
University of South Wales

2053137

THE BUS STRUCTURE FOR A POLYMORPHIC

COMPUTER SYSTEM

By

Andrew Kennedy Roach B.Sc.(Hons)

This Thesis is submitted in partial

fulfilment for the Degree of M.Phil under

the regulations of the CNAA

Department of Mathematics and Computing

The Polytechnic Of Wales

In collaboration with MITEL Corp.

February 1986

Statement

I hereby declare that the work embodied in this Thesis
are the results of my own independant investigations unless
otherwise stated. This work has not been, nor is it
currently being, submitted in consideration for any other
degree.

Candidate -- A. K. Roach

Director of Studies G. E. Quick

ii

Acknowledgement

I wish to express my appreciation to the following, who
provided me with guidance, help and support throughout my
research.

Dr. Gerry Quick, Head of School of Computer Studies,
West Glamorgan Institute of Higher Education, Swansea, whose
initial work this Thesis is a continuation of.

All the members of the Department of Mathematics and
Computing at the Polytechnic of Wales; especially
Mr.D.J.Green, Dave Eyres, John Ellis, Colin and Chris
Bowring; all of whom made my stay a pleasant and eventful
one.

Finally my parents, Leslie and Valerie, for without
their financial support this research would not have been
possible.

iii

ABSTRACT

The Bus Structure for a Polymorphic Computer System

A.K.Roach B.Sc(Hons) M.Phil Thesis

The proposed advances in fifth Generation Computing
Systems aim to provide an Intelligent Image to the system
user. While such images are software based, written in
languages such as Prolog and LISP, much of the proposed
hardware architecture has lacked innovation and vision. This
Thesis addresses these two important points by providing an
insight into bus interaction for various scheduling schemes
and system configurations, in order that these unique system
architectures may evolve.

This Thesis discusses the issues relavent to the
application of cellular computer systems and their projected
performance characteristics. The cellular computer system
under study is the Group Processor System, which is a
TRANSPUTER like computer architecture.

The Group Processor System is simulated, and important
results are illustrated in graphical form. These graphs are
analysed, and the conclusions drawn are of use to computer
architects who wish to design and construct Group Processor
Systems. The results may also be of use to those architects
wishing to develop TRANSPUTER based computer systems.

As a result of the simulation, a major design fault in
the original Group Processor proposal resulted in a severe
'bottle-neck' in input-output processing. This has been
greatly improved by the provision of the Terminal
Environment Switching System; which is also detailed in this
Thesis. The result of this research has yielded a more
flexible Group Processor System which may be targetted for
applications in Intelligent and Knowledge Based Systems.

The relevance of current architecture is discussed in
the context of proposed fifth Generation computing needs.

iv

CONTENTS PAGE

Title i

Statement ii

Acknowledgement iii

Abstract iv

Table Of Figures x

CHAPTER

1 INTRODUCTION

1.0 Introduction 1-1
1.1 Computer Architecture 1-1
1.2 The Von-Neumann Architecture 1-2
1.3 Von-Neumann Architectural Implementations 1-3
1.4 Fifth Generation Computer Research 1-7

1.4.1 Japanese Activity 1-7
1.4.2 The Alvey Programme 1-8

1.5 Thesis Plan 1-10
1.6 Scope of Thesis 1-12

2 THE FOUNDATIONS OF COMPUTER ARCHITECTURE

2.0 Introduction 2-1
2.1 Why a new Generation 2-2
2.2 The Semantic Gap 2-3

2.2.1 The Operating System Semantic Gap 2-4
2.2.2 The Programming Environment Gap 2-4
2.2.3 The Storage Semantic Gap 2-5
2.2.4 Consequences of the Sematic Gap 2-5

2.3 The Von-Neumann Architecture 2-6
2.4 Parallel Systems 2-7
2.5 Multi-Processor Systems and Attributes 2-7

2.5.1 Multi-Processor Computer Systems 2-7
2.5.2 Tightly Coupled Computer Systems 2-9
2.5.3 Loosely Coupled Computer Systems 2-9

2.6 Multi Processor Classifications 2-10
2.7 Bounded Parallel Systems 2-14
2.8 Unbounded Parallel Systems 2-14
2.9 Engineered Bounded Systems 2-15

2.9.1 DEC VAX-11/782 2-15
2.9.2 B5000 2-21
2.9.3 iAPX-432 2-22

2.9.3.1 Overview of the 1APX432 2-22
2.9.3.2 Components - Configurations 2-24

2.9.4 Carnegie Mellon Machines 2-26

2.9.4.1 C.mmp 2-26
2.9.4.1 The Hardware 2-27
2.9.4.3 The Software Base 2-29
2.9.4.4 Success and Failure 2-29

2.10 Engineered Unbounded Systems 2-31

2.10.1 Cm* 2-31
2.10.2 MPP 2-35
2.10.3 The Transputer 2-37

2.11 Summary 2-41

3 FIFTH GENERATION NEEDS

3.0 Introduction 3-1
3.1 Background 3-1
3.2 Fifth Generation Systems 3-2
3.3 Application Areas 3-3
3.4 Processor Architecture Exploiting VLSI 3-3
3.5 Needs and Uses 3-4

3.5.1 Industrial Automation 3-5
3.5.2 Office Automation 3-6
3.5.3 Science and Engineering 3-7
3.5.4 Computer Hardware and Software 3-8
3.5.5 Military 3-9
3.5.6 Aerospace 3-9
3.5.7 Retail and Service Industries 3-10
3.5.8 Education 3-11
3.5.9 Health Care 3-12
3.5.10 Leisure 3-13

3.6 Involved Countries 3-13
3.7 Concerns and Goals 3-14

3.7.1 Japan and ICOT 3-14

3.8 Designing the Next Generation 3-15

3.8.1 Exploiting Parallelism 3-16
3.8.2 VLSI: The Solution? 3-16

3.9 The Problems to be Encountered 3-16

3.9.1 Physical Limitations 3-17
3.9.2 Conceptual Limitations 3-17

3.10 Future Computer Architecture 3-18

vi

4 BUS ARBITRATION CONCEPTS

4.0 Background 4-1
4.1 Introduction 4-1
4.2 Current Computer Architecture 4-2
4.3 Bus Arbitration Objectives 4-4
4.4 Current Arbitration Techniques 4-5
4.5 Centralised Arbitration 4-6

4.5.1 Daisy Chain 4-6
4.5.2 Polling 4-8
4.5.3 Independant Requests 4-10

4.6 Distributed Arbitration 4-12

4.6.1 Distributed Daisy Chain 4-14
4.6.2 Distributed Polling 4-14
4.6.3 Distributed Independant Requests 4-17

4.7 The Universal Arbiter 4-17
4.8 Summary 4-24

5 THE GROUP PROCESSOR ARCHITECTURE

5.0 Introduction 5-1
5.1 High Level System Description 5-1
5.2 Peripheral Interface Environment 5-3
5.3 Group Processor Environment 5-6
5.4 Module External Input Output 5-6
5.5 Logical Bus Structure 5-8
5.6 Bus Structures 5-12
5.7 Inter-Module Bus Structure 5-15
5.8 Single Use Environment 5-17
5.9 Multi User Environment 5-17
5.10 The Group Processor Operating System 5-19
5.11 Distributed Control 5-20
5.12 High Level Operating System Representation 5-23
5.13 Group Processor System Summary 5-23

6 THE SIMULATION ENVIRONMENT

6.0 Introduction 6-1
6.1 The Modelling Approach 6-1

6.1.1 Synthetic Benchmarks 6-2
6.1.2 Live Benchmarks 6-2
6.1.3 Simulation 6-3
6.1.4 Mathematical Modelling 6-3

6.2 The Case For Simulation 6-3
6.3 Computer Structure, Resource Application 6-4

6.3.1 What is a resource? 6-5
6.3.2 Definitions 6-5

vii

6.4 Simulation Architecture 6-6

6.4.1 System Architecture Components 6-6

6.4.1.1 Buses 6-7
6.4.1.2 Bus Arbiters 6-7
6.4.1.3 Cells 6-7
6.4.1.4 Modules 6-7

6.4.2 The Group Processor 6-7
6.4.3 Bus Interconnection Schemes 6-8

6.5 Bus Arbitration 6-8
6.6 Bus Requests 6-9
6.7 Actioning Bus Requests 6-9
6.8 The Simulator Program 6-9

6.8.1 System Parameters 6-10
6.8.2 Major Parameters 6-10
6.8.3 Tuning Parameters 6-10

6.9 The Simulation Environment 6-11

6.9.1 The Job Scheduler 6-11
6.9.2 The Job Server 6-13
6.9.3 System Loading 6-14

6.10 Range of Results 6-14

6.10.1 Variation of Physical Constants 6-14
6.10.2 Variation of Cell Numbers 6-15
6.10.3 Variation of Module Numbers 6-15
6.10.4 Variation of Inter-module bus 6-15
6.10.5 Variation of Intra-module bus 6-15
6.10.6 Variation of Soft Constants 6-16
6.10.7 Bus Request Rate 6-16
6.10.8 Ratio of Jobs 6-16
6.10.9 Time Required as Bus Master 6-16
6.10.10 Message Length 6-17

6.11 Simulation Goals 6-17
6.12 Limiting Factors 6-17
6.13 Conclusion 6-18

7 RESULTS AND IMPLICATIONS

7.0 Introduction 7-1
7.1 Table of Results 7-2
7.2 Basic Group Processor System 7-9
7.3 Extended Group Processor System 7-11
7.4 Operating System Constraints 7-12
7.5 Off-loading Factor 7-15
7.6 Segmemted Input/Output 7-16
7.7 Dedicated Systems 7-17
7.8 Closer Analysis 7-18

viii

7.8.1 Effects of Bus Contention 7-18
7.8.2 Inter-Cell Communication 7-22

7.9 Software Considerations 7-28
7.10 Conclusions 7-35

8 GROUP PROCESSOR ARCHITECTURAL ENHANCEMENTS

8.0 Introduction 8-1
8.1 Group Processor System Problems 8-1
8.2 T.E.S.S. Outline 8-2
8.3 T.E.S.S. Objectives 8-4
8.4 T.E.S.S. Operations 8-8
8.5 Module/Channel Interface 8-12
8.6 Crossbar Operation 8-14
8.7 Bus Arbitration 8-15
8.8 Summary 8-18

9 CONCLUSION AND FURTHER RESEARCH

9.0 Introduction 9-1
9.1 Research Initatives 9-1
9.2 Computer Architecture 9-3
9.3 The Group Processor System 9-4
9.4 T.E.S.S. 9-6
9.5 Future Research 9-7
9.6 Summary 9-9

APPENDIX ONE: Simulator Graphical Output Al-1

APPENDIX TWO: Simulator Program Listing A2-1

ix

Figure No. Figure Title Page No.

2. la Single User Global Memory 2-8
2.1b Single user Global + Local Memory 2-8
2.2 Single user Loosely Coupled 2-11
2.3 Multi-user Multi-processor 2-12
2.4 VAX-11/782 Connections 2-16
2.5 VAX Architectures 2-18
2.6 Dual VAX Configuration 2-20
2.7 4 Processor iAPX-432 Configuration 2-25
2.8 C.mmp 2-28
2.9 5 Cluster Cm* 2-32
2.10 Cm* individual cluster 2-33
2.11 MPP 2-36
2.12 The Transputer 2-39

4.1 Simple Parallel System 4-3
4.2 Centralised Daisy Chain 4-7
4.3 Centralised Polling 4-9
4.4 Centralised Independant Requests 4-11
4.5 Bus Arbiter Types 4-13
4.6 Distributed Daisy Chain 4-15
4.7 Distributed Polling 4-16
4.8 Distributed Independant Requests 4-18
4.9 Hierarchical Arbitration 4-20
4.10 Linear Priority Arbitration 4-21
4.11 Fifth Generation Arbitration 4-23

5.1 Functional Composition of G.P.S 5-2
5.2 Group Processor Module 5-4
5.3 Module Component Architecture 5-5
5.4 Inter-module Bus Structure 5-7
5.5 Data Bus Architecture 5-9
5.6 Module Coupling Architecture 5-11
5.7 Single User System 5-13
5.8 Multi User System 5-14
5.9 Multi User Environment 5-18
5.10 Distributed Operating System 5-22

6.1 Simulator Schematic 6-12

7.1 Table of Results 1 7-4
7.2 Table of Results 2 7-5
7.3 Table of Results 3 7-6
7.4 Table of Results 4 7-7
7.5 Table of Results 5 7-8

8.1 Multi User System 8-3
8.2 T.E.S.S Architecture Outline 8-5
8.3 Terminal Alternatives 8-7
8.4 Ported Memory Concepts 8-9
8.5 Four Terminal/Crossbar Module 8-11

	Interconnection
8.6 Module/Crossbar Interconnection 8-13

	Network
8.7 Crossbar Addressing Mechanism 8-16
8.8 Crossbar Functional Diagram 8-12

CHAPTER ONE

CHAPTER ONE

INTRODUCTION

1.0 Introduction

There is a general consensus among the computer science

fraternity that the 1990's will see the end of the

traditional Von-Neumann architecture machine, and that a new

generation of general purpose computing machines will

evolve.

Most computer architects also see a need for a new

generation of system design. Unfortunately, few truly new

inititives are forthcoming, as most 'new' designs are based

on a limited extension of the classical Von-Neumann

computing machine. The research set out in this Thesis has

set as its aim a divergence from classical views on computer

architecture, to views which may seem radical. This research

sees as its starting point the abandonment of classical

bounded multi processor computing systems, consisting of say

64 processors. Only with seemingly unbounded systems can we

say that computer architecture has developed a new Fifth

Generation of computing machinery.

1.1 Computer Architecture

Defining what is meant by Computer Architecture is not

a simple task. Computer Architecture is not restricted to

the sole aspects of hardware. Building black-boxes from

Page 1-1

registers, memory devices etc., is certainly part of the

process, so is the interconnection of these boxes via buses,

switches and controllers. A blend of hardware and software

features which make the machine operate must also be

included. Computer architecture may be defined as the design

of the integrated system which provides a useful tool to the

programmer. Computer architecture may be defined to mean:-

The internal workings of the black-boxes which are

the main components of the system and the means of

interconnecting these boxes, their parallel

activites and cooperation.

1.2 The Von-Neumann Architecture

The first major architecture was proposed by John

Von-Neumann et al. in their 1946 paper, 'Preliminary

Discussions of the Logic Design of an Electronic Computing

Instrument 1 [5]. Even with the advent of modern machines [4]

most computer architectures bear the mark of this design.

Therefore before embarking on any description of the

generations of computer architecture, a brief description of

the Von-Neumann architectural model is essential.

The Von-Neumann architectural model was conceived for a

specific purpose, that of providing a simple stored program

execution mechanism to carry out the computations for the

solutions of differential equations. The architecture can be

said to have the following properties:-

Page 1-2

1) A single, sequentially addressed memory. The program and

its associated data are stored in a single memory, the

memory being referenced with sequential (0, 1, 2, 3,...)

addresses.

2) A linear memory. The memory is one dimensional, that is,

it has the appearance of a vector of words.

3) No explicit distinction between instructions and data.

Instructions and data are distinguished implicitly by the

operations directed toward them.

4) Meaning is not part of the data. There is nothing that

explicitly distinguishes a set of bits representing a

floating-point number from those representing a character

string. The meaning of the data is assigned by the program

logic.

1.3 Von-Neumann Architectural Implementations

Computer architecture has developed much in the last 30

years, from the Manchester Mark-1 to Seymour Cray's Cray

X-MP/2 [13].

The Mark 1 is of historical importance as it was the

world's first stored-program computer. The machine marked

the beginning of a new technological era. In todays terms

the machine posessed the following hardware features:

Page 1-3

1) A 32-bit word length.

2) Serial binary arithmetic (2's complement).

3) A main store of 32 words (expandable to 8192).

The main emphasis of the project was to prove the

practicability of the Williams Tube for realising the stored

program concept and as a result the logic was kept as simple

as possible. The subtracter was the only arithmetic element

included, as it can perform complements and additions

without modification.

The next major step was the prototype construction of

the Atlas machines at Manchester University in the 1950's

[2]. Atlas-1 and Atlas-2 were eventually produced by the

Ferranti Corp. Atlas featured multiple index registers,

interrupt processing of I/O devices. Two original features

of Atlas, namely a one-level storage and extracode have been

copied in many other machines. The one level store is common

to most time-shared or multi programmed computers.

Significant features of the Atlas system were:-

1) Provision of a virtual address space greater than the

physical address space.

2) Implementation of a one level store using a mixture of

core and drum memories.

3) Interrupt system and method of peripheral control.

4) Realisation at the design stage that there would be a

complex operating system and provision in the hardware of

specific features needed to assist such an operating system.

Page 1-4

Computer systems have usually been designed via the

'hardware' route. Subsequent to design, these systems have

been handed over to a systems programming team for the

development of a package to facilitate the use of the

hardware. However the Burroughs B5000 [3] was designed from

top to bottom as a total hardware/software system.

The B5000 achieves a unique physical and operational

modularity through the use of switches which logically

function as crossbar switches. The B5000 was designed as an

integrated hardware/software system which offered

multiprocessing and parallel processing.

The Digital Equipment Corporation's PDP-8 is of

importance as it was the first true minicomputer. The PDP-8

was a single address 8 bit computer. It was the first of a

family called the 'OMNIBUS' machines. Like its predecesor,

the PDP-5, the PDP-8 was a single address 12-bit [10]

computer designed for 'task' environments with a minimum of

arithmetic computing and and small memory requirements, i.e

process control.

The early constraints placed on computer architects,

created computers with what we now regard as faults or

weaknesses, namely:-

1) Limited addressing capability

2) Few registers

3) No hardware stack facilities

4) Limited priority interrupt structures

5) No byte string handling

Page 1-5

6) No ROM facilities

7) Little I/O processing

8) No simple hardware upgrade

9) High programming costs (All users use machine code)

The DEC PDP-11 was designed with the above in mind, and

successfully [9] overcame these limitations. This was due

mainly to the fact that semiconductor technology became

available to solve the problems at low cost.

The VAX-11/780 computer system is the first

implementation of the [11] VAX-11 architecture, a Virtual

Address extension to the PDP-11 architecture. The most

distinctive feature of the VAX is the extension of the

virtual address from 16 bits, as on the PDP-11, to 32 bits;

giving an address space of some 4.3 gigabytes. Since maximum

PDP-11 compatibility was a design objective, the VAX

includes a compatibility mode which provides the basic

PDP-11 instruction set, without the privileged instructions.

The IBM System/360 and System/370

The System 360 was the first planned computer family to

cover a range [1] of cost and performance. The 360

predecessor, the 7090, ran into problems later encounterd by

the PDP-8, namely limited growth potential. Rather than

'fiddle 1 with the architecture IBM planned a family of

processors with growth potential for the future. The initial

family plan called for a wide range of cost and performance

implementations, microcode being used to provide emulation

support for prior systems.

Page 1-6

The motivation to extend the 360 architecture came from

two main sources:-

1) The experience of the 360 achitecture has identified a

number of bottlenecks and limitations in the efficiency of

system use has pointed out areas where additional machines

were needed.

2) The lowering of the cost of technology made it

economically possible to include functions that did not

appear justified in the original 360 architecture.

The most interesting aspect of the 360-370 design is

achieving a performance range and a primary memory size

range in excess of 100:1.Thus the user is given a very large

range of configuration alternatives.

1.4 Fifth Generation Computer Research

Japan's capability for producing high quality

electronic products is well known. It therefore came as a

shock when in 1981 the Japanese announced to the World a

programme of research into Fifth Generation computing

systems. This was the responsibility of The Japanese

Ministry of International Trade and Industry, MITI [8].

1.4.1 Japanese Activity

In 1982 Supercomputers were an American exclusive.

Today, Japanese firms are offering machines that challenge,

and in some ways exceed, the performance of those American

machines. This has been due mainly to the fact that MITI

Page 1-7

has decided that Japan must learn to innovate, not just copy

and improve on existing technology.

MITI's development plans for fifth Generation computers

started in 1982. The budget for the years 1982-1984 being

some 10 billion Yen. The Institute for New Generation

Computer Technology (ICOT) has been created to spearhead

Japanese efforts in the field, and has been succesful in

designing and building an Inference Machine and a Database

Machine.

However, NTT is the only Japanese company trying to

develop a true [12] parallel processor. Two types of

dataflow are under study; one is a highly parallel array

processor for scientific calculations, the other is an

architecture designed to apply data-flow techniques to list

processing.

1.4.2 The Alvey Programme

The Japanese initative produced a number of responses

around the word. The most notable was The UK's Alvey

Committee, which producd a number of goals for Britan's

involvements in fifth Generation computing systems. The

Alvey Programme was set up as a result of the Alvey

Committee report, (A Programme for Advanced Information

Technology), in 1982. The Programme aims to mobilise the

United Kingdom's strengths in Information Technology, (IT),

in order to improve the UK's competitive position in the

World's IT market.

Page 1-8

The research programme is a collaborative effort

between Government, industry, academic and commercial

research units. The Programme combines projects in four main

technology areas.

The four enabling areas are:-

1) VLSI

The requirement for massively parallel systems demands

a VLSI approach to building systems. VLSI gives the

capability of interconnecting the very large number of logic

elements required for data and signal processing.

2) Software Engineering

Fifth generation computing systems will tend to be more

complex than present day systems. This will result in a

longer time delay in generating and maintaining proposed

fifth generation programs. Therefore, Software Engineering

is aimed at improving the efficiency of the specification,

generation and maintenance of the program instructions for

IT systems.

3) Intelligent Knowledge Based Systems

One major area of activity is the design of intelligent

machine/software systems. These systems should be adaptive

systems capable of learning. The object is to produce

inference systems that can be incorporated in education,

medicine, military, etc.

Page 1-9

4) The Man-Machine Interface

The proposals of 'Alvey' clearly imply that computing

systems will be applied to new application areas, possibly

with new methods for input and output. The wider aspects of

the involvement include psychological aspects of using

complex systems.

Specifically, this section covers visual, speech, touch

input-output devices and the better understanding of the

nature of communication between the user and the machine.

Following Japan's initative, the United States and

Europe have started various research programmes into fifth

Generation design. Most countries are in an early stage of

development and are desperately trying to catch up on

Japan's early lead. One question remains unanswered; are the

claimed fifth Generation systems truly advances on the older

technologies, or simply refinements of proven systems?

1.5 Thesis Plan

Following a brief introduction to Computer Architecture

and the area of the proposed fifth Generation computing in

chapter 1, chapter 2 presents a critique of architectures

from the previous generations presenting a new possible

classification scheme for the architectural generations,

independant of technology. The chapter also examines the

reasons why the Von-Neumann architecture is in need of

replacement, and examines some of the machines which have

tried to overcome its limitations.

Page 1-10

Chapter 3 looks at the new application requirements of

a fifth Generation computer system, and criticises some of

the so called fifth Generation machines.

Chapter 4 examines the problems of bus contention

brought about by large numbers of processors and offers some

solutions to this problem. This chapter presents bus

interconnection patterns in the context of maximising bus

traffic in fully distributed systems.

In chapter 5, an introduction to a Polymorphic, Space

Sharing [6] Computer System, called the Group Processor

System, is given. Details of the functions performed within

the components of the Group Processor's homogenous

architecture and the interaction within the organisational

structure are presented. The design claims to overcome the

two basic problems isolated by the Data Flow Group at

U.C. Irvine [7] namely data localisation and concurrent bus

access. This architecture is able to emulate a data driven

machine.

Chapter 6 presents an introduction to the various

methods of system performance measurement and gives a

detailed simulation environment for hierarchical system

interconnection. Moreover, the simulator is concerned with

the dynamic environment generated by the execution Group

Processor System environment.

Chapter 7 examines results from the simulator for

various system configurations. The simulator provides a

'window' on the program environment within the Group

Page 1-11

Processor System, this yields important data used to

optimise the Group Processor System architecture. This

chapter highlights one major weakness of Quick's original

design concept for the Group Processor System, that of real

time input/output under heavy loading.

The proposed architecture presented by Quick [6]

provided detail into the working architecture of the basic

Group Processor System. However, many areas of the bus

system were left for refinement, and these are studied in

this Thesis. The results of the study have enabled the next

chapter, chapter 8, to propose many important system tuning

features to be employed in engineering the Group Processor

System. The chapter proposes a new design for the

input/output system of the Group Processor System.

The final chapter, chapter 9, contains conclusions

drawn from this research. Specifically, the areas of

computer architecture, fifth Generation Computer

Architecture, system simulation and system performance are

discussed.

Each chapter is complete with references at the end of

the chapter. The references are presented in the UNIX

format.

1.6 Scope of the Thesis.

This research continues the abandonment of the

Von-Neumann architecture, for an architecture more radical

in concept. Polymorphic systems provide the necessary degree

Page 1-12

of reliability needed for real time control systems coupled

with a high degree of resource utilisation. The major

advantages of the Polymorphic 'Group Processor System' is

its massive parallelism. While the Group Processor System

seems to offer a solution to current problems in IKBS, some

potential problems arise when 'engineering' the system.

These areas are addressed in this Thesis by simulating the

bus interaction for various bus scheduling schemes and

system configurations. The results drawn from this Thesis

provide the information needed to proceed with the next

stage of the Group Processor System, namely circuit and

software design.

Page 1-13

References - Chapter 1

1. IBM Corporation, "A Guide to the IBM System/370", 5th
Edition 1976.

2. SUMNER, F., HALEY, G., AND CHEN, E., "The Central
Control Unit of th ATLAS Computer", PROC IFIP 1962.

3. LONERGAN, W., AND KING, P., "Design of the B5000",
Datamation V7 N5 1961.

4. SIEWIOREK, D., BELL, G., AND NEWELL, A., "Computer
Structure: Principles and Examples", McGraw-Hill 1982

5. BURKS, A.W., GOLDSTINE, H.H., AND VON-NEUMANN,J.,
"Preliminary Discussion of the Logic Design of an
Electronic Computing Instrument", Pt 1. No.l, Princeton
N.J. 1946.

6. QUICK, G.E., "The Group Processor Approach Computer
Architecture", Ph.D Thesis, UC Swansea 1982.

7. GOSTELOW, K.P. AND THOMAS, R.E., "Performance of a
Dataflow Computer.," UC Irvine TR 127a.

8. MOTO-OKA, T., "Fifth Generation Systems," North Holland
1982.

9. DIGITAL, "PDP-11 Hardware Handbook", 1977.

10 BELL, G., MUDGE, J., AND McNAMARA, J., "A DEC View of
Hardware System Design", Digital Press 1978.

11. DIGITAL, "VAX-11/780 Hardware Handbook", 1982-3.

12. NATO Conference on Relational Database Architecture,
Les Arcs, France 1985.

13. LUBEK, 0., MOOR, J. AND MENDEX, R., "A Benchmark of
Three Supercomputers: Fujitsu VP-200, Hitachi S810/20
and Cray X-MP/2", IEEE Computer 1984

Page 1-14

CHAPTER TWO

CHAPTER TWO

THE FOUNDATIONS OF COMPUTER ARCHITECTURE

2.0 Introduction

Many of the designs for computing systems have been

centred on a typical system architecture comprising of a

central processor (or some finite multiple up to say 16),

random access memory, input-output processors, and some

backup storage such as magnetic disk or tape. Highly

reliable systems, such as the Tandem [17] have been an

extension to these systems by incorporating some form of

redundancy in one or more parts of the design.

The more "classical" designs are based on Von-Neumann's

architecture, which have received criticism from some

researchers [3,21,7]. A number of variations on the

Von-Neumann architecture has resulted in many

multi-processor and multi-computer organisations

[1,4,24,14,19,30,32,33]. In developing an alternative

design, researchers have proposed several alternative

architectures [2,8,13,26,28]. These architectures can be

best described as non sequential; they have tried to deviate

from the classical Von-Neumann machine.

Page 2-1

2.1 Why a new generation of computers?

With few exceptions, there have been no advances in

computer architecture of current systems since the 1950's.

An argument against this is the introduction of such

concepts as microprogramming, VLSI, pipelining and cache

memories. However, these do not represent architectural

concepts, but merely advances in the implementation of

particular current architectures.

In comparing the architectures of the most widely used

machines;

e.g. IBM S/370 S/34, DEC PDP/11, VAX etc

to the EDSAC and EDVAC, the first electronic stored program

computers, all the significant differences will be found to

have originated in the 1960's. Which were:-

1) Index registers

2) General purpose registers

3) Floating point data representation

4) Indirect addressing

5) Interrupts

6) Asynchronous input-output

7) Virtual storage

8) Multi-tasking

Although current systems differ significantly from

their predecessors in terms of cost, speed, reliability,

internal organisation and circuit technology, the computer

Page 2-2

architecture of most current systems has not advanced beyond

the concepts of the 1950's.

Given this state of affairs the following must be

asked:-

1) Are the architectures of the 40's and 50's the optimal

ones for today?

2) Is not todays world different, measured in cost of logic,

speed, sophistication of computer application and magnitude

of the software problem, and that changes in computer

architecture are needed?

If the above points are valid, we must put forward some

evidence why a new approach is necessary.

2.2 The Semantic Gap

Most of the shortcomings in todays machines are due to

the 'Semantic Gap'. The Semantic Gap was originally defined

to be a measure of the difference between concepts in

current high level languages and the underlying concepts in

computer architecture [20].

Todays systems have an uncomfortable semantic gap in

that objects and operations reflected in their architecture

are rarely closely related to the objects and operations

provided by the programming languages. In broadening the

definition of the semantic gap, it may be said that there is

a large gap in semantics between programming environments

Page 2-3

and their representation of the program concepts at the

architectural level.

2.2.1 The Operating System Semantic Gap

The operating system is an integral part of most

computing systems. In general the operating system has four

purposes:-

1) Providing utility services to other programs, such as

storage allocation for the execution of large programs.

