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Summary

This project was not selected for renewal beyond 1990. It has nevertheless been
a very successful project. Most importantly, a number of key technologies have been
developed to the point at which they can attract funding from other agencies to support
advanced development.

A detailed hardware design for interfacing transputer hardware to the NeXT
computer was completed as a master’s thesis under this project. This thesis is included
as Appendix II.

A study of the utility of RISC processors as the control computer in a training
simulators was completed. The results of this study should be of value to Florida
simulator manufacturers. A copy of the paper detailing these results is included as
Appendix IV.

The research into transputers and RISC processors provided the basis for a
proposal to DARPA in the area of advanced visual displays. These displays will be
particularly useful in the area of virtual reality which is one of the fastest growing
application areas.

The best ideas from this project will not be abandoned with the end of FHTIC
funding, but will be utilized in the Terrain Data Bases for Simulation Project. In addition
other sources of funding continue to be aggressively pursued.

Significant Research Findings

A detailed hardware design for interfacing transputer hardware to the NeXT
computer was completed as a master's thesis under this project. This thesis is included
as Appendix Il. This design will bring the expandable processing power of arrays of
transputers to the growing body of NeXT machine uses. No industrial partner has,
however, yet been identified to produce this design.

Work was completed on the simulator benchmark supplied by Naval Training
Systems Center (NTSC). The C-code derived from the original FORTRAN was polished
and prepared for extensive benchmark runs.

The TCP/IP workstation network at IST includes RISC machines using a variety
of processors. The Sun uses SPARC, the Silicon Graphics uses MIPS 2000, and Data
General uses Motorola 88000. There are in addition machines on the network using
CISC processors such as 80386 and 68030. In addition IBM made one of their new
RS/6000 RISC machines available for benchmarking.




Extensive comparison benchmarks were made available for presentation at the
1990 Interservice/Industry Training Systems Conference. The results of this study are
included as Appendix Il

A major result of this project has been a detailed literature survey to identify
previous work related to applying parallel processing technology such as transputers to
the problem of generating imagery. In general there are two broad approaches to
generating images. Broadly speaking, these are ray tracing and polygonal rendering. A
brief discussion of some of the most valuable references follows.

Andrew Glassner of Xerox PARC (Palo Alto Research Center) has edited a book
An Introduction to Ray Tracing that provides a broad survey of the field. Of particular
interest is the stochastic sampling approach of Cook ("Stochastic Sampling and
Distributed Ray Tracing"). It avoids aliasing artifacts by redistributing under-sampled
energy across the spectrum. Stochastic casting or rays is a good way to divide effort
among an array of transputers.

In the same volume, Arvo and Kirk ("A Survey of Ray Tracing Acceleration
Techniques") discuss various methods of speeding ray-tracing including the use of
vector and parallel architectures. A rather complete ray-tracing bibliography is
presented in the article by Heckbert and Haines ("A Ray Tracing Bibliography").

Another valuable collection is Parallel Processing for Computer Vision and
Display edited by Dew, Earnshaw and Heywood (University of Leeds and IBM, Great
Britain). Their book contains a variety of algorithms oriented toward speeding
visualization using parallel computation. In particular the article by Caspary and
Scherson ("A self-balanced parallel ray-tracing algorithm”) presents a parallel ray-
tracing algorithm.

The article by Holliman, Morris, Dew, and de Penington ("An evaluation of the
processor farm model for visualizing constructive solid geometry") discusses the use of
a "processor farm" for visualizing solid geometry. This article is particularly interesting
since the processor farm is implemented using transputers.

Another book that has proven a valuable source of material is Image Synthesis
by Magnenat-Thalmann and Daniel Thalmann (University of Montreal). They present a
variety of techniques for dealing with texture that are applicable to the problem of
generating images using arrays of transputers.

Dew, P. M., R. A. Earnshaw, and T. R. Heywood (editors), 1989; Paralle| Processing for

Computer Vision and Display; Addison-Wesley Publishing Company, New York,
503pp.

Glassner, Andrew S. (editor), 1989; An_Introduction to Ray Tracing; Academic Press,
New York, 327pp.



Magnenat-Thalmann, N. and D. Thalmann; 1987; Image Synthesis; Springer-Verlag,
New York, 400pp.

The literature search uncovered recent research of some importance. Two
researcher's at NYU's Courant Institute have identified the usefulness of the
mathematical technique of conformal mapping for performing the transformations
needed in a CIG.

Frederick, Carl and Schwartz, Eric. L. 1990. "Conformal Image Warping", |EEE
ns, March , 54-61.

Earlier work on conformal mapping (for non-visual applications) shows promise for
adapting this transform to parallel hardware such as the transputer:

Trefethen, Lloyd N. 1980. "Numerical Computation of the Schwarz-Christoffel
Transformation”, SIAM J. SCI. STAT. COMPUT., 1, 82-102.

Adoption of conformal mapping to transputers will be a significant research contribution
that will have applications beyond the visual transformation for a CIG.

For example, a hemispherical display (2n steradians) achieving the 1 minute of
arc resolution of the human eye would require 75 million display elements. This is
beyond any foreseeable, affordable technology. In addition, updating the 75 million
pixels fast enough to avoid flicker and other artifacts would require >10,000 MIPS.

If the warping algorithm is implemented in a local, pixel by pixel, fashion , then
good use can be made of parallel hardware such as arrays of transputers. This insight
was a key factor in the proposal to DARPA (Appendix IV).

Comparison with Goals

This project was not selected for renewal beyond 1990. It has nevertheless been
a very successful project. Most importantly, a number of key technologies have been
developed to the point at which they can attract funding from other agencies to support
advanced development.

A detailed hardware design for interfacing transputer hardware to the NeXT
computer was completed as a master’s thesis under this project. This thesis is included
as Appendix .

A study on the utility of RISC processors as the control computer in a training
simulators was completed. The results of this study should be of value to Florida
simulator manufacturers. A copy of the paper detailing these results is included as
Appendix V.



The research into transputers and RISC processors provide support for a
proposal to DARPA in the area of advanced visual displays. This displays will be
particularly important in the area of virtual reality which is one of the fastest growing
application areas.

Commercialization Activities

At the close of the year, the RFP for DOD SBIR research contained several
topics that would provide a good vehicle for collaboration with local small businesses.
Discussions were held with Daedalian, Inc (Russ Hauck) concerning commercialization
of the technologies resulting from this research. Joint proposals to NTSC and the
AF were being prepared.

Current Problems
There are no major problems with this project, nor are any anticipated.
Upcoming Milestones

This project has not been selected for renewed funding. Therefore there are no
upcoming milestones.

Publications and Presentations

Andres Alverez, a student of Dr. Petrasko, the co-Pl, completed a master's
degree as a result of this project. A copy of his research presentation is included as
Appendix | and a copy of his thesis is included as Appendix II.

A paper, "A Portable Benchmark for Simulator Processors”, was submitted to
I/ITSC, but did not make the final cut for presentation. The reviewers felt felt that the
results of the brickbat benchmark were essentially the same as those of the
conventional dhrystone and whetstone benchmarks. The research was too successful!

A copy of this paper is attached as Appendix Il

Direct External Support

DARPA has responded favorably to a draft proposal "Optimal Virtual World
Displays" which uses many techniques developed in this research. FHTIC research
was fundamental in attracting this interest. The funding level for the DARPA research
will be ~$360K over three years. A copy of the proposal is included as Appendix IV.

IBM provided one of their new RS/6000 RISC-based workstations to support
benchmarking and image generation activities.

An Aviion RISC workstation loaned to IST by Data General was made available
for benchmarking. '




Transputer equipment loaned by the Naval Training Systems Center have been
used as part of this project. ~ Additional transputers supplied by PM Trade for use in
the Visual Systems Laboratory will also be available to this project.

SUS Infrastructure Interactions

This project employed two students at IST, J. Martin Otte, a master's level
mathematics student, and Steve Rehfeldt, an undergraduate in EE.

Andres Alverez, a student of Dr. Petrasko, the co-Pl, completed a master's
degree as a result of this project.
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Interfacing an Array of Coprocessors to the NeXTbus

Research Report by:

Andres Alvarez

B.S., University of Florida, 1986
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Introduction to the Coprocessor Architecture
Introduction to the NeXTbus Architecture
Introduction to the NeXThus Interface Chip (NBIC)
Overview of the Interface Board

Top—-Level Design of Interface Board

Advantages / Disadvantages of Using the NBIC
Work Remaining

Questions and Answers




Shall be composed of one or several transputer based
motherboards.

Motherboards are composed of a combination of Inmos
transputers, dual-inline transputer modules (TRAMs)
and a 32-way link switch.

O Have the capability to configure different paraliel

processing networks via link.

O Powerful array coprocessing networks can be

developed by interconnecting several motherboards.




AL

A high—-performance 32-bit microprocessor which
contains the following:

(1) Its own local memory (2 kbytes / 4 kbytes)

(2) 4-high speed serial links

(3) A 16 or 32-bit processor

(4) Internal timers for real-time processing

(5) System services (reset, analyze and error)
(6) On-chip floating point unit (optional)

O Transputers are hardware processors which execute

software processes. |
Any number of processes can be executed on a single
transputer processor at the same time.

Transputers can be bootstrapped from ROM or via
iink.







Block Diagram of Transputer Architecture

On-Chip Floating Point Coprocessor
(Optional)

Reset

Analyze

'ﬁrror

Selection

Memory

Control

Signals

Memory

Ac‘i_drcss/Data i

LinkO In/Out

Link1 In/Out

Link2 In/Out

Link3 In/Out

Event In/Out




Inmos Transputers and their Features

Transputer| 16 |ICT |oOn Chip | External Resp. | Sustained Data Rate to
or RAM | Memory to External | Internal
32 Int. Memory Memory

IMS T805| 32 | 33 ns |4 Kbytes | 4 Gbytes | 630 ns | 40 MB/sec| 120 MB/sec
IMS T801| 32 |33 ns [4 Kbytes | 4 Gbytes | 630 ns | 60 MB/sec | 120 MB/sec
IMS T800| 32 |33 ns |4 Kbytes | 4 Gbytes | 630 ns | 40 MB/sec| 120 MB/sec
IMS T425| 32 |33 ns |4 Kbytes | 4 Gbytes | 630 ns | 40 MB/séc | 120 MB/sec
IMS T414| 32|50 ns|2 Kbytes | 4 Gbytes | 950 ns | 26 MB/sec| 80 MB/sec
IMS T222]| 16 |50 ns |4 Kbytes | 64 Kbytes | 950 ns | 20 MB/sec | 40 MB/sec

IMS T225| 16 |33 ns |4 Kbytes | 64 Kbytes | 630 ns | 30 MB/sec| 60 MB/sec

NOTES: Data compiled from Inmos Transputer Data Book. Nomenclature for table.
Resp. to Int. = Response to Interrupts ns = nanosecond
ICT = Internal Cycle Time MB = Mega Bytes




MOTHERBOARD ARCHITECTURE

Motherboards have a common architecture to allow
control and interconnection of several boards.
Architecture allows different kmds of network to be
configured.

Allow hierarchical control of systems with more than
one Motherboard.

Allow networks to be easily configurable by software.
Communication can be obtained with the host
computer (NeXT) via a single serial link.

OO0 O O O




Generic Motherboard Top-level Architecture

"notUpError““ "notUpError"
"notUpAnalyze" "notUpAnalyze"
"notUpReset" "notUpReset"
UP PORT DOWN PORT

"Pipehead"5

SUBSYSTEM PORT

YYYYYY

\ "I/O Links"
"ConfigUp"
ontigtp "notSubSystemReset"
\ "notSubSystemAnalyze"
"ConfigDown"

[

P

"notSubSystemError"



A synchronous 12.5 MHz multiplexed bus.

Bus architecture is composed of 96 signal lines.

32-bit addressing (4 Gigabytes of address space).
Contains Master and Slave Flow Control.

Has a single—chip interface via the NeXTbus Interface Chip
(NBIC).

Burst transfer size can be 4, 8, 16 or 32 words.

Each NeXTbus transaction is composed of three basic
cycles:

(1) Start Cycle
(2) Data Transfer
(3) Acknowledge Cycle

OO0 00000




A 144—pin CMOS VLSI chip.

Provides a single—chip interface to the NeXTbus.
Designed to interface specifically with the Motorola 68030.
Performs Byte—-swapping

—  NeXTbus (Little—Endian Byte Ordering)

—  Motorola 68030 (Big—Endian Byte Ordering)
Supports both Master and Slave boards.
Contains five internal programmable registers:

(1) NBIC ID Register

(2) Control Register

(3) Configuration Register

(4) Interrupt Register

(5) Interrupt Mask Register

O Provides a local bus interface (used to interface with the array
Of coprocessors).

O00O

OO




Top-level Block Diagram of NBIC
NEXTBUS LOCAL BUS

A A \

NeXTbus | NeXTbus Master/
Arbitration| Local Slave
Logic Control Logic

Y

Y

TRANSACTION FIFO

A

NBIC
INTERNAL
REGISTERS

Timeout
Logic

| .
RESET LOGIC .
| R |
I NeXTbus Slave/ | Local Bus
Local Master Arbitration |= >
{ Control Logic Logic
q
. TRANSACTION FIFO y
Al A A
I afl?
Clov] d d | b C
0 i r r i 0
n t € € t n
t T S 5 r t
T a S s a r
o t / [ ]t 0
1 i | D D] i 1
0 a a 0
n t t n
Y Ve a 'y Y




Format for Internal NBIC Registers.

NBIC ID REGISTER

31 30 16 15 00
Manufacture ID
v Numaber Board ID Number
NBIC CONTROL REGISTER
31 30 29 28 27 26 0

|, Read Modify Cycle Collision (RMCOL)
|, Store and Forward (STFWD)
> Ignore Slot ID , (IGNSIDO0)

NBIC CONFIGURATION REGISTER
31 30 29 28 27 26 25 24 23 00

|, External ID Re%:ister Enable
(EXIDREGEN)

|, Slot Space Decode
(SSDECODE)

External Slot Space Select
(EXSEL)

o Slave Interrupt Enable
(SINTEI\B

Y

Reserved

Y

» Slot Identification Values
(SID 3:0)




Access to NBIC Internal Registers.

NEXTBUS LOCAL BUS
Configuration
- Mask
Register

Control :
Register I

- NBIC ID

Register *
Interrupt i)
= Register Board’s
. logic




OVERVIEW OF INTERFACE BOARD |

Purpose: Allow communlcatlon between the NeXT

computer and an array of coprocessors via the
NBIC.

O The board shall contain four ports.
O The ports perform the following functions:
(1) Communicate via the NBIC with the NeXT computer
(2) Process data which is to be transmitted to the
coprocessor network
(3) Process data which is received from the
coprocessor network
O The board contains the following H/'W modules:
(1) Configuration Controller
(2) Address Decoder
(3) Port Controllers (Input and Output)
(4) Error Controller
(5) Reset, Analyze and Interrupt Logic




Top-level Block Diagram of Interface Board

NeXTbus
-@

32-Bit Dgti:k h0
LA GSLD Input/Output [*—™1 nMS =
FIFO’s jeg—{C011 }=
| NBIC .
: Control :
| Signals -0y Port#0 |
I/O Controller|
- Link 1 I/O
e = Data -
Configuration| | | Input/Outputf*—] 1MS "
Controller [~ 1~ T FIFO’s |«p—>{CO011 |«
I f' . Port #1 |_
I/O Controller|
|Address|< - L DLmk 210
eco 1L aar
S 5 .| Input/Output [~ tg MS 2
FIFO’s [«p>{CO01] fje—t—
Port #2 |_
I/O Controller] .
1E _
CRROR . . Link 3 VO
ontroller
I _ Data .
& .| Input/Output "1 IMS i
* FIFO'’s -1 CO011 |=
o Port#3 ||
I/O Controller| SYSTEM
SERVICES
_SS #1 -
RESET SS #2 1
f and
" ANALYZE | SS #3 -~
LOGIC SS #4 -




Memory Map of Board

SXAFFFXX | SPECIAL
sX4000XX | REGISTERS These lAddrlt_agsfloc%ti(mts Wit
_ - are only valid for Burst Writes.

sX3FFFXX '

PORT #3 Burst Byte 3F00 - 3FFF
sX3000XX o
sX2FFFXX

PORT #2 Burst Byte 2F00 - 2FFF
sX2000XX -
SXIFFFXX | PORT #1 Burst Byte 1F00 - 1FFF
sX1000XX
sXOFFFXX | PORT #0 Burst Byte 0F00 - OFFF
sX0000XXx

Mapping of Special Registers.

— SUBSYTEM SERVICES e

401D 405D 409D 40DD | Subsystem Analyze Write Only
4019 4059 4099 40D9 Subsystem Reset/Err | Write/Read

INPUT FIFO ( NeXT - to - LINK) -
4015 4055 4095 40D5 | FIFO FULL Read Only
4011 4051 4091 40D1 | FIFO EMPTY Read Only

400D 404D 408D 40CD | FIFO HALF FULL Read Only

OUTPUT FIFO (LINK - to - NeXT)

4009 4049 4089 40C9 FIFO FULL Read Only
4005 4045 4085 40Cs FIFO EMPTY Read Only
4001 4041 4081 40C1 FIFO HALF FULL Read Only




CONFIGURATION CONTROLLER

Purpose: Initialize the NBIC ID register and control register
at power—up or during a reset sequence.

O NBIC ID Register shall be internal in the NBIC versus

external.
O A PROM shall store the approprlate address and data for

the two NBIC registers.
O Conflguratlon register is conflgured by board resistors.




Purpose: This module shall decode all valid address

locations of the board and assert the appropriate
signals.

This module shall latch the address at the beginning of a
transaction.

Assert control signals depending on the address lines
2E08-2E23.

Address lines 2E23-2E20 select which port is to be active
or which special register is to be processed.

Address lines 2E00-2E01 used by NeXT to encode type oi
transaction to be performed.

Address lines 2E02-2E06 used by NeXT to encode the burst
transfer size during burst transactions.

O O O O O




Top-level Block Diagram of Address Decoder

BREQ*

R/W*

AS*

LAD [1:0]

=

g
LAD [23:8]
4

rd

LRESET*

TRANSACTION

AD [1:0] L
PORTX ACTIVE /T:
PORTX RESET N
PORTX ANALYZE 4
PORTX ERROR 4 j
PORTX IN FF FLG _ & _
PORTX IN EF FLG _ 4 _
PORTX IN HF FLG _ 4 _
PORTX OUT FF FLG :2 g

PORTX OUT EF FLG ,

rd
PORTX OUT HF FLG 2

Where X is the Port

Number (0-3).

STATUSX ACTIVE

Y

BURST BYTE ENX

|

'\ A US

GP RESET

Y

GP ANALYZE

Y




INPUT PORT CONTROLLER |

Purpose: Responsible forall transactions between the NBIC
local bus and the Input/Output FIFO'’s.

O This controller is a composed of the following three
controllers:
(1) Write Controller
(2) Read Controller
(3) Status Controller
O Write Controller is activated for all write transactions
between NBIC and Input FIFO’s.
O Read Controller is activated for all read transactions
between the Output FIFO’s and the NBIC.
O Status Controlleris responsible for placing one out of seven
status flags (per port) on the Isb of the address line.




Top-level Block Diagram of Input Controller

PORTX ACTIVE 4, _
STATUSX ACTIVE 4, _

) oo orr

R/W* R . 2, MUX SEL [1:0]
DS* .

AD[1:0] _ —— BACK* -
SIZ[1:0] ’ STERM EN*
e 4, WRITEX
LRESET* 7 >
BURST BYTE ENX 4, READX 1
PORTXERROR 4, | . i
PORTX IN FEFLG 4, _ > -
PORTX IN EFFLG 4, LAD[0]

PORTX IN HEFLG 4, '

PORTX OUT FFFLG 4, _ BB OF

PORTX OUT FF FLG 4, _

PORTX OUT HF FLG {, i

IX FF* 4, : Where X is the Port
IX EF* 1/ ol m— Number (0-3).

IX HF* 4,,

OX_FF* i,

OX EF* Zz .

OX HF* i

SUBX ERROR 4,

LCLK {/ -




Top-level Block Diagram of

Write Controller and its Interconnections

Data to Link
4B INPUT FIFO IMSSCO“
LADI[31: to 8
=ADBLOL) B 4> NeXT-to-Link ——
MUX
W FF*
PortX Active 1 3
Note: Only the
BREQ* 2§ Mux SelX [1:0] signals used are
shown on the
RAAI*
WriteX | Asyn. Input FIFO.
DS* > Logic
AB[1:0] STERM_EN*
S1Z[1:0]
*
LRESET* BACK*
IX FF*
B FIFO Full Flag
REG |
LCLK
STERM*
- REG [*
-LCLK




Top-level Block Diagram of

Read Controller and its Interconnections

s Data from Link
-Bit
. 8 OUTPUT FIFO 5 8,
LAD[31:00 | Byte |, 4| Link-to-NeXT [* 7
LCLK | Loadable . "
Register s i
T \
, Chip (CE0-3) Note: Only the
BREQ* shown on the
ReadX Asyn. Output FIFO.
R/W* Logic
RD_OE* Used to
> tri-state
STERM_EN* LA-D[SI:O]
_— registers.
OX_EF* e Empty FIFO Flag
LCLK
STERM*
- REG [*
-LCLK




Top-level Block Diagram of Status Hardware

LAD[31:0] | | 32 | NeXT-to-Link
D 7> INPUT FIFO
FIFO Status Fla}%s
(FF*, EF* and HF*)
32}
/
| R L22_| Link-to-Next
T OUTPUT FIFO ¥
s
13 >
1} " .
7 yi
SubSystem Error Flag  [REG ’
LCLK |

STATUSX_ACTIVE
7, Address Decoder Flags
4

LCLK

STERM_EN*

LAD [0]

STERM*
-LCLK




Block Diagram of Port Controller Interconnections

NeXTbus

Address/Data

Control
Lines

Address
Decoder

NeXT-to-Link
vl S .| INPUT
U B FIFO
X
WR 'y f 3 RD
Link-to-NeXT
8
32 |, 2 OUTPUT |
bit [ FIFO
Re
) RD 1 b WR

IMS
Co11
LINK

Serial
Links




OUTPUT PORT CONTROLLER

Purpose: Respon5|ble for all transactlons between the
Input / Output FIFO’s and the Inmos Serial Link
Adaptor IMS (C011).

O Link Adapter provides full duplex communication
between the Output FIFO’s and the Transputer serial links.
O This controller is composed of the following two
controllers:
(1) Input Sequence Controller
(2) Output Sequence Controller
O Input sequence controller responsible for byte transfers
from the Input FIFO to the IMS CO11.
O Output sequence controller responsible for byte
transfers from IMS C011 to Output FIFO.
O All transfers between FIFO’s and IMS C011 are
asynchronous via a two—wire handshake.




Top-level Block Diagram of QOutput
Port Controller Interconnections

INPUT FIFO
eXT-to-Link

{ LinkOutX

To and From

| LinkInX

Local Bus
s 8/ "
i
R - ‘n‘.
OX FF* | ourpur
IX EF* PORT  |writeX
> ContrOIIer - Asyn(:.
QValidX 1 [o ] [ReadX | Logic
TAckX .
—> IValidX
LCLK QAckX




ERROR CONTROLLER |

e __ * . R R RS

Purpose: Responsible for termination of an invalid
transaction or acknowledgement for any Port
Reset or Analyze transactions.

All inputs for controller received from Address Decoder.
Informs the user if an invalid memory address of the
board has been referenced.

Verifies that a transaction does not have to wait till clock
cycle 256 to terminate.

CPU board in NeXT computer terminates a transaction at
clock cycle 256.

O O OO




Top-Level Block Diagram of Error Controller.

TRANSACTION 1,

PORTX_ACTIVE 4', .
STATUSX_ACTIVE 4’, 1 ’_ =
GP RESET "] j) S TERM FX? | STERM* _
GP ANALYZE Lek | Reg

LCLK
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| R R B R

s,

O Asserts the appropriate Port Reset signal when user
selects to reset a port.

O Asserts the appropriate Port Reset and Port Analyze
signals when user selects to analyze a port.

O Theinterface board shall assert its local interrupt signal
(SINT*) when:

(1) Data has been transferred from the coprocessing
network to the interface board.

(2) Any of the error flags from the coprocessing network
are asserted.




Top-level Block Diagram of Reset and Analyze Logic

PORTX RESET

LINKX RESET

4
,/

PORTX ANALYZE 4/

X

-
L

LINKX ANALYZE

7

LRESET*

IMS CO11 RESET
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o
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ADVANTAGES / DISADVANTAGES OF NBIC |

| T,

Advantages

Reduces amount of design time.
Reduces amount of Logic on the board.
Provides a simple local bus interface.

Provides a single—chip interface to the NeXTbus.
Provides store and forward capability.

isadvantages

Only supports a burst transfer size of 4 words.

No error generation when a burst size greater than 4 is
attempted.

NBIC supports both Master and Slave boards; therefore,
the NeXTbus Master/Local Slave Transaction FIFO is not
used on the interface board.
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WORK REMAINING

Testability of the board needs to be designed.
Interface software program needs to be developed.
Program should perform the following:

(1) Write (single—word or burst) known data
patterns of arbitrary size into any of the four
ports.

(2) Read data from any of the four ports.

(3) Report number of bytes compared and the
total number of failures.

High-level simulation of the hardware modules.
Detail design of interface board.
Testing and debugging of the board.

OO

OO0







O Off-the-shelf subassemblies which are composed of
the following:

(1) At least one processoor from the Inmos transputer
family

(2) A few discrete components

(3) External memory

(4) Some contain application specific circuitry

All of the above components are on a single circuit

board. .

TRAMSs have a standard pinout (16 pins) and size.

Basic size of a TRAM is called a SIZE 1 (Dimensions are

1.05” by 3.667).

Since TRAMs have a standard pinout and size, it is easy

to build customized motherboards for them.
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MOTHERBOARD HIERARC

O Motherboards contain three ports to provide control of a
network.

O The three ports are:
(1) Subsystem Port
(2) Up Port
(3) Down Port
O Subsystem Port is used by a master board to control
other board(s).
O Boards are interconnected by connecting the Down Port
of one board to Up Port of another board.




O Each port has three active low signals:

(1) not Reset

(2) not Analyze

(3) not Error
Reset and Analyze signals are asserted to either reset or
analyze boards in the network.
The Down and Subsystem Ports assert the "Reset” and
“Analyze” signals.
The Error signal is asserted by a motherboard when an
invalid operation takes place.
The Up Portreceives the "Reset” and ”"Analyze” signals
from its parent board.
Status of the "Error” signal is feedback to the parent
board from the Up Port of the child board.

O O O O O




SEVERAL MOTHERBOARDS INTERCONNECTED TO FORM A NETWORK OF COPROCESSORS

UP PORT
NETWORK MASTER "PARENT BOARD"
SUBSYSTEM

DOWN PORT ol
e e [ e e S e | P L Gl ST N M Ot Yo Sy st WSm (el v J ______________________
| | |
| : |
| | uPPORT i | | | uppoRT UP PORT
| I |
: "CHILD BOARD” ] |
| | |
I | SUBSYSTEM SUBSYSTEM
| | DOWN PORT SUBP%E’TT EM | || pown poRT 3id DOWN PORT i
|
I Ll
| | |
| | |
| |
| I e i i i it i S s S o i e . ., sl s ' i ' s s e il e i ) A s ol i il s i
| |
| N PRETNN S < -Sn  SCEU R | S-S Sy SR
oy i
| [ |
| UP PORT 1 UP PORT UP PORT
' i
|
l N
[ | ' SUBSYSTEM

SUBSYSTEM I | SUBSYSTEM DOWN PORT

: DOWN PORT PORT I I DOWN PORT PORT PORT
| SAME LEVEL AR
| OF HIERARCHY L]
= { .

——— ———————— —— ——— — — —— — ——— —— ——————————— ————— — ——— ———————————— ————— — — ——




O R e D B TS

S

(1) IMS B008 — Supports a maximum of 10 SIZE 1 TRAMs
(2) IMS B012 — Supports a maximum of 16 SIZE 1 TRAMs
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CHAPTER 1
INTRODUCTION

The first microprocessor introduced in the market was the 4-bit Intel 4004 in 1971.
Since the development of this 4-bit processor, over 100 microprocessors have been
introduced by U.S. manufactures. The development of the 32-bit microprocessors in
the late 1970’s has also introduced new bus architectures to exploit the high perfor-
mance features of these processors. For example, Motorola developed its own bus
architecture known as the Versabus in 1979 to support its 32-bit 63000 microproces-
sor. Since the development of the Versabus, a wide variety of bus architectures such
as Versa Module Eurocard (VME) bus, Multibus, Multibus IT and Nubus have been
introduced into the market (Stone, 1983).

Bus architectures are used to allow processors to communicate with other proces-
sors, peripherals or an array of coprocessors. The bus is composed of a set of signal
lines which can be divided into three groups: address and data, data transfer control
and arbitration. The address and data lines are used to carry the information which is
to be communicated between two modules. The data transfer control lines are used
to verify that the information is transferred during a bus transaction. Finally, the arbi-
tration lines are used to guarantee that only one processor shall have ownership of
the bus at any given time. With the wide variety of bus architectures developed,
there is a variation in the exact number of signal lines in each group. Buses can be
classified as either asynchronous or synchronous, multiplexed or non-multiplexed and
as multiprocessing (W. D. Peterson, "VMEbus Handbook", 1989).

Asynchronous buses use completely responsive handshaking signals to.coordinate



data transfers between different modules on the bus. The handshaking lines are used
to indicate the beginning of valid data on the bus and the reception of the data by the
receiving module. The data transfer rate is the data rate of the slower module partici-
pating in the transaction. Synchronous buses have a common clock on the backplane
to coordinate all data transfer. Data transfers occur on the rising or trailing edge of
the clock with one transfer per clock period. Some synchronous bus architectures pro-
vide a means of flow control. Flow control is a method in which the transmitting or re-
ceiving module can control the data rate on the bus.

In a multiplexed bus architecture, the address and data lines share a common set
of pins on the backplane. A two bus cycle is required to transfer data since the ad-
dress information is transferred during the first cycle and data on the second cycle. In
a non-multiplexed bus architecture, the data and address lines have a different set of
backplane pins. This type of configuration requires only one bus cycle to transfer data
but more signal lines exist on the backplane.

Multiprocessing bus architectures allow more than one module to initiate bus
transactions. A module that can initiate a data transfer bus cycles is known as a bus
Master. A bus Master can also act as a receiving module when it is addressed by
another bus Master. The modules which cannot initiate bus cycles are know as
Slaves. A Slave module can only participate in a bus cycle when it is addressed by a
bus Master. When there are two or more bus Masters on a bus, an arbitration cycle
is initiated to determine which bus Master shall have ownership of the bus. The pro-
tocol used by buses to determine the bus Master is different between bus architec-
tures. Some buses use a strictly fair arbitration technique known as Round-Robin
while others provide a scheme which consists of different levels of priority.

There are a wide variety of bus architectures in the market today. The choice of
which bus architecture to select depends on the type of application and data rate re-

quired by the user.  Several common bus architectures and their corresponding fea-




tures are shown in Table 1.1. Many of the bus architectures shown in Table 1.1 are

widely used in different types of applications from research to development environ-

ments.
Table 1.1. Bus Architectures and their Features.

Bus Sync/ | Multi- Data Address | Multipro- IGoveming
Description | Asyn | plexed | Widths Widths cessing Body
IBM PC Async | NO 8 20 NO IBM
Multibus Async | NO 8,16 8,16,20,24 YES IEEE 796
Multibus IT | Sync YES 8,16,20,24 32 YES Intel
Nubus * Sync YES 32 32 YES TI
NeXTbus * | Sync YES 32 32 YES NeXT
Q-bus Async | YES 8,16 16, 18, 22 YES DEC
VME Async | NO 8,16,24,32 | 16,24,32 YES IEEE 1014
SCSI bus * | Both | YES 8 8 YES ANSI

SOURCE: W. D. Peterson, The VMEbus Handbook: A User’s Guide to the JEEE
1014 and TEC 821 Microcomputer Bus (VITA Publications, 1989), pg. 5, Table 1-1.

* These entries were compiled by author of this research report.

Most bus architectures have a corresponding chip set to aid in the interfacing of
modules. For example, the Nubus architecture by Texas Instruments has a bipolar
chip set which provides a full 32-bit Nubus Master/Slave interface. The chips are the
SN74ACT240 controller and the SN74BCT2420 address/data transceiver. The NeXT-
bus, which is a superset of the Nubus, has the NeXTbus Interface Chip (NBIC) to aid
designers in interfacing modules to the NeXT computer. The NBIC is a 144-pin
CMOS Very Large Scale Integration (VLSI) chip which connects directly to the
NeXTbus and provides an interface to a local bus (Mikkelsen, "NBIC", 1989).



The Nubus architecture is a synchronous (10 MHz) multiplexed bus which re-
quires high current transistor-to-transistor logic (TTL) drivers and termination on all
signal lines as defined by the IEEE standard 1196. The differences between the Nu-
bus and NeXTbus architecture are the clocks, data transfer rate, electrical interface
and number of arbitration cycles. The NeXTbus uses a 12.5 MHz clock, low power
CMOS drivers and does not require termination on external signal lines. Since the
NeXTbus architecture does not require external termination, a single-chip interface
implementation is available (Mikkelsen, "NeXTbus", 1989).

The purpose of this research report is to demonstrate the use of the NBIC to inter-
face an array of coprocessors, which shall be used in an operational and development
environment, to the NeXTbus. The report shall provide a functional top-level design
for a Host-to-Motherboard interface board. The board shall be located in the back-
plane of the NeXT cube and the Motherboard shall be part of an array of coproces-
sors. The Motherboard shall contain serial link(s) which shall be used to receive or
transmit information to the Host-to-Motherboard board located in the NeXT cube.
The Host-to-Motherboard board is a parallel-to-serial and serial-to-parallel link in-
terface on a standard NeXTbus card. The board shall interface with the array of co-
processors via serial links versus a shared memory approach. In a shared memory
approach, the NBIC data bus is directly connected to the data bus of the coproces-
sors. Instead, the information on the NBIC data bus is serially transmitted via Inmos
link adaptors such as the IMS CO11 and CO12 to the serial links of the Motherboard
located in the array of coprocessors. The different modules on the interface board
shall be described in a design language known as AHPL (a Hardware Programming
Language). The description of this language for readers not familiar with its syntax
can be found in the two references given for Hill and Peterson. To supplement the
AHPL description for the functional modules of the board, state-diagrams and timing

diagrams shall be supplied to aid the designer in the detailed design of the board.




CHAPTER II
COPROCESSOR ARCHITECTURE

Introduction to the Inmos Transputer

The architecture for the array of coprocessors shall consists of a combination of In-
mos 16 and/or 32-bit transputers, dual-inline transputer modules (TRAM’s) and the
IMS C004 32 way link switch. By mixing and matching the above components, de-
signers can configure Motherboards which shall consists of large numbers of transput-
ers to form powerful network of coprocessors. Motherboards allow control and inter-
connection of a number of transputer modules to form the building blocks of an array of
coprocessors. They have a generic architecture and allow transputers to be accessed
from a number of different host machines (Inmos, "Transputer Development and iq
Systems Databook™, 1989).

The Inmos transputer is a high-performance 32-bit microprocessor which is ideal
for selected applications. The architecture of a transputer contains the following com-
ponents: its own local memory; 4-high speed serial links; a 16 or 32 bit processor; a
16 or 32 external memory interface; internal timers for real-time processing; system
services; an external event interrupt and some contain an on-chip floating point pro-
cessor. A block diagram of the transputer architecture is shown in Figure 2.1. This
programmable VLSI transputer chip was designed specifically to function as a compo-
nent processor in a network of array coprocessors. Processes to be executed are
queued by a hardware scheduler in a Round-Robin fashion with two priority levels.
Processes which are waiting for internal or external communication are descheduled
and later rescheduled at the appropriate time by the scheduler. The transputer can ei-

ther boot from Read Only Memory (ROM) or from any of its four links. The next sec-




tion shall explain how the transputer is bootstrapped from link and how a user can
peek (READ) or poke (WRITE) into the addressable address space of the transputer
(Inmos, "The Transputer Databook", 1989).

Figure 2.1. Block Diagram of Inmos Transputer Architecture.

On-Chip Floating Point Coprocessor

(Optional)
Reset
Analyze
1'l,:,rror
Selection
.‘—
Link0 In/Out
>
{ Link1 In/Out
| + PR
Memory o Link2 In/Out
Control - > i
Signals
Link3 In/Out
- 16/32_
Memory w632 |
Address/Data 4
1 Event In/Out

SOURCE: Inmos, The Transputer Databook 2ed. (Redwood
Burn LTD, Trowbridge : 1989), pg 48, Figure 1.1.




Boostrapping the Transputer

~ After the trailing edge of the RESET pulse, the transputer begins its initialization
sequence by executing the memory configuration routine. After the memory configu-
ration routine is complete, then the bootstrap routine is started. The transputer can
either be booted from ROM or link depending on the state of the signal BootfromRom
on the transputer. If BootfromRom is high, then the transputer shall begin to execute
instructions in ROM. Usually, there will be a jump instruction in the ROM to a de-
fined location in external memory. External memory shall contain the required data to
bootstrap the transputer. If the signal BootfromRom is low, then the transputer shall
wait for a control byte to arrive on any of its four serial links. Any location in either in-
ternal or external memory can be read or written while the transputer is waiting to be
bootstrapped from link. There are three cases that can occur depending on the value
of the control byte. (Inmos, "Transputer Databook, 1989").

If the control byte equals zero, then the POKE (write) operation is executed. Af-
ter a control byte equal to zero is received, the transputer expects eight more bytes
for a 32-bit architecture or four more bytes for a 16-bit architecture. For the 32-bit ar-
chitecture case, the first four bytes after the control byte represent the internal or ex-
ternal address (least significant byte first). The last four bytes represent the data.
The data is written into the address and the link shall wait for the next control bye.
The address and data must be received on the same link as the control byte.

If the control byte equals one, then the PEEK (read) operation is executed. After
the transputer receives a control byte equal to one, it shall expect four more bytes for
a 32-bit architecture and two more bytes for a 16-bit architecture. The bytes received
after the control byte represent the internal or external address at which to PEEK.
The word stored at the given address is then transmitted on the same link as the con-
trol byte.

