
University of Central Florida University of Central Florida

STARS STARS

Institute for Simulation and Training Digital Collections

1-1-1990

The Application Of RISC Processors To Training Simulators The Application Of RISC Processors To Training Simulators

Thomas L. Clarke

Find similar works at: https://stars.library.ucf.edu/istlibrary

University of Central Florida Libraries http://library.ucf.edu

This Research Report is brought to you for free and open access by the Digital Collections at STARS. It has been

accepted for inclusion in Institute for Simulation and Training by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

Recommended Citation Recommended Citation
Clarke, Thomas L., "The Application Of RISC Processors To Training Simulators" (1990). Institute for
Simulation and Training. 193.
https://stars.library.ucf.edu/istlibrary/193

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/istlibrary
https://stars.library.ucf.edu/digitalcollections
https://stars.library.ucf.edu/istlibrary
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/istlibrary/193?utm_source=stars.library.ucf.edu%2Fistlibrary%2F193&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
J

; ' I -NSTITUT E ,'F.? : S'I - MU~A!ION AND T RAINI .NG
. -

-' ;.-... ~.,. - :. ...

\

B 12 6

FH1!C Final Project Report

I-lotiO to 12-31-90

THE APPLICATION OF RISC

PROCESSORS TO TRAINING
SIMULATORS

Autllo r :
Thaaas L. Cla r ke

Insti1Jre for Simulation and Training
124:l1> Research Parkway. Suite 300
Or...., FL 32826

Unlwrslty of central Florida
Divilian of Sponsored Research

IST-XX-89-#

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

State of Florida
HIGH TECHNOLOGY AND INDUSTRY COUNCIL

APPLIED RESEARCH GRANTS PROGRAM

RESEARCH REPORT

FHTIC Contract No. Date Submitted:

Report Title: The Application of RISC Processors to Training Simulators

Re port Author(s) - name and address of organization :
Thomas L. Clarke

ISTIUCF

12424 Research Parkway, Suite 300

Orlando, FL 32826

Type of Report : Quarterly Project x Final Project
----- --

Semiannual Fiscal Final Fiscal

Period Covered: From 1-1-90 to 12-3 1-90 ; Number of pages 256
---=--

ABSTRACT of contents of this submission (150-200 words; for Project Reports only)

Despite very successful research, this project was not selected for renewal beyond 1990
because of the intense competition for FHTIC funds. Nevertheless, a number of key
technologies have been developed to the point at which they can attract funding from other
agencies to support advanced development. In particular, a detailed hardware design for
interfac ing transputer hardware to the NeXT computer was completed under this project and may
form the basis of a commercial product.

A study on the utility of RISC processors as the control computer in a training simulators
was also completed. Results of this study should be of value to Florida simulator manufacturers.
Both the research into transputers and RISC processors provided the basis for a proposal to
DARPA in the area of advanced visual displays.

The best results from this project will not be abandoned with the end of FHTIC funding,
but will be supported by other means or will utilized in the companion Terrain Data Bases for
Simulation Project.

Subject Key Words (list 3-5) : RISC, transputer, parallel processing

For FHTIC Use Only

Date Received: ___________ FHTIC Publication Code:

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Summary

This project was not selected for renewal beyond 1990. It has nevertheless been
a ve ry successful project. Most importantly, a number of key technologies have been
developed to the point at which they can attract funding from other agencies to support
advanced development.

A detailed hardware design for interfacing transputer hardware to the NeXT
computer was completed as a master's thesis under this project. This thesis is included
as Appendix II .

A study of the utility of RISC processors as the control computer in a training
simulators was completed. The results of this study should be of value to Florida
simulator manufacturers. A copy of the paper detailing these results is included as
Appendix IV.

The research into transputers and RISC processors provided the basis for a
proposal to DARPA in the area of advanced visual displays. These displays will be
particularly useful in the area of virtual reality which is one of the fastest growing
application areas.

The best ideas from this project will not be abandoned with the end of FHTIC
funding, but will be utilized in the Terrain Data Bases for Simulation Project. In addition
other sources of funding cont inue to be aggressively pursued.

Significant Research Findings

A detailed hardware design for interfacing transputer hardware to the NeXT
computer was completed as a master's thesis under this project. This thesis is included
as Appendix II. This design will bring the expandable processing power of arrays of
transputers to the growing body of NeXT machine uses. No industrial partner has,
however, yet been identified to produce this design.

Work was completed on the simulator benchmark supplied by Naval Training
Systems Center (NTSC). The C-code derived from the original FORTRAN was polished
and prepared for extensive benchmark runs.

The TCP/IP workstation network at 1ST includes RISC machines using a variety
of processors. The Sun uses SPARC, the Silicon Graphics uses MIPS 2000, and Data
General uses Motorola 88000. There are in addition machines on the network using
CISC processors such as 80386 and 68030. In addition IBM made one of their new
RS/6000 RISC machines available for benchmarking.

1

r •

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Extensive comparison benchmarks were made available for presentation at the
1990 Interse~ice/lndustry Training Systems Conference. The results of this study are
included as Appendix III.

A major result of this project has been a detailed literature survey to identify
previous work related to applying parallel processing technology such as transputers to
the problem of generating imagery. In general there are two broad approaches to
generating images. Broadly speaking, these are ray tracing and polygonal rendering . A
brief discussion of some of the most valuable references follows.

Andrew Glassner of Xerox PARC (Palo Alto Research Center) has edited a book
An Introduction to Ray Tracing that provides a broad survey of the field. Of particular
interest is the stochastic sampling approach of Cook ("Stochastic Sampling and
Distributed Ray Tracing"). It avoids aliasing artifacts by redistributing under-sampled
energy across the spectrum. Stochastic casting or rays is a good way to divide effort
among an array of transputers.

In the same volume, Arvo and Kirk ("A Survey of Ray Tracing Accele ration
Techniques") discuss various methods of speeding ray-tracing including the use of
vector and parallel architectures. A rather complete ray-tracing bibliography is
presented in the article by Heckbert and Haines ("A Ray Tracing Bibliography").

Another valuable collection is Parallel Processing for Computer Vision and
Display edited by Dew, Earnshaw and Heywood (University of Leeds and IBM, Great
Britain). Their book contains a variety of algorithms oriented toward speeding
visualization using parallel computation. In particular the article by Caspary and
Scherson ("A self-balanced parallel ray-tracing algorithm") presents a parallel ray­
traci ng algorithm.

The article by Holliman, Morris, Dew, and de Penington ("An evaluation of th e
processor farm model for visualizing constructive solid geometry") discusses the use of
a "processor farm" for visualizing solid geometry. This article is particularly interesting
since the processor farm is implemented using transputers.

Another book that has proven a valuable source of material is Image Synthesis
by Magnenat-Thalmann and Daniel Thalmann (University of Montreal). They present a
vari ety of techniques for dealing with texture that are applicable to the problem of
generating images using arrays of transputers.

Dew, P. M., R. A. Earnshaw, and T. R. Heywood (editors), 1989; Parallel Processing for
Computer Vision and Display; Addison-Wesley Publishing Company, New York,
503pp.

Glassner, Andrew S. (editor), 1989; An Introduction to Ray Tracing; Academic Press,
New York, 327pp.

2

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Magnenat-Thalmann, N. and D. Thalmann; 1987; Image Synthesis; Springer-Verlag,
New York, 400pp.

The literature search uncovered recent research of some importance. Two
researcher's at NYU's Courant Institute have identified the usefulness of the
mathematical technique of conformal mapping for performing the transformations
needed in a CIG.

Frederick, Carl and Schwartz, Eric. L. 1990. "Conformal Image Warping", IEEE
Computer Graphics and Applications. March, 54-61.

Earlier work on conformal mapping (for non-visual applications) shows promise for
adapting this transform to parallel hardware such as the transputer:

Trefethen, Lloyd N. 1980. "Numerical Computation of the Schwarz-Christoffel
Transformation", SIAM J . SCI. STAT. COMPUT., 1,82-102.

Adoption of conformal mapping to transputers will be a significant research contribution
that will have applications beyond the visual transformation for a CIG.

For example, a hemispherical display (2lt steradians) achieving the 1 minute of
arc resolution of the human eye would require 75 million display elements. This is
beyond any foreseeable, affordable technology. In addition, updating the 75 million
pixels fast enough to avoid flicker and other artifacts would require >10,000 MIPS.

If the warping algorithm is implemented in a local, pixel by pixel, fashion, then
good use can be made of parallel hardware such as arrays of transputers. This insight
was a key factor in the proposal to DARPA (Appendix IV).

Comparison with Goals

This project was not selected for renewal beyond 1990. It has nevertheless been
a very successful project. Most importantly, a number of key technologies have been
developed to the point at which they can attract funding from other agencies to support
advanced development.

A detailed hardware design for interfacing transputer hardware to the NeXT
computer was completed as a master's thesis under this project. This thesis is included
as Appendix II.

A study on the utility of RISC processors as the control computer in a training
simulators was completed. The results of this study should be of value to Florida
simulator manufacturers. A copy of the paper detailing these results is included as
Appendix IV.

3

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

The research into transputers and RISC processors provide support for a
proposal to DARPA in the area of advanced visual displays. This displays will be
particularly important in the area of virtual reality which is one of the fastest growing
application areas.

Commercialization Activities

At the close of the year, the RFP for DOD SBIR research contained several
topics that would provide a good vehicle for collaboration with local small businesses.
Discussions were held with Daedalian, Inc (Russ Hauck) concerning commercialization
of the technologies resulting from this research . Joint proposals to NTSC and the
AF were being prepared.

Current Problems

There are no major problems with this project, nor are any anticipated.

Upcoming Milestones

This project has not been selected for renewed funding. Therefore there are no
upcoming milestones.

Publications and Presentations

Andres Alverez, a student of Dr. Petrasko, the co-PI, completed a master's
degree as a result of this project. A copy of his research presentation is included as
Appendix I and a copy of his thesis is included as Appendix II.

A paper,"A Portable Benchmark for Simulator Processors", was submitted to
I/ ITSC, but did not make the final cut for presentation. The reviewers felt felt that the
results of the brickbat benchmark were essentially the same as those of the
conventional dhrystone and whetstone benchmarks. The research was too successful!

A copy of this paper is attached as Appendix III.

Direct External Support

DARPA has responded favorably to a draft proposal "Optimal Virtual World
Displays" which uses many techniques developed in this research . FHTIC research
was fundamental in attracting this interest. The funding level for the DARPA research
will be -$360K over three years. A copy of the proposal is included as Appendix IV.

IBM provided one of their new RS/6000 RISC-based workstations to support
benchmarking and image generation activities.

An Aviion RISC workstation loaned to 1ST by Data General was made available
for benchmarking.

4

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Transputer equipment loaned by the Naval Training Systems Center have been
used as part of this project. Additional transputers supplied by PM Trade for use in
the Visual Sy"stems Laboratory will also be available to this project.

SUS Infrastructure Interactions

This project employed two students at 1ST, J. Martin OUe, a master's level
math ematics student, and Steve Rehfeldt, an undergraduate in EE.

Andres Alverez, a student of Dr. Petrasko, the co-PI, completed a master's
degree as a result of this project.

5

I
I
I
I
I

Appendix I

Research Presentation by
Andres Alverez

on
Interfacing Transputers

to the
NeXTbus

in
Partial Fulfillment

of the
Requirements

for the
Degree of

Master of Science

Interfacing an Array of Coprocessors to the NeXTbus

Research Report by:

Andres Alvarez

B.S., University of Florida, 1986

I-AGENDA ~
..... ;.;.:.;.:.;;:; .•. ;,;~ .. ;.; .. ;: •. ;.; .. :;~: ...• ;;;.;+ :;.) ;:;.; ;:: ,} :;: :·:·:~· ·:·;.::·:·:· ·0

o Introduction to the Coprocessor Architecture
o Introduction to the NeXTbus Architecture
o Introduction to the NeXTbus Interface Chip (NBIC)
o Overview of the Interface Board
o Top-Level Design of Interface Board
o Advantages / Disadvantages of Using the NBIC
o Work Remaining
o Questions and Answers

I COPROCESSOR ARCHITECTURE I
I ;·;.:.;.:;·;·: ... ·;:·;.:.;;;·;: .;~;·:(.;:·:;.: .•. ·:·;.;.:;;;.;.;.;:.;:.\1: .;.;.:.;:.:.:.;.;:;;.;.;.:; ••• ;-:.; .. ;.:.;.;~:.; .•. ;\ •• ;.;;.:(.; ,;,;.;;,:.;,;.;;.:.:.;.:;.;.;;.:.-:.;.:.::.;.;.;.;; ;.;.;.;;.;.;(,;:.:.:.;.:;.;.;.: .• :;.:.:":;':':'::::' : " ' :';::"': '; ';': .\ :'; .;.;,, : .:.;.: .: : .:.:':'::;:':";": ';'\':';':':;{'>~':vt

o Shall be composed of one or several transputer based
motherboards.

o Motherboards are composed of a combination of Inmos
transputers, dual-inline transputer modules (TRAMs)
and a 32-way link switch.

o Have the capability to configure different parallel
processing networks via link.

o Powerful array coprocessing networks can be
developed by interconnecting several motherboards.

------ -------------

ITRANSPUTER INTRODUCTION I
i; :' .::·:·.·:.::·:·.· :.::·~·:.;: ·.·:.; .::; :·:.:.;.;:.; ... ·:·····:~··t;.:~;·:·:·::·:·.':·:·.;·~:· ·~ :;:-:·::·:·:·;·:····: ·: ,::":,:,::,~:,~::,;,,,? ~,,~:,~:,,:~,,:~, :,:,·y~t·····:':':':'::"':':'::'~:':":" :" $::':';~~: "~::::"': ';:~.:-:~ .. ;.: :-;.:.: .. ,.;.: ..• :;;:.;~.:;.:.;.+}

o A high-performance 32-bit microprocessor which
contains the following:
(1) Its own local memory (2 kbytes / 4 kbytes)
(2) 4-high speed serial links
(3) A 16 or 32-bit processor
(4) Internal timers for real-time processing
(5) System services (reset, analyze and error)
(6) On-chip floating point unit (optional)

o Transputers are hardware processors which execute
software processes. .

o Any number of processes can be executed on a single
transputer processor at the same time.

o Transputers can be bootstrapped from ROM or via
link.

-------- -----------

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

" . • #

'.
:;

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Block Diagram of Transputer Architecture

Memory
Control

Memory
AddresslData

On-Chip Roating Point Coprocessor

(Optional)

Selection

LinkOWOut

Link! WOut

Link2WOut

Link3 IJ.lIOut

Event In/Out

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Inmos Transputers and their Features

Transputer 16 ICT On Chip External Resp. Sustained Data Rate to
or RAM Memory to External Internal

32 Int. Memory Memory

IMS T805 32 33 ns 4 Kbytes 4 Gbytes 630 ns 40 MB/sec 120 MB/sec

IMS T801 32 33 ns 4 Kbytes 4 Gbytes 630 ns 60 MB/sec 120 MB/sec

IMS T800 32 33 ns 4 Kbytes 4 Gbytes 630 ns 40 MB/sec 120 MB/sec

IMS T425 32 33 ns 4 Kbytes 4 Gbytes 630 ns 40 MB/sec 120 MB/sec

IMS T414 32 50 ns 2 Kbytes 4 Gbytes 950 ns 26 MB/sec 80 MB/sec

IMS T222 16 50 ns 4 Kbytes 64 Kbytes 950 ns 20 MB/sec 40 MB/sec

IMS T225 16 33 ns 4 Kbytes 64 Kbytes 630 ns 30 MB/sec 60 MB/sec

NOTES: Data compiled from Inmos Transputer Data Book. Nomenclature for table.
Resp. to Int. = Response to Interrupts ns = nanosecond
ICf = Internal Cycle Time MB = Mega Bytes

C~~~!~~~~~~~,~,~~~~~~~!§~t!~~~,, 1

o Motherboards have a common architecture to allow
control and interconnection of several boards.

o Architecture allows different kinds of network to be
configured.

o Allow hierarchical control of syste,ms with more than
one Motherboard.

o Allow networks to be easily configurable by software.
o Communication can be obtained with the host

computer (NeXT) via a single serial link.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

"

Generic Motherboard Top-level Architecture

"notUpError"

"notUpAnalyze"

"notUpReset"

UP PORT

"ConfigUp"
"I/O Links"

"notUpError"

"notUpAnalyze"

"notUpReset"

SUBSYSTEM PORT

"notSubSystemReset"

"notSubSystemAnalyze"

" "

"ConfigDown"
"notSubSystemError"

I NeXTbus ARCHITECTURE I
I,·;;:·; ~::::. : ;', ;:':.:.;.;. :'.-:.::: ::;';"'" "', .;. ," '.';. :·c·; ;.:." ,:.;:::.:.: .•. ::.:.;~~ •. :.:.:.(-:.;.;:;:-:.:o::;:.: .>:;::, ;.:.:;:~:.:.:;: .• :-:.;:.;.:-:.;;;;.:.:.;:::.: .:.:;. :.:.:~;;:.:';';:;:';' :':;"":';:,:' .. :.:: ... :::.::.:.::::::.;.:.:;:;.: ;';"0" {1

o A synchronous 12.5 MHz multiplexed bus.
o Bus architecture is composed of 96 signal lines.
o 32-bit addressing (4 Gigabytes of address space).
o Contains Master and Slave Flow Control.
o Has a single-chip interface via the NeXTbus Interface Chip

(NBIC).
o Burst transfer size can be 4, 8, 16 or 32 words.
o Each NeXTbus transaction is composed of three basic

cycles:
(1) Start Cycle
(2) ' Data Transfer
(3) Acknowledge Cycle

l-N~XTb~sINT-ER.FA-CE CHIP I
I:···:·;;:·~·.:;·;';;~.,;;·;···::;:·;·~;.;:·;·:.:::;·:·;·.::;.; •.. ;.;: . :. :~;;'; •.. ::::.;.:.:;; ;. :.:~;;;.:.;.::.;.:.;~:;:.:~.:;:;.;.:.;;;~:.:.::;:.;.: .. ;.:.;.;.: .• :.;,.: .. ;.;.;'::';';':'~::':':':;::';':'::: '; " .. ~;':':":':';';': :':'.':.;::;.;.;.;:::.; ..•. :;:.;.;.;:.;.). .. ;&

o A 144-pin CMOS VLSI chip.
o Provides a single-chip interface to the NeXTbus.
o Designed to interface specifically with the Motorola 68030.
o Performs Byte-swapping

NeXTbus (Little-Endian Byte Ordering)
- Motorola 68030 (Big-Endian Byte Ordering)

o Supports both Master and Slave boards.
o Contains five internal programmable registers:

(1) NBIC ID Register
(2) Control Register
(3) . Configuration Register
(4) Interrupt Register
(5) Interrupt Mask Register

o Provides a local bus interface (used to interface with the array
of coprocessors).