2) Shielding programs from such items as interrupts, machine

interfaces etc. for software portability.

3) Providing, at varying levels of sophistication, a

"virtual machine' concept.

4) Creating and enforcing system managemant policies.

A case can be built for a gap between the operating

system concepts and the underlying machine. For instance,

many operating systems designers recognise that the working

set model is crucial to managing a storage hierarchy in a

close to optimal manner. Although instrumentation required

to do this has been identified it exists in no commercial

architectures.

2.2.2 The Programming Environment Semantic Gap

Evidence can be found of a large gap between

fundamental notions of programming and most computer

Page 2-4

architectures. For instance, such concepts as modularity,

abstract data types [22], information hiding, and monitors

are important in the design of large software systems, but

support for these concepts is missing from today's

architectures.

2.2.3 The Storage Semantic Gap

This gap is more difficult to see as it represents a

gap that does not exist. The operating system architects

have obscured the gap by falling into it. The issue here is

the lack of a uniform concept of storage. The programmer is

faced with a visable hierarchy of registers, stacks, RAM,

tapes etc. Each medium has a different addressing mechanism,

allocation machanism etc. It is for the wrong reason that

the gap does not exist. Rather than presenting the high

level language programmer with a uniform notion of storage,

one is presented with a number of inconsistent concepts

which are technology dependant.

2.2.4 Consequences of the Semantic Gap

The semantic gap is a significant contributor to

software unreliability in the sense that a large set of

programming errors that could be theoretically prevented or

detected by the computing system are not prevented or even

detected in current systems, i.e array bound checks,

references to undefined or unset variables.

Page 2-5

2.3 The Von-Neuniann Architecture

The basic reason for the semantic gap in current

systems is that their architectures do not significantly

differ from the Von-Neumann model developed in the 1940's.

We may class all current machines as being of the

Von-Neumann type.

Although the von Neumann architecture was a reasonable

architecture for the first stored-program computer, it is

alien to the execution of programs writen in high level

languages.

In contrast to the four main characteristics of a

Von-Neumann architecture given in Chapter-1, high level

languages have the following characteristics:-

1) Storage is presented as a set of discrete named

variables. There is no concept of one variable being 'next'

to another. There is no reason to believe that variables in

one subroutine are located in the same storage device as the

variables in another. In short, the concept of a single

sequential storage bears little resemblance to the concept

of storage in programming languages.

2) Programming languages deal with multi-dimensional, not

just linear, data types.

3) In programming languages there is a sharp distinction

between data and instructions.

Page 2-6

2.4 Parallel Systems

Some of the architectures which have moved away from

the Von-Neumann mode are multi-processor and multi-computer

systems. However, there is some confusion as to the

definition of such term. Some clarification and extension of

notation is first required.

2.5 Multi-Processor Systems And Attributes

One of the fundamental problems with traditional

multi-processor configurations is the interconnection of

memories and processors, and also their interconection to

the outside world. This section analyses the attributes of

multi-processor computer systems.

2.5.1 Multi-Procssor Computer Systems

This section discusses the clasification of various

multi processor computer system schemes available to the

computer architect, with reference to reliability. A "black

box" approach, synonymous with the integrated circuit will

be used to represent the micro partitioning of systems, e.g.

processor, memory, etc. Macro partitioning is used to

represent a stand alone general purpose, i.e. non

specialised, computer system. The figures in this section,

i.e. figures 2.1. and 2.2., are single user systems which

are either a host mainframe or user terminal.

Page 2-7

P3

Global Memory
(a) Totally Shared Memory

Ml

P1

M2

P2

M3

P3 — — — —

fin

Pn

Global Memory
(b) Limited Shared Memory

Figure 2.1 Single User Tightly
Coupled Computer System

Page 2-8

2.5.2 Tightly Coupled Computer Systems

A tightly coupled Computer System [17], is a multiple

processor, shared memory, computer system. Figure 2.1.a.

shows a "totally shared memory" structure, while figure

2.1.b. shows a "limited shared memory" structure.

The major advantage of the totally shared memory is its

inherent flexibility. This is best illustrated by

considering a processor, say P2, as failed. From figure

2.1.a., any other processor may address each others memory

space during a recovery process. By comparison, recovery is

difficult in figure 2.1.b, where the recovery process has to

access the local memory, i.e. M2. However, the provision of

local memory does provide a closed process environment,

resulting in the confinement of processing errors to the

local memory. Local memory provides an additional speedup

[33] in computation, because contention for shared memory

access is reduced.

2.5.3 Loosely Coupled Computer Systems

Loosely Coupled Systems [10] are multiple computer

systems in which there is no shared memory, and all inter

processor communication takes place through input-output

channels.

Loosely Coupled Systems have more structure than

Tightly Coupled Systems because their inter processor

communication is intelligent. This enables intelligent inter

process communication between communicating processes, at

Page 2-9

the machine level, e.g. through input-output channels. This

is not possible in Tightly Coupled Computer Systems, as any

processor may access any location in the shared memory, e.g.

when a faulty processor writes to an output area of another

processor, producing systemic process corruption.

2.6 Multi-Processor Classifications

Multi-Processor Classification has enabled a

classification scheme to represent inherent qualities of two

dissimilar system structures. When considering the execution

of a program, as an execution of communicating processes in

the single user systems of figure 2.1. and 2.2., the Tightly

Coupled Computer Sytems offers a more reliable programming

environment through its closed, i.e. local, memory

architecture.

In a multi user interactive system, employing a

multi-processor architecture, the input-output to the user

terminals is performed by a fast, uni-processor based,

communication processor. This type of system is shown in

figure 2.3. While the execution environment of figure 2.3 is

more reliable than the conventional uniprocessor systems,

the reliability of the front-end communication processor is

a single point of failure. With this in mind, the ideal

multi-user, multi-processor machine provides a process

execution environment which is loosely coupled, together

with a loosely coupled input-output to the system users.

Page 2-10

Computer Sys 1

— ~
Communication Channels

1 1

Inter Computer Comms Network

Users

Figure 2.2 Single User
Loosely Coupled System

Page 2-11

Tightly/Loosely
Coupled Computer

System

Multiplexed
Frontend
Processor

Figure 2.3 Multi-User Multi-Processor
Computer System

Page 2-12

Quick proposes a change in the system classifcation

scheme which includes [12] input-output architecture to the

execution environment. The Tightly/Loosely Coupled Computer

Systems shown here, together with Flynn's classification

[11] e.g. Multi Instruction Multi Data - MIMD, require

extension, or clarification.

The extended classification is:-

1 (a) Tightly Coupled, Single I/O (i.e. Single channel I/O)

(b) Tightly Coupled, Parallel I/O (i.e. Multiple channel

I/O)

2 (a) Loosely Coupled, Single I/O (i.e. Single channel I/O)

(b) Loosely Coupled, Parallel I/O (i.e. Multiple channel

I/O)

Relating the above classifications to fifth generation

requirement; the system structure would have the

input-output equivalent of l(b) or 2(b).

The proposals for fifth generation architectures

requires a move away from the multiplexed front-end

processor. The multiplexed input-output channel does not

offer the speed required for the fifth generation human

interface. Dedicated input-output channels seem to be the

only mechanism capable of matching applications to

architectural requirement.

Page 2-13

2.7 Bounded Parallel Systems

A machine architecture is bounded if there are up to,

say 64 processors where the architecture is defined in terms

of maximum system configuration. That is, the maximum number

of processors that can be integrated into the system is 64.

The limiting factors here are based on technological

limitations such as pinout numbers on integrated circuits.

Bounded systems tend to be cheaper designs than more

flexible unbounded systems.

2.8 Unbounded Parallel Systems

A machine architecture is unbounded if it is designed

with maximum flexibility and extensibility as a fundamental

system requirement. Such systems should be capable of

supporting in excess of 10,000 processors, and ideally

millions of processors. In reality; it is difficult to

design systems that are truly unbounded. The physical

interconnection of the main components require a fixed

number of hardwired connections. An unbounded

interconnection scheme demands maximum flexibility in the

interconnection, and hence requires soft and not hard

connections. It can be said that they approach the unbounded

state.

Page 2-14

2.9 Engineered Bounded Systems

Four architectures which have moved away from the

classical uni-processor architecture.

1) The VAX-11/782

2) The Burroughs B5000

3) The iAPX-432

4) C.mmp

2.9.1 Multi-processor Configurations of the VAX-11/780

The simplest multi-processor configuration of the VAX

family is the [35] VAX-11/782, a tightly coupled

asymmetrical multi-processor. The 782 is based on two 780

processors using the MA780 shared memory subsystem (Figure

2.4).

At the centre of all VAX multi-processors is the

multiport memory. This enables up to four VAX processors to

share a bank of memory. This feature allows VAX users to

develop multi computer configurations for very high

throughput or enhanced availability.

Applications built around multiple cooperating

processes can be configured to run on multi-processor

systems with no programming modification. Processes in

shared memory can be moved from one procecssor to another

with complete transparency to the programs involved.

Page 2-15

LO
CA

L
[M

EM
OR

Y
VA

X-

11
/7

80
VA

X-

11
/7

80
LO

CA
L

IM
EM

OR
1

SB
I

•c 0>

IQ

(D 10 i M a\
MB

A
JU

B
A

|
PO

RT
M

UL
TI

PO
RT

M

EM
OR

Y

SB
I

PO
RT

lu
B

A
J

M
BA

Fi
gu

re
 2

.4

An interesting point to note is that each processor in

the multiport system operates independantly using its own

copy of the operating system stored in its local memory.

This 'local operating system 1 is discussed further in

chapter 5.

Port Arbitration

The high throughput of VAX multi-processor

configurations is due to each port having a buffer for

commands and data. Each port is served on a demand basis,

that is, first-in first-served. No time is wasted in polling

inactive ports. A serving algorithm guarantees that no port

waits more than three memory cycles to gain access to shared

memory.

A problem associated with multiport memory is that of

one processor trying to read a location at the same time

another is trying to modify it. The VAX eliminated this

contention by locking out the second processor until the

first has completed the transaction.

Parallel and Sequential Procesing

The multiport memory of the VAX can enhance system

performance via two configurations:-

1) Parallel or 2) Pipeline processing.

Page 2-17

M
A

•B

0>

(Q

A I M

00

IN
PU

T

VA
X

PA
RA

LL
EL

SE
QU

EN
TI

AL

O
UT

PA
RA

LL
EL

 A
ND

 S
EQ

UE
NT

IA
L

VA
X

CO
NF

IG
UR

AT
IO

NS

Fi
gu

re
 2

.5

In the parallel mode; two or more processors divide the

task between them, allowing processors to pool resources.

Pipelining can increase total system throughput by allowing

instantaneous data exchange between processors that are

handling the sequential parts of an application. The

following figure (Fig 2.5) illustrates possible

configurations.

Although the VAX can be configured to run as a

multi-processor, its design is that of a uniprocessor. This

leads to several major problems on throughput. In the

tightly coupled system, processors execute the same copy of

the operating system and share the same data structures.

Asymmetric processors cannot execute the entire operating

system code at the same time. In a dual processor

configuration, figure 2.6, all kernal mode and interrupt

code is executed by the primary processor. Also all

Input/Output is conducted by the primary processor. These

design features can lead to the second processor being

almost inactive due to the primary being input-output bound.

Therefore every time the secondary processor generates a

page fault, the primary processor must halt its current

activity and service the attached processor.

Due to the above problems the 782 is only 'in its

element' when handling primarily compute bound jobs. This

leaves the primary processor free to handle all Input-Output

at a reasonable throughput.

Page 2-19

fa

•a 01

(Q 9 10 I ro o

M
E
M
O
R
Y

2
5
6
K
B

F
P

7
8

0

U
C

S

C
O

N
SO

LE

S
U

B
S

Y
S

TE
M

C
P

U

S
H

A
R

E
D

M

E
M

O
R

Y

1
TO

8

M
B

CO
NS

O
LE

SU

BS
YS

TE
M

C
P

U

F
P

7
8

0

U
C

5
M

EM
O

R
Y

2
5
6

K
B

I/
O

A

D
A

P
T

E
R

S

ui D

CD D

10

D

DD

V
A

X
-1

1
/7

8
2

H

A
R

D
W

A
R

E

C
O

N
F

IG
U

R
A

T
IO

N

Fi
gu

re
 2

.6

2.9.2 The Design of the Burroughs B5000

Computing systems have usually been designed via the
hardware route; i.e. design the physical machine first and
then implement the software at a later date.

A contrast to this was the design of the B5000. From
the initial design, the system was thought of as a total
hardware-software system.

Design Objectives and Criteria

The fundamental objective of the system was the
reduction of total problem through-put time. A second
objective, and in terms of this Thesis the more significant,
was the provision of facilities to change both programs and
system configuration.

Early in the design phase of the system major
principles were established:

1) Multi-tasking and true parallel processing, requiring
multiple processors should be provided.

2) System reconfiguration, within reasonable limits, should
not require any systems reprogramming.

3) Data and programs should be independant of location.

Page 2-21

2.9.3 The Intel iAPX-432. An Advanced Microprocessor

The iAPX-432 microprocessor was designed with the aim

of reducing the software development problems created by the

Semantic Gap.

With this in mind likely application areas for the 432

are:

1) Low volume applications where the programming investment

is high.

2) High volume applications where programming is more than a

one time occurence.

3) Those areas with a high degree of concurrency.

It is this last area which is of significance to this

Thesis. Other aims of the 432 design were incremental system

performance, or the ability to tune the performance of the

system by adding or subtracting processors without the need

to modify software. The final two aims of the system were

the ability of the system to provide 'shadow' redundant

processors to check system integrity and support for the ADA

language at a fairly low level.

2.9.3.1 Overview of the iAPX-432

Many of the architectural attributes of the 432 are

similar to that of the SWARD architecture [36], the major

difference being that the 432 is not a tagged-storage

machine.

Page 2-22

The fundamental concept of the architecture is that of

an 'object' [25]. An object is a collection of related

information which, with a set of applicable operators, forms

an abstraction.

The main features of the 432 are:

1) Capability Based Addressing

The 432 employs the addressing and protection concept

of capabilities. A capability, or access descriptor, refers

to an object and contains sets of access rights to that

object.

2) Garbage Collection

3) Small Protection Domains

4) Automatic Subroutine Management

5) Process and Processor Objects

In the 432 concurrent processes and processors are

represented by objects. This provide the system with a high

degree of flexibility and regularity. Inherent in the 432

architecture is a high degree of support for concurrent

processes and multiple processors. This includes

interprocess and interprocessor synchronisation and

communication.

These features are enabled by having a 'pool' of

processors to which processes are dispatched from a central

queue, that is the 432 is a polymorphic system. The 432

provides an effective and highly flexible means of

controlling and dispatching of processes to processors. In

Page 2-23

general, low level decisions are taken by the hardware but

the progress of processes is controllable by the operating

system by setting a variety of parameters in the process

objects.

6) Send and Receive Mechanism

Inter-process communication is provided by a

communication port which is itself an object.

7) Large Address Space

The 432 provides a large address space, in terms of

both objects and physical store.

8) Flexible Operand addressing.

9) Extensive Floating-point Facilities

2.9.3.2 Components and Configurations

Currently the iAPX-432 system consist of three

component types. The 43201 and 43202 make up a General Data

Processor. The 43201 fetches and decodes instructions while

the 43202 provides addressing and logic functions. The two

devices are tightly coupled via a microinstruction bus. The

final component is the 43203, the interface processor. This

serves as an input-output channel. The following figure

shows a four processor system, figure 2.7.

Page 2-24

Memory

43201

43202

4320J

43202

43 20 1

43202

43201

43202

P acket
Bus

Disk
Subsystem

Communication
Subsystem

Multibus

43203

I P

Multibus

43203

I P

Process Control
Subsystem

Figure 2.7

Page 2-25

In a multi-processor configuration, memory inter-facing

is a key concern. With a single memory bus the upper limit

on processors seems to be five processors [23] beyond this

memory interference is such that additional processors add

little to system performance.

2.9.4 Multi-Processor Research At Carnegie-Mellon University

In 1971 a research project was started to examine

multi-processor architectures, a main centre for the

research being those architectures which share a common

address space [33].

The first project, C.mmp is a relatively straight

forward multi-processor. Began in 1972 in connects up to 16

prcessors to a shared memory via a crosspoint switch.

2.9.4.1 C.mmp

Four main design criteria influenced the design of the

machine:

1) Minicomputers would be used as the processing elements.

2) The machine would have no 'master-slave' relationships

between the processors.

3) A large address space would be provided.

4) As much commercially available hardware would be used,

as was available.

Page 2-26

2.9.4.2 The Hardware

C.mmp is an asynchronous, MIMD multi-processor [5],

composed of slightly modified PDP-11/40 processors,

augmented by a writable control store, figure 2.8. Up to 16

of these processors can be connected to up to 16 shared

memory modules via a 16 x 16 crosspoint switch. A path

through the switch is independantly established for each

memory request and upto 16 paths may exist simultaneously.

Control signals are carried via an independant bus called

the IP-bus.

The memory modules provide a maximum physical address

space of 32 megabytes. All processors are capable of

accessing all memory, though the PDP-11's 16-bit

architecture limits the amount of directly addressable

memory at any one time to 64 kilobytes. In addition to the

shared memory each processor has 8 kilobytes of private

'local' memory. This space being used for context-swaps,

synchronisation etc. Input-Output devices are connected to

individual processor UNI-BUSES, and are controlled by the

individual processor.

Page 2-27

P
R
 I
M
A
R
Y

M
E
M
O
R
Y

0)

(Q ts
i i tsJ

00

s i ro

bo

P
R

O
C

E
S

S
O

R
^—

—

L
O
C
A
L

M
E
M
O
R
Y

/
O

/
O

C
A
C
H
E

R
E
L
O
C

A
T
I
O
N

C
R
O
S
S
P
O
I
N
T

S
W
I
T
C
H

(
1
6
x
1
6
)

01

"D

CO

IP

B
U
S

C
O
N
T
R
O
L

P
O
P
-
1
 1
/
4
0
E

M
I
N
I
 C
O
M
P
U
T
E
R

W
I
T
H

S
T
A
N
D
A
R
D

P
E
R
M
 I
P
H
E
R
A
L
S

M
A
S
T
E
R

C
L
O
C
K

H
A
L
T
/
S
T
A
R
T

I
N
T
E
R
R
U
P
T

TI
-IP

IP
TI

 I
RP

n
r

r
MM

P

2.9.4.3 The Software Base

Hydra is the kernel operating system for C.mmp [15]. It

does not provide files, command language or even a

scheduler. Rather, Hydra provides an environment in which it

is intended that the user should write programs that supply

these facilities.

Hydra, which was a research project itself [34] , uses

a capability-based protection structure.

2.9.4.4 Successes and Failures

The sucesses include then design and implementation of

a cost-effective multi-processor.

Drawbacks

C.mmp had its drawbacks though, these fall into three

groups:-

1) Hardware reliability.

Approximately two thirds of all system failures were

due to hardware problems. This being due to insufficient

error detection being built into the hardware. The systems

hub, the crosspoint switch, was too reliant on other

devices, i.e. processors and memory. The switch could be

rendered inoperative by a malfunction in one of these units.

Page 2-29

2) The small address space.

The PDP-11 restricts all addresses generated by user

programs to 16 bits long. This address space restricts the

memory size addressed to 64K. To overcome this problem C.mmp

provides a facility to divide the address space into 8

pages, the addressing mechanism being similar to the 'base

registers' on the IBM 360/370 style machines.

3) Partitioning.

C.mmp is able to partition processors and memory,

however it is not possible to run the operating system,

HYDRA, in more than one partition. C.mmp can be partitioned

in such a way that some processors and memories can undergo

maintenance and run stand-alone diagnostics without

interfering with the larger partition running HYDRA. This

means that disjoint time must be allocated for users and

maintenance.

This system serves as a excellent example of a bounded

parallel system, and its design must be seen as a success.

It is interesting to note the performance bottlenecks.

There is a too high operating system overhead of 500

microseconds on entering and leaving the kernel. Memory

contention caused by multiple processors is another problem.

This is caused by several processors trying to access the

same page in memory. The problem was mainly due to

multiprocess applications sharing the same code amongst

processors.

Page 2-30

2.10 Engineered Unbounded Systems

In 1975 a second multi-processor project was started at

CMU [6]. Cm* replaced the crosspoint switch of C.mmp with a

distributed bus orientated interconnection scheme between

processor-memory pairs.

2.10.1 The Structure of Cm*

One of the main features of Cm* which distinguishes it

from other multi-processor architectures is that the shared

memory is not disjoint from the processing elements, but a

unit of memory and a processor are closely coupled in a

module and a network of buses gives a processor access to

non-local memory, figure 2.9.

This structure gives modular expansion without rapid

interconnection costs. Memory can be shared even though

there is no direct physical link between the requesting

processor and memory. A Computer Module or Cm providing the

processing power, primary memory and Input-Output

connections for the system, figure 2.10.

The processor is a DEC LSI-11, this is a 16 bit

microprocessor cluster (See below). It also provides

interprocessor commnication, device interrupts, address

spaces etc. The Cm's are combined into a cluster via the Map

bus. This is a special purpose, packet switched bus.

Page 2-31

i i ro CO

•o (U

(Q

(D K) U
) K)

0>

(Q

(0 to
 i w

3 i ro

IN
TE

R-
CL

US
TE

R
BU

S

KM
AP

MA
P

BU
S

LS
I-1

1
BU

S

M
EM

O
RY

DE
VI

CE
S

SI
NG

LE
 C

m
*

M
OD

UL
E

/
CL

US
TE

R

The Kmap is a special purpose 'mapping controller'

which is shared by a cluster of Cm's. Clusters are connected

via Inter-cluster buses. All non-local memory references in

Cm* are handled by one or more Kmaps.

The Kmaps provide address expansion and mapping, both

within a cluster and between clusters. The contents of a

Kmap are:-

The Kbus, which provides an interface between the Map bus

and the Pmap and controls all transactions on the Map bus.

The Pmap, a mapping processor.

The Line, an interface between two inter-cluster buses.

The Kmaps and Slocals form the distributed switch.

The Structure of Cm*.

The way in which Cm*'s processors share primary memory

was chosen as it offers a closer degree of coupling, or

communication between processors, than would a multi

computer or network configuration. The main feature of the

switch structure is that shared memory is not separated from

the processing elements, but rather a unit of memory and a

processor are closely coupled in each module and a network

of buses gives a processor access to non-local memory.

The Extensibility of Cm*.

Processing power can be expanded by increasing the

number of Cm's per cluster of by adding additional clusters

of Cm's. Memory capacity can be increased by either adding

Page 2-34

it to an existing Cm or by adding additional Cm's. The

communication bandwidth of an individual processor Cm* is

limited by both its own performance and the bandwidth of the

map bus and intercluster buses. Because there is no central

bus or switching mechanism the machine can be virtually

indefinitly extended.

2.10.2 The Massively Parallel Processor (MPP)

The MPP is a SIMD parallel computer with 16K

processors, figure 2.11.

The MPP consists of 3 main elements:-

1) The sequential controller

2) The Parallel array

3) Staging memory

The controller is a high speed seqential computer with

its own logic and arithmetic functions. Its primary function

being to store and sequence through programs.

The controller is connected to the array via a set of

interface registers.

The array consists of 16384 processors in a 128x128

configuration. Each processor acts on data in its own

dedicated memory.

The array and staging memory is connected to peripherals via

a high speed Input-Output bus. The staging memory acts as a

data buffer between the arrays and the outside world.

Page 2-35

SEQUENTIAL
CONTROL

128 x128
PROCESSOR

ARRAY

HIGH SPEED
INPUT-OUTPUT

STAGING
MEMORY

Basic Organisation of MPP

Figure 2.11

Page 2-36

2.10.3 The INMOS TRANSPUTER

The word TRANSPUTER [31] was coined to be a hybrid of

'transistor' and computer. The implication being that the

device is both a component and a computer. With the

TRANSPUTER, Inmos has suggested an even higher level of

abstraction then the VLSI circuit.

TRANSPUTER'S can themselves be used as basic cells and

connected into networks, in which each node is a complete

processor. Therefore the TRANSPUTER has been designed as a

programmable component for building extended, parallel

computing systems with a language, Occam, which allows such

systems to be efficiently programmed.

The Device

The TRANSPUTER chip is a complex piece of silicon. The

chip includes a high-speed, reduced instruction set, RISC,

processor, 4k of static RAM, an Input-Output controller and

memory controller all on a single slice of silicon. The

inclusion of the Input-Output and memory controllers is

similar to that of the iAPX design.

The Input-Output controller section is responsible for

the four INMOS Links and an 8-bit peripheral interface bus.

The net effect of this being that the TRANSPUTER can control

or be controlled by existing peripheral devices.

The memory management unit allows each TRANSPUTER to

address up to 4 gigabytes of off chip memory in addition to

Page 2-37

its own RAM. One of the important decisions taken at design

time was to abandon virtual memory, on the assumption that

RAM is becoming cheaper more quickly than mass storage

devices. As a result the address space in completely uniform

thus alleviating any addressing problems.

The slightly faster on-chip memory is multi-ported so

that the processor and INMOS Links can have access to it.

Possible Architectures

The real potential of the TRANSPUTER lies in truly

parallel systems where a number of TRANSPUTERS share the

workload.

The TRANSPUTER lends itself to many interconnection

schemes. An obvious architecture is to connect the devices

in the form of a two dimensional array, or possibly a three

dimensional one, as each TRANSPUTER has 4 Links, figure

2.12.

Communication Links

The connecting of many 'conventional' microprocessors

has brought several bus interconnection problems. Namely

control of system interrupts; Intel's Multibus-II has five

different bus structures and complex bus arbitration logic;

this is mainly brought about by microprocessors being

designed as uni-processors. The TRANSPUTER solves the

communication problem by divorcing intercell communication

from conventional memory addressing and data transfer

functions, which take place via a 'conventional' bus.

Page 2-38

MICRO -
SEQUENCE
CONTROLLER

BYTE ALIGNER

INSTRUCTION BUFFER

CONTROL

READ-ONLY

MEMORY

REGISTERS

A.LU

INSTRUCTION ADDRESS

DATA ADDRESS

ADDRESS

TRANSPUTER PROCESSOR ORGANISATION

FOUR UNKS

1.5MBYTES/Sec

All links are 32 bit* wide
except for pertilperai Interface
(8 bit*)

Figure 2.12

Page 2-39

Communication between cells is accomplished via high

speed serial links which operate independantly of the bus.

Each TRANSPUTER has four of these links. Each is capable of

operating concurrently with the others and with the

processor.

The four links are a physical form of the Occam

'channel', which processes use to send data to one another

[18].

The idea behind the architecture is that TRANSPUTERS

will be as easy to interconnect as TTL devices.

Dataflow and Systolic Machines

The main aspect of dataflow is its elimination of the

fundamental properties of conventional programming languages

and machine architectures. In a data-flow architecture there

is no concept of passive data storage and in a dataflow

language there is no concept of variables; rather, data

values move from one instruction to another as the program

executes. There is no concept of flow control, counters or

branching. Instead the instructions are 'Data driven'.

Dataflow Machines.

A dataflow/systolic system consists of a set of

inter-connected cells, each capable of some simple

operation. Because simple, regular communication and control

structures have substantial advantages over complicated ones

Page 2-40

in design and implementation. Hence, cells in a systolic

system are usually interconnected too form an array or tree.

2.11 Summary

This chapter has presented an overview of existing

multi-processor architectures. However all of these, with

the exception of the INMOS TRANSPUTER, have built in design

limitations which restrict the creation of unbounded

systems. Therefore before designing new architectures it may

be better to examine the applications to which these new

machines will be put. This will give us a better

understanding of the architectures required.

Page 2-41

References - Chapter 2

1. ALEXY, G. and KATZ, B.J., "Multiprocessing Increases
Power of Inexpensive Microprocessor Designs," EDN 1980.

2. AMIKURA, K., "A Logic Design for the Cell Block of a
Data Flow Processor," MIT/LCS/TM 93 1977.

3. BACKUS, J., "Can Programming be liberated from the
Von-Neumann Style? A Functional Style and its Algebra
of Programs.," Communications of the ACM V21 N641 1978.

4. BAILEY, B., "Ceramic Chip Carriers - A New Standard in
Packaging," Electronic Engineering V52 V21 N8 1978.

5. WULF, W., AND BELL, G.,"C.mmp: A Multi-Mini-Processor",
AFIPS FJCC V41 1972

6. SWAN, R., "The Switching Structure and Addressing
Architecture of an Extensible Multiprocessor Cm*",
Ph.D. Thesis CMU 1978

7. DENNING, P.J., "Fault Tolerant Operating System,"
Computing Serveys V8 N4 1976.

8. DOMAN, A., "PARADOCS: A Highly Parallel Data Flow
Computer and its Dataflow Language," Euromicro V7 Nl
1981.

9,10.ENSLOW, P.H., "Multiprocessr Organisation - A
Survey," Computing Surveys V9 Nl 1977.

11 FLYNN, M.J., "Very High Speed Computing Systems", PROC.
of the IEEE. Dec 1966.

12. QUICK, G.E., "The Group Processor Approach to Computer
Architecture", Ph.D Thesis, UC Swansea 1982.

13. GOSTELOW, K.P, and THOMAS, R.E. "An Asynchronous
Programming Language and Computing Machine," UC Irvine
TR 127a.

14. I.E.E.E,, "Special Issue on Array Processor
Architecture," Computer V14 N9 1981.

15. WULF, W. et al., "Hydra: The Kernel of a Multiprocessor
Operating System", Comm. ACM VI7 1974.

16. KUCK, D.J., "The Structure of Computers and
Computation, Vol. 1," John Wiley 1978.

17. LEVY, J.V., "A Multiple Computer System for Reliable
Transaction Processing," SigSmall Newsletter V4 N5
1978.

Page 2-42

18 INMOS, "Occam Programming Manual", INMOS 1983

19. MILLS, D.L., "The Basic Operating System for the
Distributed Computer Network", SigSmall Newsletter V4
N5 19778

20-23. MYERS, G., "Advances in Computer Architecture 2nd
Edition," Addison Wesley 1982.

