
380 002654

381 002654

382 002654

383 002664

384 002674

385 002704

386 002714

387 002724

388 002734

389
390 002735

391 002735

(• Prepare all file for a run of the progran •)

begin
case directory of 

1:
begin

rewritetqfile.
rewritetcfile.
rewrite(qlength.
rewritetrcell.
rewrite*rsyste*.
rewrite(snapshot. 

end:

begin
rewritetqfile. 
rewritetcfile. 
rewrite(qiength. 
rewritelrcell. 
rewrite!rsystea. 
rewrite(snapshot.

end:

begin

end:

begin
rewritetqfile. 
rewritetcfile, 
rewrite(qlength. 
rewritetrcell. 
rewrite(rsystem. 
rewrite(snapshot.

end:

'/Rl/Qfile.daf ): 
VRl/Cfile.daf ) : 
'/Rl/Qlength.daf ) : 
'/Rl/Rcell.daf ) ; 
' /Rl/Rsystem.daf ) : 
'/Rl/Snapshot.daf )

/R2/Qfile.daf ): 
/R2/Cfile.daf ) : 
/R2/Qlength.daf ) 

> /R2/Rcell.daf ): 
'/R2/Rsysten.daf ) 
/R2/Snapshot.dat

rewritetqfile. 
rewritetcfile. 
rewrite(qlength. 
rewritetrcell. 
rewritetrsysten. 
rewrit e(snapshot.

'/R3/Qfile.daf): 
'/R3/Cfile.daf) : 
VR3/Qlength.daf ) 
'/R3/Rcell.daf ) : 
'/R3/Rsysten.dat') 
'/R3/Snapshot.dat'

'/R4/Qfile.daf ) : 
p /R4/Cfile.daf ); 
'/R4/Qlength.dat'): 
VR4/Rcell.daf ) : 
'/R4/Rsystem.dat'); 
'/R4/Snapshot.dat')

begin
1 /R5/Qfile.dat'): 
'/RS/Cfile.daf ) : 
' /R5/Qlength.daf 
VR5/Rcell.daf ) ; 
'/RS/Rsystem.dat'

rewritelqfile.
rewritetcfile.
rewrite(qlength.
rewritetrcell.
rewrite(rsystem.
rewrite(snapshot.'/R5/Snapshot.dat')

end:

begin
rewritetqfile. 
rewritetcfile. 
rewrite(qlength. 
rewritetrcell. 
rewrite*rsystem. 
rewrite(snapshot.

'/R6/Qfile.dat'):
•/R6/Cfile.daf ) ;
•/R6/Qlength.daf )
•/R6/Rcell.dat'): 
VR6/Rsysteia.dat') 
'/R6/Snapshot.daf

end:

begin
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392 002735
393 002745
394 002755
395 002765
396 002775
397 003005
398 0030XS
399
400 003016
401 003016
402 003016
403 003026
404 003036
405 003046
406 0030S6
407 003066
408 003076
409
410 003077
411 003077
412 003077
413 003107
414 003117
415 003127
416 003137
417 003147
418 003157
419
420 003160
421 003160
422 003160
423 003170
424 003200
425 003210
426 003220
427 003230
428 003240
429 003241
430
431 003271

ime

432 003306

433 003315

requ

434 003332
435 003341
436 003356
437 003365
438 003402
439 003411

all

440 003426
441 003435
442
443
444
445
446 003436
447 003456
448 003456
449
450

451

rewritefqfile. ' /R7/Qfile.d«t ' ) ;
rewritelcfUe. ' /R7/Cfile.d«t ' ) ;
rewrite (qlength. ' /R7/Qlength. d«t ' ) ;
rewrite! rcell . ' /H7/Rcell . d«t ' ) ;
rewrite! ny»te«. ' /R7/Rsy§tem.dat ' ) :
rewrit«( snapshot . ' /R7/Snap»hot.dat ' )

•nd:

8:
begin

rewrite<qfile. • /R8/Qfil«.dat ' ) :
rewritelcfile. • /R8/Cfile.dat ' ) ;
rewrite! qlength, • /R8/Qlength.dat ' ) :
rewrite (reel!. • /R8/Rcell.dat ' ) ;
rewrite (rsystem. • /R8/Rsyste».dat ' ) :
rewrite (snapshot. ' /Ra/Snapshot .d«t ' )

end:

9:
begin

rewrite(qfile. • /R9/Qfile.d«t ' ) ;
rewritelcfile. ' /R9/Cfile.daf ) :
rewrite! qlength, ' /R9/Qlength.dat ' ) :
rewritefreell. VR9/Rcell.d«t ' ):
rewrite) rsystem, ' /R9/Rsystem.dat • ) :
rewrite ( snapshot . ' /R9/Snapshot . dat ' )

end;