While the transputer is waiting to be boostrapped, any number of POKE or PEEK




operations can take place. Any of the four serial links can be used to POKE or
PEEK. The only restriction is that all information following the control byte must be
transmitted cn the same link as the control byte. Once the control byte is greater
than one, then the transputer shall begin to load its bootstrap program from link. The
control byte represents the number of bytes to follow. The transputer shall continue
to read data on the same link as the control byte until all the bytes have been read.
Once all the bytes have been read, the transputer shall begin to execute the program
starting at a defined location in memory denoted by MEMSTART.

Link Communication Protocol

The serial links on the transputer are used to create a network of processors of ar-
bitrary size and topology. The main advantage of using point-to-point links versus
a multiprocessing bus architecture is that no control technique is required to access
the medium. Medium access control algorithms such as Carrier Sense Multiple Ac-
cess with Collision Detection (CSMA/CD) or the IBM Token Ring are required on
multiprocessing buses. The links are dedicated channels between two transputers or
between a transputer and an external device. The link interface consists of two unidi-
rectional lines each which can transmit or receive data or control information. The
communication protocol for the data packet transmitted on a link consists of a start bit
followed by a one bit followed by eight data bits followed by a stop bit. Each data
packet must be acknowledged before the next byte is transmitted. The acknowledge
packet protocol consists of a start bit followed by a stop bit. The packet can be ac-
knowledged before the entire byte has been received. This indicates to the transmit-
ting transputer that there is room to buffer the current byte and that there is room for
another byte to be transmitted. Link performance is improved by allowing the data
packet to be acknowledged before the entire packet is transmitted. Links are used to

simplify the development of system configuration. Communication between transput-




ers can be achieved as long as the link speed is the same on both transputers. The
transputers which are communicating via link do not need to have a common clock.
Link communication is not sensitive to clock phase. All Inmos transputers support a
communication data rate of 10 Megabits (Mbits) per second. Several transputers
have select lines where the user can select 5, 10 or 20 Mbits per second communica-

tion rate. Figure 2.2 shows the formats for the data and acknowledge packets.

Figure 2.2. Link Data and Acknowledge Packet Formats.

DATA
PACKET
FORMAT

ACKNOWLEDGE
PACKET
FORMAT

SOURCE: Inmos, The Transputer Databook 2ed. (Redwood
Burn LTD, Trowbridge : 1989), pg 11, Figure 1.5.

Methods of Interfacing Peripherals to Transputers

The case shall arrive where a non-transputer device such as a disk drive, printer or
a host needs to communicate with a member of the transputer family.  Currently,
there are three methods which can be used to interface transputers to peripherals.
The three methods are by a specialized control transputer, by use of link adaptors
and by external memory mapping.

Inmos has developed certain specialized transputers which can be used to inter-
face specific type of peripherals to their transputers. The specialized control trans-
puter shall then communicate to other transputers via its serial links. An example of
specialized control transputer is the IMS M212. This transputer is used to interface a
variety of disk drives to transputers. It contains two 8-bit bidirectional data ports

and 10 dedicated control lines to interface the disk drive. The interface to the periph-
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eral is implemented by specific hardware in the specialized control transputer. Figure

2.3 shows a top-level diagram of this configuration.

Figure 2.3. Peripheral Interfacing by a Control Transputer.
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SOURCE: Inmos, The Transputer Databook 2ed. (Redwood

Burn LTD, Trowbridge : 1989), pg 26, Figure 5.1.

The second method is by using Inmos link adaptors such as the IMS CO11 or
the IMS CO012. Link adaptors are used when a non-transputer device needs to com-
municate with a transputer.
lines, which are used to coordinate data transfers between the peripheral and the
transputer. The link adaptor communicates with the transputer via serial links. The

links of the link adaptor can be directly connected to the links of the transputer. Fig-

They contain two 8-bit data paths and handshaking

ure 2.4 shows a top-level diagram of this configuration.

Figure 2.4 Peripheral Interfacing by a Link Adapior.
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Finally, the last method is by memory mapping the peripheral onto the external
mcfnory bus of the transputer. The peripheral is controlled by issuing memory read or

write commands. Figure 2.5 shows a top-level diagram of this configuration.

ture.

Figure 2.5. Peripheral Interfacing by External Memory Mapping.
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SOURCE: Inmos, The Transputer Databook 2ed. (Redwood

Burn LTD, Trowbridge : 1989), pg 26, Figure 5.1.

Inmos has developed several different configurations of their transputer architec-

transputers developed by Inmos and some of their features.

Table 2.1. Inmos Transputers and their Features.

To complete the introduction on the transputer, Table 2.1 shows the different

Transputer| 16 |ICT |0n Chip | External | Resp. | Sustained Dala Rate fo
or RAM Memory to External | Internal
32 Int. Memory Memory
IMS T805 | 32 |33 ns |4 Kbytes | 4 Gbytes | 630 ns | 40 MB/sec | 120 MB/sec
IMS T801 | 32 {33 ns |4 Kbytes | 4 Gbytes | 630 ns | 60 MB/sec | 120 MB/sec
IMS T800 | 32 |33 ns |4 Kbytes | 4 Gbytes | 630 ns | 40 MB/sec | 120 MB/sec
IMS T425 | 32 |33 ns |4 Kbytes | 4 Gbytes | 630 ns | 40 MB/sec | 120 MB/sec
IMS T414 | 32 |50 ns {2 Kbytes | 4 Gbytes | 950 ns | 26 MB/sec | 80 MB/sec
IMS T222 | 16 |50 ns [4 Kbytes | 64 Kbytes | 950 ns |20 MB/sec | 40 MB/sec
IMS T225 | 16 |33 ns |4 Kbytes | 64 Kbytes | 630 ns | 30 MB/sec | 60 MB/sec
NOTES: Data compiled from Inmos Transputer Data Book. Nomenclature for table.
Resp. to Int. = Response to Interrupts ns = nanosecond
ICT = Internal Cycle Time MB = Mega Bytes
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Transputer Module Architecture

‘ The transputer modules (TRAM:s) are the next level of integration in an array of
coprocessor. The transputer is the lowest level followed by the TRAM and the high-
est level being a Motherboard which contains both. TRAMs were developed by In-
mos to satisfy the wide variety of configurations and applications which were in de-
mand at the time that the transputer was developed. They are off the shelf subas-'
semblies which are composed of at least one processor from the Inmos transputer
family, a few discrete components, external memory and some contain application
specific circuitry all on a printed circuit board. Inmos has developed a wide variety of
TRAMSs so designers can configure their own parallel processing systems for their
unique application. They are available in different physical sizes with different memo-
ry sizes and with different functions. TRAMs have a standard 16-pin pinout and in-
terface to each other via serial link. The basic size of TRAM is called a SIZE 1 and
its dimensions are 1.05" by 3.66". Larger TRAMs exists and their dimensions can
be up to 8.75" by 3.66" (SIZE 8). Since TRAMs have a standard pinout and size, it
is easy to build customize Motherboards with sockets for them. Inmos has devel-
oped several evaluation boards, such as the IMS B0O8 and BO12, specifically for
TRAMs. The IMS BOO8 supports a maximum of 10 SIZE 1 TRAMS and the IMS
B012 supports a maximum of 16 SIZE 1 TRAMS. Table 2.2 shows a list of the avail-
able TRAMs available from Inmos along with their corresponding features. (Inmos,
"Transputer Development and iq Systems Databook", 1989).

TRAMSs need to have the capability to control a network of transputer and/or
more TRAMs. A network which is controlled by a master module is know as a sub-
system of the master. The master module in the network controls the slave modules
through a subsystem port. The subsystem port consists of three signals: subsystem-
Reset, subsystemAnalyze and subsystemError. The Motherboard in an array of co-

processors shall have a master TRAM for controlling other TRAMs via its sub-
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system port.

The subSystemReset and subSystemAnalyze are used by the master module to
reset and/or analyze its subsystem. The links of the transputer are active low during
the reset phase of a network of coprocessors. SubSystemError is used by the master
module to monitor the state of the error flag in its slave network. This signal is either
an open-collector or open-drain signal so that all the error flags in the slave network
can be wired "OR" together. The subsystem is controlled by reading or writing to an
address in positive address space. The subsystem is reset or analyzed under the
control of the transputer on the TRAM but must also be reset when the TRAM itself

is being reset.

Table 2.2. Inmos TRAMSs and their Features.

TRAM SZ XP in 16 | External | External Subsystem

TRAM | o | SRAM | DRAM Port
IMSB416 | 1 | T222 |16 | 64 Kbytes| NONE NO
IMSB401 | 1 | T800 |32 | 32 Kbytes| NONE NO

T425

T414

IMSB411 | 1 | T800 |32 | NONE | 1 Mbytes NO
T425

IMSB404 | 2 | T800 |32 | 28 Kybtes | 2016 Kbytes | YES
IMS B417 | 4 | T800* |32 | 60 Kbytes |4032 Kbytes | YES
IMSB405 | 8 | T8o0 |32 | NONE | 8Mbytes | YES

IMS B410 | 2 | T80l 32 | 156 Kbytes NONE NO

NOTES: Data compiled from The Transputer Development and iq Systems
Databook. The variable SZ denotes the SIZE of the transputer. The
symbol XP stands for transputer.

* Denotes 25 MHz transputer.
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Generic Motherboard Architecture

" Inmos has developed a generic motherboard architecture to aid in the development
of powerful array coprocessors. A common motherboard architecture provides an
easy way for system designers to build and configure systems consisting of several
transputers and TRAMs. The architecture must allow different kinds of parallel pro-
cessing networks such as a tree, cube or array to be configured. Also, each mother-
board shall have the capability to be chained together with another motherboard in the
network. All the link connections in the motherboard shall have the capability to be
configured by software instead of being hardwired on the board. Finally, the mother-
board shall have a standard hardware interface for a host machine to download the
processes which are to be executed by the network. (Inmos, "Transputer Develop-
ment and iq Systems Databook", 1989).

The generic motherboard architecture is composed of module slots for TRAMs
which are interconnected via their links. Each module slot consists of two sockets
which support a SIZE 1 TRAM. The number of TRAM slots depends on the size of
the board. The first slot is denoted by slot 0 and the last slot is denoted by slot n. In-
mos facilitates the interconnection of the links by developing a hardware link configu-
ration standard and using the IMS CO004 to configure the links via software. The
links are configured in a pipeline fashion by connecting link 2 of slot 0 to link 1 of slot 1
continuing in this fashion all the way to slot n. Link 1 of the TRAM in slot 0 is denot-
ed as the "Pipehead” and link 2 of the TRAM in slot n is denoted as the "Pipetail”.
The "Pipehead” and "Pipetail” are brought to an edge connector on the board. Both of
these signals are used to interconnect all motherboards in a network in a pipeline
fashion by connecting the "Pipetail” of one board to the "Pipehead” of another board.

The remaining two links of each slot are brought out to an IMS C004 32-way link
switch which is configured from software. The IMS C004 is a programmable link

switch which directs any of the 32 link inputs to any of the 32 link outputs. The gener-
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ic motherboard architecture does not specify how the links 0 and 3 are connected to
the link switch. The designer of the motherboard can decide how links 0 and 3 are
best connected to the link switch to serve their unique application. The only restric-
tion stated by Inmos is that links 0 and 3 must be connected to the IMS C004. The
number of link switches on the board depends on the number of slots on the board.

The IMS C004 link switch is controlled by T212 transputer. Each T212 transput-
er has the capability of controlling two link switches. Links O and 3 of each T212 is
connected to the appropriate link switch. The remaining two links are used to config-
ure the control transputers in a pipeline fashion for configuration. Link 1 of the first
T212 transputer in the pipeline is connected to an edge connector on the board and it
is denoted by the signal "ConfigUp". Link 2 of the last T212 transputer in the pipe-
line is also taken to an edge connector on the board and it is denoted by the signal
"ConfigDown". The configuration pipeline of any two boards in a system can be inter-
connected by using these two signals. If a motherboard is the first board in the pipe-
line, then the configuration data shall come from one of the module slots on the board.
In this case, a jumper is installed between the "Pipehead” and "ConfigUp" signals.

One of the specifications of a motherboard is that it must have the capability of
providing hierarchical control of a network of transputers. This is accomplished on the
motherboard by three ports: Up, Down and Subsytem. Each port consists of three ac-
tive low signals which are all connected to an edge connector. The three signals are
notReset, notAnalyze and notError. A motherboard can act as a network master by
connecting its Subsystem port to the Up port of another board in the network. The
boards in a subsytem are interconnected by connecting the Down port of one board to
the Up port of another board. A board in a subsystem can act as a master to another
board by its Subsytem port. Figure 2.6 shows several motherboards interconnected
to form a network of processors.

The need shall arise where a motherboard requires an interface to a host machine
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such as the NeXT Computer. Inmos does not define any specific implementation for
the Host interface. It does specify that the Host shall have access to the module
pipeline, control a number of subsystems and have the capability of interrupting the
Host when data in either direction has been completed. The Host machine shall inter-
face to the module pipeline via slot 0 link O of the Motherboard. The purpose of this
research report is to define and perform a top-level design of the Host-to-Mother-

board link interface (slot O link 0) as stated in Chapter I.

Figure 2.6. Motherboards Interconnected to Form a Network of Coprocessors.
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SOURCE: Inmos, The Transputer Development and ig Systems Databook.
(Redwood Burn LTD, Trowbnidge : 1989), pg.215, Figure 9.7.

To conclude this chapter, Figure 2.7 shows a top-level diagram of a generic Mother-
board architecture. The board shown in this figure contains three module slots, one

IMS CO004 link switch and a T212 configuration transputer.




17

Figure 2.7. Top-level Diagram of a Generic Motherboard Architecture.
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(Redwood Burn LTD, Trowbridge : 1989), pg.213-215, Figures 9.4 - 9.6.




CHAPTER III
NEXTBUS ARCHITECTURE SPECIFICATIONS

Qverview of the NeXTbus Features

This chapter shall introduce the communication protocol to interface with the
NeXTbus. Only the relevant information about the NeXTbus, which shall be used to
develop the functional design for a NeXT Computer to transputer Motherboard inter-
face board shall be mentioned in this chapter. If the reader has any further specific in-
terest on the NeXTbus architecture, all necessary information can be obtained from
the "NeXTbus Specification” by Mikkelsen. All the information in this chapter is de-
rived from the "NeXTbus Specification” by Mikkelsen.

The NeXTbus is a superset of the NuBus which was developed by Texas Instru-
ment and is defined by the IEEE 1196 standard. The NeXTbus is a synchronous 12.5
MHz multiplexed bus which uses a strictly fair arbitration scheme. The bus is com-
posed of 96 signal lines on the backplane, has 32 bit addressing which can support up
to four GigaBytes (Gbytes) of address space, has a single chip interface via the
NBIC and supports Master/Slave and Slave only boards. Flow control is available for
both Master or Slave boards. Although the NeXT address space supports 15 slots,
the NeXT cube only supports four boards. One of the four boards is the CPU board
which is located in slot O and provides the 25 MHz backplane clock (BUSCLK) and
time-out functions. The three remaining slots on the NeXT cube are slots 2,4 and 6.
Figure 3.1 shows a block-diagram of the NeXTbus in the NeXT cube. The signals on
the bus are classified into one of the following categories: utility, control, ad-
dress/data, arbitration, parity and power. The different signals under each category

shall be defined in this chapter.
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Figure 3.1. Block Diagram of NeXTbus in the NeXT Cube.
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SOURCE: Catherine Mikkelsen, "NeXTbus Specification" (NeXT, 1989),
Reorder Product #N6010, pg. 1-2, Figure 1-1.

The addressing space of the bus is divided into 16 sections each consisting of 256
MegaBytes (MBytes). The addressing range for each slot is defined from sO000000
hex to sFFFFFFF hex where s is the slot id number of the board. The top 256
MBytes is further divided into 16 sections where each slot receives 16 MBytes. The
16 MBytes are called the slot address space and the address for each slot is defined
from FsO00000 hex to FsFFFFFF hex. The slot address space is used for slot iden-
tification purposes and contains two words for interrupt control. The slot address
space stores a 32-bit ID word across the top four words. The 16 most significant bits
(msb’s) represent a NeXT manufacturing code and the 16 least significant bits
(Isb’s) are allocated to board designers for ID purposes. The 32-bit words are divid-
ed across four 32-bit words to facilitate the use of byte-wide devices such as a
ROM. Most of the slot address space shall be controlled by the NBIC. Each word in

the slot address space occupies four address locations since each location contains a
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byte of information. Six words in each slot address space from FsFFFFE8 hex to Fs-
FFFFFF hex are used to store the board’s ID code and the two interrupt bytes. The
two interrupt bytes only store a valid bit which is located in the msb of the byte. The
interrupt byte in location FSFFFFE8 hex is a read only address and is used to inter-
rupt the CPU. The other interrupt control byte is a mask bit which is stored in the
msb of the byte in address FSFFFFEC hex. The mask bit is used to coordinate the
interrupts on the bus since multiple boards may be requesting an interrupt from the

CPU board.

NeXTbus Clocks

The CPU board in slot 0 provides the 25 MHz clock defined by BUSCLK and pro-
vides another clock denoted by MCLKSEL* (Major Clock Select). The asterisk on
signal names indicates that the signal is an active low signal. This notation shall be
used throughout the research report. MCLKSEL* shall select every other low phase
of BUSCLK. Every board which shall be installed in the backplane of the NeXT cube
needs to generate two internal clocks using the two clocks provided on the back-
plane. The two clocks are MCLK* and DSTB*. MCLK* provides a timing reference
for control signals and for single word transactions on the bus. DSTB* provides a
timing reference when burst transactions are being performed.

MCLK* is derived on the board by the logical "OR" of BUSCLK and MCLK-
SEL*. This shall generate a clock signal with a period of 80 nanoseconds (ns) be-
tween the rising edge of the clock. The 80 ns between the rising edges is known as a
major clock cycle. DSTB* is derived by the logical "NAND" of BUSCLK and an inter-
nal board signal called SENDDATA. The signal SENDDATA is asserted for two pe-
riods of BUSCLK and indicates that two words shall be transferred during the current
major clock cycle. The module which is transmitting on the bus in burst mode shall

assert the DSTB* clock along with the data. The receiving module during burst trans-
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fers shall latch data on the rising edge of DSTB*. The data is driven on the rising
edge of both clocks (MCLK* and DSTB*) and sampled on the trailing edge of the
clocks. Figure 3.2 shows a timing diagram of all the clocks used in the NeXTbus ar-
chitecture along with their relationships to the address and data lines. The ad-
dress/data lines on the bus are inverted such that a of value 0 hex equals

FFFFFFFF hex and the value FFFFFFFF hex equals O hex.

Figure 3.2. NeXTbus Basic Timing Signals.
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SOURCE: Catherine Mikkelsen, "NeXTbus Specification” (NeXT, 1989)
Reorder Product #N6010, pg.1.6 - 1.7. Figures 1.5 and 1.6.

NeXTbus Signal Description
The NeXTbus architecture is composed of 96 signal lines which are grouped into
six categories based on the function they perform. The categories are utility, control,
address/data, arbitration, parity and power. The 96 signal lines connect to a 96-pin
Euro-DIN connector which must be on all NeXTbus boards. The pinout assignment
of the signals on the NeXT backplane are shown in Appendix A. Table 3.1 shows all

the signals and the category in which they are grouped in. A description of all the sig-




Table 3.1. NeXTbus Signals.

SIGNAL
CATEGORY DESCRIPTION NO OF PINS
UTILITY
RESET* Reset Pulse 1
SID [3:0] Slot ID 4
INT* Interrupt 1
PON Power On 1
PUP Power Up 1
CONTROL
BUSCLK 25 MHz Clock 1
MCLKSEL* Major Clock Select 1
START* Start 1
ACK* Acknowledge 1
T™[1:0] Transfer Mode 2
DSTB* Data Strobe 1
DRQ* Data Request 1
ARBITRATION
ARB([3:0]* Arbitration Number 4
RQST* Bus Request 1
ADDRESS/DATA
AD(31:0] Address/data lines 32
PARITY
SP(3:0]* System Parity 4
SPv* System Parity Valid 1
POWER
10
+5V 14
GND 4
+12V 4
-12V
RESERVED
RSVD[5:0] Reserved Lines 6

SOURCE: Catherine Mikkelsen, "NeXTbus Specification”
(NeXT, 1989), Reorder Product #N6010, pg. 2.2, Table 2.1.
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nals is given below:

RESET* is an asynchronous signal used to reset all the boards on the backplane of
the NeXT cube. It is pulled up by a 470 Ohm resistor since it is an open-drain signal.
It is asserted by the NeXT power supply at initial powerup.

ID[3:0]* are the slot identification lines which are binary coded on the backplane as
shown in Table 3.2. These signal lines are used during arbitration cycles.

INT* is a wired "OR" signal that is connected to every board on the backplane.
NeXT does not specify any protocol for this signal. This signal can be used to allow
Slave only boards a mechanism for interrupting the CPU board. This signal is pulled
up by a 220 Ohm resistor on the backplane.

Table 3.2. Encoding of the Slot Identification Numbers.

SID3 SID2 SID1 SIDO
SLOT 0 GND GND GND GND
SLOT 1 GND GND 45V GND
SLOT 2 GND +5V GND GND
SLOT 3 GND  +5V 45V GND

SOURCE: Catherine Mikkelsen, "NeXTbus Specification”

(NeXT, 1989), Reorder Product #N6010, pg. 2.4.
PON is an active-high asynchronous signal which is asserted when the power supply
has reached its stabilization point. This signal shall be deasserted before the power
supply reaches a voltage level of 2.0 volts. This signal is pulled up in the NeXT pow-
er supply by a 470 Ohm resistor.
PUP is an active-high signal which is an input to the power supply circuity. When
the CPU board asserts this signal between 2.4 and 5.0 volts, the power supply is
ready to function. The power supply continues to function as long as the voltage
stays 2.2 volts or greater. If the voltage drops below 1.0 volts for greater than 1 milli-

second, then the power supply shall shut down.
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BUSCLK is a 25 MHz signal provided by the CPU board in slot 0.

MCLKSEL®* is a 12.5 MHz signal with a 75 percent duty cycle. This clock is also
generated by the CPU board.

START?®* is asserted by the current bus master during the beginning of a trausaction.
It is asserted for one period and the type of transaction is encoded in the two Isb’s of
the address/data lines (AD[1:0]). When asserted, it lets the Slave module know
that a valid address is on the bus.

ACK?* is asserted during the acknowledge cycle by the Slave module to indicate re-
ception of data or asserted at the beginning of an attention cycle. This signal is as-
serted for one clock period.

TM[1:0]* are the two transfer bits which serve several purpose during the different
types of cycles. During a start cycle, these two bits along with the two Isb’s of the
address/data lines are driven by the bus master to encode the type of transaction to
take place. During an acknowledge cycle, these two bits along with the two Isb’s of
the address/data lines are driven by the Slave module to encode the type of acknowl-
edgment. During burst transactions, TMO* is used as a handshaking signal. During
a burst write transaction, the bus Slave asserts TMO* to indicate that it can receive
four more words. During a burst read transaction, the Slave module asserts TMO*
when it places valid data on the data bus. This signal when used as an handshaking
signals affects the following cycle or cycles. When a read or write burst operation be-

gins, this signal is assumed to be asserted.

DSTB* is a data strobe signal which is asserted by the module which is currently

transmitting data on the bus. It is asserted at the same time as data is placed on the

bus.

DRQ* is a handshaking line that is asserted by the bus Master during burst transac-

tions. When the bus Master is transmitting, it asserts this signal at the same time it

places data on the bus. During a burst read operation, the bus Master asserts this




signal when it can sink or receive four more data words. During a read transaction,
the signal only affects the next cycle or cycles. At the beginning of a burst read trans-
action, this signal is assumed to asserted by the bus Slave. This signal is used for
flow control.

ARB[3:0]* are open-drain signals which are used during the arbitration cycle to de-
termine the next bus owner. At the end of the arbitration cycle, the winner’s slot ID
numbers are present on these signal lines. These signals are pulled-up on the NeXT
backplane by a 220 Ohm resistors.

RQST?* is an open-drain signal which is asserted by a bus Master who wants to con-
tend for bus ownership. This signal can only be asserted if it is in the deasserted
state.

AD([31:0]* are multiplexed bidirectional lines which carry either address or data. The
contents of the AD bus are inverted as previously mentioned.

SP[3:0]* are the system parity lines. Each parity bit is associated with a correspond-
ing byte. Parity bit SP[3]* correspond to the most significant byte AD[31:24]*,
SP[2]* corresponds to AD[23:16]*, SP[1]* with AD[15:8]* and SP[0]* with
AD(7:0]*. Each parity bit is asserted when the number of asserted data lines plus
the parity bit is odd.

SPV* is asserted when parity bits have been generated for the valid data lines.

Different Types of Bus Cycles
There are three basic cycles which can occur on the NeXTbus. The type of cycle
being performed is encoded by two signals denoted by START* and ACK*. The three
basic types of cycles are start, acknowledge and attention.
The start cycle is encoded with START* asserted and ACK* deasserted. This is
the first cycle in a transaction. During this cycle, the signals TM[1:0]* and AD[1:0]

are driven by the bus Master to encode the type of transaction which is to take place.
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Table 3.3 shows all the possible encoding schemes for the start cycle. There are 16
valid codes since 4-bits are used to encode the type of transaction to be performed.

The acknowledge cycle is the last cycle in a transaction. Its purpose is to pro-
vide status information of the current transaction to the bus Master. During this cy-
cle, the bus Slave asserts ACK* and deasserts START*. The signals TM[1:0]* are
driven by the bus Slave to encode the status information on the bus. Table 3.4 shows
the four possible status information that can be encoded by the bus slave. A bus
transfer complete status is returned by the Slave when the transaction completed nor-
mally. An error status is returned by the Slave when data received or transmitted
may be erroneous. The bus Master can receive a time-out status which is generated
by the CPU board. This indicates that no Slave responded to the address generated
by the master. If no acknowledge cycle occurs after 256 clock cycles, then the CPU
board generates an acknowledge cycle with a time-out status. The final status which
can be encoded by a Slave module is a try again later status. This indicates to the
bus master that the addressed Slave can not complete the transaction at this time.
The Master can retry the transaction at a later time.

The last type of bus cycle is an attention cycle. Attention cycles consists of one
major clock cycle and the Master asserts both START* and ACK* signals. There are
two valid attention cycles. These two cycles are an attention-null and attention-re-
source lock. An attention-null cycle is used to restart an arbitration cycle This cycle
is issued when a bus Master has ownership of the bus but does not engage in a
transaction and another bus Master asserts RQST*. The current bus owner shall is-
sue an attention-null cycle to begin a new arbitration cycle. The last attention cycle
1s an attention-resource lock. This cycle is issued by a bus Master to indicate to all
Slave modules on the bus that a bus-locked transactions is occurring. Slave modules
shall lock any resources such as memory that may interfere with a bus-locked trans-

action. At the end of a bus-locked transaction, the bus owner shall issue an atten-




Table 3.3. Valid Encoding Codes for Start Cycle.

T™MI* TMO* . ADI* ADO* TYPE OF CYCLE

Write Byte 3
Write Byte 2
Write Byte 1
Write Byte O
Write Halfword 1
Write Burst
Write Halfword 0
Write Word
Read Byte 3
Read Byte 2
Read Byte 1
Read Byte O
Read Halfword 1
Read Burst
Read Halfword 0
Read Word

ool ay

SR T e
SIS Nl ol al gl of el s o Tl o

i ofta ot ol et iba st miia o el el el sl melt el il o
-l alol of Tl lal--lalln

SOURCE: Catherine Mikkelsen, "NeXTbus Specification",
(NeXT, 1989), Reorder Product #N6010, pg. 4-1, Table 4-1.

Table 3.4. Valid Encoding Codes for Acknowledge Cycle.

T™I1* TMoO* Type of Acknowledgment

L L Bus Transfer Complete
L H Error

H L Bus Time-out Error

H H Try Again Later

SOURCE: Catherine Mikkelsen, "NeXTbus Specification”,
(NeXT, 1989), Reorder Product #N6010, pg.4-7, Table 4-4.
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tion-null cycle to broadcast to all Slave modules to unlock there resources. Table 3.5

shows the valid encoding codes for an attention cycle.

Table 3.5. Valid Encoding Codes for Attention Cycle.

TM1* TMO* Type of Attention Cycle
L L Attention-Null
L H Reserved
H L Attention-Resource-Lock
H H Reserved

SOURCE: Catherine Mikkelsen, "NeXTbus Specification",
(NeXT, 1989), Reorder Product #N6010, pg.4-7, Table 4-4.




CHAPTER IV
NEXTBUS TRANSACTIONS

This chapter shall introduce the different data transactions available on the
NeXTbus. The transactions covered in this chapter are single-word transfers, burst
transfers and burst transfers with flow control. The timing diagrams in this chapter
assume that a valid arbitration cycle has finished and a bus Master has ownership of
the bus. The simplest type of transfers are single-word transfers. They are com-
posed of a start cycle followed by an acknowledge cycle. The transfer mode bits
(TM[1:0]*) and the two least significant bits (Isb’s) of the address lines are used to
encode the type of transfer and which bytes of the word are valid. A single-word
read transaction begins by the bus Master asserting START* and encoding the trans-
fer mode bits and address lines with the appropriate information. The transaction is
completed when the addressed bus Slave asserts the signal ACK*, places the data
on the bus and encodes the status of the transaction on the two transfer mode bits.
Figure 4.1 shows a single-word NeXTbus read transaction. The sequence of events
which are depicted on the timing diagram are as follows:

(1) DI: Denotes the first driving edge of the transaction. Bus Master asserts the
signal START* and drives the address and transfer mode bit signal lines.

(2) SI: Denotes the first sampling edge of the transaction. During this edge, all bus
modules sample the address and transfer mode bits lines to determine which module
shall participate in a NeXTbus transaction.

(3) Dn: Denotes the last driving edge of the transaction. During this edge, the ad-

dressed bus Slave asserts the signal ACK*, places data on the bus and encodes the
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status information on the two transfer mode bits.

(4) Sn: Denotes the last sampling edge of the transaction. Duaring this time, the bus
Master samples the data and status information place on the bus by the slave module.

(5) Dn+1: First driving edge of the next transaction. The current or next bus owner

must drive the signal ACK* to a determinate state.

Figure 4.1 Single-Word NeXTbus Read Transaction.

D1 S1 D2 S2 Dn Sn  Dn+l
MCLK*

AD[31:0] _—_]

TM[1:0] MODE STATUS CODE—
START*

ACK* I

SOURCE: Catherine Mikkelsen, "NeXTbus Specification™ (NeXT, 1989),
Reorder Product #N6010, pg. 4-9, Figure 4-6.

A single-word write transaction is very similar to a single-word read transac-
tion. Figure 4.2 shows the timing diagram for a single-word write transaction. The
sequence of events which are depicted on the timing diagram are as follows:

(1) DI: Master asserts the signal with START* and drives the address and transfer
mode bits with the appropriate data.

(2) S1: All modules sample the address and transfer mode lines.

(3) D2: Master places data on the bus and waits for an acknowledge cycle.

(4) Dn: Addressed Slave encodes status informaton on the transfer mode bits
(TM[1:0]*) and asserts the signal ACK*.

(5) Sn: Master samples the transfer mode lines and takes action based on status re-
ceived from slave module.

(6) Dn+1 current or next bus Master must drive ACK* to a determinate state since
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the Slave stops driving the bus. Also, the Master stops driving the address/data

lines.

Figure 4.2. Single-Word NeXTbus Write Transaction.
D1 S1 D2 S2 Dn Sn Dn+1

MCLK* |

AD[31:0]

TM[1:0]

START*

ACK* b [

SOURCE: Catherine Mikkelsen, "NeXTbus Specification”, (NeXT, 1989)
Reorder Product N#6010, pg. 4-10, Table 4-7.

The next type of transactions to be introduced are burst transfers. During burst
transactions, multiple data words are transferred to and from sequential addresses.
There are two words transferred per major clock cycle (one word every 40 ns). Only
32-bit words are supported during burst transfers. The user does not have the option
of selecting a byte or halfword transaction as in single-word transfers. The size of
the burst can be 4, 8, 16 or 32 words. The number of words to be transferred is encod-
ed in the address lines bits 2 through 6 (AD[2:6]). Table 4.1 shows the burst size
encoding scheme. The transaction type is still encoded as shown in Table 3.3 by us-
ing the two Isb’s of the address lines and the two transfer mode bits.

During burst transfers, a mechanism called flow control is used to control the data
rate on the bus. The NeXTbus supports both Master and Slave flow control. The
Master uses the DRQ* signal to indicate it can sink two more words during a read
transaction or that it can source two more words during a write transaction. The sink
is the module receiving data during a transaction and the source is the module trans-

mitting data. On the other hand, the Slave uses the signal TMO* to indicate it can
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source two words during a read transaction or that it can sink two words during a
write transaction. The sink signal does not affect the current major clock cycle only
subsequent cycles. An assumption at the beginning of every burst transaction is that
every module must be able to sink two words. The sink signal is assumed asserted
at the beginning of a burst transaction so two words are always transferred. Figure
4.3 shows a timing diagram for a four word burst read transaction. The sequence of

events depicted on the timing diagram are as follows:

Table 4.1. Burst Size Encoding Scheme.

BURST STARTING BURST SIZE
AD6* AD5* AD4* AD3* AD2* WORDS ADDRESS
X X X X H (illegal - 2 Words burst invalid)
X X X H L 4 A[31:4]0000
X X H L E 8 A[31:5)00000
X H L L L 16 A[31:6]000000
H L L L L 32 A[31:7]0000000

SOURCE: Catherine Mikkelsen, "NeXTbus Specification”, (NeXT, 1989),
Reorder Product #N6010, pg. 4-2, Table 4-2.

(1) DI: Master asserts the START*, TM[1:0]*, DRQ* signals and places the appro-
priate address on the bus. The signal DRQ¥* indicates to the Slave module that the
Master can receive four words of data. The Master deasserts the ACK* and DSTB*
signals.

(2) S1: Slave modules sample the address and transfer mode bit signal lines.

(3) D2: Master stops driving the address lines, ACK*, TM[1:0]* and START* sig-
nals. At this time, the Master is waiting for the signal TMO* to be asserted to start
receiving data.

(4) Dn: Addressed Slave deasserts the TM1* and ACK* signals, places data on the

bus and asserts the signal TMO*. Also, the DSTB* signal is asserted with the data.
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(5) Sn: Master samples the TMO* and ACK* signals to verify transfer is still active.

(6) Dn+1: Slave places the last two words of the transfer on the bus along with the
signal DSTB*. The Master deasserts the signal DRQ* which indicates to the slave
that it can only sink two more data words.

(7) Sn+1: The Master samples the transfer mode bits and ACK* signals to determine
if the transaction is still active.

(8) Dn+2: Slave acknowledges the transaction by asserting the ACK* signal and en-
codes the status information on the two transfer mode bits.

(9) Sn+2: Master samples the ACK* and TM[1:0]* signals and takes appropriate ac-
tion based on the status received from the Slave module.

(10) Dn+3: Slave stops driving the ACK*, DSTB*, AD[31:0]* and TM[1:0]* signals.
Master stops driving the START* and DRQ¥* signal lines. At this time, the new bus

owner shall drive the START*, ACK* and DSTB* signal lines to a determinate state.

Figure 4.3. Timing Diagram for a Four Word Burst Read Transaction.

Dn-1 ™ Dn+1
D1 S1 D2 S2 Sn-1Dn Sn! Sn+l Dn+2 Dn+3 Dn+4

MCLK* _J U u L
AD[31:.0]* 3= la3lda
DSTB* 1L
START*
ACK*

* Fi R R
™1 ~Status
s ‘ Status
DRQ*

SOURCE: Catherine Mikkelsen, "NeXTbus Specification”, (NeXT, 1989),
Reorder Product #N6010, pg. 4-13, Figure 4-9. '
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The next type of transaction to be introduced is a burst read with Slave flow con-
trol. The timing diagram for this transaction is shown in Figure 4.4. The difference is
during cycle Dn+1 where the Slave module deasserts the signal TMO* indicating to
the Master that no words shall be valid during the current major clock cycle. The
Slave asserts the signal TMO* again during cycle Dn+2 and places the last two data

words on the bus.

Figure 4.4. Timing Diagram for a Four Word Burst Read with Slave Flow Control.
> Dn-l > Dn+1
D1 S1 D2 82 Sn-1 Dn Sn | Sn+l Dn+2 Dn+3 Dn+4

v ¢odouououououwouoL

ADBLO)* L ADRS di]a2f——a3ld4

DsTB* 1 U

START*

ACK*

T™1*

T™MO*

DRQ* ~ | -

SOURCE: Catherine Mikkelsen, "NeXTbus Specification”, (NeXT, 1989),
Reorder Product #N6010, pg. 4-14, Figure 4-10.

The final NeXTbus transactions to be covered are burst write and burst write
with Master flow control. The burst write transaction is similar to the burst read
transaction shown in Figure 4.3. The timing diagram for a four word burst write
transaction is shown in Figure 4.5. The sequence of events depicted on the timing di-
agram are as follows:

(1) DI: Master asserts the signal START*, places the address on the bus and en-
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codes the type of transfer on the transfer mode bits. The signals DSTB* and ACK*

are deasserted by the Master.

(2) S1: Slave modules sample the address and transfer mode bits.

(3) D2: Master places data on the bus and asserts the DSTB* and DRQ* signals.

The addressed Slave asserts the signal TMO* indicating to the master module that it

can sink four words of data.

(4) S2: Master samples the ACK* signal to determine if transaction is still active.

(5) D3: Master places the last two words on the bus and asserts the signal DSTB*.

The signal DRQ* is still asserted indicating to the Slave that two more data words

are valid during this major clock cycle. The Slave deasserts the signal TMO* indicat-

ing that it can only sink two more data words.

(6) S3: Master samples the ACK* signal to determine if the transaction is still active.

MCLK*

AD[31:0]* —f A dre

DSTB*

START*

ACK*

T™MI1*

TMO*

Figure 4.5. Timing Diagram for a Four Word Burst Write Transaction.