24. COMPUTER ARCHITECTURE NEWS, "Conference Proceedings 7th
Annual Symposium on Computer Architecture," Sigarch
News V8 N3 1980.

25. ALMES, G., "Garbage Collection in an Object-Oriented
System", Ph.D Thesis CMU 1980.

26. ROSENFIELD, A., Error Recovery and Process
Communication," Stanford University Ph.D 1976.

27. MYERS, G., "Advances in Computer Architecture 2nd
Edition," Addison Wesley 1982.

28. SCHINDLER, M., "New Architectures Keep Pace with
Throughput Needs," Electronic Design May 14 1981.

29. SHARP, J.A., "Some Thoughts on Data Flow Computer
Architectures," Sigarch News V8 N4 1980.

30 SWAN, R.J., "CM* - A Modular multi-processor", AFIPS
V46

31. INMOS, "The TRANSPUTER", Advance Information 1982.

32. WEITZMAN, C., "Distributed Micro/Minicomputer Systems",
Prentice-Hall 1980.

33. WULF, W.A. AND HARBISON, S.P, "Reflections in a Pool of
Processors," CMU-CS-78-103.

34. WULF, W.A., LEVIN, R., and PIERSON, C., "Overview of
the Hydra Operating System", Proceedings of the 5th
Symposium on Operating System Principles. 1975.

35. DIGITAL EQUIPMENT CORP., "VAX-11/780 Hardware Handbook,
1983

36. MYERS, G., "Advances in Computer Architecture 2nd
Edition," Addison Wesley 1982.

Page 2-43

CHAPTER THREE

CHAPTER THREE

FIFTH GENERATION NEEDS

3.0 Introduction

The proposed advanced fifth generation computer systems

should incorporate all the advances made in computer

technology over the last 20 years. With fifth generation

computers, however, the expected changes will be more

generic changes, involving not only device technology but

also simultaneous changes in design philosophy and in

envisioned applications. This technological change is so

great that we could even call fifth generation systems

new-era computers. These advances, such as high reliability,

high availability, coupled with VLSI implementation impose

severe difficulties for the computer architect. These

difficulties are further compounded when unbounded

parallelism is exploited.

This chapter discusses many aspects of fifth generation

system design, and proposals for the new areas of activity.

3.1 Background

The general consensus that the computer of the 1990's

will be a non Von-Neumann architecture will be substantiated

by [12] application needs. Fifth generation computing

Page 3-1

machines will be established, supporting the following

application areas:

1) Knowledge based information processing systems.

2) Distributed computer systems based on wide as well as

local area networks, and integrated parallel architecture.

3) Data and demand driven computers. User oriented self

programming systems supporting very high level programmming

languages.

4) VLSI implementation of dedicated processors exploiting

miniaturisation.

3.2 Fifth Generation Computer Systems

These new machines will replace the outdated machines

of the past, just as the electronic calculator replaced the

Engineer's sliderule, or the wordprocessor replaced the

typewriter.

In the analysis of current system architectures for

fifth generation applications, a list of 'needs' may be

established. The 'needs list' represents a detailed

breakdown of the functional requirement of the application,

and therefore provide the first stage in the top down design

process.

Page 3-2

3.3 Application Areas

Fifth generation computers are knowledge information

processing systems and processors. These systems are the

artifical intelligence community's view of the image

presented by future computers. Three areas of research have

been identified by various researchers [11, 1, 3]

1) Knowledge based expert systems.

2) Human orientated I/O.

3) Very high level languages.

Communication and computers represents Wide Area

Networks, Local Area Networks and parallel computers. In the

past network and parallel machines have been developed

separately [6], the advancement in each being sustained by

development in semiconductor technology [7]. However, it has

long been advocated that the spectrum of decentralised

systems should be fully integrated. Therefore to achieve

this it is necessary for all components to conform to a

common decentralised system architecture.

3.4 Processor Architecture Exploiting VLSI

Processor architectures to exploit VLSI define a new

generation of VLSI building blocks to succeed the

microprocessor. Traditional microprocessors such as the

iAPX-432, which contains over 100,000 transistors, are

starting to become commonplace. However, attempting to make

larger scale single processors in VLSI becomes self

Page 3-3

defeating due to communication problems and escalating cost.

A solution is miniature computers which can be replicated

such as memory cells and orientated as a multiprocessor

architecture [8,4]. These machines are implemented by only a

few different types of simple cells, and use extensive

pipelining and parallel-processing to achieve high

performance.

The only device to be designed with these criteria is

the Inmos Transputer.

3.5 Needs and Uses

It is reasonable to assume that research into fifth

generation systems using technology currently available will

begin to produce results by the early 1990's. This

assumption raises an important question. Where are the

application areas and who will be the users of the new

technology?

The Japanese see almost everybody as users, with new

applications touching almost every aspect of human life. At

the present time ten broad catagories of application have

been identified. These are:

1) Industrial Automation.

2) Office Automation.

3) Science and Engineering.

4) Computer hardware and software.

5) Military.

6) Aerospace.

Page 3-4

7) Retail and Service Industuries.

8) Education.

9) Health.

10) The Arts, Culture and Leisure.

All these areas have had applications demonstrated in a

research setting, but none have been transferred to the

commercial market. All applications shown rely in advances

in the four areas mentioned at the beginning of this

chapter.

3.5.1 Industrial Automation

This area is seen as one of the 'prime' application

control areas for fifth generation technology. Prospective

users include manufacturers of goods, designers of

manufactured products, product and plant engineers.

Some aspects of industrial automation already exist,

i.e automatic control systems, production line robots;

however new application now become possible; i.e. automated

factories, computer aided design, aomputer aided

manufacturing, robotics, inventory management, product-cost

estimates, control and routing of production runs, expert

systems for design.

The resources needed to support these applications are

common to all fifth generation requirements, namely high

speed parallel data-base machines, parallel processors and

high quality CAD-CAM workstations.

Page 3-5

The last ten years have seen an explosion in the number

of industrial robots and in the number of companies using

CAD-CAM techniques. Significant advances have been made in

sensors for robots, such as computer vision systems, and

high level languages for controlling robots. The new

generation of computers will integrate these components to

achieve a highly automated manufacturing plant.

3.5.2 Office Automation

Of all the possible application areas office automation

will probably provide the most financially rewarding area.

The section heading might better be called 'Business

Automation', covering all aspects of a non-manufacturing

nature.

Application areas are only limited by the diversity of

businesses, but management, administrators and secretaries

will be the major users of such systems.

The new generation in computing will not only supply

the hardware and software technology to support information

management, it will also use better techniques for using

these systems. The user will be able to interact with the

system via natural language I/O and expert systems will give

advice on how to use computing systems and will assist in

recovering the relevant information.

The components for office automation will undoubtedly

include wideband networks and local area networks. The use

of word processors and electronic filing systems in offices

Page 3-6

is now commonplace. Similarly the use of electronic mail,

spreadsheets, appointment calendars and database management

systems is becoming more popular. The technology to totally

automate the office already exists, its components must now

be integrated into complete systems. These components

include specialised database processors, expert systems and

improved I/O systems.

3.5.3 Science and Engineering

To date scientists and engineers have always been the

first to employ the use of new technology [9]. There is no

reason why this group of people will not do so again.

Once again the application areas are only limited by

the depth of current knowledge, but suitable areas include:

expert systems for fault diagnosis, capturing and applying

scientific expertise.

The systems technologists will employ powerful database

management systems, parallel database and expert system

processors. Scientists will use new generation equipment in

a variety of ways. With new hardware and improved user

interfaces, fifth generation systems will be able to take

advantage of expert systems to capture and apply scientific

knowledge. Expert systems are already beginning to support

scientific research.

Page 3-7

3.5.4 Computer Hardware and Sofware

To enable advances in the fields described in this

chapter, fifth generation computer hardware and software

must first be developed.

This will enable programmers, analysts and engineers to

develop the packages required by the end user.

Possible applications which effect every computer users

include semi automatic design and development of programs,

specalised architecture for implementing firmware and expert

systems for fault diagnosis of computer hardware.

The tools necessary for future development include very

high level languages and hardware specification languages,

that is, languages one or two steps further removed from

LISP and PROLOG. Other required components are integrated

software development environments, Silicon compilers,

parallel processors, dataflow languages and machines,

parallel programming languages, compilers and operating

systems.

One of the main aims of current research is to reduce

the cost of producing software. Writing, debugging and

testing current systems is a highly labour intensive

process. There is much interest in automatic programming.

Complete, general purpose automatic programing will probably

take many years of fundamental research; however automatic

programming in specalised areas may be more realistic.

Page 3-8

A major area for fifth generation systems will be that

of automated VLSI design. The very complexity of devices

that VLSI permits, require that automated techniques are

employed for managing this complexity. One of the most

important applications of new technology will be the

simulation of computer assisted design of even newer

generations of machine.

3.5.5 Military

The military have always been large investors in computing

technology [14], innovating many new designs and products.

In the US most of financing has been via the DARPA scheme.

The new technology will be used in all existing areas

of military computing as well as some new fields i.e.

aspects of planning, decision support; command and control

systems; supply and support logistics; intelligent

autonomous weapons systems, parallel architectures for

analysing RADAR and SONAR images.

Applications for military uses fall into two

catagories. The first includes information management

systems and expert systems that support military systems in

terms of planning etc. The second comprises of the guidance

and targetting of autonomous weapons.

3.5.6 Aerospace

The aerospace industry has always been a prolific user

of new technology; pioneering several new designs. NASA has

Page 3-9

been the funding body of many new architectural designs,

i.e. the ILLIAC-IV [10], Pilots, air traffic control,

scientists and engineers studying space and remotely sensed

earth resources, will be able to employ new generation tools

such as: air traffic control monitors, deep space

exploration probes, earth resource monitors and

semi-autonmous space ground based sensors, expert systems

for fault diagnosis in space craft, self replicating

machines for space manufacturing.

The components used in this field will include large

scale distributed data bases for automatic data reduction

from a network of ground sensors, expert systems for fault

diagnosis in space craft and self replicating machines for

space manufacturing.

The new generation of computers will be applied to

aerospace in areas such as air traffic control, information

management for pilots and control of autonomous aircraft.

Even though todays most advanced aircraft are already

controlled by embedded computer systems, the pilot must

still cope with a large quantity of information from

instruments and displays. Techniques such as voice

recognition, speech output will aid the pilot to select and

interpret the most vital information.

3.5.7 Retail and Service Industries

Consumers, retailers, advertisers, market development,

service companies, lawyers, travel agents etc. will benefit

Page 3-10

from systems such as computer based catalogues, remote

ordering and shopping, teleconferences, accounting, billing

and invoicing systems, automated information systems, expert

system for a mass of uses.

Hardware will be required to support multimedia

information systems combining graphical, image and textual

data, natural language Input/Output systems for inquiry

systems, wideband networks for communication between

systems.

Consumers will be able to shop and buy goods using an

online catalogue, which handles fund transfer, billing,

shipping and reordering. The greatest abundance of new

applications will come in the area of information service

industries.

The components to handle these advances have existed

for some time, but not as an integrated system. More

attention must be paid to developing more natural user

interfaces for both accessing and updating information.

3.5.8 Education

Students at all levels will be able to use intelligent

computer-aided instruction (CAI) systems which permit the

student to direct and contol the presentation of course

material. Computer based training for adults and

professionals, computer based assistants which explain how

to use computing systems.

Page 3-11

Software and specalised processors to support voice

I/O, specalised hardware for graphics and images, and

libraries available via digital networks will be needed to

support such education.

CAI systems are currently in use at all levels of

education and training. More advanced developments in CAI

will enable intelligent CAI systems, enabling natural

language to control the lessons.

3.5.9 Health Care

In the past computers in medicine have been limited to

applications such as patient administration [13] and other

accounting tasks. Today however, one of the first

application areas for expert systems has been in the field

of medical diagnosis.

The users in this field include: Doctors, hospitals,

patients, the handicapped and disabled.

Other areas of use include: expert systems for

diagnosis and prescripion, data base systems for medical

records, management and monitoring of patients, automatic

analysis of experiment, reading machines for the blind and

sensory prosthesis.

Applications in medical environments will continue to

be mainly in expert systems. Such systems have some of their

first and most successful applications. There are, however,

Page 3-12

a number of research and social issues to be resolved;

i.e. medical liability of expert programs.

New generation technology will also support aids for

the handicapped and disabled. Reading machines, sensors and

computer controlled wheelchairs are some of the applications

directed toward the younger generations of society. However

the public at large should be involved in fifth generation

applications i.e large scale storage systems, wideband

networks to access cultural information, high resolution

digital sound, graphical I/O devices such as electronic

paint brushes and solid state cameras.

3.5.10 Leisure

A large proportion of the income that the entertainment

industry has been able to gather during the last ten years

has come through computer based video games. If this is

indicative of the potential for new generation technology

then this area may be the most financially rewarding.

3.6 Involved Countries

Within the last two to three years, Japan, the United

States and Europe have initiated significant research

programmes in fifth generation computing, all feeling that

the first to market a commercial fifth generation system

will permanently have a lead on the others.

In a way, all concerned parties are involved in a

strategy of mutual catching up. Japan has the

Page 3-13

longest-running, formal national programme. Its Fifth

Generation Computer Systems Project was officially launched

in 1981, but its aim is to catch up with the United States,

which has been funding key research areas for some twenty

years. However, it was not until the Japanese had announced

their formal research project that the United States

initiated its own concerted national projects.

With the advent of Fifth Generation Computing Systems

[11], Japan effectively announced to the World that it would

no longer be taking existing Western technology and

improving on it, but that it was determined to take a lead

in the research and development of unprecedented systems.

3.7 Concerns and Goals

The various countries differ in their concerns and

purpose of their research, and the aims of each project are

distinct.

3.7.1 Japan and ICOT

At the center of Japan's research effort is the

Institute for New Generation Computer Technology (ICOT).

ICOT's objective is to research and develop computer

technology that can perform more humanlike intellectual

functions, namely, inference, association and learning.

To achieve this objective ICOT is finding ways to

supplant traditional sequential processing with parallel

processing; as only the great speed and capacity of parallel

Page 3-14

processing are sufficient for developing the new application

areas. The net result of Japan's Fifth Generation Computer

Systems project will be the basic technology and

demonstration systems to build true fifth generation

systems.

The ICOT research centre plans to approach the aim of a

true fifth generation system by pursuing two intermediate

hardware projects. These are a parallel inference machine

and a knowledge-based machine.

The parallel inference machine is a system that follows

a line of reasoning to arrive at, or infer, a conclusion on

the basis of the facts presented to it. The knowledge based

machine is a system that efficiently manages large amounts

of data. Both machines employ forms of data flow processing.

3.8 Designing the Next Generation

Much of the technology required to achieve the aims of

fifth generation computer scientists can be accomplished by

advances in the current state of the art of conventional

Von-Neumann computing. But certain areas, such as natural

language input/output, can only be tackled with thousands or

millions of times more processing power than current

technology permits, and by software markedly different from

todays programs.

Page 3-15

3.8.1 Exploiting Parallelism

The only feasible answer to the above problem is

massive parallelism. There are, however, problems with

parallelism; matching algorithms to parallel systems is one,

and getting all the processors in a parallel system to work

efficiently is another.

Various parallel architectures have been discussed by

computer scientists, including trees, square and cubic

arrays and data-flow systems. Some researchers have

suggested that a general purpose parallel processor is the

best way to approach the problem, others have decided to

work out parallel solutions to problems and then implement

an architecture around it.

3.8.2 VLSI: The Solution?

Architectures consisting of many simple processors,

each with a small amount of local memory are made feasible

by VLSI technology. Once the initial circuit specification

has been accomplished many processors can be placed on the

same chip, and a number of chips fabricated with ease.

However, designing such circuitry is not easy. Therefore,

VLSI design tools, silicon compilers, are a required factor

in fifth generation computing efforts.

Page 3-16

3.9 The Problems to be Encountered

There are several major obstacles to be overcome before

any fifth generation system is built. These include both

conceptual limitations and physical ones.

3.9.1 Physical Limitations

Over the last decade, chip densities have been

increasing at a fairly constant rate. However current VLSI

techniques can produce paths two micrometers wide. At this

level inpurities in the base material come into effect. One

proposed solution is to move to wafer scale integration. If

a number of devices are fabricated on one wafer then all

non-working devices can be 'cut' out of the system

electrically

3.9.2 Conceputual Limitations

Processes which execute concurrently may occasionally

make simultaneous demands on shared system resources.

Communication is a critial issue in concurrent machine

architectures. Long delays in communication may result in

performance degradation to a point where the potential speed

of concurrency is negated. Therefore the design of the bus

architecture is the key choice in linking thousands of

processors.

Processes which execute concurrently may occasionally

make simultaneous demands on shared system resources. When

such contention is present, simultaneous demands are

Page 3-17

serviced in a serial order, and so some processes must

experience delayed access to the resource. Such contention

introduces a coupling among processes because the activities

of one process can effect the performance of other processes

that share the resource with the first.

Shared resources are those for which two or more

concurrently executing processes can make simultaneous

demands.

For multi processor systems, interest is primarily

directed at shared buses and switching devices. Contention

for shared resources results in queueing delays at critical

resources [2]. By their very nature, the individual

components of a multiprocessor must share some of the

physical resources of the machine. By definition some or all

of the memory must be shared, but use of other structures,

interconnect paths etc. may be critical.

For each element in the system there is a maximum

demand that it can serve per unit time. In addition, any

time two or more processes make simultaneous demands,

performance will suffer unless the resource can serve

multiple requests in parallel.

Therefore the critical area of design is not the

processing cell, but the interconnection scheme of the cells

and arbitration mechanism governing the cells.

Page 3-18

3.10 Future Computer Architecture

The application of fifth generation computer systems in

such are as Artifical Intelligence, Image Processing,

Real-Time Language Translation etc. demand the fusion of

thousands of Processing Cells. The potential advantages of

cellular computer systems are in increased system throughput

by the simple addition of more processing cells. With this

in mind, bus arbitration must be distributed particularly

when the simple multi-processor system is expanded to a

fully distributed cellular processing environment consisting

of thousands of processing cells. These Processing Cells are

conceptually contained in a system module, currently

realised as a printed circuit board. The purpose of the bus

controller is to support inter module communication at one

"level", and intra module communication at another "level".

As many Cells share the common buses, the bus arbiter must

be fast in operation. Another very imporant requirement in

the bus arbiter is expandability; as a system grows in the

number of modules, so must the bus arbitration grow with it.

Page 3-19

References - Chapter 3

1. HMSO, "The Report of the Alvey Committee", (HMSO Ref.
ISBN 0 11 5136533)

2. CHANSLER, R.J., "Coupling Systems with Many
Processors", CMU-CS-82-131 1982.

3. FUCHI, K., "The Direction the 5GCS Project Will Take".
New Generation Computing VI Nl

4. INMOS, "The Transputer Technical Reference Manual"

5. KUNG, H.T., "Why Systolic Architectures," IEEE Computer
Jan 1982

6,7. PERKIN-ELMER, "PENnet R03 Network Introduction Manual"

8. QUICK, G.E., "The Group Processor Approach to
Multiprocessor Architecture," Ph.D. Thesis UC Swansea
1982.

9. METROPOLIS, N., HOWLETT, J. and ROTA G., "A History of
Computing in the Twentieth Century", Academic Press
1980

10. SIEWIOREK., D.P., BELL., C.G., AND NEWELL., A.,
"Computer Structures: Principles and Examples",
McGraw-Hill

11. TRELEAVEN, P., AND LIMA, I., "Japan's Fifth Generation
Computer Systems", IEEE Computer Aug 1982

12. PASEMAN, W., "Applying Dataflow in the Real World",
BYTE May 1985.

13. IEEE Editorial, "THE DoD STARS Programme", IEEE
Computer Nov 1983

Page 3-20

CHAPTER FOUR

CHAPTER FOUR

BUS ARBITRATION CONCEPTS

4.0 Background

The proposed advances in fifth generation Computing

Systems aim to provide an Intelligent Image to the system

user. While such images are software based, written in

languages such as Prolog and LISP, much of the proposed

hardware architecture has lacked innovation and vision. This

chapter addresses these two important points by providing an

insight into modern Bus architectures for cellular systems.

In order that unique system architectures may evolve, a

hierarchical bus arbitration structure is proposed.

The section on bus arbitration is extraced from Quick's

Thesis and is included in this Thesis so as to provide a

fuller understanding of bus arbitration concepts and as

background reading to the discussion on the Group Processor

System Architecture.

4.1 Introduction

A cloud of uncertainty hangs over the physical image

that fifth generation computing systems will adopt.

Therefore in this chapter, the structure of a computer

system is presented as a functional module structure,

together with its operation. This presentation is oriented

towards VLSI realisation of the various modules that will

Page 4-1

eventually make up a typical fifth generation computer

system. These modules will become sub-system components that

will be integrated into an overall system architecture

supporting hardware and software extensibility. These

separate, but coupled modules, are interconnected by the

common bus structure and supervised by the Bus Arbitration

Mechanism.

4.2 Current Computer Architecture

In any simple parallel system, Figure-4.1, containing

two or more processing cells, e.g. central-processor and I/O

processor, a bus controlling mechanism is required to

resolve the simultaneous requests for the use of a system

resource [1,3,4,5]. A basic requirement of any controller is

to allow only one system element or cell, the ability to

gain access, i.e. write, to the shared bus. However, systems

can be configured for multiple reads on a common data

stream, on a common bus system.

The bus arbitration mechanism may be seen as the

unifying factor in any multiprocessor system architecture,

resolving simultaneous bus request conflicts. Alternatively,

Bus Arbitration may be conceived as either the system's hub,

or the achilles heel, as all communication between

intelligent cells are scheduled for bus access by this

mechanism.

Page 4-2

Mam
Processor

I/O
Processor

SHARED SYSTEM BUS

Figure 4.1 A Simple Parallel System

Page 4-3

4.3 Bus Arbitration Objectives

According to Plummer [6] the design of arbiters is

somewhat harder than most logic circuits because traditional

design approaches are vastly too cumbersome. The usual

design assumptions are that inputs are allowed to change

only if the circuit is in a stable state and only one input

at a time will change. Arbiters violate both of these

assumptions.

The basic functional requirement of any integrated bus

arbiter must satisfy five basic design operations which

are: -

(1) The operation of mapping one, and only one, output to

the corresponding input request must be executed in finite

time. That is, the delay in allocation must be seen as

transparent to the requesting resource.

(2) The arbiter must be independent of the communication

between the communicating cells, during all communication

activities. That is, the communicating data should not

control the allocation, it should be directed by the system

control structure.

(3) The interconnection of arbiters should provide for both

equal and priority based arbitration [2]. This allows the

operating system to gain control of the system hardware when

required.

Page 4-4

(4) Mechanisms must be available for the dynamic locking out

of an arbiter. This enables a degree of added reliability

when arbiter cells become unserviceable.

(5) The maximum number of cells, and system architectures,

should be able to share a common arbiter design. That is,

the design should not be tailored to a unique architecture

enabling the replication of cells to a high degree.

4.4 Current Arbitration Techniques

Several methods have been implemented to realise the

resolving of bus conflicts. The different control schemes

can be roughly classified as being either "Centralised" or

"Distributed". If the hardware for passing bus control from

one cell to another is largely concentrated in one location,

it is called "centralised", while in a distributed system

the control logic is spread throughout the cells on the bus.

Most arbiters use combinations or modifications of the

following three schemes:-

1. Daisy Chaining.

2. Polling.

3. Independant Requests.

Page 4-5

4.5 Centralised Arbitration

With centralised arbitration, a single hardware unit is

used to recognise and grant requests for use of the bus.

While this system has many advantages, such as much simpler

hardware design, it clearly can impose severe limitations

when the number of processors expands dramatically.

4.5.1 Daisy Chaining

Each cell on the bus can generate a request via a

common Bus Request line, Figure 4.2. Whenever the Bus

Controller receives a request on the Bus Request line, it

returns a signal on the Bus Available line, which is daisy

chained through each cell. If a cell receives the Bus

Available signal and does not require it, then it is passed

on to the next cell in the line. If a cell does require

control of the bus then the bus available signal is not

propagated to the next in line. The requesting cell raises

the bus busy line and drops its bus request line. The cell

then starts to write to the bus. The Busy line keeps the Bus

Available line up until the end of transmission when the Bus

Busy and Bus Available lines are lowered.

Page 4-6

u
CL>
'o
u
w
c o
C/5
3

03

Bus
Available

Cell 0

Bus
Request
Bus

Cell n

Busy

Figure 4.2 Centralised Bus Control
Daisy Chain

Page 4-7

The advantages of this system are in its simplicity as

very few control lines are needed, and additional cells can

be added by simply connecting them into the bus. A

disadvantage of the system is its susceptability to failure.

If a failure occurs in the Bus Available circuitry, it could

prevent succeeding cells from ever obtaining control of the

bus. Another problem is the fixed priority structure. Cells

which are "closer" to the bus controller always receive

control of the bus in preference to those "further" away.

Clearly, mapping important software physically near to the

arbitration reduces the machines desirability, as most

software would have to be written so as to be position

dependant. Clearly this is a non-goal of fifth generation

needs, although it may be felt desirable to place the

operating system in this high priority position.

4.5.2 Polling

As in the previous system; each cell on the bus, Figure

4.3, can place a signal on the Bus Request line. When the

Bus Controller receives a request it starts polling the

cells to determine which one made the request. The polling

is done by issuing addresses on the polling lines. When the

address corresponds to a requesting cell, that cell raises

the Bus Busy line. The controller stops polling until the

cell has completed its transmission and removed the Busy

signal. If there is another request, the addressing may

start from zero or continue from where it stopped.

Page 4-8

Cell 0 Cell n

o
u
w
G
O

C/J
3

03

Bus
Available

Bus

I

Poll
Count

Figure 4.3 Centralised Bus Control
Polling With Global Counters

Page 4-9

Starting from zero fixes the priority of the system, so

that the most important software must be located near the

low addresses. Continuing from the stopping point gives each

cell an equal chance. Placing intelligence within the

arbiter enables greater flexibility in scheduling the

physical addresses of high priority software, but adds

greatly to the cost of the arbiter.

The advantages of this mechanism are that polling does

not suffer from reliability or physical displacement

problems, but the number of cells is limited by the number

of polling lines. The use of 100's of thousands of

processing elements would imply that a corresponding number

of lines must be available for each cell. This is clearly

not acceptable, as the number of lines at some point must be

finite, if only to constrain the location of such lines to

within a single cabinet of acceptable size.

4.5.3 Independent Requests

In this method each cell has a pair of Bus Request and

Bus Grant lines, which it uses for communication with the

Bus Controller. When a cell requires use of the bus, it

sends its Bus Request to the controller. The controller

selects the cell to be serviced and sends a Bus Grant to it.

The selected cell lowers its Bus Request and raises the Bus

Assigned line, indicating to all other users that the bus is

busy. After transmission, the cell lowers the Bus Assigned

and the Bus Controller removes the Bus Grant signal and

selects the next requesting cell. (See figure 4.4)

Page 4-10

e o
CX9
3

03

Cell 0 Cell n

Bus Reg 0
Bus Grant 0

Bus Req n

Bus Grant

Bus Assigned

Figure 4.4 Centralised Bus Control
Independant Requests

Page 4-11

This method has the advantage of lower overheads when

allocating the bus, since all bus requests are presented

simultaneously to the Bus Controller. In addition, there is

complete flexibility for selecting the next requesting cell

as the system is performing a true first in first out

sequence.

The major disadvantage of this system is the number of

lines and connectors needed for contol. There must be a pair

of Bus request/Bus grant lines for each cell, although if

bus grant speed were not important they could be multiplexed

onto one line. The complexity of the allocation algorithm

will also be reflected in the amount of Bus Controller

hardware available to the cell. As an indication; for

application areas that require redundancy, three

communication buses may be required, with corresponding

three Bus request/Bus grant lines. Clearly, in a system with

only 1000 processing cells this would result in 3000

request/grant lines, a figure too large so as to be

feasible.

4.6 Distributed Arbitration

The block diagram of a typical arbiter network is

illustrated, showing the complexity of the interconnection

of the various module interface/inter module bus cells,

figure 4.5.

Within a distributed system; the bus control logic is

primarily spread throughout all the cells on the bus.

Page 4-12

INTERFACES TO OTHER BUS ARBITERS

9> ajnBy

V

1 V
I V

1
1

i
j^

v

-]
nm
—
—

3

^

)

J

I

J

V

^

^\

nsm "J O X
Q a -*
D c a>
D — 1

- Q

4.6.1 Distributed Daisy Chain

A distributed Daisy Chain may be constructed from a

centralised one by omitting the Bus Busy line and connecting

the common Bus Request line to the "first" Bus Avalable. A

cell requests service by raising its Bus Request line if the

incoming Bus Available is low. When a Bus Available signal

is received, a cell that is not requesting the bus passes

the signal on. The first cell which is requesting does not

propagate the Bus Available, and keep its Bus Request up

until it has finished with the bus. Lowering the Bus Request

lowers the Bus Available if no successive cells also have

high Bus Requests, in which case the "first" cell that wants

the bus gets it. However, if some cell "beyond" this has a

Bus Request, control propagates to it. Therefore allocation

is on a round-robin basis, figure 4.6.

4.6.2 Distributed Polling

When a cell is willing to release the bus, it puts an

address on the polling lines and raises Bus Available. If

the address corresponds to that of another cell which

requires the bus, that cell responds with Bus Accept. The

former cell drops the polling and Bus Available lines and

the latter cell lowers the Bus Accept and begins using the

bus. If the polling cell does not receive a Bus Accept, it

changes the address according to some allocation algorithm

and tries again. This method requires that exactly one cell

be granted bus control when the system is initialised.