10:
begin

rewrite! qfile. • /RlO/Qfile.dat • ) ;
rewrite(cfile. ' /RlO/CTile.dat ' ) :
rewrite (qlength, ' /RlO/Qlength.dat ' ) :
rewrite (rcell. ' /RIO/Rcell.dat ' ):
rewrite) rsystem, ' /RIO/Rsystem.dat ' ) :
rewrite! snapshot. ' /RIO/Snapshot .dat ' )

end:
end: (• end case •)

writeln(qfile. ' sintine module cell busrequest busgrant busrelease uaitingtime mat

request ' ) :
writeln(qfile):
writeln(cfile. ' aim time nodule cell entersys enterqueue exitqueue exitays process:

esf ) ;
writeln(cfile) :
wr iteln (qlength. ' sintine globalq intral intra2 intra3 interl inter2 inter! iobui
writelnl qlength) ;
wr iteln (snapshot. ' simtime free acti wait com');
writelnl snapshot) :
writelntrcell. 'module cell C. active q times gloacall c. request sendcall iocall glc

intracall intercall'):
writelnl rcell)

end: { openfiles )

procedure closefiles;
begin

{ close all the files )
end: ( closefiles )
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452
453
454
455 003457

456 003477
457 003506
458 00354S
459 003545
460

462
463
464
465
466 003555
467 003575
468 003612
469 003627
470 003636
471 003653
472 003670
473 003677
474 003730
475 003761
476 004012
477 004043
478 004074
479 004125
480 004125
481
482
483
484
485
486 004135
487 004166
488 004225
489 004231
490 004237
491 004251

492 004261
493 004261
494 004267
495
496
497

498
499
500
501
502
503
504
505
506 004270
507 004324

508 004325
509 004325
S10 004325
511 004325
512 004334
513
514 004334
515 004334
516 004334
517 004334

procedure displaytxme:
(• Write on the screen the current simulation time *)

begin
writeln:
writelnt' Simulation time is . simtime: 1: 6
writeln

end: ( displaytiB* }

procedure printheader ;
(* Show current Configuration •)

begin
writelnt' Cellular Computer Simulation Version l.O'l;
writelnt ' ————————————————————— —— ————— .-• ) ;
writeln:
writelnt' Current configuration is:-');
writelnf ' ——————————————————— • > ; 
writeln:
writelnt ' '. maxcells: 4. ' Cells per Module'):
writelnt' '. maxnodules: 4. ' Modules per Machine')
writelnt' '. maxglobalbus: 4. ' Global Bus');
writelnt' '. maxintrabus: 4. ' Intrs Buses'):
writelnt' '. maxinterbus: 4. ' Inter Buses'):
writelnt' '. maxiobus: 4. ' I/O Buses'):
writeln

end: ( printheader >

procedure startcell (module, cell: integer);
(* This sets up a cell as an active processor *)

begin
with computer[module) [cell) do begin

status :- 1:
entersys :* simtime:
ays times :* sys times • 1:
processing :* processingload * simtime;
lastreq :» cpujob

end
end: { startcell )

procedure »ervecell( module, cell: integer: request: requesttype) ;

var
newmod: integer:
newcell: integer:
found: boolean:

(• This decides what a ceil requires when it is bus master *)
(* Note: at the moment we assure infinite memory and cells •)

begin
case request of

io:
begin

iocount : • iocount » 1
end:

(• Do some input/output •)

sendre:
begin

(• Send a message over modules •)
sencount : • sencount • 1

Run number '. run);
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518 004334

519
520 004343
521 004343
522 004343
523 004343
524 004343
525
526 0043S2
527 0043S2
528 0043S2
529 004352
530
531 004353
532 004353
533 004353
534 0043S3
535 004361
536 004365
537 004371
538 004373
539 004410
540 00442S
541 004464
542 004464
543 004467
544 004467 
54 S
546 004476
547 004503
548 004507
549 004507
550 004515
551 004516
552 004523
553 004531
554 004566

555 004625
556 004626
557 004626
558 004634
559 004652
560
561
562
563
564

565
566
567
568 004653
569 004707
570 004715
571 004721
572 004721
573 004725
574 004733
575 004741