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

NEXTBUS

c
o
n
t
r
o
1

A
r
b
i
t
r
a
t
1

o
n

A
d
d
r
e
s
s
/
D
a
t
a

Top-level Block Diagram of NBIC

NeXTbus
Arbitration
Logic

NeXTbus Master/
Local Slave
Control Logic

TRANSACTION FIFO

NeXTbus Slave/
Local Master
Control Logic

Local Bus
Arbitration
Logic

TRANSACTION FIFO

LOCAL BUS

A
d
d
r
e
s
s
/
D
a
t
a

A
r
b
i
t
r
a
t
i
o
n

c
o
n
t
r
o
1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Format for Internal NBIC Registers.

NBIC ID REGISTER

31 30 16 15 00

I v I M1G~~~~re ID I Board ID Number I

NBIC CONTROL REGISTER

31 30 29 28 27 26 o

Read Modify Cycle Coil
Store and Forward
Ignore Slot ill

ision (RMCOL)
(STFWD)
(IGNSIDO)

NBIC CONFIGURATION REGISTER

31 30 29 28 27 26 25 24 23 00

External ID Re gister Enable
EN) (EXIDREG

Slot Sgace Dec
(S DECOD

ode
E)

External Slot Sp ace Select
(EXSEL)

Slave InterrutJ)t
, (SINTE

Enable

Reserved

Slot Identificatio n Values
(SID 3:0)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

NEXTBUS

Access to NBIC Internal Registers.

Interrupt
Mask

Register

LOCAL BUS

From
Board's
logic

I OVERVfEVV OF INTE-RFAcE-S-OARD ~
(/. :.:.:;:;.~;. ; .. ;.:,:.;;: •. ;.: .; :.:.:.:.:::;.:.:.;:.:.:'~~·;~'~Y ::":",;,;~,··· :·:·::: · ·:·: ·~::·~;·::.:.;·k:·;': ':';::':':" :';~':';:"~:'f.:.:;.: .x·;;,;·:·;N.;· · ·: ··~:.;.::::.:.; .. :.:.:.:.;:.; .•. :.::.;.;.; .. ;.:.:.:.:;.:.;.~. :;:.: .; .. :::.;.;.::~.:.; .. ~;:-:.:..;::.;.:.::::.;.: .•.. :.; .· .::·:~.;.:~ :<.:.:.;:.;.:. ~;:-:.:. ·.;:.;~\:;k

Purpose: Allow communication between the NeXT
computer and an array of coprocessors via the
NSIC.

o The board shall contain four ports.
o The ports perform the following functions:

(1) Communicate via the NBIC with the NeXT computer
(2) Process data which is to be transmitted to the

coprocessor network
(3) Process data which is received from the

coprocessor network
o The board contains the following H/W modules:

(1) Configuration Controller
(2) Address Decoder
(3) Port Controllers (Input'and Output)
(4) Error Controller
(5) Reset, Analyze and Interrupt Logic

I
I
I
I
I NeXTbus

I
I
I
I
I
I
I
I
I
I
I
I
I
I

Top-level Block Diagram of Interface Board

32-Bit
LOCAL BUS

Link 0 I/O

Link 3 I/O

I+-+_~ Input/Output IMS
FIFO's COlI 1-+-1---

Port #3 .;
I/O Controller SYSTEM

.RESET
and

SERVICES
SS #1

ANALYZE ~=-~--I-..
LOGIC

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Memory Map of Board

sX4FFFXX .. SPECIAL

sX4000XX REGISTERS These Address locations

sX3FFFXX ~:/:':"'

Pd~T #3
are only valid for Burst Writes.

Burst Byte 3FOO - 3FFF
sX3000XX •• p .•.••••. \ ..

sX2FFFXX
PO.~~ #2 Burst Byte 2FOO - 2FFF

sX2000XX

sXIFFFXX
.. <: : ,.

PORT' #1 Burst Byte IFOO - IFFF
sXIOOOXX

sXOFFFXX
-:-,-,. .. ;;,L';j:,

PORT #0 Burst Byte OFOO - OFFF
sXOOOOXX .,\'·~P1ii'· .Ii·

Mapping of Special Registers.

-------- SUBSYTEM SERVICES

40lD 405D 409D 40DD Subsystem Analyze Write Only

4019 4059 4099 40D9 Subsystem ResetJErr Write/Read

INPUT FIFO (NeXT· to • LINK)

4015 4055 4095 40D5 FIFO FULL Read Only

4011 4051 4091 4001 FIFO EMPTY Read Only

400D 404D 408D 40CD FIFO HALF FULL Read Only

OUTPUT FIFO (LINK. to • NeXT)

4009 4049 4089 40C9 FIFO FULL Read Only

4005 4045 4085 40C5 FIFO EMPTY Read Only

4001 4041 4081 40Cl FIFO HALF FULL Read Only

I CONFIGURATIO-N CONTROLLER m
t:~~:::::~:~:~~.~~:::;:;:::::{::::;::~::::::;~:::;;i;:{:;1::;:~j:~~::::;:{::::::~~::::::f.::::;:;:}:;;::::::i::::::::::::;;::::::;:::~;:;:::}::~::~:::::::;;::~:::i;::::::::;;/:::.;;;:::::;::;::::::::~::~:::;.i::}::}::~:::::}::~:::::{::::::::{:({:::::::i!:::: ~:::?::~:;;~:~:::;:ib

Purpose: Initialize the NBIC 10 register and control register
at power-up or during a reset sequence. >

o NBIC 10 Register shall be internal in the NBIC versus
external.

o A PROM shall store the appropriate address and data for
the two NBIC registers.

o Configuration register is configured by board resistors.

r
U

A6DRESS DECODER m
I: , :,{.;,:·:·.·:.~::·:.: : ~ ;."}:.;;. ;':';':":~':':';:":'::;:~':":;';}:::-:-;{:;':':':"""'::':':':§:" Y:';'~:~:';':'::';"'~:":':';'::::':';~;;{:':';:.;. :. : •. :.;.:.:.?:.:.,.~:.;;.~:j

Purpose: This module shall decode all valid address
locations of the board and assert the appropriate
signals.

o This module shall latch the address at the beginning of a
transaction.

o Assert control signals depending on the address lines
2E08-2E23.

o Address lines 2E23-2E20 select which port is to be active
or which special register is to be processed.

o Address lines 2EOO-2E01 used by NeXT to encode type of
transaction to be performed.

o Address lines 2E02-2E06 used by NeXTto encode the burst
transfer size during burst transactions.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Top-level Block Diagram of Address Decoder

I INPUT PORT CONTROLLER m
, .. :.; -;-.: .. {;.;, .. ~.;;,:. ;:; . .;.,;:;: :.,.);:; ... : ;;; .. ~ .. :.> ... ::;h .. :: ... ;;.: .. :.:.;: .•.. ;.... : .. !} ... , ', ;.;: .. , .. :. ';;:;" ';', : · ... ;.i ';.) : .. };.;:: ;: ... : j

Purpose: Responsible for all transactions between the NBIC
local bus and the Input/Output FIFO's.

o This controller is a composed of the following three
controllers:

(1) Write Controller
(2) Read Controller
(3) Status Controller

o Write Controller is activated for all write transactions
between NBIC and Input FIFO's.

o Read Controller is activated for all read transactions
between the Output FIFO's and the NBIC.

o Status Controller is responsible for placing one out of seven
status flags (per port) on the Isb of the address line.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Top-level Block Diagram of Input Controller

PORTX ACIlVE 4

STATUSXACIlVE 4

BRE *

*

2

2

BERR*

LRESET*

BURSTBYTEENX 4

PORTX ERROR 4

PORTX IN FF FLG 4

PORTX IN EF FLG 4

PORTX IN HF FLG 4

PORTX OUT FF FLG 4

PORTX OUT FF FLG 4

PORTX OUT HF FLG 4

IX FF* 4

IX EP 4

IXHF* 4

OX FF* 4

OX EF* 4

OX HF* 4

SUBXERROR 4

LCLK 4

INPUT PORT
CONTROLLER

2 MUX SEL

BACK*

STERM EN*

4 WRlTEX

4 READX

4 CE[3:0]

LAD 0

RDOE*

Where X is the Port
Number (0-3).

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Top-level Block Diagram of

Write Controller and its Interconnections

LAD[31 :0)

PortX Active

BREQ*

LCLK

32-Bit
to

8-Bit
MUX

8 INPUT FIFO
NeXT-la-Link

Data to Link
IMSCOll

8

W* FF* 1----,
L-_..-_"::"":--J

Mux SelX [1 :0)
Note: Only the
signals used are
shown on the
Input FIFO.

BACK*

FIFO Full
~----------------------~REG ~--;---------~

STERM*
.---------------------~ REG ~--~

-LCLK

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Top-level Block Diagram of

Read Controller and its Interconnections

Data from Link
32-Bit

LAD[31:0] Byte 8 OUTPUT FIFO
Link-la-NeXT

PortX Active

BREQ*

R/W*

LCLK

STERM*

LCLK Loadable

4 Chip (CEO-3)
Enables

Asyn.

R* EF*

~: Only the
signals used are
shown on the
Output FIFO.

Used to
tri-state
LAD[31 :0]
registers.

~--------------------~REG ~--~

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

LAD[31:0]

32

1

Top-level Block Diagram of Status Hardware

32 NeXT-lo-Link mux
INPUT FIFO

FIFO Status F1a&S
(FF*, EF* and F*)

R
32 Unk-lo-NeXT

OUTPUT FIFO
3

3
7

Error Rag REG

LCLK

7 Address Decoder

LAD [0]

STERM*
-.....;;,..;=;;;;..;;.-----1 REG I+-----!

-LCLK

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Block Diagram of Port Controller Interconnections

NeXTbus AddresslData

32

Control
Lines

Address
Decoder

1---

M
U
X

32
bit

8

8

NeXT-to-Link Serial

8
Links

INPUT
FIFO

IMS
WR RD COIl

Link-lo-NeXT LINK
8

OUTPUT
FIFO

RD WR

[OUTPUT PORT CONTROLLER m
i.· .. ····.·.·.··.·.·.(.. ·.v .·.·.·.··.,·.·.··.·.·.·.·.·•.... ,•.............•...•........ }•.... ,•.•... q ... , , : } -.............. , :}\;

Purpose: Responsible for all transactions between the
Input / Output FIFO's and the Inmos Serial Link
Adaptor IMS (C011).

o Link Adapter provides full duplex communication
between the Output FIFO's and the Transputer serial links.

o This controller is composed of the following two
controllers:

(1) Input Sequence Controller
(2) Output Sequence Controller

o Input sequence controller responsible for byte transfers
from the Input FIFO to the IMS C011.

o Output sequence controller responsible for byte
transfers from IMS C011 to Output FIFO.

o All transfers between FIFO's and IMS C011 are
asynchronous via a two-wire handshake.

------------------~

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

8

To and From
Local Bus

8

R

OX FF*

IX EF*

VaIidX

IAckX

LCLK

Top-level Block Diagram of Output
Port Controller Interconnections

INPUT FIFO

OUTPUT FIFO

OUTPUT
PORT

Controller
WriteX

ReadX

8 10_7

Async.
Logic

IValidX

AckX

LinkOutX

•....• LinklnX

I ERROR CONTROLl..ER I
1~·~:.1.:;·:·;.;.·.·; .:.;::.·;~.:::.·.·;.::;:·.·;.~·:·;.:.:.·:(.:.::;: ... :.:::;.:.:~:?;.:.::·~:.1:;..;.;.:::; ·~:.::::':':'::-:':':':::?\'=r'::-:';'~;;V:':';I;':;::'~:'::~~;' :' . .;.:.: .:.:;.;.;.:!!:;;.~:-:;.;.:.*

Purpose: Responsible for termination of an invalid
transaction or acknowledgement for any Port
Reset or Analyze transactions.

o All inputs for controller received from Address Decoder.
o Informs the user if an invalid memory address of the

board has been referenced.
o Verifies that a transaction does not have to wait till clock

cycle 256 to terminate.
o CPU board in NeXT computer terminates a transaction at

clock cycle 256.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Top-Level Block Diagram of Error Controller.

TRANSACTION 1

4 BERR*

ST

GP RESET
STERM_EN* STERM*

GP ANALYZE -LCLK
Reg

LCLK

I RESET, ANALYZE AND INTERRUPT LOGIC I
'.:,:.:;;..:.;.;~~:.; .. ::;.:.;.;;: .• ;~.;;.:.;~~:~.:.;.;;;i':';:;;'~~;:;~;';';;::';':'::;:"';';:;;"~'::~':':' ::;:.:,:.:L;.:.::.;.;.;~:.;.;.~::).: .::;:.;.;.:;;:.:,.:~: •.. :.;:;:.:.:.::::\.~;;.:.: .. ~;:.:.:;~:.;.:.:.; .. ;.:.::;:.;.;.;:;: ••. ;.;.;:.;.;.::;:.;.;.;.;; .. , .. ;:;;.;-.• ;;.;·;·;-;·;:·.·;·;:s·;·;·;:;:·;·;·;;';·;·;,·: ,!,; ·;:;;,:·;·;·} :.;:;x.;.;~.·:.:~:::·:.;.;;;.-:.;.·:::·;.:.:~;·:.;.:~:·:·;.;:;:·;·;k

o Asserts the appropriate Port Reset signal when user
selects to reset a port.

o Asserts the appropriate Port Reset and Port Analyze
signals when user selects to analyze a port.

o The interface board shall assert its local interrupt signal
(SINT*) when:

(1) Data has been transferred from the coprocessing
network to the interface board.

(2) Any of the error flags from the coprocessing network
are asserted.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Top-level Block Diagram of Reset and Analyze Logic

PORTX RESET 4 LINKX RESET

LINKX ANALYZE
PORTX ANALYZE 4

IMS COlI RESET

LRESET* FIFO RESET*

I ADVANTAGES / DISADVANTAGES OF NBIC ~
r:;;:::·:·?::::·;.:~~:·;·:·::;:~·:·;:·};·):~:·:·};·:·:f:···:.: .. : ... :.~~ •.. :.:::~._:.:.:.:.:.;.~~ .•. };:~.:.;% .. ;.~:;.".:.::.;....:.::::,.;.::;:.:.:.::::.;.:.::;:.:.:-:::;.:~.;.::.;·~::::.;·.·;:::·;.:·::A·:·::;:-:~·:.::·:·:·:-:;·;.. ·;:::·:·. · .{:.,::::.: .. -:::.~,.;::;.: .•.•. ::.;. ..• :::.: ..• :.::. .. ;.~: :.:.: .. :::.:.; .• :;:.;.:.:, .• ;.;"':": •. \;';';';'~::':'" '~'·:'A:·;.%~:·.:.::·.· .. :.:;.:·:.:.::·:··j

Advantages
o Reduces amount of design time.
o Reduces amount of Logic on the board.
o Provides a simple local bus interface.
o Provides a single-chip interface to the NeXTbus.
o Provides store and forward capability.

Disadvantages
o Only supports a burst transfer size of 4 words.
o No error generation when a burst size greater than 4 is

attempted.
o NBIC supports both Master and Slave boards; therefore,

the NeXTbus Master/Local Slave Transaction FIFO is not
used on the interface board.

I WORK REMAINING HI
,:,:,:,:;,;",;,::::,;,:,~::,:,:,;::,,:,;,: ,,;,,>:, ;::;,;.;.;;:;.:.:.:;~.:.:.;;:;.:.:.:~ •• :.:~:.;.: ••• ::.:.;.:.:;·:~ · :·;~:·. ·:·;;~·; · :·::·:·:·:·;:,;·:·:·;;;4·::·:-:c ·::·:·:·:·~;:~·;.:.;;.:·:.;.;;.:·:.::·t

o Testability of the board needs to be designed.
o Interface software program needs to be developed.

Program should perform the following:
(1) Write (single-word or burst) known data

patterns of arbitrary size into any of the four
ports.

(2) Read data from any of the four ports.
(3) Report number of bytes compared and the

total number of failures.
o High-level simulation of the hardware modules.
o Detail design of interface board.
o Testing and debugging of the board.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

TRAMs i
0- -m

bE: ;':';:;:':" ';:::':';'::::':';'::':':':';:::'\'::;:':';'::·;.:·;·:·::·:·:{t

o Off-the-shelf subassemblies which are composed of
the following:

(1) At least one processoor from the Inmos transputer
family

(2) A few discrete components
(3) External memory
(4) Some contain application specific circuitry

o All of the above components are on a single circuit
board.

o TRAMs have a standard pinout (16 pins) and size.
o Basic size of a TRAM is called a SIZE 1 (Dimensions are

1.05" by 3.66").
o Since TRAMs have a standard pinout and size, it is easy

to build customized motherboards for them.

MOTHERBOARD HIERARCHICAL CONTROL ~
:::.,:~:: .:::;:.'::: . ,:~:;:::~::~;:;:~~::::;:;::?: ~': :. :; ;';::.::::~:::::;;;;;;.:;~.;:;:'=':'::~~.i; ;:~~ ;::;::;~~::;:;::~';:":=':~::.i.:~~::::':~;::f:::.;~::::':;:::;:;:;;:;{';:;-:;:;:;~~:::~~~'f::'.;::H:::;;:::=':'::·:z.:·.';::;;:,.;;;:::::::~:;;;;::::::~~.;::~::,;::::.':,;:;:~:;:;:?~::::::::::::~:' ;:~~~.;:? :::::~:}.::'5!:,:, :~::2~~~:,:~~~::~:?- ::;:,::;.~.;~:: ~;:::}::% ;:,,~:~j

o Motherboards contain three ports to provide control of a
network.

o The three ports are:
(1) Subsystem Port
(2) Up Port
(3) Down Port

o Subsystem Port is used by a master board to control
other board(s).

o Boards are interconnected by connecting the Down Port
of one board to Up Port of another board.