Page 4-14

Bus
Available' CELL 0 CELLn

Bus
Request 0

Bus
Request n

Figure 4.6 Decentralised
Daisy Chain

Page 4-15

CELL 0 CELLn

Polling Code

Bus Available

Bus Accept

Figure 4.7 Decentralised
Polling

Page 4-16

The system uses more hardware due to every cell having

the same allocation hardware as the centralised system.

However, this improves reliability as the failure of a cell

does not usually degrade bus operation, figure 4.7.

4.6.3 Distributed Independant Requests

Any cell needing the bus raises its Bus Request line,

which corresponds to its priority. When the current bus

master releases the bus by dropping the Bus Assigned, all

requesting cells examine all active requests. The cell which

recognises itself as the highest priority requestor obtains

control of the bus by raising the Bus Assigned. This causes

all other requesting cells to lower their Bus Requests. The

logic in the distributed system is simpler than that of its

centralised counterpart, but the number of lines and

connectors is high, figure 4.8.

4.7 Universal Arbiter

The uncertainty that exists in the physical image of

fifth generation machines, requires generality in the

topology of a 'universal arbiter'. Clearly system bus

architectures of various types have to be considered in

order that the arbiter be integrated into a single

integrated circuit.

Page 4-17

CELL 0 CELLn

Bus Requests

Bus Assigned

Figure 4.8 Decentralised
Independant Requests

Page 4-18

By providing a distributed but universal arbiter

design, the overall bus arbiter design becomes more complex,

as part of the design must cater for a priority based

architecture. As an example of this consider an equal

priority general design. In reality no such design exists,

as a simultaneous demand, e.g. two simultaneous bus

requests, are conflicting and hence require arbitration.

The design topology illustrates a hierarchical

arbitration structure, Figure-4.9. Conceptually, each bus

request has equal priority, within bus arbiter 1 for

example. Similarly, bus arbiter 2 and bus arbiter "n" have

equal priority in the centralised, or root arbiter. The

centralised arbiter is in effect an overall arbiter to the

other arbiters below it in the hierarchy. Although only 24

inputs are shown; the hierarchy is infinitely extendable

with seemingly equal priority, by organising the

interconnections as a hierarchical tree structure.

By comparison the daisy chain, i.e semi-linear priority

scheme of figure 4.10, makes line 8 of bus arbiter 1, the

lowest priority, and line 1 of bus arbiter "n" the highest

priority. It is conceiveable from this topology that in a

long daisy chain; the lowest priority may take a long time

to get served, due to repeated requests by higher priority

requests.

Page 4-19

6> am6y

m

z mz mzm
CD

r
z m

r
z m'CD

z m

(D

Q
~S

0)

(D
X
ft)
Q.

j

t i
. N, trai i gav 509

ii

;oCD

— 1
m

r

•

i ii

2 d3i i ativ sna

4

/ I

\

1

! i

i 1

i i H31 i aav sng i
i

fi
|

1

EXTENDED
BUS OPERAT 1 ON
ARBI TER

m m

o oSH3lI9HV H3H10 01

cD

tj
CD

C
L-O

X

c
<»

cr
u

£

-
c

"*•
c

3
U

(J
^

-
o

•
^£

cXLJ

1
|

B
U

S

A
R

B
IT

E
R

1

'
'

-*- c oCD\g
-

0
)

or0)D(DT30)C

0)XLJ

l

B
U

S

A
R

B
 1 TE

R

2

i

c0CD
\(T

a: -a0)
V)

-t-
D

U

CD

a)c
T

)
C

C'o

"°
X

~" 7

d
)

^
_

LJ—

X>vCLDE
B

U
S

A

R
B

IT
E

R

'N
T

0)c

f
j 1

D0)
f

C

I?

^"0)
(0cu

LJz
00LJZ_J

LU

A
lI H

O
 Id

d

d
3
H

9
IH

00LJ
Z

LJZ

A
lld

O
Id

d

d3M
O

~l

ooLJZ

U

h-
O

In terms of fifth generation multi-processor systems;

the daisy chain has certain advantages over an equal

priority design. The most important of these is the ability

to give

a higher priority to the user and the operating system. In

reality a totally daisy chained system is impractical as all

user oriented modules should have equal priority. In this

case a mixture of daisy chaining and equal priority topology

may be accepted as providing the degree of operation

required, for rapid intervention to the operating system,

and equal priority for the user modules. It is also

conceivable, that in fifth generation operating systems,

that bus arbitration logic is visualised as shown in figure

4.11., where, in conflict conditions, line 1 has a higher

priority over line 2 in the system arbiter. Similarly, the

nearer to the lower numbered lines a module is connected,

the higher the conflict priority.

Page 4-22

4.8 Summary

In this chapter, the architecture of a computer system

has been presented as a functional module structure that

represents a hardware/software environment for the execution

of user programs. This presentation has been orientated

toward a true fifth generation machine architecture, through

the consideration that machines will be constructed from

100's of thousands of processing cells. These separate, but

coupled cells, need a flexible and extensible bus

arbitration network. Such a network has been outlined as a

first stage in understanding the complexities that exist

when the burden of design and implementaion of a fifth

generation machine is placed on the computer architect.

When complex bus structures are studied in depth; there

is a realisation that long and involved research effort is

needed into the wider aspects of bus structures. The

interaction of operating systems and the cell design will

result in a much closer working attitude between the

computer architect and software engineer. Additionally, the

practicality of these systems can only be gauged through

real design efforts resulting in VLSI cells being produced.

Page 4-24

References - Chapter 4

1. FARBER, G., "A Decentralised Fair Bus Arbiter", EuroMicro
V7 Nl 1981

2. KOVALESKI, A.B., "High Speed Bus Arbiter for
Multiprocessors," I.E.E.E. Proc. V130 N2 1983

3. NADIR, J. AND MCCORMICK, B., "Bus Arbiter Streamlines
Multi-Processor Design," Computer Design V19 N6 1980.

4. PETRIU, E., "N-Channel Asynchronous Arbiters Resolves
Resource Allocation Conflicts," Computer Design V19 N8
1972.

5,6. PLUMMER, W.W., "Asynchronous Arbiters," I.E.E.E.
Transactions on Computers V21 Nl 1972.

Page 4-25

CHAPTER FIVE

CHAPTER FIVE

THE GROUP PROCESSOR CONCEPT

5.0 Introduction

This chapter introduces the Group Processor System [9]

as viewed from a single-user, multi-user and operating

system viewpoint. It also describes the cell, module and bus

design in detail. The work described in this chapter draws

heavily on the work undertaken by Quick [10] and is a

summary of the work undertaken on the Group Processor

System. The terminology used by Quick is maintained in this

chapter.

5.1 High Level System Description

The Group Processor concept is not a total system

design, but an environment for process execution. The

realisation of the architecture for a computing system is

based on systems principles. That is, the complete system is

built up of sub-systems of common elements, which are cells

and modules. Figure 5.1. shows the functional components of

the Group Processor System.

Page 5-1

MODULE PRINTED CIRCUIT BOARD

"MANY"
GROUP PROCESSOR
ENVIRONMENTS

"MANY"
PERHIPERAL INTERFACE
ENVIRONMENTS

USER

Figure 5.1

Page 5-2

The user interfaces to the Group Processor through a

dedicated software based frontend processor. The frontend

processor performs many operations on objects (programs and

data); e.g. editing and language translation, during the

development of user programs. The main software features

supported within the software based frontend processor,

termed the 'peripheral interface environment', is the

ability to schedule and transmit the communication between

user terminals and Group Processor Modules that make up the

Group Processor System.

5.2 Peripheral Interface Environment

The peripheral interface environment is constructed

from the same module architecture, shown diagrammatically in

figure 5.2, as the Group Processor Environment.

Such a uniform hardware design is a feature of the

Group Processor System and minimises the variations of

printed circuit board design, which results in lower

production costs. The cellular structure of the module,

illustrated in figure 5.3., executes it's processes in the

cells in the Group Processor environment. The executing

process within the cells of each module is the only

difference between the Group Processor environment and the

peripheral interface environment, and as a result both

environment types are interchangeable.

Page 5-3

COMMUNICATION TO OTHER MODULES

MODULE INTERFACE
LOGIC

ARRAY OF CELLS

EXTERNAL MODULE
COMMUNI CAT!ON

COMMUNiCATiON TO OTHER USERS

Figure 5.2

Page 5-4

•o o> (Q
 (D cn i ui

en

w LL
)

_J D
Z

Q
O

O
 —

H
l-

z
z

Q:
D

LL
JH

K

H

z
o

—
o

E
X

T
E

R
N

A
L

M
O
D
U
L
E

C
H
A
N
N
E
L

E
X

T
E

R
N

A
L

M
O

D
U

LE

C
H

A
N

N
E

L

E
X

T
E

R
N

A
L

M
O

D
U

LE

C
H

A
N

N
E

L

N
T

E
R

N
A

L
C

O
M

M
U

N
IC

A
T

IO
N

C
E

LL

1
C

E
L
L

2
C

E
L
L

3
^^

^

C
E

L
L

N

N
T

E
R

N
A

L
A

N
D

E

X
T

E
R

N
A

L
M

O
D

U
LE

C

O
M

M
U

N
IC

A
T

IO
N

The architecture of the Group Processor environment is

identical to that of the peripheral interface environment,

and consists of identical parts programmed to accept tasks

which perform operations on objects.

5.3 Group Processor Environment

The operations performed within the peripheral

interface environment and group processor environment, which

correspond to either a frontend or backend system

requirement, are executed by groups of cells configured to

work groups, are achieved by allowing each member to

communicate with other members via the common bus structure.

This structure consists of a number of functionally

dedicated buses that are available for use by any cell.

5.4 Module External Input Output

The internal data routing of the inter-module bus does

not perform any input-output to the system user, as can be

seen from figure 5.4., although the system may be configured

so as to provide such a function using dummy modules, which

are then directly linked to the user. The input-output

described in this section concentrates on the interface

between the Peripheral Interface Environment and the user

terminal.

Page 5-6

3

E
X
T
E
R
N
A
L

N
O
D
U
L
E

IN
PU

T
-
O
U
T
P
U
T

mm
•0

0)

<Q

(D 01

Q

01

uJ
U

l

3* 0
0

D

1

NTER
 DLYMORP

H

i

M
O

D
U

LE

IN
T

E
R

F
A

C
E

IN
T

R
A

H

O
D

U
LE

B

U
S

A

R
B

 1
T

R
A

T
 1

O
N

LO

G
 1

C

*

IN
T

E
R

rtO

O
U

LE

B
U

S

A
R

B
IT

R
A

T
IO

N

LO
G

IC

<

=

/
\
 —

—
—

—
—

—
—

—

^.

'N|
^

5 •^

r 1 _j »•
•*

r
T

rA— y-

r
L._

.L.
L.

..
i

i i
,>

 -
LJ

-

C
E

L
L

1

1
LJ _

 I_J

IT

T:
~T

CV- ~1

. _
ru

:..
.

~
U a r

'.
- r

.
Q

L

A- y-

L1
T.

-T
T

.
— »•

-^

A
- y-

TT-
 -r

r
t r

i
1 1

L
_

l
I —

—
—

—
—

1

1

U

C
E

LL

2

k
1

_
l"T

 T
TA

- v-

i
I I

K .
.— *•

-«

1
1

1

1
1

1
L

_
J

1 —
—

—
—

—

1

4

L

C
E

L
L

3

\
-

-H
UT

 f
t

1

i i
1

1
1

1

1
1

1

|
O

B
A

L
B

U
S

IN
TR
A

M
O
D
U
L
E

B
U
S
E
S

:E
LL
 N

I-
Q-

IN
TE

R
M
O
D
U
L
E

B
U
S
E
S

The architecture of the cell and the module interface

enables the various internal systems to communicate via the

numerous system buses. The communication to the outside

world takes place through an external access port, mounted

on the module. This access port is a cell, identical to the

other cells on the module, but the three inter module bus

ports are dedicated to external module communication.

The external cell architecture is illustrated in figure

5.5., where the cell's three intra module bus ports are

physically connected to the intra module bus, the inter

module bus ports are connected to the segmented inter module

bus. The global bus is connected to all cells. A personality

pin indicates what function the device is dedicated to, i.e.

cell or external module I/O processor.

5.5 Logical Bus Structure

The logical coupling of the various software work

groups relates to the input and output to each process. This

is reflected in the actual communication on the various

system buses. For example; where one work group resides in

one module and communicates with another work group in

another module, a bus functionally dedicated to inter module

transmission provides the logical bus communication

structure.

Page 5-8

T
O

O
T
H
E
R

M
O
D
U
L
E
S

A
N
D
/
O
R

T
E
R
M
I
N
A
L
S

•0

01

IQ

tt cn I vO

E
X

T
E

R
N

A
L

M
O

D
U

LE
1 N

TE
R

FA
C

E

M
O

D
U

L
E

1

M
O

D
U

LE
IN

T
E

R
F

A
C

E

"̂~1 1
1

fl _

o u T <£. 7^

*
^

-rr
 -

rr
tr

 t
r

r

E
X

TE
R

N
A

L
M

O
D

U
LE

1 N
TE

R
FA

C
E

M
O

D
U

LE

2

M
O

D
U

LE
1 N

TE
R

FA
C

E

O

^ _ '

tr
 r

r
tr

 t
r

i\ii en
1

m o i 5 i

E
X

TE
R

N
A

L
M

O
D

U
LE

1 N
TE

R
FA

C
E

M
O

D
U

LE

3

M
O

D
U

LE
IN

TE
R

FA
C

E

O I10
!

'ui

,(_

ID O T $ Y
i h

tr
 -

rr
-rr

 r
r

r

E
X

TE
R

N
A

L
M

O
D

U
LE

1 N
TE

R
FA

C
E

M
O

D
U

LE

4

M
O

D
U

LE
1 N

TE
R

FA
C

E

? U
l

CD

"̂*
!

'l/
l1 0 u T ft -6

tr
 t

r
tr

 t
r

r
IN

TE
R

M

O
D

U
LE

bU

S

1
II

1

1
1

1
II

M

I
'1

1
1

M
I
'1

1
ii

ii
ii

<^

IN
TE

R

M
O

D
U

LE

B
U

S

2
<

II

1
1

1
1

1
1

1
1

i
1 1

1 1
T

1
1

1
1

IN
TE

R

M
O

D
U

LE

BU
S

3
<

u_
1 1

i
ii

1
1

G
LO

B
A

L
B

U
S

<

1
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

Where both work groups reside within the same module

boundary, the logical bus structure does not require the

services of the inter module transmission system. In this

module, a localised bus system conveys the logical

information. The operation of the communication system for

updating the various work groups that use the system

information, e.g resource schedulers, utilize a dedicated

bus for global transmission of data objects. This bus may,

if required, be used for the global query of the data stored

in each cell.

The buses supported here are therefore related to

logical communication between processes, but influenced by

the physical location of the communicating processes. The

three inter module buses are capable of being scheduled as

to pass-on, distribute, or block, terminate, communication,

i.e to provide partitioning zones of bus segmentation.

Consider the system bus structure of figure 5.6, this

illustrates that all modules are connected to the common

inter module communication system. If however, modules 1 and

2 were segmented from cells 3 and 4, then the inter module

communication bus system would be physically broken between

modules 2 and 3. This enables parallel access of the inter

module bus for write operations by any one cell, in each

segmented zone.

Page 5-10

I
N
T
E
R

M
O
D
U
L
E

C
O
M
M
U
N
I
C
A
T
I
O
N

•a Ot

(Q

(D Ul

M
O
D
U
L
E

I
N
T
E
R
F
A
C
E

C
O
N
T
R
O
L

L
O
G
I
C

M
O
D
U
L
E

NO
.

1

E
X
T
E
R
N
A
L

M
O
D
U
L
E

C
H
A
N
N
E
L

M
O
D
U
L
E

I
N
T
E
R
F
A
C
E

C
O
N
T
R
O
L

L
O
G
I
C

M
O
D
U
L
E

NO
.
2

E
X
T
E
R
N
A
L

M
O
D
U
L
E

C
H
A
N
N
E
L

M
O
D
U
L
E

I
N
T
E
R
F
A
C
E

C
O
N
T
R
O
L

L
O
G
I
C

M
O
D
U
L
E

E
X
T
E
R
N
A
L

C
H
A
N
N
E
L

NO
.
3

M
O
D
U
L
E

M
O
D
U
L
E

1
C
O
N
T
R
O
L

M
O
D
U
L
E

N
T
E
R
F
A
C
E

L
O
G
I
C

NO
.

4

E
X
T
E
R
N
A
L

M
O
D
U
L
E

C
H
A
N
N
E
L

E
X
T
E
R
N
A
L

C
O
M
M
U
N
I
C
A
T
I
O
N

T
O

M
O
D
U
L
E
S

A
N
D
/
O
R

T
E
R
M
I
N
A
L
S

9 § en CD

The scheduling of the three segmented buses is

controlled by the operating system and performed by the

module interface. Each bus has its own control intelligence

which enables three levels of communication to take place

simultaneously, corresponding to each of the three buses.

Entry to a module interface is by single entry to each

controller, thereby providing parallel access to the module

interface, in inter cell communication.

5.6 Bus Structures

In most of the multiprocessor configurations developed

in recent years [2,14] bus contention has been a major

system overhead. In this area, the proposed modular design

enables parallel access of the system bus through the use of

inter module bus segmentation, as seen in figures 5.3 and

5.6. The proposed bus structure overcomes the two basic

problems isolated by the Data Flow Group at U.C. Irvine [3],

namely data localisation and concurrent bus access.

Communication buses are used to transfer control,

timing and data signals between the module sub-systems.

These buses are designed to provide physical and electrical

isolation and provide for the simple addition of module

units.

Page 5-12

P
O
S
I
T
I
O
N

F
O
R

E
X
P
A
N
S
I
 O
N

G
R
O
U
P

P
R
O
C
E
S
S
O
R

M
O
D
U
L
E
S

•a PI (0 A en i

J

^1
cS c 5 O

l
"X

"
D
I
R
E
C
T
I
O
N

O
P
E
R
A
T
O
R
S

C
O
N
S
O
L
E

•Y
"
D
I
R
E
C
T
I
O
N

U
S

E
R

T

E
R

M
IN

A
L

•v w U1 I

U
S

E
R

T

E
R

M
IN

A
L

A
B

S
T

R
A

C
T

M

A
C

H
IN

E

B
O

U
N

D
A

R
Y

O
P

E
R

A
T

O
R

S

C
O

N
S

O
L

E
U

S
E

R

T
E

R
M

IN
A

L

U
S

E
R

T

E
R

M
IN

A
L

The transmission of data between modules is the

function of the inter module transmission system, which can

connect modules in a number of unique ways. Dummy modules

may be incorporated, thereby enabling peripherals to be

interfaced directly to the system bus, and not attached to a

module input-output channel.

5.7 Inter-Module Bus Structure

Cooperation between work groups is achieved by allowing

each member to communicate to others via the common bus

structure. This structure consists of a number of

functionally dedicated buses that are available for use by

any cell.

These buses are:

(a) Intra-Module Bus

(b) Segmented Inter-Module Buses

(in "X" & "Y" directions)

(c) Non-segmented Global Bus

(d) Control Bus/Lines

For a minimal system structured on reliability

concepts; seven segmented buses are incorporated in this

Thesis, although only one is required as a minimum

configuration. The control bus is transparent to the user,

as its function is to aid the electronic operation of the

system [6]. The actions on the control bus are detailed in

the next two sections.

Page 5-15

The inter module bus structure is "set up" by

addressing the module interfaces using the global bus. There

are three basic hardware set up structures:-

1) Distribute

2) Block

3) Unique

The basic distribute and block structures enable the

hardware to pass data along the bus, distribute, or create

separate, segregated, buses.

When the system is initialised, by a reset signal, the

bus segmentation switches are set in a high impedance mode,

i.e the bus segmentation switches are in an off state. No

inter module dialogue is permitted during the reset phase,

as all message requests are inhibited until the module

interface sucessfully performs an error checking routine.

When a module requests the inter-module bus, a request

is sent to the bus controller unit, which assesses whether

the path from the source to the destination is available. If

not available the request is queued, otherwise the bus is

allocated.

A typical section, e.g. modules 1 to 5 in figure 5.5,

illustrates the inter module bus structure. The broken

arrows in this figure serve to indicate that a segmentation

zone exists at that point, i.e. between module 1 and 0, and

module 5 and 6.

Page 5-16

5.8 Single User Environment

The single user environment consists of the hardware,

as illustrated by boxes in figure 5.7, and the software

support structures. This environment supports the user's

work space in which the programmer executes the program.

The basic integration of the general system of figure

5.7 into an extensible computer system, is shown in figure

5.8 as a single user hardware architecture. This

architecture enables segmentation schemes to be set-up in

both X and Y directions.

5.9 Multi-User Environment

The single user environment of figure 5.7 may be

extended to provide a multi-user system. In a conventional

multi-user time share system, processor time is shared

(multiplexed) between users, whereas the multi-user Group

Processor System does not time share, but shares the

processor space among many users in the same time interval.

This results in a faster user response time compared to

conventional time multiplexed system design as each user has

his own machine, and not the illusion of being the only user

on the machine. Although the Group Processor is a space

share design, the system may support a time share mode of

operation.

Page 5-17

CONTROL SYSTEM ENVELOPE

Figure 5.9

Page 5-18

In figure 5.9 the various users' work space

environments are shown as an enclosed spaces. These are not

physical boundaries in the general sense of the word, only

conceptual, as each user's abstract machine may grow into

anothers user's free work space, simply by extending one

user's segmented zone, and contracting adjacent zones.

However, each user should always maintain the very minimum

of resources, called the first level processor.

As with the single user concept, the multi user system

may be extended in both X and Y directions. Also, when a

dynamic Group Processor system is visualised, the user

terminal may be either the top-most level as the Group

Processsor or peripheral interface environment. The program

execution space may then expand into lower levels, but

should occupy contiguous dynamic address spaces, in order to

simplify storage management.

5.10 The Group Processor Operating System

The operating system of any uniprocessor machine, and a

very bounded multiprocessor machine for that matter, is

inherently sequential in nature. Bounded multiprocessor

systems have tended to be a "rehash" of the uniprocessor

machine [15], with the corresponding rehash of the original

operating system. The main reason for this has been greatly

reduced development costs for the operating system.

The ideal environment requirement for the support of

the Group Processor operating system image is one that is

Page 5-19

truly dynamic. That is to say, user's abstract machines are

given the power to allocate, or de-allocate, resources at

will. A dynamic system can be viewed as a decentralised

environment in which there is a control component, and a

centralised arbitration mechanism, but no central control.

The only known related system is Medusa [7,4]. STAROS and

the now dismantled distributed computing system at the

Universty of California, Irvine [12] are too far removed

from utilising the architecture of the Group Processor

System.

The Group Processor is a loosely coupled logical

structure and, because of its looseness, to maintain system

reliability the operating system must maintain 'tight'

control. The interaction of processes may be strictly

controlled through the generous use of interface, or context

changing processes, possibly with a corresponding reduction

in execution time. When context is changed, say from user to

operating system process, it is due to the action of the

'context changer', as processes should not communicate

implicitly.

5.11 Distributed Control

In this Thesis "a system is distributed if it consists

of many small physically independent entities, that

cooperate closely by the receiving of objects, which in turn

may create further objects, which offer a single service

image to other systems, including itself". By treating the

execution of the user's program as the execution of disjoint

Page 5-20

processes (or tasks), a non-hierarchical structure of

currently active application, control and service routines,

may be realised. The use of context changers allows for the

dynamic activation of related, as well as unrelated, logical

processes. This is achieved by threading processes together

by the passing of objects through the logical routine

templates, thus building up the required application and

operating system context states.

A conceptual relationship between the common control

software to the user's system is shown in figure 5.9. The

main executive program, i.e. the control system envelope,

dispenses the control of resources following system reset

procedures, to software created abstract machines. The

abstract machines, in turn, dispense control to their many

abstract first level processors, thereby creating a fully

distributed environment. It should be remembered, that every

active process is an abstract processor whether dedicated to

user or operating system functions.

The single user system maintains a one to one mapping

between the user's work space and the system control

terminal as the user terminal. A many to one relationship is

supported in the multi-user group processor system machine,

because each user's work space is an abstract machine, which

maintains its own independent link to each user's terminal

image.

Page 5-21

Master Console
Executive

Master
Console

Context
Changer

0/S
Environ.

/ActionsX

Context
Changer

User r
Work-SpJ

Figure 5.10
Distributed Operating System

Page 5-22

There also exists a many to one relationship between

the abstract machine and the control system envelope in the

multi-user mode. The multi-user machine consists of many

single user machines residing side by side (see figure 5.8).

As there are no physical boundaries between these machines,

only segmentation switches, the user's work space may freely

expand into adjacent free modules during processing.

5.12 High Level Operating System Representation

Due to the Group Processors inherent flexibility and

dynamic nature, the operating system is difficult to

represent diagrammatically. Figure 5.10 gives a possible

snapshot of the system configuration, where the various

activities are being executed in parallel, within their own

hardware environment. This is significantly different to the

multi-programmed environment of the hierarchical

uniprocessor operating system.

5.13 Group Processor System Summary

This chapter has been dedicated to the functional

hardware description of a flexible general purpose cell,

module and communication architecture. This communication

structure is simpler than that found in Cm* [16] yet being

extensible. In a commercial machine, Quick suggests certain

factors must be considered relative to their functional

application requirement, and integrated into the module, or

cell architecture, and hence become implementation

Page 5-23

considerations. It is the intention of this Thesis to

investigate these application architectures so that a

clearer understanding of system performance may be

established.

Page 5-24

References - Chapter 5

1. MCMILLEN, R. AND SIEGEL, H. J., "Performance and Fault
Tolerance Improvments in the Inverse Augmented Data
Manipulator Network" IEEE 1982.

2. ENSLOW, P.H., "Multiprocessor Organisation - A Survey",
Computing Serveys V9 Nl 1977.

3. GOSTELOW, K.P., AND THOMAS, R.E., "Performance of a
Dataflow Computer", UC Irvine TR 127a.

4. JONES, A. AND GEHINGER, E.F., "The Cm* Multiprocessor
Project: A Research Review", CMU-CS-80-131.

5. OPPER, E., MALEK, M., AND LIPOVSKI, G, "Resource
Allocation in Rectanglar CC-Banyans", ACM 1983.

6. OSBORNE, A., "Introduction to Microcomputers Vol.2 Some
Real Products (8 & 16 bitdevices)", Osborne/McGraw-Hill
1981.

7. OUSTERHOUT, K.J., "Partitioning and Cooperation in a
Distributed Multiprocessor Operating System: MEDUSA",
CMU-CS-80-112.

8. PARKER, D.S. AND RAGHARENDRA, C.S., "The Gamma Network: A
Multiprocessor Interconnection Network with redundant
Paths.", IEEE 1982.

9. 10, 11. QUICK, G.E., "The Group Processor Approach to
Multiprocessor Arcitecture", Ph.D. Thesis UC Swansea
1982.

12. ROWE, L.A., "The Distributed Computing Operating
System", UC Irvine TR 66.

13. SHEN, J. P. AND HAYES, P. J., "Fault Tolerance of a
Class of Connecting Networks", IEEE 1982.

14. 15. SWAN, R.J., "Cm* - A Modular Multiprocessor",
AFIPS V46.

16. SWAN, R.J, "The Switching Structure and Addressing
Architecture of an extensible Multiprocesor Cm*",
CMU-CS-78-138.

17. AL., A. GOTTLIEB ET, "The NYU Ultracompuer--Designing a
MIMD, Shared Memory Parallel Machine.", IEEE 1982.

Page 5-25

CHAPTER SIX

CHAPTER SIX

THE SIMULATION ENVIRONMENT

6.0 Introduction

The performance evaluation of a computer system plays

an important part in determining the success of the system.

This chapter introduces the various methods of estimating

system performance and explains in depth the 'Simulation

Environment' for the Group Processor System.

The output from the simulator is presented in graphical

form. This output quickly allows potential system architects

an appreciation of the performance limiting factors

associated with various bus interconnection and scheduling

schemes. The graphs are a general representation of bus

performance and should be used by system architects as a

guide to system performance.

6.1 The Modelling Approach

Performance measurement techniques can be grouped under

the characterisation of models. These models, or benchmarks,

can be studied instead of the entire workload, thus reducing

the cost of evaluating a wide range of architectures. The

models can be divided into four areas:-

Page 6-1

1) Synthetic benchmarks

2) Live benchmarks

3) Simulation

4) Mathematical modelling

6.1.1 Synthetic Benchmarks

A synthetic benchmark is a program which within it has

the ability to use the resources of the system under test,

according to specific parameters, i.e read 1000 lines of

text from a specified disk file.

The advantage of such a benchmark is that it is easy to

construct, and relatively easy to convert from machine to

machine. However, it has the major disadvantage in that it

is very difficult to demonstrate that a synthetic benchmark

is truly representative of the entire system workload.

6.1.2 Live Benchmarks

A live benchmark is a set of programs drawn from the

current user's workload, and is taken as to represent the

entire workload. The advantages of such benchmarking is that

is uses 'real' programs. The disadvantages include the cost

of porting the code to other machines and ensuring that the

benchmark represents a future typical workload.

Page 6-2

6.1.3 Simulation

In the simulation approach, a program simulates the

hardware and operating system of the target system. The

simulator is fed data, which are taken to be the workload

being used for the evaluation.

The main advantage of simulation is also its major

disadvantage, namely its inherent flexibility. Simulation is

particularly useful in the prototyping of new machines, or

the evaluation of systems that have yet to reach the

detailed design stage. The main disadvantage is that the

system which will run the users workload is not being

directly tested, only the projected capacity of the machine.