576 004747

577 004757

578 004765

579 004773
580 005000
581 OOSOOS
582 005023
583

end:

oscall: 
begin

(* Do a call to the operating systea *) 
oacount :• oacount » 1 

end;

cpujob: 
begin

(• Do a job within the cell •) 
end:

celreq: 
begin

(• Cell requires a new cpu to help •)
celcount :- celcount » 1:
newmod :- 1;
newcell :- 1:
found :• falae:
while (not found) and (nevnod <• maxmodules) do begin

while (not found) and (newcell <- naxcella) do begin 
if conputerfnewieodl [newcell] .status • 0 then begin

found :• true 
end else

newcell :- newcell • 1 
end:

if not found then begin 
newcell :• 1: 
newmod :> newmod » 1 

end 
end: 
if not found then begin

cellmiss :- cellniss « 1:
write(rsystem.' cellmiss 1 .cellmiss:3. ' at time'. iimtime:9:6): 
writelntrsysten.' requested by module', module:3.' cell', cell:3) 

end else
startcell(newmod, newcell) 

end
end (• case *) 

end: ( servecell )

procedure addto(var head, tail: qhead: request: requesttype: module,cell: integer)

(• Queue a new bus request •)
var

newrec: qhead:

begin
new(newrec) :
with newrec" do begin

(• First set up necessary fields •)
busrequest :• simtime:
busgrant:- Jimtirae:
busrelease :• 0:
waitingtime :- 0:
maatertime :• buatime(request) :
moduleno :• module:
cellno :• cell:
calltype :• request;
link :• nil: 
computer[module](cell].enterqueu« :• siatii»«

end;
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584
585
586
587
588
589
590
591
592
593
594
595
596
597

598
599

600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617

618
619

620
621

622

623
624

625

626
627

628

629

630

631
632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

005044 
005050 
005054 
005054 
005061 
005071 
005071 
OOS073

005076

005123
005127

005132

005136
005142

005146

005154

005154
005162
005163
005176

005177
005217
005232

005255
005307

005332
005364
005407

005441
005464

005516

005532

it head • nil then begin 
head :• newrec: 
tail : • newrec

end elae begin
tail*.link :• newrec: 
tail :• newrec

end 
end: ( addte )

procedure queuelengths(start: qhead) :
(* See how many ieeiM in each bus queue *)
var

next: qhead:

count: integer:

(• If list empty then start it off •)

(• Otherwiie add on at end of lilt •)

begin

end:

next :• start: 
count :• 0;

if next <> nil then begin 
while next <> nil do

with next* do begin
count :• count » 1: 
next :• link 

end 
end:
write(qlength. count) 
( queuelengths }

procedure plotlengths:
var

globalbus: integer: 

intrabus: integer: 
interbus: integer: 

iobus: integer:

begin

end:

write(qlength. aimtime: 1: 6):
for globalbus :- 1 to maxglobalbus do

queuelengths(globalq[globalbua].head) : 
for intrabus :> 1 to maxintrabus do

queuelengths(intraqtintrabus).head); 
for interbus :• 1 to maxinterbus do

queuelengths(interq[interbus].head); 
for iobus : • 1 to majciobus do

queuelengths(iobusq[iobus).head): 
writelnlqlength. ' ') 
( plotlengths )

procedure setupqueues:
(* Queue requests for bus access •)

var
globalbus: integer:
intrabus: integer:
interbus: integer:
iobus: integer:
module: integer:
cell: integer;
selector: real:

Page A2-10



650 005533
651 005553
652 005556
653 005601
654 005624
655
656 005627
657 005627
658 005627
659 005627
660
661 005630
662 005630
663 005630
664 005630
665 005667
666 005667
667 005667
668 005667
669
670 005676
671 005676
672 005676
673 005676
674 005735
675 005756
676 005756
677 005756
678 006001
679 006017
680 006051
681 006074
682 006112
683 006144
684
685 006152
686 006160
687 006164
688 006176
689 006210
690 006222
691 006234
692 006242
693 006242
694 006247
695 006247
696
697 006250
698 006250
699 006250
700 006250
701 006250
702 006250
703 006250
704 006250
705 006250
706 006250
707

708 006250
709 006250
710 0062SO
711 006250
712 006250
713 006250
714 006250
715 006250

begin
If morerequests then begin

for nodule :• 1 to maxmodules do begin 
for cell :• 1 to msxcells do begin 

case jobselection of

0:

1.

begin
(null) 

end:

2. 3. 4: 
begin

(• Compute bound job •)
if computerfmodulej[cell].status • 0 then 

(• Just »tart • cell up •) 
stertcell(module, cell)
{• Randomize processing!ime in the procedure ') 

end:

begin
(• Cell request •)
with computerlmodule][cell] do begin

if (status > 1) and (siatime >• proceeding) then begin 
(* Queue a request for a new cell *) 
(* on Intra and Inter buaes *)

for intrabu* :• 1 to maxintrabus do 
with intraq[intrabus] do

addto(head. tail, celreq. module, cell); 
for interbus :• 1 to maxinterbus do 

with interq(interbus] do
addtothead. tail, celreq. module, cell): 

cellrequeat :• cellrequest » 1:

previtatus :• atatus: 
status :- 2:
intracall :• intracall » 1; 
intercall :• intercall » 1: 
qtimes :* qtimes » 1; 
celcall :• celcall « 1: 
lastreq :• celreq: 
queue :* true

end
end

( 5:

end;

begin
(* Cell request •)
with computer[module](cell) do begin

if (status - 1) and (simtime >- processing) then begin 
(* Queue a request on intra buses only *) 

for intrabus :• 1 to maxintrabus do 
with intraq(intrabus) do

addtolhead. tail, celreq. module, cell): 
cellrequest :- cellrequest • 1:

prevstatus :• status; 
status :• 2:
intracall :• Intracall • 1: 
qtimes :• qtimes • 1: 
celcall :• celcall • 1: 
lastreq :• celreq: 
queue :• trust 

end
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716 006250
717 006250
718
719 006250
720 006250
721 006250
722 0062SO
723 006307
724 006330
725 006330
726 006330
727 006353
728 006371
729 006423
730
731 006431
732 006437
733 006443
734 006455
735 006467
736 006501
737 006S07
738 006507
739 006514
740 006514

741
742 006515
743 006515
744 006515
745 006515
746 006554
747 006575
748 006575
749 006575
750 006610
751 006617
752 006642
753 006660
754 006666
755 006713
756 006736
757 006754
758 007006

759
760 007014
761 007022
762 007026
763 007040
764 007052
765 007057
766 007064
767 007073
768 007073
769 007106

770 007106
771 007120
772 007120

773
774 007121
775 007121

776 007121

777 007121
778 007160

779 007201
780 007211

781 007234

6:

end 
end: )

begin
(• OS call •)
with computer[module I(cell 1 do begin

if (status • 1) and (simtim* >. processing) then begin 
(• Queue a request for the global operating system •) 
(• on the global bus •)

for globalbus :• 1 to maxglobalbus do 
with globalq(globalbus) do

addtothaad. tail, oscill. module, cell): 
01request :• osrequest * 1:

prevstatus :• status:
status :» 2;
globalcall :• globalcall • 1:
qtimes :• qtimes • 1:
glocall :• glocall » 1:
lastreq :• oscsll:
queue :- true

end
end

end:

7. 8:

begin
(* Send message call *)
with computerfmodule][cell] do begin

if (status • 1) and (siratime >• processing) then begin 
{* Queue a request for sending message *) 
(• on the inter or intra bus *) 

selector :• random(seed); 
if selector >- 0.7 then

for interbus :-l to maxinterbus do 
with interq(interbus) do

addto(head. tail, sendre. module, cell) 
else

for intrabus :•! to maxintrabus do 
with intraq(intrabus) do

addto(head. tail, sendre. module, cell): 
sendrequest :• aendrequest • 1:

prevstatus :* status:
status :> 2;
qtimes :> qtimes • 1:
sencall :* sencall » 1:
lastreq :* sendre:
queue :• true:
if selector >- 0.7 then

intercall :• intercall • 1 
else

intracell :- intracall » 1
end

end
end;

begin
(• I/O call •)
with computer[Module)[cell] do begin

if (status • 1) and (aisitisw >• processing) then begin 
if ioqcount > 50 then

for intarbus) : • 1 to •axlntarbu* do 
with interqlinterbua] do
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782 007252
783 007260
784 007305
785 007330
786 007346
787 007400
788 007400
789 007406
790
791 007414
792 007422
793 007426
794 007440
795 007452
796 007457
797 007457
798 007464
799 007464
800 007464
801 007515
802 007S1S
803 007S25
804 007535
805
806
807
808
809
810
811
812
813
814
815
816 007536
817 007567
818 007573
819 007577
320 007601
821 007612
922 007612
823 007612
824 007636
825 007636
826 007641
327 007645
828 007645
829 007653
830
831 0076S4
832 007654
833 007661
834 00767S
835 007676
836 007676
837 007706 
83« 007712
839 007722
840 007729
841 007725
842 007731
843 007731
844 007747
845 007747
846 00775S
847 0077S6

addtolhead. tail. 10. module, cell) 
else begin

(or lobus :« 1 to naxiobus do 
with iobusqfiobus] do

addtolhead. tail. io. module, cell); 
ioqcount :• loqcount • 1 

end: 
iorequest :• iorequest • 1;

prevstatus :• statue 
status :• 2: 
qtimee :> qtimes » 1; 
iocall :• iocall • 1: 
lastreq :• io: 
queue :« true

end 
end 

end 
end (• case •)

end (• cell statement •) 
end (* module statement •) 

end (• if *) 
end: ( setupqueues )

procedure deleteentrylvar head, tail: qhead: cell, module: integer): 
(• This procedure deletes the queue entry froej the request from •) 
(• Module • module & Cell • cell *) 
var

current: qhead:
last: qhead:
found: boolean;

begin
current :• head:
last :• head:
found :• false:
while ( not found ) and ( current <> nil ) do begin