D1 S1 D2 S2 D3 S3 D4 S4 Dn-1 Dn Sn Dn+l Dn+2

R

L

dl

R

el e W L

i

U

[ 1

DRQ*

Status

SOURCE: Catherine Mikkelsen, "NeXTbus Specification”, (NeXT, 1989),
Reorder Product #N6010, pg. 4-15, Figure 4-11.
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(7) D4: Master stops driving the data bus, DSTB* and DRQ*signals.

(8) Dn: Slave begins the acknowledge cycle by asserting the ACK* signal and encod-
ing the status of the transaction on the two transfer mode bits.

(9) Sn: Master samples the ACK* and TM[1:0]* signals and takes appropriate ac-
tion based on the status received.

(10) Dn+1: Slave module stops driving the two transfer mode bits and ACK* signal.
The current owner or new bus owner must drive the START*, ACK* and DSTB* sig-
nal lines to a determinate state.

To conclude this chapter, Figure 4.6 shows a burst write transaction with Master
flow control.  The timing diagram is similar to Figure 4.5 except that the DRQ* sig-
nal is deasserted at edge D3. This indicates to the Slave module that two data words
are not valid during the D3 major clock cycle. The DRQ* signal is asserted again at
edge D4 and the two remaining data words are transferred. The Master module then

waits for the Slave module to acknowledge the transfer.

Figure 4.6. Timing Diagram for a Four Word Burst Write with Master Flow Control.

D1 S1 D2 S2 D3 S3 D4 S4 Dn-1 Dn Sn Dn+l Dn+2

MCLK'_JJUUU_UULIL

AD[31:0]*

DSTB*

START* _—| I

ACK*

—_——

T™I1*

™O0* [ l ’ L‘I _'StatuSE—
DRQ* T | |

SOURCE: Catherine Mikkelsen, "NeXTbus Specification”, (NeXT, 1989),
Reorder Product #N6010, pg. 4- 16 Figure 4-12.




CHAPTER V
NEXTBUS INTERFACE CHIP OVERVIEW
Introduction to the NBI

The NBIC is a 144-pin CMOS VLSI chip which is used to simplify the logic re-
quired to interface any board to the NeXTbus. The NBIC was designed to interface
specifically with the Motorola 68030 microprocessor. The NBIC resides between the
NeXTbus and a local bus. In our case, the local bus shall communicate with an array
of coprocessors. The chip contains arbitration logic which participates in arbitration
contests on both buses and performs byte swapping. Byte swapping is performed to
change between the Motorola 68030 Big-Endian byte ordering to a NeXTbus Little-
Endian byte order. In our Host-to-Motherboard interface board, the NBIC shall not
participate in NeXTbus arbitration because the board shall be a Slave only board.
The NBIC is composed of five internal registers, NeXTbus Master/Local Slave con-
trol logic, NeXTbus Slave/LLocal Master control logic, timeout logic and reset logic.
Figure 5.1 shows a top-level block diagram of the different components of the NBIC,
which shall be covered in this chapter (Mikkelsen, "NeXTbus Interface Chip Specifi-
cation", 1989).

NBIC Internal Registers
The five internal programmable registers in the NBIC are lhé NBIC ID register,
control register, configuration register, interrupt register and the interrupt mask regis-
ter. Each board’s slot address space contains reserved address locations to define
configuration and interrupt information about the board. The NBIC ID register is the

only register out of the five that can physically be located in the board’s memory

37




38

Figure 5.1 Top-level Block Diagram of NBIC.
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space outside the NBIC. The NBIC registers with the exception of the two interrupt
registers can be read or written through the local bus. Figure 5.2 shows which regis-
ters are accessed by the local bus and which are accessed by the NeXTbus.

The NBIC ID register is used to store a 16-bit board identification number , a 15-
bit manufacture identification number and a valid bit. Both of the identification values
are used by the software to identify the type of board(s) inside of the NeXT cube. Af-
ter power-up, a value needs to be written into the NBIC ID register and the VALID
bit must be set. When the VALID bit is set, it indicates to bus Masters that the
identification numbers have been written by the board. The contents of the NBIC ID
register are written through the local bus and can be read by any bus Master on the
NeXTbus. From the local bus, the register is written as one 32-bit word to address 4
hex. From the NeXTbus, the contents of the register are byte mapped across four 32-

bit words.  Figure 5.3 shows the address locations for the different bytes in the

Figure 5.2 Access to NBIC Internal Registers.

NEXTBUS LOCAL BUS
Configuration
Interrupt i
. Mash Register
Register ;
} Control ,} s >
Register
< NBIC ID —
k Register *
. Interrupt From
B Register Board’s
i logic

Y

SOURCE: Catherine Mikkelsen, "NeXTbus Interface Chip Preliminary
Specification”, (NeXT, 1989), pg. 4-2, Figure 4-1.




NeXTbus slot space. This addressing scheme is used since byte-wide devices such
as Random Access Memory (RAM) might be used externally to the NBIC. Recall,
that the NBIC ID register does not have to reside inside the NBIC address space.

The NBIC control register is used to control error conditions and operation of the
chip. The contents of the register can be written or read through the local bus on the
board. The control register is composed of two control bits denoted by STFWD and
IGNSIDO and one error bit denoted by RMCOL. The store and forward word
(STFWD) bit is used to enable this option during write operations. If this bit is set

to one, then the NBIC immediately sends a termination signal to the local bus (if

Figure 5.3 NBIC ID Register in the NeXTbus Slot Space Address.

3130 16 15 00

NeXTbus Slot Space
V| MFGID | BOARD ID Sor one board

NBIC ID Register

byte Of byte 1{byte 2| byte 3

ID Register LSB FsFFFFFC hex

FsFFFFF8 hex

Y

= FsFFFFF4 hex

ID Register MSB FsFFFFFO hex

MACA~AA

SOURCE: Catherine Mikkelsen, "NeXTbus Interface Chip Preliminary
Specification”, (NeXT, 1989), pg. 4-4. Figure 4-3.
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there is room to store another data word). This allows for data words to be pipelined
which speeds up transfers on the local bus. If this bit is set to zero, then the NBIC
waits until the data is acknowledged by the NeXTbus Master before sending the final
termination signal to the local bus. Write errors are not reported to the local bus
when the store and forward option is selected. The ignore slot id 0 (IGNSIDQ) bit is
used to control how much address space is used by the board. If this bit is set to one,
then the address space of the slot n+1 is used; therefore, increasing the total address
space of the board in slot n to 512 Megabytes (Mbytes) of memory. The final bit is
the read-modify-write cycle collision (RMCOL) bit. This bit is set to one by the
NBIC when it receives a retry acknowledge during a 68030 read-modify-cycle. Also,
the NBIC issues a NeXTbus error when the RMCOL bit is set. Read-modify-cycles
are part of the Motorola’s 68030 microprocessor instruction set.

The value for the configuration register is set during the power-up sequence by
using pullup resistors on the local bus. This register is configured during power-up
and its contents can not be changed. The configuration register is composed of the
slot id numbers, slave interrupt enable bit, external slot select bit, slot space decode
bit and the external ID register enable bit. The slot id bits (31:28) define the location
of the board in the NeXT cube. The value of the bits are defined in Table 5.1. The
board designer(s) must install 10,000 Ohm resistors between the appropriate ad-
dress lines (31:28) and the edge connectors of the board. The value of the slot id
numbers shall be hard-wired on the backplane as defined in Table 5.1.

The slave interrupt enable bit (SINTEN) controls the operation of the
GLAVE*/SINT* signal. If the bit is set to one, then the GSLAVE?*/SINT* signal is
configured as an input to the NBIC. When the signal SINT* is asserted on the local
bus, the NeXTbus signal GINT* is asserted. The signal GINT* is an interrupt signal
on the NeXTbus which propagates to all boards on the backplane. The signal SINT*

is generated by the board’s logic to interrupt the NeXTbus Master. If the slave inter-
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Table 5.1. Slot ID Numbers per Slot.

Configuration | (AD31) (AD30) (AD29) (AD28)
Register Bits SID3 SID2 SID1  SIDO

SLOTO0 GND GND GND GND
SLOT 2 GND GND  +5V GND
SLOT 4 GND +5V GND GND
SLOT 6 GND +5V +5V GND

SOURCE: Catherine Mikkelsen, "NeXTbus Interface Chip
Preliminary Specification”, (NeXT, 1989), pg. 4-6.

rupt enable bit is set to zero, then the signal GLAVE* is used as an output. The sig-
nal GSLAVE* shall be asserted by the NBIC when the board is a NeXTbus slave.
The GSLAVE* and SINT* signals can not be used at the same time. The bit SINT-
EN determines which of the two signals is used by the board’s logic.

The local bus grant/external select (LBG/EXSEL) bit is also used to determine
which of the two signals shall be used by the board’s logic. If this bit is set to one,
then the signal EXSEL is asserted by the NBIC when a NeXTbus Master references
the slot address space or ID register (FsO0O0000 hex to FsFFFFF1 hex). This bit is
used when the NBIC ID register is contained in the board’s memory space versus the
NBIC. If the bit is set to zero, then the local bus grant (LBG) signal shall be used by
the board’s logic (This signal is used when there are more than two local bus mas-
ters).

The slot space decode bit (SSDECODE) is used to enable or disable the board’s
slot space address. If this bit is set to one, then addresses in the range Fs000000
hex to FSFFFFE4 hex are passed to the local bus. If this bit set to zero, then any
references which are made to the board slot space address (does not include the
NBIC ID register or Interrupt registers) results in a timeout error. Finally, the exter-
nal ID register enable bit (EXIDREGEN) is used to enable or disable the internal
NBIC 1D register. If this bit is set to one, then the NBIC ID register is disabled and
all references between FsFFFFFO hex through FsFFFFFC hex are passed to the

local bus. If this bit is set to zero, then the NBIC ID register is located internal in the
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NBIC. When the NBIC ID register is located externally, the SSDECODE and EX-
IDREGEN bits must both be set to one.

The two interrupt registers are used to generated an interrupt signal (GINT*) on
the NeXTbus.  The interrupt register is located at address FSFFFFE8 hex and the
interrupt mask register is located at address FSFFFFFEC hex. The interrupt regis-
ter is a Read only register and the interrupt mask register is a Read/Write register. If
the interrupt mask register is set to one and the board’s logic asserts the signal
SINT*, then the NeXTbus interrupt signal (GINT*) shall be asserted. If the mask
interrupt register is set to zero, then an interrupt is not generated on the NeXTbus.
Figure 5.4 shows the format for all the NBIC internal registers except the two inter-
rupt registers.  The two interrupt registers are one-bit registers with the GAD7* ad-

dress/data line being the appropriate bit to either read or write.

NeXTbus Master/Local Slave Control Logic

The NeXTbus Master/Local Slave control logic is used during all transactions
when the NBIC is a slave to a local bus master. This control logic is used by mas-
ter/slave boards. A slave only board does not used this control logic on the NBIC.
This control logic contains a NeXTbus arbiter and a transaction FIFO. The arbitra-
tion logic participates in arbitration cycles to obtain ownership of the NeXTbus. The
FIFO is used to buffer address and data information for a maximum of two transac-
tions. The FIFO serves a dual purpose. It performs speed matching between a fixed-
rate NeXTbus and a variable rate local bus and it allows transactions two be pipe-
lined. The FIFO has the capability to store two transactions back to back. A trans-
action is composed of one address and either one word.for single-word transfers or
four words for burst transfers. NBIC only supports a burst size of four 32-bit words
during burst transfers. Figure 5.5 shows the transaction FIFO for the NeXTbus Mas-

ter/LLocal Slave control logic.



Figure 5.4. Format for Internal NBIC Registers.
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SOURCE: Catherine Mikkelsen, "NeXTbus Interface Chip Preliminary
Specifications”, (NeXT, 1989), pg. 4.3-4.5, Figures 4.2,4.4 4.5.
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Figure 5.5. NeXTbus Master/Local Slave Transaction FIFO.
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SOURCE: Catherine Mikkelsen, "NeXTbus Interface Chip Preliminary
Specification”, (NeXT, 1989), pg. 2-3, Figure 2-2.
Local Master/NeXTbus Slave Control Logic

This control logic is used when the NBIC is a NeXTbus slave and a local bus
master. On the NeXT-to-Motherboard interface board to be designed, this is the
only transaction control logic which shall be used since the board is a slave only
board (does not participate in NeXTbus arbitration cycles). This transaction control
logic contains a local bus arbiter and a FIFO. The arbitration logic is used to obtain
ownership of the local bus and the FIFO is used to buffer the address and data.
The FIFO serves the same purposes as explained in the NeXTbus Master/Local
Slave control logic section. Figure 5.6 shows the transaction FIFO for the Local

Master/NeXTbus Slave control logic.

Timeout Logic
All transactions on the NeXTbus must be completed by 255 MCLK cycles
which is approximately 20.4 microseconds (us). The NBIC timeout control logic
consist of an R-S flip-flop and a 8-bit counter. The flip-flop is set by the START*
NeXTbus signal (NBIC signal GSTART*) and the counter is enabled. The ac-




Figure 5.6. Local Master/NeXTbus Slave Transaction FIFO.
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SOURCE: Catherine Mikkelsen, "NeXTbus Interface Chip Preliminary
Specification”, (NeXT, 1989), pg. 2-5, Figure 2.4.
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knowledge signal ACK* (NBIC signal GACK*) is used to clear the flip-flop and the
counter. If the counter reaches to a count of 255, then the timeout logic issues a bus
error and the signal GACK* is asserted at cycle 256. The CPU board also asserts
the ACK* signal during cycle 256 in case there is no board in the addressed slot.

Reset Logic
The reset logic contains a Schmitt trigger buffer input for a reset signal from either
the NeXTbus or the local bus. When the reset signal on the NeXTbus is asserted, it
triggers a pulse generator circuit which shall assert the reset signal on the local bus
for 1.28 us. The same condition exits if the reset signal on the local bus is asserted.

The pulse generators in the reset logic triggers when a negative edge is detected.




CHAPTER VI
NBIC SIGNAL DESCRIPTION

The purpose of this chapter is to introduce all the signals of the NBIC. The sig-
nals are grouped into six different groups based on the function they perform. The six
classes are address/data, arbitration, control, utility, clocks and power.  All of the
NeXTbus signals are prefaced with a "G", which stands for global, and shall not be
covered in this chapter since they are described in Chapter III.  There are only four
signals which are not defined in Chapter III and shall be defined in this chapter along
with all the NBIC local bus signals. Table 6.1 shows all the global and local bus sig-
nals of the NBIC. All the information for this chapter was obtained from the
"NeXTbus Interface Chip Preliminary Specifications” by Mikkelsen.

The three clock signals BUSCLKIN, GBUSCLKO and GMCLKSELO are only
used in the CPU board in slot 0. BUSCLKIN is the 25 MHz input clock on the CPU
board which is used to generate GBUSCLKO and GMCLKSELO. These two output
clocks from the NBIC in the CPU board are then used by all boards on the backplane.
The last signal which is not defined in Chapter III is GDSTBO*. The NBIC has two
data strobe signals denoted by GDSTB* and GDSTBO*. The signal GDSTB* is an
input to the NBIC and the signal GDSTBO* is an output of the NBIC. However, the
NeXTbus only has one data strobe signal on its backplane. The signal GDSTBO*
from the NBIC of the NeXT CPU board (Slot 0) should be connected to the GDSTB*
input signal of the NBIC located in the NeXT-to-Motherboard interface board. This
information should be confirmed with a technical representative from NeXT Corpora-

tion. The preliminary specifications does not state the intent of the GDSTBO* signal.
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Table 6.1 NBIC NeXTbus and Local Bus Signals.

SIGNAL DESCRIPTION TYPE | # PINS
GLOBAL SIGNALS

GAD[31:0]* Global Address/Data I/O 32
GRQST* Global Request /O 1
GSTART* Global Start /O 1
GDRQ* Global Data Request /O 1
GACK* Global Acknowledge /O 1
GTM[1:0]* Global Transfer Mode I/O 2
GDSTB* Global Data Strobe I 1
GDSTBO* Global Data Strobe Out 0] 1
GSP(3:0]* Global System Parity I/O 4
GSPV* Global System Parity Valid I/O 1
GRESET* Global Reset I/O 1
GINT* Global Interrupt O 1
GARB[3:0]* Arbitration Number I/O 4
BUSCLKIN 25 MHz Clock I 1
GBUSCLK Global Bus Clock I 1
GBUSCLKO Global Bus Clock Out 0] 1
GMCLKSEL* Major Clock Select I 1
GMCLKSELO* Major Clock Select Out 0 1
PON Power On I 1
LOCAL SIGNALS

LAD[31:0]* Local Address/Data I/O 32
BR* Bus Request 0] 1
BG* Bus Grant I 1
BGACK* Bus Grant Acknowledge 0] 1
LLBR* Local Bus Request I 1
LGB/EXSEL Local Bus Grant/External Select 0] 1
NCS* NBIC Chip Select I 1
GBCYC* Global Bus Cycle I 1
GSLAVE*/SINT* NeXTbus Slave/NeXTbus Interrupt| I/O 1
GMASTER* Global Master 0] 1
PR Function Bit 0] 1
S1Z7[1:0] Transfer Size /O 2
DS* Data Strobe /O 1
AS* Address Strobe o) 1
ASIN* Address Strobe In 1 1
R/W* Read/Write /O 1
RMC* Read Modify Cycle /O 1
DSACK][1:0] Data Size Acknowledge /O 2
BREQ* Burst Request /O 1
BACK* Burst Acknowledge /O 1
STERM* Synchronous Termination I/O 1
HALT* Halt /O 1
BERR* Bus Error /O 1
LRESET* Local Bus Reset /O 1
OE Output Enable for Test I 1
CPUCLK CPU Clock I 1
LCLK Local Bus Clock I 1
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SOURCE: Catherine Mikkelsen, "NeXTbus Interface Chip Preliminary Specification”,

(NeXT, 1989), pg. 3-2, Table 3-1.




49

The NBIC local bus signals are used to interface the NBIC to the board’s logic.
A brief description of all the NBIC local bus signals are defined below:
Local Address/Data (LAD [31:0])

These are the 32 bidirectional multiplexed lines which carry the address at the begin-
ning of a transaction and data information later in the transaction.

Bus Requ BR*

This is an open-drain wired-"OR" signal which is asserted by the NBIC or any other
local bus master that wants to obtain ownership of the local bus. An external arbiter
is used to grant ownership of the bus.

Bus Grant (BG*)

This signal is an input to the NBIC and is asserted by the external arbiter when the
NBIC has won ownership of the local bus. This signal remains asserted by the exter-
nal arbiter until the NBIC deasserts the signal BR*.

Bus Grant Acknowledge (BGACK*)

This is an open-drain signal which is asserted by the NBIC or any other local bus
master when it obtains ownership of the local bus. This signal is deasserted by the
bus owner after the transaction is complete. The local bus can not be accessed by
any other module while this signal is asserted.

Local Bus Request (LBR*)

This signal is only used when there are three or more potential local bus masters. In
a Slave only board, the NBIC is always the master of the local bus and no local bus
arbitration takes place. This signal shall be pulled up by 100,000 Ohm resistor on the
NeXT-to-Motherboard interface board.

Local Bus Grant/External Select (LBG/EXSEL)

If the LBG signal is selected in the configuration register, then this signal is asserted
by the NBIC when the internal local bus arbiter grants bus ownership to another bus
master. This signal is not used in a Slave only board. If the EXSEL signal is select-
ed, then the signal is asserted by the NBIC when reference is made to the boards slot
address space or ID register.

NBIC Chip Select (NCS*)

This signal is asserted by the board’s logic when a transaction with the internal
NBIC registers is to take place.



B BCYC*

This signal is asserted by the board’s logic when a local bus master is to perform a
transaction on the NeXTbus. This signal is not used on a Slave only board.

Global Master (GMASTER*)

This signal is asserted by the NBIC when it is in the process of arbitrating for the
NeXTbus or is the NeXTbus Master.

lobal Slave (GSLAVE*/SINT*

If the GSLAVE* signal is selected in the configuration register, then the signal is as-
serted when the NBIC is a NeXTbus Slave. If the signal SINT* is selected, then the
board’s logic can assert this signal to generate a NeXTbus interrupt (GINT*). The
interrupt mask register bit (GAD7*) must be set to one for the interrupt to be gener-
ated on the NeXTbus.

Function Bit (FB*)

There is not set protocol by NeXT on this signal. This bit is intended to be used with
the Motorola’s 68030 function codes. This bit is asserted by the NBIC when it is the
master of the local bus.

Transfer Size (SIZ[1:0])

These are tri-state signals which define the number of bits transferred on the data
bus during local bus transactions. These signal lines are asserted by the local bus
master. Table 6.2 shows the encoding of these signals.

Table 6.2. Encoding of the Transfer Size Signal Lines.

BITS SIZ1 SIZ0

32 L L
24 H H
16 H L
8 L H

SOURCE: Catherine Mikkelsen, “"NeXTbus Interface Chip Preliminary
Specification”, (NeXT, 1989), pg. 3-8, No Table number assigned.
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Dat r DS*

This signal is asserted by the local bus master during transactions. During a read
transaction, the signal DS* is asserted to indicate to the extemnal device to place data
on the local bus. During a write transaction, the signal DS* is asserted when the da-
1a is placed on the local bus.

Address Str AS*

This signal is asserted when the NBIC is the local bus master indicating to the
board’s logic that there is a valid address on the local data bus. This signal is assert-
ed throughout the duration of the transaction.

Address Strobe In (ASIN*)

This signal is asserted by the local bus master during any transaction with the NeXT-
bus. The NBIC latches an address when the local bus master asserts the signal
ASIN*. This signal must be asserted throughout the duration of the transaction.

Read/Write (R/W¥*)

This is asserted by the local bus master to indicate the type of transfer to be per-
formed. If the a read transaction is to be performed, then this signal is asserted high.
If a write transaction is to be performed, then this signal is asserted low.

Read Modify Cycle (RMC*)

This signal is asserted by the local bus master when a read-modify-cycle is in
progress.

Burst Request (BREQ*)

This signal is asserted by the local bus master when a burst read or write transaction
is to take place on the local bus. The burst transfer is then performed on the NeXT-
bus. Recall that all NBIC burst transfers are four words. The NBIC does not support
burst transfers of 8, 16 or 32 words.

Burst Acknowledge (BACK*)

This signal is asserted by the local bus slave to inform the local bus master that the
local slave supports burst transactions. If this signal is not asserted, then the local
bus slave does not support burst transactions.

Data Transfer and Size Acknowledege (DSACK[1:0]*)

These signals are asserted by the local bus slave to terminate a transaction.




52

nchr Terminati TERM*

This signal is asserted by the local bus slave during all local bus transactions. During
a write transaction, the local bus slave shall assert the signal STERM* to inform the
local bus master that it shall latch the 32-bit data word on the next trailing edge of
LCLK. During a read transaction, the local bus slave shall assert the signal STERM*
to inform the local bus master that a 32-bit data word shall be valid on the next trail-
ing edge of LCLK. The STERM* or DSACK][1:0] signals are used to indicate termi-
nation of a transaction. Both are never used simultaneously to terminate transactions.

HALT (HALT*)

This signal is asserted by the local bus master to indicate the type of termination. If
this signal is asserted along with the BERR* signal , then the current transaction on
the local bus must be halted.

Bus Error (BERR*)

This signal is asserted by the local bus master if a timeout or error occurs on the local
bus. If this signal is asserted along with the HALT* signal, then the current transac-
tion must be halted. If a local bus slave asserts this signal while the NBIC is a local
bus master, then an error termination shall be transmitted on the NeXTbus.

Local Reset (LRESET*)

This is the local reset signal. If asserted by the board’s logic, then the NeXTbus re-
set signal (GRESET¥) shall be asserted. This signal is asserted by the NBIC when
the GRESET* signal is asserted on the NeXTbus. When the signal PON is deas-
serted, both of the reset signals are asserted. This signal shall be asserted by the
NBIC during the power-up sequence.

Output Enable (OE)

When this signal is deasserted by the board’s logic, every NBIC output is tri-stated.
This signal can be used to isolate the NBIC during testing of the board.

Local Bus Clock (LCLK)

This clock is used by the NBIC when it is the local bus master. This clock is supplied
by the board’s logic and can run up to 16.66 MHz. In Slave only boards, the board’s
logic only generates this clock. This clock is selected by the NBIC when the signal
BGACK¥* is asserted.

CPU Clock (CPUCLK)

This clock runs at 25 MHz and is selected when the signal BGACK* is deasserted. -




CHAPTER VII
NBIC LOCAL BUS SPECIFICATIONS

Introduction to the NBIC Local Bus Interface

The NBIC was designed to interface primarily with the Motorola 68030 micropro-
cessor. The 68030 uses a Big-Endian byte ordering scheme for its data bus. In Big-
Endian buses, byte 0 is located in the most significant bits (msb’s) of the data bus
(31:24) and byte 3 is located in the least significant bits (Isb’s) of the data bus (7:0).
The NeX'Tbus is a Little-Endian bus which is the opposite of a Big-Endian bus. Byte
0 in a Little-Endian bus is in the Isb’s of the data bus and byte 3 is in the msb’s.
Since the NBIC was designed to interface with the 68030, byte swapping is per-
formed to directly support transfers with the NeXT CPU board. The local bus of the
NBIC is a Big-Endian bus so that it can interface directly with a 68030. Big-Endian
boards such as the CPU board in slot 0 have no problem communicating with each oth-
er. The problem is when a Little-Endian board tries to communicate with a Big-Endi-
an board. There needs to be a way to detect word transfers between these two differ-
ent byie ordering schemes and perform the required byte ordering. If bytes are only to
be transferred between the same two byte ordering schemes, then byte swapping is
not required. The purpose of this chapter is to introduce the different type of transac-
tions supported by the NBIC on its local side. Only transactions where the NBIC is a
local bus master shall be covered in this chapter since the NeXT-to-Motherboard in-
terface board is a Slave only board. Also, the local bus on this board shall be a Big-
Endian bus so that communication can take place with the 68030 based CPU board.
The information for this chapter was obtained from the NeXTbus Interface Chip Pre-

liminary Specification" by Mikkelsen.
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Introduction to Local Bus Transactions

A local bus transaction is composed of three phases. The three phases are bus
synchronization, actual transfer of data and bus release. The bus synchronization
phase, which takes two and a half clocks, allows the NBIC and the bus to adjust to
the different data rates of the NeXTbus and the local bus. The bus release phase ac-
commodates the delay time for the different bus masters. This phase takes three
clocks and it guarantees that the NBIC maintains bus ownership through multiple
store and forward write transactions.

When the NBIC is a local bus master, it initiates all transactions and then waits
for termination signals from the local bus slave. The transaction types for the NBIC
as a local bus master are encoded in the size bits (SIZ[1:0]) and the two Isb’s of the
address/data lines. Table 7.1 shows the valid encoding schemes supported by the
NBIC as a local bus master. The transactions shown in the table are valid during
read and write transfers. The local bus slave performs transaction termination by en-
coding the status of the transfer on the STERM* or DSACK[1:0]*, HALT* and
BERR* signals. These signals are encoded to indicate the completion and status of a

transaction. The encoding schemes for the different valid transaction terminations are

Table 7.1. Valid Transaction Types When NBIC is Local Bus Master.

SIZ1 SIZ0 LA1 LAO TYPE VALID BITS
L H H H Byte 3 Bits [7:0]
L H H i Byte 2 Bits [15:8]
L H L H Byte 1 Bits [23:16]
L H L L Byte O Bits [31:24]
H L H L Halfword 1 Bits [15:0]
H L L L Halfword 0 Bits [31:16]
L L j & L Word Bits [31:0]
L L L L Burst N/A

SOURCE: Catherine Mikkelsen, "NeXTbus Interface Chip Prchmmary
Specification”, (NeXT, 1989), pg. 2-15, Table 2-3.
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shown in Table 7.2. The signal STERM* is a synchronous signal and must meet all
timing parameters such as sctup and hold times. The other signals in Table 7.2 are
either synchronous or asynchronous. If they meet all the timing parameters, then
they are treated as synchronous signals. If they do not meet the synchronous timing
parameters, then they are treated as asynchronous and must be stable for one full cy-

cle before the data is sampled.

Table 7.2. Encoding Schemes for Transaction Terminations.

STERM* DSACK*0 DSACK*1 BERR* HALT* RESULT
H H H H H Insert Wait
L H H H H Sync 32-bit ACK
L H H L L Sync Bus Error
L H H L L Sync Retry
H H H L L Async Bus Error
H H H L L Async Retry
H L L H H Async 32-bit ACK
H L H H H Async 16-bit ACK
H H L H H Aysnc 8 -bit ACK

SOURCE: Catherine Mikkelsen, "NeXTbus Interface Chip Preliminary
Specification”, (NeXT, 1989), pg. 2-16, Table 2-4.

NBIC Internal Register Transactions
This section shall cover the transactions with the internal registers in the
NBIC. Recall, that the control register is the only register which can be written and
read from the local bus. The NBIC ID register can only be written from the local bus.
A timing diagram showing an internal write to an NBIC intemal register is shown in
Figure 7.1. The sequence of events depicted on the timing diagram are described be-

low:

Clock 1: The local bus master (board’s logic) places the appropriate address on the
bus (NBIC ID address is 4 hex and control register address is 0 hex) during the first

phase of the clock. During the second phase, the local bus master asserts the signal
ASIN* which is used to latch the address into the NBIC.
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Clock 2: The address goes invalid at the beginning of the clock. During the second
phase, the local bus masters places size information SIZ{1:0] on the bus, drives the
signal R/W* low and asserts the signal NCS* to indicate to the NBIC that it is per-
forming an internal register access cycle.

Clock 3: The NBIC asserts the signal GMASTER* during the first phase of the
clock indicating that it is a local bus slave.

Clock 4: The local bus master places the appropriate data during the first phase of
the clock. During the second phase, the local bus master asserts the signal STERM*
indicating to the NBIC to latch data on the next trailing edge of LCLK.

Clock 5: The NBIC latches the data on the trailing edge of the clock and the local bus
master deasserts the signals NCS*, STERM*, R/W*, SIZ[1:0] and ASIN*.

Clock 7: The NBIC deasserts the signal GMASTER* during the first phase of the
clock.
Figure 7.1. NBIC Internal Register Write from Local Bus
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SOURCE: Catherine Mikkelsen, "NeXTbus Interface Chip Preliminary
Specification”, (NeXT, 1989), pg. 6-20, Figure 6-13.
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A rcad to the NBIC internal registers is only valid for the control register. Figure 7.2
shows the state timing diagram for an NBIC internal register read. The sequence of
events depicted in the timing diagram are described below:

Clock 1: The local bus master places the address on the bus during the first phase
of the clock. The signal ASIN* is asserted during the second phase of the clock so
the NBIC can latch the address

Clock 2: The address is no longer valid during the first phase of the clock. The local
bus masters asserts the size information bits (SIZ[1:0]), drives the signal R/W* high
and asserts the signal NCS*.

Clock 3: The NBIC asserts the signal GMASTER* indicating that it is a local bus
slave.

Clock 4: The NBIC places the data requested during the first phase of the clock. The
data is valid during the second phase of the clock and the NBIC asserts the signal
STERM*.

Clock 5: The local bus masters latches the data on the trailing edge and deasserts

the signals NCS*, R/W*, SIZ[1:0] and ASIN*. The NBIC deasserts the signal
STERM*.

Figure 7.2. NBIC Internal Register Read from Local Bus.
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SOURCE: Catherine Mikkelsen, "NeXTbus Interface Chip Preliminary
Specification", (NeXT, 1989), pg. 6-19, Figure 6-12.
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Clock 6: The NBIC stops driving the data bus.

Clock 7: The NBIC deasserts the signal GMASTER* during the first phase of the
clock.

Single-Word Local Bus Transactions
This section covers single-word transactions which are initiated by the NBIC
when it is a local bus master. The two transactions which shall be covered are sin-
gle-word read and write. Figure 7.3 shows a timing diagram for a single-word write
by the local master NBIC. The sequence of events depicted in the timing diagram are

described below:

Clock 1: NBIC is performing bus synchronization during the first phase of the clock.
During the second phase of the clock, the NBIC asserts the signals BGACK*, FB¥,
GSLAVE*, places and address on the bus, drives the size information bits
(SIZ[1:0]) and the signal R/W* (drives R/w* low to indicate a write cycle).

Clock 2: The values on the address/data, R/-W* and SIZ[1:0] signal lines are valid
during the first phase of the clock. The NBIC asserts the signal AS* during the sec-
ond phase of the clock so the local bus slave can latch the address. The signal AS* is
valid throughout the transaction.

Clock 3: The address/data lines are invalid during the first phase of the clock. The

NBIC places data on the bus and asserts the signal DS* so the local bus slave can
latch the data.

Clock 4: The NBIC waits till the local bus slave asserts either the DSACK[1:0]* or
STERM* termination signals.

Clock 5: If the DSACK[1:0]* signals are used, then they are asserted during the
first phase of the clock. If the signal STERM* is used, then it is asserted during the
second phase of the clock. The DSACK][1:0]* signals indicate that the data has been
latched while the signal STERM* indicates that the data shall be latched on the next
falling edge of the clock.

Clock 6: The local slave latches the data on the falling edge of the clock and deas-

serts the signal STERM* (if used). The NBIC deasserts the address (AS*) and da-
ta (DS*) strobe signals.

Clock 7: Data on the bus becomes invalid and the NBIC deasserts the signals FB*,
R/W* and the two size bits (SIZ[1:0]). The local bus slave deasserts the two
DSACK* signals during the first phase of the clock (if used).




59

Clock 9: The NBIC deasserts the signals GSLAVE* and BGACK*. Also, the NBIC
stops driving the FB*, R/W* and SIZ[1:0] signals.

Figure 7.3. Single-Word Write to Local Bus Slave
Clk1l Clk2 Clk3 Clk4 CikS Cik6 Clk7 Cik8 Cik9 CIlk 10

LCLK

BGACK*

FB*

LAD

AS*

DS*

R/W*

SIZ[1:0]

STERM*

DSACK][1:0]*

GSLAVE*

SOURCE: Catherine Mikkelsen, "NeXTbus Interface Chip Preliminary
Specification"”, (NeXT, 1989), pg. 6-7, Figure 6-5.

The next transaction to be covered is a single-word read transfer when the NBIC
is the local bus master. Figure 7.4 shows the timing diagram for a single-word read
transaction with the local bus slave. The sequence of events depicted on the timing

diagram are described below:

Clock 1: NBIC is performing bus synchronization during the first phase of the clock.
During the second phase of the clock, the NBIC asserts the signals BGACK*, FB*,
GSLAVE®*, places and address on the bus, drives the signals SIZ[1:0] and R/W* to
their appropriate state (drives R/w* high to indicate a read cycle).
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Clock 2: The value on the address/data, R/W* and SIZ[1:0] signal lines are valid
during the first phase of the clock. The NBIC asserts the signals AS* and DS*. The
local bus slave uses the AS* signal to latch the address, transaction type and size in-
formation. The signals AS* and DS* are valid throughout the transaction.

Clock 3: The address becomes invalid during the first phase of the clock.

Clock 4: The NBIC is waiting for the local bus slave to assert one of its termination
signals (either DSACK[1:0]* or STERM*).

Clock 5: If the DSACK[1:0]* signals are used, then they are asserted during the
first phase of the clock. If the signal STERM* is used, then it is asserted during the

second phase of the clock. The signal STERM* indicates that the data shall be valid
on the next falling edge of the clock.

Figure 7.4. Single-Word Read from Local Bus Slave
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SOURCE: Catherine Mikkelsen, "NeXTbus Interface Chip Pn,hmmary
Specification”, (NeXT, 1989), pg. 6-6, Figure 6-4.
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Clock 6: The NBIC latches the data at the trailing edge of the clock and deasserts
the signals AS* and DS*. The local bus slave deasserts the signal STERM* (f
used).

Clock 7: The NBIC deasserts the signals FB*, R/W* and SIZ{1:0]*. The local bus
slave deasserts the signals DSACK[1:0]* (if used) and the data lines during the first
phase of the clock.

Clock 9: The NBIC deasserts the signals GSLAVE* and BGACK*. Also, the NBIC
stops driving the signals FB*, R/W* and SIZ[1:0].

Burst Transactions on the Local Bus
This section shall cover burst transactions which are initiated by the NBIC when
it is a local bus master. Figure 7.5 shows a burst-write timing diagram. The se-
quence of events depicted in the timing diagram are described below:

Clock 1: During the second phase of the clock, the NBIC asserts the signals
BGACK*, FB*, SI1Z[1:0] and GSLAVE*. Also, it places an address on the bus and
drives the R/W* signal low.

Clock 2: During the first phase of the clock, the values on the data lines, R/W* and
SI1Z[1:0] signals are valid. Also, the NBIC asserts the burst request (BREQ*) and
the address strobe (AS*) signals. The AS* signal remains asserted throughout the
transaction.

Clock 3: During the first phase of the clock, the address value is no longer valid.
During the second phase of the clock, the NBIC places valid data on the bus and as-
serts the data strobe signal (DS*) which remains asserted throughout the transac-
tion.

Clock 4: The NBIC is waiting for an acknowledge from the local slave at this time.
Clock 5: During the second phase of the clock, the local bus slave asserts the burst
acknowledge (BACK*) signal. Also, the local bus slave asserts the STERM* termi-
nation signal which indicates that it shall latch data on the next trailing edge. The sig-
nal STERM* remains asserted until all four words have been latched. Recall, that
burst transfers consists of four words when using the NBIC. The termination signals
DSACK[1:0]* can not be used during burst transactions.

Clock 6: The local bus slave latches data (D1) on the trailing edge of the clock.

Clock 7: The local bus slave latches data (D2) on the trailing edge of the clock.

Clock 8: The local bus slave latches data (D3) on the trailing edge of the clock. The
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NBIC deasserts the signal BREQ* indicating to the local bus slave that only one
word remains to be acknowledged.

Clock 9: During the first phase of the clock, the local bus slave deasserts the signal
BACK* indicating that it needs only one more word to complete the transaction. The
local bus slave latches the data (D4) on the trailing edge of the clock and deasserts
the signal STERM*. Also, the NBIC deasserts both of its strobe signals (AS* and
DS*).