6.1.4 Mathematical Modelling

Some attempts have been made to model system performance

by the techniques of mathematical programming. The prospects

for the general use of such methods do not appear good.

Many dynamic interactions in systems, e.g user interacion

and speed of software execution, are difficult to represent

mathematically, Sharpe [3].

6.2 The Case for Simulation

There is some controversy in respect to the relative

merits of simulation and benchmarks. Howard, [4], draws the

following conclusions:-

Page 6-3

"The fact of the matter is that there is a place for

both approches. Benchmarks have their place in situations

involving upgrades and replacement. Benchmarks are also

important where performance of the workload is of primary

consideration. Simulation may be preferred where new

applications or processing approaches are involved.

Simulation is also preferred where the proposed hardware is

not available for benchmarking".

Therefore in this Thesis, as the proposed Group

Processor System hardware does not exist, simulation is the

only feasible solution. Several sucessful simulations of

proposed hardware have been carried out. Two notable

examples being the Data General MV8000 and the simulation of

Cm* on the C.mmp machine at Carnegie Mellon University

[2,5].

6.3 Computer Structure, Resources and Application

The Group Processor System consists of a number of

units each of which is capable of operation at specified

rates. These units represent the resources of the system.

The Group Processor is examined from the point of view of

these resources rather than the view point of the functions

performed by the component units. In the Group Processor

System, resources are categorised into types and the

relations between resources have been qualitatively

examined.

Page 6-4

6.3.1 What is a Resource?

The various units which comprise the Group Processor

System represent the resources; these resources are measured

by one or more parameters, such as execution rate or

capacity. Thus memory has two such resource parameters:

access time and memory capacity.

In this Thesis the term 'resource' is taken to be the

one defined by Beizer [1]:-

"The term 'resource' will be used to mean "resource

parameter', where the specific parameter is obvious from the

context".

A resource may be created by software. These are called

'synthetic' resources; i.e Processing time can be subdivided

into microseconds or other convenient time slices, creating

a processing resource which is available at a rate of one

million per second. Ultimately all synthetic resources must

be expressed in terms of physical resources.

Physical resources have the additional property that

they are available only in a finite quantity. Resource

parameters can only have positive quantities.

6.3.2 Some Definitions.

Utilisation is the percentage of time that a resource is in

use divided by the total observation time.

Page 6-5

Usage is the quantity of a resource required for a specific

task.

Demand Rate is the rate at which requests for the resource

are being made.

Relative Demand is the ratio of demand to the available

resource.

Saturation occurs when the utilisation equals one.

Efficiency is the ratio of relative demand to the

utilisation.

6.4.0 Simulation Architecture

In this section we present the architecture of the

simulator model. The simulator is viewed from the

architectural viewpoint, not the PASCAL program view.

The architecture of the simulation model is identical

to that given in Chapter 5. In addition, a number of

alternative bus interconnection patterns are available which

enable the simulation of various Group Processor

configurations.

6.4.1 System Architecture Components

The Group Processor System consists of six main

components:-

Page 6-6

6.4.1.1 Buses

The simulator has no representation of any physical bus

in the system; rather, a bus is inferred to exist by the

introduction of transmission delays built into transfer

rates of various subsystem components.

6.4.1.2 Bus Arbiters

For every bus in the system there is a bus arbiter

dedicated to the resolution of bus requests for that bus.

All arbiters in the system are identical in structure

and function.

6.4.1.3 Cells

A cell is the fundamental processing element in the

simulation. In this simulation the cell is not implemented

as a real device, rather it is an object capable of

controlling its own bus activity and performing local

housekeeping.

6.4.1.4 Modules

A module is the circuit board level of the simulator. A

module may contain an arbitrary number of cells.

6.4.2 The Group Processor

The Group Processor comprises a number of modules,

buses and arbiters.

Page 6-7

6.4.3 Bus Interconnection Schemes

The bus interconnection scheme determines the physical

form the Group Processor takes at a given time. It is an

interconnection pattern for Cells, Modules, Buses and

Arbiters.

The interconnection scheme is totally flexible and

provides for an arbitrary number of:-

a) Cells per module

b) Modules per system

c) Number and type of bus

6.4.4 Simulator Mechanics

This section deals with the mechanisms by which the

simulator executes the hardware model being studied. Its

major sections are:-

6.5 Bus Arbitration

All the bus arbiters in the system have the same

function and behave according to the following rules:-

1) For distinct bus requests, the arbiters act as FIFO's,

gueueing requests for bus access in the order in which they

arrive.

2) The arbiters provide a method for resolving simultaneous

bus demands. When two or more cells, at the same clock tick,

request bus access via a common arbiter, then the bus

Page 6-8

arbiter actions the cell with the lowest physical address.

This provides a mechanism for ultimate arbitration.

6.6 Bus Requsts by Cells

When a cell requests a bus of a given type, it queues a

bus request on all such buses in the system. It maintains

this state until one of the bus arbiters grants the cell bus

access. At this time, the cell drops all of its outstanding

requests and becomes bus master.

6.7 Actioning Bus Requests

On gaining control of the bus, the cell starts

execution of its current task. After completion, control is

returned to the bus arbitration logic for the next request

to be processed.

6.8 The Simulator Program

The simulator detailed so far has the basic abilities

to perform low level functions associated with the hardware.

The remainder of this chapter details the software

which drives these low level features, and provides a

complete view of the system simulator.

The Group Processor System simulator environment is

constructed in such a way that changes in architecture can

be achieved without the need for reprogramming.

Architectural modification is accomplished via sets of

system parameters which define the layout of the simulator.

Page 6-9

6.8.1 System Parameters

The parameters provided by the simulation environment

enable minor tuning of the architecture under investigation

or major architectural changes to be made. Available

parameters fall into these two groups.

6.8.2 Major Parameters

1) The number of cells per module (MAXCELLS)

2) The number of modules in the Group Processor (MAXMODULES)

3) The number of global buses (MAXGLOBALBUS)

4) The number of intra-module buses (MAXINTRABUS)

5) The number of inter-module buses(MAXINTERBUS)

6) The size of global memory (MXMEMORY)

7) The percentage of actual requests to the system

(REQUESTCONST)

6.8.3 Tuning Parameters

1) The duration of the simulation (MAXSIMTIME)

2) A loading factor for the simulator (LOADFACTOR)

3) A time range for memory requests (MEMCONT)

4) A time range for I/O requests (IORCONST)

5) A time range for CPU requests (CPUCONST)

6) A time range for operating system calls (OSCONST)

7) A time range for cell activity (PROCESSINGCONST)

8) The probability of a cell failing (CELLFAILCONST)

9) The probability of a module failing (MODULEFAILCONST)

Page 6-10

6.9 Main Sections of the Simulation Environment

At the heart of the simulation environment are a set of

procedures which generate jobs for the system and

subsequently handle the execution of these events.

6.9.1 The Job Scheduler (SETUPQUEUES)

The job scheduler has the task of asking every cell in

the system if it requires access to any of the system's

buses. The procedure decides which type of request a cell

wishes to make and queues the request on the appropriate bus

arbiter(s).

The possible requests on the system are:

1) Do nothing, continue present activity

2) Generate a compute bound job requiring no bus access.

3) Generate a request for an additional Cell. Either for

more processing power or for more memory. This places calls

on all inter and intra module bus arbiters.

4) Request intervention from the global operating system.

This places calls on the global bus arbiter.

5) Request intervention from the local operating system.

This places a call on all intra module bus arbiters.

6) Generate a request for a slice of global memory. This

places a call on the global bus arbiter.

7) Generate an input-output bound job. This places a call on

all bus arbiters in the system.

The job scheduler calls a routine, JOBSELECTION, to

determine which of the above options are to be used. Only

Page 6-11

REQUESTCONST percent of all possible bus requests are ever

actioned as a request gan be generated by every cell at

every clock tick.

The following is a schematic layout of the jobscheduler,

figure 6.1.

System Setup System Initalisation

JOB CREATION MECHANISM

CELL MANAGER

JOB SELECTION PROCEDURES

BUS QUEUE MANAGEMENT SYSTEM

BUS ARBITER MECHANISM

Figure 6.1 Group Processor Simulator
Schematic Diagram

Page 6-12

6.9.2 The Job Server

The second major section of the simulator is the job

server. This has the function of monitoring all the bus

arbiters and ensuring the correct bus

request/grant/relinquish sequence.

Once the Server has given a cell bus control it

inquires of the cell to what purpose it is required for and

acts accordingly. Possible actions available to the server

are:

1) If the bus is idle then execute the request

2) If the cell has finished with the bus then queue next

request

3) If a cell is actively using the bus then do nothing

The Job server calls several routines during its

execution these are:

1) A process which starts bus activity (STARTQUEUE)

2) A process which removes unwanted arbiter entries

(REMOVEENTRYS)

3) A process which initiates a new bus master (SERVECELL)

On system boot each cell, module and bus is given a

percentage chance of failure. Any defective components are

marked as defective and take no further part in the

simulation.

Page 6-13

6.9.3 System Loading

After system initialisation the simulator queues a

large quantity of bus requests upon the arbiters. This takes

place before the bus system becomes operational. This

initial loading represents the system examining its startup

configuration.

6.10 Range of Results

The Group Processor simulator has been designed to give

a range of results, specified by specific parameters, for a

single program run. This is achieved by varying the

specified parameter as the program executes and placing the

resultant data in one of ten specific directories.

6.10.1 Variation of 'Physical Constants'

In the simulator a 'Physical Constant' is taken

specifically to be one of the following:

1) The number of Global Buses

2) The number of Inter-module Buses

3) The number of Intra-module Buses

4) The number of Cells per Module

5) The number of Modules per Machine

6) The number of Input/Output buses

Page 6-14

6.10.2 Variation of Cell Numbers

For a given number of Global, Intra and Inter-module

buses and modules, the number of cells per module were

varied in ten steps from 2 to 1024.

6.10.3 Variation of Module Numbers

For a given number of Global, Intra, Inter and I/O

buses and cells per module, the number of modules per

configuration was varied from 1 to 16.

The single module environment represented the smallest

machine configuration. The 16 module environment constituted

a machine with some 67,108,864 bytes of memory. These

configurations represented the single user system. A

multi-user mode was also simulated with varying number of

modules in each users work-space, as well as a random number

of modules per user.

6.10.4 Variation of Inter-module bus Numbers

For a given number of Modules, Cells, Global and

Intra-bus numbers, the number of Inter-module bus numbers

was varied from 1 to the number of Modules present.

6.10.5 Variation of Module numbers and Inter-module buses

For a given number of Cells per module, Global and

Intra-module buses, the number of Inter-module buses and

Modules were increased from 1 to 64 in equal amounts.

Page 6-15

6.10.6 Variation of 'Soft Constants'

A soft constant is defined to be one of the following:

1) Rate of production of bus requests

2) Ratio of I/O, CPU, Memory, Cell requests and memory

requests

3) Time required by a cell as bus master

4) Message transmission time (message length)

6.10.7 Bus Request Rate

The rate at which the simulator (CELLS) demand the bus

was varied from 1 per clock cycle to 1 per 100 clock cycles.

6.10.8 Ratio of Jobs

The simulator is able to vary the job load of the

system. Available jobs include:

1) Cpu bound jobs

2) Input-output bound jobs

3) A mix of (1) and (2)

4) Memory request

5) Cell request

6.10.9 Time Required as Bus Master

This is the time for which a cell will have exclusive

control of a particular bus.

Page 6-16

6.10.10 Message Length

This will be the amount of time it takes a cell to

broadcast its message over the bus system.

6.11 Simulation Goals

The original aims of the simulation were:-

1) To show the Group Processor System works.

2) Given the throughput and resources, determine system

performance.

3) Given the throughput and target performance, determine

the system configuration to achieve that performance.

4) Given a system configuration, determine the throughput of

the system.

6.12 Limiting Factors

The following chapter presents the results of the

simulation. But what are the limiting factors of the

simulator presented in this chapter?

The simulator used random numbers to gain an

understanding of typical system workload and operation. In

real life, a user's needs may be more predictable over a

given length of time. This would result in a much more

highly tuned machine than simulated. However, the main

objective of the simulation is to identify typical bus

interconnection patterns for particular application areas.

Chapter 7 examines these interconnections in detail. In this

area the simulation provides useful information.

Page 6-17

6.13 Conclusion

The simplicity, yet complex nature of the simulator

make it impossible to try all possible permutations of

system parameter. Therefore only those factors influencing

major architectural features have been modified:-

1) The number and type of buses

2) Message Length

3) Off loading factor

4) Numbers of modules and cells

5) Single vs. Multi-user Systems

While the aims of the research were very important, a

number of technical and time related problems existed. The

original aims were too demanding for the research time

allowed. However, careful analysis proved that most of the

information needed for further development of the Group

Processor System could be obtained with the eventual

simulation environment. A further move to the current

simulator resulted in the time required to execute just one

run of the simulator dropping to acceptable scales. The

fully developed simulator would exhaust the available

processing equipment available for the research.

Page 6-18

References - Chapter 6

1. BEIZER, B., "Micro-Analysis of Computer System Performance", Van Nostrand Reinhold 1978.

2. SWAN, R., "The Switching Structure and Addressing Architecture of an Extensible Multiprocessor - Cm*", CMU-CS-138

3. SHARPE, W., "The Economics of Computers", Columbia University Press 1969

4. HOWARD, P., "Measuring System Performance Using Benchmarks", EDP Performance Review 1973

5. KIDDER. T., "The Soul of a New Machine", Penguin 1982.

Page 6-19

CHAPTER SEVEN

CHAPTER SEVEN

ANALYSIS OF GROUP PROCESSOR

SYSTEM SIMULATION

7.0 Introduction

In this chapter the output from the simulation of the

Group Processor System is analysed. The conclusions drawn

from this output will aid computer architects design more

efficient cellular systems of the Group Processor type, as

the simulator provides a window on the executing Group

Processor System.

The simulation produces an abundance of results, as a

result only those results of significant value are presented

in this chapter. A fuller listing of results is available in

appendix 2, which provides the reader with a much more wide

spread comparision of results. A much fuller set of output

listings is available for viewing, the sheer volume of

output listings makes it impractical to include them in this

Thesis.

This chapter is organised into two sections. Section

one provides a general analysis of a summary of the

simulation results. These results are provided in tabular

form and give the reader an overview of the simulation

results taken from each architecture under investigation.

Page 7-1

Section one is mainly concerned with the number, and

"type, of buses connected to each cell. Section two looks

much closer at key output graphs from the simulation. The

relative performance of each architecture is compared

throughout the simulation time, and major defects and

features of the overall architecture are identified.

7.1 Table of Results

A summary of results in tabular form enables the reader

to quickly compare the the various systems and strategies

that have been tested. These tables have been broken down

under five main headings, some further sub-divided where

different variables have been used to tune the basic

architecture under examination.

These architectures are grouped as tables 1-5, and

describe:-

1. The basic Group Processor System, as described by Quick,

with little or no variation in operating system variables.

This basic architecture is a fundamental building block for

further system variations.

2. This architecture represents the first variation on the

basic Group Processor System. While this is a table with

only one entry, it is most significant with respect to the

architectural design of the future Group Processor System.

In this configuration, the basic cell has an extra bus added

in the form of a dedicated Input-Output bus.

Page 7-2

3. This architecture outlines the variations in bus
scheduling, and its corresponding effects it has on system
performance on the architecture found in 2 above. The
architecture of that found in this system is complex, as it
shows how the change in operating system variables can have
a profound influence on the efficient running of the
finished design.

4. One of the basic Group Processor's features is that of
system segmentation. The output in table 7.4 shows how this
feature can affect the performance of the Input-Output bus.

5. Lastly, this architecture tries to evaluate the
performance of a typical multi-user Group Processor System.

Page 7-3

BA
SI

C
G

RO
UP

 P
RO

CE
SS

O
R

AR
CH

IT
EC

TU
RE

BU
SE

S
C

O
N

ST

SE
RV

IC
E

RA
TE

 %

CE
LL

 S
TA

TU
S

•B

0*

tO

(0
G

LO
BA

L

1 1 1

IN
TR

A
IN

TE
R

I/O

0/
S

M

ES
SG

C.

RE
G

10

TI
M

E
I/O

SE

ND
-M

SG

OS
 C

AL
L

FR
EE

AC

T!

W
AI

T
CO

M
M

3
3
0

1

5
10

20

20

0
86

.3

80
.4

99

.8

26

55
9

43
2

6

3
3
0

1

5
10

20

5

69
.2

68

.0

10
0.

0
29

18

97

1
6

3
3

0
1

10

10

10
0

5
_

_
_

_
_

_

_
-
-
2

1

10
14

7

TA
BL

E
7.1

BA
SI

C
GR

OU
P

PR
OC

ES
SO

R
&

GL
OB

AL
 I/

O
BU

S

BU
SE

S
C

O
N

ST
SE

RV
IC

E
RA

TE
CE

LL
 S

TA
TU

S
(Q

 (D V
] I en

GL
OB

AL

IN
TR

A
IN

TE
R

I/O

0/
S

M
ES

SG

C.
RE

G
10

TI

M
E

I/O

SE
ND

-M
SG

OS

 C
AL

L
FR

EE

AC
T!

WA

TT

CO
MM

3
1

1
10

20

20

0
27

.0

10
0.

0
10

0.
0

2
9

64
4

34
5

6

TA
BL

E
7.

2

BA
SI

C
GR

OU
P

PR
OC

ES
SO

R
&

SH
AR

IN
G

I/O
 B

US

BU
SE

S
SE

RV
IC

E
RA

TE
CE

LL
S

G
lo

ba
l

1 1 1 1 1 1 1 1

In
tra 3 3 3 3 3 3 2 2 2 2 3 3 1 1 1

In
te

r 3 3 3 3 2 2 3 3 2 2 1 1 3 3 1

I/O

10

1
20 20 20 5 5 20 20 5 5 20 5 20 20 5 5

10

Q

70 30 50 SO 50 50 50 50 60 60 50 50 50 50 70

I/O 81
.8

84
 6

82
.7

94
.7

93
.5

71

2
81

.4
93

.4
94

.1
75

.9
95

.9
53

.5
76

.9
96

.7
99

.6

S
en

d-
M

sg

90
.4

87
.9

89
.3

99
.2

95
.2

85
.1

83
.0

96
.8

90
.3

77
.5

86
.5

81
.6

73
.2

75
.8

59
.4

OS
 C

al
l

10
0.

0
10

0.
0

99
.8

10
0.

0
99

.7
10

0.
0

99
.8

10
0.

0
10

0.
0

10
0.

0
10

0.
0

10
0.

0
99

.8
10

0.
0

10
0.

0

Na
w

Ca
ll

90
.1

91
.2

89
.7

98
.8

96
.5

93
.9

82
.3

95
.7

89
.8

80
.3

88
.8

99
.0

74
.2

99
.8

60
.2

Fr
aa 31 31 32 41 36 28 27 37 32 25 31 24 22 32 22

Ac
t!

64
1

64
9

66
6

86
1

76
3

57
7

56
3

76
8

68
8

51
2

66
0

52
9

47
9

66
1

45
4

W
al

t

34
5

33
6

31
9

11
5

21
9

41
3

42
7

21
3

29
9

48
1

32
8

46
6

51
8

32
6

54
5

C
on

n 7 7 7 7 6 6 6 6 5 5 5 5 5 5 3

•o 0)

(Q

(D

TA
BL

E
7.

3

SE
GM

EN
TE

D
GR

OU
P

PR
OC

ES
SO

R
IN

PU
T/

OU
TP

UT
 B

US

BU
SE

S
CO

NS
T

SE
RV

IC
E

RA
TE

CE
LL

 S
TA

TU
S

G
lo

ba
l

In
tra

1
3

1
3

1
2

1
2

1
1

1
3

1
2

In
te

r
I/O

3 2 3 2 1 2 2

16 16 16 16 1
6

1
6

1
6

0/
S 1 1 1 1 1 1 1

M
es

t

5 5 5 5 5 5 5

C.
re

g

10 10 10 10 10 10 1
0

10 20 20 20 20 20 10
0

50

Ti
m

e

20
0

20
0

20
0

20
0

20
0

20
0

20
0

10

Q
|/o

Se

nd
-m

sg

50 50 50 50 50 50 50

99
.8

99
 7

99
 5

10
0.

0
10

0.
0

75
.2

99
.6

99
.8

96
.1

94
.8

85
.9

59
.7

99
.6

88
.9

OS
 C

al
l

99
.9

99
.8

99
 8

10
0.

0
10

0:
0

10
0.

0
10

0.
0

Ne
w

ce
ll

99
.9

95
.9

96
.1

88
.5

64
.9

99
.8

88
.7

Fr
ee 44 40 39 34 23 36 34

A
ci

l

91
7

81
7

80
7

67
9

46
4

77
1

70
4

W
ai

l

52 16
6

16
8

28
6

53
2

19
6

27
2

Co
ra

m

11 19 1
0

8 5 21 14

(U ua (D

TA
BL

E
7.

4

SE
GM

EN
TE

D
GR

OU
P
PR

OC
ES

SO
R

IN
PU
T/
OU
TP
UT
 B
US

•o Oi

<Q

(0 I 00

BU
SE

S
CO

NS
T

SE
RV

IC
E

RA
TE

CE
LL

S

Gl
ob

al

In
tra

In

te
r

I/O
 O

S
M

es
sg

C.

re
g

10

Ti
m

e
10

Q

I/O

Se
od

-M
sg

OS

 C
all

 N
ew

 C
all

Fr

ea

Ac
t!

W
al

lC
om

m

1
3

3
16

1

5
10

20

20

0
50

99

.1

98
.9

10

0.
0

99
.3

44

90

6
63

11

TA
BL

E
7.

5

7.2 Basic Group Processor System

The main problem with the projected Group Processor

System is the potential bottleneck on the system buses. Any

problems at this level will manifest itself as waiting time

for any cell wishing to gain access to the bus, and will

result in increased processing time for any program. With

this in mind, a number of key tables are coompared which

will serve to identify the architectural features most

likely to slow down processing at the system level.

The three entries in table 7.1 identify a number of key

variables which are pursued throughout the analysis of the

simulation results. The first variable relates to the length

of message allowed by each cell at any one time. The

variables used here are 5 and 10. These are in effect

lengths of time slots for any one cell to transmit on a bus,

after which it must relinquish the bus. If a cell wishes to

send a very long message, then the cell must make repeated

calls on the system buses.

The second variable relates to the amount of

input-output processing that the system is performing, the

higher the Input-Output constant the more Input-Output bound

the system is. In the context of the tables shown here, the

figure of 100 proved in reality to be the equivalent of

infinity. Similarly, the Time heading in table 7.1, relates

to the amount of processing done within a cell. Ideally, the

higher the processing time constant the more memory a cell

has. In reality, this may not be true as it may be an

Page 7-9

indication of whether the cell makes repeated calls to the

internal memory within the cell, or whether the cell

persistantly makes calls to the system buses. The underlying

theory behind this is, the less memory a cell has, the more

calls it will make to other cells for services, e.g. to

store data.

In analysing the results from the simulation of the

basic Group Processor System; the third entry in table 7.1

can be disregard. This entry was so bad that by the end of

the simulation period, nearly every cell within the system

was waiting for a system bus. Clearly, the high Input-Output

constant of 100 made this an architecture targetted for

application in IKBS. From the poor Input-Output performance

result, the basic Group Processor System is not suitable for

application in IKBS.

Even with the Input-Output constant greatly reduced, the

system has a poor service rate. The second entry shows the

performance for a system configuration of small memory size

and low Input-Output processing. This configuration still

produces very high bus waiting times, with an added degrade

in the average number of buses being used, i.e. only six out

of seven being utilised at any one time.

An additional consideration is the use of the global

operating system bus for Input-Output calls. From Table 7.1

there is a very serious degrade in Input-Output performance

if all Input-Output calls are mapped to the global bus. This

configuration also degrades the operating system calls from

Page 7-10

a service rate of 100% down to 33%. Clearly this

configuration is not desirable.

7.3 Extended Group Processor System

The major problem associated with the basic Group

Processor System is the relatively poor bus service rate.

One important requirement in any cellular system is that of

immediate communication with other cells within the

execution environment. Another requirement is to provide a

very fast Input-Output system both to the user and to the

program execution environment.

The need for fast turn-around in Input-Output traffic

cannot be met with the current cell design. With this in

mind the provision of an dedicated Input-Output bus offers a

"potential" speedup in Input-Output communication. It is

important to note here that an additional bus has been

provided to each cell within the system. No other system

changes have been made.

From table 7.2; there is a marked increase in service

rates on all the basic system configuration's buses.

However, there is a marked degrade in the processing of

Input-Output calls. On face value this would appear to be

contradictory to providing a dedicated bus for Input-Output

operation. The Input-Output degrade is quite simple; whereas

the basic Group Processor System queued all Input-Output bus

requests on all system buses, excluding the global bus, the

new configuration reduced the number of channels available

Page 7-11

for Input-Output from the 6 in the basic system down to only

one in the new configuration, i.e. the dedicated

Input-Output bus.

If we are to compare the original Group Processor

System proposed by Quick, and the expanded system proposed

here, then it has to be admitted that Quick's original

design averages out quite well for bus service requests.

7.4 Operating System Constraints

Up to this stage the variations that can be imposed by

the operating system have been ignored. We have concerned

ourselves with only adding physical resources, i.e. the

addition of a single Input-Output bus. In this section the

extended view of the system, which as a result includes in

the picture the role of the operating system is taken into

account.

A number of operating system variables will be

examined, and what influences these play on the simulation

output will be examined. From table 7.3 a number of hardware

architectures, e.g. 1,3,3,1, which represent the number of

buses that are available to each cell. In addition to these

hardware resources a new operating system variable is

introduced, this being an "Off-Loading Factor".

The Off-loading Factor is a recognition of the value

that the basic Group Processor System had in providing a

relatively high bus service rate, it is the cut off point at

which bus requests are redirected to 'other' buses, and also

Page 7-12

the importance of providing a dedicated Input-Output bus

system. Together the basic Group Processor System provides a

good beginning, while the introduction of the dedicated

Input-Output bus provided a high degree of tuning on the

main system buses. What would be ideal would be the

maintenance of the 100% service rates on the main system

buses, coupled with a great improvement in the capability of

the dedicated Input-Output bus.

In table 7.3 are the results from the above scenario.

The results from the additional Input-Output bus coupled

with Quick's original Input-Output sharing scheme provides

the system with a greatly improved system performance. This

table provides most of the architectural information needed

for designing and configuring a Group Processor based on the

original concepts outlineb by Quick. From this table five

important entriescan be identified, which are:-

Bus Configuration I/O Constant Off-loading

1, 3, 3, 1 20 50

1, 3, 3, 1, 5 50

1, 2, 3, 1, 5 50

1, 2, 2, 1 5 60

1, 2, 2, 1 20 60

The above entries represent the main cell

inter-connection patterns available to the system architect.

There is one other which is the 1,1,1,1, but this system we

Page 7-13

shall ignore for now because it represents a "bare bones"

Group Processor System. The first two inter-connections are

based on the 1,3,3,1 pattern, which have proved so far to be

the best inter-connection pattern. The service times for these

patterns are very high, many being well in excess of 80%. The

most important entry in this area of the table is number 4,

where the service rates are very high with at least 95%

service rates on all buses. However, this entry represents a

small Input-Output loading comparable to a processor bound

job. For a corresponding high Input-Output traffic bound job

there is a 10% drop off in bus service rates.

The mapping of the Input-Output calls to the global bus

in Table 7.1 produced disappointing results. In Table 7.3 the

same concept is extended by adding the Input-Output bus to the

basic system configuration of 1,3,3. In this configuration the

Input-Output calls are mapped to the Input-Output bus until

they reach 50 entries, after which they are mapped onto the

global operating system bus. As with the 1,3,3

inter-connection scheme, this Input-Output queuing pattern

proved to be undesirable.

The other important consideration is in table 7.3;

consider the average number of cells Waiting and Active during

the simulation run. The first entry above, averaged 336 cells

waiting for the system buses. This represented a high

Input-Output bound job compared to the lower Input-Output

traffic which yielded only 115 waiting cells. It is

interesting to note these values as percentages, the first

being 48% and the second being 13% illustrate a different way

Page 7-14

in which Input-Output traffic affects bus waiting time in this

system configuration.

The last two entries above denote a Group Processor

System with less buses. The overall performance of these

inter-connection and bus scheduling strategies provides a

useful system configuration if technological constraints

impose a limitation on the number of available buses. If a

prototype Group Processor System were to be constructed, with

the corresponding limitations in costs and complexity, then

the 1,2,2,1 system configuration would be a good starting

point for system development. However, this system would not

be seen as a high availability, high integrity system design

as there would not be any form of triple modular redundancy at

the bus level. With this in mind the 1,2,3,1 configuration is

suitable, with a corresponding increase in system performance.

The three Inter Module Buses would allow Triple Modular

Redundant communication anywhere within the system, whereas

three Intra Module Buses in the 1,3,2,1 configuration would

only allow triple modular redundant communication within each

module.

7.5 Off-loading Factor

The Off-loading factor initially seemed to be a critical

section for improving system performance. This turned out to

be not the case. Within the Input-Output queue length range of

30 to 70 there was very little variation in system

performance. The lower the Off-loading Factor the better the

Input-Output performance, but at the cost of a decrease in

Page 7-15

other bus performance. For systems that need higher

Input-Output throughput an Off-loading Factor of 30 is

recommended.

7.6 Segmented Input-Output

The most interesting results relate to the segmentation

of the Input-Output bus. The segmentation of the Input-Output

bus enables each module to have its own dedicated Input-Output

system. This Input-Output system can be coupled together to

provide either general purpose or dedicated Group Processor

Systems.

From table 7.4 a number of interesting observations can

be made, the most important of these is the Input-Output

constant. This constant is high at 20, and extremely high at

50. The readers attention is also drawn to the 100 constant,

which is seen as infinity. The overall performance of this

inter-connection scheme is a positive indicator of a typical

engineered system architecture.