I CONTROL SIGNALS PER PORT I
I·; , ::;:·;·,;.·:· . ·:. : :·.,:·;·:;~·.·:.: ;·:·:· ;.:::: ·:·: ·:;~·;·;··:::·; ·: ·; ·::· :· ;::::~:·;·:: ·:·:t··;·~;~·::·:.:.:.;;.:~{;.:.;.: .; : .: .:~ .: :.:{.)::.:.:.: .;;::.;~.:;.:.:':~;:~;';':;':':':i':':~':":':~~;::':~ '1;'::·:;':';':':; .:.:.; .; ;;:~~ .. ~:-:- :.;~:.:.:.: ;.: .:,:.;{;.~~:: .;.:.~;~; .;.; ·;·:·:·;.:.·:·;·:6

o Each port has three active low signals:
(1) not Reset
(2) not Analyze
(3) not Error

o Reset and Analyze signals are asserted to either reset or
analyze boards in the network.

o The Down and Subsystem Ports assert the "Reset" and
"Analyze" signals. .

o The Error signal is asserted by a motherboard when an
invalid operation takes place.

o The Up Port receives the "Reset" and" Analyze" signals
from its parent board. ,

o Status of the "Error" signal is feedback to the parent
board from the Up Port of the child board.

SEVERAL MOTHERBOARDS INTERCONNECTED TO FORM A NETWORK OF COPROCESSORS

UP PORT

NETWORK MASTER "PARENT BOARD"

DOWN PORT I SUBSYSTEM
PORT

r------ ---------------, r----- ------------------1-------1-------------_. , I I , r , Ir
I I

UP PORT I
UP PORT ! UP PORT ! I

I

"CHILD BOARD" I
I
I

SUBSYSTEM I
DOWN PORT! I SUBSYSTEM DOWN PORT!

! SUBSYSTEM
DOWN PORT PORT I PORT PORT

I
I
I
I

I
I I

L ___

I I
I I
I I r----- ------------------- ---- ---1-------------
I , It I I , If It
I I I
I UP PORT I I

UP PORT I UP PORT I
I I I
I I I
I I I
I I I
I SUBSYSTEM

I I
DOWN PORT! DOWN PORT I I DOWN PORT I I ! SUBSYSTEM ! SUBSYSTEM

I PORT I I PORT PORT

I I I
I SAME LEVEL : I
I OF HIERARCHY I

I I I I I I I I I I I I I I I I I I I

--I\) ~

-- -- ss

C
J)

C
J)

m

m

0
0

~
o

1
\)

0
0

I
I

C
Il

C
ll

-§
-§

"
0

"
0

o

0
...,

...,
C

i)C
i)

Q
)

Q
)

3
3

Q
)

Q
)

><
><

§.

 §
.

t::

t::

3
3

o
0

~

~

....
....

....

0
')

0

C
Il

C
ll

N
N

11

11
11

....

....
....

!~ ," c
:

i~
 !~ lm

I~

",
:0

to

~m

t-
<

; -
z

~.
 i'
:s:

, ~O

~: i
C

J)

,. ,.

~
I

Appendix II

Research Report by
Andres Alverez

on
Interfacing Transputers

to the
NeXTbus

in
Partial Fulfillment

of the
Requirements

for the
Degree of

Master of Science

.,.~_ ~Ir\i; ."io,," ... · ;

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

INTERFACING AN ARRAY OF COPROCESSORS TO THE NEXTBUS

BY

ANDRES ALVAREZ

B.S., University or Florida, 1986

RESEARCH REPORT

Submitted in partial fulfillment of the requirements
ror the degree of Master of Science in Computer Engineering

in the Graduate Studies Pro~am
or the College or Engineermg
University or Central Florida

Orlando, Florida

Fall Term
1990

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

ACKNOWLEDGEMENTS

I would like to take this time to thank my wife Jackie for all of her patience, motiva­

tion and understanding during all the months I spent working on my research report

Also, I would like to thank Dr. B. Petrasko for giving me the opportunity to work on

the design of the interface board. Finally, I would like to thank my entire family for

their support and motivation throughout the years I spent working on my graduate de­

gree.

111

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

TABLE OF CONTENTS

LISTOF TABLES vi

LIST OF FIGU RES vi i

INTRODuc nON I

COPROCESSOR ARCHITECTURE
Introduction to the Inmos Transputer 5
Boostrappi ng the Transpu ter 7
L ink Communication Protocol 8
Methods of In terfac ing Peripherals to Transputers 9
Transputer Module Architecture 12
Generic Motherboard Architecture 14

NEXTBU S ARCHITECTURE SPECIFICATION S
O verview of the NeXTbus Features 18
NeXTbus Clocks 20
NeXTbu s Signal Descrip tion 21
Diffe rent Types of Bus Cycles 25

NEXTBU S TRANSACTIONS 29

NEXTB US INTERFA CE CHI P OVERVIEW
Introducti on to the NBIC 37
NB IC Internal Registers 37
NeXTbus MasterILocal Slave Control Logic 43
Local MasterlNeXTbus Slave Control Logic 45
Ti meout Logic 45
Rese t Logic 46

NB IC SIGNAL DESCRIPTION 47

NBIC LOCAL BUS SPECIFICATIONS
Introd uction to the NB IC Local Bus Interface 53
Introd uction to Loca l Bus Transactions 54
NBIC Internal Register Transactions 55
Si ngle· Word Local Bus Transactions 58
Burst Transac tions on the Local Bus 6 1

IV

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

OVERVIEW OF THE INTERFACE BOARD
Introduction to the Board and its Features 65
Memory M~p of Board 67
Different Functional Modules on the Board 69

TOP-LEVEL DESIGN OF CONFIGURATION CONTROLLER 71

TOP-LEVEL DESIGN OF ADDRESS DECODER 82

TOP-LEVEL DESIGN OF INPUT PORT CONTROLLER
Brief Introduction to the Port Controllers 88
Introduc tion to the Input/Output FIFO' s 89
Description of Input Control1er.. 93
Top-level Design of Write COntroller.. 93
Top-level Design of Read Controller.. 103
Top-level Design of Status Controll er 110
Input Controller Top-level Speci fi ca tions 11 4

TOP-LEVEL DESIGN OF OUTPUT PORT CONTROLLER
Description of Output Port Contro ller 124
Introduction to the Inmos Link Adapter (IMS COlI) 124
Design Specifications of Output Port Controller 128

TOP-LEVEL DESIGN OF ERROR CONTROLLER
Descript ion of Error Controll er 137
Top-level Spec ifica tions for Error Con lroller. 137

RESET, ANAL YZE AND INTERRUPT SIGNALS
Description of Reset and Analyze Signals 141
Description of Intemlpt Signal 145

CONCLUSIONS 146

SUMMARY OF WORK REMAINING 151

APPENDlX A: NeXTbus Backplane Pinoul.. 154

APPEl\'DIX B: NBIC Pinout Definition 155

APPENDIX C: ABEL PAL Implementation of Ou tput Pon
Controller use ing a 22VIO 156

REFERENCES•................... 160

v

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

LIST OF TABLES

1.1 Bus Architectures and their Features 3

2.1 Inmos Transputers and their Features II
2.2 Inmos TRAMs and the ir Features 13

3. 1 NeXTbus Signals 22
3.2 Encoding of the Slot Identification Numbers 23
3.3 Valid Encoding Codes for Start Cycle 27
3.4 Valid Encoding Codes for Acknowledge Cycle 27
3.5 Valid Encoding Codes for Attention Cycle 28

4.1 Burst Size Encoding Scheme 32

5.1 Slot Identification Numbers per Slot 42

6 .1 NB IC Global and Local Bus Signals : 48
6 .2 Encoding of the Transfer Size Signals 50

7.1 Valid Transaction Types when NBIC is Local Bus Master 54
7 .2 Encoding Schemes for Transaction Terminations 55

8 .1 Mapping of Special Registers 68

11 .1 Timing Parameters for FIFO Write Transaction 9 1
11 .2 Timing Parameters for FIFO Read Transaction 92

12.1 IMS COil Mode I Signal Description 125
12.2 Mode Selection for IMS COil 126

14.1 Timing Parameters for FIFO Reset Transaction 144

VI

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

LIST OF FIGURES

2.1 Block Diagram of rnmos Transputer Architecture 6
2.2 Link Data and Acknowledge Packet Fomlats•...... ... 9
2.3 Peripheral Interfacing by a Control Transputer 10
2.4 Peripheral Interfacing by a Link Adaplor. 10
2.5 Peripheral Interfacing by External Memory Mapping II
2.6. MOlherboards Interconnected to Form a Nelwork of Coprocessors 16
2.7 Top-level Diagram of a Generic Motherboard Architecture 17

3.1 NeXTbus in the NeXT Cube 19
3.2 NeXTbus Basic Timing Signa ls 2 1

4. I Single-Word NeXTbus Read Transac tion 30
4.2 Single-Word NeXTbus Write Transaction 31
4 .3 Timing Diagram for a Four Word Burst Read Transaction 33
4.4 Timing Di agram for a Four Word Burst Read with Slave

Flow Control 34
4.5 T iming Diagram for a Four Word Burst W ri te Transaction 35
4.6 Timing Diagram for a Four Word Burst Write Wilh Master

Flow Con trol 36

5.1 Top-level Block Diagram of the NBIC. 38
5.2 Access 10 NBIC Internal Registers 39
5.3 NB IC Identification Register in the NeXTbus SIQl Space Address 40
5 .4 Fomla t for Interna l NB IC Registers 44
).5 NeXTbus Master/Local Slave Tra nsac tion FrFO 45
5.6 Local Master/NeXTbus Slave Transaction FIFO 46

7.1 NBIC Inlernal Register Write from Local Bus 56
7 .2 NBIC Internal Register Read from Local Bus 57
7.3 Single-word Write to Local Bus Slave 59
7.4. Single-word Read from Local Bus Slave 60
7 .5. BurSl Write 10 Local Bus Slave 62
7 .6 . Burst Read from Local Bus Slave 64

8. 1 Top-level Block Diagram of Interface Board 66
8.2 Memory Map of Board 68

vll

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

9. 1 NBIC Configuration Register Selection 72
9 .'2. Top-leve l Block Diagram of Configuration Controller Hardware 73
9.3 Contents of PROM in Configuration Architecture 74
9.4 State-Diagram for Configuration Controller 75
9.5 AHPL Description for Configuration Controller 76
9.6 Timing Diagram for Configuration Sequence 80

10.1 Top·level Block Diagram of Address Decoder 82
10.2 State-Diagram for Address Decoder 83
10.3 AHPL Description for Address Decoder 84

11 .1 Block Diagram of Pon Controller Interconnections 88
11.2 FIFO Write Sequence and Status Flags 90
11.3 FIFO Read Sequence and Status Flags 92
11.4 Top-level Block Diagram of Write Controller

and its Interconnections 94
11.5 AHPL Descript ion for Write Controll er 95
11.6 Timing Diagram for 32-bi t Word Write Sequence 97
11.7 Timing Diagram for Half Word #1 Write Sequence 98
11 .8 Timing Diagram for Half Word #1 Write Sequence

with FIFO Full Flag Asserted 99
11.9 Timing Diagram for Burst (Byte Mode) Write Sequence 100
11.10 Timing Diagram for Burst (Word Mode) Write Sequence 10 1
I 1.11 Top·level B lock Diagram of Read Conrroller

and it s In terconnections 103
11.12 AHPL Description for Read Controller 104
11.13 Timing Diagram for Input Pon Conrroller Single-Word

Read Sequence 106
11.14 Timing Diagram for Single-Word Read Sequence with

Empty FIFO Flag Asserted 107
I 1.1 5 Timing Diagram for Inpu t Controller Burst Read Sequence 108
11 .16 Top-level Block Diagram of Status Hardware III
11 .17 AHPL Description of Status Controller. 112
11.18 Timing Diagram for Status Controller Transaction 113
11.19 Top-level Block Diagram of Input Controller 116
11.20 State-Diagram for Input Controller.. 117
11.21 AHPL Description for Input Controller 118

12.1 Block Diagram of iMS CO il Configured in Mode 125
12.2 IMS COil Mode I Parallel Data Input to Link Adaptor 127
12.3 IMS COil Mode I Parallel Data Output from Link Adaptor 127
12.4 Top-level Block Diagram of Output Pon Conrroller

Interconnections...... 128
12.5 AHPL Description of Outpu t Port Controller IMS COil Input... 13 1
12.6 State-Diagram for Output Controller to IMS CO il Input .

Sequence 132

V111

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

12.7

12.8

12.9
12.10
12.11

12.12

13.1
13.2
13.3
13.4

14.1
14.2
14.3
14.4

Timing Diagram for Output Controller Input Transaction with
FfFO Empty Flag Deasserted during Transaction 133
Timing Diagram for Output Controller Input Transac tion wi th
FIFO Empty Flag Asserted during Transaction 133

AHPL Description of Output Port Controller IMS COil Output. 134
State-Diagram for Output Controller IMS CO il Output Sequence 135
Timing Diagram for Output Controller Output Transaction
with FIFO Full Flag Deasserted during Transaction 136
Timing Diagram for Output Controller Output Transac tion
with FIFO Full Flag Asserted during Transaction 136

Top-level Block Diagram of Error Controller 138
AHPL Description for Error Controller 139
Timing Diagram for an Invalid Port Transaction 140
Timing Diagram for a Valid Port Transaction 140

Top-leve l Block Diagram of Reset and Ana lyze Logic 141
Transputer Reset Timing Diagram 143
Transputer Analyze Timing Diagram 143
FIFO Reset Timing Diagram 144

15.1 All Hardware Modules and th eir Interconnections , 148

IX

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

CHAPTER I

INTRODUCTION

The fll'St microprocessor introduced in the market was the 4-bit Intel 4004 in 1971.

S ince the development of this 4-bit processor, over 100 microprocessors have been

introduced by U.S. manufactures. The development of the 32-bit microprocessors in

the late 1970's has also introduced new bus architectures to exploit the high perfor­

m ance features of these processors. For example, Motorola developed its own bus

architecture known as the Versabus in 1979 to support its 32-bit 68000 microproces­

sor. Since the development of the Versabus, a wide variety of bus architectures such

as Versa Module Eurocard (VME) bus, Multibus, Multibus II and Nubus have been

in troduced into the market (Stone, 1983).

Bus architectures are used to allow processors to communicate with other proces­

sors, peripherals or an array of coprocessors. The bus is composed of a set of signal

lines which can be divided into three groups: address and da ta, data transfer control

and arbitration. The address and data lines are used to carry the information which is

to be communicated between two modules. The data transfer control lines are used

to verify that the information is transferred during a bus transaction. Finally, the arbi­

tration lines are used to guarantee that only one processor shall have ownership of

the bus at any given time. With the wide variety of bus architectures developed,

Ll,ere is a variation in the exact number of signal lines in each group. Buses can be

cl assified as either asynchronous or synchronous, multiplexed or non-multiplexed and

as multiprocess ing (W. D. Pelerson, "VMEbus Handbook", 1989).

Asynchronous buses use completely responsive handshaking signa ls to . coordinate

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2

data transfel'O between different modules on the bus. The handshaking lines are used

to in·dicate the beginning of valid data on the bus and the reception of the data by the

receiving module. The data transfer rate is the data rate of the slower module partici­

pating in the transaction. Synchronous buses have a common clock on the backplane

to coordinate all data transfer. Data transfel'O occur on the rising or trailing edge of

the clock with one transfer per clock period. Some synchronous bus architectures pro­

vide a means of flow control. Flow control is a method in which the transmitting or re­

ceiving module can control the data rate on the bus.

In a multiplexed bus architecture, the address and data lines share a common set

of pins on the backplane. A two bus cycle is required to transfer data since the ad­

dress information is transferred during the first cycle and data on the second cycle. In

a non-multiplexed bus architecture, the data and address lines have a different set of

backplane pins. This type of configuration requires only one bus cycle to transfer data

but more signal Jines exist on the backplane.

Multiprocessing bus architectures allow more than one module to initiate bus

transactions. A module that can initiate a data transfer bus cycles is known as a bus

Master. A bus Master can also act as a receiving module when it is addressed by

another bus Master. The modules which cannot initiate bus cycles are know as

Slaves. A Slave module can only participate in a bus cycle when it is addressed by a

bus Master. When there are two or more bus Masters on a bus, an arbitration cycle

is initiated to determine which bus Master shall have ownership of the bus. The pro­

tocol used by buses to determine the bus Master is different between bus architec­

tures. Some buses use a strictly fair arbitration technique known as Round-Robin

while others provide a scheme which consists of different levels of priority.

There are a wide variety of bus architectures in the market today. The choice of

which bus architecture to select depends on the type of application and data rate re­

quired by the user. Several common bus architectures and their corresponding fea-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3

tures are shown in Table 1.1. Many of the bus architectures shown in Table I.l ar~

widely used in different types of applications from research to development environ-

ments .

Table 1.1. Bus Architectures and their Features.

Bus Sync! Multi- DaJa Address Multipro- Governing
Description Asyn plexed Widths WidJhs cessing Body

IDMPC Async NO 8 20 NO IDM

Multibus Async NO 8, 16 8,1 6,20,24 YES IEEE 796

Multibus Il Sync YES 8,16,20,24 32 YES Intel

Nubus • Sync YES 32 32 YES TI

NeXTbus • Sync YES 32 32 YES NeXT

Q-bus Async YES 8,16 16,18,22 YES DEC

VME Async NO 8,16,24,32 16,24,32 YES IEEE 1014

SCSI bus • Both YES 8 8 YES ANSI

SOURCE: W. D. Peterson, The VMEbus Handbook: A User's Guide to the IEEE
101 4 and lEC 82 1 Microcomputer Bus (VITA Publications, 1989), pg. 5 , Table 1-1.

• These entries were compiled by author of this research report

Most bus architectures have a corresponding chip set to aid in the interfacing of

modules. For example, the Nubus architecture by Texas Instruments has a bipolar

chip set which provides a full 32-bit Nubus Master/Slave interface. The chips are the

SN74ACT240 controller and the SN74BCT2420 address/data transceiver. The NeXT-

bus, which is a superset of the Nubus, has the NeXTbus Interface Chip (NBIC) to aid

des igners in interfacing modules to the NeXT computer. The NBIC is a 144-pin

CMOS Very Large Scale Integration (VLSD chip which connects direc tly to the

NeXTbus and provides an interface to a local bus (Mikkelsen, "NBIC", 1989).