Clock 10: During the first phase of the clock, the data becomes invalid and the NBIC
deasserts the signals FB*, R/-W* and SIZ[1:0].

Figure 7.5. Burst Write to Local Bus Slave.
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SOURCE: Catherine Mikkelsen, "NeXTbus Interface Chip Prehmmary
Specification”, (NeXT 1989), pg. 6-10, Figure 6-7.
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The last local bus transaction to be covered in this chapter is a burst read by a lo-
cal master NBIC. Figure 7.6 shows a timing diagram for a burst read transaction.
The sequence of events depicted on the timing diagram are described below:

Clock 1: During the second phase of the clock, the NBIC asserts the signals
BGACK*, FB¥*, S1Z[1:0] and GSLAVE®*. Also, it places an address on the bus and
drives the signal R/W* high to indicate a read transaction.

Clock 2: During the first phase of the clock, the values on the data lines, R/W* and
SIZ[1:0] signals are valid to be sampled by the local bus slave. Also, the NBIC as-
serts both of its strobe signals (AS* and DS*). The AS* signal is used by the local
bus slave to latch the address. The DS* signal informs the local bus slave that it can

place data on the bus. Both strobe signals remain asserted throughout the transac-
tion.

Clock 3: During the first phase of the clock the address lines become invalid.

Clock 4: The NBIC is waiting for the local bus slave to assert its termination signal
STERM* to indicate that data shall be valid on the next trailing edge.

Clock 5: During the second phase of the clock, the local bus slave asserts the sig-
nals BACK* and STERM*,

Clock 6: The NBIC latches data (D1) on the trailing edge of the clock.
Clock 7: The NBIC latches data (D2) on the trailing edge of the clock.

Clock 8: The NBIC latches data (D3) on the trailing edge of the clock. Also, the

NBIC deasserts the signal BREQ* indicating to the slave that it does not want to re-
ceive another burst of data.

Clock 9: During the first phase of the clock, the local bus slave deasserts the signal
BACK?* indicating that the last word is to be transferred. The NBIC latches data
(D4) on the trailing edge of the clock. During the second phase of the clock, the NBIC

deasserts both of its strobe signals and the local bus slave deasserts the signal
STERM*,

Clock 10: During the first phase of the clock, the NBIC deasserts the FB*, R/W*

and the SIZ[1:0] signals. Also, the data lines on the bus become invalid during this
clock cycle.
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Figure 7.6. Burst Read from Local Bus Slave.
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SOURCE: Catherine Mikkelsen, "NeXTbus Interface Chip Preliminary
Specifications”, (NeXT, 1989), pg. 6-9, Figure 6-6.




CHAPTER VIII
OVERVIEW OF THE INTERFACE BOARD

Introduction to the Board and its Features

The information presented up to this point has introduced the coprocessor archi-
tecture, the NeXTbus communication protocol and the NeXTbus Interface Chip. The
purpose of this chapter is to introduce the functional blocks of the interface board. The
following chapters shall present a top-level design for the functional blocks introduced
in this chapter. The functional blocks (modules) introduced in this chapter shall be
the basis for the detail design of the interface board.

The NeXT-to-Motherboard interface board shall interface 2 NeXT computer to an
array of coprocessors. This board is a parallel-to-serial/serial-to-parallel quad trans-
puter link interface on a standard NeXT bus card. A top-level block diagram of the
board is shown in Figure 8.1. Each port contains bidirectional transputer links with
an accompanying set of system services (Reset, Analyze and Error). The ports com-

municate via the NBIC with the NeXT host processor. Each link port appears to the

NeXT host processor as two separate peripherals with the same address space. One
of the peripherals processes outgoing data (NeXT-to-Link) to the array of coproces-
sors and the other peripheral processes incoming data (Link-to-NeXT). The NeXT
can transfer data to the ports at a much faster rate that the ports can serially transfer
data to the array of coprocessors. However, the NeXT can access only one port at a
time while all four ports can be actively transferring data asynchronously with the ar-
ray of coprocessors. The ports continue to transfer data with the array of coproces-
sors as long as there is data in the Input FIFO (NeXT-to-Link). To make up for the

difference in the two transfer rates, the host processor can cycle from FIFO to FIFO

65

===



NeXTbus
B -

Figure 8.1. Top-level Block Diagram of Interface Board.
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loading or unloading entire blocks of data one at a time. By doing this, the four ports
shall be active transmitting the data to the appropriate root transputer in the array of
coprocessors. The root transputer is the transputer connected to the host via a link
adaptor. All other transputers in the network are connected together via serial links

to the root transputer.

Memory Map of Board

The memory map of the board shall define all valid address locations decoded by
the board. The memory map shall indicate which port is to process data or if any sys-
tem services such as a link reset is to be issued. Recall that the NeXTbus address-
ing range is from s0000000 hex to sFFFFFF hex where s is the slot identification
number. Also, the address bits 2E00 through 2E06 have bee predefined by NeXT.
The two least significant bits (Isb’s) (2E00 - 2EOQ1) are used to encode the type of
transaction and the other four bits (2E02 - 2E06) are used to encode the burst size
during burst transactions. The board shall use address bits 2EO8 - 2E23 to deter-
mine which port shall process the data or which special registers to read or write.
Figure 8.2 shows the memory map of the board. If the address for a transaction is be-
tween sX0000XX through sXOFFFXX, then the data shall be processed by Port #0.
The same is true for the remaining addressing ranges shown in Figure 8.2. Each Port
address space consists of 4096 (4k) words. The port address space is defined from
sXPOOOXX - sXPFFFXX, where P is the Port number ( P = 0 - 3 ). The upper 256
words ( PFOO - PFFF ) of each Port are used to enable Burst Byte write transac-
tions. During this type of transaction, only byte O (bits[31:24]) shall be written into
the Input FIFO. All other burst transactions shall write all four bytes of the 32-bit
word. It is important to mention that all Burst read transactions within the appropri-
ate Port address space are 32-bit reads. Table 8.1 shows the special registers which

can be access by the user. The special registers provide FIFO status per link and
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Figue 8.2. Memory Map of Board

sX4FFFXX SPEC:IAL
sX4000XX REGISTERS These Address locations
: : are only valid for Burst Writes.

sX3FFFXX w0

PORT #3 | Burst Byte 3F00 - 3FFF
sX3000XX S '
sX2FFFXX

PORT #2 | Burst Byte 2F00 - 2FFF
sX2000XX e
SXIFFFXX | poRT #1 'i;;f?‘: Burst Byte 1F00 - 1FFF
sX1000XX L i
sXOFFFXX PORT #0 Burst Byte 0F00 - OFFF
sX0000XX

Table 8.1. Mapping of Special Registers.

SUBSYTEM SERVICES

401D 405D 409D 40DD | Subsystem Analyze Write Only
4019 4059 4099 40D9 Subsystem Reset/Err | Write/Read

INPUT FIFO ( NeXT - to - LINK)

4015 4055 4095 40DS FIFO FULL Read Only
4011 4051 4091 40D1 FIFO EMPTY Read Only
400D 404D 408D 40CD | FIFO HALF FULL Read Only

OUTPUT FIFO (LINK - to - NeXT)

4009 4049 4089 40C9 FIFO FULL Read Only
4005 4045 4085 40C5 FIFO EMPTY Read Only
4001 4041 4081 40C1 FIFO HALF FULL Read Only
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provide the user the capability to reset or analyze a node of the coprocessor. A write
to the subsystem reset/error register shall reset the root transputer connected to that
particular Port. A read to the subsystem reset/error register shall provide the error
flag of the root transputer subsystem. All of the special registers are one bit in size
(bit 0). Each pair of links can be used to configure or analyze different nodes in the ar-

ray of coprocessors.

Different Functional Modules on the Board
The board is composed of five functional modules. Each module shall be briefly de-
scribed in this section. The following chapters shall provide a top-level functional de-
sign of each of the modules. The modules which provide the basis for the detail de-
sign of the interface board are the configuration controller, address decoder, port con-
troller(s), error controller and reset logic.

The configuration controller is only executed during the power on sequence or
when the reset signal (LRESET*) is asserted by the NBIC. It shall initialize all the
NBIC internal registers such as the Control and NBIC Identification registers. Two
different functional designs shall be presented in Chapter IX. The board's designer
shall have the flexibility of selecting one of the designs presented or derive a new de-
sign based on the ideas presented. Also, this controller-shall contain the external ar-
biter of the board. The arbiter shall grant the local bus to the NBIC when requested
by asserting the bus grant signal (BG*). The board’s logic shall only have ownership
of the local bus while configuring the NBIC intemnal registers. All other times, the
NBIC shall receive a bus grant (BG*) signal from the controller when it asserts its
bus request (BR*) signal.

The address decoder module shall latch the address of a transaction and set the
appropriate Port control signals. The signals asserted by the address decoder are

used by the Port controller and error controller to determine which sequence of states
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to execute. This module shall assure that only one Port Controller is involved in a
transaction with the host processor at any given time.

The Port controller shall provide all the control signals to communicate with the
NBIC and with the Inmos IMS CO11 link adaptor. This controller actually consists of
two independent port controllers (Input and Output). The Input port controller inter-
faces with the NBIC and writes data into the Input FIFO (NeXT-to-Link) and reads
data from the Output FIFO (Link-to-NeXT). Also, this controller shall provide the
control signals required to read the status flags from the appropriate port FIFO or the
error flag from the subsystem. The output port controller interfaces with the IMS
CO11 link adaptor. It shall read data from the Input FIFO and write data into the Out-
put FIFO.

The error controller shall be responsible for generating a bus error (BERR*)
transaction termination when the user attempts to access an invalid memory address
of the interface board or access a valid memory location incorrectly. This controller
terminates an invalid transaction so that the NeXT bus master does not have to wait
until clock cycle 256 for a bus timeout error to occur. A bus timeout error shall be is-
sued by the NeXT CPU board in slot O if no termination is generated by cycle 256.

The reset module shall provide all the reset and analyze signals to the appropri-
ate FIFO’s, link adaptor and root transputers. This module shall be defined in terms
of a timing diagram. The user shall have the freedom of implementing this module any
way desired. There are timing restrictions for resetting the root transputers and link
adaptors which must be met. Also, this logic shall provide the transputer analyze
timing sequence on a port basis when requested by the user. The analyze sequence
is used to determine the state of a transputer based network. Finally, this module
shall also be responsible for generating the local interrupt signal (SINT*). When the
signal SINT* is asserted by this module and the mask interrupt register is enabled,

then an interrupt signal shall be generated onto the NeXTbus by the NBIC.




CHAPTER IX
TOP-LEVEL DESIGN OF CONFIGURATION CONTROLLER

The purpose of this chapter is to provide a functional top-level design for the con-
figuration controller. This controller shall initialize the NBIC identification register
(ID) and the control register. Recall, that the configuration register is configured by
board resistors. The configuration of this register shall be defined before the design of
the configuration controller is presented.

The configuration register shall be setup to select the signals SINT*, EXSEL and
EXIDREGEN bits 26, 25 and 23, respectively. These bits are selected by placing
10,000 Ohm resistors from the appropriate bits to +5 volts. The signal SINT* shall
be asserted by the board’s logic to generate a NeXTbus global interrupt signal
(GINT*). The EXSEL signal shall be asserted by the NBIC when a NeXTbus mas-
ter references the slot address space or ID register. The EXIDREGEN bit is en-
abled since the NBIC ID register shall be contained inside the NBIC instead of the
board’s memory space. The SSDECODE bit shall not be selected which cause a bus
timeout error for any references to the board’s slot address space (does not include
ID or Interrupt registers). A dip switch shall be used to select the different bits of
the configuration registers. A block diagram of the NBIC with the configuration resis-
tors is shown in Figure 9.1.

The configuration controller shall interface with the NBIC, a byte size PROM,
four registers with output and clock enables and one quad register. The PROM shall
be used to store the address and data for the NBIC ID and control registers. The reg-

isters with clock enables shall be used to store the appropriate bytes of the 32-bit ad-
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Figure 9.1. NBIC Configuration Register Selection.
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dress or data. The quad register shall be used to sample the negative edge signals.
The controller shall be clocked by the positive edge of LCLK while the quad D flip-
flop shall be clocked by an inverse LCLK (or trailing edge of LCLK). A top-level
block diagram of the hardware required for the configuration sequence is shown in
Figure 9.2. The contents of the PROM are shown in Figure 9.3. The state-diagram
of the controller is shown in Figure 9.4. The AHPL description of the controller is
shown in Figure 9.5. Finally, a timing diagram for the configuration sequence is
shown in Figure 9.6. The configuration controller begins to execute after an LRE-
SET* pulse (approx. 1.28 us) is reccived from the NBIC. The sequence of events de-

picted in the timing diagram are described below:

LCLK #1 : The signal LRESET* is asserted by the NBIC.
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Figure 9.2

Top-level Diagram of the Configuration Controller Hardware Architecture.
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Figure 9.3. Contents of PROM in Configuration Architecture.
ADRS

00
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04
05
06
07
08
09
0A

0B

LCLK #2: The configuration controller is initialized to State Number #01.

LCLK #3 : The controller goes to State Number #02. While in this state, the PROM
address is zero and the clock enable Isb is set (CNT _EN([3] = 1). AHPL notation us-
es a Big-Endian byte ordering scheme. (CNT_EN <--4T 1 " SET CNT_EN[3] = 1).

LCLK #4 : During the rising edge of this clock, the Isb byte of the NBIC ID register ad-
dress is latched. The PROM address equals one and the three msb’s of the clock en-
ables are set.

LCLK #5 : During the rising edge of the clock, the remaining bytes of the NBIC ID reg-
ister address are latched. Also, the PROM address equals two and the Isb clock en-
able is set. During the trailing edge of the clock, the signal ASIN* is asserted.

LCLK #6 : The configuration controller sequences to State Number #05 where the
PROM address equals three and the next byte of the clock enable is set. During the
rising edge, the Isb byte of the NBIC ID register data is latched. During the trailing
edge of the clock, the signal NCS* is asserted to indicate an internal register transac-
tion.

LCLK #7 : The configuration controller sequences to State Number #06. During the
rising edge of the clock, the next byte of the NBIC ID register is latched.

LCLK #8 : The configuration controller sequences to State Number #07. During the
rising edge of the clock, the next byte of the NBIC ID register is latched.




State-Diagram for Configuration Controller.
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Figure 9.5. AHPL Description for Configuration Controller.

MODULE: CONFIGURATION_CONTROLLER

MEMORY: CNTI[1].

INPUTS: GMASTER*; LRESET*; BR*.

OUTPUTS: R/W*; SIZ [2]; ADRS [4]; CLK_EN [4]; OE¥*;
ASIN_EN*; NCS_EN*; STERM_EN¥*; BG*.

" Description of Inputs

" GMASTER* = NBIC asserts this signal to inform the configuration
" controller that it is performing as a local bus slave.
" LRESET* = Local reset signal from NBIC (approx. 1.28 us).

" BR* = This is an open-drain wired "OR" signal which is

" asserted by the NBIC when it wants ownership

) of the board’s local bus.

" Description of Outputs
"

" R/W* = Asserted low by configuration controller whea in the
) process of writing to NBIC otherwise tri-stated.
" S1Z[1:0] = Size transfer bits which indicate number of valid bytes.
" ADRS[4] = Address to the PROM external to configuration controller.
" CLK_EN[4] = Chip (byte) enables to the 32-bit byte loadable register.
" OE* = Output enable for the 32-bit byte loadable register.
" ASIN_EN* = Enable signal for the Address Strobe signal to indicate

to the NBIC that a valid address is on the bus. The
N actual signal (ASIN#*) is clocked external on a -LCLK.
" NCS_EN* = Enable signal for the NBIC chip select signal (NCS*)
" which is asserted by controller to indicate to the NBIC
that an internal register transaction is to take place.
" STERM_EN* = Enable signal for the synchronous termination signal.
“BG* = Bus Grant from the controller when configuration is complete.

BODY

I. --> (LRESET*)/ (1); ADRS <-4 T 0; . Sy 18 Vs ke Kl
CNT <--- 0; CLK_EN <-4 T 1; R/W* =2Z; the signal LRESET*
OE*=1; BG*=1; SIZ<--2TZ. " goes High. ( Z = tri-state)

2. ADRS <--- INC(ADRS); OE* = 0; " Increment Address to
CLK_EN<--4T14; R'W*=0; " PROM. Enable output
SIZ[2] =2T0; BG*=1. " enable & set OE* low.

3. ADRS <--- INC(ADRS); OE* = 0; " Increment PROM address
CLK_EN <---4T 1; R/IW* =0; " Deassert all the trailing
SIZ[2] =2T0; BG*=1; " Edge signals.

ASIN_EN* = 1; NCS_EN* = 1; STERM_EN* = 1.




o

10.

11.

12.

Figure 9.5. Con’t.

ADRS <--- INC(ADRS); OE* = 0;

CLK_EN <-—- 4 T 2; R/W* = 0;

SIZ{2] =2 T 0; BG* = 1;

ASIN_EN* = 0; NCS_EN* = 1; STERM_EN* = 1.

ADRS <--- INC(ADRS); OE* = 0;
CLK_EN <---4 T 4, R/W* = (),
S1Z{2] =2 TO0; BG* =1;
ASIN_EN* =0; NCS_EN* = 0; STERM_EN* = 1.

ADRS <--- INC(ADRS); OE* = 0;
CLK_EN <---4 T 4; R/'W* =0,
SIZ[2] =2TO, BG*=1;
ASIN_EN* = 0; NCS_EN* = 0; STERM_EN* = 1.

ADRS <--- INC(ADRS); OE* = (;

CLK_EN <--- 4 T 0, R/'W* = (),

SI1Z[2] =2 T0; BG*=1;
ASIN_EN* =(; NCS_EN* = 1; STERM_EN* = 1.

---> ( GMASTER*)/ ( 8 ); OE* =0;
R/W* =0; BG*=1;SIZ<---2TO0;

ASIN_EN* = (0; NCS_EN* = 0; STERM_EN* = 1;

OE*=0; R’'W* =0; BG* =1; SIZ<--- 2 T (;
ASIN_EN* = 0; NCS_EN* = 0; STERM_EN* = (.

OE* =0; R/'W* =0, BG*=1;SIZ<---2 T 0
ASIN_EN* = 1; NCS_EN* = 1; STERM_EN* = 1.

OE* =1, R’'W* =7, BG* = 1; SIZ<--- 2 T Z,;
CNT * (GMASTER) <--- 1 ;
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" Assert ASIN_EN* to
" indicate to NBIC that the
" Address is valid.

" Assert NCS_EN* to

" indicate to NBIC that the

" transaction is to an internal
" register.

" ASIN_EN* and NCS_EN*
" remain asserted throughout
" the transaction.

" Next clock kill all clock

" Enables since all the NBIC
" ID registers byte have been
" accessed from the PROM.

" This state might not be required.
" It is included in the design

" as a safety measure to verify

" that NBIC has responded to

" the NCS* signal.

" Assert STERM_EN*
" to indicate to NBIC to latch
" data on next trailing edge.

" Deassert STERM_EN*
" to indicate to NBIC that
" data is no longer valid.

" Tri-State R/W*, and the two
" Size transfer bits.

-—-> (CNT, GMASTER A CNT, GMASTER*ACNT)/( 12, 1, 11).

OE*=1;, R'IW*=7; S1Z<---2TZ;
BG* = BR¥;

—-> ( LRESET*)/(12);

ASIN_EN* = 1; NCS_EN* = 1.

END SEQUENCE

> (LRESET*)/( 1).

END.

" This state acts as an external
" arbiter. Signal bus grant is
" asserted when a bus request
" is received from the NBIC.

Go to State 1 if there is a reset
pulse from the NBIC.
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LCLK #9 : The configuration controller sequences to State Number 08. During the
rising edge of the clock, the msb byte of the NBIC ID register is latched. The clock
enables are all zero. The controller stays in this state until the signal GMASTER* is
low. If GMASTER * is low, then the controller shall sequence to State Number #09.

LCLK #10 : During the trailing edge of the clock, the signal STERM* is asserted to
indicate to the NBIC to latch data on the next trailing edge of the clock.

LCLK #11 : During the trailing edge of the clock, the signals STERM*, ASIN* and
NCS* are deasserted.

LCLK #12 : The controller sequences to State Number #11 where it waits for the
signal GMASTER* to be deasserted by the NBIC.

LCLK #13 : The signal GMASTER* is not deasserted so the controller stays in
State Number 11.

LCLK #14 : The signal GMASTER* is not deasserted so the controller stays in
State Number 11.

LCLK #15 : The signal GMASTER* is deasserted and the controller sequences to
State Number 02. The address in this state is six which is the Isb byte of the Control
register address in the PROM. The signal CNT is set during the transition.

LCLK #16 : During the rising edge of the clock, the Isb byte of the Control register
address is latched.

LCLK #17 : During the rising edge of the clock, the remaining three msb bytes of the
Control register address is latched. During the trailing edge of the clock, the signal
ASIN* is asserted.

LCLK #18 : During the rising edge of the clock, the NBIC latches the address and
the Isb byte of the Control register data is latched. During the trailing edge of the
clock, the signal NCS* is asserted.

LCLK #19 : During the rising edge of the clock, the next byte of the Control register
is latched.

LCLK #20 : During the rising edge of the clock, the next byte of the Control register
is latched.

LCLK #21 : During the rising edge of the clock, the msb byte of the Control register
is latched. The controller sequences to State Number #08 during this edge.

LCLK #22 : The controller sequences to State Number #09 since the signal GMAS-
TER* is asserted by the NBIC. During the trailing edge of this clock, the.signal
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STERM* is asserted.

LCLK #23 : The Control register data is latched during the trailing edge of the clock
and the signals STERM*, ASIN* and NCS* are deasserted.

LCLK #24 : The controller sequences to State Number #11.

LCLK #25 : The controller sequences to State Number #12 since the signal CNT is
set. This indicates that the configuration sequence is complete. While in State Num-
ber 12, the controller acts as the external arbiter. When the NBIC asserts the bus re-
quest (BR*) signal, the controller shall assert the bus grant signal (BQ*). The
R/W*, SIZ[1:0], Address/Data lines and STERM* signals shall be tri-stated. The
signals ASIN_EN*, CLK_EN[4] and NCS_EN* shall remain deasserted in this state.

LCLK #25 - #29: The controller remains in State Number #12 until a reset signal
(LRESET*) is received from the NBIC. At this time, the configuration sequence shall
repeat its sequence beginning with State #1. The controller shall remain in State #1
until the reset pulse is deasserted. The reason being that the LRESET* pulse is ap-
proximately 1.28 microseconds and the controller can cycle through all its states fin-
ishing up in State #12 before the reset pulse goes high. If the controller is in State
#12 and the reset pulse is still asserted (LOW), then the configuration cycle will exe-
cute again; therefore, the configuration cycle shall begin when the reset pulse
(LRESET*) is deasserted.

The signal GMASTER* is used in this controller as an acknowledgment from the
NBIC that it is performing as a local bus slave. This is the only time when the NBIC
shall be a slave on the local bus. All transactions on the local bus shall be initiated
by the NBIC during all other transactions. The configuration controller shall grant the
bus to the NBIC after the sequence is complete by asserting the signal BG¥*.

An alternative method is to use four registered PROM with output enables such
as the Cypress CY7C225. This PROM is a 512 X 8 registered PROM with output en-
ables. The advantage of this method is that there are less cycles required to build the
32-bit address and data word for the registers. The disadvantage is that there are
four programmable parts on the board and only four locations shall be valid in each
PROM. The design for this method shall not be presented. The designer can use one
of the two methods presented or derive a new implementation for the configuration se-

quence from the ideas presented in this chapter.




Figure 9.6. Timing Diagram for Configuration Sequence.
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Figure 9.6. Con’t.
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CHAPTER X
TOP-LEVEL DESIGN OF ADDRESS DECODER

The purpose of this chapter is to provide a functional top-level design for the
address decoder module. This module shall latch the address at the beginning of a
transaction and set the appropriate PORT control signals. A top-level block dia-
gram of the address decoder is shown in Figure 10.1. A state-diagram represent-

ing the sequence of events is shown in Figure 10.2. The AHPL description for the

Figure 10.1. Top-level Block Diagram of Address Decoder.
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Where X is the PORT NUMBER (0 - 3)
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address decoder module is shown in Figure 10.3. The module shall latch the address
at the first rising edge of LCLK after the signal AS* is asserted by the NBIC. The

Figure 10.2. State-Diagram for Address Decoder.

PORT signals shall be set according to the memory map of the board shown in Table
8.1 and Figure 8.2, The signal denoted by TRANSACTION shall be set by the ad-
dress decoder when it is in State 2. This signal is used to alert the Error Controller
that a NeXTbus transaction is starting,

The R/W* and BREQ* signals are used by the address decoder to determine
which PORT signals to assert. For example, if the address bits 23 through 8 equal
"4019” hex, then the R/W* signal is used to determine which of the two possible sig-
nals to assert (PORTO_RESET or PORTO_ ERROR). If the signal R/W* is high,
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Figure 10.3. AHPL Description for Address Decoder.

MODULE: ADDRESS DECODER

MEMORY: ADRS [16], RESET, ANALYZE.

INPUTS:  LAD[23:8); LAD[1:0}; AS*; R/'W*, BREQ*, LRESET®.

OUTPUTS: PORTO_ACTIVE, PORT1_ACTIVE, PORT2_ACTIVE;
PORT3_ACTIVE; PORTO_ANALYZE;
PORT1_ANALYZE; PORT2 ANALYZE;
PORT3_ANALYZE; PORTO RESET; PORT1_RESET;
PORT2_RESET; PORT3_RESET; PORTO_ERROR;
PORT1_ERROR; PORTZ_ERROR; PORT3_ERROR;
PORTO_IN FF FLG; PORTI IN FF FLG;
PORT2_IN _FF FLG; PORT3 IN FF FLG;
PORTO_IN EF FLG; PORT1_IN EF FLG;
PORT2_IN_EF FLG; PORT3_IN_EF FLG;
PORTO_IN_HF FLG; PORTI_IN _HF FLG;
PORT2_IN_HF FLG; PORT3 IN HF FLG;

PORT2_OUT_HF_FLG; PORT3_OUT _

,BURST BYTE_ENO, BURST_ BYTF. EN1;
BURST_BYTE_EN2, BURST BYTE_EN3;
STATUSO ACTIVE STATUSI ACTIVE
STATUS2_ACTIVE, STATUS3_ACTIVE;
TRANSACTION; AD([2]; GP_RESET GP_ANALYZE.

" Description of Inputs

" LADI[1:0] = Address lines which carry transaction information.

" LAD[23:8] = Address lines which are used to decode the type

" of transaction to be performed.

" AS* = Address Strobe signal from NBIC.

" R/W* = Read = 1 / Write = 0 (From NBIC).

" BREQ* = Burst Request signal from NBIC.

" LRESET* = Reset Pulse from NBIC.

" GP RESET = Asserted when any port is to be reset.

" GP ANALYZE = Asserted when any port is to be analyzed.

" Description of Oulputs

" TRANSACTION = Set High when in State 2 and not performing a

" PORT Reset or Analyze sequence.

" AD[1:0] = The value of the two LSB’s of the address lines.

" PORTX ACTIVE = Set High when the address is within the mcmw'
map limits of the appropriate PORT (Read or Write)

" PORTX RESET = Set High when a Write transaction is performed to

the appropriate PORT address to Reset that PORT.




" PORTX ANALYZE
" PORTX ERROR

"

" PORTX IN FF FLG
" PORTX IN EF FLG
" PORTX IN HF FLG

" PORTX OUT FF FLG
" PORTX OUT EF FLG
" PORTX OUT HF FLG

" BURST BYTE_ENX
" STATUSX_ACTIVE

Figure 10.3. Con't.

= When set used by the Reset Module to

send appropriate analyze signals to network.

85

= When set used by Input Port Controller to place
the status of the appropriate PORT Error Flag

on the LSB of the address line.

= Set High when the user request the status of the
FIFO FULL flag from the Input FIFO PORTX.

= Set High when the user request the status of the
EMPTY FIFO flag from the Input FIFO PORTX.

= Set High when the user request the status of the
FIFO HALF FULL flag from the Input FIFO PORTX.

= Set High when the user request the status of the

FIFO FULL flag from the Output FIFO PORTX.

= Set High when the user request the status of the

EMPTY FIFO flag from the Output FIFO PORTX.

= Set High when the user request the status of the

FIFO HALF FULL flag from the Output FIFO PORTX.

= Set by Address Decoder when a Burst Byte Transaction

is to take place. (Only byte 0 of each word is written).

= Set by Address Decoder when the user request one

of the possible seven status flags (on a per port basis).

" GP RESET = Asserted when any port is to be reset.

" GP ANALYZE = Asserted when any port is to be analyzed.

BODY

1. ADRS * (AS*) <--- LAD [23:8]; * Latch address lines from
AD[0:1] * (AS*) <--- LAD[0:1]; " NBIC and go to State 2
—>  (AS%)/(2). " when AS* goes low.

" Decode all valid

2. TRANSACTION =1; " address locations
PORTO_ACTIVE = (ADRS[0:3] =4 TO0); " Port 0 Read/Write
PORT1_ACTIVE = (ADRS[0:3]=4T1); " Port 1 Read/Write
PORT2_ACTIVE = (ADRS[0:3]=4T2); " Port2 Read/Write
PORT3_ACTIVE = (ADRS[0:3]=4T3); " Port 3 Read/Write

PORTO_ANALYZE
PORT1_ANALYZE
PORT2_ANALYZE
PORT3_ANALYZE
PORTO_RESET
PORT1_RESET
PORT2 RESET
PORT3_RESET
PORTO_ERROR
PORT1_ERROR
PORT2_ERROR
PORT3_ERROR

= R/W* A\ (ADRS = 16 T 16413 ) A BREQ*:;
R7W* A (ADRS = 16 T 16477 ) A BREQ*;
R/W* A (ADRS = 16 T 16541 ) A BREQ?¥;
RW* A(ADRS=16T 16605 ) A BREQ*;
A\ (ADRS = 16 T 16409 ) A BREQ*:
R/W*/\ (ADRS = 16 T 16473 ) A BREQ*;
R/W*/\ (ADRS = 16 T 16537 ) A BREQ*;
R/W* /A (ADRS = 16 T 16601 ) A BREQ*;
R/W* /\ (ADRS = 16 T 16409 ) A BREQ*;
R/W* A\ (ADRS = 16 T 16473 ) A BREQ*;
R/W* A (ADRS = 16 T 16537 ) A BREQ*;
R/W* /A (ADRS = 16 T 16601 ) A BREQ*;

{1 | | | A (N T | B I |

" 401D hex
" 405D hex
" 409D hex
" 40DD hex
" 4019 hex
" 4059 hex
" 4099 hex
" 40D9 hex
" 4019 hex
" 4059 hex
" 4099 hex
" 40D9 hex
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Figure 10.3. Con't.

= R/W* A( ADRS = 16 T 16405 ) /A BREQ*; " 4015
=R/W* A(ADRS = 16 T 16469 ) /A BREQ*; " 4055
=R/W* A( ADRS = 16 T 16533 ) /A BREQ¥*; " 4095
=R/W* A(ADRS = 16 T 16597 ) A BREQ¥*; " 40D$
= R/'W* A( ADRS = 16 T 16401 ) A BREQ*; " 4011
= R/W* A(ADRS = 16 T 16465 ) A BREQ*; " 4051
=R/W* A(ADRS = 16 T 16529 ) A BREQ*; " 4091
= R/W* A(ADRS = 16 T 16593 ) A BREQ*; " 40Dl
= R/W* A ( ADRS = 16 T 16397 ) /A BREQ*; " 400D
= R/W* A ( ADRS = 16 T 16461 ) /A BREQ*; " 404D
=R/W* A( ADRS = 16 T 16525 ) /A BREQ*; " 408D
=R/W* A(ADRS = 16 T 16589 ) /A BREQ*; " 40CD
R/W* A ( ADRS = 16 T 16393 ) /\ BREQ*; " 4009
R/W* A ( ADRS = 16 T 16457 ) /\ BREQ¥; " 4049
R/W* A ( ADRS = 16 T 16521 ) A\ BREQ*; " 4089
R/W* A ( ADRS = 16 T 16585 ) /A BREQ*; " 40C9
R/W* A ( ADRS = 16 T 16389 ) /A BREQ*; " 4005
R/W* A ( ADRS = 16 T 16453 ) /A BREQ*; " 4045
R/W* A (ADRS = 16 T 16517 ) /A BREQ*; " 4085
R/W* A ( ADRS = 16 T 16581 ) /A BREQ*; " 40C5
=R/W* A (ADRS = 16 T 16385 )/\ BREQ¥*; " 4001

PORT1 OUT HF FLG =R/W*A (ADRS = 16 T 16449 )/A BREQ*; " 4041
PORT2 OUT HF FLG = R/W* A ( ADRS = 16 T 16513 )/\ BREQ*; " 4081
PORT3_OUT_HF FLG = R/'W*A (ADRS = 16 T 16577 )/\ BREQ*; " 40C1

BURST BYTE_ENO
BURST_BYTE_EN1
BURST _BYTE_EN2
BURST BYTE_EN3
STATUSO_ACTIVE

STATUS1_ACTIVE

STATUS2_ACTIVE

=R/W*A ( ADRS[0:7] =8 T 15); " OF
=R/W*/\ (ADRS[0:7] =8 T 31); " IF
=R/W*\ (ADRS[0:7] =8 T 47 ) ; " 2F
=RW*/\ (ADRS[0:7]=8 T 63): " 3F

= PORTO_IN_FF_FLG V PORTO_IN_EF FLGV
PORTO_IN_HF FLG V PORTO_OUT FF FLGV
PORTO_OUT_EF_FLG V PORTO_OUT_HF_FLGV
PORTO_ERROR ;

= PORTI_IN_FF_FLG V PORT1_IN_EF FLGV
PORTI_IN_HF_FLG V PORT1_OUT_FF_FLGV
PORT1_OUT_EF FLG V PORT1_OUT_HF_FLGV
PORT1_ERROR ;

= PORT2_IN_FF FLG V PORT2_IN_EF FLGV
PORT2_IN_HF FLG V PORT2_OUT FF FLGV
PORT2_OUT_EF_FLG V PORT2_OUT_HF_FLGV
PORT2_ERROR ;

hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
hex
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Figure 10.3. Con't.

STATUS3_ACTIVE  =PORT3_IN_FF_FLG V PORT3_IN_EF FLGV
PORT3_IN_HF FLGV PORT3_OUT_FF_FLGV
PORT3_OUT _EF _FLG V PORT3 OUT_HF_FL.GV
PORT3_ERROR ;

--> (AS*, AS* )/ (1,2); " Stay in this state till AS* goes high
END SEQUENCE

--> (CRESET* )/ (1); " Go to State #1 when Reset Pulse is asserted.

GP_RESET = PORTO_RESET V PORTI RESETV " Set GP Reset signal
PORT2_RESET V PORT3_RESET; " if any Port is to be reset.

GP_ANALYZE = PORTO ANALYZE V PORT1_ANALYZEVY " Set GP Analyze

PORT2_ANALYZE V PORT3_ANALYZE; " signal if any Port
" is to be Analyzed.

END.

then the PORTO_ERROR signal is asserted. If the signal R/W* is low, then the
signal POR'fO_RESET is asserted. The AHPL description follows the memory map
of the board. If a register is identified as read only and a write to that register is
performed, then the Error Controller shall issue a bus error (BERR*) termination
signal since no data shall be placed on the bus by the Input Port Controller.  All ref-
erences to the FIFO status flags and Subsystem Port (Reset, Analyze, Error) ad-
dresses listed in Table 8.1 must be single-word read or write transactions. The ap-
propriate flag such as PORTO_IN_EF _FLG ( Address = 4011’ hex ) shall not be
set if a burst transaction is attempted by the user.  The signals GP RESET and GP
ANALYZE shall be used by the Error Controller to issue a synchronous termina-
tion (STERM*) when the user selects to reset or analyze a port. The Input Port
Controller shall issue a synchronous termination for all other port transactions

(Read, Write or Status).




CHAPTER XI
TOP-LEVEL DESIGN OF INPUT PORT CONTROLLER
Brief Introduction to the Port Controllers

The purpose of this chapter is to describe the design of the Input Port controller.
The Port Controllers are composed of an Input and Output Controller. The Input Con-
troller is responsible for all transactions between the NBIC local bus and the In-
put/Output (VO) FIFQO’s. The Output Controller is responsible for all transactions
between the /O FIFO’s and the Inmos serial link adaptors (IMS CO11). Figure 11.1
shows a block diagram of the Port Controllers interconnections with the NBIC, /O

FIFO's and the IMS CO11. Both Port Controllers (input and output) work indepen-

Figure 11.1. Block Diagram of Port Controller Interconnections.
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dently of each other. The multiplexor shown in Figure 11.1 is used to select the valid
bytes in the 32-bit bus of the NBIC. Recall, that the local bus of the NBIC is a Big-
Endian bus since the NBIC performs byte-swapping. The two SIZE bits (SIZ[1:0])
and the two least significant bits (Isb’s) of the address (LAD[1:0]) determine which
bytes are valid in the word. The valid transaction types are shown in Table 7.1. All
bytes are shifted into the Input FIFO since the transputer instruction set is composed
of bytes. The 32-bit byte loadable register is used to build a 32-bit word which shall
be transferred to the NBIC. Also, the Input Port Controller is responsible for placing
the appropriate FIFO status when requested by the user. The user can request sta-
tus on any of the FIFO’s by issuing a single-word read to the appropriate address of

the board as shown in Table 8.1.

Introduction to Input/ FIFQ’

Before the design of the controllers is presented, the type of FIFO'’s to be used
must be introduced. The reason being that the FIFO controls such write (W) and
read (R) vary between FIFO’s. The FIFO's selected by the author to be used in the
Next-to-Motherboard interface board are the CYPRESS 74C2X-YY series. The 2X
number represents the number of words the FIFO can buffer and the size of the pack-
age (300 mil or 600 mil). The YY number represents the FIFO data access time.
These FIFO’s contain three active low status flags which are used to determine the
state of the dual port RAM. The dual port RAM refers to the architecture of the mem-
ory cell used to buffer the data. This type of architecture allows a read and write
transaction to be performed independently of each other. This type of architecture is
required for truly asynchronous transactions to take place between the NBIC and the
array of coprocessors. The status flags available are empty FIFO (EF*), FIFO full
(FF*) and FIFO half empty (HF*). A write transaction can take place if the FIFO

Full flag (FF*) flag is deasserted . Similarly, a read transaction can take place if the




FIFO Empty (EF*) flag is deasserted.