Taking the 1,3,3 scheme first; the addition of 16

Input-Output buses produces Bus Service Rates approaching

100%. Clearly, this system design could be used for real time

IKBS as there is little or no cell waiting time. If we take

the 1,2,3 inter-connection scheme, this scheme offers very

good performance figures in excess of 95%. In fact, the cell

Input-Output has to go as low as the 1,1,1 inter-connection

scheme before we see a marked degrade in system performance.

Page 7-16

The ratio of cells active to those waiting for a bus at

any one time during the simulation is also very interesting in

this system configuration. The 1,3,3 scheme has a ratio of

only 0.06, compared to the previous 1,3,3 in table 7.3 of

0.54.

7.7 Dedicated Systems

The inter-connection schemes that have been presented so

far have been based on regular module inter-connection

schemes. In real life applications there may be one or more

modules dedicated to supporting a number of execution

environments. In table 7.5 the high performance

inter-connection scheme, i.e. the 1,3,3. inter-connection are

analysed.

The important consideration here is that the system

supports segmented Input-Output buses. As a result of this,

coupled with the fact that Off-loading is also used, the

system performance is very good indeed. Service Rates of 99%

clearly indicate that irregular system inter-connection is

acceptable.

This system can also be considered in the same light as a

general purpose system. From time to time it is perfectly

feasible that a bus inter-connection scheme in a multi user

Group Processor System would take on the appearance of figure

8.3. Therefore, the highest performance figures obtainable in

a multi user system would be 1,3,3 in table 7.4 (service rates

Page 7-17

of 100%) and the worst case of 1,3,3 in table 7.2 (with

average service rates of 90%).

7.8. Closer Analysis

In this section we take a closer look at the graphs

generated during the simulation. A number of observations

concerning interesting points can be identified within each of

the graphs presented. The architecture under consideration

consists of 16 modules, each module containing 64 cells.

7.8.1. Effects of Bus Contention

Graphs 7.1.a. to 7.I.e. compare the average number of

cells waiting for a bus. Graph 7.1.a. represents the basic

Group Processor System compared to graph 7.1.b. which

represents the extended Group Processor with only one

dedicated Input-Output bus. There is always a very high demand

for a bus in the basic system and clearly points to a major

system design flaw. The extended system design produces a

graph which falls off in bus demand early on in the

simulation, indicating the beneficial nature of the dedicated

Input-Output bus. The bus demands increase as time progresses

through the simulation. This is because of the bottleneck of

placing all Input-Output operations on the single Input-Output

bus.

Page 7-18

CBU.S

Graph 7.1.b

Tire•»

G raph 7.1 .a

nrs

Page 7-19

CELLS

Graph 7.1.d JJ
45-

IS

1ft

Tine
386

Graph 7.1 .c 24

Tir*

Page 7-20

36 CELLS

15

Graph 7.1.6

33

29

13

10

'WV

i see zeee

Page 7-21

Graph 7.I.e. shows how the Operating System can play an

important role in the efficient running of the Group Processor

System. This graph reduces the cells waiting for a bus to one

third that of the basic Group Processor System. Compared to

the extended Group Processor System, there is a reduction in

the number of cells waiting for a bus after 600 time slots.

This graph is predictable over a wide spread of the

simulation, which is a useful feature when calculating system

response times.

Graphs 7.1.d. and 7.I.e. represent a segmented

Input-Output bus structure. From the graphs there is a very

low number of cells waiting for a bus. On average only ten

cells are waiting for a bus, compared to the basic Group

Processor System of some 950 cells waiting at any one time.

The spread of the graph in 7.1.d. is between 6 and 18 cell

waiting for a bus. However, graph 7.I.e. has a spread from 7

to 13. Both of these graphs illustrate architectures which

have highly responsive bus systems.

7.8.2 Inter-cell Communication

The performance of any Group Processor System ultimately

depends on the communication delays incurred during message

passing. While this is more often than not communication

delays between executing functions within cells, there can

also be delays incurred in communication between cells and the

Input-Output channels.

Page 7-22

The graphs of 7.2. show the merits of the architectures

for minimising communication delays. The basic architecture of

7.2.a. shows that this system architecture is very bad in

minimising the transmission of data/functions between cells.

The graph climbs steadily upwards, until about one third of

the way into the simulation. Unfortunately the graph does not

decline, but continues horizontally for the remaining life of

the simulation, and averages out at approximately 400 time

units for a cell to gain bus access.

The provision of an Input-Output bus within the

architecture does have a dramatic effect in the early stages

of the simulation. However, whereas graph 7.2.a. had a spread

of about 900 time units at the end of the simulation, graph

7.2.b. has a spread of some 1500 at the end. The density of

the "ink" on these two graphs gives an indication of the

relative merits of these two architectures. Graph 7.2.a. has

much more density of waiting time towards the top of the

graph. Graph 7.2.b. has the ink density towards the bottom of

the graph, and as result show the usefulness of the

Input-Output bus on system performance.

Page 7-23

15

11

I]

I2M*

11

16

700

lAlTINB-TlrC

Graph 7.2.b 17

I

Mae

1380-

129*.

I I

18

Graph 7.2.a 8

see

Page 7-24

Graph 7.2.d 54

nrs

t»AITIN8-Tlne
Graph 7.2.C 26

Page 7-25

Graph 7.2.9 £9

Page 7-26

The most remarkable graph is 7.2.c. in terms of the

general system configuration, together with the additional one

Input-Output bus. The overall performance of this system

architecture in minimising communication delay is it's

relatively predictable performance. The average time a cell

has to wait for system bus is some 200 time units. Throughout

the simulation, the architecture presents a very horizontal

averaging, with some very occasional wide spread fluctuation.

The average spread is 400. Clearly, this architecture is very

predictable and suitable for a wide range of applications

which require fast inter-cell communication.

While the general Group Processor System with a dedicated

Input-Output system gives reasonable performance for fast

inter-cell communication, it is the Group Processor System

with a segmented Input-Output system which provides the most

dramatic inter-cell communication capability. Graph 7.2.d.

shows the architecture of such as system with an almost

idealised graphical output. The linear form of this graph,

together with it's minimal spread of just a few time units,

provides a clear conclusion that where possible, Group

Processor Systems with segmented bus systems should be used.

Graph 7.2.e. is a compromise between the architecture of

the Group Processor System with a dedicated Input-Output bus,

and the Group Processor System with a segmented Input-Output

bus system. Between these two inter-connection schemes graph

7.2.e. gives an insight into a randomly generated time

probability for inter-cell communication. While this

Page 7-27

architecture is not generating the idealised graph of 7.2.d.,

it certainly does approach 7.2.d.'s shape or form.

7.9. Software Considerations

In this section of the chapter, the overall policies of

the Operating System are analysed. This analysis looks at each

architecture during the life of the simulation and tries to

draw important conclusions with respect to bus scheduling and

inter-cell communication. The problem of maintaining a high

Input-Output bandwidth is also addressed.

The basic Group Processor System makes very high demands

on system buses. The Inter Module Bus has a low bus queue

compared with the Intra Module Bus because, a cell that wishes

to communicate with another cell within a module can queue on

both bus types, as both Inter and Intra Module Buses connect

all cells within a module. A cell that wishes to communicate

with cells on other modules can only queue on the Inter Module

Bus. Graphs 7.3.1.a. and 7.3.1.b. represent the performance of

the basic Group Processor System.

The basic Group Processor System has little opportunity

for varying system parameters. The extended Group Processor

System has more opportunity for fine tuning system performance

outside that of the simple provision of more system buses.

Graphs 7.3.2. and 7.3.3. show the effects of changing the

scheduling parameters. The low Inter and Intra Module bus

queues are very desirable features within any Group Processor

System. On the other hand, the upward spiral of the

Page 7-28

Input-Output queue is not a desirable feature. Graphs 7.3.3.

provide a different picture. The low bus queues of the

previous graphs give way to seemingly undesirable Inter and

Intra Module graphs in 7.3.3.

The differences in the graphs above show the effect of

off-loading the demand for the Input-Output bus onto the Inter

Module bus, and the subsequent knock-on effects that this has

on the queue lengths for Intra Module bus queues. Graph

7.3.3.C. shows that throughout the simulation, the

Input-Output bus was used for a high percentage of the time.

This high Input-Output bus utilisation is a desired feature,

with this graph giving possible optimum performance that could

be expected from a non-segmented Input-Output bus system.

Page 7-29

Graph 7.3.1-b J

i eel

Tirs

see

see-

/eel

see

see

zee

ELLS

raph 7.3.1-a 2Grap

Page 7-30

Di <a (D I U
)

O ^ 0 •o U to

o -« 0 •o M or

see4CELLS

3301

seo

•tee*

330

3604

286

sa

Graph 7.3.2.C

TIME

Page 7-32

36» CELLS

200

Graph 7.3.3.b 20

Tire

30» CELLS

IS*

Graph 7.3.3.a 19

Page 7-33

zee

lee

CELLS

Graph 7.3.3.C 21

Tine 155'

Page 7-34

7.10. Conclusions

To understand the conclusions that lay behind the Group

Processor System typical applications of the system must be

considered. A Group Processor System which is being used as a

database machine will require very fast searches of wide

variety of databases. These systems do not require

Input-Output operations as found in conventional system

architectures. While on the other hand, real time process

control systems demand a very high Input-Output bandwidth. The

conclusion drawn from this chapter is that the Group Processor

System can cater for both types of applications.

The concepts behind the Input-Output architecture of the

Group Processor System is very similar to more conventional

Input-Output systems. The main dissimilar feature is the

distribution of terminals, as found in a multi-user system, to

each of the many Modules that would make up a typical system

design. The extension of the Input-Output system provided much

needed flexibility for the whole Group Processor System.

The most important consideration when designing cellular

systems is the need for at least one dedicated Input-Output

bus. From the results, the Input-Output bus provision

increased the capacity considerably. More importantly,

Input-Output bus segmentation is needed to further maximise

Input-Output system throughput.

In section 7.4; the 1,1,1,1 inter-connection

interpretation was postponed until now. One conclusion which

Page 7-35

must be drawn from the simulation is that this scheme has no

value for IKBS. As this system is identical to the TRANSPUTER,

it must be stated that as a result of these findings, the

TRANSPUTER is not suitable as a cell in the Group Processor

System. It is doubtful whether the TRANSPUTER does have a wide

range of applications with which to be configured.

But what about the limitations of the simulation? Within

the limitations of the equipment executing the simulation

program; the simulation provided a wide range of results. The

main problem that was encountered was the capacity of the

computing equipment to process the simulation in real time.

Another limitation was the Languages available on the

machines. All in all, three mainframe/supermini computer

systems were used to process the simulation. These systems

proved to be lacking in many areas, the biggest problem was

that of space limitations within the machines.

Page 7-36

CHAPTER EIGHT

CHAPTER EIGHT

GROUP PROCESSOR

ARCHITECTURAL ENHANCEMENTS

8.0 Introduction

The Group Processor System has one major design

problem. This problem relates to the functional attributes

of the system when the user is interacting with many

abstract processors. In this chapter this problem is

analysed and a solution is proposed which overcomes most of

the foreseen problems associated with the bus system.

8.1 Group Processor System Problems

To analyse the functional problems associated with

interacting with many abstract processors the problems

associated with user inter-action should first be

understood. In this section typical terminal usage will be

described.

When a user first interacts with the Group Processor

System a number of abstract processors are made available.

These abstract processors contain programs which may be

invoked by sending the equivalent of a "start signal" to

initiate program execution. Where there is a database

located in the abstract processor the user may send a query

to interrogate the database. These messages are sent along

the system buses from the first level processor to the

Page 8-1

abstract processor which stores the file. The main problem

with the Group Processor System is that where files are very

remote from the first level processor, complex

inter-connection paths have to be set up on the Inter Module

Bus.

These communication paths are often made more complex

when they cross the communication paths of other users or

other executing abstract processors. All too often there are

considerable time delays between invoking the request to

send a message to these remote abstract processors, and the

time they are actually executed. The setting and re-setting

of bus segmentation switches is very dynamic, and hence

difficult to optimise for efficient bus performance.

Figure 8.1 illustrates the above problem when mapped

onto a typical multi user machine. The many users within

this machine architecture conflict for the two database

areas. The main problems associated with user inter-action

is when parallel access to these often remote areas results

in bus contention. In the basic Group Processor System, bus

contention will occur on the Inter-Module bus systems,

although the bus system is triplicated. What is required in

the bus system is a hierarchy of bus inter-connections which

allows a high degree of system flexibility and structure.

8.2 T.E.S.S. Outline

The bus structure that is presented in this Thesis does

not change the basic Group Processor System module

Page 8-2

U
S

E
R

T

E
R

M
IN

A
L

•a 0)

(Q

(D 00 i

D
A

TA
B

A
S

E

N
o.

2

D
A

T
A

B
A

S
E

N

o
.

1

P
E

R
IP

H
E

R
A

L

IN
TE

R
FA

C
E

C

O
N

T
R

O
L

L
E

R

U
S

E
R

T

E
R

M
IN

A
L

A
B

S
T

R
A

C
T

M

A
C

H
IN

E

B
O

U
N

D
A

R
Y

O
P

E
R

A
T

O
R

S

C
O

N
S

O
L

E
U

S
E

R

T
E

R
M

IN
A

L

inter-connection. An additional bus system is added to the

front-end, that is the interface to the user, which provides

the flexible hierarchy needed in the Input-Output system as

well as providing a number of extra benefits. This system is

the Transaction Environment Switching System, or T.E.S.S.

for short.

T.E.S.S. allows the user to link together many modules

whose location is often random in location. T.E.S.S. has

also changed the way in which the user's terminal is

inter-connected to the modules. The terminal is no longer

directly coupled to the module but is linked indirectly

through a series of Input-Output switches mounted directly

on each module. These Input-Output switches perform a form

of Input-Output segmentation similar to that of the Inter

Module bus.

A general comparison may be made between the basic

Group Processor System, shown in figure 5.8, and the

T.E.S.S. architecture shown in figure 8.2. The Terminal

Crossbar Switch Network allows any terminal to access any

one or more terminal Input-Output channels. It will be shown

later that many complex Input-Output switch

inter-connections may be set up.

8.3 T.E.S.S. Objectives

The T.E.S.S. provides the Group Processor System with

two methods of Terminal inter-action. The first;

communication paths are available to the users along the

Page 8-4

Terminal/ 1-0 Channels

CD

3' T3
Oz:

Terminal Crossbar Switch Network

O O O O

Figure 8.2 T E.S.S. Architecture Outline

Page 8-5

system-wide Input-Output route, that is the terminal

Input-Output channels, providing users with a method of

global interaction with cells. This provision is important

where the user is interfacing with a database system for

query or updating, this method is not supported in the basic

Group Processor System. The second; direct terminal input to

the module can result in information being transmitted

between the machine and the user in the fastest possible

time. These two dissimilar routes for terminal communication

allows maximum flexibility for global interaction while

maintaining direct access to cells for immediate update or

query.

The application of these approaches can be visualised

by considering the use of such a system in a fighting ship,

an application not too dissimilar from the system outlined

in figure 8.1. The Captain and senior members of the crew

need instant access to information regarding the whole

theatre of war. This information would be stored in cells

immediately accessible to the peripheral devices, these

cells would contain the software functions dedicated to

updating the database. Both the Captain and the direct input

devices use different methods of Input-Output communication

paths because each user, either the Captain or the

peripheral, have different speed requirements.

The Captain has a slow speed requirement compared to

the high speed data input from, for instance, the ship's

radar system. Therefore, the Captain uses the system wide

Input-Output bus, that is the terminal Input-Output channel,

Page 8-6

•fl *•
•

OP •* o o» e
i

•a o> (Q 00
 I

m

P tf C.

< o (0

To
 o

th
er

 M
od

ul
es

in

 th
e

Sy
st

em

1-0
 C

ha
nn

el

W
ith

 C
ro

ss
ba

rs

0
O

D
D

na
n

na
n«

"«
»°

r ce
ii$ n

nn
an

nn
D

D
Rl

te
rn

at
iu

e
1-

0
Ch

an
ne

l o
Co

nv
en

tio
na

l M
et

ho
d

of
 T

er
m

in
al

 C
on

ne
ct

io
n

o a c (5

whereas the peripheral uses the conventional method of

direct access to the module. Both of these two methods of

Input-Output are shown in figure 8.3. The important

objective here is, the requirement for a dedicated function

of the peripheral resulting in optimised performance, and

the generality and speed reduction of the T.E.S.S.

8.4 T.E.S.S. Operation

Each cell within the Group Processor System has an

Input-Output bus. This bus handles most Input-Output traffic

and serves Input-Output requests on a first in first out

basis. This first in first out queue is identical to the

queuing processor on the other system buses as described by

Quick.

To understand the operation of the T.E.S.S, it is

useful to study the actions of a crossbar switching system.

A crossbar switching system allows many processors to

communicate with many memory units. Figure 8.4.a. shows the

crossbar architecture as many processors on the left side of

the diagram, while the memory units are located at the

bottom of the diagram.

Additional units e.g. Input-Output channels may also be

coupled to the crossbar so as to form an integrated system

environment which conforms to the polymorphic rules, that

is, any computing requirement may be constructed from a

mixture of processors, memory and Input-Output unit by the

Page 8-8

Crosspoint Svitch

Multi-port Access
To Memory Unit

Fig. 8.4 b

Port

c a

Fig. 8.4 c

()
uon

4 r

()
on

U
ODD

Input-Output
Channel

Input-Output
Channel

Input-Output
Channel

Input-Output
Channel

(̂

(•

u
3
7

i

ĉ
T
(
I

U C
3 1y Ti -.

0 C
3 '
3 T
D <> :

i
I

Figure 84 Ported Memory Concepts

Page 8-9

enabling/disabling the communication between these units.

The crosspoint switch performs this switching function.

The main problem with this classic architecture is that

the crossbar is a single point of failure. A more normal

implementation of the crossbar mechanism is to partition the

crossbar into it's many crosspoint constituent parts, and

distribute these to the memory units. This forms the basis

of the multi-ported memory concept of figure 8.4.b. In this

Thesis the processor unit no longer exists, as the many

processors are distributed to the cells within the Group

Processor System Module.

The overall architecture of the T.E.S.S, shown in

figure 8.4.C., illustrates a typical structure of the

Input-Output bus, and its inter-connection to each module.

Each cell has a number of serial Input-Output lines which

provide the many inter-connection patterns that are needed

in the T.E.S.S. These Input-Output lines are driven from a

single Input-Output channel within the cell, and the

Input-Output line is mapped to the cell when the cell

receives its dedicated function. This Input-Output mapping

informs each cell which has to perform user Input-Output

operations, and which of the cell Input-Output ports to use

when performing Input-Output functions. Technological

limitations are the only consideration which the computer

architect has to contemplate when designing T.E.S.S. into

any Group Processor System.

Page 8-10

a
01«•«en
Dien

.So

Global
Bus

Future Terminal
Expansion

Crossbar
Switch

Crossbar
Switch

Crossbar
Switch

Crossbar
Switch

module 1-0 Inter-connection
network

module Buses To 1-0 Ports
on Cells

Figure 85 Four Terminal/Crossbar
Module Inter-connection

Page 8-11

The four serial lines to the Terminal & System

Input-Output Ports, figure 8.5, may provide maximum triple

modular redundancy to the terminal. This can be achieved by

either sending output along three serial lines from the cell

or, by mapping any of the Inter/Intra Module buses to the

serial lines radiating to the user terminals.

8.5 Module/Channel Interface

The Module/Channel Input-Output architecture, which is

mounted on the module, is shown in figure 8.6. The Inter and

Intra module buses, together with the serial Input-Output

lines from each cell terminate at the T.E.S.S./module

network interface. From there on, the communication lines

are all serial, ultimately converging at the user's

terminal. This parallel to serial convertion allows

Off-loading to take place on the Inter/Intra Module buses.

The addressing mechanism sets/resets the segmentation

switches within the channel interface. These switches can

have one of many configurations set, so that they can pass

data along the serial lines to and from the user's terminal.

These switch states are controlled by the Global Operating

System by passing messages to the module Input-Output

channel attached to the module containing the Global

Operating System. Figure 8.8 shows these switch states and

the channel interface addressing mechanism.

The module Input-Output Inter-connection Network is

also a crossbar system. The operation of this

inter-connection network is very similar to the crossbar

Page 8-12

Data In

Strobe In

Global
Bus

To other Crossbars

Crossbar
Switch

16 Bit Latch

4 to 16 Line
Decoder

ITlodule 1-0 Inter-connection
Retiuork

I I
module Buses To 1-0 Ports

on Cells
Figure 6.6 Module /Crossbar I nter-connection

Network

Page 8-13

operation described above. Whereas the mapping of the

Terminal Communication Lines to each Module is performed

through the Module Input-Output Inter-connection Network,

the Module Input-Output Inter-connection Network itself is

controlled and set up by the Global Operating System via the

Global Operating System Bus. If there is a failure in this

bus, the Global Operating System may use the alternative

Inter/Intra Module Buses.

8.6 Crossbar Operation

The architecture of the crossbar switch includes an

assembly of crosspoints and a control memory. This

architecture is shown in figure 8.6, where the crossbar

contains a 4 X 4 assembly of crosspoints and a 4 to 16 line

address decoder. There are 16 latch circuits needed to

maintain the crosspoints in the required state. Any one of

the sixteen crosspoints may by selected by applying a

logical one or zero. Any number of crosspoints can be ON at

any one time.

The basic architecture of the crossbar and the

module/Input-Output channel is extensible. That is,

additional crossbar systems can be added to the basic

architecture without any modification to the

module/Input-Output channel interface. While it is possible

to add as many Terminal lines as possible to the basic

crossbar, in reality there is a limitation to the maximum

number because it is a direct relationship with the number

of select lines that make up the overall crossbar addressing

Page 8-14

mechanism. Figures 8.7 and 8.8 show the control of the

module Input-Output Inter-connection Network in more detail.

8.7 Bus Arbitration

The simple distributed bus arbitration system in the

basic Group Processor System provides a high degree of bus

segmentation. However, the flow of bus requests is always to

the root arbiter which, in the basic system, is physically

located at the module which is the root module. This system

seems inflexible, if the the root module fails then the

user's whole environment fails. This system limitation

should be refined so that the failure of the root bus

arbiter, does not produce systemic failure of the user's

environment

In this Thesis it is proposed to keep the overall bus

arbitration network of the basic Group Processor System, but

to add a bus request line in the other direction. That is,

if the root arbiter fails than the system can reconfigure

itself so that the next module (root + 1) takes over as the

root arbiter. The practical implementation of the additional

bus request line would not result in an additional physical

line, as the existing bus request line can be re-directed

when it reaches the the bus arbiter.

The bus arbitration network would have maximum

flexibility to respond to bus inter-connection request if

the arbitration was refined. The current bus arbitration

architecture does not allow for separating the functional

Page 8-15

St
ro

be
 In

Da

ta
In

To
 T

er
m

in
al

•0

0»

(Q

<D 00
 I

on c 00 8 <A V

tt a a en »*
• D

CO rt er M

O 0) s

r~

C

O

«•
»

in CD
.

ri
 m

S
o

jn

n

cr
 -

j
01

a

n

en

CD

O

6
5

§
w

-i
m

—
 >>

—
—

 I/

/• — \ —

u Ok

Q
a

CD n
 ^

*
0

0
1

S
r-

n
5 CD

—
—

—
 N

—
—

—
 ̂

U 01 ta «-^ k
M

B
tf r* cu FT

cr

_
y

^ LT
J

€ «-•
•

n cr / 1 ^

•*.I c t
•

" c 1 !

T

3 n n T

U 1 7

_
_
_
 ̂

)

4
k. in

5 n cr / ^ ^

^?.t c . i
 c 5T

1 n n a 7

_

i

ho
du

le
In

pu
t/O

ut
pu

t
In

te
rf

ac
e

C
ro

ss
ba

r
S

el
ec

t
Li

ne
s

To
 O

th
er

 m
od

ul
es

an

d
Cr

os
sb

ar
s

XI X2 X3 X4

fl

B

C

0

Y1 Y2 Y3 Y4

Functional Diagram

01

si

Address

A B C 0

0000
1000
0100
1100
0010
1010
0110
1110

S»l*ct

X1Y1
X2Y1
X3Y1
X4Y1
X1Y2
X2Y2
X3Y2
X4Y2

Address

A 8 C D

0001
1001
0101
1101
0 0 I 1
1011
0111
1111

S*l*ct

X1Y3
X2Y3
X3Y3
X4Y3
X1Y4
X2Y4
X3Y4
X4Y4

Truth Table

Figure 6.6 Crossbar Functional Diagram
and Trutn Table

Page 8-17

roles of the Inter Module Bus and the bus arbitration. With

the new bus arbitration mechanism, the root arbiter for any

abstract processor, abstract machine, or the whole machine

for that matter, can be relocated anywhere within the

machine. The basic Group Processor System architecture does

not have the flexibility to re-designate the priority of the

arbiters. This could be important for defense systems where

the centre of action within the computing system changes

from a semi-leisure state, where the computation demands are

usually centred on the stores and entertainments, to the war

situation where the stores and liesure are of the lowest

importance.

8.8 Summary

The simple bus architecture presented by Quick is

suitable for VLSI implementation. With this Thesis, the bus

architecture is further refined by adding increased

Input-Output reliability and increased flexibility with

T.E.S.o.

The provision of the Transaction Environment Switching

System gives the system architect a useful method of

swapping between abstract machines, as well as coupling many

abstract machines together. T.E.S.S. has the ability to

build many hierarchical abstract machines within the Group

Processor System. The simulation has proved that T.E.S.S.

can work in a real time application, such as those found in

IKBS.

Page 8-18

The architecture of T.E.S.S. solves a number of

problems for potential users of Group Processor

architectures. While these problems have been discussed

above, there still remains the problem of whether the

addition of T.E.S.S. will enhance or degrade the performance

of the Group Processor System. As well as modelling the

overall architecture of the Group Processor System, the

simulation of the Group Processor System has given a

realistic feedback on the potential performance of T.E.S.S.

The refinement of the bus arbitration system makes the

Group Proceesor System a highly desirable re-configureable

fully distributed machine. The enhanced capability of the

new arbitration system makes the Group Processor System more

flexible from the system programmers viewpoint, as the

user's execution environment can be manipulated to support

almost any module inter-connection pattern.

The most important addition to the Group Processor's

Cell is the addition of a dedicated Input-Output bus, which

is connected to each and every cell in the system. While

this further complicates an already complex integrated

circuit design, it is important that at least one dedicated

Input-Output bus is incorporated in the final cell design.

Page 8-19

CHAPTER NINE

CHAPTER NINE

CONCLUSIONS AND FURTHER RESEARCH

9.0 Introduction

This research has considered many existing and new

issues relating to fifth generation computing systems. The

Thesis has continued the abandonment of the Von-Neumann

architecture by considering the Group Processor System as a

viable system for further refinement, suitable for

applications in Intelligent and Knowledge Based Systems.

In this chapter, we conclude the Thesis by identifying

the design enhancements made to the Group Processor System

concept. Typical performance characteristcs are also

summarised for cellular computer systems, as applied to the

Group Processor System architecture. The chapter also

summarises the significant issues which computer architects

must overcome if they are to design very high performance

fifth generation computer systems.

9.1 Research Initatives

The research initiatives of Japan, the U.S. and Alvey

seem to approach different areas of investigation. While

this is useful from a pure research point of view, there is

a possibility that the final battle for the commercial

exploitation of the research may go, by default, to Japan.

Page 9-1

Japan has concentrated on the hardware aspects of the

research, while Alvey seem content to concentrate on

software issues. Consequently, the Japanese are likely to be

the major manufacturers of computing equipment in the

future.

The ten major application categories outlined by the

Japanese demand very flexible Input-Output systems which

must respond to user interaction in real time. One of the

conclusions drawn from this research is that machines which

have the power to process Intelligent and Knowledge Based

System programs are not that responsive to terminal

interaction. At least one paper "Down grading to a VAX",

published by the DEC User's Group, suggests that the older

PDF 11/70 was more of an interactive machine than the more

modern VAX. It is surprising therefore, that the current

Intelligent and Knowledge Based System community, within in

the U.K., sees the VAX machine as THE machine for

Intelligent and Knowledge Base System research.

The direction that the British research community is

currently taking must change. The direction with which to

approach the next five years, if the U.K. wishes to be

considered a manufacturer of computing equipment, is to

provide more initiative for the development of hardware. A

starting point for this would be the stimulation of research

into computer architecture, and not to concentrate purely on

VLSI development. Failure to do this will almost certainly

result in the U.K. being a net importer of computing

equipment.

Page 9-2

Future research must consider a wider range of activity

if the British computer industry is to have a future on as

wider front as possible.

9.2 Computer Architecture

There has been little advance in the design of new

computer architectures. Current state of the art designs

have been refinements of advances made many years ago. The

only advances that have been made are related to

technological advances made in VLSI. Computer manufacturers

have capitalised on VLSI advances at the expense of

maintaining architectural advances. The exception to this

has been INMOS's TRANSPUTER.

It has been shown in this Thesis that the TRANSPUTER

suffers from major design imperfections which will limit the

device's application in many Intelligent and Knowledge Based

System areas. The TRANSPUTER has an application base, but

the simulations undertaken in this research have clearly

indicated that the TRANSPUTER is not a device for modern

interactive Intelligent and Knowledge Based Systems. The

TRANSPUTER can work effectively only when configured as a

backend processor attached to a conventional computing

system.

The TRANSPUTER has to be refined in a number of areas

before it can be accepted for Intelligent and Knowledge

Based Systems. The number of communication buses has to be

dramatically increased before the device can be thought of

Page 9-3

as a useful fifth generation product. However, the

TRANSPUTER does provide researchers will a starting point

with which to design and build cellular computing equipment.