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

4

The Nubus architecture is a synchronous (10 MHz) multiplexed bus which re­

quires high current transistor-to-transistor logic (TIL) drivers and termination on all

signal lines as defined by the IEEE standard 1196. The differences between the Nu­

bus and NeXlbus architecture are the clocks, data transfer rate, electrical interface

and number of arbitration cycles. The NeXlbus uses a 12.5 MHz clock, low power

CMOS drivers and does not require termination on external signal lines. Since the

NeXTbus architecture does not require external termination, a single-<:hip interface

implementation is available (Mikkelsen, "NeXlbus", 1989).

The purpose of this research report is to demonstrate the use of the NBIC to inter­

face an array of coprocessors, which shall be used in an operational and development

environment, to the NeXTbus. The report shall provide a functional top-level design

for a Host-to-Motherboard interface board. The board shall be located in the back­

plane of the NeXT cube and the Motherboard shall be part of an array of coproces­

sors. The Motherboard shall contain serial link(s) which shall be used to receive or

transmit information to the Host-to-Motherboard board located in the NeXT cube.

The Host-to-Motherboard board is a parallel-to-serial and serial-to-parallel link in­

terface on a standard NeXTbus card. The board shall interface with the array of co­

processors via serial links versus a shared memory approach. In a shared memory

approach, the NBIC data bus is directly connected to the data bus of the coproces­

sors. Instead, the information on the NBIC data bus is serially transmined via Inmos

link adaptors such as the IMS COil and COl2 to the serial links of the Motherboard

located in the array of coprocessors. The different modules on the interface board

shall be described in a design language known as AHPL (a Hardware Programming

Language). The description of this language for readers not familiar with its syntax

can be found in the two references given for Hill and Peterson. To supplement the

AHPL description for the functional modules of the board, state-diagrams and timing

diagrams shall be supplied to aid the designer in the detailed design of the board.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

CHAPTER II

COPROCESSOR ARCHITECTURE

Introduction to the Inmos Transputer

The architecture for the array of coprocessors shall consists of a combination of In­

mos 16 and/or 32-bit transputers, dual-inline transputer modules ([RAM's) and the

IMS COO4 32 way link switch. By mixing and matching the above components, de­

signers can configure Motherboards which shall consists of large numbers of transput­

ers to form powerful network of coprocessors. Motherboards allow control and inter­

connection of a number of transputer modules to form the building blocks of an array of

coprocessors. They have a generic architecture and allow transputers to be accessed

from a number of different host machines (Inmos, "Transputer Development and iq

Systems Databook", 1989).

The Inmos transputer is a high-performance 32-bit microprocessor which is ideal

for selected applications. The architecture of a transputer contains the following com­

ponents: its own local memory; 4-high speed serial links; a 16 or 32 bit processor; a

16 or 32 external memory interface; internal timers for real-time processing; system

services; an external event interrupt and some contain an on-chip floating point pro­

cessor. A block diagram of the transputer architecture is shown in Figure 2.1. This

programmable YLSI transputer chip was designed specifically to function as a compo­

nent processor in a network of array coprocessors. Processes to be executed are

queued by a hardware scheduler in a Round-Robin fashion with two priority levels.

Processes which are waiting for internal or external communication are descheduled

and later rescheduled at the appropriate time by the scheduler. The transputer can ei­

ther boot from Read Only Memory (ROM) or from any of its four links. The next sec-

5

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

6

tion shall explain how the transputer is bootstrapped from link and how a user can

peeK (READ) or poke (WRITE) into the addressable address 'pace of the transputer

(Inmos, "The Transputer Databook", 1989).

Figure 2.1. Block Diagram of Inmos Transputer Architecture.

Memory
AddresslData

On-Chip Floating Point Coprocessor

(Optional)

Selection

LinkO InIOut

Link 1 InIOu t

Link2 InIOut

Link3 InIOut

Event InIOut

SOURCE: Inrnos, The Transputer Databook 2ed. (Redwood
Bum LTD, Trowbridge : 1989), pg 48, Figure 1.1.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

7

Boostrapplng the Transputer

.. After the trailing edge of the RESET pulse, the transputer begins its initializ.ation

sequence by executing the memory configuration routine. After the memory configu­

ration routine is complete, then the bootstrap routine is started. The transputer can

either be booted from ROM or link depending on the state of the signal BootfromRom

on the transputer. If BootfromRom is high, then the transputer shall begin to execute

instructions in ROM. Usually, there will be a jump instruction in the ROM to a de­

fined location in external memory. External memory shall contain the required data to

bootstrap the transputer. If the signal BootfromRom is low, then the transputer shall

wait for a control byte to arrive on any of its four serial links. Any location in either in­

ternal or external memory can be read or written while the transputer is waiting to be

bootstrapped from link. There are three cases that can occur depending on the value

of the control byte. (Inmos, "Transputer Databook, 1989").

If the control byte equals zero, then the POKE (write) operation is executed. Af­

ter a control byte equal to zero is received, the transputer expects eight more bytes

for a 32-bit architecture or four more bytes for a 16-bit architecture. For the 32-bit ar­

chitecture case, the fITSt four bytes after the control byte represent the internal or ex­

ternal address (least significan t byte fITSt). The last four bytes represent the data.

The data is written into the address and the link shall wait for the next control bye.

The address and data must be received on the same link as the control byte.

If the control byte equals one, then the PEEK (read) operation is executed. After

the transputer receives a control byte equal to one, it shall expect four more bytes for

a 32·bit architecture and two more bytes for a 16-bit architecture. The bytes received

after the control byte represent the internal or external address at which to PEEK.

The word stored at the given address is then transmitted on the same link as the con­

trol byte.

While the transputer is waiting to be boostrapped, any number of POKE or PEEK

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

8

operations can take place. Any of the four serial links can be used to POKE or

PEEK. The only restriction is that all information following the control byte must be

transmitted (m the same link as the control byte. Once the control byte is greater

than one, then the transputer shall begin to load its bootstrap program from link. The

control byte represents the number of bytes to follow. The transputer shall continue

to read data on the same link as the control byte until all the bytes have been read.

Once all the bytes have been read, the transputer shall begin to execute the program

starting at a defined location in memory denoted by MEMSTART.

Link Communication Protocol

The serial links on the transputer are used to create a network of processors of ar­

bitrary size and topology. The main advantage of using point-to-point links versus

a multiprocessing bus architecture is that no control technique is required to access

the meruum. Medium access control algorithms such as Carrier Sense Multiple Ac­

cess with Collision Detection (CSMAlCD) or the mM Token Ring are required on

mUltiprocess ing buses. The links are dedicated channels between two transputers or

between a transputer and an external device. The link interface consists of two unidi­

rectional lines each which can trans mit or receive data or control information. The

communication protocol for the data packet transmitted on a link consists of a start bit

followed by a one bit followed by eight data bits followed by a stop bit Each data

packet must be acknowledged before the next byte is transmitted. The acknowledge

packet protocol consists of a start bit followed by a stop bit The packet can be ac­

knowledged before the entire byte has been received. This indicates to the transmit­

ting transpu ter that there is room to buffer the current byte and that there is room for

another byte to be transmitted. Link performance is improved by allowing the data

packe t to be acknowledged before the entire packet is transmitted. Links are used to

simplify the development of system configuration. Communication between transput-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

9

ers can be achieved as long as the link speed is the same on both transputers. The

tnui'sputers which are communicating vU link do nO! need to have a common clock.

Link communication is not sensitive to clock phase. All lnmos transputers support a

communication data rate of 10 Megabits (Mbits) per second. Sever.U transputers

have select lines where the user can select 5, 10 or 20 Mbits per second communica­

tion rate. Figure 2 .2 shows the formats for the data and acknowledge packets.

Figure 2.2. link Data and Acknowledge Packet Formats-

DATA
PACKET
FORMAT

ACKNOWLEDGE
PACKET
FORMAT

SOURCE: Inmos, The Transputer Databook 2ed. (Redwood
Bum LTD, Trowbridge: 1989), pg II, Figure 1.5.

Methods or Interfacing Peripherals to Transputers

The case shall arrive where a non-transputer device such as a disk drive, printer or

a host needs to communicate with a member of the transputer family. Currently,

there are three methods which can be used to in terface transputen to peripherals.

The three methods are by a specialized control transputer, by use of link adaptors

and by external memory mapping.

lnmos has developed certain specialized transputers which can be used to inter-

face specific type of peripherals to their transputers. The specialized control trans-

puter shall then communicate to o ther transputers via its serial links. An example of

specialized control transputer is the IMS M212. This transputer is used to interface a

variety of di sk drives to transpu ters. It contains two 8-bit bidirectional data ports

and 10 dedicated control lines to interface the disk drive. The interface to the periph-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

10

eral is implemented by specific hardware in the specialized control transputer. Figure

2.3 shows a top-level diagram of this configuration.

Figure 2.3. Peripheral Interfacing by a Control Transputer.

.----'---'-...,
Any

Member
of Inmos

Serial Links

rs 1-----

Control
Lines

SOURCE: Inmos, The Transputer Databook 2ed. (Redwood
Bum LTD, Trowbridge : 1989), pg 26, Figure 5.1.

The second method is by using lnmos link adaptors such as the IMS COIl or

the IMS COI2. Link adaptors are used when a non-transputer device needs to com­

municate with a transputer. They contain two 8-bit data paths and handshaking

lines, which are used to coordinate data transfers between the peripheral and the

transputer. The link adaptor communicates with the transputer via serial links. The

links of the link adaptor can be directly connected to the links of the transputec Fig­

ure 2.4 shows a top· level diagram of this configuration.

Figure 2.4 Peripheral Interfacing by a Link Adaptor.

Links

Any
Member
of Inmos

~-iTI'an"nuters ~----4'

SOURCE: lnmos, The Transpuler Dalabook 2ed. (Redwood
Bum LTD, Trowbridge: 1989), pg 26, Figure 5.2.

>

r
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

II

Finally, the last method is by memory mapping the peripheral onto the external

memory bus of the transputer. The peripheral is controlled by issuing memory read or

write commands. Figure 2.~ shows a top-level diagram of th is configuration.

Figure 2.S. Peripheral Interfacing by External Memory Mapping.

Serial
Links External

32-bit Data Lines

Control Lines PERIPHERAL

SOURCE: Inmos, The Transputer Databook 2ed. (Redwood
Bum LTD, Trowbridge : 1989), pg 26, Figure ~.1.

Inmos has developed several different configurations of their transputer architec­

ture. To complete the introduction on the transputer, Table 2.1 shows the different

transputers developed by Inmos and some of their features.

Table 2.1. lnmos Transputers and their Features.

Transputer 16 leT On Chip External Resp. Susloined Data Rate to
or RAM Memory /0 External Internal

32 Int. Memory Memory

IMS T805 32 33 ns 4 Kbytes 4 Gbytes 630 ns 40 ME/sec 120 ME/sec

IMS T801 32 33 ns 4 Kbytes 4 Gbytes 630 ns 60 ME/sec 120 MB/sec

IMS T800 32 33 ns 4 Kbytes 4 Gbytes 630 ns 40 ME/sec 120 ME/sec

IMS T42S 32 33 ns 4 Kbytes 4 Gbytes 630 ns 40 ME/sec 120 ME/sec

IMS T414 32 50 ns 2 Kbytes 4 Gbytes 950 ns 26 MB/sec 80 ME/sec

IMS T222 16 50 ns 4 Kbytes 64 Kbytes 950 ns 20 ME/sec 40 MB/sec

IMS T225 16 33 ns 4 Kbytes 64 Kbytes 630 ns 30 MB/sec 60 MB/sec

NOTES: Data compiled from Inmos Transputer Data Book. Nomenclature for table.
Resp. to lnt. = Response to Interrupts ns = nanosecond
ICf = Internal Cycle Time MB = Mega Bytes

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

12

Transputer Module Architecture

The transputer modules (TRAMs) are the next level of integration in an array of

coprocessor. The transputer is the lowest level followed by the TRAM and the high­

est level being a Motherboard which contains both. TRAMs were developed by In­

mos to satisfy the wide variety of configurations and applications which were in de­

mand at the time that the transputer was developed. They are off the shelf subas­

semblies which are composed of at least one processor from the Inmos transputer

family, a few discrete components, external memory and some contain application

specific circuitry all on a printed circuit board. Inmos has developed a wide variety of

TRAMs so designers can configure their own paral.lel processing systems for their

unique appHcation. They are available in different physical sizes with different memo­

ry sizes and with different functions. TRAMs have a standard l6-pin pinout and in­

terface to each other via serial link. The basic size of TRAM is called a SIZE I and

its dimensions are LOS" by 3.66". Larger TRAMs exists and their dimensions can

be up to 8.75" by 3.66" (SIZE 8). Since TRAMs have a standard pinout and size, it

is easy to build customize Motherboards with sockets for them. Inmos has devel­

oped several evaluation boards, such as the IMS B008 and BOl2, specifically for

TRAMs. The IMS B008 supports a maximum of 10 SIZE I TRAMS and the IMS

BO 12 supports a maximum of 16 SIZE I TRAMS. Table 2.2 shows a list of the avail­

able TRAMs available from Inmos along with their corresponding features. (Inmos,

"Transputer Development and iq Systems Databook", 1989).

TRAMs need to have the capability to control a networlc: of transputer and/or

more TRAMs. A network which is controlled by a master module is know as a sub­

sys tem of the master. The master module in the network controls the slave modules

th rough a subsystem port. The subsys tem port consists of three signals: subsystem­

Reset, subsystemAnalyze and subsystemError. The Motherboard in an array of co­

processors shall have a master TRAM for controlling other TRAMs via its sub-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

13

system port.

The subSystemReset and subSystemAnalyze are used by the master module to

reset and/or analyze its subsystem. The links of the transputer are active low during

the reset phase of a network of coprocesson>. SubSystemError is used by the master

module to monitor the state of the error flag in its slave network. This signaJ is either

an open-collector or open-drain signal so that all the error flags in the slave network

can be wired "OR" together. The subsystem is controlled by reading or writing to an

address in positive address space. The subsystem is reset or analyzed under the

control of the transputer on the TRAM but must also be reset when the TRAM itself

is being reset

Table 2.2. Inmos TRAMs and their Features.

XPin 16 External External Subsystem TRAM SZ TRAM or SRAM DRAM Port
32

lMS B416 I T222 J6 64 Kbytes NONE NO

lMS B401 1 T800 32 32 Kbytes NONE NO
T425
T414

lMSB411 I T800 32 NONE I Mbytes NO
T425

lMS B404 2 T800 32 28 Kybtes 2016 Kbytes YES

lMS B417 4 T800· 32 60 Kbytes 4032 Kbytes YES

lMS B405 8 T800 32 NONE 8 Mbytes YES

lMS B410 2 nOI 32 156 Kbytes NONE NO

NOTES: Data compiled from The Transputer Development and iq Systems
Databook. The variable SZ denotes the SIZE of the transputer. The
symbol XP stands for transputer.
• Denotes 25 MHz transputer.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

14

Generic Motherboard Architecture

Inmos has developed a generic motherboard architecture to aid in the development

of powerful array coprocessors. A common motherboard architecture provides an

easy way for system designers to build and configure systems consisting of several

transputers and TRAMs. The architecture must allow different kinds of parallel pro­

cessing networks such as a tree, cube or array to be configured. Also, each mother­

board shall have the capability to be chained together with another motherboard in the

network. All the link connections in the motherboard shall have the capability to be

configured by software instead of being hardwired on the board. Finally, the mother­

board shall have a standard hardware interface for a host machine to download the

processes which are to be executed by the network:. (lnmos, "Transputer Develop­

ment and iq Systems Databook", 1989).

The generic motherboard architecture is composed of module slots for TRAMs

which are interconnected via their links. Each module slot consists of two sockets

which support a SIZE I TRAM. The number of TRAM slots depends on the size of

the board. The first slot is denoted by slot 0 and the last slot is denoted by slot n. In­

mos facilitates the interconnection of the Jjnks by developing a hardware link configu­

ration standard and using the IMS COO4 to configure the links via software. The

links are configured in a pipeline fashion by connecting Jjnk 2 of slot 0 to link I of slot I

continuing in this fashion all the way to slot n. Link I of the TRAM in slot 0 is denot­

ed as the "Pipehead" and link 2 of the TRAM in slot n is denoted as the "Pipetail".

The "Pipe head" and "Pipetail" are brought to an edge connector on the board. Both of

these signals are used to interconnect all motherboards in a network in a pipeline

fashion by connecting the "Pipetail" of one board to the "Pipehead" of another board.

The remaining two links of each slot are brought out to an IMS COO4 32-way link

swi tch which is configured from software. The IMS COO4 is a progranunable link

switch which dircc ts any of the 32 link inputs to any of the 32 link outputs. 'The gene r-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

15

ic motherboard architecture does not specify how the links 0 and 3 are connected to

the link switch. The designer of the motherboard can decide how links 0 and 3 are

best connected to the link switch to serve their unique application. The only restric­

tion stated by Inmos is that links 0 and 3 must be connected to the IMS COO4. The

number of link switches on the board depends on the number of slots on the board.

The IMS COO4 link switch is controlled by T212 transputer. Each T212 transput­

er has the capability of controlling two link switches. Links 0 and 3 of each T212 is

connected to the appropriate link switch. The remaining two links are used to config­

ure the control transputers in a pipeline fashion for configuration. Lint I of the first

T212 transputer in the pipeline is connected to an edge connector on the board and it

is denoted by the signal "ConfigUp". Link 2 of the last T212 transputer in the pipe­

line is also taken to an edge connector on the board and it is denoted by the signal

"ConfigDown". The configuration pipeline of any two boards in a system can be inter­

connected by using these two signals. If a motherboard is the first board in the pipe­

line, then the configuration data shall come from one of the module slots on the board.

In this case, a jumper is installed between the "Pipe head" and "ConfigUp" signals.