(* While correct entry not found, skip along the queue •)
(* When we find it set flag true *)
if (module • current'.moduleno) and (current".cellno • cell) then begin

found :• true 
end else begin

last :• current: 
current :• current".link 

end 
end;

(• If we can't find it then the program is shot f ; •) 
if not found then 

writelnC ') 
else begin

(* if entry to be deleted is the last or the only one in the queue •) 
if current • tail then begin 

tail :• last:
if head • current then begin 

head :• nil: 
tail :• nil 

end else
last".link :• nil 

end else if current • head then begin
I* if entry to be deleted is the first •) 
head :• current".link:

end else
(* it must be in middle of list somewhere *)
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848 007756 
349 007756 
850 007772 
9S1
852
853
854
855
856
857
858
859 007773
860 010036
861 010037
862 010037
863 010037
864 010062
865 010072
866 010126
867
868 010151
869 010151
870 010151
871 010174
872 010204
873 010262
874 010263
875 010263
876 010263
877 010306
878 010364
879 010365
880 010365
881 010365
882 010365
883 010365
884 010377
885
886 010400
387 010400
888 010400
889 010423
890 010433
891 010511
892 010512
893 010512
894 010535
895 010614
896 010614
897 010614
398 010614
899 010614

900 010631

901 010632
902 010632
903 010632
904 010655
905 01066S
906 010721
907 010744

908 010760

909

910

911

912

913

last Minx :• current'. linX
and 

end: ( delatacntry )

procadura rtaovaantryslbm: buatypa: buanum, callno. moduleno: integer: call: requesttype) :
(* This decide* which of the buaea to delate the auperfloua entries from •)
var

count: integer:

begin
case bus of 

global: 
begin

for count :- 1 to maxglobalbus do 
if count <> buanum then

deleteentrytglobalqtcount].head, globalq(count].tail, cellno. modulen< 
end:

intra:
begin

for count :« 1 to naxintrabu* do 
if count <> busnua than

daleteentry(intraq[count].head. intraq[count].tail, callno. noduleno): 
case call of 

celreq: 
begin 
for count :• 1 to maxinterbua do

deleteentry(interq[count].head, intarqfcount].tail, callno. nodule 
end:

sendee, oscall: 
begin

( do nothing } 
end

end ' 
end:

inter:
begin

for count :• 1 to maxinterbus do 
if count <> busnun then

delete«ntry(interq[count].head, interqtcount].tail, cellno. modulenc 
case call of 

celreq:
for count :• 1 to maxintrabus do

deleteentry(intraqlcount).head, intraqtcount).tail, cellno. moduJ 
aendre. oscall. io: 
begin

( do nothing ) 
end 

end 
end: 

ioline: 
begin

for count :« 1 to maxiobus do 
if count <> busnun then

deleteentry(iobu»q[count].head, iobusqtcount].tail, cellno. modultn

end; 
end: 

end: ( removeentrys }

procedure startquau«(var head, tail: qhe.d: v.r qstatu.: statustyp.: bus: buatype: buanu.:
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914

915

916 010761
917 011011
918 011014
919 011024
920 011034
921 011042
922 011105
923 011105
924 011142
925 011163
926 011173
927
928
929
930
931

932
933
934

935 011174
936 011224
937 011230
938 011244
939 011254
940 011270
941 011270
942 011270
943 011276
944 011305
945 011313
946 011325

947

948 011450
949 011451
950 011467
951 011505
952 011523
953 011541
954
955 011560
956 011560
957 011560
958 011564
959 011627
960

961 011672
962 011700

963 011700
964 011704

965 011712
966 011720

967 011720

968 011730

969 011740

970 011746

971 012011
972 012011
973 012046
974 012046

975 012067

(* If a queue is idle then get fine entry tnd start it up •)

begin
qstatus :• acti: 
with head" do begin

waitingtiM :- sintiiM - busrequest: 
busgrant : - eimtime;
computer(i»odulenol[cellnol. status :• 3: 
(• Now g*t rid of extra ealla on rest of buses •) 
removeentrystbus. busnvua. cellno. moduleno. calltype) : 
servecelK moduleno. cellno. calltype) 

end 
end: ( startqueue }

procedure queueserver(var head, tail: qhead: var qstatus: statustype: bus: bustype; busnum: int

var
temp: qhead:

begin
if qstatus • idle then

startqueuefhead. tail, qstatus. bus. busnua): 
with head' do

if simtime >• (busgrant » mastartime) then begin 
(• Current cell has finished with the bus •) 
(* Remove the queue entry and atart next, if any •) 
numofremovals :• nuraofremovals » 1: 
if bus - ioline then

ioqcount :• ioqcount - 1; 
mastertime •• simtime - busgrant: 
writefqfile. simtime.-1:6. inoduleno. cellno: 6. busrequest :12:6. busgrant: 11:6, si