As these systems will be inadequate in terms of processing

power, it is excuseable that many researchers many see the

development of cellular systems based on the TRANSPUTER as a

waste of time.

9.3 The Group Processor System

The basic Group Processor System suggested by Quick has

a number of limitations. The most important of these

limitations are the severe restrictions on performance. By

comparision, the basic Group Processor System does have

major performance advantages over the TRANSPUTER.

A wide range of Group Processor architectures were

simulated in this Thesis. The result of the simulations can

summarised as follows.

The basic Group Processor System, as described by

Quick, has little opportunity for varying the state

variables within either the architecture or the operating

system. The major problem associated with the basic Group

Processor System is the relatively poor bus service rate.

This basic Group Processor architecture is seen only as a

fundamental building block for design variations on the

original Group Processor concept. The only variation that

can take place with this configuration is routing

Input-Output operations to all buses.

Page 9-4

One important requirement in any cellular system is

that of immediate communication with other cells within the

execution environment. Another requirement is to provide a

very fast Input-Output system both to the user and to the

program execution environment.

The need for fast turn-around in Input-Output traffic

cannot be met with the current cell design. With this in

mind, the provision of an dedicated Input-Output bus offers

a "potential" speedup in Input-Output communication. It is

important to note here that an additional bus has been

provided to each cell within the system.

The extended Group Processor architecture represents

the first variation on the basic Group Processor System. The

architecture found in this system is more complex than the

basic Group Processor System. In this configuration, the

basic cell has an extra bus added in the form of a dedicated

Input-Output bus. This configuration provides the systems

programmer with a wider range of variables with which to

fine tune system performance. This architecture provides a

compromise in system complexity, and the results of the

simulation proves that the variations in bus scheduling,

have a profound effect on system performance.

The multi user Group Processor highlights one of the

Group Processor's basic features, that is system

segmentation both at the program execution level within the

Group Processor System, as well as in the Input-Output

system. The performance of the Input-Output system is the

Page 9-5

one factor which limits the Group Processor System's

application in Intelligent and Knowledge Based Systems. The

results of the simulation have clearly shown that system

segmentation greatly reduces bus contention, and

consequently improves system performance.

The provision of an Off-loading factor was critical for

improving system performance. The most important

consideration when incorporating an Off-loading Factor is

maintaining moderation in the length of the Input-Output

queue. The lower the Off-loading Factor the better the

Input-Output performance, but this has the effect of

decreasing other bus performance. For systems that need

higher Input-Output throughput an Off-loading Factor of 30

is recommended.

9.4 T.E.S.S.

The major architectural contributions made by this

research is in the design of T.E.S.S.. T.E.S.S., the

Transaction Environment Switching System, provides the

solution to a number of important problems which have

limited advances in the Group Processor System. The most

interesting results relate to the segmentation of the

Input-Output bus. The segmentation of the Input-Output

system enables each module to have its own dedicated

Input-Output channel. This Input-Output system can be

coupled together to provide either general purpose

networking facilities or dedicated individual user

interfaces to the Group Processor System.

Page 9-6

The concepts behind the Input-Output architecture of

the Group Processor System is very similar to more

conventional Input-Output systems. The main dissimilar

feature is the inter-connection of terminals to each of the

many Modules that would make up a typical system design. The

extension of the Input-Output system provides much needed

flexibility for the whole Group Processor System.

The provision of the Transaction Environment Switching

System gives the system architect a useful method of

swapping between abstract machines, as well as coupling many

abstract machines together. T.E.S.S. has the ability to

build many hierarchical abstract machines within the Group

Processor System. The simulation has indicated that T.E.S.S.

can work in a real time application, such as those found in

IKBS.

9.5 Future Research

This research has highlighted a number of important

issues which can be further developed. On the software side,

there is a need for a more realistic execution environment

within the simulated Group Processor System. Such realistic

execution will provide more accurate figures with which to

fine tune the Group Processor System. The simulation at the

instruction level, while being very desirable, is not

realistic with the current computing machinery available to

the research team. This simulation would give very accurate

feedback on the performance of a real Group Processor

Page 9-7

System, particularly if the simulation was supporting the

language and operating system level.

On the hardware side there is a need for more detailed

design. While the current researchers have the capability to

undertake a more detailed study, it would be a waste of

research effort if the finalised design were not integrated

into silicon. Therefore, very little detailed hardware need

progress until there is a commitment to implement the final

design. While designing a cellular system around the

TRANSPUTER would be of limited value; there would be a

definite advantage for designing a very general bus

inter-connection system which could support may devices of

various kinds. These devices would be specialist processors

dedicated to either general purpose computing functions, or

more specialist design to optimise performance e.g. sorting

or search engines.

On the wider aspects of software development for the

Group Processor System; research into language translation

should consider the relative performance of data driven and

demand driven systems. While the computer architect can

optimise the hardware facilities within the overall system

design, it is the programmer who provides the useful

features to the system users. Inefficient programming and/or

concepts at the software level can render the hardware

optimisation useless. Therefore, the analysis of the general

performance of the Group Processor System is considered

complete with this Thesis.

Page 9-8

9.6 Summary

The Thesis has proposed a number of new ideas which

have considerably increased the overall performance of the

Group Processor System.

This research has concluded an important phase in the

development of cellular systems of the Group Processor

System type, and a number of important advances made. Most

of the problems encountered during this time have been

either limitation of current computer systems, or the

problems associated with communicating ideas with other

researchers. The problems associated with the computing

machinery can only be solved by building a Group Processor

System, thereby providing the ideal environment with which

to investigate a massively parallel Group Processor System.

The problems associated with communication can only be

solved by maintaining a team effort in developing Group

Processor Systems.

Page 9-9

3NO XIQN3ddV

GRAPH No. DESCRIPTION BUS CONFIG IO- COUNT CONST CONRG

1 Global But Queue
2 intra But Queue
3 Intef,But Queue
4 Free Cells
5 Active Cells
• Walling Cells
7 Communicating Cells
• Queue Waning Time
9 Global Bus Queue
10 Intra Bus Queue
11 Inter Bus Queue
12 Input/Output Bus Queue
13 Free Cells
14 Active Cells
15 Waiting Cells
1 6 Communicating Cells
1 7 Queue Waiting Time
18 Global Bus Queue
19 Intra Bus Queue
20 inter Bus Queue
21 Input/Output Bus Queue
22 Free Cells
23 Active Cells
24 Waiting Cells
25 Communicating Cells
26 Queue Waiting Time
27 Global Bus Queue
28 Intra Bus Queue
29 Inter Bus Queue
30 Input/Output Queue
31 Free Cells
32 Active Cells
33 Walling Cells
34 Queue Waiting Time
35 Global Bus Queue
36 Intra Bus Queue
37 Inter Bus Queue
38 Input/Output Bus Queue
39 Input/Output Bus Queue
40 Input/Output Bus Queue
41 Input/Output Bus Queue
42 InpuVOutput Bus Queue
43 Input/Output Bus Queue
44 InpuVOutput Bus Queue
45 Free Cells
46 Active Cells
47 Waiting Cells
48 Communicating Cells
49 Queue Waiting Time

1.3,3.0
1.3.3,0
1.3,3,0
1.3,3.0
1.3,3.0
1.3,3,0
1.3,3,0
1.3.3,0
1.3.3.1
1.3,3,1
1.3,3,1
1.3,3,1
1.3,3.1
1.3,3,1
1.3,3.1
1.3,3,1
.3,3,1
.3.3,1
.3,3,1
.3,3,1
.3,3.1
.3.3.1
.3.3.1

1.3.3.1
1.3.3,1
1.3,3,1
1.3,3.1
1,3,3,16
1.3,3,16
1.3,3,16
1.3,3,16
1.3,3,16
1.3,3.18
1.3.3,16
1,3,3.16
1.3,3,16
1.3,3.18
1.3,3.16
1,3,3,16
1,3,3.16
1,3,3,16
1.3.3.16
1,3,3,16
1.3,3.16
1.3.3.18
1.3.3,18
1,3,3,16
1,3,3,1
1,3,3.1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
20
20
20
20
20
20
20
20
20
20
20
20
20
20 .
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Ld.2)
3. (3,4,5)
6,(6,7.8)
9, (9.10)
11, (11. 12.13)
14, (14)
15(15.18)

0
0
0
0
0

Page Al-1

8
8

<n

§
(M

Page Al-2

•0

0) > M U)

10
66 se
e

88
0

78
6

56
6

18
8

36
6

26
61

16
6

CE
LL
S

Ti
ne

58
6

18
86

15
86

2
6
6
6

28
6

CE
LL
S

15
3

•0

01

(O

9 I Ul

16
88

15
68

28
88

26
6-
1
CE

LL
S

0)

IQ

A

17
54

15
04

12
54

16
64

16
66

15
86

2
6
6
6

,33
8

(N

Page Al-7

TJ

OJ » > M

03

15 35 30 25 28 15 18

CE
LL
S

TJ
HE

58
8

18
88

15
88

2
8
8
8

Page Al-9

36
0

CE
LL
S

25
8

26
6

id
 0) I M

O

15
8

16
6 58

TI
ME

58
8

18
08

15
88

2
0
8
8

•0 (Q

(0 >

l-»
 I

te
a

CE
LL
S

35
8 50

50
0

10

-
""

T
I
M
E

10
00

15
00

2
0
0
0

•0

0)

(Q

(D

16
0

35
8

30
0

25
6

28
0

te
a

50

CE
LL

S

58
0

tl

18
80

15
68

2
8
0
0TI

NE »

18

1® tom

u « — t
^3
IDin in S3

Page Al-13

28
0

15
0

'XJ

Q>

IQ

(P >
10

8

50

C
EL

LS

13 2
0

0
0

86
64

76
64

14

69
04

TJ

0)

IQ

(D

se
al

I M in

46
64

38
8

4

26
64

16
64

T
I
M
E

56
6

16
66

15
06

2
6
6
6

88
6

CE
LL
S

15
76
6

60
0

•a 0) <Q (B

56
6

46
6

36
6

26
6

16
6

56
6

T
I
M
E

16
66

13
86

2
6
6
6

C
EL

LS

•0 A >

35 25 20 15

16

"V

50
0

10
00

15
60

20
00

TI
I1

E ->

Page Al-18

38
6

J
C

EL
LS

18

25
64

26
64

0>

tO

(0 >

15
64

16
0 56
i

56
6

16
66

.u
*.

13
66

T
in

E
26

80

S
<M

in

<M
3

Page Al-20

38
6

20

25
8J

26
8

•O

0)

(Q
 (D tsj

15
8

18
8

58
8

18
88

15
88

26
86

36
6

CE
LL

S

25
8

26
6

21

(D >

l-»
 I to

15
6

16
6 58
i

56
8

1*
08

Ti
nt

15
88

28
tJ

8

26
6

0)

IQ

(D > K
)

U»

16
6 36

C
EL

LS

22

56
6

16
66

15
86

26
66

•0

0) to > M

I NJ

aa
e

78
6

60
0

58
6

•4
88

38
8

28
8

18
8

25

58
8

18
88

T
in

E
15

88
2

8
8

8

(O

GJ a

s
N

Page Al-25

38
CE

LL
S

25

35

(Q
 (D >

M
 I

25 28 13 18

38
8

18
88

15
88

28
88
TI

ME >

26

•a a> (Q

9 to

18
86

^M
AI

TI
NG

-T
IM

E

se
e

88
6

78
8

60
0

58
0

te
el

38
8

20
81

18
8

LU

$
(M

in

Page Al-28

36
6

J
C

EL
LS

28
25

84

26
6

UJ

(0 to
15

8

16
6 58

6
56

6
Jv

A
 AV

\A
. xW

^A
.

16
68

15
88

..A
y^

38
8J

CE
LL

S

29
25
84

26
04

OJ (Q
 (0 H I OJ o

15
84

16
8 50

a
58

6
16

08
15
66

y
V
/
^

A
A
V
4
A
.
.

TI
HE

2
8
0
8

ze
e

C
EL

LS

30

15
0

•0 tu A >

M
 I U>

18
0 58

58
8

18
88

15
88

18
88

» > M

I U> to

•a 0)

iQ

(D OJ

68
6

CE
LL
S

35
0

58
8

15
0

16
0

33
8

38
8

25
0

28
8

13
0

18
0

32

Ti
nt

58
0

10
88

15
80

2
0
6
0

50
C

E
LL

S

35
4

TJ

0)

(Q

A »

M

I co

*»

30
4

25
4

28
4

15
4

18
4

Tl
ttE

56
8

18
88

15
08

<s in
(N

Page Al-35

25
8

28
6

•0

0) (Q I U>
15

8

58

C
EL

LS

35

58
8

--
*

-
Ti

ne
1 8

8
8

13
88

28
88

30
8|

C

36

25
6

28
8

0)

(0
 A I U>

15
04

18
8

50
0

20
68

Jt
H

J
C

E
LL

S

57

25
8

28
8

fti

(Q

(D I U
)

00

15
0

18
8

58
0

..«
ift

.
ft
ft
n
h
r-

V

.
*V

l
I8

6
0

15
00

»
20

00
JH

E

C
EL

LS

13

ft>

(Q

CD vo

35 25 20 15 18

58
0

ia
ee

n
nM

.
r^

n
is

ee

0)

(4

ft >

M

I lU

O

39

15
80

2
0

0
0

C
EL

LS
40

3
5
|

111 <O
 (D >

25 28
4

10

50
6

10
68

15
08

28
88

18
C

E
LL

S

35

0>

(Q

9 P

(-» I N>

25 20 15 te

ft
50

0

I
J1

L

r^
nn

H

 M
\f
 \
 m

rt
i

A
n

1 0
00

1 5

00
m

i
n

B
nn

n
1 5

00
Ai

20
80

35 25

0)

<Q

(D i iU

W

15 ie

C
E

LL
S

42

50
0

18
08

15
88

C
EL

LS

45

•a 01

IQ a>

25 20 15

IL
L

__
I

n
n/

1!
IV

in
50

0
10

00
11

m
15

80
JHH

IL

35

•a 0)

(D > *».

en

25 28

C
EL

LS

44

ze
e

15
8

•o 0) ua n>

te
a

CE
LL

S

45 2
0

0
6

18
88

•0

0) (P >

38
8

28
8

18
8

46

Ti
ne

50
8

10
00

15
00

2
0
0
U

Page Al-48

58
C

EL
LS

48

35

0)

<Q

(D >

M i vO

25 28 13 18

58
8

18
88

15
88

2
8

8
8

Page Al-50

APPENDIX TWO

UNIVERSITY OP SHEFFIELD PASCAL COMPILER (1.8.1) ON 16/09/85 AT 10:42:37

OPTIONS CHOSEN : 64V WITH CHECKS NODEBUG

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
13
19
20
21
22

23

24
25
26
27

28

29

30

31
32
33

34
35
36
37

38

39

40

41

42

43

44

45

001000 program simulator(input, output, rsystem. rcell. qfile. qlength, cfile. snapshot);

This is a simulation of the CELLULAR COMPUTER SYSTEM •)

It simulates a CELLULAR computer in that it can have an arbitary •)
number of MODULES. CELLS and BUSES •)

This program is written in SHEFFIELD PASCAL running under PRIMOS *)
in WCIHE. Summer 1985 •)

(•
(•
(*
<*
(•

const
startseed • 49631;
maxcells • 64;
maxmodules • 16:
maxglobaLbus • 1:
maxintrabu* • 3:
maxinterbus - 3:
maxiobus • 1:
tickperiod - 0.000001:
maxsimtime • 0.002;
maxmemory • 100000000;
sendconst • 0.000005:
ioconst • 0.000020;
cellconst • 0.000010:
osconst » 0.000001;
memsizeconst - 1000:
modfailconst - 999:
cellfailconst • 990;
processingconst • 0.000200;
requestconst • 5:

(• Number of cells per module *)
(* Number of modules in system •)
(• Number of global buses •)
(* Number of intra buses *)
(• Number of inter buses *)

(• One microsecond clock •)
(• Duration of simulation •)
(• 100 Megabytes of main memory *)
(* Time range constant for sending message requests •)
(* Time range constant for io requests •)
(* Time range constant for cell requests •)
(* Time range constant for operating system requests *)
(• Memory requirement constant •)
(* Chance of a module not powering up - out of 1000 •)
(* Chance of a cell not powering up - out of 1000 •)
(* Time range for cell processing *)
(* 10-n out of 10 requests will be looked at *)

type
message • packed array [1..15] of char:
statustype » (idle. acti. wait, comm, dead):
request type • (io. sendre. oscall. celreq. cpujob):
bustype • (global, intra. inter, ioline):
qhead - ' event;

event •

(* For passing messages *)
(« The states a cell can be in •)
(• What a cell wants to do *)
(* Which bus a cell requires *)

(• This record defines a request for

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

61

record
busrequest: real;
busrelease: real;
busgrant: real:
waitingtime: real;
mastertime: real:
moduleno: integer;
cellno: integer;
calltype: requesttype:
link: qhead

end;

•*••»)

Page A2-1

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

95

96
97
98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113
114

115
116
117
118

119
120
121
122
123
124
125
126
127

(• All the queues in the system are implemented as • linear linked •)
(• list. With pointers HEAD «nd TAIL indicating the front and rear •)

(* of each queue *'
(• *'
/»«««,.,,,»»»»»•«•«••••••••»«*•••««••••••«*••••••••••••••••••••*••*••«•*••••)

queuepointers •
record

heed: qhead:
tail: qhead:
•tatus: atatustype

end;

cellelement -
record

status: integer:
prevstatus: integer:
globalcall: integer:
intracall: integer:
intercall: integer:
systimes:
qtimes:

glocall:
celcall:
sencall:
iocall:

(• This record defines the structure of a cell •)

integer:
integer:
integer:
integer:
integer:
integer:

memreqsize: integer:
entersys: real:
enterqueue: real:
exitqueue: real;
processing: real:
lastreq: requesttype;
queue: boolean

end:

moduleelement •
record

status: statustype
end;

modules • array (1..naxcells) of cellelement:

(• What is the module doing •)

(• How many cells per module *)

Var
seed: integer:
»imtime: real:
globalbus: integer:
intrabus: integer:
interbus: integer:
iobus: integer:

qfile: text:
cfile: text:
qlength: text:
rcell: text:
rsystem: text:
snapshot:text:

(• System clock «)

(• File of time spent.in queue *)
(• File of time spent in system *)
(• File of number in queues *)
(* File of cell processing results *)
(* File of system results *)
(* File of cell states *)

globalq: array (1..maxglobalbus) of queuepointers;

Page A2-2

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

148
149
ISO

151
152
153
154
155
156
157
158
159
160

161
162
163
164
165
166
167

168
169
170
171
172
173

174
175
176
177
178
179

180
181

183 (*
184 (*

185 <•
186 (*'
187
188

189

190 001420
191 001445

192 001466
193 001475

intraq: array [1. .maxintrabus) of cjueuepointan;
interq: array (1. .mexinterbus) of queuepointers:
iobusq: array [1. .maxiobua] of queuepointers:
computer: array (1. .majosodules) of nodules:

snap: integer:
tiM: integer:
•napcouat: integer:
averageacti: integer:
averegeidle: integer:
averagevalt: integer:
averagecom: integer:
aver agedead: integer:

avsystimes: array [1. .maxmodules] of integer:
avqtimes: array [1. .maxmodules] of integer:
avglocall: array [1 . . maxmodules] of integer:
avcelcall: array (1. .maxmodules] of integer:
avsencall: array [1. .maxmodules] of integer:
aviocall: array [1. .naxmodules] of integer:
avcpujobs: array [1. .maxmodules) of integer;
avglobalcall: array (1. .maxmodules) of integer:
avint recall: array (1. .maxmodules] of integer:
avintercall: array (1. .maxmodules] of integer:

module: integer:
cell: integer:
loedfactor: integer:
run: integer:
globalmem: integer;
numof removals: integer:
cellmiss: integer:

iocount : integer:
sencount: integer:
oscount: integer:
celcount: integer:

iorequest: integer:
sendrequest: integer:
osrequest: Integer:
cellrequest: integer:

ioqcount: integer:
morerequests: boolean:
param: array [1..10] of integer:

Now start all the functions useful to the system

,*»»»•««*«•«*«*••«* »••••••••••••••»•••*••••••••••••••••••••

function random (x : real): real;
begin

seed:-(13849»25173»seed) mod 65536:
random: •seed/65536:

end:

•)
*)
•)

****** j

Page A2-3

194

195
196
197

198

199
200
201
202 001500
203 001S20
204 001524
205 001535
206 001545
207 00154S

208 001550
209 001550
210
211
212
213
214
215
216
217
218 001554
219 001574
220 001600
221 001611
222 001621
223 001621
224 001624
225 001624

226
227
228
229
230

231
232
233
234
235 001630
236 001654
237 001660
238 001661
239 001661
240 001661

241 001661
242 001672

243 001672
244 001703

245 001703

246 001714
247 001714

248 001725

249 001725
250 001725
251 001743
252 001743
253
254
259
256
257
258
259

(unction modultfail: boolean:
var

dummy: real:
rnd: integer:

begin
dummy :• 32.31:
rnd :- trune(random(dummy) • 1000):
if rnd > modfailconat than

modulafail :• true
•Is*

modulefail :• false
•nd: (modulefail }

function cellfail: boolean:
var

dummy: real:
rnd: integer:

begin
dummy :• 32.14:

rnd :• trune(random(dummy) * 1000):
if rnd > cellfailconst then

cellfail :• true
else

cellfail :* false
end: (cellfail)

function bustime!request: requesttype) : real:
(* This function generates the bus time required by a cell *)

var
rnd: real:
dummyvalue: real:

begin
dummyvalue :> 29.1:
case request of

(* Decide what type of request it ia •)
(* The time constants need to be different Cor each type of request *)

io:
rnd :• random(dummyvalue) * ioconst:

sendre:
rnd :- random(dummyvalue) * sendconst:

oscall:
rnd :- random(dummyvalue) * osconst:

celreq:
rnd :- random(dummyvalue) * cellconst:

cpujob:
(• do nothing *)

end: (* End the case •)
bustime :• rnd

end: { bustime }

function jobselection: integer:
(• This determine* if a bus request is required if so the *)
(• function returns the value of the type of bus request •)

var

Page A2-4

260
261
262
263 001752
264 001772
265 001776
266 002007
267 002017
268 002026
269 002031
270 002034
271 002040
272
273
274
275
276
277
278
279
280 002043
281 002063
282 002067
283 002076
284
285
286
287
288
289
290
291
292
293 002103
294 002123
295 002127
296 002137
297 002137
298
299
300
301
302
303

305 (*
306 (•
307 (*
308 (••
309
310
311
312 00214ft
313 002166
314 002205
315
316
317
318
319 002206
320 002226
321 002240
322
323
324
325

test: integer;
dummyvalue: real;

begin
dummyvalue :• 23.1:
test :• trunc(randoeKdummyvalue) * 10):
if test >• request const then

te*t :• trunc(rando«(dummyvalue) • 10)
•lie

test :• 0;
jobselection :• teat:

end: (jobselection }

function memsize: integer:
(* This calculates the amount of global memory required by a cell •)
var

dummyvalue: real;

begin
dumnyvalue :• 32.1:
memsize :• trunc (random (dunsyvalue) • mwuizeconst }

end: { memsize)

function processlngload: real:
(• This function generates the processing time required by a cell *)
var

rnd: real;
dummyvalue: real;

begin
dumnyvalue :• 29.1:
rnd :- random (dummyvalue) * processingconst;
procassingload :» rnd

end; (processingload)

*)
Now start all the procedures used in the simulator ')

*)

procedure clear:
begin

write(chr(155),'.'>
end: (clear }

procedure home;
begin

write(chrU58))
end: (horn* >

procedure openf ilestdirectory: integer) :

Page A2-5

326
327
328 002241
329 002266
330 002267
331 002267
332 002267
333 002277
334 002307
335 002317
336 002327
337 002337
338 002347
339
340 0023SO
341 0023SO
342 002350
343 002360
344 002370
345 002400
346 002410
347 002420
348 002430
349
350 002431
351 002431
352 002431

353 002441
354 002451
355 002461
356 002471

357 002501

358 002511

359

360 002512

361 002512

362 002512

363 002522

364 002532

365 002542

366 002552

367 002562
368 002572

369
370 002573

371 002573
372 002573

373 002603

374 002613

375 002623

376 002633

377 002643

378 002653

379
380 002654

381 002654

382 002654

383 002664

384 002674

385 002704

386 002714

387 002724

388 002734

389
390 002735

391 002735

(• Prepare all file for a run of the progran •)

begin
case directory of

1:
begin

rewritetqfile.
rewritetcfile.
rewrite(qlength.
rewritetrcell.
rewrite*rsyste*.
rewrite(snapshot.

end:

begin
rewritetqfile.
rewritetcfile.
rewrite(qiength.
rewritelrcell.
rewrite!rsystea.
rewrite(snapshot.

end:

begin

end:

begin
rewritetqfile.
rewritetcfile,
rewrite(qlength.
rewritetrcell.
rewrite(rsystem.
rewrite(snapshot.

end:

'/Rl/Qfile.daf):
VRl/Cfile.daf) :
'/Rl/Qlength.daf) :
'/Rl/Rcell.daf) ;
' /Rl/Rsystem.daf) :
'/Rl/Snapshot.daf)

/R2/Qfile.daf):
/R2/Cfile.daf) :
/R2/Qlength.daf)

> /R2/Rcell.daf):
'/R2/Rsysten.daf)
/R2/Snapshot.dat

rewritetqfile.
rewritetcfile.
rewrite(qlength.
rewritetrcell.
rewritetrsysten.
rewrit e(snapshot.

'/R3/Qfile.daf):
'/R3/Cfile.daf) :
VR3/Qlength.daf)
'/R3/Rcell.daf) :
'/R3/Rsysten.dat')
'/R3/Snapshot.dat'

'/R4/Qfile.daf) :
p /R4/Cfile.daf);
'/R4/Qlength.dat'):
VR4/Rcell.daf) :
'/R4/Rsystem.dat');
'/R4/Snapshot.dat')

begin
1 /R5/Qfile.dat'):
'/RS/Cfile.daf) :
' /R5/Qlength.daf
VR5/Rcell.daf) ;
'/RS/Rsystem.dat'

rewritelqfile.
rewritetcfile.
rewrite(qlength.
rewritetrcell.
rewrite(rsystem.
rewrite(snapshot.'/R5/Snapshot.dat')

end:

begin
rewritetqfile.
rewritetcfile.
rewrite(qlength.
rewritetrcell.
rewrite*rsystem.
rewrite(snapshot.