One of the specifications of a motherboard is that it must have the capability of

providing hierarchical control of a network of transputers. This is accomplished on the

motherboard by three ports: Up, Down and Subsytem. Each port consists of three ac­

tive low signals which are all connected to an edge connector. The three signals are

no tReset, notAnalyze and notError. A motherboard can act as a network master by

connecting its Subsystem port to the Up port of another board in the network. The

boards in a subsytem are interconnec ted by connecting the Down port of one board to

the Up port of another board. A board in a subsystem can act as a master to another

board by its Subsytem port. Figure 2.6 shows several motherboards interconnected

to form a network of processors.

The need shall arise where a motherboard requires an interface to a host machi ne

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

16

such as the NeXT Computer. Inmos does no t define any specific implementation for

the Host interface. It does specify that the Host shaII have access to the module

pipeline, control a number of subsystems and have the capability of interrupting the

Host when data in either direction has been completed. 1be Host machine shall inter­

face to the module pipeline via slot 0 link 0 of the Motherboard. 1be purpose of this

research report is to define and perfonn a top-level design of the Host·to-Mother­

board link interface (slot 0 link 0) as stated in Chapter I.

Figure 2.6. Motherboards Interconnected to Fonn a Network of Coprocessors.

Up

Down
Sub
System

l l
Up Up Up

Down
Sub

Down
Sub

Down
Sub

System System System

I 1

1 1
Up Up Up

Down
Sub

Down
Sub

Down
Sub

System System System

1 1
SOURCE: Inmos, The Transpu ter Development and iQ Systems Databook.
(Redwood Bum LTD, Trowbridge: 1989), pg.215, Figure 9.7.

To conclude this chapter, Figure 2.7 shows a top-level di agram of a generic Mother-

board architecture. The board shown in this figure contains three module slots, one

NS COO4 link switch and a T212 configuration transputer.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure 2.7. Top-level Diagram of a Generic Motherboard Architec ture.

"notUpError" I'notDownError"

"noDownAnaIyz.e"

"notDownReset"

UP PORT OOWNPORT

"ConfigUp"
"110 Links"

"ConfigDown"

"notSubSystemReset"

"notSubSystemAnalyz.e"

"notSubSystemError"

SOURCE: fnmos, The Transputer Development and iq Systems Dalabook.
(Redwood Bum LTD, Trowbridge: 1989), pg.2I3-215, Figures 9.4 - 9.6.

17

I"

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

CHAPTER III

NEXTBUS ARCHITECTURE SPECIFICATIONS

Overview of the NeXTbus Features

This chapter shall introduce the communication protocol to interface with the

NeXTbus. Only the relevant information about the NeXlbus, which shall be used to

develop the functional design for a NeXT Computer to transputer Motherboard inter­

face board shall be mentioned in this chapter. If the reader has any further specific in­

terest on the NeXTbus architecture, all necessary information can be obtained from

the "NeXlbus Specification" by Mikkelsen. All the information in this chapter is de­

rived from the "NeXlbus Specification" by Mikkelsen.

The NeXTbus is a superset of the NuB us which was developed by Texas Instru­

ment and is defined by the IEEE 1196 standard. The NeXlbus is a synchronous 12.5

MHz multiplexed bus which uses a strictly fair arbitration scheme. The bus is com­

posed of 96 signal Hnes on the backplane, has 32 bit addressing which can support up

to four GigaBytes (Gbytes) of address space, has a single chip in terface via the

NBIC and supports Master/Slave and Slave only boards. Flow control is available for

both Master or Slave boards. Although the NeXT address space supports 15 slots,

the NeXT cube only supports four boards. One of the four boards is the CPU board

which is located in slot 0 and provides the 25 MHz backplane clock (BUSCLK) and

time-out functions. The three remaining slots on the NeXT cube are slots 2,4 and 6.

Figure 3.1 shows a block-diagram of the NeXTbus in the NeXT cube. The signals on

the bus are classified into one of the following categories: utility, control, ad­

dress/data, arbitration, parity and power. The different signals under each category

shall be defined in this chapter.

18

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure 3. 1. Block Diagram of NeXTbus in the NeXT Cube.

SLOT 0 SLOT 2 SLOT 4 SLOT 6
: 1 ~ ~ " ...

• • • NeXT CPU Board : . • • • • • · . • • • • • • • • · . • • • · . • • •
Time-out Logic · . • • • • • • • : · . · . · . • • • · . • • • · . · . • · . · . •

Logic · . · . • • • • • : • • · . · . • • •
Clock • • • • • • • • • • · . • • •

~ : • • • , ' ~

t ~ t
, ~

~ , ~
NeXTbus

NeXT CUBE

SOURCE: Catherine Mikkelsen, "NeXTbus Specification" (NeXT, 1989),
Reorder Product #N60IO, pg. 1-2, Figure I-I.

19

The addressing space of the bus is divided into 16 sections each consisting of 256

MegaBytes (MBytes). The address ing range for each slot is defmed from sOOOOOOO

hex to sFFFFFFF hex where s is the slot id number of the board. The top 256

r..fB ytes is further divided into 16 sections where each slot rece ives 16 MBytes. The

16 MBytes are called the slot address space and the address for each slot is defined

from FsOOOOOO hex to FsFFFFFF hex. The slot address space is used for slot iden-

Lification purposes and contains two words for interrupt control The slot address

space stores a 32-bit ID word across the top four words. The 16 most significan t bits

(msb's) represent a NeXT manufacturing code and the 16 least significan t bi ts

(I sb' s) are allocated to board designers for ID purposes. The 32-bit words are divid-

ed across four 32-bi t words to fac ili tate the use of byte-wide devices such as a

ROM . Most of the slot address space shall be eontroUed by the NBIC. Each word in

the slot address space occupies four address locations since each location contains a

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

20

byte of information. Silt words in each slot address space from FsH+FES helt to Fs­

FFFFFF helt are used to store the board's II) code and the two intenupt bytes. The

two interrupt bytes only store a valid bit which is located in the msb of the byte. The

interrupt byte in location FsFFFFE8 helt is a read only address and is used to inter­

rupt the CPU. The other interrupt control byte is a mask bit which is stored in the

msb of the byte in address FsFFFFEC helt. The mask bit is used to coordinate the

interrupts on the bus since multiple boards may be requesting an intenupt from the

CPU board.

NeXTbus Clocks

The CPU board in slot 0 provides the 25 MHz clock defined by BUSCLK and pro­

vides another clock denoted by MCLKSEL * (Major Clock Select). The asterisk on

signal names indicates that the signal is an active low signal. This notation shall be

used throughout the research report. MCLKSEL* shall select every other low phase

of BUSCLK. Every board which shall be installed in the backplane of the NeXT cube

needs to generate two internal clocks using the two clocks provided on the back­

plane. The two clocks are MCLK* and DSTB*. MCLK* provides a timjng reference

for control signals and for single word transactions on the bus. DSTB* provides a

timing reference when burst transactions are being performed.

MCLK* is derived on the board by the logical "OR" of BUSCLK and MCLK­

SEL *. This shall generate a clock signal with a period of 80 nanoseconds (ns) be­

tween the rising edge of the clock. The 80 ns between the rising edges is known as a

major clock cycle. DSTB* is derived by the logical "NAND" of BUSCLK and an inter­

nal board signal called SENDDATA. The signal SENDDATA is asserted for two pe­

riods of BUSCLK and indicates that two words shall be transferred during the current

major clock cycle. The module which is transmitting on the bus in burst mode shall

assert the DSTB* clock along with the data. The receiving module during burst trans-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

21

fers shall latch data on the rising edge of DSTB·. The data is driven on the rising

edge of both clocks (MCLK· and DSTB·) and sampled on the trailing edge of the

clocks. Figure 3.2 shows a timing diagram of all the clocks used in the NeXTbus ar­

chitecture along with their relationships to the address and data lines. The ad­

dress/data lines on the bus are inverted such that a of value 0 hex equals

FFFFFFFF hex and the value FFFFFFFF hex equals 0 hex.

BUSCLK

MCLKSEL·

MCLK·

_ J
~

Figure 3.2. NeXTbus Basic Timing Signals.