These FIFO's have two types of modes known as Single Device/Width Expansion
Mode or Depth Expansion Mode. Single Device/Width Expansion Mode is selected
by grounding the XI input on the FIFO. During this mode, the HF* flag and retrans-
mit features are valid. The retransmit feature (RT*) is used when transferring pack-
ets of data, It allows data to be analyzed by the receiver andr can be retransmitted if
necessary. This feature shall not be used in the design of the interface board. The
Depth Expansion mode is used when the user needs to expand the depth of the
FIFO. It is suffice to state that for our interface board, the XI and RT* inputs of the
FIFO must be deasserted. The FIFO’s read/write timing shall be described next so
the reader understands how input/output transactions are performed with the FIFO’s.

A FIFO write timing diagram is shown in Figure 11.2. The data meeting the set-

up time (Tsd) before the rising edge of the write pulse and the hold time (Thd) after

Figure 11.2. FIFO Write Sequence and Status Flags.
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the rising edge of the write pulse shall be written into the FIFO. The status flags rel-
evant to the rising or trailing edge of the write pulse are shown since the input con-
troller shall use these flags to determine if data can be written or read from the in-
put/output FIFOs. Table 11.1 shows all the timing parameters listed in Figure 11.2
for the five different FIFO’s available from CYPRESS.

Table 11.1. Timing Parameters for FIFO Write Transaction.

NOTES: All times shown above are in nanoseconds. The information for
this table was obtained from the CYPRESS SEMICONDUCTOR
BiCMOS/CMOS DATA BOOK, published March 1, 1990.

A FIFO read timing diagram is shown in Figure 11.3. The data shall be valid Ta
nanoseconds (access time) after the trailing edge of the read pulse (R*). The data
shall be invalid Tdvr nanoseconds after the rising edge of the read pulse. The data is
tri-stated when the read pulse signal is at a high (deasserted) state. Also, the state
of the FIFO status flags relevant to the read pulse are shown in the timing diagram
since these flags shall be used by the input controller. Table 11.2 shows all the tim-
ing parameters listed in Figure 11.3 for the five different FIFO's available from CY-
PRESS. |




Figure 11.3. FIFO Read Sequence and Status Flags.

LCLK (( ({ L
2?7 T 2?
Rt
LAD [31:0]
EF* e "
Tref
HE* | Trhf
FF* L

Table 11.2. Timing Parameters for FIFO Read Transaction.

NOTES: All times shown above are in nanoseconds. The information for
this table was obtained from the CYPRESS SEMICONDUCTOR
BiCMOS/CMOS DATA BOOKXK, published March 1, 1990.
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The Input Port Controller shall consists of a Write Controller, Read Controller and
Status Controller. All controllers receive control signals from the Address Decoder
module and the NBIC. The Write Controller shall control all burst or single-word
write transactions with the Input FIFO and shall support all valid NeXTbus transac-
tion types. The Reéd Controller shall control all burst or single-word read transac-
tions with the Output FIFO. All reads from the Output FIFO shall be 32-bit reads.
Finally, the Status Controller shall place the appropriate Input/Output FIFO status
flags (Half Empty, FIFO Full, FIFO Empty) or the PORT Subsystem Error Flag on
the Isb’s of the address/data line (LAD[0]).  The first controller to be introduced is

the Write Controller.

Top-level Design of Write Controller
A top-level block diagram of the Write Controller (on a per port basis) and its in-

terconnections is shown in Figure 11.4. The Write Controller shall output the two
multiplexor select signals, the write enable signal, the burst acknowledge signal and
the synchronous termination signal. The asynchronous logic shown in Figure 11.4 is
used to generate the appropriate write pulse (W*) to the input FIFO. The timing cri-
teria for the write pulse is shown in Figure 11.2. The AHPL description for the Write
Controller is shown in Figure 11.5. The AHPL description given in Figure 11.5 shall
handle all write transaction between the NBIC and the input FIFO.  Several write
timing diagrams are given in Figures 11.6 through 11.10 to shown the different types
of write transactions which can occur. Figure 11.6 shows a 32-bit single-word write
(all four bytes are valid) transaction. Figure 11.7 shows a halfword #1 (bits [15:0])
write transaction. Figure 11.8 shows a halfword #1 write transaction with the FIFO
Full Flag asserted between FIFO write pulses. The Write Contmlicr AHPL descrip-
tion always checks the FIFO Full Flag before asserting the write signal which is




Figure 11.4, Top-level Block Diagram of Write Controller and its Interconnections.
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used to derive the FIFO write pulse. This is also true for the synchronous termina-
tion signal (STERM_EN*). The FIFO Full Flag used in the Write AHPL description
is a registered version from the Input FIFO. The FIFO’s status flags are set during
the cycle where a write or read transaction is being performed. The WRITE and
STERM_EN* signals are connections in the AHPL during the given cycle and must
remain at the same logic level; therefore, the FIFO status flags such as FIFO Full
and FIFO Empty must be registered. The period of LCLK must be sufficient to allow
for propagation delay of the three status flags and register setup time. Finally, Fig-
ures 11.9 and 11.10 show the two type of burst write transactions available. Figure
11.9 shows a burst write byte-mode timing diagram. During this type of transaction,
only byte O (bits[31:24]) are valid. Figure 11.10 shows a burst write word-mode tim-

ing diagram. During this type of transaction all four bytes contain valid data.




Figure 11.5. AHPL Description for Write Controller.

MODULE: WRITE_CONTROLLER

MEMORY: CNT[2], BURST*.

INPUTS: PORTX_ACTIVE, BREQ*, R/W* IX_FF*, DS®*;
BURST_BYTE_ENX, AD[1:0], SIZ[1:0], LRESET*.

OUTPUTS: MUX_SELX[2], BACK*, STERM_EN*, WRITEX .

'" Description of Inputs

" PORTX_ACTIVE = Set by address decoder module when

" a valid transaction is to take place on Port X.

" BREQ* = Set by NBIC when a Burst transaction

" is to take place (Burst transaction are 4 words).
" R/W* = High for a Read transaction and Low for

" a Write Transaction.

" IX_FF* = A registered version of the FIFO FULL status

iy flag from the Input (NeXT-to-Link) FIFO of Port X.
"BURST_BYTE_ENX = Set by address decoder module when burst byte

" transactions are to be performed on Port X. Only

" byte 0 [31:24] shall be written in this mode.

" DS* = Data strobe signal from NBIC.

" AD[1:0] = Two LSB of the Address from Address Decoder.

" S1Z[1:0] = Two Size Information bits from NBIC.

" LRESET* = Reset Pulse from NBIC (approx. 1.28 microseconds).
"" Description of Outputs

" MUX_SELX][2] = Signal used to select which byte of the 32-bit

" word is to be written into the Input FIFO of Port X.
"BACK* = Signal used to acknowledge a Burst Request.

" STERM_EN* = Synchronous termination signal set on leading

9 edge of LCLK and clock on trailing edge of

§ LCLK external to controller.

" WRITEX = Signal set by controller which is used to derive

the write pulse (W*) to the input FIFO of Port X.
BODY

1. --> (PORTX_ACTIVE VR/W*, PORTX_ACTIVEAR/W#*) /(1,2);
" Stay in State 1 if PORTX_ACTIVE is low or if there is a READ Transaction
" Go to State 2 if there is a WRITE Transaction and the PORT is active.

2. --> (DS8*)/(2); " Stay in this State till data strobe (DS*) is active.
BURST* <-- BREQ* ; " Store BREQ* since it is deasserted after third Word.
CNT<--2TO; " Clear the counter (used to keep track during Burst)

3. --> (BYTEl, (HF1 VBYTE2), BYTE3)/ (5, 6,7 );

4. MUX_SEL =2TO0; " Select Byte 0 [31:24)
WRITEX = IX_FF* ; " Set Write signal if FIFO full flag is deasserted.
STERM_EN* = (BYTEO A(BURST* V BURST_BYTE_ENX)) V IX_FF*;
--> (IX_FF¥, (BYTEOV (BURST*ABURST_BYTE_ENX)) A IX_FF*) / (4,8);
BACK* <-- BREQ* ; " Assert BACK* if BREQ* is asserted




Figure 11.5. Con’t.

S. MUX _SELX =2T1; " Select Byte 1 [23:16]
WRITEX = IX_FF*; " Set Write signal if FIFO full registered
" flag is at a High State.
STERM_EN* = ( HFO ABYTET )VIX_FF¥;
--> (IX_FF*, (HFO VBYTE! ) A IX_FF* ) / (5,8);

6. MUX_SELX =2T2; " Select Byte 2 [15:8]

WRITEX = IX_FF*; " Set Write signal if FIFO full registered
" flag is at a High State.

STERM -EN* = ( BYTE2 V IX_FF*);
--> (IX_FF*, BYTE2 AIX_FF*) / ( 6, 8 );

7. MUX SELX =2T 3; " Select Byte 3 [7:0]

WRITEX = IX_FF*; " Set Write signal if FIFO full registered
" flag is at a High State.

STERM_EN* = IX_FF*;
BACK* <-- BREQ*
> (IX_FF%) /(1)

8. WRITEX =0; " Set WRITE and STERM_EN*
STERM_EN* = 1; " to their deasserted state.
CNT <-- INC (CNT) ; " Increment CNT which is used
--> (BURST* ACNT_NE 3)/(4); " tokeep track during BURST

" If burst transaction and CNT
" not equal to three go to State #4.

9. --> (PORTX_ACTIVE, PORTX_ACTIVE) / (9, 1); " Wait in this State till
" PortX_Active signal
" is deasserted by the

END SEQUENCE " address decoder.

WORD = ( SIZ[1T A SIZ[0T A AD[1] A AD[0] A BURST* ); "Word [31:0]

HFO0 = ( SIZ[1] A SIZ[O]T A AD[T) A AD[0]/A BURST* ); " Halfword 0 [31:16]
HF1 = (S1Z[1] A SIZ[0] A AD[1] A AD[0)/A BURST* );" Halfword 1 [15:0]
BYTEO = (SIZ[1] A S1Z[0] A AD[T) A AD[0) A BURST* );" Byte 0 [31:24]
BYTE1 = (SIZ[1T A SIZ[0] A AD[1] A AD[0] A BURST* );" Byte 1 [23:16]
BYTE2 =(SIZ[1] A SIZ[0] A AD[1] A AD[0)/A BURST* );" Byte 2 [15:8]
BYTE3 =(SIZ[1] A S1Z[0] A AD[1] A AD[0] A BURST*);" Byte 3 [7:0]
CNT_NE 3 = (CNT[1] A CTNT[0)) V (CNT[1) A CNT[0])V (CNT[1] A CNT[0));
--> (CRESET* )/ (1); " Go to State #1 when LRESET* is asserted

END
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Figure 11.6. Timing Diagram for 32-bit Word Write Sequence.
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Figure 11.7. Timing Diagram for Half Word #1 Write Sequence.
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Figure 11.8. Timing Diagram for Half Word #1 Write Sequence with FIFO Full Flag Asserted.
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Figure 11.9. Timing Diagram for Burst (Byte Mode) Write Sequence.
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Figure 11.10. Timing Diagram for Burst (Word Mode) Write Sequence.
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Figure 11.10. Con’t.
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Top-level Desi f Rea l

The Read Controller shall perform single-word and burst read transactions be-
tween the Output FIFO's and the NBIC. All read transactions shall be 32-bit word
reads; therefore, four bytes must be read out of the Output FIFO. A top-level block
diagram of the Read Controller (on a per port basis) and its interconnections is shown
in Figure 11.11. The AHPL description for the Read Controller is shown in Figure
11.12. The 32-bit register shown in Figure 11.11 is used to selectively clock in any
one of the four bytes of the 32-bit word to be transferred to the NBIC. This is accom-
plished by setting the chip enable (CE) of the byte to be registered. Once the four
bytes have been accessed from the Output FIFO, the synchronous termination
(STERM_EN¥*) signal shall be asserted by the Read Controller. The 32-bit byte

loadable register shall also have an output enable which is controlled by the read out-

Figure 11.11. Top-level Block Diagram of Read Controller and its Interconnections.
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Figure 11.12. AHPL Description for Read Controller.

MODULE: READ_CONTROLLER

INPUTS: PORTX_ACTIVE, BREQ*, R/W*, OX_EF*.
OUTPUTS: READX, CE[4], STERM_EN*, RD_OE*,

"" Description of Inputs

" PORTX_ACTIVE = Set by address decoder module when a valid
" Read or Write transaction is in progress on Port X.

" BREQ* = Set by NBIC when a Burst Transaction is to

i take place. (All burst transactions are 4 words).
" R/W* = High for a Read transaction and Low for a

" Write transaction.

" OX_EF* = A registered version of the Empty FIFO status

from the Output (Link-to-NeXT) FIFO of Port X.
'"" Description of Outputs

" READX = A signal set by the controller which is used to

" derive the read pulse to the Output FIFO of Port X.

" CE[0:3] = Chip enables to clock data into the 32-bit byte

" loadable register on a per byte basis.

" STERM_EN* = Synchronous termination signal set on leading

: edge of LCLK and clock on trailing edge of

" . LCLK extemal to Input Controller.

" RD_OE*. = Output enable for 32-bit byte loadable register.

" BACK* = Burst Acknowledge signal (Active Low) to NBIC.
BODY

1. --> (PORTX_ACTIVE VR/W*, PORTX_ACTIVEAR/W*)/(1,2);

" Stay in State 1 PORTX_ACTIVE is low or if there is a Write Transacuon
" Go to State 2 if there is a Read Transaction.

2. CEO =OX_EF*; " Set Chip Enable 2EQQ if empty FIFO flag is High
READX = OX_EF*; " Set READ signal if empty FIFO flag is High

STERM_EN* =1 ; " Deassert Synchronous Termination
-->(OX_EF*)/(2); " Stay in this state is empty FIFO flag is LOW
BACK* <-- BREQ*; " Assert BACK* if BREQ* is asserted.

3. CEl =0OX_EF*; " Set Chip Enable 2E01 if empty FIFO flag is High
READX = OX_EF*; " Set READ signal if empty FIFO flag is High
STERM_EN* =1 ; " Deassert Synchronous Termination
-->(OX_EF*)/(3); " Stay in this state is empty FIFO flag is LOW

4, CE2 =OX_EF*; " Set Chip Enable 2E02 if empty FIFO flag is High
READX = OX_EF*; " Set READ signal if empty FIFO flag is High
STERM_EN* =1 ; " Deassert Synchronous Termination

-->(OX_EF*)/(4); " Stay in this state is empty FIFO flag is LOW
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Figure 11.12. Con’t.

5. CEJ =0X EF*; " Set Chip Enable 2E03 if empty FIFO flag is High
READX = OX_EF*; " Set READ signal if empty FIFO flag is High
STERM_EN* = OX_EF*; " Deassert Synchronous Termination
~> ( OX_EF*, OX_EF* ABREQ¥) / ( 5, 2);
" Stay in this State if EF REG_O* is asserted. If OX_EF* is
" deasserted and Burst transaction go to State 2 else go to State 6

6. READX =0, " Word has been built so kill READ signal
STERM_EN* = 1 ; "Deassert Synchronous Termination

7. --> (PORTX_ACTIVE, PORTX_ACTIVE )/ (7,1); " Wait for PortX_Active
" to go LOW.
END SEQUENCE

RD OE* =0; " While performing a READ Transaction set OE low.
--> ( CRESET®) / (1).

END

put enable (RD_OE¥*) signal from the Read Controller. Several timing diagrams are
presented to show the sequence of states of the AHPL description. Figure 11.13
shows a single-word transaction where four bytes are accessed from the output
FIFO. Figure 11.14 shows a single-word transaction where the Empty FIFO flag is
asserted during the transaction. The AHPL description handles the case during any
of the read states where the Output FIFO has no data to be processed. The Read
Controller shall wait in that particular state until data has been entered into the Out-
put FIFO by the Output Port Controller.  Finally, Figure 11.15 shows a burst read
transaction. Recall, that burst read transactions shall consists of four 32-bit words.
The SIZE (SIZ[1:0]) information is not relevant during burst transactions because
the NBIC only handles burst transactions of four words. This is a limitation of the
NBIC. The NBIC specification does not state what would occur if a 16 or 32 word
burst transaction is attempted over the NextBus. The NBIC does not provide any er-
ror checking for the size (number of words) of the burst transaction. The Read Con-
troller AHPL description assumes all burst transactions consists of four words. The

next controller to be introduced is the Status Controller.
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Figure 11.13. Timing Diagram for Input Port Controller Single-Word Read Sequence.
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Figure 11.14. Timing Diagram for Single-Word Read Sequence with Empty FIFO Flag Asserted.
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Figure 11.15. Timing Diagram for Input Controller Burst Read Sequence.
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Figure 11.15. Con’t.
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-level Design of

The Status Controller shall be responsible for placing one out of seven status
flags on the Isb (LAD[0]) of the address/data lines. The seven status flags are com-
posed of six FIFO status flags and one SubSystem Error Flag (this is on a per
PORT basis). The Input and Output FIFO's each have three status flags (FIFO
empty, full and half empty). The Status Controller receives six FIFO registered flags
along with the SubSystem Error flag. The controller shall select the appropriate flag,
depending on the signal set by the Address Decoder module, and enable it on the Isb
of the address/data lines. Recall, that the Read Controller has a 32-bit byte loadable
register which connects to the NBIC address/data lines. This register shall be tri-
stated while the Status Controller is active. The Status Controller shall enable its
own LADI[0] data line when the user request one of the seven status flags. A top-
level block diagram of the Status Controller and its interconnections is shown in Fig-
ure 11.16. The AHPL description for the Status Controller is shown in Figure 11.17.
Finally, a timing diagram is shown in Figure 11.18. which shows the sequence of
states executed to obtain the flag requested by the user. The reads to any of the sta-
tus flags shall always be single-word transactions. The burst request (BREQ®*) sig-
nal should always be deasserted when a status flag is requested. If the user request
one of the seven flags by a burst read, then the Address Decoder module shall not set
the appropriate flag and the transaction shall result in a Bus Error (BERR*) termina-
tion signal being asserted by the Error Controller.

Up to this point, all the controllers which make up the Input Controller have been
introduced. Only one of the three controllers (Read, Write or Status) can be active at
any given time. Also, the NBIC can only be involved in a transaction with one of the
four ports and with one of the three controllers mentioned in this chapter.  The final
section of this chapter shall compile all the information for the Write, Read and Status

Controller to derive the AHPL description for the Input Port Controller.




Figure 11.16. Top-level Block Diagram of Status Hardware.
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Figure 11.17. AHPL Description for Status Controller.

MODULE: STATUS_CONTROLLER.

MEMORY:

INPUTS:  STATUSX_ACTIVE, PORTX_ERROR, PORTX_IN_FF_FLG,
PORTX_IN_EF_FLG, PORTX_IN_HF_FLG, PORTX_OUT_FF_FLG,
PORTX_OUT_EF_FLG, PORTX_OUT_HF_FLG, IX_FF*, IX_EF*,
IX_HF*, OX_FF*, OX_EF*, OX_HF*, SUBX_ERROR, LRESET*.

OUTPUTS: LAD[0], STERM_EN*.

" Description of Inputs

" STATUSX_ACTIVE = Set by Address Decoder (AD) when a status flag

" has been requested by the user.

" PORTX_ERROR = Asserted by AD when the Subsystem flag has been

. requested for PortX.

" PORTX_IN_FF_FLG = Asserted by AD when the Input FIFO FULL flag

" for PortX has been requested by the user.

" PORTX_IN_EF_FLG = Asserted by AD when the Input EMPTY FIFO

- flag for PortX has been requested by the user.

" PORTX_IN_HF_FLG = Asserted by AD when the Input FIFO HALF FULL

" flag for PortX has been requested by the user.

" PORTX_OUT_FF_FLG = Asserted by AD when the Outgul FIFO FULL flag

" for PortX has been requested by the user.

" PORTX _OUT_EF_FLG = Asserted by AD when the Output EMPTY FIFO

flag for PortX has been requested by the user.
PORTX _OUT_HF_FLG = Asserted by AD when the Output FIFO HALF FULL
flag for PortX has been requested by the user.

" DX_Fr* = PontX registered Input FIFO FULL flag.

" IX_EF* = PortX registered Input EMPTY FIFO flag.

" IX_HF* = PortX registered Input FIFO HALF FULL flag.

" OX_FF* = PortX registered Output FIFO FULL flag.

" OX_EF* = PortX registered Output EMPTY FIFO flag.

" OX_HF* = PortX registered Output FIFO HALF FULL flag.

"SUBX_ERROR = PortX registered SubSystem ERROR flag.

"LRESET* = Active Low reset pulse from NBIC (1.28 microseconds).

" Description of Outputs

" LAD[0] = LSB of the Address/Data lines to and from NBIC.

STERM_EN* = Synchronous Termination Signal. Asserted during

rising edge of LCLK from Status Controller and clocked
on trailing edge of LCLK external to controller.

BODY

1. --> (STATUSX_ACTIVE)/(1). " Stay in this State tll StatusX_Active
is asserted by Address Decoder.
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Figure 11.17. Con’t.

2. STERM_EN* =0; " Select the appropriate Status Flag .

LAD[0] <-- (IX_FF*!IX_EF*!IX_HF* ! OX_FF* ! OX_EF* ! OX_HF*!
SUBX_ERROR ) * ( PORTX_IN_FF_FLG, PORTX_IN_EF_FLG,
PORTX_IN_HF_FLG, PORTX_OUT_FF_FLG,
PORTX_OUT_EF_FLG, PORTX_OUT_HF_FLG, PORTX_ERROR).

" The register LAD[0] is enabled during State #2 & 3. All other states Tri-stated

3. STERM_EN* = I; " Stay in this State till StatusX_Active goes low
--> ( STATUSX_ACTIVE, STATUSX_ACTIVE) / ( 3, I).

END SEQUENCE
--> (LRESET* ) /(1 ). " Go to State #1 if Reset Pulse asserted.

END.

Figure 11.18. Timing Diagram for a Status Controller Transaction.
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n ntroll -Ley ification

All the controllers introduced in this chapter have been designed on a per port
basis. The NBIC can only be involved in one transaction at any given time; therefore,
only one of the four ports shall be active at any given time. Since only one port is ac-
tive at any given time, the NeXT-to-Motherboard interface board only requires one
Input Port Controller. There is no need to duplicate the same state-machine four
times when it is known that only one port shall be active. Duplicating the Input Port
Controller four times shall result in hardware which is only used at most one-fourth of
the time. The purpose of this section is to combine the AHPL descriptions from the
Write, Read and Status Controllers into a single AHPL description which shall be
used in transactions involving any of the four ports. A top-level block diagram of the
Input Port Controller is shown in Figure 11.19. This figure shows all 78 inputs and 18
outputs of the Input Port Controller. The symbol X represents per port signals. For

example, the Port Active signal for Port 0 is denoted by PORTO_ACTIVE (X =0 - 3).
Since there shall only be one Input Port Controller, the interface board shall con-
tain only one 32-to-8 input multiplexor (shown in Figure 11.4) and only one 32-bit
byte loadable register (shown in Figure 11.11). The output of the multiplexor shall be
connected to all Input FIFO’s on the interface board. Recall, that the Configuration
Controller also interconnects with a 32-bit byte loadable register (shown in Figure
9.2). The designer of the board should attempt to only use one 32-bit byte loadable
register. All of the Output FIFO’s shall have their 8-bit data lines connected to the
32-bit byte loadable register inputs on a byte basis. Also, the data lines from the
PROM in the Configuration Controller hardware shall have its 8-bit data lines con-
nected to the same 32-bit byte loadable register. Recall, that the PROM and Output
FIFO’s shall have their 8-bit data lines tri-stated when not involved in a transac-
tion. All the read transaction timing diagrams presented in this chapter (Figures

11.13 - 11.15) show the read pulse (R*) deasserted until its time to access data from
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the appropriate Output FIFO. If the read pulse is deasserted, then the 8-bit data
lines of the FIFO are tri-stated. The designer needs to generate one global output
enable for the 32-bit byte loadable register using the output enables generated by the
Configuration and Input Port Controllers. '

The state-diagram for the Input Port Controller is shown in Figure 11.20. This di-
agram is composed of the AHPL descriptions from theWrite, Read and Status Con-
trollers previously defined. The syntax used for the transition conditions shown in
Figure 11.20 are as follows: A pound sign (#) indicates a logical "OR"; An amber-
sign (&) indicates a logical "AND"; An exclamation mark (!) in front of a variable
stands for a logical "NOT". The AHPL description for the Input Port Controller which
corresponds to the state-diagram of Figure 11.20 is shown in Figure 11.21. No tim-
ing diagrams shall be presented for the Input Port Controller AHPL description since
they have been presented already. The timing diagrams previously presented in this
chapter apply to the Input Port Controller AHPL description shown in Figure 11.21.

This chapter has presented a top-level design of the Input Port Controller. The
AHPL description presented in this chapter shall be the basis for the detail design of
the Input Port Controller. The asynchronous logic which is shown in Figures 11.4
and 11.11 shall be designed by the designer. This logic depends on the period select-
ed for the local bus clock (LCLK). The Input Port Controller AHPL descriptions out-
puts four READ and WRITE signals (one per port). These signals (READ and
WRITE) shall be used to derive the FIFO READ (R*) and WRITE (W#) pulses.




Figure 11.19. Top-level Block Diagram of Input Controller.
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Figure 11.20. State-Diagram for Input Port Controller.
LRANSITION CONDITIONS

CondA = HF1 # Byte2

CondB = ByteQ # (1Burnt® & Burst_Byte_EnX)
CondC = HFO # Bytel
CondD=1Burst®* & CNT_NE_3

CondE = Port_Active # Status_Active
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Figure 11.21. AHPL Description for Input Controller.

INPUT_CONTROLLER.

CNTI[2], BURST*.

PORTO_ACTIVE, PORTI_ACTIVE, PORT2_ACTIVE,
PORT3_ACTIVE, STATUSO_ACTIVE, STATUS1_ACTIVE,
STATUS2_ACTIVE, STATUS3_ACTIVE, BREQ*, R/W*,

DS§*, AD[1:0], SIZ[1:0], LRESET*, BURST_BYTE_ENO,
BURST_BYTE_ENI, BURST_-BYTE_EN2, BURST_BYTE_EN3,
PORTO_ERROR, PORT1_ERROR, PORT2_ERROR, PORT3_ERROR,
PORTO_IN_FF_FLG, PORTI_IN_FF_FLG, PORT2_IN_FF_FLG,
PORT3_IN_FF_FLG, PORTO_IN_EF_FLG, PORTI_IN_EF_FLG,
PORT2_IN_EF_FLG, PORT3_IN_EF_FLG, PORTO_IN_HF_FLG,
PORTI_IN_HF_FLG, PORT2_IN_HF_FLG, PORT3_IN_HF_FLG,
PORTO_OUT_FF_FLG, PORT1_OUT_FF_FLG, PORT2_OUT_FF_FLG,
PORT3_OUT_FF_FLG, PORTO_OUT_EF_FLG, PORT1_OUT_EF_FLG,
PORT2_OUT_EF_FLG, PORT3_OUT_EF_FLG, PORTO_OUT_HF_FLG,
PORTI_OUT_HF_FLG, PORT2_OUT_HF_FLG, PORT3_OUT_HF_FLG,
10_FF*, 11_FF*, 12_FF*, I13_FF*, 10_EF*, 11_EF*, 12_EF®*, 13_EF®*,
I0_HF*, I1_HF*, 12_HF*, 13_HF*, O0_FF*, O1_FF*, O2_FF*, O3_FF*,
OO0_EF*, O1_EF*, O2_EF*, O3_EF*, O0_HF*, O1_HF*, O2_HF*,
O3_HF*, SUBO_ERR, SUB1_ERR, SUB2_ERR, SUB3_ERR, BERR*.

MUX_SEL[2], BACK*, STERM_EN*, WRITEQ, WRITE1, WRITE2,
WRITE3, READO, READI1, READ2, READ3, CE[4], LAD[0], RD_OE*.

" Description of Inputs
" PORTX_ACTIVE = Asserted by the Address Decoder module when the

user requests a Write or Read transaction with Port X.

" STATUSX_ACTIVE = Asserted by the Address Decoder module when the

" BREQ*
" RIW*
" DS*

" AD[1:0]

" SIZ[1:0]
" LRESET*

user request one of the seven status flags from Port X.
= Asserted by the NBIC for all burst transactions.
= High for a Read transaction and low for a Write.
= Asserted by the NBIC when data is ready on the bus
(Write) or data can be received by the NBIC (Read).
= Two Isb’s of the address latched by the Address
Decoder module.
= Two size bits which are used to determine the type
of transaction which is to take place.
= Local bus reset signal from the NBIC.

"BURST_BYTE_ENX = Signal(s) asserted by the Address Decoder module

when the user performs a burst write (byte-mode)
transaction on Port X. Only set during burst Writes.

" PORTX_ERROR = Asserted by the Address Decoder module when the

user request the Subsystem Error flag from Port X.

" PORTX_IN_FF_FLG = Asserted by the Address Decoder module when the

user request the Input FIFO full flag from Port X.

" PORTX_IN_EF_FLG = Asserted by the Address Decoder module when the

user request the Input FIFO empty flag from Port X.



" PORTX_IN_HF_FLG
" PORTX_OUT_FF_FLG = Asserted by the Address

* IX_FF*
" IX_EF*
" IX__I'IF‘

" OX_FF*
" OX_EF*
" OX_HF*
" SUBX_ERR

" BERR*

"

Figure 11.21.
= Asserted by the Address Decoder module when user

oy

Con’t.

request the Input FIFO half cmrry Flag from Port X.

er module when user

request the Output FIFO full flag from Port X.

" PORTX_OUT_EF_FLG = Asserted by the Address Decoder module when user

request the Output FIFO empty flag from Port X,

" PORTX_OUT_HF_FLG = Asserted by the Address Decoder module when user
request the Output FIFO half empty flag from Port X.

= Registered Input FIFO full flag from Port X.

= Registered Input FIFO empty flag from Port X.

= Registered Input FIFO half empty flag from Port X.

= Registered Output FIFO full flag from Port X.

= Registered Output FIFO empty flag from Port X.

= Registered Output FIFO half empty flag from Port X.

= Registered Subsystem Error Flag from Port X.

= Signal asserted by NBIC if a timeout error occurs or
asserted by Error Controller if an invalid address on
the board is referenced by the user.

" Description of Quipuls

" MUX_SEL[1:0]
"BACK*

" STERM_EN*
" WRITEX

" READX

" CE[3:0]
" LADI[0]

" RD_OE*

BODY

= Multiplexor select lines which are used during Write
transactions to select appropriate byte of 32-bit word.

= Asserted by Input Controller to acknowledge burst
request from the NBIC.

= Asserted on rising edge of LCLK to terminate a
transaction with the NBIC. Used to generate STERM*.

= Asserted when a WRITE to Input of Port X is to
take place. External asynchronous logic shall generate

the write pulse signal (W*) to the FIFO of Port X.
= Asserted when a READ from Output FIFO of Port X
is to take place. External asynchronous logic shall
generate the read pulse signal (R*) to FIFO of Port X.
= Chip byte enables for the 32-bit byte loadable register.
This register is used to build 32-bit word during Reads.
= Least significant bit of the local bus address/data lines.
This bit is asserted by Input Port Controller when the
user requests one of the seven status flags.
= Qutput enable signal for the 32-bit byte loadable
register. Asserted during READ transactions.

1. --> ( PORT_ACTIVEV STATUS_ACTIVE,
PORT_ACTIVEA R/W*, PORT_ACTIVEAR/W?*,

STATUS_ACTIVE )/ (1, 2, 10, 15).
MUX_SEL =2 T 0; BACK* <-- 1;

WRITEO = 0; READQ = 0;
WRITEI = 0; READ1 =0
WRITE2 = 0; READ2 = 0;
WRITE3 = 0; READ3 = 0;

CE=4TO0; LAD[0] <-- Z;

" Either stay in State #1

" or go execute a Write (State 2),

" Read (State 9) or Status (State 15)
" sequence. Set all Outputs to

" their deasserted state.

" The Symbol Z indicates Tri-state.
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Figure 11.21. Con't.

" Begin WRITE Sequence

--> (DS*)/A(2);

BURST* <-- BREQ* ; " Store BREQ* since it is deasserted after third Word.
CNT<--2TO; " Clear the counter (used to keep track during Burst)
--> (BYTEI, (HF1 V BYTE2), BYTE3) / (5, 6,7 );
MU_SEL=2TO; " Select Byte 0 [31:24]

WRITEO = 10_FF*/\ PORTO_ACTIVE; " Set WRITE signal if Input FIFO
WRITE1 = I1_FF*A PORT1_ACTIVE; " full flag is deasserted. WRITE
WRITE2 = I2_FF*/A\ PORT2_ACTIVE; " signals are asserted depending
WRITE3 = I3_FF*A PORT3_ACTIVE; " on the PORT which is active.
STERM_EN* = (BYTEO A(BURST* \/ BURST_BYTE_EN)) VGI_FF*;
--> (GL_FF*, (BYTEOV (BURST*A BURST_BYTE_EN))A GI_FF*) / (4,8);
BACK* <-- BREQ* ; " Assert BACK* if BREQ* is asserted
MUX_SEL=2T1; " Select Byte 1 [23:16]

WRITEO = I0_FF*\ PORTO_ACTIVE; " Set WRITE signal if Input FIFO
WRITE1 = I1_FF*/\ PORTI_ACTIVE; " full flag is deasserted. WRITE
WRITE2 = I2_FF*/\ PORT2_ACTIVE; " signals are asserted depending
WRITE3 = I3_FF*A PORT3_ACTIVE; " on the PORT which is active.
STERM_EN* = (HF0O ABYTEI )V GI_FF*;

--> (GI_FF*, (HFOV BYTE! )AGI_FF* ) / (5,8);
MUX_SEL =2T2; " Select Byte 1 [15:8]
WRITEO = 10_FF*A\ PORTO_ACTIVE; " Set WRITE signal if Input FIFO
WRITE1 = I1_FF*A PORT1_ACTIVE; " full flag is deasserted. WRITE
WRITE2 = 12_FF*/\ PORT2_ACTIVE; " signals are asserted depending
WRITE3 = I3_FF*A PORT3_ACTIVE; " on the PORT which is active.
STERM_EN* = ( BYTE2Z VV IF_FF*);

--> (GI_FF*, BYTE2 A GI_FF*) / ( 6, 8 );

. MUX_SEL=2T3; " Select Byte 3 [7:0]

WRITEQ = 10_FF*A PORTO_ACTIVE; " Set WRITE signal if Input FIFO
WRITE1 = I1_FF*A\ PORT1_ACTIVE; " full flag is deasserted WRITE
WRITE2 = 12_FF*/\ PORT2_ACTIVE; " signals are asserted depending
WRITE3 = I3_FF*/A PORT3_ACTIVE; " on the PORT which is active.
STERM_EN* = GI_FF*;

BACK* <-- BREQ*

-> (GI_FF*) / (7)),

L LA
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Figure 11.21. Con;t.

8. WRITEO =0; WRITE1 =0; " Set WRITE and STERM_EN*

10.

11.

12.

WRITE2 = 0; WRITE3 =0; " to their deasserted state.
STERM_EN* = |, " Increment CNT which keep track of
CNT <-- INC (CNT) ; " number of words during burst transfers.

--> ( BURST*\YCNT_NE_3, BURST*A CNT_NE_3)/ (15, 4 ),
BACK* <-- BREQ* ;

" Begin READ Sequence

. CE[0] =GO_EF*; " Set Chip Enable 2E00 if Output FIFO empty flag is High

READO = O0_EF*/A PORTO_ACTIVE ; " Set READ signal if Output FIFO
READI = O1_EF*APORTI_ACTIVE; " FIFO empty flag is deasserted.
READ2 = O2_EF*/\PORT2_ACTIVE; " READ signals are asserted depending
READ3 = O3_EF*A PORT3_ACTIVE . " on the PORT which is active.

STERM_EN*=1; " Deassert Synchronous Termination
->(GO_EF* )/ (9); " Stay in this state if the empty FIFO flag is LOW
BACK* <-- BREQ* ; " Assert BACK* if BREQ* is asserted.

CE[1] =GO_EF*; " Set Chip Enable 2E01 if Output FIFO empty flag is High
READO = O0_EF*/\ PORTO_ACTIVE; " Set READ signal if Output FIFO
READI = O1_EF*APORT1_ACTIVE; " FIFO empty flag is deasserted.
READ2 = 02_EF*/\PORT2_ACTIVE; " READ signals are asserted depending
READ3 = 03_EF*A PORT3_ACTIVE: " on the PORT which is active.

STERM_EN* =1 ; " Deassert Synchronous Termination
=>(GO_EF*)/(10); " Stay in this state if the empty FIFO flag is LOW

CE[2] =GO_EF*; " Set Chip Enable 2E02 if Output FIFO empty flag is High
READO = O0_EF*/\ PORTO_ACTIVE ; " Set READ signal if Output FIFO
READI = O1_EF*APORTI_ACTIVE; " FIFO empty flag is deasserted.
READ2 = O2_EF*APORT2_ACTIVE; " READ signals are asserted depending
READ3 = O3_EF*/A PORT3_ACTIVE ; " on the PORT which is active.
STERM_EN* =1 ; " Deassert Synchronous Termination

--> (GO_EF* ) /(11); " Stay in this state if the empty FIFO flag is LOW

CE[3] =GO_EF*; " Set Chip Enable 2E03 if Output FIFO empty flag is High
READO = O0_EF*/\PORTO_ACTIVE ; " Set READ signal if Output FIFO
READI = O1_EF*/\PORT1_ACTIVE; " FIFO empty flag is deasserted.
READ2 = 02_EF*/\PORT2_ACTIVE; " READ signals are asserted depending
READ3 = O3_EF*/\ PORT3_ACTIVE ;: " on the PORT which is active.
STERM_EN* = GO_EF* ; " Deassert Synchronous Termination

--> ( GO_EF*, GO_EF* A BREQ*) / ( 12, 9);

" Stay in this State if GO_EF* signal is asserted. If GO_EF* is
" deasserted and Burst transaction, then go to State #2 else go to State #6.
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Figure 11.21. Con't.