:6. waitingtime:12:6. mastertime:13:6) ;

case calltype of
io: writeln(qfile. ' ioreq'l:
celreq: writeln(qfile. ' celreq'):
sendre: writeln(qfile. ' sendreq'l:
oscall: writelnlqfile. ' oscsll'): 

end: (• case •)

(* Once the cell has finished set it back to what it was •)
(* doing before the call to this bus •)
busrequest :• 0.0:
computer[moduleno][cellnol.status : • I:
computer[modulenoj[cellno].exitqueue :• simtime:

if link <> nil then begin
(• There is another entry to start up •)
temp :- head:
head :- link:
dispose)temp):
(* now start up new cell I/O *)
with head" do begin

waitingtilM :• simtim* - busrequest:
busgrsnt :• simtime:
computer{moduleno)(cellnol.status :• 3:
(• Now get rid of extra calls on buses *)
removeentryslbus. busnua. cellno. saduleno. calltype):
(* Now see what the call wants to do •)
iervecell(«oduleno. cellno. calltype) 

end

Page A2-15



976
977
978

979
990
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017

1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041

012077
012100
012106
012111
012114
012114
012117
012117

012120
012140
012163
012201
012205
012221
012245
012270
012306
012312
012326
012352
012375
012413
012417
012433
012457
012502
012520
012524
012540
012554

012565
012605
012610
012613
012616
012621
012644
012667
012726
012727
012727

•nd;

end else begin
diaposethead) : 
call :• nil: 
head :• nil: 
qstatus :• idle 

end
end (• if •) 

qu«ue»erver >

procedure servicequeuea: 
var

globslbu*: integer:
intrabua: integer:
interbua: integer:
iobu»: integer:

begin
for globalbus :• 1 to maxglobalbus do 

with globalqtglobalbus| do begin 
if head <> nil then

queue»erver(head. tail, status, global, globalbus) 
end:

for intrabus :• 1 to maxintrabus do 
with intraqCintrabus) do begin 

if head <> nil then
queueserverfhead. tail, atatui. intra. intrabui) 

end:
for interbus :•! to maxinterbu* do 

with interqlinterbus] do begin 
if head <> nil then

queueserverlhead. tail, status, inter, interbu*') 
end: 

for iobus :• 1 to maxiobus do
with iobu»q[iobusl do begin 

if head <> nil then
queueserverlhead, tail, status, ioline, iobus) 

end 
end: ( servicequeue* }

procedure cellstatus:
var

module: integer: 
cell: integer: 
totacti: integer: 
totidle: integer: 
totwait: integer; 
totcomm: integer:

begin
totacti :• 0: 
totidle :• 0; 
totwait :• 0: 
cotconji :• 0:
for module :• 1 to maxmodulee do 

for cell :• 1 to maxcell* do
with computer(moduleJ[cell) do 

case atatu* of
0:

begin
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1042 012727
1043 012727
1044 012736
1045 012736
1046 012736
1047 012736
1048 012745
1049 012745
1050 012745
1051 012745
1052 012754
1053 012754
1054 012754
1055 012754
1056 012762
1057 013027
1058
1059 013074
1060 013102
1061 013110
1062 013116
1063 013124
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073 013125
1074 013145
1075 013170
1076 013213
1077 0132S6

1078 013315
1079 013326

1080
1081
1082 013326
1083 013331
1084 013336
1085 013344
1086 013352
1087 013357
1088 013357
1089 013357
1090 013357
1091 013357
1092 013367

1093
1094

1095
1096
1097 
109S
1099
1100
1101
1102 013400
1103 013420

1104 013447
1105 013451
1106 013453
1107 01345S

1:

2:

3:

tot idle :• totidle - 1 
end:

begin
totacti :• toticti • 1 

end:

begin
totwait :• totwait • 1 

end:

begin
totconta :• totcoon • 1 

end 
end; 

writeln(«n«p»hot. simtime:l:6. totidle: 5. totacti: 6. totwait: 7. totcomm: 5);

averageacti :- averageacti » totacti: 
averageidle :- averageidle * totidle: 
avaragewait :• averagevait • totwait; 
averagacoas* :• avaragecoan • totcooa: 

end: { cellstatus }

procedure cellmanager:
(* thi* is called every tickperiod •)
var

module: integer:
cell: integer:

begin
for module :•! to maxnodules do begin 

for cell :- 1 to maxcella do begin
if computer[module][cell].atatua • 1 then begin 

with computer[module)[cell] do begin
if aintlme >- processing then begin

(* This cell has now finished, therefore set it idle *)

status :- 0: 
prevstatus :• 0: 
enterqueue :• 0.0; 
exitqueue :• 0.0: 
queue :• false: 

end (• if •) 
end (• with •) 

end (• if •) 
end (* cell •) 

end <* module *) 
end: { cellmanager }

procedure loadsysten:
(• This procedure loads the systm with a large number of requests prior *)

(• to startup •)
var

count: integer:

begin
for count :« 1 to loadfactor do begin 

plotlengths: 
letupqueues: 
home: 
dlsplaytlM:
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1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
ma
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144

1145
1146

1147
1148
1149
1150
1151
1152
1153

1154
1155
1156
1157
1158
1159
1160
1161
1162

1163
1164

1165

1166
1167

1168
1169

1170
1171
1172
1173

013457
013457
013465

013476
013516
013541
013545
013570
013606

013647
013672
013715
013721
013737
013760

014001 

014021 
014030 

014053 
014062 
014077 

014122 

014145 
014170 

014213 
014236 

014245 
014262 
01430S 

014330 

014353 

014376 

014405 

014422 

014453

nmtime :- aim time » tickperiod 

end 
end: ( loadsystem )

procedure startsystem:
(* This examines all module* and cella on the system to see if any element *)
(* has failed *)
var

module: integer:
cell: integer;

begin
for module :- 1 to maxmodules do begin 

if modulefail then
for cell :• 1 to maxcells do

computer[module][cell].status :- 4 
end:

for module :- 1 to maxmodules do
for cell :- 1 to maxcells do begin 

if celltail then
computer[module](cell).status :- 4 

end 
end: ( startsystem )

procedure results:
(• Write system totals
var

module: integer: 
cell: integer; 
max: integer; 
n: integer; 
meansystimes: 
meanqtimes: 
meanglocall: 
meancelcall: 
meansencall: 
meaniocall: 
meanglobalcall: 
meanintracall: 
meanintercall:

to files *)

begin
writeln(rsystem):
writelnfrsystem.
writeln(rsystem);
writelnfrsystem.
writelnfrsystem.
writelnfrsystem.
uriteln(rsystem.
writelnfrsystem.
writelnfrsystem.
writeln(rsystem):
writeln(rsystem.
writelnfrsystem.
writelnfrsystem.
writelntrsystem.
writelnfrsystem.
writelnlrsystem);
writelnfrsystem.
writelnfrsystem.
writelnfrsystem.

integer: 
integer: 
integer; 
integer; 
integer; 
integer; 
integer; 
integer; 
integer;

Occurences of cell unavailability '. cellmiss):

Number of bus requests having been served');
Removals from queues '. numofremovals); 
I/O calls ' . iocount) : 
Sending message calls '. sencount): 
Global OS calls '. oscount): 
New cell requests ', celcount):

Number of bus requests having been made'):
I/O calls '. iorequest): 
Sending message calls '. sendrequest); 
Global OS calls '. osrequest): 
New cell requests '. cellrequest):

Number of bus requests not having been served'):
I/O calls '. iorequest-iocount): 
Sending message calls ', sendrequest-sencount):
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1174 014504
1175 014535
1176
1177

1178 014566
1179
1180
1181
1182
1183
1184
1185
1186
1187 014567
1188 014721
1189 014725
1190 014750
1191
1192 015007
1193 015032
1194 015035
1195 015051
1196 015054
1197 015057
1198 015062
1199 015065
1200 015070
1201 015073
1202 015076
1203 015101

1204 015104

1205 015107

1206 015112
1207 015116

1208 015122

1209 015122

1210 015126

1211
1212 015126

1213 015151

1214 015167

1215 015172

1216 015177

1217 015177

1213 015204

1219
1220 015214
1221 015237

1222 0152SS
1223 015260
1224 01526S
1225 015265
1226 015272
1227
1228 015302
1229 015325
1230 015343
1231 015346
1232 015353
1233 015353
1234 015360

1235
1236 015370
1237 015413
1238 015431
1239 015434

writelnfrsystaa^ ' Global OS call*
writeln(rsystas). ' New call requests

end: ( results )