u u u
I r
LJ

~~~g~~A!---<~ 

SENDDATA ________________ ~ I 
DSTB· LJ1J 

DATA VALID ~ FOR DSTB· .---------------------- ~-----------

Indicates valid data 

SOURCE: Catherine Mikkelsen, "NeXTbus Specificatior." (NeXT, 1989) 
Reorder Product #N60IO, pg.1.6 - 1.7. Figures 1.5 and 1.6. 

NeXTbus Signal Description 

The NeXTbus architecture is composed of 96 signal lines which are grouped into 

six categories based on the function they perform. The categories are utility, control, 

address/data, arbitration, parity and power. The 96 signal lines connect to a 96-pin 

Euro-DIN connector which must be on all NeXTbus boards. The pinout assignment 

of the signals on the NeXT backplane are shown in Appendix A. Table 3.1 shows all 

the signals and the category in which they are grouped in. A description of all tlie sig-





I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

23 

nals is given below: 

RESET- is an asynchronous signal used to reset all the boards on the backplane of 

the NeXT cube. It is pulled up by a 470 Ohm resistor since it is an open-drain signal . 

It is asserted by the NeXT power supply at initial powerup. 

ID[3:0)- are the slot identification lines which are binary coded on the backplane as 

shown in Table 3.2. These signal lines are used during arbitration cycles. 

INT- is a wired "OR" signal that is connected to every board on the backplane. 

NeXT does not specify any protocol for this signal. This signal can be used to allow 

Slave only boards a mechanism for interrupting the CPU board. This signal is pulled 

up by a 220 Ohm resistor on the backplane. 

Table 3.2. Encoding of the Slot Identification Numbers. 

sro 3 SID 2 SID 1 SID 0 

SLOT 0 GND GND GND GND 
SLOT I GND GND +5V GND 
SLOT 2 GND +5V GND GND 
SLOT 3 GND +5V +5V GND 

SOURCE: Catherine Mikkelsen, "NeXTbus Specification" 
(NeXT, 1989), Reorder Product #N60IO, pg. 2.4. 

PON is an active-high asynchronous signal which is asserted when the power supply 

has reached its stabilization point This signal shall be deasserted before the power 

supply reaches a voltage level of 2.0 volts. This signal is pulled up in the NeXT pow­

er supply by a 470 Ohm resistor. 

PUP is an active-high signal which is an input to the power supply circuity. When 

the CPU board asserts this signal between 2.4 and 5.0 volts, the power supply is 

ready to function. The power supply continues to function as long as the voltage 

stays 2.2 volts or greater. If the voltage drops below 1.0 volts for greater than I milli­

second, then the power supply shall shut down. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

24 

B USCLK is a 25 MHz signal provided by the CPU board in slot O. 

MCLKSEL* is a 12.5 MHz signal wiLi a 75 percent duty cycle. This clock is also 

generated by the CPU board. 

ST ART- is asserted by the current bus master during the beginning of a transaction. 

It is asserted for one period and the type of transaction is encoded in the two Isb's of 

the address/data lines (AD[ I :0]). When asserted, it lets the Slave mcxlule know 

that a valid address is on the bus. 

ACK* is asserted during the acknowledge cycle by the Slave module to indicate re­

ception of data or asserted at the beginning of an attention cycle. This signal is as­

serted for one clock period. 

TM[l:O]* are the two transfer bits which serve several purpose during the different 

types of cycles. During a start cycle, these two bits along with the two lsb's of the 

address/data lines are driven by the bus master to encode the type of transaction to 

take place. During an acknowledge cycle, these two bits along with the two Isb's of 

the address/data lines are driven by the Slave module to encode the type of acknowl­

edgment During burst transactions, TMO· is used as a handshaking signal. During 

a burst write transaction, the bus Slave asserts TMO. to indicate that it can receive 

four more words. During a burst read transaction, the Slave module asserts mo. 
when it places valid data on the data bus. This signal when used as an handshaking 

signals affects the following cycle or cycles. When a read or write burst operation be­

gins, thi s signal is assumed to be asserted. 

DSTB* is a data strobe signal which is asserted by the module which is currently 

transmitting data on the bus. It is asserted at the same time as data is placed on the 

bus. 

DRQ* is a handshaking line that is asserted by the bus Mas ter during burst transac­

tions. When the bus Master is transmi tting, it asserts this signal at the same time it 

places data on the bus. During a burs t read operation, the bus Master asseds this 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

25 

signal when it can sink or receive four more data words. During a read transaction, 

the signal only affects the next cycle or cycles. At the beginning of a burst read trans­

action, this signal is assumed to asserted by the bus Slave. This signal is used for 

flow control. 

ARB[3:0]· are open4ain signals which are used during the arbitration cycle to de­

termine the next bus owner. At the end of the arbitration cycle, the winner's slot ID 

numbers are present on these signal lines. These signals are pulled-up on the NeXT 

backplane by a 220 Ohm resistors. 

RQST· is an open4ain signal which is asserted by a bus Master who wants to con­

tend for bus ownership. This signal can only be asserted if it is in the deasserted 

sta te. 

AD[31:0]· are multiplexed bidirectional lines which carry either address or data. The 

contents of the AD bus are inverted as previously mentioned. 

SP[3:0]· are the system parity lines. Each parity bit is associated with a correspond­

ing byte. Parity bit SP[3]* correspond to the most significant byte AD[31:24]*, 

SP[2]* corresponds to AD[23 :16]*, SP[I]* with AD[15 :8]* and SP[O]* with 

AD[7:0]*. Each parity bit is asserted when the number of asserted data lines plus 

the parity bit is odd. 

SPY· is asserted when parity bits have been generated for the valid data lines. 

Different Types of Bus Cycles 

There are three basic cycles which can occur on the NeXTbus. The type of cycle 

being performed is encoded by two signals denoted by START* and ACK*. The three 

basic types of cycles are start, acknowledge and attention. 

The start cycle is encoded with START* asserted and ACK* deasserted. This is 

the first cycle in a transaction. During this cycle, the signals TM[ 1:0]* and AD[ 1:0) 

are driven by the bus Master to encode the type of transaction which is to rake .. pl ace. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

26 

Table 3.3 shows all the possible encoding schemes for the start cycle. There are 16 

valid codes since 4·bits are used to encode the type of transaction to be performed. 

The acknowledge cycle is the last cycle in a transaction. Its purpose is to pro­

vide status information of the current transaction to the bus Master. During this cy­

cle, the bus Slave asserts ACK· and deasserts START-. The signals TM[I :Oj· are 

dri ven by the bus Slave to encode the status information on the bus. Table 3.4 shows 

the four possible status information that can be encoded by the bus slave. A bus 

transfer complete status is returned by the Slave when the transaction completed nor­

mally. An error status is returned by the Slave when data received or transmitted 

may be erroneous. The bus Master can receive a time-out status which is generated 

by the CPU board . This indicates that no Slave responded to the address generated 

by the master. If no acknowledge cycle occurs after 256 clock cycles, then the CPU 

board generates an acknowledge cycle with a time-out status. The final status which 

can be encoded by a Slave module is a try again later status. This indicates to the 

bus mas ter that the addressed Slave can not complete the transaction at this time. 

The Master can retry the transaction at a later time. 

The last type of bus cycle is an attention cycle. Attention cycles consists of one 

major clock cycle and the Master asserts both START· and ACK· signals. There are 

two valid attention cycles. These two cycles are an attention-null and attention-re­

source lock. An allention-null cycle is used to restart an arbitration cycle This cycle 

is issued when a bus Master has ownership of the bus but does not engage in a 

transac ti on and another bus Master asserts RQST·. The current bus owner shall is­

sue an attention-null cycle to begin a new arbitration cycle. The last attention cycle 

is an attention-resourc.e lock. This cycle is issued by a bus Master to indica te to all 

Slave modules on the bus that a bus-locked transactions is occurring. Slave modules 

shall lock any resources such as memo!)' that may interfere with a bus- locked trans­

action. At the end of a bus- locked transaction, the bus owner shall issue an allen-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Table 3.3. Valid Encoding Codes for Start Cycle. 

TMI- TMO- . ADI- ADO- TYPE OF CYCLE 

L L L L Write Byte 3 
L L L H Write Byte 2 
L L H L Write Byte 1 
L L H H Write Byte 0 
L H L L Write Halfword 1 
L H L H Write Burst 
L H H L Write Halfword 0 
L H H H Write Word 
H L L L Read Byte 3 
H L L H Read Byte 2 
H L H L Read Byte 1 
H L H H Read Byte 0 
H H L L Read Halfword 1 
H H L H Read Burst 
H H H L Read Halfword 0 
H H H H Read Word 

SOURCE: Catherine Mikkelsen, "NeXTbus Specification", 
(NeXT, 1989), Reorder Product #N60IO, pg. 4-1, Table 4-1. 

Table 3.4. Valid Encoding Codes for Acknowledge Cycle. 

TMI- TMO· Type or Acknowledgment 

L L Bus Transfer Complete 
L H Error 
H L Bus Time-ou tError 
H H Try Again Later 

SOURCE: Catherine Mikkelsen, "NeXTbus Specification" , 
(NeXT, 1989), Reorder Product #N60IO, pg.4-7, Table 4-4. 

27 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

28 

tion-null cycle to broadcast to aU Slave modules to unlock there resources. Table 3.5 

shows the valid encocling codes for an allention cycle. 

Table 3.5. Valid Encoding Codes for Allention Cycle. 

TMI· TMO· Type of Attention Cycle 

L L Attention-Null 
L H Reserved 
H L Attention-Resource-Lock 
H H Reserved 

SOURCE: Catherine Mikkelsen, "NeXThus Specificatjon", 
(NeXT, 1989), Reorder Product #N60 IO, pg.4-7, Tab le 4-4. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

CHAPTER rv 
NEXTBUS TRANSACTIONS 

This chapter shall introduce the different data transactions available on the 

NeXTbus. The transactions covered in this chapter are single-word transfers, burst 

transfers and burst transfers with flow control. The timing diagrams in this chapter 

assume that a valid arbitration cycle has fini shed and a bus Master has ownership of 

the bus. The simples t type of transfers are single-word transfers . They are com­

posed of a s tan cycle followed by an acknowledge cycle. The transfer mode bits 

(TM[I:O]") and the two least significan t bits (lsb's) of the address lines are used to 

encode the type of transfer and which bytes of the word are valid. A single-word 

read transaction begins by the bus Master asserting STAR TO and encoding the trans­

fer mode bits and address lines with the appropriate information. The transaction is 

completed when the addressed bus Slave ass ens the signal ACK·, places the data 

on the bus and encodes the status of the transaction on the two transfer mode bits. 

Figure 4.1 shows a single-word NeXTbus read transaction. The sequence of events 

which are depicted on the timing diagram are as follows: 

(1) 01 : Denotes the first driving edge of the transaction. Bus Master assens the 

signal START" and drives the address and transfer mode bit signal lines. 

(2) S1: Denotes the fust sampling edge of the transaction. During this edge, all bus 

modules sample the address and trans fer mode bits lines to determine which module 

shall participate in a NeXTbus transaction. 

(3) On : Denotes the last driving edge of the transaction. During this edge, the ad­

dressed bus Slave assens the signal ACK*, places data on the bus and encodes the 

29 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

30 

sta tus infonnation on the two transfer mode bits. 

(4) Sn: Denotes the last sampling edge of the transaction. During this time, the bus 

Master samples the data and status infonnation place on the bus by the slave module. 

(5) Dn+l: First driving edge of the next transaction. The current or next bus owner 

must drive the signal ACK* to a detenninate state. 

Figure 4.1 Single-Word NeXlOus Read Transaction. 

MCLK* 

AO[3 1 :0] 

TM[ I:OJ 

START" 

ACK" 

01 SI 02 So On+1 

SOURCE: Catherine Mikkelsen, "NeXTbus Specification" (NeXT, 1989), 
Reorder Product #N60IO, pg. 4-9, Figure 4-6. 

tion. 

A single-word write transaction is very similar to a single-word read transac­

Figure 4.2 shows the timing diagram for a single-word write transaction. The 

sequence of events which are depicted on the timing diagram are as follows: 

(I) DI: Master assens the signal with START" and drives the address and transfer 

mode bits with the appropriate data. 

(2) SI : All modules sample the address and transfer mode lines. 

(3) D2: Master places data on the bus and waits for an acknowledge cycle. 

(4) Dn : Addressed Slave encodes status information on the transfer mode bits 

(TM[I :0]*) and assert s the signal ACK*. 

(5) Sn: Master samples the transfer mode lines and takes action based on status re-

ceived from slave module. 

(6) Dn+ I current or next bus Master must drive ACK* to a detemunate Slate since 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 

I 
I 
I 
I 
I 

31 

tlle Slave stops driving the bus. Also, the Master stops driving the address/data 

lines. 

Figure 4.2. Single-Word NeXThus Write Transaction. 

01 SI D2 S2 Do Sn Dn+1 

MCLK" u U 
AD[31 :0] 

TM[I:O] 

START" 

ACK" '--__ ---'I 
SOUR CE: Catherine Mikkelsen, "NeXThus Specification", (NeXT, 1989) 
Reorder Product N#60IO, pg. 4-10, Table 4-7. 

The next type of transactions to be introduced are burst transfers. During burst 

transac tions, multiple data words are transferred (0 and from sequential addresses. 

There are two words transferred per major clock cycle (one word every 40 ns). Only 

32-bit words are supported during burst transfers. The user does not have the option 

of selecting a byte or halfword transaction as in single-word transfers. The size of 

the burst can be 4, 8, 16 or 32 words. The number of words to be transferred is encod-

ed in the address lines bits 2 through 6 (AD[2:6]). Table 4.1 shows the burst size 

encoding scheme. The transaction type is still encoded as shown in Table 3.3 by us­

ing the two Isb's of the address lines and the two transfer mode bits. 

During burst transfers, a mechanism called flow control is used (0 control the data 

rate on the bus. The NeXTbus supports both Master and Slave flow control. The 

Master uses the DRQ* signal to indicate it can sink (wo more words during a read 

transac tion or that it can source two more words during a write transaction . The sink 

is the module receiving data during a transaction and the source is the module trans-

milling data. On the other hand, the Slave uses the signal TMO" to indicate it can 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

32 

source two words during a read transaction or that it can sink two words during a 

write transaction. The sink signal does not affect the current major clock cycle only 

subsequent cycles. An assumption at the beginning of every burst transaction is that 

every module must be able to sink two words. The sink signal is assumed asserted 

at the beginning of a burst transaction so two words are always transferred. Figure 

4.3 shows a timing diagram for a four word burst read transaction. The sequence of 

events depicted on the timing diagram are as follows: 

Table 4.1. Burst Size Encoding Scheme. 

BURST STARTING BURST SIZE 

AD6- ADS- AD4* AD3- AD2- WORDS ADDRESS 

X X X X H (illegal - 2 Words burst invalid) 
X X X H L 4 A[3l :4]0000 
X X H L L 8 A[31 :5]00000 
X H L L L 16 A[31 :6]000000 
H L L L L 32 A[31 :7]0000000 

SOURCE: Catherine Mikkelsen, "NeXTbus Specification", (NeXT, 1989), 
Reorder Product #N60 IO, pg. 4-2, Table 4-2. 

(I) Dl: Master asserts the START-, TM[I:O]*, DRQ* signals and places the appro-

priate address on the bus. The signal DRQ* indicates to the Slave module that the 

Master can receive four words of data . The Master deasserts the ACK* and DSTB* 

signals. 

(2) SI : Slave modules sanlple the address and transfer mode bit signal lines. 

(3) 02: Master stops driving the address lines, ACK*, TM[I:O]· and START* sig-

nals. At this time, the Master is waiting for the signal TMO· to be assened to start 

receiv ing data. 

(4) On: Addressed Slave deasserts the TM 1 * and ACK· signals, places data on the 

bus and asserts the signal TMO·. Al so, the DSTB* signal is assened with the data. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

33 

(5) Sn: Master samples the TMO* and ACK* signals to verify tn.nsfer is stiIl active. 

(6) On+l : Slave places the last two words of the transfer on the bus along with the 

signal DSTB*. The Master deasserts the signal DRQ* which indicates to the slave 

that it can only sink two more data words. 

(7) Sn+l: The Master samples the tn.nsfer mode bits and ACK* signals to determine 

if the tn.nsaction is still active. 

(8) On+2: Slave ac1cnowledges the transaction by asserting the ACK* signal and en-

codes the status information on the two transfer mode bits. 

(9) Sn+2: Master samples the ACK* and TM[I :O)* signals and takes appropriate ac-

lion based on the status received from the Slave module. 

(10) On+3: Slave stops driving the ACK*, DSTB*, AD[31:0)* and TM[ I :O)* signals. 

Masler stops driving the START* and DRQ* signal lines. At this time, the new bus 

owner shall drive the START·, ACK* and DSTB* signal lines to a determinate state. 

Figure 4.3. Timing Diagram for a Four Word Burst Read Transaction. 

DI r Dn-l rDn+1 
SI D2 S2 Sn-l Dn Sn Sn+1 Dn+2 Dn+3 Dn+4 

MCLK* -.J u u u u u u u L 
AD[31 :0)· -4fWrAX1>~D~R~;S'\l-'I----~ldflil:W'a2ffi'l d~"°3'~I'dfiJ41l-: -------

DSTB* 

ACK* 

TMI* 

TMO* 

DRQ* 

UlJ1fU 

---.J 
---.J 
I 

SOURCE: Catherine Mikkelsen, "NeXTbus Specification", (NeXT, 198?), 
Reorder Product #N60IO, pg. 4-13, Figure 4-9. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

34 

The nellt type of transaction to be introduced is a burst read with Slave flow con­

trol. The timing diagram for this transaction is shown in Figure 4.4. The difference is 

during cycle Dn+ I where the Slave module deasserts the signal TMO· indicating to 

the Master that no words shall be valid during the current major clock cycle. The 

Slave asserts the signal TMO· again during cycle Dn+2 and places the last two data 

words on the bus. 

Figure 4.4. Timing Diagram for a Four Word Burst Read with Slave Flow Control. 

DI SI D2 r Dn-I r- Dn+l 
S2 Sn-l Dn Sn I Sn+l Dn+2 Dn+4 

MCLK* ~ U"-----'U U"-----'U U U U 
ADl31:0j* ---fAbRS 1-----!lalldil:-----traJI d411------

DSTB* lfU lfU 

ACK* 

TMI· 

TMO· 

DRQ* 

~ 
~ ---, 

SOURCE: Catherine Mikkelsen, "NeXTbus Specification", (NeXT, 1989), 
Reorder Product #N60IO, pg. 4-14, Figure 4-10. 

The final NeXTbus transactions to be covered are burst write and burst write 

with Master flow control. The burst write transaction is similar to the burst read 

transaction shown in Figure 4.3. The timing diagram for a four word burst write 

transaction is shown in Figure 4.5. The sequence of events depicted on the timing di­

agram are as follows: 

(1) Dl: Master asserts the signal START·, places the address on the bus and cn-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

35 

codes the type of transfer on the transfer mode bits. The signals DSTB· and ACK* 

are deasserted by the Master. 

(2) SI: Slave modules sample the address and transfer mode bits. 

(3) D2: Master places data on the bus and asserts the DSTB· and DRQ* signals. 

The addressed Slave asserts the signal TMO· indicating to the master module that it 

can sink four words of data. 

(4) S2: Master samples the ACK* signal to determine if transaction is still active. 

(5) D3: Master places the last two words on !he bus and asserts !he signal DSTB *. 

The signal DRQ* is still asserted indicating to the Slave that two more data "'orris 

are valid during this major clock cycle. 11le Sl ave deassells the signal TMO" indicat-

ing that it can only sink two more data words. 

(6) S3: Master samples the ACK* signal to determine if the transaction is still active. 

Figure 4.5. Timing Diagram for a Four Word Burst Write Transaction. 

DI SI D2 S2 D3 S3 D4 S4 Dn-I Dn Sn Dn+1 Dn+2 

MCLK* ~ u u u u u u U L 
AD!31 :0]" ~'X;dif~ H~:r!lilJ!:d;2~T!!.;d~~lt!!:!4J-l------------

DSTB" 

START*IL-_...J 

ACK" 

TMO* 

DRQ* 

UlJ1fU 

y 'St~t~ II------

SOURCE: Catherine Mikkelsen. "NeXTbus Specification". (NeXT. 1989). 
Reorder Product #N60IO. pg. 4-15. Figure 4-11. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

36 

(7) D4: Master stops driving the data bus, Ds-rn* and DRQ*signaIs. 

(8) Dn: Slave begins the acknowledge cycle by asserting the ACK* signal and encod-

ing the status of the transaction on the two transfer mode bits . 

(9) Sn: Master samples the ACK * and TM[ I :0]* signals and takes appropriate ac-

tion based on the status received. 

(10) Dn+l: Slave module stops driving the two transfer mode bits and ACK* signal. 

The current owner or new bus owner must drive the START*, ACK* and DSTB* sig-

nal lines to a determinate state. 

To conclude this chapter, Figure 4.6 shows a burst write transaction with Master 

n ow control. The timing diagram is similar to Figure 4.5 except that the DRQ* sig­

nal is deasselled at edge D3. This indicates to the Slave module that two data words 

are not valid during the D3 major clock cycle. The DRQ* signal is asserted again at 