13. READO =0; READ1 =0; " Deassert the FIFO Read signals
READ2 = 0; READ3 = 0;

STERM_EN*=1; " Deassert Synchronous Termination
=>(15). " Go to State #15 to Wait for Port_Active to go LOW.

" Begin STATUS Sequence

14. STERM_EN* = (; " Select the appropriate Status Flag .
LAD[0] <-- ( IF_FF* | IF_EF* ! IF_HF* ! OF_FF* | OF_EF* | OF_HF* !
SUB_ERROR ) * ( PORT_IN_FF_ , PORT_IN_EF_FLG,

PORT_IN_HF_FLG, PORT_OUT_FF_FLG,
PORT_OUT_EF_FLG, PORT_OUT_HF_FLG, PORT_ERROR).
" The register LAD(0] is enabled during State #14 & 15.
" All other states, the register is tri-stated

" Wait in this State
15. --> ( PORT_ACTIVEV STATUS_ACTIVE, " till Ponx_x.sctive

PORT_ACTIVEV STATUS_ACTIVE)/(15,1). " or StatusX_Active

" are deasserted by
" Address Decoder.

END SEQUENCE

WORD = ( SIZ[TT A SIZ[0] A AD[T) A ADI0) A BURST* ); "Word [31:0]

HF0 = ( SIZ[1] A SIZ[0] A AD[T) A AD[0)A BURST* ); " Halfword 0 [31:16]
HF1 = (SIZ[1] A SIZ[0] A AD[T) A AD[0)A BURST* ); " Halfword 1 [15:0)
BYTEO = (SIZ[T] A S1Z{0] A AD[T) A AD[0] A BURST* ); " Byte 0 [31:24]
BYTE1 = (SIZ[IT A S12[0) A AD[T) A AD[0]A BURST* ); " Byte 1 [23:16]
BYTE2 =(SIZ[1] A SIZ[0] A AD[1] A AD[0] A BURST* ); " Byte 2 [15:8]
BYTE3 = (SIZ{1] A SIZ[0) A AD[1] A AD[0]A BURST* ); " Byte 3 [7:0]
CNT_NE_3 = ( CNT[T] A TNT[0)) V (CNT[T] A CNT[0])V (CNT{1] A CTNTIO)):;
~> ( LRESET* V BERR¥) / (1); " Go to State #1 when LRESET* is asserted
RD_OE* = PORT_ACTIVE V R/W*¥;

PORT_ACTIVE = PORTO_ACTIVE V PORT1_ACTIVEV
PORT2_ACTIVE V PORT3_ACTIVE;

STATUS_ACTIVE = STATUSO_ACTIVE V STATUS1_ACTIVE V
STATUS2_ACTIVEV STATUS3_ACTIVE;

BURST_BYTE_EN = ( BURST_BYTE_ENO ! BURST_BYTE_EN1 !
BURST_BYTE_EN2 ! BURST_BYTE_EN3 ) *
( PORTO_ACTIVE, PORTI_ACTIVE,
PORT2_ACTIVE, PORT3_ACTIVE );




Figure 11.21. Con’t.

PORT_ERROR = PORTO_ERROR V PORTI_ERROR V
PORT2_ERROR V PORT3_ERROR;
SUB_ERR = ( SUBO_ERR ! SUB1_ERR ! SUB2_ERR ! SUB3_ERR ) *

( STATUSO_ACTIVE, STATUS1_ACTIVE,
STATUS2_ACTIVE, STATUS3_ACTIVE );

PORT_IN_FF_FLG = ( PORTO_IN_FF_FLG V PORTI_IN_FF_FLGV
PORT2_IN_FF_FLG V PORT3_IN_FF_FLG );
PORT_IN_EF_FLG = ( PORTO_IN_EF_FLG V PORTI1_IN_EF_FLGV
PORT2_IN_EF_FLG V PORT3_IN_EF FLG );
PORT_IN_HF_FLG = ( PORTO_IN_HF_FLGV PORTI1_IN_HF_FLGY
PORT2_IN_HF_FLG V PORT3_IN_HF_FLG );
PORT_OUT_FF_FLG = ( PORTO_OUT_FF_FLG V PORTI1_OUT_FF_FLGV
PORT2_OUT_FF_FLGV PORT3_OUT_FF_FLG );
PORT_OUT_EF_FLG = ( PORTO_OUT_EF_FLG V PORTI1_OUT_EF_FLGV
PORT2_OUT_EF_FLGV PORT3_OUT_EF_FLG );
PORT_OUT_HF_FLG = ( PORTO_OUT_HF_FLGV PORTI_OUT_HF_FLGV
PORT2_OUT_HF_FLGV PORT3_OUT_HF_FLG );
IF_FF* = ( I0_FF* ! I1_FF* ! I2_FF* | I3_FF* ) * ( STATUSO_ACTIVE,
STATUS1_ACTIVE, STATUS2_ACTIVE, STATUS3_ACTIVE );
IF_EF* = (I0_EF* ! I1_EF* ! I2_EF* ! I3_EF* ) * ( STATUSO_ACTIVE,
STATUS1_ACTIVE, STATUS2_ACTIVE, STATUS3_ACTIVE );
IF_HF* = ( I0_HF* ! I1_HF* | I2_HF* ! I3_HF* ) * ( STATUSO_ACTIVE,
STATUS1_ACTIVE, STATUS2_ACTIVE, STATUS3_ACTIVE );
OF_FF* = ( O0_FF* ! O1_FF* ! O2_FF* ! O3_FF* ) * ( STATUSO_ACTIVE,
STATUS1_ACTIVE, STATUS2_ACTIVE, STATUS3_ACTIVE );
OF_EF* = ( O0_EF* ! O1_EF* ! O2_EF* ! O3_EF* ) * ( STATUSO_ACTIVE,
STATUS1_ACTIVE, STATUS2_ACTIVE, STATUS3_ACTIVE );
OF_HF* = ( O0_HF* ! O1_HF* ! O2_HF* ! O3_HF* ) * ( STATUSO_ACTIVE,
STATUS1_ACTIVE, STATUS2_ACTIVE, STATUS3_ACTIVE );
GI_FF* = ( IO_FF* ! I1_FF* ! I2_FF* | I3_FF* ) * ( PORTO_ACTIVE,
PORT1_ACTIVE, PORT2_ACTIVE, PORT3_ACTIVE );
GO_EF* = ( O0_EF* ! O1_EF* ! O2_EF* ! O3_EF* ) * ( PORTO_ACTIVE,
PORT1_ACTIVE, PORT2_ACTIVE, PORT3_ACTIVE );

END.
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CHAPTER XII
TOP-LEVEL DESIGN OF OUTPUT PORT CONTROLLER
Descripti h r ntroll

The purpose of this chapter is to present a top-level design of the Output Port
Controller. This controller shall communicate with the Input/Output FIFQ’s and the
Inmos Link Adaptor (IMS C011). The controller shall write bytes received from Link
to the appropriate Output FIFO and read data from the Input FIFO so that it can be
transmitted to Link. The controller shall control all the handshaking signals between
the CYPRESS FIFQ’s and the Inmos Link Adaptor. Before the design of the Output
Controller is presented, the Inmos Link Adaptor must be introduced since it interfaces

with the Output Controller.

rod n to the Inmos Link r

The Inmos Link Adaptor provides full duplex communication between a peripheral
or microprocessor and the transputer serial links. The IMS CO11 has two modes of
operation: peripheral interface and bus interface. When the IMS (011 is configured
has a peripheral interface (Mode 1), it has two byte-wide port interfaces to communi-
cate with the serial links of the transputer. Both ports (input and output) have their
own two-wire set of handshaking lines. When configured has a bus interface (Mode
2), it is used to interface an Inmos transputer serial link with a microprocessor sys-
tem bus. Only the peripheral interface mode shall be used on the NeXT-to-Mother-
board interface board; therefore, the bus interface mode shall not be presented. A
block diagram of the IMS CO11 configured in Mode 1 is shown in Figure 12.1. The

system services are used to startup and maintain the link adaptor. A brief descrip-
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tion of the system services and port interface signals are shown in Table 12.1. The

designer should read the specifications of the IMS CO11 link adaptor for detail design

Figure 12.1. Block Diagram of IMS C011 Configured in Mode 1.

VCC - o .‘8110-7 S
GND : o Input E “hIValld
SYSTEM £ Interface | ..
{apMInus  SERVICES | —JAck
Reset .
SeparatelQ _
Link-()ut' i Output _,_IQAck
Linkln___| LINK Interface | Qvalid,

SOURCE: INMOS, The Transputer Databook 2ed, (Redwood
Burn LTD, Trowbridge : 1989 ), pg. 504, Figure 1.1.

Table 12.1. IMS CO011 Mode 1 Signal Description.

PIN In/Out FUNCTION
VCC, GND Power Supply and Return
CapMinus External capacitor for internal power supply
ClockIn In Input Clock ( 5 MegaHertz) -
Reset In System reset
SeparatelQ In Select Mode and Mode 1 link speed
LinkIn In Serial data input channel
LinkOut Out Serial data output channel
10-7 In Parallel Input bus
IValid In Data on 10-7 is valid
IAck Out Acknowledge 10-7 data received by link
Q0-7 Out Parallel Output bus
QValid Out Data on QO0-7 is valid
QAck In Acknowledge from peripheral that data read

SOURCE: INMOS, The Transputer Databook 2ed. (Redwood Burn
LTD, Trowbridge: 1989), pg.505, Tables 2.1 - 2.2.
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application notes on the system service signals.  Information on the details of the
system services such as that the ClockIn signal must be derived from a crystal oscil-
lator instead of an RC oscillator are not covered in this research report.

The mode of operation is selected by the SeparatelQ input signal. Also, both
modes of operation support link speeds of either 10 or 20 Megabits per second.  Ta-
ble 12.2 shows the mode selection and speed selection for the IMS CO11. The link
speed for Mode 2 is determined by another input called Linkspeed. The signal Link-
speed is not part of the Mode 1 signal description.

SOURCE: INMOS, The Transputer Databook 2ed.
(Redwood Burn LTD, Trowbridge: 1989), pg. 508, Table 3.2.

The IMS CO11 input port interface is used to transmit bytes of data from a periph-
eral to a transputer via link. The communication is accomplished by a two-wire hand-
shake provided by the signals IValid and IAck. The peripheral asserts the signal
IValid when data is valid on the input port of the IMS CO011 to begin communication.
When the data has been acknowledged by the appropriate serial link, the IMS CO11
asserts the signal IAck to complete the handshake. = Recall from Chapter two that
each byte has to be acknowledged before the next byte can be transmitted. Refer to
Figure 2.2 for the formats of the data and acknowledge packets on the serial links.
Figure 12.2 shows a timing diagram for an IMS CO11 input port transaction. Refer to
the Inmos databook for specific timing parameters.

The IMS CO11 output port interface is used to convert serial data received on its

input link into byte format. When the data is available on the IMS CO11 output port,
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it asserts its QValid signal. The IMS CO11 does not accept another serial transmis-

sion until an QAck is received from the Output Port Controller. When the QAck sig-

nal is received, the IMS CO11 shall transmit an acknowledge packet (ACK) on its

output serial link. Once an ACK packet is transmitted, the IMS CO11 shall deassert

its QValid signal and can accept another serial transmission on its input serial link.

A timing diagram showing an IMS CO11 output port transaction with the Output Port

Controller is shown in Figure 12.3.

Figure 12.2. IMS CO011 Mode 1 Parallel Data Input to Link Adaptor.

Input Data Valid 10-7

1Valid / \ /
LinkOut
LinkIn ACK

SOURCE: INMOS, The Transputer Data Book 2ed. (Redwood Burn LTD,

Trowbridge: 1989), pg. 512, Figure 5.1.

Figure 12.3. IMS CO11 Mode 1 Parallel Data Output from Link Adaptor.

LinkIn

Qo7 X Datais Valid on Output Port X

QValid T —
QAck f—_\

LinkOut TCK

SOURCE: INMOS, The Transputer Data Book 2ed. (Redwood Burn LTD,
Trowbridge: 1989), pg. 513, Figure 5.2.
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Design ifications for Qutput Port Controller

The Output Port Controller shall contain two independent controllers. One con-
troller shall communicate with the input port of the IMS C0O11 and the other controller
with the output port of the IMS CO11. A top-level block diagram of the Output Port
Controller and its interconnections is shown in Figure 12.4.

The Output Port Controller IMS input sequence shall begin when there is data in
the Input FIFO (NeXT-to-Link) to process. The communication shall be asynchro-
nous between the Input FIFO and the IMS C011.  The Output Port Controller shall
communicate with the IMS CO11 via a two-wire handshake. Once the IMS CO011 de-

tects a high level on the IValid signal, it shall transmit the byte received on its input

Figure 12.4. Top-level Block Diagram of Output Port Controller Interconnections.

INPUT FIFO
T NeXT-loLink o
P Xl 3, To7 Input Data |__LinkOutX
s co11 | LinkInX
LINK
OUTPUT FIFO g
" Link-fo-NeXT
it Out  In *S/QM
= 2
Rl
OX FF* | outpUT
IX EF PORT ite
™ Controller WriteX | Async.
QValidX_f | |0 ReadX | Logic
TAckX N v :
ol ;. IValidX
ek | 7| |Y QAckX
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data lines serially on its output serial link. When the byte has been acknowledged
by the transputer, the IMS CO11 shall asserts its IAck signal. This process contin-
ues as long as there is data in the Input FIFO to process. The AHPL description for
the Output Port Controller Input IMS Controller is shown in Figure 12.5. The state-
diagram for this controller is shown in Figure 12.6. Finally, timing diagrams are pre-
sented to show the two different transactions possible. Figure 12.7 shows and IMS
CO11 input transaction with the Input FIFO Empty Flag (IX_EF*) deasserted
throughout the entire transaction. Figure 12.8 shows the same transaction but with
the Input FIFO Empty Flag asserted after the first byte has been transmitted to the
link adaptor.

The Output Port Controller Output IMS Controller shall write data into the Output
FIFO (Link-to-NeXT) when the link adaptor receives a byte from the appropriate
transputer. When a byte of data has been received on the input link, the IMS CO11
shall assert its QValid signal. The assertion of this signal shall begin the handshak-
ing sequence between the Output Port Controller and the IMS CO11. The Output Port
Controller IMS Output Controller shall write the byte into the Output FIFO if the
FIFO is not Full and assert the QAck signal to conclude the transaction. When the
IMS Q011 receives the QAck signal, it shall transmit an acknowledge packet on its
output link. This sequence is repeated on a Port basis every time a Port input link re-
ceives a byte of data. Figure 12.9 shows the AHPL description for the Output Port
Controller IMS Output Controller. The state-diagram for this controller is shown in
Figure 12.10. Finally, timing diagrams are presented to shown the two different type
of transactions which can occur. Figure 12.11 shows an Output IMS sequence with
the Output FIFO Full (OX_FF*) flag deasserted throughout the transaction. Figure
12.12 shows an Output IMS sequence with the FIFO Full flag asserted when the
QValid signal is asserted by the link adaptor.

This chapter has presented the design of the Output Controller. The Next-to-
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Motherboard interface board shall contain four Output Port Controllers (one per
port). The purpose of having four ports is so code to be executed in the network of
coprocessors can be down loaded faster or so that different nodes of the network can
be initialized simultaneously. Each port’s Output Port Controller shall begin trans-
mit bytes of data with its appropriate IMS CO11 as soon as the Input FIFO Empty
Flag is deasserted.  Since all port’s can be actively transmitting or receiving bytes of
data, four Output Controllers and IMS CO11’s are required on the interface board.

The designer can implement the Output Port Controller any way feasible. The au-
thor suggest using a PAL implementation approach The design of the Output Port
Controller can fit in one CYPRESS 22V10 PAL (one PAL per port). The ABEL list-
ing for the Output Port Controller implemented in a CYPRESS 22V10 is shown in Ap-
pendix C.
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Figure 12.5. AHPL Description of Output PORT Controller IMS C011 Input.

MODULE: OUTPUT_CONTROLLER_INPUT_IMS
MEMORY:

INPUTS: IX_EF*, IACKX, LRESET*.
OUTPUT: IVALIDX, READX.

"Description of Inputs

" IX_EF* = Registered version of Input FIFO Empty Flag for
" PORT X, where X =0 - 3.

"IACKX = Input Data acknowledge from the IMS CO11 Link
" Adapter of PORT X.

" LRESET* = Reset pulse from the NBIC.
"Description of Outputs
"IVALIDX = Asserted by controller when data is valid at the

input PORT of the IMS CO11.

"READX = Signal used to derive the Read Pulse for the

" PORT X Input FIFO.

BODY

1. READX =0 " Stay in this state till there is
IVALIDX = 0; " data in the PORT X Input
--> (IX_EF*)/(1). " FIFO to process.

2. READX =1; " Assert the READX signal to
IVALIDX = 0; " read a byte from the Input FIFO.

3. READX =0, " Assert I'ValidX to commence
IVALIDX = 1; - " handshaking sequence with IMS CO11.

--> (IACKX )/ (3). " Stay in this state till [AckX is asserted
" by the IMS CO11 of PORT X.
4. READX =0,
IVALIDX = 1;
--> (IACKX, IACKX AIX_EF*, [ACKX ATX_EF*) / (4, 2, 1).
" Stay in this state till the acknowledge signal from the IMS CO11
" is deasserted. Once the signal (IAckX) is deasserted, go to
" State #2 if the FIFO Empty Flag is deasserted to process another

" byte in the Input FIFO. If the Empty FIFO Flag is asserted, then
" go to State #1 and wait for the flag to be deasserted.

END SEQUENCE

--> (LRESET*) / (1). "Go to State #1 if Reset pulse is asserted.
END.
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Figure 12.6.. State-Diagram for Output Controller to IMS CO11 Input Sequence.




Figure 12.7. Timing Diagram for Output Controller Input Transaction
with FIFO Empty Flag Deasserted during Transaction.
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Figure 12.8. Timing Diagram for Output Controller Input Transaction

with FIFO Empty Flag Asserted during Transaction.
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Figure 12.9. AHPL Description of Output PORT Controller IMS COI1 Output.

MODULE: OUTPUT_CONTROLLER_OUTPUT_IMS
MEMORY:

INPUTS: QVALIDX, OX_FF*, LRESET*.
OUTPUT:  QACKX, WRITEX.

"Description of Inputs

i QVALIDX = Asserted by the link adaptor of Port X when there
is a valid byte on its output port interface.

" OX_FF* = Registered version of the Output FIFO Full flag
from Port X.

" LRESET* = Reset pulse from the NBIC.

"

"Description of Outputs

"QACKX = Asserted by controller when data has been written
! to the Output FIFO of Port X.

" WRITEX = Signal used to derive the Write Pulse for the

" PORT X Output FIFO.

BODY
1. WRITEX =0, " Stay in this State until the link
QACKX =0; " adaptor of Port X asserts the

--> (QVALIDX )/ (1). " QVALIDX signal to begin handshake.

2. WRITEX = OX_FF¥*, " Stay in this State till the Output FIFO
QACKX =0 " 1s ready to accept another byte.
-> (OX_FF*)/ (2).

3. WRITEX =0; " Stay in this State till the IMS (011
QACKX =1; " of Port X deasserts its QVALID signal.

> (QVALIDX, QVALIDX )/ (3, 1).

END SEQUENCE

--> ( LRESET*) / (1 ). "Go to State #1 if Reset pulse is asserted.
END.
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NO
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Figure 12.11. Timing Diagram for Output Controller Output Transaction
with FIFO Full Flag Deasserted during Transaction.
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Figure 12.12. Timing Diagram for Output Controller Output Transaction
with FIFO Full Flag Asserted during Transaction.
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CHAPTER XI1I
TOP-LEVEL DESIGN OF ERROR CONTROLLER

Description of Error Controller

The purpose of this controller is to terminate an invalid transaction requested
by the user with an error termination status or acknowledge any Port Reset or Ana-
lyze transactions. If the user reads or writes to an undefined address on the board
or to a valid address incorrectly, then the Error Controller shall be activated and is-
su¢ a Bus Error (BERR*) ternmination signal. For example, suppose the user
wants to know if the Input FIFO of PORT #0 is empty. If the user performs a burst
read to address 'SX4011XX’ (X are don’t care bytes and S is the board’s slot num-
ber), then the address decoder module shall not assert the signal
"PORTO_IN_EF_FLG" because a burst read was issued instead of a single-word
read. If this case occurs, then the Error Controller needs to be activated to issue a
Bus Error termination signal. The BERR* signal shall indicate to the user that the
NeXT-to-Motherboard interface board can not place valid data on the bus for the
given address.  Also, this controller shall terminate (assert signal STERM*) any
Port Reset or Analyze transactions issued by the user. This controller can be con-
sidered as the watchdog controller of the board. It shall inform the user if an invalid

memory address of the board has been referenced.

Top-Level Specifications for Error Controller.

A top-level block diagram of the Error Controller is shown in Figure 13.1. The con-
troller receives all of its inputs from the address decoder module. The TRANSAC-

TION signal is set when a valid Port transaction begins. The PORTX_ACTIVE
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signals (one per port) shall be set when the user reads or writes to the appropriate
Port address. The STATUSX_ACTIVE signals (one per port) shall be set when the
user reads to the appropriate special register address of the board’s memory address
space. If any of the four Status signals are set, then the user is requesting FIFO sta-
tus or Subsystem Error status from the board. If any of the Port active or Status ac-

tive signals are set, then the Error Controller shall not issue a Bus Error signal.

Figure 13.1. Top-Level Block Diagram of Error Controller.

TRANSACTION 1,
PORTX ACTIVE 4’/ ¥
STATUSX ACTIVE 4 kRoR
GP RESET Controller
GP ANALYZE

BERR*
e

1

STERM_EN* ™ STERM

*
——

Lok |Ree

LCLK

The AHPL description for the Error Controller is shown in Figure 13.2. This is the
only AHPL description which asserts the BERR* signal. However, the AHPL de-
scription for the Input Port Controller also asserts the synchronous termination signal
STERM*. The designer needs to combine the Error Controller’'s STERM_EN* with
the Input Controller’s STERM_EN* signal to generate a common STERM_EN* sig-
nal. This can be accomplished by a logical "AND" of the two STERM_EN* signals.
If a controller (Input or Error) is not activated, then it shall deassert its STERM_EN*
signal. If any of the STERM_EN* signals are asserted, then the common
STERM_EN* signal shall also be asserted. Two timing diagrams for the Error Con-
troller AHPL description are shown in Figures 13.3 and 13.4. The timing diagram of
Figure 13.3 shows an invalid Port Transaction since none of the active signals from
the address decoder are asserted. The transaction shown in Figure 13.3 results in a
Bus Error being issued by the Error Controller. The second timing diagram shows the

sequence of states executed for a valid Port Transaction.




Figure 13.2. AHPL Description for Error Controller.

MODULE: ERROR_CONTROLLER.
MEMORY: ERROR.

INPUTS: TRANSACTION, LRESET*, PORTO_ACTIVE, PORT1_ACTIVE,

PORT2 AC’I‘IVE PORT3 ACTIVE STATUSO ACTIVE,
STATUS1_ACTIVE, STATUS2 AC’I‘IVE STATUS3_ACTIVE,
GP_RESET, GP_ANALYZE.

OUTPUTS: BERR*, STERM_EN*.

"Description of Inpults

"TRANSACTION = Set by Address Decoder when a valid Port transaction
" is to take place. (Not set for a Port Reset or Analyze).
"LRESET* = Asserted by NBIC when a reset is to take place.
"PORTX_ACTIVE = Set by Address Decoder when a Read or Write

transaction to Port X is to take place (X = 0 - 3).

"STATUSX ACTIVE = Set by Address Decoder when a FIFO Status Flag or

or Subsystem Error flag has been requested for Port X.

" GP RESET = Asserted by the Address Decoder when any of the

four ports is to be reset.

" GP ANALYZE = Asserted by the Address Decoder when any of the

"

four ports is to be analyzed.

"Description of Oulputs

"BERR* = Set by Controller to issue a synchronous 32-bit bus error.
"STERM_EN* = Asserted by controller to terminate transaction.

BODY

1.

3.

--> ( TRANSACTION ) / (1). "Stay in this State until a Port transaction
BERR* = 1; STERM_EN* = 1. " is to take place. Deassert all outputs

-> (ACTIVE )/ ( 5). "Go to State #5 if the ACTIVE signal
BERR* = 1; STERM_EN* = 1. "is asserted. Deassert all outputs

BERR* = RESET ; "Assert Bus Error if not reset
STERM_EN* = 0. "assert synchronous termination signals.

BERR* = RESET; "Assert Bus Error if not reset and
STERM_EN* = 1. "deassert synchronous termination signal.

--> ( TRANSACTION, TRANSACTION ) / (5,1 ). " Stay in this state till
" Transaction signal is

END SEQUENCE " deasserted."

ACTIVE = ( PORTO_ACTIVEV PORT1_ACTIVEV PORT2 ACTIVEV
PORT3 ACTIVE\/ STATUSO ACTIVEV STATUSI _ACTIVEV
STATUSZ_ACTIVEV STATUS3_ACTIVE )

RESET = GP_RESET V GP_ANALYZE ;
--> (LRESET*)/(1). " Go to State #1 if local Reset pulse is

END "asserted by NBIC.
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Figure 13.3. Timing Diagram for an Invalid Port Transaction..
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Figure 13.4. Timing Diagram for a Valid Port Transaction.
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CHAPTER X1V
RESET, ANALYZE AND INTERRUPT SIGNALS
Description of Reset and Analyze Signals

The purpose of this chapter is to describe all the reset, analyze and interrupt sig-
nals which are required on the NeXT-to-Motherboard interface board.  All the reset
and analyze signals shall be represented in terms of a timing diagram. No AHPL de-
scription or state-diagrams shall be presented in this chapter. A top-level biock dia-
gram of the inputs to the reset and analyze logic is shown in Figure 14.1. The signals
PortX Reset and PortX_Analyze are asserted by the address decoder module. The
PortX Reset signal (one per port) is asserted when the user selects to reset the root
transputer of a Port X. Similarly, the PortX_ Analyze signal is asserted when the us-
er selects to analyze the state of the transputer network of Port X.  The assertion of
the signals is accomplished by writing to the appropriate special register address on
the interface board (listed in Table 8.1). The FIFO and IMS C011 reset signals are
asserted by the reset logic every time the LRESET* is asserted by the NBIC. The
FIFO reset signal is used to reset all the Input and Output FIFO's on the interface
board. Similarly, the IMS CO11 reset signal is used to reset all the link adaptors on

Figure 14.1. Top-level Block Diagram of Reset and Analyze Logic.
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4, LINKX RESET
rd

\

LINKX ANALYZE
IMS C011 RESET
FIFO RESET*
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Y
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|

-
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the board. The next section shall introduce timing diagrams for a Link Reset, Link
Analyze, FIFO or Link Adaptor (IMS CO011) reset sequence ( Inmos, "The Transput-
er Databook).

The trailing edge of the reset pulse to the transputer (LINKX RESET) shall ini-
tialize the transputer, trigger the internal and external memory configuration and be-
gin the bootstrap sequence. All of the events described above are performed in se-
quence instead of in parallel. ~ The Analyze signal is used in conjunction with the Re-
set signal to halt the root transputer and allow the user to examine the internal states
of the transputer so the cause of an error may be determined. The state of the Ana-
lyze signal indicates if the transputer is to be analyzed or reset. If the Analyze signal
is assertzd, then the transputer flags are not altered and the processor shall halt at
the next descheduling point. = The Reset signal must be asserted and deasserted
some time after the Analyze signal has been asserted. By asserting and deasserting
the Reset signal, the root transputer shall not performed the memory configuration se-
quence nor the refresh cycles which follow; therefore, the previous memory configura-
tion shall be used for any external memory accesses. If the Analyze signal is deas-
serted before the Reset signal is asserted, then the state and operation of the trans-
puter are undefined. If the signal BootFromRom is high, then the transputer shall
executed its boot program in ROM at the trailing edge of the Analyze signal. Other-
wise, the transputer shall wait for a control byte after the trailing edge of the Analyze
signal. Figure 14.2 shows a transputer Reset timing diagram and Figure 14.3 shows
a transputer Analyze timing diagram. From the timing diagrams, it can be seen that
the minimum time that the reset pulse is maintained at a high level depends on the
transputer clock period denoted by the variable ClockIn. Recall, that the Error Con-
troller shall issue a synchronous termination signal (STERM*) when the user per-

forms a link reset or analyze sequence.




Figure 14.2. Transputer Reset Timing Diagram.
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PortX Reset

PortX Analyze I

Minimum
LinkX Analyze |

LinkX Reset pe——— (8 *Clockin ) ——>

NOTES: Variable ClockIn denotes the period of the transputer clock.

Figure 14.3. Transputer Analyze Timing Diagram.

PortX Reset

PortX Analyze

LinkX Reset [*— ( 8 * Clockln )=
Minimum

LinkX Analyze é ) - .

Min = 10 ms

1 * ClockIn
Minimum

NOTES: Variable ClockIn denotes the period of the transputer clock.

The next reset signal required is for all the Input and Output FIFQ’s on the

board. This signal can probably be a buffered version of the LRESET* signal. Figure

14.4 shows a FIFO reset timing diagram. The state of the FIFO flags are shown in

this timing diagram for completeness. The timing parameters shown in Figure 14.4

are defined in Table 14.1. The last reset signal to be defined is the IMS C011 reset.




Figure 14.4. FIFO Reset Timing Diagram.
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Table 14.1. Timing Parameters for FIFO Reset Transaction.

Para- | 7C4XX-20 | 7Caxx-25 | 7C4x%-30 | 7C4xXX-40 | 7C4XX-65
M I MIN MAX | MIN MAX | MIN MAX|MIN MAX | MIN MAX
Tpmr | 20 25 30 40 65

Tefl 30 35 40 50 80
Thth 30 35 40 50 80
Tth 30 35 40 50 80

NOTES. All times shown above are in nanoseconds. The information for

this table was obtained from the CYPRESS_Semiconductor BICMQS/CMOS
Data Book, published March 1, 1990.

The IMS CO11 needs to be reset every time the LRESET* signal is asserted by

the NBIC. After power is applied to the board, the clock input of the IMS CO11 needs

to be operating at least 10 milliseconds (ms) before the trailing edge of the reset

pulse.

The minimum pulse width of the IMS CO11 reset pulse is also dependent on

the frequency of its clock. The minimum assertion time for the IMS CO11 reset pulse

is eight times the period of the clock ( 8 * ClockIn). When the IMS CO11 is reset, the
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signal Linkout is held at a low state, the handshaking lines IAck and QValid are held
low and the output port data lines (QO-7) are undefined. The last section of this

chapter shall explain the generation of the local bus interrupt signal SINT™.

ription of Inter i

The Inmos Host Interface guidelines specifies that the interface board shall have
the capability to interrupt the host processor. The NeXT-to-Motherboard interface
board shall assert the local interrupt signal SINT* when any of its four Output
FIFO’s (Link-to-NeXT) have data to be processed. = When bytes of data are re-
ceived on any of the four link inputs (LinkInX), the appropriate Cutput Port Controller

shall write the byte into the appropriate Output FIFO. After the data is written, the

empty FIFO flag for that FIFO shall be deasserted. The four empty FIFO flags
should be "NORed" to form the active low interrupt signal SINT*. When the SINT*
signal is asserted and the mask interrupt register is enabled, the NBIC shall generate
a NeXTbus interrupt signal. The host software can enable or disable the mask inter-
rupt register depending on the type of operation being performed. If the host is ex-
pecting return data from the array of coprocessors, then the host software shall en-
able the appropriate bit in the mask interrupt register so the interface board can alert
the host when data is valid in the Output FIFO. Once the interrupt is acknowledged
by the host software, the bit in the mask interrupt register should be cleared. The

reason for clearing the bit is that the NBIC shall continue to assert the NeXTbus in-

has been read from the Output FIFO. The assertion of the interrupt signal SINT*
shall indicate to the host that there is data from the network of coprocessor to be pro-
cessed. It does not inform the host software which of the ports have the data. The
host software should be smart enough to know which of the ports should be expecting

I terrupt signal since the empty FIFO flag should still be deasserted until all the data
I return data.




CHAPTER XV
CONCLUSIONS

This research report has presented a top-level design using the NBIC for a NeXT-
to-Motherboard interface board. The design of the interface board is composed of the
following six hardware modules: Configuration Controller, Address Decoder, Input
Port Controller, Output Port Controller, Error Controller and Reset, Analyze and In-
terrupt logic. The Configuration Controller shall initialize all the appropriate registers
in the NBIC. The Address Decoder module shall latch the address at the beginning of
a transaction and assert the appropriate control signals for the Port Controllers, Error
Controller, Reset and Analyze logic. The Input Port Controller is responsible for all
transactions between the NBIC local bus and the input/output FIFO'’s. The Output
Port Controller is responsible for all transactions between the input/output FIFO's
and the Inmos serial link adaptors (IMS CO11). The Error Controller shall terminate
a transaction with an error status when an invalid memory address on the board has
been referenced by the user or terminate a Port Reset or Analyze transaction with a
32-bit acknowledge status. Finally, the reset logic generates all the required reset
signals for the interface board and asserts the appropriate link reset signal (on a port
basis) when requested by the user. The link reset signal is used to reset the root
transputer in the motherboard connected to that particular port. The Analyze logic as-
serts the appropriate analyze and reset signal (on a port basis) when requested by
the user.  The analyze and reset signals in a transputer are used to halt the proces-
sor so the cause of a system error can be identified. The internal states of a transput-

er can be analyzed when the processor has been halted by an analyze sequence. The
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Interrupt logic asserts the local interrupt signal (SINT*) which is wsed by the NBIC
to generate a global interrupt signal on the NeXTbus.

All of the modules described in the previous paragraph have been designed in
AHPL. Also, timing diagrams have been generated for all of the modules and state
diagrams have been generated for several of the modules. The top-level design has
been performed on a module basis so that modularity can be achieved on a per port
basis. A top-level block diagram of all the hardware modules and their interconnec-
tions is shown in Figure 15.1. The board has been initially designed with four ports
which shall allow four motherboards or nodes of a parallel network w be initialized. If
more than four ports are required, then extra port hardware needs to be added and the
Address Decoder, Input Port Controller, Error Controller and Reset modules need to
be modified to support the extra port(s). Each port hardware consists of an Input
FIFO, Output FIFO, Output Port Controller and an Inmos seral link adaptor as
shown in Figure 15.1. If less than four ports are required, then only the required num-
ber of port hardware is required and the appropriate control input signals of the Input
Port Controller, Error Controller and Reset modules needs to be deasserted. The In-
put Port Controller, Address Decoder, Error Controller and Reset, Analyze and Inter-
rupt modules only need to be modified if more than four ports are required. The author
selected four ports has a starting number for the design. The algorithm presented in
this research report can be modified to support any number of ports. The actual num-
ber of ports on the board shall depend on the specific application of the board and the
amount of real estate remaining on the NeXTbus card after the detail design of the
Configuration Controller, Address Decoder, Error Controller, Input Port Controller and
the Reset, Analyze and Interrupt Logic is complete. The real estaie remaining on the
board shall allow the designer to determine the maximum number of port hardware
(Input FIFO, Output FIFO and Output Port Controller) which the board can support.

If the maximum number of ports is greater than four, then extra real estate might be
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required because several of the modules required modifications to support the extra
port(s).

The design of the NeXT-to-Motherboard interface board is based on using the
NeXTbus Interface Chip (NBIC) from NeXT Corporation. There are advantages and
disadvantages in using the NBIC in the design of the interface board. An obvious ad-
vantage in using the NBIC is that it reduces the amount of design time and logic re-
quired to interface to the NeXTbus since it provides a single-chip interface to the
NeXTbus. A disadvantage of the NBIC is that it only supports a burst transfer size
of four words during burst transactions. The NBIC does not fully support the NeXT-
bus protocol since the NeXTbus supports a maximum burst transfer size of 32 words.
The reason that the NBIC only supports a transfer size of four words during burst
transactions is due to the limitation of silicon real estate. Recall, the NBIC has two
internal FIFO’s where each FIFO can buffer two transactions. Each transaction
stored in the FIFO consists of one address and either one or four data words. The
NBIC contains two internal FIFO’s since it supports both Master and Slave opera-
tions. If NeXT Corporation had designed a NBIC for Slave only applications, then the
NeXTbus Master/Local Slave Transaction FIFO shown in Figure 5.5 (page 45) can
be deleted from the chip. The deletion of this FIFO shall create extra silicon real es-
tate which shall expand the Local Master/NeXTbus Slave Transaction FIFO to buffer
a minimum of eight data words during burst transactions (maybe more depending how
much control logic can be deleted from the chip). Another disadvantage about the
NBIC is that it does not generate an error when a burst transfer size of greater than
four is attempted over the NeXTbus. After talking to a technical representative from
NeXT, it is believed that only the first four words of the transaction are stored in the
appropriate transaction FIFO. The remaining words are acknowledged but never
stored in the FIFO. When performing burst transactions with the NBIC, the burst

transfer size must always be four words. The only solution to correct the limita-
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tions of the NBIC is to design custom logic which shall support the NeXTbus protocol
completely.

The design of custom interface logic shall increase design time and logic required.
An advantage of designing a custom interface is that the user shall have the capabili-
ty of selecting different burst transfer sizes (up to a maximum of 32 words). Also,
processing speed of the board shall improve for any burst transfer size greater than
four words. A disadvantage of designing a custom interface is that the number of
ports on the board shall be reduced due to the extra real estate consumed by the ex-
tra logic. The decision between using the NBIC or designing a custom interface de-
pends on several factors which need to be defined. First, is the speed of the interface
acceptable using the NBIC with a maximum burst transfer size of four words ? The
answer to this questions depends on the number of words to be transferred across
the interface and the period of the local bus clock (LCLK) selected by the designer of
the board. Code can be downloaded quicker with a burst transfer size of 32 words
(one transaction equals 32 words) versus a burst transfer size of 4 words (eight
transactions shall equal 32 words). Recall, every transaction has an address phase,
&ata phase and acknowledgment phase. Extra clocks are wasted due to the address
and acknowledgement phase when a small burst transfer size is used. Second, what
1s the maximum number of ports which shall be required for the interface board ? Af-
ter these two questions are answered, the designer can determine which approach
(NBIC versus Custom Logic Interface) shall support the two criterias. The author
has assumed that the performance achieved by using the NBIC is acceptable in the
design of the interface board. If custom logic is to be designed, an attempt should be
made to have a local bus interface similar to the NBIC so the amount of redesign time

for several of the hardware modules defined in this research report can be reduced.