'/R6/Qfile.dat'):
•/R6/Cfile.daf) ;
•/R6/Qlength.daf)
•/R6/Rcell.dat'):
VR6/Rsysteia.dat')
'/R6/Snapshot.daf

end:

begin

Page A2-6

392 002735
393 002745
394 002755
395 002765
396 002775
397 003005
398 0030XS
399
400 003016
401 003016
402 003016
403 003026
404 003036
405 003046
406 0030S6
407 003066
408 003076
409
410 003077
411 003077
412 003077
413 003107
414 003117
415 003127
416 003137
417 003147
418 003157
419
420 003160
421 003160
422 003160
423 003170
424 003200
425 003210
426 003220
427 003230
428 003240
429 003241
430
431 003271

ime

432 003306

433 003315

requ

434 003332
435 003341
436 003356
437 003365
438 003402
439 003411

all

440 003426
441 003435
442
443
444
445
446 003436
447 003456
448 003456
449
450

451

rewritefqfile. ' /R7/Qfile.d«t ') ;
rewritelcfUe. ' /R7/Cfile.d«t ') ;
rewrite (qlength. ' /R7/Qlength. d«t ') ;
rewrite! rcell . ' /H7/Rcell . d«t ') ;
rewrite! ny»te«. ' /R7/Rsy§tem.dat ') :
rewrit«(snapshot . ' /R7/Snap»hot.dat ')

•nd:

8:
begin

rewrite<qfile. • /R8/Qfil«.dat ') :
rewritelcfile. • /R8/Cfile.dat ') ;
rewrite! qlength, • /R8/Qlength.dat ') :
rewrite (reel!. • /R8/Rcell.dat ') ;
rewrite (rsystem. • /R8/Rsyste».dat ') :
rewrite (snapshot. ' /Ra/Snapshot .d«t ')

end:

9:
begin

rewrite(qfile. • /R9/Qfile.d«t ') ;
rewritelcfile. ' /R9/Cfile.daf) :
rewrite! qlength, ' /R9/Qlength.dat ') :
rewritefreell. VR9/Rcell.d«t '):
rewrite) rsystem, ' /R9/Rsystem.dat •) :
rewrite (snapshot . ' /R9/Snapshot . dat ')

end;

10:
begin

rewrite! qfile. • /RlO/Qfile.dat •) ;
rewrite(cfile. ' /RlO/CTile.dat ') :
rewrite (qlength, ' /RlO/Qlength.dat ') :
rewrite (rcell. ' /RIO/Rcell.dat '):
rewrite) rsystem, ' /RIO/Rsystem.dat ') :
rewrite! snapshot. ' /RIO/Snapshot .dat ')

end:
end: (• end case •)

writeln(qfile. ' sintine module cell busrequest busgrant busrelease uaitingtime mat

request ') :
writeln(qfile):
writeln(cfile. ' aim time nodule cell entersys enterqueue exitqueue exitays process:

esf) ;
writeln(cfile) :
wr iteln (qlength. ' sintine globalq intral intra2 intra3 interl inter2 inter! iobui
writelnl qlength) ;
wr iteln (snapshot. ' simtime free acti wait com');
writelnl snapshot) :
writelntrcell. 'module cell C. active q times gloacall c. request sendcall iocall glc

intracall intercall'):
writelnl rcell)

end: { openfiles)

procedure closefiles;
begin

{ close all the files)
end: (closefiles)

Page A2-7

452
453
454
455 003457

456 003477
457 003506
458 00354S
459 003545
460

462
463
464
465
466 003555
467 003575
468 003612
469 003627
470 003636
471 003653
472 003670
473 003677
474 003730
475 003761
476 004012
477 004043
478 004074
479 004125
480 004125
481
482
483
484
485
486 004135
487 004166
488 004225
489 004231
490 004237
491 004251

492 004261
493 004261
494 004267
495
496
497

498
499
500
501
502
503
504
505
506 004270
507 004324

508 004325
509 004325
S10 004325
511 004325
512 004334
513
514 004334
515 004334
516 004334
517 004334

procedure displaytxme:
(• Write on the screen the current simulation time *)

begin
writeln:
writelnt' Simulation time is . simtime: 1: 6
writeln

end: (displaytiB* }

procedure printheader ;
(* Show current Configuration •)

begin
writelnt' Cellular Computer Simulation Version l.O'l;
writelnt ' ————————————————————— —— ————— .-•) ;
writeln:
writelnt' Current configuration is:-');
writelnf ' ——————————————————— • > ;
writeln:
writelnt ' '. maxcells: 4. ' Cells per Module'):
writelnt' '. maxnodules: 4. ' Modules per Machine')
writelnt' '. maxglobalbus: 4. ' Global Bus');
writelnt' '. maxintrabus: 4. ' Intrs Buses'):
writelnt' '. maxinterbus: 4. ' Inter Buses'):
writelnt' '. maxiobus: 4. ' I/O Buses'):
writeln

end: (printheader >

procedure startcell (module, cell: integer);
(* This sets up a cell as an active processor *)

begin
with computer[module) [cell) do begin

status :- 1:
entersys :* simtime:
ays times :* sys times • 1:
processing :* processingload * simtime;
lastreq :» cpujob

end
end: { startcell)

procedure »ervecell(module, cell: integer: request: requesttype) ;

var
newmod: integer:
newcell: integer:
found: boolean:

(• This decides what a ceil requires when it is bus master *)
(* Note: at the moment we assure infinite memory and cells •)

begin
case request of

io:
begin

iocount : • iocount » 1
end:

(• Do some input/output •)

sendre:
begin

(• Send a message over modules •)
sencount : • sencount • 1

Run number '. run);

Page A2-8

518 004334

519
520 004343
521 004343
522 004343
523 004343
524 004343
525
526 0043S2
527 0043S2
528 0043S2
529 004352
530
531 004353
532 004353
533 004353
534 0043S3
535 004361
536 004365
537 004371
538 004373
539 004410
540 00442S
541 004464
542 004464
543 004467
544 004467
54 S
546 004476
547 004503
548 004507
549 004507
550 004515
551 004516
552 004523
553 004531
554 004566

555 004625
556 004626
557 004626
558 004634
559 004652
560
561
562
563
564

565
566
567
568 004653
569 004707
570 004715
571 004721
572 004721
573 004725
574 004733
575 004741

576 004747

577 004757

578 004765

579 004773
580 005000
581 OOSOOS
582 005023
583

end:

oscall:
begin

(* Do a call to the operating systea *)
oacount :• oacount » 1

end;

cpujob:
begin

(• Do a job within the cell •)
end:

celreq:
begin

(• Cell requires a new cpu to help •)
celcount :- celcount » 1:
newmod :- 1;
newcell :- 1:
found :• falae:
while (not found) and (nevnod <• maxmodules) do begin

while (not found) and (newcell <- naxcella) do begin
if conputerfnewieodl [newcell] .status • 0 then begin

found :• true
end else

newcell :- newcell • 1
end:

if not found then begin
newcell :• 1:
newmod :> newmod » 1

end
end:
if not found then begin

cellmiss :- cellniss « 1:
write(rsystem.' cellmiss 1 .cellmiss:3. ' at time'. iimtime:9:6):
writelntrsysten.' requested by module', module:3.' cell', cell:3)

end else
startcell(newmod, newcell)

end
end (• case *)

end: (servecell)

procedure addto(var head, tail: qhead: request: requesttype: module,cell: integer)

(• Queue a new bus request •)
var

newrec: qhead:

begin
new(newrec) :
with newrec" do begin

(• First set up necessary fields •)
busrequest :• simtime:
busgrant:- Jimtirae:
busrelease :• 0:
waitingtime :- 0:
maatertime :• buatime(request) :
moduleno :• module:
cellno :• cell:
calltype :• request;
link :• nil:
computer[module](cell].enterqueu« :• siatii»«

end;

Page A2-9

584
585
586
587
588
589
590
591
592
593
594
595
596
597

598
599

600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617

618
619

620
621

622

623
624

625

626
627

628

629

630

631
632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

005044
005050
005054
005054
005061
005071
005071
OOS073

005076

005123
005127

005132

005136
005142

005146

005154

005154
005162
005163
005176

005177
005217
005232

005255
005307

005332
005364
005407

005441
005464

005516

005532

it head • nil then begin
head :• newrec:
tail : • newrec

end elae begin
tail*.link :• newrec:
tail :• newrec

end
end: (addte)

procedure queuelengths(start: qhead) :
(* See how many ieeiM in each bus queue *)
var

next: qhead:

count: integer:

(• If list empty then start it off •)

(• Otherwiie add on at end of lilt •)

begin

end:

next :• start:
count :• 0;

if next <> nil then begin
while next <> nil do

with next* do begin
count :• count » 1:
next :• link

end
end:
write(qlength. count)
(queuelengths }

procedure plotlengths:
var

globalbus: integer:

intrabus: integer:
interbus: integer:

iobus: integer:

begin

end:

write(qlength. aimtime: 1: 6):
for globalbus :- 1 to maxglobalbus do

queuelengths(globalq[globalbua].head) :
for intrabus :> 1 to maxintrabus do

queuelengths(intraqtintrabus).head);
for interbus :• 1 to maxinterbus do

queuelengths(interq[interbus].head);
for iobus : • 1 to majciobus do

queuelengths(iobusq[iobus).head):
writelnlqlength. ' ')
(plotlengths)

procedure setupqueues:
(* Queue requests for bus access •)

var
globalbus: integer:
intrabus: integer:
interbus: integer:
iobus: integer:
module: integer:
cell: integer;
selector: real:

Page A2-10

650 005533
651 005553
652 005556
653 005601
654 005624
655
656 005627
657 005627
658 005627
659 005627
660
661 005630
662 005630
663 005630
664 005630
665 005667
666 005667
667 005667
668 005667
669
670 005676
671 005676
672 005676
673 005676
674 005735
675 005756
676 005756
677 005756
678 006001
679 006017
680 006051
681 006074
682 006112
683 006144
684
685 006152
686 006160
687 006164
688 006176
689 006210
690 006222
691 006234
692 006242
693 006242
694 006247
695 006247
696
697 006250
698 006250
699 006250
700 006250
701 006250
702 006250
703 006250
704 006250
705 006250
706 006250
707

708 006250
709 006250
710 0062SO
711 006250
712 006250
713 006250
714 006250
715 006250

begin
If morerequests then begin

for nodule :• 1 to maxmodules do begin
for cell :• 1 to msxcells do begin

case jobselection of

0:

1.

begin
(null)

end:

2. 3. 4:
begin

(• Compute bound job •)
if computerfmodulej[cell].status • 0 then

(• Just »tart • cell up •)
stertcell(module, cell)
{• Randomize processing!ime in the procedure ')

end:

begin
(• Cell request •)
with computerlmodule][cell] do begin

if (status > 1) and (siatime >• proceeding) then begin
(* Queue a request for a new cell *)
(* on Intra and Inter buaes *)

for intrabu* :• 1 to maxintrabus do
with intraq[intrabus] do

addto(head. tail, celreq. module, cell);
for interbus :• 1 to maxinterbus do

with interq(interbus] do
addtothead. tail, celreq. module, cell):

cellrequeat :• cellrequest » 1:

previtatus :• atatus:
status :- 2:
intracall :• intracall » 1;
intercall :• intercall » 1:
qtimes :* qtimes » 1;
celcall :• celcall « 1:
lastreq :• celreq:
queue :* true

end
end

(5:

end;

begin
(* Cell request •)
with computer[module](cell) do begin

if (status - 1) and (simtime >- processing) then begin
(* Queue a request on intra buses only *)

for intrabus :• 1 to maxintrabus do
with intraq(intrabus) do

addtolhead. tail, celreq. module, cell):
cellrequest :- cellrequest • 1:

prevstatus :• status;
status :• 2:
intracall :• Intracall • 1:
qtimes :• qtimes • 1:
celcall :• celcall • 1:
lastreq :• celreq:
queue :• trust

end

Page A2-11

716 006250
717 006250
718
719 006250
720 006250
721 006250
722 0062SO
723 006307
724 006330
725 006330
726 006330
727 006353
728 006371
729 006423
730
731 006431
732 006437
733 006443
734 006455
735 006467
736 006501
737 006S07
738 006507
739 006514
740 006514

741
742 006515
743 006515
744 006515
745 006515
746 006554
747 006575
748 006575
749 006575
750 006610
751 006617
752 006642
753 006660
754 006666
755 006713
756 006736
757 006754
758 007006

759
760 007014
761 007022
762 007026
763 007040
764 007052
765 007057
766 007064
767 007073
768 007073
769 007106

770 007106
771 007120
772 007120

773
774 007121
775 007121

776 007121

777 007121
778 007160

779 007201
780 007211

781 007234

6:

end
end:)

begin
(• OS call •)
with computer[module I(cell 1 do begin

if (status • 1) and (simtim* >. processing) then begin
(• Queue a request for the global operating system •)
(• on the global bus •)

for globalbus :• 1 to maxglobalbus do
with globalq(globalbus) do

addtothaad. tail, oscill. module, cell):
01request :• osrequest * 1:

prevstatus :• status:
status :» 2;
globalcall :• globalcall • 1:
qtimes :• qtimes • 1:
glocall :• glocall » 1:
lastreq :• oscsll:
queue :- true

end
end

end:

7. 8:

begin
(* Send message call *)
with computerfmodule][cell] do begin

if (status • 1) and (siratime >• processing) then begin
{* Queue a request for sending message *)
(• on the inter or intra bus *)

selector :• random(seed);
if selector >- 0.7 then

for interbus :-l to maxinterbus do
with interq(interbus) do

addto(head. tail, sendre. module, cell)
else

for intrabus :•! to maxintrabus do
with intraq(intrabus) do

addto(head. tail, sendre. module, cell):
sendrequest :• aendrequest • 1:

prevstatus :* status:
status :> 2;
qtimes :> qtimes • 1:
sencall :* sencall » 1:
lastreq :* sendre:
queue :• true:
if selector >- 0.7 then

intercall :• intercall • 1
else

intracell :- intracall » 1
end

end
end;

begin
(• I/O call •)
with computer[Module)[cell] do begin

if (status • 1) and (aisitisw >• processing) then begin
if ioqcount > 50 then

for intarbus) : • 1 to •axlntarbu* do
with interqlinterbua] do

Page A2-12

782 007252
783 007260
784 007305
785 007330
786 007346
787 007400
788 007400
789 007406
790
791 007414
792 007422
793 007426
794 007440
795 007452
796 007457
797 007457
798 007464
799 007464
800 007464
801 007515
802 007S1S
803 007S25
804 007535
805
806
807
808
809
810
811
812
813
814
815
816 007536
817 007567
818 007573
819 007577
320 007601
821 007612
922 007612
823 007612
824 007636
825 007636
826 007641
327 007645
828 007645
829 007653
830
831 0076S4
832 007654
833 007661
834 00767S
835 007676
836 007676
837 007706
83« 007712
839 007722
840 007729
841 007725
842 007731
843 007731
844 007747
845 007747
846 00775S
847 0077S6

addtolhead. tail. 10. module, cell)
else begin

(or lobus :« 1 to naxiobus do
with iobusqfiobus] do

addtolhead. tail. io. module, cell);
ioqcount :• loqcount • 1

end:
iorequest :• iorequest • 1;

prevstatus :• statue
status :• 2:
qtimee :> qtimes » 1;
iocall :• iocall • 1:
lastreq :• io:
queue :« true

end
end

end
end (• case •)

end (• cell statement •)
end (* module statement •)

end (• if *)
end: (setupqueues)

procedure deleteentrylvar head, tail: qhead: cell, module: integer):
(• This procedure deletes the queue entry froej the request from •)
(• Module • module & Cell • cell *)
var

current: qhead:
last: qhead:
found: boolean;

begin
current :• head:
last :• head:
found :• false:
while (not found) and (current <> nil) do begin

(* While correct entry not found, skip along the queue •)
(* When we find it set flag true *)
if (module • current'.moduleno) and (current".cellno • cell) then begin

found :• true
end else begin

last :• current:
current :• current".link

end
end;

(• If we can't find it then the program is shot f ; •)
if not found then

writelnC ')
else begin

(* if entry to be deleted is the last or the only one in the queue •)
if current • tail then begin

tail :• last:
if head • current then begin

head :• nil:
tail :• nil

end else
last".link :• nil

end else if current • head then begin
I* if entry to be deleted is the first •)
head :• current".link:

end else
(* it must be in middle of list somewhere *)

Page A2-13

848 007756
349 007756
850 007772
9S1
852
853
854
855
856
857
858
859 007773
860 010036
861 010037
862 010037
863 010037
864 010062
865 010072
866 010126
867
868 010151
869 010151
870 010151
871 010174
872 010204
873 010262
874 010263
875 010263
876 010263
877 010306
878 010364
879 010365
880 010365
881 010365
882 010365
883 010365
884 010377
885
886 010400
387 010400
888 010400
889 010423
890 010433
891 010511
892 010512
893 010512
894 010535
895 010614
896 010614
897 010614
398 010614
899 010614

900 010631

901 010632
902 010632
903 010632
904 010655
905 01066S
906 010721
907 010744

908 010760

909

910

911

912

913

last Minx :• current'. linX
and

end: (delatacntry)

procadura rtaovaantryslbm: buatypa: buanum, callno. moduleno: integer: call: requesttype) :
(* This decide* which of the buaea to delate the auperfloua entries from •)
var

count: integer:

begin
case bus of

global:
begin

for count :- 1 to maxglobalbus do
if count <> buanum then

deleteentrytglobalqtcount].head, globalq(count].tail, cellno. modulen<
end:

intra:
begin

for count :« 1 to naxintrabu* do
if count <> busnua than

daleteentry(intraq[count].head. intraq[count].tail, callno. noduleno):
case call of

celreq:
begin
for count :• 1 to maxinterbua do

deleteentry(interq[count].head, intarqfcount].tail, callno. nodule
end:

sendee, oscall:
begin

(do nothing }
end

end '
end:

inter:
begin

for count :• 1 to maxinterbus do
if count <> busnun then

delete«ntry(interq[count].head, interqtcount].tail, cellno. modulenc
case call of

celreq:
for count :• 1 to maxintrabus do

deleteentry(intraqlcount).head, intraqtcount).tail, cellno. moduJ
aendre. oscall. io:
begin

(do nothing)
end

end
end:

ioline:
begin

for count :« 1 to maxiobus do
if count <> busnun then

deleteentry(iobu»q[count].head, iobusqtcount].tail, cellno. modultn

end;
end:

end: (removeentrys }

procedure startquau«(var head, tail: qhe.d: v.r qstatu.: statustyp.: bus: buatype: buanu.:

Page A2-14

914

915

916 010761
917 011011
918 011014
919 011024
920 011034
921 011042
922 011105
923 011105
924 011142
925 011163
926 011173
927
928
929
930
931

932
933
934

935 011174
936 011224
937 011230
938 011244
939 011254
940 011270
941 011270
942 011270
943 011276
944 011305
945 011313
946 011325

947

948 011450
949 011451
950 011467
951 011505
952 011523
953 011541
954
955 011560
956 011560
957 011560
958 011564
959 011627
960

961 011672
962 011700

963 011700
964 011704

965 011712
966 011720

967 011720

968 011730

969 011740

970 011746

971 012011
972 012011
973 012046
974 012046

975 012067

(* If a queue is idle then get fine entry tnd start it up •)

begin
qstatus :• acti:
with head" do begin

waitingtiM :- sintiiM - busrequest:
busgrant : - eimtime;
computer(i»odulenol[cellnol. status :• 3:
(• Now g*t rid of extra ealla on rest of buses •)
removeentrystbus. busnvua. cellno. moduleno. calltype) :
servecelK moduleno. cellno. calltype)

end
end: (startqueue }

procedure queueserver(var head, tail: qhead: var qstatus: statustype: bus: bustype; busnum: int

var
temp: qhead:

begin
if qstatus • idle then

startqueuefhead. tail, qstatus. bus. busnua):
with head' do

if simtime >• (busgrant » mastartime) then begin
(• Current cell has finished with the bus •)
(* Remove the queue entry and atart next, if any •)
numofremovals :• nuraofremovals » 1:
if bus - ioline then

ioqcount :• ioqcount - 1;
mastertime •• simtime - busgrant:
writefqfile. simtime.-1:6. inoduleno. cellno: 6. busrequest :12:6. busgrant: 11:6, si

:6. waitingtime:12:6. mastertime:13:6) ;

case calltype of
io: writeln(qfile. ' ioreq'l:
celreq: writeln(qfile. ' celreq'):
sendre: writeln(qfile. ' sendreq'l:
oscall: writelnlqfile. ' oscsll'):

end: (• case •)

(* Once the cell has finished set it back to what it was •)
(* doing before the call to this bus •)
busrequest :• 0.0:
computer[moduleno][cellnol.status : • I:
computer[modulenoj[cellno].exitqueue :• simtime:

if link <> nil then begin
(• There is another entry to start up •)
temp :- head:
head :- link:
dispose)temp):
(* now start up new cell I/O *)
with head" do begin

waitingtilM :• simtim* - busrequest:
busgrsnt :• simtime:
computer{moduleno)(cellnol.status :• 3:
(• Now get rid of extra calls on buses *)
removeentryslbus. busnua. cellno. saduleno. calltype):
(* Now see what the call wants to do •)
iervecell(«oduleno. cellno. calltype)

end

Page A2-15

976
977
978

979
990
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017

1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041

012077
012100
012106
012111
012114
012114
012117
012117

012120
012140
012163
012201
012205
012221
012245
012270
012306
012312
012326
012352
012375
012413
012417
012433
012457
012502
012520
012524
012540
012554

012565
012605
012610
012613
012616
012621
012644
012667
012726
012727
012727

•nd;

end else begin
diaposethead) :
call :• nil:
head :• nil:
qstatus :• idle

end
end (• if •)

qu«ue»erver >

procedure servicequeuea:
var

globslbu*: integer:
intrabua: integer:
interbua: integer:
iobu»: integer:

begin
for globalbus :• 1 to maxglobalbus do

with globalqtglobalbus| do begin
if head <> nil then

queue»erver(head. tail, status, global, globalbus)
end:

for intrabus :• 1 to maxintrabus do
with intraqCintrabus) do begin

if head <> nil then
queueserverfhead. tail, atatui. intra. intrabui)

end:
for interbus :•! to maxinterbu* do

with interqlinterbus] do begin
if head <> nil then

queueserverlhead. tail, status, inter, interbu*')
end:

for iobus :• 1 to maxiobus do
with iobu»q[iobusl do begin

if head <> nil then
queueserverlhead, tail, status, ioline, iobus)

end
end: (servicequeue* }

procedure cellstatus:
var

module: integer:
cell: integer:
totacti: integer:
totidle: integer:
totwait: integer;
totcomm: integer:

begin
totacti :• 0:
totidle :• 0;
totwait :• 0:
cotconji :• 0:
for module :• 1 to maxmodulee do

for cell :• 1 to maxcell* do
with computer(moduleJ[cell) do

case atatu* of
0:

begin

Page A2-16

1042 012727
1043 012727
1044 012736
1045 012736
1046 012736
1047 012736
1048 012745
1049 012745
1050 012745
1051 012745
1052 012754
1053 012754
1054 012754
1055 012754
1056 012762
1057 013027
1058
1059 013074
1060 013102
1061 013110
1062 013116
1063 013124
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073 013125
1074 013145
1075 013170
1076 013213
1077 0132S6

1078 013315
1079 013326

1080
1081
1082 013326
1083 013331
1084 013336
1085 013344
1086 013352
1087 013357
1088 013357
1089 013357
1090 013357
1091 013357
1092 013367

1093
1094

1095
1096
1097
109S
1099
1100
1101
1102 013400
1103 013420

1104 013447
1105 013451
1106 013453
1107 01345S

1:

2:

3:

tot idle :• totidle - 1
end:

begin
totacti :• toticti • 1

end:

begin
totwait :• totwait • 1

end:

begin
totconta :• totcoon • 1

end
end;

writeln(«n«p»hot. simtime:l:6. totidle: 5. totacti: 6. totwait: 7. totcomm: 5);

averageacti :- averageacti » totacti:
averageidle :- averageidle * totidle:
avaragewait :• averagevait • totwait;
averagacoas* :• avaragecoan • totcooa:

end: { cellstatus }

procedure cellmanager:
(* thi* is called every tickperiod •)
var

module: integer:
cell: integer:

begin
for module :•! to maxnodules do begin

for cell :- 1 to maxcella do begin
if computer[module][cell].atatua • 1 then begin

with computer[module)[cell] do begin
if aintlme >- processing then begin

(* This cell has now finished, therefore set it idle *)

status :- 0:
prevstatus :• 0:
enterqueue :• 0.0;
exitqueue :• 0.0:
queue :• false:

end (• if •)
end (• with •)

end (• if •)
end (* cell •)

end <* module *)
end: { cellmanager }

procedure loadsysten:
(• This procedure loads the systm with a large number of requests prior *)

(• to startup •)
var

count: integer:

begin
for count :« 1 to loadfactor do begin

plotlengths:
letupqueues:
home:
dlsplaytlM:

Page A2-17

1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
ma
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144

1145
1146

1147
1148
1149
1150
1151
1152
1153

1154
1155
1156
1157
1158
1159
1160
1161
1162

1163
1164

1165

1166
1167

1168
1169

1170
1171
1172
1173

013457
013457
013465

013476
013516
013541
013545
013570
013606

013647
013672
013715
013721
013737
013760

014001

014021
014030

014053
014062
014077

014122

014145
014170

014213
014236

014245
014262
01430S

014330

014353

014376

014405

014422

014453

nmtime :- aim time » tickperiod

end
end: (loadsystem)

procedure startsystem:
(* This examines all module* and cella on the system to see if any element *)
(* has failed *)
var

module: integer:
cell: integer;

begin
for module :- 1 to maxmodules do begin

if modulefail then
for cell :• 1 to maxcells do

computer[module][cell].status :- 4
end:

for module :- 1 to maxmodules do
for cell :- 1 to maxcells do begin

if celltail then
computer[module](cell).status :- 4

end
end: (startsystem)

procedure results:
(• Write system totals
var

module: integer:
cell: integer;
max: integer;
n: integer;
meansystimes:
meanqtimes:
meanglocall:
meancelcall:
meansencall:
meaniocall:
meanglobalcall:
meanintracall:
meanintercall:

to files *)

begin
writeln(rsystem):
writelnfrsystem.
writeln(rsystem);
writelnfrsystem.
writelnfrsystem.
writelnfrsystem.
uriteln(rsystem.
writelnfrsystem.
writelnfrsystem.
writeln(rsystem):
writeln(rsystem.
writelnfrsystem.
writelnfrsystem.
writelntrsystem.
writelnfrsystem.
writelnlrsystem);
writelnfrsystem.
writelnfrsystem.
writelnfrsystem.

integer:
integer:
integer;
integer;
integer;
integer;
integer;
integer;
integer;

Occurences of cell unavailability '. cellmiss):

Number of bus requests having been served');
Removals from queues '. numofremovals);
I/O calls ' . iocount) :
Sending message calls '. sencount):
Global OS calls '. oscount):
New cell requests ', celcount):

Number of bus requests having been made'):
I/O calls '. iorequest):
Sending message calls '. sendrequest);
Global OS calls '. osrequest):
New cell requests '. cellrequest):

Number of bus requests not having been served'):
I/O calls '. iorequest-iocount):
Sending message calls ', sendrequest-sencount):

Page A2-18

1174 014504
1175 014535
1176
1177

1178 014566
1179
1180
1181
1182
1183
1184
1185
1186
1187 014567
1188 014721
1189 014725
1190 014750
1191
1192 015007
1193 015032
1194 015035
1195 015051
1196 015054
1197 015057
1198 015062
1199 015065
1200 015070
1201 015073
1202 015076
1203 015101

1204 015104

1205 015107

1206 015112
1207 015116

1208 015122

1209 015122

1210 015126

1211
1212 015126

1213 015151

1214 015167

1215 015172

1216 015177

1217 015177

1213 015204

1219
1220 015214
1221 015237

1222 0152SS
1223 015260
1224 01526S
1225 015265
1226 015272
1227
1228 015302
1229 015325
1230 015343
1231 015346
1232 015353
1233 015353
1234 015360

1235
1236 015370
1237 015413
1238 015431
1239 015434

writelnfrsystaa^ ' Global OS call*
writeln(rsystas). ' New call requests

end: (results)

(* MAIN PROGRAM STARTS HERE •)

begin
seed :• atartaeed:
Cor run :• 1 to 1 do

para«(run] :• run * 100:

for run : - 1 to 1 do begin
tine :• 0:
loadf actor :• param(run);
cellmiaa :- 0:
iocount :• 0:
aencount :• 0:
oacount : - 0 :
celcount :• 0:
iorequeat :• 0:
sendrequest :- 0;
oarequeat :« 0:
cellrequeat :- 0;

ioqcount :• 0:
numof removals : >0 :
globalmen :• maxmemory:
sim time :- 0.00000000:
(* Reaet system clock •)
openf lies (run) :
(• Clear old filea •)

for globalbus:*! to ntaxglobalbus do begin
with globalqt globalbua] do begin

head :- nil:
tail :• nil;

status :- idle
end

end:

for intrabus:-! to maxintrabua do begin
with intraqCintrabus] do begin

head :• nil:
tail : • nil:
status : • idle

end
end:

for interbus:-! to maxinterbus do begin
with interqt interbus) do begin

head :• nil:
tail :- nil:
statua :• idle

end
end:

for iobua : • 1 to maxiobue do begin
with iobusq(iobus) do begin

head :• nil:
tail :• nil:

oarequeat-oscount) ;
cellrequest-celcount)

Page A2-19

1240
1241
1242

1243
1244
1245
1246
1247
1248
1249
12 SO
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279

1280
1281
1282
1283
1234
1285
1286
1287
1288
1289
1290

1291
1292
1293

1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305

015441
015441
015446

015456

015501
015524
015563
015566
015573
015600
015605
015612
015617
015624
015631
015636
015643
015650
015656
015664
015671
015671

015716
015720
015727
015736
015745
015754
015756
015760

015762

016005
016020

016033
016046
016061
016074

016107
016122
016135
016150
016163

016173
016176
016201
016204
016207
016213
016215
016217
016217

016221
016223
016225

016230
016236
016240
016242
016244
016254
016256

status :• idle
end

end:

(or module:•! to maxmodules do
for cell:-! to maxcells do
with conputer[inodule) [cell] do begin

statua :• 0:
prevatatua :- 0:
globalcall :• 0;
intracall :• 0:
intercall :• 0;
•yetimes :• 0:
qtimes :• 0:
gloeall :• 0;
celcall :• 0:
sencall :• 0:
iocall :« 0:
enterqueue :• 0.0:
exitqueue :• 0.0;
memreqsize :• 0:
queue false

end:

clear :
writeln:
writeln:
writeln;
writeln:
printheader:
home:
displaytime:

for module :• 1 to maxmodules do begin
avsystimes(module] :- 0:
avqtimes [module] • 0;
avglocalK module] - 0:
avcelcall[module] • 0:
avsencall[module] • 0:
aviocall [module] - 0:
avcpujobs[module] • 0:
avglobalcall(module] :- 0:
avintracall [module) :• 0:
avlntercall [module] :> 0:

end:

averageacti :• 0;
averageidle :- 0:
averagewait :• 0;
averagecomn :• 0;
snapcount :• 1:
morerequests :» true:
loadsystem:
(* Start up machine •)
home:
displaytime:
cellstatus:
snap :• 0;

while simtime <• maxsimtime do begin
servicequeues;
plotlengths;
cellmanager:
if snap • 25 then begin

cellstatus:
snap :• 0:

Page A2-20

1306 016261
1307 016267
1308 016271
1309 016273
1310 016273
1311 016301
1312 016307
1313 016307
1314
1315 016313
1316 016314
1317 016341
1318 016366
1319 016413
1320 016440
1321 016447
1322
1323 016514
1324 016520
1325 016527
1326 016560
1327 016603
1328 016622
1329 016645
1330 016670
1331 016670

•napcount
horn*:
diiplaytiJM:

•nd;
snap :• *nap » 1:
•iatiM :• siatim*
setupqueues

•napcount 1:

tickperiod:

•od:

result*:
averageidle
av«rag«aeti
averagewait
averagecoms

trunct (averageidle / snapcount) » 0.5
truncl (averageacti / snapcount) » 0.5
truncl (averagewait / snapcount) • 0.5
trunc((averageconn / snapcount) » 0.5

writelnlsnapshot):
writ«ln(snapshot. av«rag«'. av«rag«idl«:5. av«rag«acti:6. averagewait:7. av*rageco«Hi:5):

mill(time);
writ«ln(rsyst«n):
writ«ln(rsy«t«s. 'Tim* us«d is'. tira«:10. ' milliseconds'):
for snap :• 1 to 17 do

writsln:
vrit«ln<'time used •'. tine:10):
writelnt'nunofreawvsls -'. numofremovals:6)

end
end. (simulator }

COMPILATION COMPLETE : 0 ERRORS REPORTED

Page A2-21