edge D4 and the two remaining data words are transferred. Tbe Master module then 

waits for the Slave module to acknowledge the transfer. 

Figure 4.6. Timing Diagram for a Four Word Burst Write with Master Flow Control. 

Dl SI D2 S2 D3 S3 D4 54 On-I On Sn 00+1 00+2 

MCLK* -.J U U U U U U U L 
AD[3l:0]* -l",.{;a'HH (nI M\ttTd'i!iIH~d3g'~b~4'~1 ---------_ 

DSTB* 

START- IL_....J 
ACK* 

lfU LJU 

TMI* IL-_-J Y'SlafliM 
r---------, 

TMO· ~ I YSlatus l 

DRQ* IL __ --li 

SOURCE: Catherine Mikkclsen, "NeXTbus Speci fi ca tion" , (NeXT, 1989), 
Reorder Product #N60 10, pg. 4-16, Figurc 4-12. ' 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

CHAPTER V 

NEXTBUS INTERFACE CHIP OVERVIEW 

Introduction to the NBIC 

The NBIC is a 144-pin CMOS VLSI chip which is used to simplify the logic re­

quired to interface any board to the NeXThus. The NBIC was designed to interface 

specifica lly with the Motorola 68030 microprocessor. The NBIC resides between the 

NeXTbus and a local bus. In our case, the local bus shall commu nicate with an array 

of coprocessors. The chip contains arbitration logic which participates in arbitration 

contes ts on both buses and perfonns byte swapping. Byte swapping is performed to 

change between the Motorola 68030 Big-Endian byte ordering to a NeXTbus Little­

Endian byte order. In our Host-to-Motherboard interface board, the NBIC shall not 

participate in NeXThus arbitration because the board shall be a Slave only board. 

The NBIC is composed of five internal registers, NeXThus Master/Local Slave con­

trol logic, NeXTbus Slave/Local Master control logic, timeout logic and reset logic. 

Figure 5.1 shows a top-level block diagram of the different components of the NBlC, 

which shall be covered in this chapter (Mikkelsen, "NeXTbus Interface Chip Specifi­

cation", 1989). 

NBIC Internal Registers 

The five internal programmable registers in the NBIC are the NBIC ID register, 

control register, configuration register, interrupt register and the interrupt mask regis­

ter. Each board' s slot address space contains reserved address locations to define 

configuration and interrupt information about the board. The NBIC ID regi ster is the 

only register out of the five that can physically be located in the board's . memory 

37 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

38 

Figure 5.1 Top- level Block Diagram of NBIC. 

NEXTBUS LOCAL BUS 

C 
0 

n 
t 
r 
0 
I 

A A 
r d 
b d 
1 r 
t e 
r S 

a s 
t I 

1 D 
0 a 
n t 

a 

NeXTbus NeXTbus Master! 
Arbitration Local Slave 
Logic Control Logic 

TRANSACTION FIFO 

NBIC 
INTERNAL 
REGISTERS 

RESETLOOIC 

NeXTbus Slave! 
Local Master 
Control Logic 

Local Bus 
Arbitration 
Logic 

TRANSACTION FIFO 

A 
d A 
d r 
r b 
e 1 

s t 
s r 

I a 
D t 

a 
t 0 

a n 

SOURCE: Catllerine Mikkelsen, "NeXTbus Interface Chip Preliminary 
Specification" , (NeXT, 1989), pg. 2-2, Figure 2- \. 

C 
0 

n 
t 
r 
0 

I 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

39 

~pace outside the NBIe. The NBIC registen; with the exception of the two interrupt 

registen; .can be read or written through the local bus. Figure 5.2 shows which regis­

ten; are accessed by the local bus and which are accessed by the NeXTbus. 

The NBIC ID register is used to store a 16-bit board identification number, a 15-

bit manufacture identification number and a valid bit Both of the identification values 

are used by the software to identify the type of board(s) inside of the NeXT cube. Af-

ter power-up, a value needs to be written into the NBIC ID register and the VALID 

bit must be set. When the VALID bit is set, it indicates to bus Masten; that the 

identification numben; have been written by the board. The contents of the NBIC ID 

regis ter are written tJlrough the local bus and can be read by any bus Master on the 

NeXTbus. From the local bus, the register is written as one 32-bit word to address 4 

hex. From the NeXTbus, the contents of the register are byte mapped across four 32-

bit words . 

NEXTBUS 

Figure 5.3 shows the address locations for the different bytes in the 

Figure 5.2 Access to NBIC Internal Registen;. 

LOCAL BUS 

From 
i'+-- Board's 

logic 

SOURCE: Catherine Mikkelsen, "NeXTbus Interface Chip Prelimi nary 
Speci fi ca tion", (NeXT, 1989), pg. 4-2, Figure 4-1. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

40 

l'eXTbus slot space. This addressing scheme is used since byte-wide devices such 

as Random Access Memory (RAM) might be used externally to the NBIC. Recall, 

that the NBIC ID register does not ha ve to reside inside the NBIC address space. 

The NBIC control register is used to control error conditions and operation of the 

chip. The contents of the register can be written or read through the local bus on the 

board. The control register is composed of two control bits denoted by STFWD and 

IGNSIDO and one error bit denoted by RMCOL. The store and forward word 

(STFWD) bit is used to enable this option during write operations. If this bit is set 

to one, then the NBIC immediately sends a termination signal to the local bus (if 

Figure 5.3 NBIC ID Register in the NeXTbus Slot Space Address. 

3130 16 15 00 

V MFGID BOARD ID NeXTbus Slot S 
f or one board 

pace 

NBIC m Register ~ \,/" 

byte 0 byte I byte 21 byte 3 

I ID Register LS~ FsFFFFFC hex 

r-- FsFFFFF8 hex 

FsFFFFF4 hex 

ID Register MSB FsFFFFFO hex 

~A 

SOURCE: Catherine Mikke lse n, "NeXTbus Interface Chip Preliminary 
Specification", (NeXT, 1989), pg. 4-4. Figure 4-3. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

41 

there is room to store another data word). This allows for data words to be pipelined 

which speeds lip transfers on the local bus. If thi s bit is set to zero, then the NBIC 

waits until the data is acknowledged by the NeXlbus Master before sending the final 

tcmlination signal to the local bus. Write errors are not reported to the local bus 

when the store and forward option is selected. The ignore slot id 0 (IGNSIDO) bit is 

used to control how much address space is used by the board. If this bit is set to one, 

then the address space of the slot n+ I is used; therefore, increasing the total address 

space of the board in slot n to 512 Megabytes (Mbytes) of memory. The final bit is 

the read-modify-write cycle colli sion (RMCOL) bit. This bit is set to one by the 

NBIC when it receives a re try ack nowledge during a 68030 read-modify-cycle. Also, 

the NB rC issues a NeXTbus error when the RMCOL bi t is set. Read-modify-cycles 

are part of the Motorola's 68030 microprocessor instruc tion set 

The value for the confi guration register is set during the power-up sequence by 

using pullup res istors on the local bus. This register is configured during power-up 

and its contents can not be changed. The configuration register is composed of the 

slot id numbers, slave interrupt enable bit, external slot select bit, slot space decode 

bit and the external ill regi ster enable bit. The slot id biLS (31 :28) define the location 

of the board in the NeXT cube. The value of the bits are defined in Table 5.1. The 

board designer(s) must in stall 10,000 Ohm resistors between the appropriate ad­

dress lines (3 1 :28) and the edge connectors of the board. The value of the slot id 

numbers shall be hard-wired on the backplane as defined in Table 5.1. 

The slave interrupt e nable bit (SINTEN) controls the operation of the 

GLA VE*/SINT* signal. If the bi t is set to one, then the GSLA VE*/SINT* signal is 

configured as an input to the NB rc. When the signal SINT* is asserted on the local 

bus, the NeXTbus signal G INT* is asserted. The signal GINT* is an interrupt signal 

on the NeXTbus which propagates to all boards on the backplane. The signal SlNT* 

is generated by the board's logic to interrupt the NeXTbus Maste r. If the slav.e inter-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Table 5.1. Slot ID Numbers per SIOL 

Configuration (A031) (A030) (A029) (A028) 
Register Bits SID3 SID2 SID! SIDO 

SLOT 0 GND GND GND GND 
SLOT 2 GND GND +5V GND 
SLOT 4 GND +5V GND GND 
SLOT 6 GND +5V +5V GND 

SOURCE: Catherine Mikkelsen, "NeXlOus Interface Chip 
Preliminary Specification", (NeXT, 1989), pg. 4-6. 

42 

rupt enable bit is set to zero, then the signal GLA VE* is used as an output. The sig­

nal GSLA VE* shall be asserted by the NBIC when the board is a NeXTbus slave. 

The GSLA VE" and SINT* signal s can not be used at the same time. The bit SINT-

EN dcternlines which of the two signa ls is used by the board's logic. 

The local bus grant/external select (LBGfEXSEL) bit is also used to determine 

which of the two signals shall be used by the board's logic. If this bit is set to one, 

then the signal EXSEL is asserted by the NBIC when a NeXlOus Master references 

the slot address space or ID register (FsOOOOOO hex to FsFFFFFI hex). This bit is 

used when the NBIC ID register is contained in the board's memory space versus the 

NBIC. If the bit is set to zero, then the local bus grant (LBG) signal shall be used by 

the board's logic (This signal is used when there are more than two local bus mas-

ters) . 

The slot space decode bit (SSDECODE) is used to enable or disable the board's 

slot space address. If this bit is set to one, then addresses in the range FsOOOOOO 

hex to FsFFFFE4 hex are passed to the local bus. If this bit set to zero, then any 

references which are made to the board slot space address (does not include the 

"''RIC ID register or Interrupt registers) results in a timeout error. Finally, the exter-

nal ID register enable bit (EXIDREGEN) is used to enable or disable the internal 

I\:BIC TO register. If thi s bit is set to one, then the NBIC TO register is di sabled and 

all references between FsFFFFFO hex through FsFFFFFC hex are passed to the 

local bus. If thi s bit is set to zero, then the NBIC ID register is located internal in the 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

43 

NB IC. When the NBIC ID register is loca ted externally, the SSDEWDE and EX­

lDREGEN bits must both be set to one. 

The two interrupt regi sters are used to generated an interrupt signal (GlNT") on 

the NeXTbus. The interrupt regi ster is located at address FsFFFFE8 hex and the 

interrupt mask register is located at address FsFFFFFEC hex. The interrupt regis­

ter is a Read only register and the interrupt mask register is a Read/Write register. If 

the interrupt mask register is set to one and the board's logic asserts the signal 

SlNT*, then the NeXTbus interrupt signal (GINT*) shall be asserted. If the mask 

interrupt regi ster is set to zero, then an interrupt is not generated on the NeXTbus. 

Figure 5.4 shows the format for all the NBIC internal registers except the two inter­

rupt registers. The two interrupt registers are one-b it registers with the GAD7" ad­

dress/data line being the appropriate bit to either read or write. 

NeXTbus MasterlLocal Slave Control Logic 

The NeXTbus Master/Local Slave control logic is used during all transactions 

when the NBIC is a slave to a local bus master. This control logic is used by mas­

ter/slave boards. A slave only board does not used this control logic on the NBIC. 

This control logic contains a NeXTbus arbiter and a transaction FIFO. The arbitra­

tion logic participates in arbitration cycles to obtain ownership of the NeXTbus. The 

FIFO is used to buffer address and data information for a maximum of two transac­

tions. The FIFO serves a dual purpose. It performs speed matching between a fLXed­

ra te NeXTbus and a variable rate local bus and it allows transactions two be pipe­

Ened. The FIFO has the capability to store two transactions back to back. A trans­

ac tion is composed of one address and either one word . for single-word transfers or 

fo ur words for burst transfers. NBIC only supports a burst size of four 32-bit words 

during burst transfers. Figure 5.5 shows the transac tion FIFO for the NeXTbus Mas­

ter/Local Slave control logic. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

31 30 

Figure 5.4. Fonnat for Internal NBIC Registers. 

NBIC ID REGISTER 

Manufacture ID 
Number 

16 IS 

Board ID Number 

00 

NBIC CONTROL REGISTER 

3 1 30 29 28 27 26 o 

Re<\d Modify Cycle Colli sio n (RMCOL) 

(STFWD) 

(IGNSIDO) 

Store and Forward 

Ignore Slot lD 

NBIC CONFIGURATION REGISTER 

31 30 29 28 27 26 25 24 23 00 

External ID Regis ter Enabie 
(EXIDREGE N) 

Slot Space Decode 
(SSDECODE) 

External Slot Spac e Select 
(EXSEL) 

Slave Interrupt En able 
(S1NTEN) 

Reserved 

Slot Identification Values 
(SID 3:0) 

SOURCE: Catherine Mikkelsen, "NeXThus Interface Chip Preliminary 
Spec ifications", (NeXT, 1989), pg. 4.3-4.5, Figures 4.2,4.4,4.5. . 

44 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Figure 5.5. NeXTbus Master!Local Slave Transaction FIFO. 

To NeXTbus 
Slave 

Addresses 

Data ....... ~ ..... 

TolFrom 
NeXThus 
Slave 

FIFO 

One Address 

One or Four 

Data Words 

One Address 

One or Four 

Data Words 

From Local 
Bus Master 

Addresses 

Data 

TolFrom 
Local Bus 
Master 

SOURCE: Catherine Mjkkelsen, "NeXTbus Interface Chip Preliminary 
Specifi cation", (NeXT, 1989), pg. 2-3, Figure 2-2. 

Local MasterINeXTbus Slave Control Logic 

45 

This control logic is used when the NBIC is a NeXTbus slave and a local bus 

master. On the NeXT-to-Motherboard interface board to be designed, this is the 

o nly transaction control logic which shall be used since the board is a slave only 

board (does not participate in NeXTbus arbitration cycles). This transaction control 

logic contillns a local bus arbiter and a FIFO. The arbitration logic is used to obfajn 

ownership of the local bus and the FIFO is used to buffer the address and data. 

The FIFO serves the same purposes as explained in the NeXTbus Mas terlLocal 

Slave control logic section. Figure 5.6 shows the transaction FIFO for the Local 

MasterlNeXThus Slave control logic. 

Timeout Logic 

All transac tions on the NeXTbus must be completed by 255 MCLK cycles 

wh ich is approximately 20.4 microseconds (us). The NBIC timeout control log ic 

consist of an R-S flip-fl op and a 8-bit counter. The flip-flop is set by the START" 

NeXTbus signal (NBIC signal GST ART") and the counter is enabled. The ac-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Figure 5.6. Local MasterINeXTbus Slave Transaction FIFO. 

To NeXTbus 
Slave 

Addresses 

Data 

TolFrom 
NeXTbus 
Sl ave 

FIFO 

One Address 

One or Four 

Data Words 

Transaction 
B 

One Address 

One or Four 

Data Words 

From Local 
Bus Master 

Addresses 

Data 

ToIFrom 
Local Bus 
Master 

SOURCE: Catherine Mikkelsen, "NeXThus In terface Chi p Preliminary 
Specification", (NeXT, 1989), pg. 2-5, Figure 2.4. 

46 

knowledge signal ACK* (NBIC signal GACK*) is used to clear the flip-flop and the 

counter. If the counter reaches to a count of 255, then the timeout logic issues a bus 

error and the signal GACK* is asserted at cycle 256. The CPU board also asserts 

the ACK* signal during cycle 256 in case there is no board in the addressed slot. 

Reset Logic 

TIle reset log ic contains a Schmitt trigger buffer input for a reset signal from either 

the NeXTbus o r the local bus. When the reset signal on the NeXThus is asserted, it 

triggers a pulse generator circuit which shall assert the reset signal on the local bus 

for 1.28 us. The same condjtion exits if the reset signal on the local bus is asserted. 

The pulse generators in the reset logic triggers when a negative edge is detected. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

CHAPTER VI 

NBIC SIGNAL DESCRIPTION 

The purpose of this chapter is to introduce all the signals of the NBIC. The sig· 

nals are grouped into six different groups based on the function they perform. The six 

classes are address/data, arbitration, control, util ity, clocks and power. All of the 

NeXTbus signals are prefaced with a "G", which stands for global, and shall not be 

covered in thi s chapter since they are described in Chapter Ill . There are only four 

signals which are not defined in Chapter ill and shall be defi ned in this chapter along 

wi th all the NBIC local bus signals. Table 6.1 shows all the global and local bus sig· 

nals of the NBIC. All the infon11ation for this chapter was obtained from the 

"NeXTbus Interface Chip Preliminary Specifications" by Mikkelsen. 

The three clock signals BUSCLKlN, GBUSCLKO and GMCLKSELO are only 

used in the CPU board in slot O. BUSCLKIN is the 25 MHz input clock on the CPU 

board which is used to generate GBUSCLKO and GMCLKSELO. These two output 

clocks from the NBIC in the CPU board are then used by all boards on the backplane. 

The last signal which is not defined in Chapter In is GDSTBO*. The NBIC has two 

da ta strobe signals denoted by GDSTB* and GDSTBO*. The signal GDSTB* is an 

input to the NBIC and the signal GDSTBO* is an ou tput of the NBIC. However, the 

NeXTbus only has one data strobe signa l on its backplane. The signal GDSTBO* 

from the NB IC of the NeXT CPU board (Slot 0) should be connected to the GDSTB * 

input signal of the NBIC located in the NeXT- to-Motherboard interface board. This 

information should be confirmed with a technical representative from NeXT Corpora­

tion. The preliminary specifica ti ons docs not sta te the inten t of the GDSTBO* signal. 

47 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

48 

Table 6.1 NBIC NeXTbus and Local Bus Signals. 

SIGNAL DESCRIPTION TYPE # PINS 

GWBAL SIGNALS 

GADl3l :0)* Global Address/Data I/O 32 
GRQST* Global Request I/O 1 
GSTART* Global Stan I/O I 
GDRQ* Global Data Request I/O I 
GACK* Global Acknowledge I/O I 
GTM 11:0)* Global Transfer Mode I/O 2 
GDSTB* Global Data Strobe I 1 
GDSTBO* Global Data Strobe Out 0 1 
GSP[3:0)* Global System Parity I/O 4 
GSPV* Global System Parity Valid I/O 1 
GRESET* Global Reset I/O I 
GINT* Global Interrupt 0 1 
GARB[3 :0)* Arbitration Number I/O 4 
BUSCLKlN 25 MHz Clock I I 
GBUSCLK Global Bus Oock I I 
GBUSCLKO Global Bus Clock Out 0 I 
GMCLKSEL* Major Clock Select I I 
GMCLKS ELO* Major Clock Select Out 0 I 
PON Power On I I 

WeAL SIGNALS 

LAD[31 :0)* Local AddressIData I/O 32 
BR* Bus Request 0 1 
BG* Bus Grant I 1 
BGACK* Bus Grant Acknowledge 0 1 
LBR* Local Bus Request I I 
LGB(EXSEL Local Bus GrantlExternal Select 0 I 
NCS* NBIC Chip Select I I 
GBCYC* Global Bus Cycle I I 
GSLAVE*/SINT* NeXTbus Slave!NeXTbus Interrupt I/O I 
GMASTER* Global Master 0 I 
FB" Function Bit 0 I 
SIZ[ 1:0) Transfer Size 1/0 2 
DS" Data Strobe 1/0 1 
AS* Address Strobe 0 I 
ASIN* Address Strobe In I I 
RJW" ReadlWrite 1/0 I 
RMC* Read Modify Cycle 1/0 1 
DSACK[ I:O) Data Size Acknowledge 1/0 2 
BREQ* Burst Request 1/0 I 
BACK* Burst Acknowledge 1/0 I 
STERM* Synchronous Tennination 1/0 I 
HALT* Halt 1/0 I 
BERR* Bus Error 1/0 I 
LRESET* Local Bus Reset 1/0 I 
OE Output Enable for Test I I 
CPUCLK CPU Clock I 1 
LCLK Local Bus Clock I I 

SOU RCE: Catherine Mikkelsen, "NeXTbus Interface Chip Preli mi nary Specification", 
(NeXT, 1989), pg. 3-2, Tab le 3- \. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

49 

The NBlC local bus signals are used to interface the NBlC to the board 's logic. 

A brief description of all the NBlC local bus signals are defined below: 

Locql Address/Datq (LAD 131 ;QIl 

These are the 32 bidirectional multiplexed lines which carry the address at the begin­
ning of a transaction and data infonnation later in the transaction. 

Blls Reqllest (BR·) 

This is an open-drain wired-"OR" signal which is asserted by the NBlC or any other 
local bus master that wants to obtain ownership of the local bus. An external arbiter 
is used to grant ownership of the bus. 

Blls Grant (BG·) 

This signal is an input to the NBIC and is asserted by the external arbiter when the 
N BIC has won ownership of the local bus. Thi s signal remains asserted by the exter­
nal arbiter until the NBlC deasserts the signal BR·. 

Blls Grant Acknowledge (BGACK-) 

This is an open-drain signal which is asserted by the NBlC or any other local bus 
master when it obtains ownership of the local bus. This signal is deasserted by the 
bus owner after the transaction is complete. The local bus can not be accessed by 
any other module while thi s signal is asserted. 

Local Bus Request (LBR-) 

This signal is only used when there are three or more potential local bus masters. In 
a Slave only board, the NBlC is always the master of the local bus and no local bus 
arbitration takes place. This signal shall be pulled up by 100,000 Ohm resistor on the 
NeXT-to-Motherboard interface board. 

Local Bus Grant/External Select (LBGIEXSEL) 

If the LBG signal is selected in the configuration register, then this signal is asserted 
by the NBIC when the internal local bus arbiter grants bus ownership to another bus 
master. This signal is not used in a Slave only board. If the EX SEL signal is select­
ed, then the signal is asserted by the NBIC when reference is made to the boards slot 
address space or lD register. 

NB1C Chip Select (NCS-) 

This signal is asserted by the board's logic when a transaction with the internal 
NB IC registers is to take place. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

50 

Global Bus Cycle WBCye") 

This signal is asserted by the board's logic when a local bus master is to perfonn a 
transaction on the NeXTbus. This signal is not used on a Slave only board. 

Global Masler (GMASTER") 

This signal is assened by the NBIC when it IS In the process of arbitrating for the 
NeXTbus or is the NeXTbus Master. 

Global Slave (GSLA VP/SINT"j 

If the GSLA YE. signal is selected in the configuration register, then the signal is as­
serted when the NBIC is a NeXTbus Slave. If the signal SINP is selected, then the 