CHAPTER XVI
SUMMARY OF WORK REMAINING

The purpose of this chapter is to state all the task which the author believes re-
main to be performed. This research report has define the ground work for the detail
design of the NeXT-to-Motherboard interface board. It has describe the modules of
the board in AHPL so the designer has total freedom of implementation. The only is-
sue which was not addressed by this report is testability of the board. This is the
first task which the author believes needs to be addressed.

The task of the board’s testability requires the current AHPL descriptions to be
modified so data can be written and read from the NeXTbus without the coprocessor
architecture connected to the interface board. This task can be accomplished by dif-
ferent methods. One method is by using one of the undefined address bits
(LAD[27:24], LAD[7]) to indicate a test transaction. Recall, that an address be-
tween sX0000XX through sXOFFFXX (s is the slot number of the board) shall be
processed by Port #0 and that address bits 2E00 through 2E06 have been previously
defined by NeXT. When a write transaction (single-word or burst) is performed with
the new address bit enabled, the Input Port Controller shall perform the write transac-
tion specified and enable a test mode bit on the board. However, the Output Port
Controller shall read data from the Input FIFO and write 11 to the Output FIFO in-
stead of to link when the test mode bit is asserted.  After an interrupt is generated
by the interface board, the user can then perform a read trznsaction (single-word or
burst) with the new test address bit asserted to read the data previously written.

The read is performed with the new address bit asserted so that the test mode bit on
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the board remains asserted This new test mode bit can be added 10 state one of the
address decoder AHPL description. A multiplexor shall be used to select between
the Input FIFO data lines or the IMS COI1 link adaptor output port data lines. The
multiplexor shall select the Input FIFO data lines when the test mode bit is enabled.
Otherwise, the multiplexor shall select the output data lines from the link adaptor.
By adding this new address bit, all the FIFO’s on the board can be tested. Blocks of
data written to the Input FIFO’s would eventually be written into the Output
FIFO’s. If the blocks of data written into the Input FIFO of Port X compares to the
blocks of data read from the Output FIFO of Port X, then read/write access to Port X
has been tested.

Along with the new AHPL descriptions to be redesigned, an interface software
program needs to be developed to test the board. The software program needs to
have the following capabilities: Write (single-word or burst) known data patterns of
arbitrary size into any of the four ports; Read (single-word or burst) data of arbitrary
size from any of the ports; Obtain FIFO status (Empty FIFO, FIFO Full, FIFO Half
Empty) information from any of the FIFO’s on the board; Perform a write/read trans-
action of arbitrary size on any of the four ports. A write/read transaction shall con-
sists of writing a user supplied number of bytes into the Input FIFO of Port X and
comparing the bytes to the bytes read from the Output FIFO of Port X. The program
should report to the user the number of bytes which were compared and the total num-
ber of failures. If byte failure(s) exists, then the program should display a list of the
bytes written to the Input FIFO versus the bytes read from the Output FIFO. Data
patterns should be selected so that every bit in a byte is toggled at least once.

After the testability of the board has been designed, the detail design and simula-
tion of the interface board can begin. The detail design/simulation phase shall prove
the validity of the AHPL descriptions or improve upon the algorithms described in this

research report.  If the board is to be designed on a CAD system, logic and simula-




153

tion models for the NBIC will need to be modeled. If the simulation model for the
NBIC can not be developed, then simulation can be performed assuming the inputs to
the board are the local bus signals of the NBIC. By assuming the local bus signals of
the NBIC as the inputs to the interface board, all the AHPL descriptions described in
this research report can be tested. During the detail design phase, the period of the
local bus clock (LCLK) needs to be determined. Recall, that the board needs a crys-
tal 5 MegaHertz (MHz) oscillator for the four IMS CO11 link adaptors.  Also, the
connector and cables between the interface and the Motherboard of the array of copro-
cessor needs to be defined. The connector(s) on the interface board should follow

the standard TRAM pinouts.




154

APPENDIX A. NeXTbus Backplane Pinout.

PIN # PIN NAME PIN# PIN NAME PIN# PIN NAME
Al +12V Bl ADO* Cl1 -12V
A2 +12V B2 AD1* C2 -12V
A3 +12V B3 AD2* C3 -12V
A4 +12V B4 AD3* C4 -12V
A5 SPO* B5 AD4* C5 GND
A6 SP1* B6 AD5* Cé6 GND
A7 RESERVED B7 ADo6* C7 VCC
A8 ACK* B8 AD7* C8 GND
A9 TMO* B9 ADBg* 9 VCC
Al0# INT* B10 AD9* C10 GND
All MCLKSEL* Bl1 ADI10* Cl1 vVCC
Al12# ARBO* B12 ADI11* C12 GND
Al13# ARBI* B13 ADI12* C13 vVCC
Al4#  ARB2* B14 ADI3* Cl4 GND
Al5# ARB3* B15 AD14* Cl15 vVCC
Al6# RQST* Bl16 ADI15* C16 GND
A17# RESERVED B17 ADI16* C17 VCC
Al8 T™MI1* B18 ADI17* C18 GND
Al19  DRQ* B19 ADI18* C19 vCC
A20 SPV* B20 ADI19* C20 GND
A2l RESERVED B21 AD20* C21 VCC
A22 DSTB* B22 AD21* 22 GND
A23 RESET* B23 AD22* C23 VCC
A24 RESERVED AB4 AD23* C24 GND
A25 START* B25 AD24* C25 GND
A26 RESERVED B26 AD25* C26 VCC
A27 BUSCLK B27 AD26* C27 GND
A28 SpP2* B28 AD27* C28 GND
A29 SP3* B29 AD28* C29 SID28
A30 RESERVED B30 AD29* C30 SID29
A3l PON B31 AD30* C31 SID30
A32 PUP B32 AD31* C32 SID31

# 220 Ohm pullup resistor
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Al
A2

A4

A6
A7
A8
A9
Al0
All
Al2
Al3
Al4
AlS
B1
B2
B3
B4
BS
B6
B7
B8
B9
B10
B11
B12
B13
B14
B15
Cl1

C3
C4
C5
Cé6

GTM1*
GADI18*
SPARE
GAD20*
GDSTB*
SPARE
GAD23*
GAD24*
GAD25*
GBUSCLKO
GAD26*
GAD27*
GAD28*
GAD30*
LADI
GRESET*
GADI17*
GSPV*
GADI19*
GDSTBO*
SPARE
GAD22*
SPARE
GBUSCLK
GSP2*
GSP3*
BUSCLKIN
GAD31*
LAD2
LAD4
GRQST*
GADI16*
GDRQ*
VCC
GND
GAD21*

)
C8
Cc9
Cl10
C1l
12
C13
Cl4
Ci5
D1
D2
D3
D13
D14
D15
El
E2
E3
E13
El4
E15
Fl
F2
F3
F13
F14
F15
Gl
G2
G3
G13
Gl4
G15
H1
H2
H3

GND
GSTART*
VCC
GND
GAD29*
LADO
LAD3
LADS
LADS
GARB3*
GADI15*
GND
GND
LAD7
LAD9
GARB2*
GAD14*
GND
LAD6
LADIO
LADI11
GARBI*
GADI13*
VCC
GND
LADI12
LADI4
GADI11*
GADI12*
GND
VvCC
LADI3
LADIS
GADI10*
GARBO*
GND

H13
H14
H15
J1
12
13
J13
J14
J15
Kl

K3
K13
K14
K15
L1
.2
L3
L13
L14
L15
M1
M2
M3
M13
Ml14
M15
N1
N2
N3
N4
N5
N6
N7
N8
N9

VCC
LADI7
LADI6
GMCLKSEL*®
GADS*
GND
GND
LAD20
LADI18
GMCLKSELO*
GINT*
VCC
LAD23
LAD22
LADI19
GADR*
GTMO*
VCC
LAD27
LAD25
LAD21
GAD7*
GADo6*
GND
LAD31
LAD28
LAD24
GACK*
SPARE
GSP1*
GAD3*
CPUCLK
GND
BGACK*
BREQ*
VCC

N10
N1l
NI12
N13
N14
N15

Q10
Qll
Q12
Q13
Q14
Q15

SIZ0
GND
STERM*
NCS*
LAD30
LAD26
GADS*
GAD4*
GAD2*
GADO*
GMASTER*
LBG/EXSEL
GSLAVE®*/SINT*
BR*
RMC*
R/AW*

AS*
DSACKI1*
BACK*
OE
LAD29
GSPO*
GAD1*
LCLK
GBCYC*
LBR*
HALT*
BERR*
BG*

DS*

FB

SIZ1
ASIN*®
DSACKO*
PON
LRESET*




APPENDIX C. ABEL PAL Implementation of Ouput

Port Contreller using a 22V10.

module output_controller flag *-r3’, "-12’

title

"Output Port Controller for
NeXT-to-Motherboard Interface board
A. Alvarez September 26, 1990’

Output_controller  device  'P22v10’

" DESCRIPTION:

" This PAL is used to transfer bytes of data between the

" IMS CO11 Link Adaptor and the Output FIFO or between

" Input FIFO and the IMS CO11. All transfers are performed
" via a two-wire hand" shake.

" Constants:
ON =1;
OFF =0,
H =1;
L =
X =.X.;
C =.C:

" State Definitions for Output Controller.

ST_OA =1b000; " State #1 of AHPL Description of Figure 12.9
ST_OB =4b001 ; " State #2 of AHPL Description of Figure 12.9
ST_OC =4b010; " State #3 of AHPL Description of Figure 12.9
ST_OC =4b011; " Unused State

ST_IA =A » " State #1 of AHPL Description of Figure 12.5
ST_IB =4b001; " State #2 of AHPL Description of Figure 12.5
ST_IC =%b010; " State #3 of AHPL Description of Figure 12.5
ST_IC =2b011; " State #4 of AHPL Description of Figure 12.5
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" Appendix C Con'’t.
" Input Pin Names

LCLK pin 1; " Local Bus Clock.

QValid  pin 2; " Asserted by IMS Q011 when a byte is valid.
IAck pin 3; " Asserted by IMS (011 when a byte is accepted.
'Out_FF pin 4 ;" Output FIFO Full Flag (active low).

'In_EF  pin 5;" Input FIFO Empty Flag (active low).

'LRESET pin 6 ;" Local bus reset pulse from NBIC.

" Output Pin Names

QAck pin 23 ; " Asserted after byte has been written

IValid pin 22 ;" Asserted when a byte has been read from FIFO.
WRITE pin 2i ;" Write signal used to derive FIFO write pulse.
READ pin 20; " Read signal used to derive FIFO read pulse.

" Declare Output for State-Machines

ST_OUT]I,
ST_OUTO pin 19,18;
STATE_OUT = [ST_OUT]1, ST_OUTO] ;

ST_INI,
ST_INO pin 17,16;
STATE_IN = [ST_IN1, ST_INO] ;

@radix 16; " Set base to hexadecimal
equations

state_diagram STATE_OUT " Output Port Controller IMS C011 Qutput
" Byte transferred from IMS CO11 --> Controller

" Begin AHPL Description of Figure 12.9

state ST _OA : WRITE = OFF; " Disable write to FIFO
QAck = OFF,; "Disable acknowledgment to IMS C011
if (LRESET ) then ST_OA " Stay in this state until
e!sc:: _ " the IMS CO11 asserts
if (QValid ) then ST_OB " is QValid signal.
else ST_OA;
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" Appendix C Con’t.

state ST_OB : WRITE = !0ut_FF; " Write = 1 when FIFO full flag is deasserted
QAck = OFF; " Disable acknowledgment to IMS C011
if (LRESET ) then ST_OA " Stay in this state if the
else " FIFO Full Flag is asserted
if (Out_FF ) then ST_OB " else go to State C
else ST_OC;

state ST_OC : WRITE = OFF; " Disable Write to FIFO
QAck = ON ; " Assert acknowledge signal to IMS CO11
if (LRESET ) then ST_OA " Stay in this State until

else " the IMS Q011 deasserts
if (QValid ) then ST _OC " its QValid signal.
else ST _OA ;

state ST_OD : WRITE = OFF; " Disable Write to FIFO
QAck = OFF; " Deassert acknowledge signal to IMS Q011
if (LRESET ) then ST_OA ;

state_diagram STATE_IN " Output Port Controller IMS CO11 Input
" Byte transferred from Controller --> IMS (011

state ST_IA : READ = OFF; " Disable Read to FIFO
IValid = OFF; " Deassert valid byte signal to IMS CO011
if (LRESET) then ST_IA " Stay in this State until

else " there is data to process
if (In_EF ) then ST_IA " in the Input FIFO.
else ST_IB ;

state ST_IB : READ = ON ; " Read byte from Input FIFO
IValid = OFF; " Deassert valid byte signal to IMS CO11

if (LRESET ) then ST_IA " Read byte from Input FIFO
else ST_IC; " and goto ST_IC.

state ST_IC : READ = OFF; " Disable Read to FIFO
[Valid = ON ; " Assert valid byte signal to IMS C011
if (LRESET ) then ST_IA "Stay in this State until
else " the IMS CO11 acknowledges
if ('IAck ) then ST_IC " the byte.
else ST_ID ;
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A PORTABLE BENCHMARK FOR SIMULATOR PROCESSORS

Thomas L. Clarke
Institute for Simulation and Training
University of Central Florida
Orlando, Florida

ABSTRACT

Training simulator software makes unique demands on computing
hardware. @ The synchronous, interrupt-driven  simulator = computational
environment is not well approximated by standard benchmarks. FORTRAN
code from an T-2C trainer supplied by the Naval Training Systems Center
(NTSC) has been used as the basis for a portable benchmark. The code was
converted to the C language whichis generally the first high-level language
available on new processors. The C-language training simulator benchmark
has been used to evaluate a variety of RISC (Reduced Instruction Set
Computer) and CISC (Complex Instruction Set Computer) architectures.
These include the Sun SPARC, the MIPS R2000, the Motorola 88000, the IBM
RS/6000, the Motorola 68030 and the Intel 80386. Results are about as would
be expected on the basis of standard benchmarks with the exception of the

Motorola 88000, whose performance is so fast as to raise skepticism.

INTRODUCTION

In the last few years a new type of
microprocessor has gained prominence.
These new microprocessors are based on the
reduced instruction set design philosophy.
Controversial at first, computers based on
RISC (Reduced Instruction Set Computer)
processors have become very successful as
technical workstations. Conventional CISC
(Complex Instruction Set Computers) continue
to remain dominant in many arenas, however.

Because of the long life cycle of the
embedded computer in training simulators, it is
especially important to assess the value and
longevity of the RISC processor. |s the RISC
processor just a "flash in the pan" that will
vanish five years from now in favor of a new

generation of CISC processors, or do RISC
processors represent an enduring change in
the art of computer design? In addition, do the
RISC features that serve so well in
workstations offer improved performance in the
simulator environment?

CISC processors are in most cases
"code museums" which continue to be used
because of the large body of available CISC
software [1]. RISC practitioners zealously
push the virtues of the RISC simplicity. In Hal
Hardenbergh's words, there is a tendency for
RISC processors to become “"religious
artifacts". RISC advocates sometimes simplify
their machines to the detriment of performance.

This paper is a report on research
designed to assess the utility and performance
of RISC processors in the simulator
environment.




ARCHITECTURAL ISSUES

RISC (Reduced Instruction Set
Computer) processors offer improved
performance relative to conventional CISC
(Complex Instruction Set Computer)
architectures by trading complexity for speed.
The simplified instruction set of a RISC
processor facilitates the use of techniques such
as instruction pipelining and hardwired control
of execution that increase processor speed.
Pipelining breaks instructions into parts such as
load, execute and store whose execution can
be overlapped. Hardwired control insures that
each part of an instruction completed within
one clock cycle, so that overall one instruction
is executed per clock cycle. In contrast a
CISC generally takes many cycles to
complete one instruction. Since the clock rate
is limited by the speed of the transistors
produced by the given integrated circuit (IC)
technology, a RISC will be able to execute
more instructions per second than a CISC.

The performance of a RISC is not
totally without cost, however. Processor clock
rates are generally faster than memory speeds
so that a faster, more expensive cache or
buffer memory must be inserted between the
processor and the slower, less expensive
main memory. The cache memory stores the
most recently accessed data and instructions
so that when the processor is executing a
loop (a very common circumstance), the
effective memory speed is determined by the
cache.

Except for cost, the cache memory
poses no problem for most types of computer
processing. In simulator and other real-time
systems, the cache memory can cause
determinism problems. Due to the interrupt
driven nature of the simulation environment,
the necessary instructions may not be in the
cache when an interrupt occurs. If not, the
RISC processor must slow to system memory
speed. The interrupt service time will then
appear to be random since it depends on what

other tasks the processor is executing at the
time.

The determinism problem can be
avoided by not using a cache, but RISC
processor performance then drops to the level
of CISC. As Figure 1 suggests, there is a
performance continuum depending on the
"granularity” of the program. Granularity is a
measure of the size of the typical fragment of
code being executed. Tight loops have small
granularity, whereas code driven by external
events as in a simulator would tend to have a
large granularity. The code executed in
response to an external interrupt would on
average be far away from the currently
executing task.

cacne memary

main memory

fine GRANULARITY coarse

Figure 1. Schematic view of memory access
limited performance of CISC and RISC
processors as a function of problem granularity.

It is a main goal of this research to
determine where on the performance curves
typical simulators fall. If they fall to the left or
small granularity side, then RISC processors
have a clear advantage. |If they have large
granularity to the right then it a toss up as to
whether RISC is better than CISC.




In addition to issues related to cache
memory, there are several other architectural
issues that are important in determining the
RISC versus CISC performance trade-off.
Stephen Furber [2] gives an excellent
discussion of the architectures of available
RISC microprocessors. Briefly these are:

MCBE100

l : - —
| | | oree e
I stocrs aull’

Figure 2. Block diagram of Motorola 88000,
showing major features of RISC architecture.
Figure taken from [3].

1. Register Set Size. A smaller number of
registers permits a greater variety of
instructions to be encoded in the instruction
word because fewer bits are needed to
specify the register. This may permit extra
instructions better tailored to the simulator
workload and  resulting in increased
performance. More registers, on the other
hand permit the processor to switch
contexts and respond to interrupts more
rapidly. When an interrupt occurs, the

processor can simply switch to using an
alternate set of registers rather than having to
save the contents of a smaller register set.
This rapid response may outweigh the
penalty of the circumlocutions required by a
smaller instruction set.

2. Location of Floating Point Unit. Some
RISC processors incorporate a closely
integrated on chip floating-point arithmetic

unit (FPU). In other designs, the FPU is
a more loosely coupled off-chip unit. There
are speed penalties associated with moving
off-chip, but moving the FPU off-chip frees
silicon for use as additional registers or as
on-chip high speed memory (RAM). Again,
the best compromise for the simulation
environment is not clear.

3. Bus-Structure. Some processors use the
conventional von Neumann single bus which
combines data and instruction
transmission. Other processors use the
Harvard architecture in which a separate
bus is used for instructions and for data.
Separate buses permit a higher data-rate,
but have corresponding costs in silicon area
and hence other capabilities.

4. Special Functions. Some RISC
processors feature the  capability of
expansion. The Motorola 88000 in particular
is designed to permit the incorporation of
user designed special-function units
(SFUs). These SFUs are intimately coupled
to the processorin the same way as the FPU
and offer the option of incorporating special
simulator specific functions in the hardware.
5. Network Support. Adequate performance
is presently obtained from simulators only
by combining several computers into a
multi-processor network. The same multiple
processor configuration will be needed with
RISC technology. It is thus important to
evaluate the networking capabilities of the
various RISC processors. One of the
strengths of the Inmos transputer is the
ease with which it interconnects into
networks. Customized network interfaces




may be a vital component of the custom
VLS! RISC processor developed during later
years of this research.

6. High Level Language (Ada)Support.
Simulator software is broken down into
Computer Software Components (CSC);
each CSC controls one function of the
simulation, e.g. landing gear, engine, eic.
In the Ada language, each CSC might
correspond to an Ada task. During an
update cycle of the simulator, a CISC
computer must be able to handle all the
CSCs as interrupts occur; this may result in

excessive overhead due to  context
switching. A RISC could operate by
handling each CSC completely before

beginning the next, avoiding much
overhead. The RISC processor thus might
be a much more efficient Ada platform.

BENCHMARK DEVELOPMENT

Comparing performance between widely
different processor architectures is a common
problem. The general computing world has
developed a variety of benchmark programs
whose performance on a target machine is
widely accepted as a measure of the
performance to be expected from that machine.
Two of the most commonly used are the
dhrystone benchmark and the whetstone
benchmark. Omri Serlin [3] discusses both of
these benchmarks in detail.

The dhrystone benchmark is designed to
measure the performance of a processor in
general computing applications. It is a
synthetic program that exercises the integer,
character and control instructions of a machine.

The Whetstone benchmark is designed
to test a machines ability to perform numerical
calculations. The Whetstone benchmark was
criginally coded in Ada but has been translated
to FORTRAN and C. The Whetstone
benchmark consists of multiple loops
containing matrix, and transcendental

mathematics operations. Many of the
calculations are embedded in procedure
(subroutine or function for FORTRAN and C)
calls to avoid optimization. In a fairly simple
benchmark, the calculations are necessarily
repetitive and trivial and a optimizing compiler
sometimes will optimized them out of
existence.

No benchmark is designed specifically to
measure performance of a processor in the
simulator environment. As part of a Florida
High Technology and Industry Council
sponsored project, the Institute for Simulation
and Training (IST) has taken on the
development of such a benchmark.

This new benchmark must exercise the
same features of a processor that are
exercised in a simulator. At the same time the
benchmark must be reasonably portable
between various processors. This two
requirements conflict, as it is impossible to
exercise the hardware interrupt capabilities of a
processor with a portable benchmark. The
details of interrupt servicing are intimately tied
to each specific processor.

An approach was taken that has proven
useful at the Naval Training Systems Center
(NTSC). In developing a benchmark for in-
house use, NTSC took code from a T-2C
training simulator and modified it to remove the
machine-dependent interrupt-driven portions.
The interrupt driven portion was replaced with a
main routine that executes a main control loop
which corresponds to the simulator frame time.
Within each iteration of the loop the various
service routines are called on a quasi-random
basis. This approach has the advantage that
the operations performed by the processor
running the benchmark will be identical to the
operations performed in the simulator. While
the absolute performance will differ between
the simulator and the benchmark, relative
perforiiance measures between processors
should be the same for simulator and
benchmark. :




Bill Rowan of NTSC kindly made the
FORTRAN source code for benchmark
available to IST. To further increase the
portability of the benchmark, it was decided to
translate from FORTRAN to C. The C
language is generally the first high-level
language available on a new processor, so that
benchmarking can be carried out at an early
date. This decision has proven a good one at it
has made it possible to run the benchmark on a
wider range of machines.

The FORTRAN code was converted to
C using the commercial FOR_C translator
from Cobalt Blue, Inc. FOR_C was very useful
and took care oi most of the mechanics ot
translation such as converting SUBROUTINES
to functions and the like. Nevertheless, a fair
amount of hand coding had to be done as the
code dates from the mid-70s and was originally
used many techniques to adapt it to small host
computers such as the PDP 11/45. The most
troublesome technique was the use of
EQUIVALENCE to establish correspondence
between data arrays with two different names.
These techniques are discouraged, if not
forbidden, under modern software development
guidelines.

The original  program  structure,
consisting of some 117 separately compiled
program modules, was retained. While many
modules are short and could have been
combined into a single C function, this would
have opened the danger of having some
calculations optimized out of existence. Also,
as noted above, many small modules
separately compiled and linked together and
then called quasi-randomly is about as close to
the true interrupt driven simulator environment
as possible as can be gotten in a portable
benchmark.

The control program was modified to
automatically fly four scenarios that have
been used at NTSC for benchmarking. These
scenarios are basically level flight with various
step or impulse inputs to the control surfaces.
At the time of writing the benchmark compiles
error free and runs with little trouble on a
variety of machines. It, however, crashes
before the complete test run is complete,
probably due to some lingering FORTRAN to C
conversion problems. After the crash, the
simulator resets and continues flying. This
behavior should not influence the relative utility
of the benchmark timings. The computations
needed to crash and reset are also
representative of simulator computational
loads. Before the benchmark is released to
industry, this final bug will be exterminated,
however.

PERFORMANCE MEASUREMENTS

Before discsussing the results, the units
of the simulator benchmark need to be named.
No euphonious combination involving stone
came to mind, but then the alleged brick-like
aerodynamics of certain aircraft suggested:

bricksbat \"brik- bat\ n

[&nick + 5z (ump, fragment)]

(1563)

1: a fragment of 2 hard material (as 2 brick); esp: one used as & missile
2: an uncemplimentary remark

Brickbat has the requisite two syllables and the
missile-like connotation of definition 1 is
appropriate. In addition, definition two is
relevant to those processors that don't do well
on the benchmark.

The benchmark was tested on all the
readily available workstations at IST. These
machines included two conventional CISC
machines and four RISC machines. Results
are shown in the table along with published
whetstone and dhrystone ratings. Brickbats will
be defined as 1000 divided by the benchmark
execution time.




PERFORMANCE TABLE

Processor dhrystones whetstones brickbats

RS/6000 60700 27250 27.4
88000 34000 6676 108.7
SPARC 21700 5184 11.6
MIPS 18400 5757 9.2
68030 5720 1477 4.5
80386 3000 546 3.9

The timings were performed by running
the brickbat benchmark under control of the
UNIX /bin/time program which reports the
amount of time actually used by the user
program while executing.

Beginning with the slowest, the first
CISC machine was a Hewlett Packard QS/16
using the Intel 80386 processor. The 80386 is
a standard 32 bit "code museum" that derives
from the PC tradition. It ran at 16 MHz with
100 nsec memory.

The second-slowest CISC machine was
a NeXT workstation using a Motorola 68030
processor. It ran at 25 MHz with 100 nsec
memory. Apparently the memory speed
prevented the 68030 from benefiting much from
its faster clock rate.

The four RISC workstations were a SG
4D70GT using the MIPS R2000 processor
running at 16.7 MHz, a SUN Sparcstation using
the SPARC processor at 20 MHz,a Data
General Aviion using the Motorola 88000 at 16
MHz, and an IBM RS/6000 workstation using
IBM's RISC chipset running at 25 MHz. Little
technical information is available about these
machines beyond the clock rate.

30 1 BaK

X-1BM

%-SUN

X-MPS

*-J58K

Dhrystones

Figure 3. Comparison of dhrystone benchmark
results with Brickbat results.

The performance of the various
processors ranged from a low of 3.9 brickbats
(256 seconds execution time) for the 80386 to
a high of 108.7 brickbats (9.2 seconds) for the
88000. As discussed below, the figure for the
88000 seems anomalously low, so that the real
range was probably up to the 27.4 brickbat
(36.5 seconds) value of the IBM RS/6000.

Both the dhrystone and the whetstone
bench marks were good predictors of the
brickbat value. Figure 3 plots brickbats versus
dhrystones. When the Motorola 88000 is
excluded (off scale in figure 3), the correlation
between either dhrystones or whetstones and
brickbats is greater than 90%. This is not
surprising since all processors tested include
floating point hardware so that there is a good

correlation between dhrystones and
whetstones. Figure 4 plots brickbats versus
whetstones.

The results for the Motorola 88000 seem
anomalous. Its performance is better by a
factor of nearly eight compared to what would




be expected on the basis of its dhrystone or
whetstone rating. No reasons for the anomaly
have been identified. The flying time of the
benchmark was varied to perhaps isolate a
time anomaly in the Aviion, but the results
tracked as if the 88000 is truly very fast.

There only feature of the 88000
architecture that might account for this speed is
the Harvard style of memory access. As figure
2 shows, the 88000 has two complete paths to
cache memory: one for data and one for
instructions. It is difficult to see how this dual
bus architecture would account for more than a
factor of two in performance, however.

Possibly the combination ot Harvard
architecture and a separate autonomous
floating point unit enable the routine calling and
return code to effectively overlap calculations.
Since the brickbat benchmark consists of many
calls to small routines which are calculation
intensive, this may result in a large speed-up
factor. The IBM RS/6000 architecture also
features multiple paths from cache (DCU in

Brickbats
30 " 88K

X-1BM

X-SUN

K-MPS

20
Whetstones

Figure 4. Comparison of whetstone benchmark
results with Brickbat results.

figure 5) to the instruction processor (ICU) and
the floating (FXU) and fixed (FXU) arithmetic
units. The IBM FPU is described as tightly
coupled, however, so perhaps something about
the simulator instruction mix favors the 88000.

CONCLUSIONS

Training simulator software makes
unigue demands on computing hardware.
The synchronous, interrupt-driven  simulator
computational environment is not well
approximated by standard benchmarks. The
brickbat benchmark reported here which is
based on code from a T-2C trainer should
provide an approximation of that environment.

The C-language brickbat training simulator
benchmark has been used to evaluate a variety
of RISC (Reduced Instruction Set Computers)
and CISC (Complex Instruction Set
Computers) architectures. These include the
Sun SPARC, the MIPS R2000, the Motorola
88000, the IBM RS/6000, the Motorola 68030
and the Intel 80386. Results are as expected on
the basis of standard benchmarks with the
exception of the Motorola 88000, which seems
too fast to be true.

While the Motorola 88000 thus seems to
be the best processor tested for simulators. The
excessive amount of its performance increment,
raises doubts as to whether this performance
would be realized in an actual simulator.

Many interesting processors, such as
Intel's 1960 and 80486, Motorola’'s 68040
AMD's 29000, etc., have not been tested. Some
such as the Inmos transputer and the intel i860
will be tested in the near future. In addition this
benchmark will be made available to industry
and should prove extremely useful in
evaluating computers for use in simulators.
The benchmark will be offered to the
Systems Performance Evaluation Cooperative
(SPEC) for inclusion in  their suite of
benchmarks.
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B. SUMMARY of INNOVATIVE CLAIMS

Small low-power visual displays for use with embedded microsystems
applications such as virtual reality require finesse rather than the brute force approaches
used for conventional visualization displays. Research at IST funded by the State of
Florida has identified the utility of differential-geometric concepts in algorithms for
generating graphics that are optimally matched to the characteristics of the human
visual system.

Differential geometric techniques together with distorting optics will be used to
optimally utilize scarce embedded microsystem computational resources. In principle,
two million properly distributed pixels are sufficient to feed the million or so fibers in the
optic nerve, producing a perfect display. In practice, a 512 by 512 pixel display with
proper optics and head position feedback will produce a convincing illusion of reality.

Significant optical size and weight savings can be realized by designing the optics
and the distorting algorithms as an integrated system. For example, chromatic
aberrations can be corrected by sizing the three images in a color display to match the
optics. Conversely, the proper choice of optics can result in substantial savings of
computational and display hardware. Distortion can be produced easily with simple
optics saving the need for display pixels and computation cycles at the edge of the field
of view.

The display system to be developed at IST will have variable pixel sizes across
the image. This vari-pixel display will use differential geometry as the mathematical
foundation of its image transformation algorithms. Recent work has made it clear that
Lie transformation groups are the most appropriate mathematics for visual
transformations. This is no accident; as in physics, transformation group symmetries
provide the best expression for models of physical reality.

The display system would consist of image warping algorithms together with
special optics that would give a variable resolution image matched to the eye’s
characteristics. As mentioned above and detailed in the Technical Rationale, designing
the optics in conjunction with the algorithm can lead to simplifications in the optics,
saving cost and weight.

The display system developed as part of this research will be truly optimal in that
it will require the least number of pixels possible for a wice field of view, full-resolution
image. The demonstration system will utilize graphic workstation hardware and custom
designed optics to yield throughput equivalent to tens of thousands of polygons per
second. Adaptability of the vari-pixel concept to higher performance systems is
guaranteed by the local nature of the Lie transformation groups used. Their locality
ensures that the warping algorithms can be adapted to the special purpose VLSI
parallel processing hardware required for the highest performance.

Applications that will benefit vari-pixel display technology include training,
telepresence, virtual reality, and scientific visualization.



C. DELIVERABLES
Year 1:

1. Reports detailing the applicability of group-theoretic transforms to image
generation will be prepared.

During the first year, theoretical and experimental studies supported by
computer modeling will be used to establish an appropriate design and
architecture for the image generation system. The design ideas will be testedusing off-
the-shelf computer hardware (e.g. Amiga 3000) and "Sony Watchman" type displays
with bread-board optics.

These reports will coverthe background concepts of group theory and
differential geometry in sufficient detail for someone skilled in image display but
unfamiliar with the theory to be able to make use of the research.

2. Copies of software developed to test group-theory based image generation
concepts will be delivered.

The software will be programmed in the C language, and runon the computer
hardware which generates displays on the "Watchmen". These displays will be viewed
through the bread-board optics.

Year 2:

1. Reports detailing the design specifications of a high performance vari-pixel system
using workstation-class graphics hardware, state of the art displays and custom optics
will be prepared. ‘

NeXT has announced a color graphics coprocessor for the NeXT using the Intel
i860 processor. This system (or a system of equivalent performance) will be used to
drive the display. Performance enhancement by special purpose co-processors will be
considered. Possible co-processors include the Motorola 56001 DSP in the NeXT or
arrays of Inmos transputers . The display will be state-of-the art compatible with use as
an eye-phone; helmet-mounted-display quality CRTs and fiber optic displays will be
considered.

2. Test results detailing progress in implementing the high performance vari-pixel
display will be submitted.

Year 3:

1. Reports detailing the high-performance vari-pixel display will be completed. These
reports will contain sufficient detail for the system to be reproduced by someone skilled
in the art.

2. Detailed software and hardware designs for the vari-pixel display will be submitted.

A number of refereed papers will also result from this research effort.
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D. SCHEDULE and MILESTONES

This project is inherently a multi-year project. After a year of theoretical and
experimental groundwork, two years will be needed to develop a working prototype
of an optimal image display system.

The first year is devoted to theoretical and experimental studies of how best to
apply group-theoretical ideas to image display. The broad outlines are clear, as can
be seen in the Technical Rationale section, but there are many details that need to
be worked out before the prototype is implemented. The budget for the first year will be
$98,851.

During the second year, implementation of the display system will begin in
earnest. The system software will be coded, and the prototype hardware assembled.
The system will be debugged and preliminary testing done. The budget for the second
year will be $146,988.

In the third year, the group-theoretic display will be tested, refined and made
ready for transition to general use. The budget for the third year will also be
$115,092K.

Total project cost will be $360,931.

Month 123456789 101112
Year 1

Report A
Theory e ]

Optical Design ~ |reeeeseeemeememneeees [
Experimentation e [

Year 2

Report A
Coding B |
Construction |

Testing [— |

Year 3

Report A
Testing —————— |

Refinement R l
Implementation [E—————




E. PROPRIETARY INFORMATION
There is no proprietary information needed to support this research.
Any inventions or patentable software that result from this project would be

subject to applicable Florida State University System and Federal disclosure
regulations.




F. STATEMENT OF WORK

The Institute for Simulation and Training (IST) of the University of Central Florida
(UCF) will conduct research designed to develop a novel, high-performance display
system (vari-pixel display henceforth) in response to DARPA BAA 90-17 for research
into the field of embedded microsystems.

This research encompasses the following tasks:

Year 1:

Conduct theoretical and experimental studies supported by computer modeling

to establish an appropriate design and architecture for the image generation system.
The design ideas will be tested using off-the-shelf computer hardware such as Amiga
3000 and "Watchman" type displays with bread-board optics.

Prepare a report on the results of these studies including sufficient detail on the
background concepts of group theory and differential geometry that someone ski'led
in image display but unfamiliar with the theory to be abie to make use of the
research.

Software to test group-theory based image generation concepts. This software will
be written in the C language, and will run on the computer hardware which generates
displays on the "Watchmen". These displays will be viewable through bread-board
optics. Copies of this software will be be made available to the sponsor.

Year 2:

Produce a detailed design for a vari-pixel display with workstation-class performance,
state-of-the-art resolution and custom optics. Performance will be equal to that
expected for the NeXTdimension color processor using the Intel i860 processor. The
display will have the highest state-of-the art resolution compatible with use as an eye-
phone; helmet-mounted-display quality CRTs and fiber optic displays will be
considered. Optics will be of a solid and robust design using quality components.

The software developed to implement the pre-distortion will be documented so that it is
useful to other developers.

Details of the design and results of testing the components will be reported to the
sponsor.

Year 3:
The high-performance vari-pixel display will be integrated and fully tested; its

performance will be evaluated as a display for virtual reality, as a workstation
visualization display, as a display for telepresnece and as a display for training.



The detailed design of the vari-pixel display will be delivered to the sponsor.
Recommendations for future directions of research and development will be made to the
sponsor. In addition, copies of papers and conference proceedings resulting from the
work will be delivered to the sponsor.




H. RESULTS, PRODUCTS, and TRANSFERABLE TECHNOLOGY

The van-pixel display technology to be developed as part of this research will be
of potential benefit to many users of computer graphics displays. The following
paragraphs describe how the technology will impact various users.

The Virtual Reality Explorer

A user would find the vari-pixel displays developed under this project to be a
revelation. Upon donning the phones, the user would find a vast difference in
performance compared to current eye-phones. The visible field-of-view is much larger
than that in current eye-phones; at the same time, the image appears to be sharper than
any currently available. The weight of the eye-phones is also reduced and they are
more comfortable to wear. Processing response delay artifacts are reduced compared
to other visual systems of comparable apparent resolution and field of view.

On the whole, the illusion of virtual reality is much stronger.

The Programmer

The software tools provided with the vari-pixel display permit the use of many
sources of visualization data. Not only are polygonal data bases usable, but the use of
Lie group techniques permits the use of photographic data as well.