(* MAIN PROGRAM STARTS HERE •)

begin
seed :• atartaeed:
Cor run :• 1 to 1 do

para«(run] :• run * 100:

for run : - 1 to 1 do begin
tine :• 0:
loadf actor :• param(run);
cellmiaa :- 0:
iocount :• 0:
aencount :• 0:
oacount : - 0 :
celcount :• 0:
iorequeat :• 0:
sendrequest :- 0;
oarequeat :« 0:
cellrequeat :- 0;

ioqcount :• 0:
numof removals : >0 :
globalmen :• maxmemory:
sim time :- 0.00000000:
(* Reaet system clock •)
openf lies ( run) :
(• Clear old filea •)

for globalbus:*! to ntaxglobalbus do begin
with globalqt globalbua ] do begin

head :- nil:
tail :• nil;

status :- idle
end

end:

for intrabus:-! to maxintrabua do begin
with intraqCintrabus] do begin

head :• nil:
tail : • nil:
status : • idle

end
end:

for interbus:-! to maxinterbus do begin
with interqt interbus) do begin

head :• nil:
tail :- nil:
statua :• idle

end
end:

for iobua : • 1 to maxiobue do begin
with iobusq(iobus) do begin

head :• nil:
tail :• nil:

oarequeat-oscount) ; 
cellrequest-celcount)
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1240
1241
1242

1243
1244
1245
1246
1247
1248
1249 
12 SO
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279

1280
1281
1282
1283
1234
1285
1286
1287
1288
1289
1290

1291
1292
1293

1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305

015441
015441
015446

015456

015501
015524
015563
015566
015573
015600
015605
015612
015617
015624
015631
015636
015643
015650
015656
015664
015671
015671

015716
015720
015727
015736
015745
015754
015756
015760

015762

016005
016020

016033
016046
016061
016074

016107
016122
016135
016150
016163

016173
016176
016201
016204
016207
016213
016215
016217
016217

016221
016223
016225

016230
016236
016240
016242
016244
016254
016256

status :• idle
end

end:

(or module:•! to maxmodules do 
for cell:-! to maxcells do 
with conputer[inodule) [cell] do begin 

statua :• 0: 
prevatatua :- 0: 
globalcall :• 0; 
intracall :• 0: 
intercall :• 0; 
•yetimes :• 0: 
qtimes :• 0: 
gloeall :• 0; 
celcall :• 0: 
sencall :• 0: 
iocall :« 0: 
enterqueue :• 0.0: 
exitqueue :• 0.0; 
memreqsize :• 0:
queue false

end:

clear :
writeln:
writeln:
writeln;
writeln:
printheader:
home:
displaytime:

for module :• 1 to maxmodules do begin
avsystimes(module] :- 0:
avqtimes [module] • 0;
avglocalK module] - 0:
avcelcall[module] • 0:
avsencall[module] • 0:
aviocall [module] - 0:
avcpujobs[module] • 0:
avglobalcall(module] :- 0:
avintracall [module) :• 0:
avlntercall [module] :> 0: 

end:

averageacti :• 0;
averageidle :- 0:
averagewait :• 0;
averagecomn :• 0;
snapcount :• 1:
morerequests :» true:
loadsystem:
(* Start up machine •)
home:
displaytime:
cellstatus:
snap :• 0;

while simtime <• maxsimtime do begin 
servicequeues; 
plotlengths; 
cellmanager: 
if snap • 25 then begin

cellstatus:
snap :• 0:
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1306 016261
1307 016267
1308 016271
1309 016273
1310 016273
1311 016301
1312 016307
1313 016307
1314
1315 016313
1316 016314
1317 016341
1318 016366
1319 016413
1320 016440
1321 016447
1322
1323 016514
1324 016520
1325 016527
1326 016560
1327 016603
1328 016622
1329 016645
1330 016670
1331 016670

•napcount
horn*:
diiplaytiJM:

•nd;
snap :• *nap » 1:
•iatiM :• siatim* 
setupqueues

•napcount 1:

tickperiod:

•od:

result*:
averageidle
av«rag«aeti
averagewait
averagecoms

trunct (averageidle / snapcount) » 0.5
truncl (averageacti / snapcount) » 0.5
truncl (averagewait / snapcount) • 0.5
trunc( (averageconn / snapcount) » 0.5

writelnlsnapshot): 
writ«ln(snapshot. av«rag«'. av«rag«idl«:5. av«rag«acti:6. averagewait:7. av*rageco«Hi:5):

mill(time);
writ«ln(rsyst«n):
writ«ln(rsy«t«s. 'Tim* us«d is'. tira«:10. ' milliseconds'):
for snap :• 1 to 17 do

writsln:
vrit«ln<'time used •'. tine:10): 
writelnt'nunofreawvsls -'. numofremovals:6) 

end 
end. ( simulator }

COMPILATION COMPLETE : 0 ERRORS REPORTED
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