Efficient use is made of advanced VLSI co-processors so that the host computer
is not overly burdened by graphics tasks.

Advanced Application Developers

The advanced developer finds the technology to be ideal for incorporation into
portable information systems. The algorithms are a good match to the capabilities of
VLSI co-processors.

Available pixels are deployed in a manner designed to match human visual
system characteristics; this minimizes overall system cost for given performance level.

The Trainee

A trainee using vari-pixel displays would experience a much more realistic
simulation of the training environment. The wider field-of-view would contain more of
the cues used in actual performance. The trainee’'s peripheral vision would be
exercised to an extent not possible with current technology; this would avoid false
training in which the trainee might learn to ignore peripheral cues.



The Teleoperator

The wide field of view of the vari-pixel display would benefit an operator
working remotely through telepresence. As with a trainee, peripheral cues are very
important to someone working remotely through a data link.

The pre-distortion and optical rectification used in the vari-pixel technique is
also a form of data compression. The operator will be able to receive the same
amount of visual information over a much narrower bandwidth signal.

Technology Transfer to Other Products

The vari-pixel display is an enabling technology. By providing a relatively low-
cost but high resolution and wide field of view display, the vari-pixel display will open up
a potentially wide range of applications. The uses listed above are those that are
conventionally associated with virtual reality and like technologies. The verisimilitude of
the vari-pixel display is likely to suggest other applications.

Various possibilities include:

o medical telepresence - like Fantastic Voyage

u telepresence in manufacturing - multiplying the skilled worker

a consumer applications - if the price falls enough.




H. TECHNICAL RATIONALE
The Problem

Virtual reality is a new technology with "potential to radically alter the way many
people interact with computers” (VanName and Catchings, 1990). The virtual reality
user is provided with a direct sensory input to the computer such as a data gloves and
other position sensors. Inturn the computer generates a visual scene that the user
views through a head mounted display, or eye-phone. The user's interaction with the
computer is direct and intuitive and avoids the awkward bottleneck found in other
approaches to visualization of data.

Achieving the promise of virtual reality requires that the visual display be realistic
enough so that the user can suspend disbelief. This level of reality requires a display
that updates rapidly enough to avoid jerky motion as the user moves about in the virtual
world. The display must also have high enough spatial resolution to present a realistic
appearance free of aliasing and other sampling artifacts.  Telepresence makes similar
demands on display technology.

Achieving speed and resolution requires large computational resources and
exotic display technology. It is the goal of this research to reduce the amount of
computation required and to improve the performance of conventional display devices in
virtual reality applications. !

An ideal virtual reality display would present the user with a full visual hemisphere
at the human eye's resolution of one arc minute. To achieve full resolution on this
hemispherical display (2r steradians) would require 75 million display elements; this
resolution is beyond any technology easily affordable for the foreseeable future.

Updating a 75 million pixel display fast enough to avoid flicker and other motion
artifacts is also beyond present capabilities. Even if only a few instructions are required
to update each pixel, a 30 Hz update rate would require in excess of 10,000 MIPS.
Only experimental supercomputers currently achieve this rate of computation.

The Solution

A solution to the problem of virtual reality displays is suggested by the fact that
the human visual system does not have uniform resolution across the field of view. As
Figure 1 shows, the resolution in the central or foveal area is an arc minute, but drops
fairly rapidly away from the fovea. Sixty degrees, approximately one radian, from the
fovea the resolution has dropped to only 20 minutes of arc. Approximating the eye's

resolution curve as e3¢ (where ¢ is the angle from the fovea in radians) and integrating
gives only 7 million resolution elements over the full hemisphere. That is, the effective
area over which the eye has 1 minute arc resolution is .65 steradians or ~2000 square
degrees.
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Figure 1. Visual resolution of the human eye (Boff et a/, 1986).

Seven million pixels is still large for current display technology, but if the
resolution is reduced to 2 minutes of arc, the pixel count reduces to about two million
pixels. This reduced resolution corresponds to that of a typical workstation screen with
a .3 mm color mask viewed at a distance of 600 mm or 24 inches. Two million pixels is
within the range of today'’s large display technology. Small displays such as those used
for eye-phones are more limited, but the two million pixel level should be reached in the
near future.

Generating a display of 2 million pixels at a 30 Hz update rate must be done
efficiently. Even efficient algorithms will require hundreds of MIPS to update the display.
This problem can be solved by using VLSI processors together with parallel processing
techniques. Single chip processors now achieve tens of MIPS, so that a system with a
reasonable degree of parallelism will be able to update the display. The display
algorithms, of course, must lend themselves to decomposition into parallel executing
sub-tasks.

It is the goal of this project to develop a vari-pixel display that can practically
achieve non-uniform distribution of resolution matching the human eye. The vari-pixel
display will have two components. The first component is an optical system which
magnifies the image of the display device in a controlled non-linear fashion to achieve
the desired distribution of pixel resolution. The second component is algorithms for
producing appropriately pre-warped images on the display. The pre-distorted image
will have correct perspective when viewed through the optics. The details are
discussed in the next two sections.
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Optical Design
Design Goals

The vari-pixel optics must meet several design diverse goals. They must provide
non-linear magnification approximating of the inverse of the human visual acuity curve
(Figure 1). The optics must not introduce any perceptible aberrations into the image.
Also, the optics must be light and compact enough for use as an eye-phone worn by the
virtual reality user.

Fortunately, distortion is fairly easy to achieve. Consider the distorted
hemispherical field of view achieved by the simple optics in the common door peep-hole
viewer. Also it is fairly easy to equal the human eye’s resolution; the diffraction limited
design of the Hubble telescope is not needed. A minute of arc on the optical axis, falling
to 20 minutes of arc 60 degrees off-axis can be easily achieved as the following
example shows.

A Sample Optical Design

When designing an optical system for direct viewing by the human eye there are
a variety of optical effects that prove useful (Clarke, 1983):

o Parallel beams of light (infinity focus) refracted by a plane surface are free of all
aberrations except distortion and lateral chromatic aberration; think of a window or
prism. :

a A spherical surface with a pupil at the center of curvature has only spherical
aberration, longitudinal chromatic aberration, and curvature of field ; this is the
design principal of the Schmidt camera.

o An optical element located at an image plane introduces only curvature of field;
this effect can be used to flatten an otherwise curved field.

The optical system for the vari-pixel display shown in Figure 2 makes use of
these optical effects. Starting with the eye, parallel light passes through the plane
surface nearest the eye. This surface introduces lateral chromatic aberration, and
distortion. Leaving consideration of the lateral chromatic aberration for later, the
distortion can be desirable.

To get a feel for the magnitudes involved, consider a system using lucite plastic.

The index of refraction is then n=1.5, and a field of 2Ay = 1800 at the eye, is

reduced to 2A4 = 820 after passing through the plane surface according to the sine
law: T

12



sin Ag =nsin A,
Locally, the pixels at the edge of the field are stretched according to

At a field angle of 2Ag = 1609, to avoid the singularity at 1809, the resolution of the

image reduces by a factor of nearly 6 at the field edge. This is a good first
approximation to the characteristics of the eye and permits the limited number of
pixels available in displays to be stretched over a wider field.

A spherical surface is beyond the plane input surface. The radius of this
surface is chosen so that the eye’s pupil at apparent distance nE is located at its
center of curvature. Therefore neglecting thickness, R ~ nE. This surface thus
focuses upon a surface at distance R/(n-1) ~ nE/(n-1) introducing only curvature of
field, spherical and longitudinal chromatic aberrations. The seriousness of the
spherical and chromatic aberrations depends on the focal length and are negligible if E
is sized for eye-phones. With a 2 inch (50 mm) diagonal display, E = 16.7 mm
would be appropriate (focus = diagonal). The longitudinal chromatic aberration
would be .67 mm. With a 3 mm eye pupil (f/16) the chromatic blur would be 1.43
minutes of arc. This is comparable to the resolution of the eye, and smaller than the
limit set by pixel number of practical displays. Third order aberration formulas
(Welford, 1974) show that spherical aberration is likewise unimportant.

Curvature of field can be removed with a plano-concave lens located near the
image plane so that it introduces no new aberrations. For a flat field, the Petzval sum
must be zero; if this lens is made from the same material as the first, its radius must be
-R. The flat field requirement can be relaxed considerably since the eye has low
resolution at the edge of the field of view. In particular, 8 mm of focus shift can be
tolerated at the field edge for the 3 mm exit pupil (f/16) assumed above.

Thus two lenses with proper curvature and location leave only lateral
chromatic aberration, and distortion as significant aberrations. Distortion is desirable for
the vari-pixel display system, but lateral chromatic aberration is not. At the edge of a

1600 field, the edges of the blue and red (F and C lines) images will be separated by

1.789. This is several times the eye’s 20 minute field-edge resolution and is
unacceptable. Even though the eye is relatively insensitive to color at the edge of the
field of view, the colored fringes caused by lateral chromatic aberration will be
perceived as a degradation in image sharpness.

For a monochromatic display, the lateral chromatic aberration can be minimized
by using light over only a narrow range of wavelengths. For the more desirable case of
a full-color display, lateral chromatic aberration can be removed in software. Separately
warping each of the red, green and blue display images according to the optical
system'’s color-dependent distortion will result in a perceived image that is free of lateral
color. This solution requires extra computation, of course, but this can be minimized as
will be seen in the section on algorithms.

13
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Figure 2. Example of a vari-pixel optical system design.

This sample vari-pixel optical system discussed above distorts a rectangular grid
as shown in Figure 3. Pixels at the edges of an image are magnified so that their
effective resolution is reduced relative to the center. This variable magnification
provides an approximation to the desired curve in Figure 1.

A significant goal of this research is to develop an optimized optical system that
closely approximates the desired vari-pixel resolution curve. Several design options will
be explored. Rotier (1989) discusses some of the optical possibilities for helmet-
mounted displays.

Among the possibilities that will be explored is the use of multiple lenses near the
eye so that their distortion contributions are compounded. Mirror optics may have prove
advantageous as well since they are inherently free of chromatic aberrations. Half-
silvered mirrors can be used to fold the optical path reducing the size of the overall
system. Fresnel lenses could useful in reducing the size and weight of the optics.
Fresnel lenses are thin plates of optical material embossed with concentric grooves.
This results in considerable weight savings relative to a thick spherical lens. The
texture of a Fresnel lens should not be a problem as long as the grooves are small
compared to the eye's pupil size.
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Figure 3. Optical system in Figure 2 warps a uniform grid of straight lines into the
hyperbola-like curves in the figure.

Warping Algorithms

In order for the vari-pixel display to provide a view of the virtual world with correct
perspective, the image on the display device must be pre-distorted with the complement
of the pattern shown in Figure 3. There are many well-know techniques for warping
images. Warping algorithms share many techniques with image generation. The
following is a brief discussion of some recent work.

In general, there are two broad approaches to generating images: ray
tracing and polygonal rendering. Andrew Glassner of Xerox PARC (Palo Alto
Research Center) has provided a broad survey of the field. Within Glasser's
survey, a particularly valuable work is the stochastic sampling approach which
avoids aliasing artifacts by redistributing under-sampled energy across the
spectrum. Stochastic casting or rays are a good way to divide effort among an
array of VLS| processors.  Glassner also discusses various methods of speeding
ray-tracing, including the use of vector and parallel architectures. A rather
complete ray-tracing bibliography is also included.

Another valuable source is the work edited by Dew, Earnshaw and
Heywood (1989). It contains a variety of algorithms oriented toward speeding
visualization using parallel computation. In particular, many algorithms for parallel
ray-tracing are presented.
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The work of Magnenat-Thalmann and Thalmann (1987) is also germane.
They present a variety of techniques for dealing with texture that are applicable to
the problem of generating images using arrays of processors.

Very recent relevant research has been done by Frederick and Schwartz
(1990). They identified the utility of the mathematical technique of conformal
mapping for performing the transformations needed in image generation. Their
suggestion of the use of abstract mathematical tools suggests the use of the
machinery of differential geometry and in particular of Lie groups. In particular,
Hoffman (1966 and 1989) has shown the utility of Lie groups in the analysis of vision.

These mathematical tools provide an expressive language for constructing the
algorithms needed for vari-pixel imaging. Consider Figure 4 which shows how a
rectangular grid must be pre-warped so that the optical distortion of Figure 3 will yield
a rectangular grid. The ellipse-like curves in Figure 4 can be naturally handled via
differential geometric techniques. Conversely, polygons are warped into regions with
curved sides. This presents difficulties for approaches that depend on polygons for
rapid image generation.

Pincushion

Figure 4. Pre-distortion of a rectangular grid.

A brief summary of Lie theory is needed in order to appreciate in detail its
applicability to vision problems. This mathematical material can be bypassed to reach
the textual explanation at the end of the section if a qualitative understanding is desired.

The basis of Lie group theory is the concept of a manifold. An m-dimensional
manifold is a set M, together with a countable collection of subsets U oS M, called

coordinate charts, and 1:1 functions Xo Ua -> Vo: onto open sets \IOL < R™, called
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local coordinate maps which satisfy:
(1) The coordinate charts cover M, Uaua:M,
(2) The coordinates are smooth, on UmmUB
the composite map
-1
Xg  Xg xa(UamUa) - xB(UanUB)
is C™ (or analytic) , and

(3) The coordinates induce a Hausdorf topology on M,
if xe Ua‘ ye UB' XY,
then 3 open sets XX A Va, and xB(y)e B Va 3
Xe AN (B)=2,

The notion of smoothness of maps between manifolds is needed. IfM and N are
C” manifolds, a map F:M -> N is C™ if

; . m

\vd xa'ua >Va;R on M, and

A4 xg : UB->VB < R"onN,

X F x, ' :R"-> RMis CZony [U,NF (U gl

C™(M) is the set of C™ functions from M to R.

An r-parameter Lie group can now be defined as a group G which also has the

structure of an r-dimensional C™ manifold in such a way that both the group operation
m: G xG->G,m(g,h)=gh, ghe G,

and the inversion
i:G->G,i(g) =g'1, ge G

are C™ maps between manifolds.

The concept of a vector field requires the definition of the tangent space TxM as

the m-dimensional vector space determined by the tangent vectors to curves passing
through the point x.

17




A tangent vector v is defined geometrically as the equivalence class Oy of curves
passing through x with all derivatives equal. A tangent vector induces a derivation on
C™(M) by

vF = dF(c, (1)/dt | _,

Alternatively a tangent vector can be defined algebraically as a derivation, in which cas
it can be shown that in general

V= Zi Vi(x ) a/axl

- | . .
for some functions vi(x ) and stands for the derivation along X (txi) where x; is the ith
coordinate in R™: The tangent bundle is the collection of all tangent spaces

™ = UKEM M

the TM is a manifold of dimension 2n.

Finally, a vector field v on M is a smooth map from v(x) € T,M, xe M. Smooth

means YV Fe C™ (M), the composite map

(VF)(x)=v(x)F: M->R

isC

The utility of all this rnathematical machinery in vision and visual processing
comes from the concept of exponentiation. Beginning with the ideas of an integral curve
as a parametized curve x=¢(t) whose tangent vector coincides with v, do/dt = v(d(t)),
the uniqueness of ODE insures that for t sufficiently small Vx there exist integral curves
y(t,x), with y(0,x)=x. wis called the flow generated by v.

Note that y is a one-parameter group of transformations since

WX, w(t,x)) = y(t+s,x).
The flow is usually written suggestively
y(t,x) = exp(tv)x
The Lie bracket or commutator of two vector fields v,w
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[v,w](F) = v(w(F))-w(v(F))
Determines group properties via Lie's theorems, in particular
Let v, w be vector fields on M. Then
exp(tv) exp(sw)x = exp(sw) exp(tv)x
iff [v,w] = 0.
v is said to be an infinitesimal generator of the group G.
The transformations needed for imaging, and in particular for vari-pixel imaging,
can be viewed as a vector field. Concentrating on only the vertical (or horizontal) lines in
Figure 4, the vector field which defines a unique direction to each point in the image

manifold is evident. By Lie's theorem, this visual warping, or any other, can be
generated locally according to the Lie algebra.

Databasse
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Figure 5. The mappings involved in generation of images with variable pixel sizes. The
source image can be bypassed by using Lie group theory.
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This ability to generate the warping through local action has important benefits for
the construction of algorithms using paralleled processors. Since the Lie algebra
determines the vector field locally, the warping need not be solved in a closed form
expression. Instead, the warping transform can be generated locally by starting at a
pixel in the target image that corresponds with a known pixel in the source image. For
example, such points may lie along an axis.

As Figure 5 shows, a line or curve of pixels in the target image induces a
trajectory or flow in the source image. The pixels along the source trajectory are the
values needed in the target image. The important point is that these flows are locally
determined as the differential notation in Figure 5 suggests; global solutions are not
needed.

The possibility of using local solutions saves computational resources. Whereas
global solutions typically involve expressions of transcendental functions with high
computational cost, the local of Lie algebra expressions are relatively simple, taking the
form of small matrix and vector operations. As a result, it will be computationally more
efficient to utilize the local Lie algebra expressions.

When the image is algorithmically generated (rather than acquired as a video
image) more economies are possible. In this case the pixel can be traced through to its
source in the data base. The pixel will typically original on a polygonal facet or other
object within the data base. The local flow parameters can be carried along to the data
base object where they generate a trajectory in three dimensional space as suggested in
Figure 5. The source image plane which is intermediate between the data base and the
target image need only be visited once for each data base object.

Passing directly from the data base to the target image results in substantial
computational savings. Using this direct mapping, generating the pre-distorted display
required by vari-pixel imaging will require only a little more computation than generating
a standard undistorted image. Pletincks (1988) presents similar techniques that use
quaternions rather than vector language.

A major portion of this research will be directed at developing efficient algorithms
so that the distortion overhead can be held to 50% or less. Lie’s theorems guarantee
that direct mapping from database to target is feasible; what remains is to develop
efficient algorithms.

An Example of Image Warping

Software was developed to distort images off-line using Lie group techniques. A
variant of the software was used to simulate the distortion properties of the optics. This
software was implemented on a NeXT workstation using Absoft objective- FORTRAN
77. FORTRAN was used to emphasize the computational aspects of the problem.
Absoft’s implementation provides interface to the object-oriented environment of the
NeXT.

The images distorted were in the form of Postscript graphics files. Postscript is
the native graphics language of the NeXT computer and provided an easily readable
data format for these demonstration programs.
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Figure 6 shows a 320 by 200 pixel image of a WWII P38 fighter as read from a
disk of canned images. The postscript image was reproduced on an Apple Laserwriter
connected to the NeXT. This reproduction process provides about 4 bits of gray scale
through dithering.

Figure 6. Postscriptimage of a WWII P38 fighter. Image is 320 by 200 pixels with 4 bit
gray scale.

The image in Figure 6 was pre-distorted according to the equation
p =ror/(ro-r)

where r is the radial coordinate in the source image and p is the radial coordinate in the
target image. The radiusrg is a parameter chosen to produce the desired distortion.

The polar angular coordinate remains unchanged.
This equation produces a dramatic warping since as r -> rq since p -> «. The

sample optical system above does not produce such a dramatic distortion, but such
blow-ups of radial coordinates can easily be produced with optical systems. As
refracted rays approach angles of total internal reflections, optical singularities develop.
Also, reflected rays go through singularities as rays become tangent to the reflecting
surface.
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Figure 7. Pre-distorted image of P38.

The pre-distorted image is shown in Figure 7. Note that the center of the image
has the same scale and perspective as the original image in Figure 6. The full resolution
of the image is thus preserved at the center of the field.

The outer edges of the field are substantially compressed so that the area
occupied by the distorted image is less than a third that required by the original image.
This variable compression is what permits a wider field of view for a given display.

In a vari-pixel display system, the image of Figure 7 would be viewed through
distorting optics something like those in Figure 2. The user would then see a wide field
of view image in correct perspective. The center of the image would have high
resolution whereas the edge would have lower resolution. This fall off in resolution
would match the resolution curve of the human eye shown in Figure 1.

The analog computation the optical system provides cannot be shown here, but a
siinulation is shown in Figure 8. In this figure, the pre-distorted image has been
distorted according to the inverse mapping function:

r= rop!(r°+p)
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Figure 8. Simulation of view of Figure 7 through distorting optics. Image of P38 has
correct perspective but variable resolution.

The image is in Figure 8 has been restored to its original size and perspective,
but it looses resolution at the edges relative to the original. This is of course just what is
needed to match the human visual system and make optimal use of the available display
pixel budget.

Figure 8 contains many aliasing artifacts near the edge of the image. This is due
to the digital nature of the simulation; not attempt has been made to anti-alias the image.
In the real system, the analog optical calculation would simply magnify pixels falling near
the edge of the field. The optics would also provide some inherent anti-aliasing since
the optical transfer function would naturally decrease in resolution toward the edge of
the field. This would provide high-frequency filtering and anti-aliasing.

Note that all functions used for radial distortion are flat, that is have zero
derivative, at r=p=0. The distortion function must be smooth or zero-derivative near the
axis, since an eye-phone type display does not incorporate eye-tracking. The saccadic
movements of the eye will then bring regions near the center of the display to the
maximum resolution foveal viewing area. It is important therefore that the resolution be
relatively constant near the center so that the resolution taper does not become too
obvious as a result of saccadic movements.
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Research and Implementation Plans

A system for optimal display will be implemented in stages. During the first
year, vari-pixel display technology will be demonstrated using off-the-shelf technology.
During the second and third year, more advanced technologies will be used to produce
vari-pixel displays with state-of-the-art performance. At the conclusion of the third year,
the vari-pixel technology will be ready for marketing.

Early development will be done using easily available inexpensive components.
The most readily available display technology suitable for eye-phone type displays is the
liquid crystal display (LCD) use in portable, "Watchman"-type televisions. These
displays typically have resolutions of about 320 by 240 pixels equivalent to the example
images above.

In order to drive a Watchman display, a computer system with a composite video
output is necessary. The early low-resolution CGA display had such an output, but is
too primitive a technology. Some workstations, such as Silicon Graphics can be
programmed to produce a composite display, but such workstations are more advanced
than necessaryl for the feasibility demonstration.

A good compromise between excessive sophistication and primitive simplicity is
found in the Amiga 3000 computer. The Amiga 3000 uses a 25 MHz Motorola 68030
with 68882 numerical coprocessor. In addition a custom VLSI chip provides graphic
BitBLT (Bit BLock Transfer) operations independent of the CPU. The Amiga is easily
networked over ethernet with other the other workstations at IST. THe UCF Film
Department has had good success in using the Amiga in film animation applications.

The early optics will be of a bread-board nature and will use ready made
components mounted in hand-made fixtures. Ready made optics are available from a
variety of sources in many materials and configurations.

These components will provide ample support for testing the theory and
algorithms developed during the first year of the project. During later phases of the
project, higher performance hardware will be obtained and developed so that a state of
the art vari-focal eye-phone display can be developed.

Workstation-level graphics performance is the goal for project as a whole. The
recently announced NeXTdimension board for the NeXT workstation is 2 likley choice for
the display generation side of the system. The NeXTdimension uses an Intel i860 RISC
graphics coprocessor. The i860 is capable of 33 MIPS, 66 MFLOPS and has built-in z-
buffer support. NeXT rates the i860 at 30,000 Gauraud polygons/second. These are
real polygons, since the screen clear time is 30 MS; all too often polygons/second
figures are given for unrealistically small polygons. Like the Amiga, the NeXTdimension
supports a variety of display frequencies and formats.

Dr. Thomas Clarke, principal investigator, has had much experience with the
NeXT and is developing a RISC-based coprocessor for the NeXT using the Inmos
transputer under FHTIC funding. The NeXTdimension thus fits naturally with on-going
research efforts at IST. The Inmos transputers may prove a way to boost performance
beyond that obtainable with the INtel i860 alone.

Proprietary software will be avoided as much as possible. Graphics standards
will be utilized whenever practical so that the vari-pixel system will be as portable as
possible. The development language will be C for maximum portability in any case.
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The display system will be chosen after a careful evaluation of the state-of-the-
ant. In order of preference, possibilities available in the near future include: high
resolution miniature LCD, miniature CRT, and CRT combined with fiber optic.

It would be ideal if the television industry would produce a high-resolution LCD for
HDTV (High Definition TV) use within the time frame of this project. While this will
ultimately happen, progress in fabrication technology may not be fast enough to meet
the goals of this project.

Small high-resolution CRTs developed for use as helmet mounted displays
(HMDs) could be combined in triads with appropriate filters to produce a high-resolution
color display. Drawbacks to the use of HMD CRTs are cost and fabrication. These
CRTs are special purpose items and tend to be fairly expensive. Also the use of
multiple CRTSs, filters and combining optics can lead to a complicated structure with
difficulties in maintaining optical alignment.

A final option would be to use a large CRT with a fiber-optic relay to the final
head-mounted eye-phone display optics. This approach takes advantage of mass
produced display technology but has the draw back of a large and somewhat fragile
fiber-optic umbilicus. A medical endoscope fiber bundle may be adequate for this
application, however. The Visual Technology Research (VTRS facility of the Naval
Training Systems Center (NTSC) here in Orlando has experience with fiber-optic relays
for head-mounted projection displays, and their expertise can be utilized (Browder,
1989).

At the time of writing the fiber-optic relays seems the most practical. It would be
viewed as stop-gap solution since the miniature LCD is much more desirable. A
compromise would be to design with the fiber-optic/large-CRT behaving as a virtual
miniature LCD.

The optics for this second phase of the project will be specially designed and
fabricated by a US manufacturer specializing in this type of optical fabrication. The
mounting hardware will be designed for durability and long-life.

The algorithms developed during the first year will be adapted to the high-
performace hardware platform. This high performace vari-pixel system will then be
made available to industry for marketing and production.

Comparison with Other Research

The emphasis in this project is to use a group theoretic approach to vision as the
basis for design of an optimized virtual-world display. Group theory is the natural
language since the human visual system is optimized for detecting curves and lines
which are invariants of Lie transformation groups identified by Hoffman (1966).

Several approaches to implementing Lie groups are possible as discussed
above. The projective geometry transformations used in visual systems are examples of
a type of group transformation, and Lie group transformations can be implemented in a
similar fashions by expressing the components of the transform in matrix format. Lie
groups are inherently local, however, so that if parallel hardware is available, there will
be no problem in using it to rapidly process different portions of the image.

A more recent approach to implementing vision transforms relies on the
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mathematics of conformal transforms ( Frederick and Schwartz, 1990). These
researchers utilize the Riemann mapping theorem to implement the transforms found in
the visual system. The approach of Frederick and Schwartz is also very amenable to
implementation on parallel hardware.

Standard approaches using projective geometry techniques can be found in Dew
et. al. (1989), Glassner (1989) and Magnenat-Thalmann (1987). Full use will be made
of appropriate existing work in the field of computer image generation and visualization.

Summary

In summary, the first year will be devoted to developing algorithms for
implementing image pre-distortion based on Lie group theory. These algorithms will be
tested using general purpose computer hardware and low cost displays.

During the second and third years, a state of the art system will be developed
utilizing the algorithms and configuration proven during the first year.
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. PREVIOUS ACCOMPLISHMENTS and QUALIFICATIONS
Related Research

The papers "Stereo Processing with Artificial Neural Networks" (1990
Florida Artificial Intelligence Research Symposium), and the paper "Generalization of
Neural Networks to the Complex Plane" (1990 International Joint Conference on
Neural Networks in San Diego), both apply” reverse engineering” of human signal
processing to the solution of recognition problems.

Dr. Clarke has also done work on the recognition of underwater acoustic
echoes as in "A Pattern Recognition Approach to Acoustic Bottom Recognition"; 1987
in Acoustical Imaging, H. W. Jones editor, Plenum, NY. In addition, Dr. Clarke has
applied quantum mechanical techniques such as path integration to underwater
acoustic problems in Wave Propagation in Focusing Random Media; 1982; NOAA
Tech Memo ERL AOML-51.

Optical design work by Dr. Clarke is represented by his 1983 paper describing a
new eyepiece design he developed.

Facilities available to Dr. Clarke include NeXT computers, DSP hardware, and a
variety of workstations used in support of mathematical simulation. They are described
more fully below.

Significant Papers

Clarke, T.L., (1990a). Stereo Processing with Artificial Neural Networks.
Proceedings 1990 Florida Artificial Intelligence Research Symposium

Clarke, T.L. (1990b). Generalization of Neural Networks to the Complex Plane.
Proceedings 1990 Int. Joint Conference on Neural Networks, San Diego.

Clarke, T. L. (1987). A pattern recognition approach to remote acoustic bottom
characterization, in Progress in Underwater Acoustics, Harold M. Merklinger ec,
(Plenum, New York), 225- 230.

Clarke, T. L., (1983) Simple flat field eyepiece, App/ Optics, 22, 1807-1811.

Clarke, T. L. (1982). Wave propagation in focusing random media, NOAA Technical
Memorandum, AOML-51.
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Biographical Sketch
Thomas L. Clarke

SUMMARY: Dr. Clarke has more than 15 years research experience involving
propagation modeling, digital processing of acoustic signals, statistical analysis, and
numerical modeling. He has two patents. Dr. Clarke has published extensively in
professional journals and is affiliated with the Institute of Electrical and Electronics
Engineers, Audio Engineering Society, and Acoustical Society of America.

Education
Ph.D. in Applied Mathematics, May 1982, University of Miami.
M.S. in Applied Mathematics, August 1975, University of Virginia.
B.S. in Mathematics, Dec. 1973, Florida International University.
Experience

1988- present. Senior Scientist, University of Central Florida/Institute for Simulation
& Training. Dr. Clarke’s activities involve planning and developing new research
projects. Areas of research with UCF faculty include the application of advanced
computer architectures to problems of training simulator design and application of
applied mathematics to simulation.

1985 - 1988. Consultant and contract researcher on various acoustical projects.
Obtained SBIR grant to study optical propagation in the atmosphere doing business
as TLA Research.

1975 - 1987. Mathematical Oceanographer at Ocean Acoustics Division of Atlantic
Oceanographic and Meteorological Laboratory, U.S. Dept. of Commerce. cnyaged in
research relating to Doppler current sensing and echo-sounding techniques.

Publications

Dr. Clarke has published over 50 articles and conference presentations. The
following are among his most scientifically significant. These are primarily from his stint
as an underwater acoustical applied mathematician but still reflect his broad range and
versatility as a researcher.

1977 Clarke, T. L., FET Pair and op-amp linearize voltage- controlled resistor,
Electronics, 50, No. 9, 111-113.

1978 Clarke, T. L., Oblique factor analysis solution for the analysis of mixtures,
Mathematical Geology, 10,225-241
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1981 Clarke, T. L., Parallel channel processing overlaps data acquisition and
reduction, Computer Design, 20, No. 8, 127- 132.

1981 Clarke, T. L., Augmented passive-radiator loudspeaker systems, Part|, J.
Audio Eng. Soc., 29, 394-404.

1981 Clarke, T. L., Augmented passive-radiator loudspeaker systems, Partll, J.
Audio Eng. Soc., 29, 511-516.

1982 Clarke, T. L., Wave propagation in focusing random media, NOAA Technical
Memorandum, AOML-51.

1982 Clarke, T. L., D. J. P. Swift, R. A. Young, A numerical model of fine sediment
transport on the continental shelf, Environ. Geol., 4, 117-129.

1982 Clarke, T. L., G. L. Freeland, B. Lesht, D. J. P. Swift, and R. A. Young, Sediment
resuspension by surface wave action: An examination of possible mechanisms,
Mar. Geol., 49, 43- 59.

1983 Clarke, T. L., W. L. Stubblefield, and D. J. P. Swift, Use of power spectra to
estimate characteristics of sand ridges on continental shelves, J. Geology, 91,
93-97.

1583 Clarke, T. L., Simple flat field eyepiece, Appl Optics, 22, 1807-1811.

1983 Clarke, T. L., D. J. P. Swift, and R. A. Young, A numerical modeling approach
to the fine sediment budget of the New York Bight, J. Geophys. Res., 88, 9653-
9660.

1984 Clarke, T. L., and D. J. P. Swift, The formation of mud patches by non-linear
diffusion, Cont. Shelf Res., 3, 1-7.

1984 Clarke, T. L., Limitations of physical theory, Nature, 308, 1984 Clarke, T. L., J.
R. Proni and J. F. Craynock, A simple model for the acoustic cross-section of
sand grains, J. Acoust. Soc. Am., 76, 1580-1582.

1984 Clarke, T. L., An application of measure theory to the problem of flexible
working hours, J. lIrreproducible Results, 29, No. 2, 15.

1986 Clarke, T. L., Radiation pressure induced instability in Saturn’s rings,
Astrophysical Ltrs., 25, 51-56.

1986 Clarke, T. L., and J. R. Proni, Remote acoustical measurement of ocean
bottom parameters, in Current Practices and New Technology in Ocean
Engineering, T. McGuinnes and H. Shih eds, (ASME, New York) 145-148.

1986 Clarke, T. L., and G. J. Williams, Transverse Doppler current profiler phase |
development final report, General Oceanics Technical Report.

1987 Clarke, T. L., A pattern recognition approach to remote acoustic bottom
characterization, in Progress in Underwater Acoustics, Harold M. Merklinger ed,
(Plenum, New York), 225- 230.

1987 Clarke, T. L., Final report phase | multi-wavelength refraction correction,
TLA Research Report.

1989 Clarke, T.L., GRASS Research at IST, Proceedings 5th Annual GRASS User's
Conference.

1989 Clarke, T.L., The Application of RISC Processors to Training Simulators, FHTIC
Final Report.

1989 Clarke, T.L., Terrain Data Bases for Simulation, FHTIC Final Report.

1990 Clarke, T. L., Stereo Processing with Artificial Neural Networks, Proceedings 1990
Florida Artifical Intelligence Research Symposium (FLAIRS).
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1990 Clarke, T. L., Generalization of Neural Networks to the Complex Plane,
Proceedings 1990 International Joint Conference on Neural Networks (IJJCNN).

Patents
Dr. Clarke in addition holds two patents. This illustrates his practical turn of mind.
US Patent 4070697. Augmented Passive Radiator Loudspeaker. Feb 28, 1976
US Patent 4623224. Anastigmatic Eyepiece. Nov 18,1986.
Proposals Pending

The principal investigator is currently receiving funding from the Florida High
Technology and Industry Council (FHTIC) for research into RISC processors and Terrain
Data Bases. He currently devotes about 60% of his time 1o these two projects.
Renewal proposals for these projects are pending.

The Pl has a proposal pending with the NSF for development of an
undergraduate simulation-based matematics and science course.

IST Facilities

The Institute for Simulation and Training (IST) is part of the University of Central
Florida (UCF). IST employs students from a variety of advanced degree programs in
engineering, science and mathematics. Graduate students from mathematics and
computer science will play a significant role in this research project.

IST has extensive laboratory facilities that can be divided into four broad
categories: Visual Systems Laboratory, Networking Laboratory, Human Factors
Laboratory, and the Mathematical Simulation Laboratory.

Visual Systems Laboratory

The Visual Systems Laboratory contains a variety of computer systems used
in support of research into visual system technology. These systems include:

a Silicon Graphics 4D70GT and two Personal IRISs. RISC based UNIX
workstations with specialized graphics hardware used in support of simulator
data base development and prototyping and experimentation of image
generation algorithms.

o Sun 386i. Intel 80386 based UNIX workstation used for applications dealing
with geographical information processing.

o NeXT. Motorola 68030 based UNIX workstation used for research into object
oriented user interfaces or "glass cockpits".

a Macintosh lIx. Motorola 68030 computing appliance used for experiments in
object-oriented simulation.
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a Various PC/AT-class personal computers used for hardware interface and
control.

Networking Laboratory

The Networking Laboratory contains a variety of US Army furnished SIMNET
compatible equipment including:

g Two M1 SIMNET tank simulators together with MCC network controller. Also
scheduled for delivery are: SIMNET Stealth Vehicle, SIMNET Data Logger,
SIMNET Plan View Display, SIMNET Long Haul Gateway, and Perceptronics
ASAT (Aviation Situational Awareness Trainer). In addition, the Networking
Laboratory possesses a variety of general purpose computing resources
including:

o DEC VaxStation 3100. VAX VMS or ULTRIX workstation used in support of
network data analysis.

= Seven Hewlett-Packard Vectra Intel 80386 XENIX or MS/DOS PCs. These are
used for program development and testing and for network protocol
conversion.

= Harris NightHawk 68030 computer.

o Evans and Sutherland ESIG-500 image generator.

Human Factors

Under the Human Factors umbrella fall a variety of equipment used in on-going
experiments in training effectiveness. This equipment includes two TOP GUN part
task gunnery trainers, two General Aviation Trainers (GATS), two VIGS tabletop part
task gunnery trainers, two Electronic Information Delivery Systems (EIDS), and a
network of Accer computers used for team training research.

Also falling in this category is the Human Performance Laboratory which contains
an SAIC Delta Il neural network coprocessor hosted by a 386 PC.

Mathematical Simulation

The Computer Systems category includes a variety of equipment thatis
particularly relevant to this project. This equipment includes:

o Three 80386 PC compatible computers. A Hewlett-Packard Vectra QS-16 and
two special purpose home-built computers. These machines are used to host a
variety of hardware add-in cards such as a PC-Vision Plus video digitizer, an
OKI Semiconductor digital signal processing (DSP) card, and an Inmos
transputer coprocessor.

o Two NeXT Motorola 68030 UNIX workstation. In addition to its object oriented
features, the NeXT contains a Motorola 56001 DSP chip and provides access to
the workstation network in the Visual Systems Laboratory. These are being
upgraded to 68040 mainboards and plans are afoot to convert the old 68030
mainboards into home-brew NeXT compatibles.
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Copies of the articles by Dodwell (1983), Frederick and Schwartz (1990),
Rotier(1989), Pletinicks (1988) and Browder (1989) are attached. Each of these
articles provided important background to this proposal.

Dodwell presents a very readable account of the utility of Lie groups in vision based
on Hoffman’s work.

Frederick and Schwartz establish the utility of conformal mappings for image
generation.

Rotier presents a survey of the many varieties of optical systems that are adaptable
to head-mounted computer displays.

Pletinicks discusses how quaternions, arother formulation of differential geometry,
can be used for image transformations.

Browder discusses the applications of fiber optics to head mounted displays in the
context of the on-going research at the Naval Training Systems Center VTRS.
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