board's logic can assert this signal to generate a NeXTbus interrupt (GINT·). The 
interrupt mask register bit (GAD7*) must be set to one for the interrupt to be gener­
ated on the NeXThus. 

Flll/ction Bil (FB·) 

There is not set protocol by NeXT on this signal. This bit is intended to be used with 
the Motorola's 68030 function codes. This bit is asserted by the NBIC when it is the 
master of the local bus. 

Transfer Size (SIZl1 :on 

These are tri-state signals which deflfle the number of bits transferred on the data 
bus during local bus transactions. These signal lines are asserted by the local bus 
mas ter. Table 6.2 shows the encoding of these signals. 

Table 6.2. Encoding of the Transfer Size Signal Lines. 

BITS SIZI SIZO 

32 
24 
16 
8 

L 
H 
H 
L 

L 
H 
L 
H 

SOURCE: Catherine Mikkelsen, "NeXTbus Interface Chip Preliminary 
Specification", (NeXT, 1989), pg. 3-8, No Table number assigned. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

51 

This sIgnal is assened by the local bus master during transactions. During a read 
transaction, the signal DS* is assened to indicate to the external device to place data 
o n the local bus. During a write transaction, the signal DS* is assened when the da· 
ta is placed on the local bus. 

A ddress Strobe (A~ 

This signal is assened when the NBIC is the local bus master indicating to the 
board's logic that there is a valid address on the local data bus. This signal is assert­
ed throughout the duration of the transaction. 

Address Strobe In (ASIN*) 

This signal is assened by the local bus mas ter during any transaction with the NeXT­
bus. The NB IC latches an address when the local bus master asserts the signal 
ASIN*. Thi s 'signal must be asserted throughout the dur ation of the transac ti on. 

This is assened by the local bus master to indicate the type of transfer to be per­
fom1ed. If the a read transaction is to be performed, then this signal is assened high. 
If a write transaction is to be performed, then this signal is assened low. 

Read Modify Cycle (RMC*) 

This signal is assened by the local bus master when a read-modify-cycle is In 

progress. 

Burst Request (BREO*) 

This signal is asserted by the local bus master when a burst read or write transaction 
is to take place on the local bus. The burst transfer is then perfom1ed on the NeXT­
bus. Recall that all NBIC burst transfers are four words. The NBIC does not suppon 
burst transfers of 8, 16 or 32 words. 

Burst Acknowledge (BACK-) 

This signal is assened by the local bus slave to inform the local bus master that the 
local slave suppons burst transactions. If this signal is not assened, then the local 
bus slave does not suppon burst transactions. 

Data Transfer and Siu Acknowledge (DSACK[J :01-) 

These signals are assened by the local bus slave to tennina te a transaction. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

52 

Synchronous Termination (STERM*) 

This signal is asserted by the local bus slave during all local bus transactions. During 
a write transaction, the local bus slave shall assert the signal STERM* to inform the 
local bus master that it shall latch the 32-bit data word on the nellt trailing edge of 
LCLK. During a read transaction, the local bus slave shall assert the signal STERM· 
to inform the local bus master that a 32-bit data word shall be valid on the nellt trail­
ing edge of LCLK. The STERM* or DSACK[I:O] signals are used to indicate termi­
nation of a transaction. Both are never used simultaneously to terminate transactions. 

This signal is asserted by the local bus master to indicate the type of termination. If 
this signal is asserted along with the BERR * signal ,then the current transaction on 
the local bus must be halted. 

Bils Error (BERR*) 

TIlis signal is asserted by the local bus master if a timeout or error occurs on the local 
bus. If this signal is asserted along with the HAL T* signal, then the current transac­
tion must be halted. If a local bus slave asserts this signal while the NBIC is a local 
bus master, then an error termination shall be transmitted on the NeX1bus. 

Local Resel (LRESET*) 

This is the local reset signal. If asserted by the board's logic, then the NeX1bus re­
se t signal (GRESET*) sha ll be asserted. This signal is asserted by the NBIC when 
the GRESET* signal is asserted on the NeX1bus. When the signal PON is deas­
serted, both of the reset signals are asserted. This signal shall be asserted by the 
NBlC during the power-up sequence. 

Ouloul Enable (QE) 

When this signal is deasserted by the board's logic, every NBIC output is tri-stated. 
This signal can be used to isolate the NBIC during testing of the board. 

Local Bus Clock (["eLK) 

This clock is used by the NBlC when it is the local bus master. This clock is supplied 
by the board's logic and can run up to 16.66 MHz. In Slave only boards, the board 's 
logic only genera tes thi s clock. This clock is selected by the NBIC when the signal 
BGACK* is asserted. 

CPU Clock (CPUCLK) 

TIlis clock runs at 25 MHz and is selec ted when the signal BGA CK * is deasscrted . . 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

CHAPTER VII 

NBIC LOCAL BUS SPECIFICATIONS 

Tntroduction to the NBTC Local Bus Tnterrace 

The NBIC was designed to interface primarily with the Motorola 68030 micropro­

cessor. The 68030 uses a Big-Endian byte ordering scheme for its data bus. In Big­

Endian buses, byte 0 is located in the most significant bits (msb's) of the data bus 

(31:24) and byte 3 is located in the least significan t bits (Isb's) of the data bus (7 :0). 

n'e NeX-rbus is a Little-Endian bus which is the opposite of a Big-Endian bus. Byte 

o in a Little-Endian bus is in the Isb's of the data bus and byte 3 is in the msb's. 

Since the NB IC was designed to interface with the 68030, byte swapping is per­

formed to directly support transfers with the NeXT CPU board. The local bus of the 

NBIC is a Big-Endian bus so that it can interface directly with a 68030. Big-Endian 

boards such as the CPU board in slot 0 have no problem communicating with each oth­

er. The problem is when a Little-Endian board tries to communicate with a Big-Endi­

an board. There needs to be a way to detect word transfers between these two differ­

ent byte ordering schemes and perform the required byte ordering. If bytes are only to 

be transferred between the same two byte ordering schemes, then byte swapping is 

not required. The purpose of this chapter is to introduce the different type of transac­

tions supported by the NBIC on its local side. Only transactions where the NBIC is a 

local bus master shall be covered in this chapter since the NeXT-to-Motherboard in­

terface board is a Slave only board. Also, the local bus on this board shall be a Big­

Endian bus so that communication can take place with the 68030 based CPU board. 

The information for this chapter was obtained from the NeXTbus Interface Chip Pre­

Ii minary Specification" by Mikkelsen. 

53 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

54 

Introduction to Local Bus Tra nsactions 

A. local bus transaction is composed of three phases. The three phases are bus 

synchronization, actual transfer of data and bus release. The bus synchronization 

phase, which takes two and a half clocks, allows the NBIC and the bus to adjust to 

the different data rates of the NeXTbus and the local bus. TIle bus release phase ac-

co mmodates the delay time for the different bus masters . This phase takes three 

clocks and it guarantees that the NBIC maintains bus ownership through mUltiple 

store and forward write transactions. 

When the NBIC is a local bus master, it initiates all transactions and then waits 

fo r termination signals from the local bus slave. The transaction types for ihe NBIC 

as a local bus mas ter are encoded in the size bi ts (SfZ[ 1 :0]) and the two Isb' s of the 

address/data lines. Table 7.1 shows the valid encoding schemes supported by the 

NBIC as a local bus master. The transactions shown in the table are valid during 

read and write transfers. The local bus slave perfonns transaction termination by en-

coding the status of the transfer on the STERM* or DSACK[I :O]*, HALT* and 

BERR * signals. These signals are encoded to indicate the completion and status of a 

transaction. The encoding schemes for the different valid transaction terminations are 

Table 7.1. Valid Transaction Types When NBIC is Local Bus Master. 

SIZI SIZO LAI LAO TYPE VALID BITS 

L H H H Byte 3 Bi ts [7 :0] 
L H H L Byte 2 Bits [15 :8] 
L H L H Byte I BilS [23 :16J 
L H L L Byte 0 Bits [31 :24J 
H L H L Halfword I Bits [15 :0] 
H L L L Halfword 0 Bi ts [31:16] 
L L L L Word Bits [31 :0] 
L L L L Burst N/A 

SOURCE: Catherine Mikkelsen, "NeXTbus Interface Chip Preliminary 
Specification", (NeXT, 1989), pg. 2- 15, Tab le 2-3. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

55 

shown in Table 7.2. TIle signal STERM* is a synchronous signal and must meet all 

timing parameters such as setup and hold times. The other signals in Table 7.2 are 

either synchronous or asynchronous. If they meet all the timing parameters, then 

they are treated as synchronous signals. If they do not meet the synchronous timing 

parameters, then they are treated as asynchronous and must be stable for one full cy-

cle before the data is sampled. 

Table 7.2. Encoding Schemes for Transaction Tenninations. 

STERM" DSACK"O DSACK·l BERR" HALT" RESULT 

H 
L 
L 
L 
H 
H 
H 
H 
H 

--
H H H H Insert Wait 
H H H H Sync 32-bi t ACK 
H H L L Sync Bus Error 
H H L L Sync Retry 
H H L L Async B US Error 
H H L L Async Retry 
L L H H Async 32-bit ACK 
L H H H Async 16-bit ACK 
H L H H Aysnc 8 -bit ACK 

SOURCE: Catherine Mikkelsen, "NeXThus Interface Chip Preliminary 
Specification", (NeXT, 1989), pg. 2-16, Table 2-4. 

NBIC Internal Register Transactions 

This section shall cover the transactions with the internal registers in the 

NBIC. Recall, that the control register is the only register which can be written and 

read from the local bus. The NB IC ID register can only be written from the local bus. 

A timing diagram showing an internal write to an NBIC internal register is shown in 

Figure 7.1. The sequence of events depicted on the timing diagram are described be-

low: 

C lock 1: The local bus master (board's logic) places the appropriate address on the 
bus (NBlC ID address is 4 hex and control register address is 0 hex) during the flfst 
phase of the clock. During the second phase, the local bus master asserts the signal 
ASIN* which is used to latch the address into the NBIC. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

56 

Clock 2: The address goes invalid at the beginning of the clock. During the second 
phase, the local bus masteri places size infonnation SIZ{ I :0) on the bus, drives the 
signal RJW* low and asserts the signal NCS* to indicate to the NBIC that it is per­
fonning an internal register aceess cycle. 

C lock 3: The NBIC asserts the signal GMASTER* during the rust phase of the 
clock indicating that it is a local bus slave. 

Clock 4: The local bus master places the appropriate data during the rust phase of 
the clock:. During the second phase, the local bus master asserts the signal STERM* 
indicating to the NBIC to latch data on the next trailing edge of LCLK. 

Clock 5: The NBIC latches the data on the trailing edge of the clock and the local bus 
master deasserts the signals NCS*, STERM*, RJW*, SIZ{I :O) and ASIN*. 

Clock 7: The NBIC deasserts the signal GMASTER* during the fi_r<; t phase of the 
clock. 

Figure 7.1. NB IC Internal Register Write from Local Bus 

e lk 1 elk2 e lk 3 Clk 4 Clk 5 elk 6 elk 7 e lk 8 e lk 9 e lk 10 

LCLK 

Nes* 

LAD 

ASIN* IL ____ ___ ~ 

RJW* 

STERM* 

GMASTER* 

SOURCE: Catherine Mjkkelsen, "NeXThus ln terface Chip Pre liminary 
Specificat ion", (NeXT, 1989), pg. 6-20, Figure 6- 13. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

57 

A read to the NBIC internal registers is only valid for the control register. Figure 7.2 

shows the state timing diagram for an NBIC internal register read. The sequence of 

events depicted in the timing diagram are described below: 

Clock 1: The local bus master places the address on the bus during Ule rust phase 
of the clock. The signal ASIN* is asserted during the second phase of the clock so 
the NBIC can latch the address 

Clock 2: The address is no longer valid during the rust phase of the clock. The local 
bus masters asserts the size infonnation bits (SIZ[I :0]), drives the signal RJW* high 
and asserts the signal NCS*. 

Clock 3: The NBIC asserts the signal GMASTER * indicating that it is a local bus 
slave. 

Clock 4: The NBIC places the data requested during the first phase of Ule clock. The 
data is valid during the second phase of the clock and the NBIC asserts the signal 
STERM*. 

Clock 5: The local bus masters latches the data on the trailing edge and deasserts 
the signals NCS*, RJW*, SlZ[\ :0] and ASIN*. The NBIC deasserts the signal 
STERM*. 

Figure 7.2. NBIC Internal Register Read from Local Bus. 

Clk 1 Clk 2 Clk 3 Clk 4 Clk 5 Clk 6 Clk 7 Clk 8 Clk 9 Clk 10 

LCLK 

NCS* 

RJW* 

SIZ[ 1 :0) 

STERM* 

GMASTER* 

SOURCE: Catherine Mikkelsen, "NeXThus Interface Chip Preliminary 
Specification" , (NeXT, 1989), pg. 6-19, Figure 6-12. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

58 

Clock 6: The NBIC stops driving the data bus. 

Clock 7: The NBIC deasserts the signal GMASTER· during the first phase of the 
clock. 

Single-Word Local Bus Transactions 

This section covers single-word transactions which are initiated by the NBIC 

when it is a local bus master. The two transactions which shall be covered are sin-

gle-word read and write. Figure 7.3 shows a timing diagram for a single-word write 

by the local master NBIC. The sequence of events depicted in the timing diagram are 

described below: 

Clock 1: N13IC is performing bus synchronization during the fi r> t phase of the clock. 
During the second phase of the clock, the NBlC asserts the signals BGACK*, FE·, 
GSLA YE., places and address on the bus, drives the size information bits 
(SIZ[I :O)) and the signal RJW· (drives RJw*low to indicate a write cycle). 

Clock 2: The values on the address/data, RJW* and SIZ[1 :0] signal lines are valid 
during the first phase of the clock. The Nl3IC asserts the signal AS· during the sec­
ond phase of the clock so the local bus slave can latch the address. The signal AS· is 
valid throughout the transaction. 

Clock 3: The address/data lines are invalid during the first phase of the clock. The 
N13IC places data on the bus and asserts the signal OS· so the local bus slave can 
latch the data. 

Clock 4: The NBIC waits till the local bus slave asserts either the DSACK[I:O]* or 
STERM* termina tion signals. 

Clock 5: If the DSACK[I :O]* signals are used, then they are asserted during the 
rust phase of the clock. If the signal STERM* is used, then it is asserted during the 
second phase of the clock. The DSACK[ I :0]· signals indicate that the data has been 
latched while the signal STERM· indicates that the data shall be latched on the next 
falling edge of the clock. 

Clock 6: The local slave latches the data on the falling edge of the clock and deas­
serts the signal STERM* (if used). The NBIC deasserts the address (AS*) and da­
ta (OS*) strobe signals. 

Clock 7: Data on the bus becomes invalid and the Nl3IC deasserts the signals FE·, 
RfW* and the two size bits (SIZ[ I :0)). The local bus slave deasserts the two 
DSACK* signals during the first phase of the clock (if used). 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

59 

Clock 9: The NI3IC deasserts the signals GSLA YE. and BGACK·. Also, the NBIC 

stops driving the FI3·, RiW· and SIZ[I ;0] signals. 

Figure 7.3. Single-Word Write to Local Bus Slave 

Clk 1 elk 2 elk 3 Clk 4 Clk S elk 6 elk 7 elk 8 Clk 9 Clk 10 

LCLK 

BGACK· ~L ______________________________ ~ 

FB· ~L _________ ...J 

LAD 

AS· 

OS· 

RJW· ~~------------------~~ 
SIZ[I ;0] 

STERM· 

DSACK[I :0]· 

GSLAYE.~L ______________________________ ~ 

SOURCE: Catherine Mikkelsen, "NeXTbus Interface Chip Preliminary 
Specification", (NeXT, 1989), pg. 6-7, Figure 6-5 . 

The nex t transaction to be covered is a single-word read transfer when the NBIC 

is the local bus master. Figure 7.4 shows the timing diagram for a single-word read 

transaction with the local bus slave. The sequence of events depicted on the timing 

di agram are described below: 

Clock 1: NBIC is performing bus synchroniza tion during the first phase of the clock. 
During the second phase of the clock, the NBIC asserts the signals BGACK·, FI3*, 
GSLA YE., places and address on the bus, drives the signals SlZ[I :O] and RN/* to 
their appropriate state (drives Riw· high to indicate a read cycle). 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

60 

Clock 2: The value on the address/data, RJW· and SIZ( I :0) signal lines are valid 
during the flJ1it phase of the clock:. The NBIC asserts the signals AS· and OS·. The 
local bus slave uses the AS· signal to latch the address, transaction type and size in­
fonnation. The signals AS· and OS· are valid throughout the transaction. 

Clock 3: The address becomes invalid during the first phase of the clock:. 

Clock 4: The NBIC is waiting for the local bus slave to assert one of its termination 
signals (either OSACK(I:O)* or STERM*). 

Clock 5: If the OSACK( I :0)* signals are used, then they are asserted during the 
fust phase of the clock:. If the signal STERM· is used, then it is asserted during the 
second phase of the clock. The signal STERM· indicates that the data shall be valid 
on the next falling edge of the clock. 

Figure 7.4. Single ·Word Read from Local Bus Slave 

Clk 1 Clk 2 Clk 3 Clk 4 Clk 5 Clk 6 Clk 7 Clk 8 Clk 9 Clk 9 

LCLK 

BGACK.' 
~------------------------------~ 

FB· ,~ __________________ ~ 

LAD 

AS· 

OS· 

R/W* 

SIZ( 1 :0) 

STERM* 

OSACK( I :0)* 

GSLAVE*'L-____________________________ ~ 

SOURCE: Catherine Mikkelsen, "NeXTbus Interface Chip Preliminary 
Specification", (NeXT, 1989), pg. 6-6, Figure 6-4. .-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

61 

Clock 6: The NBIC latches the data at the trailing edge of the clock and deasserts 
the signals AS'" and DS'". The local bla slave deasserts the signal STERM'" (if 
used). . 

Clock 7: The NBIC deasserts the signals FB'". R/W'" and SIZ{ I :0]'". The local bus 
slave deasserts the signals DSACK[I :O]'" (if used) and the data lines during the ftrst 
phase of the clocle 

Clock 9: The NBIC deasserts the signals GSLA VE'" and BGACK'". Also, the NBIC 
stops driving the signals FB'", R/W'" and SIZ{I:O]. 

Burst Transactions on the Local Bus 

This section shall cover burst transactions which are initiated by the NBIC when 

it is a local bus master. Figure 7.5 shows a burst-write timing diagram. The se-

quence of events depicted in the timing diagram are described below: 

Clock 1: During the second phase of the clock, the NBIC asserts the signals 
BGACK'", FB", SIZ{I:O] and GSLA VE". Also, it places an address on the bus and 
drives the R/W'" signal low. 

Clock 2: During the flJ'St phase of the clock, the values on the data lines, R/W'" and 
SIZ[I:O] signals are valid. Also, the NBIC asserts the burst request (BREQ*) and 
the address strobe (AS'") signals. The AS'" signal remains asserted throughout the 
transaction. 

Clock 3: During the flJ'St phase of the clock, the address value is no longer valid. 
During the second phase of the clock, the NBIC places valid data on the bus and as­
serts the data strobe signal (OS'") which remains asserted throughout the transac­
tion. 

Clock 4: The NBIC is waiting for an acknowledge from the local slave at this time. 

Clock 5: During the second phase of the clock, the local bus slave asserts the burst 
acknowledge (BACK'") signal. Also. the local bus slave asserts the SfERM'" termi­
nation signal which indicates that it shall latch data on the next trailing edge. The sig­
nal STERM" remains asserted until all four words have been latched. Recall , that 
burst transfers consists of four words when using the NBIC. The termination signals 
DSACK[ I :0]" can not be used during burst transactions. 

Clock 6: The local bus slave latches data (01) on the trailing edge of the clock. 

Clock 7: The local bus slave latches data (02) on the trailing edge of the clock. 

Clock 8: The local bus slave latches data (03) on the trailing edge of the clock. 11,e 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

62 

NBIC deasserts the signal BREQ* indicating to the local bus slave that only one 
word remains to be acknowledged. 

Clock 9: During the flfSt phase of the clock, the local bus slave deasserts the signal 
BACK· indicating that it needs only one more word to complete the transaction. The 
local bus slave latches the data (D4) on the trailing edge of the clock and deasserts 
the signal STERM*. Also, the NBIC deasserts both of its strobe signals (AS* and 
DS*). 

Clock 10: During the first phase of the clock, the data becomes invalid and the NBIC 
deasserts the signals FB*, R/W* and SlZ[I:O]. 

Figure 7.S. Burst Write to Local Bus Slave. 

Clk 1 Clk 2 Clk 3 Clk 4 Clk 5 Clk 6 Clk 7 Clk 8 Clk 9 Clk 10 

LCLK IULIU 
BGACK* ,'--____________________ _ 

FB* 
, I 

LAD 

AS* 

DS* 

RJW* 
, I 

SIZ[ I :0] 

STERM* 

BREQ* 

BACK* 

GSLAVE*~~ _____________________ _ 

SOURCE: Catherine Mikkelsen, "NeXThus Interface Chip Preliminary 
Specification", (NeXT 1989), pg. 6-10, Figure 6-7. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

63 

The last local bus transaction to be covered in this chapter is a bur.it read by a lo­

cal master NBIC Figure 7.6 shows a timing diagram for a burst read transaction. 

The sequence of events depicted on the timing diagram are described below: 

Clock 1: During the second phase of the clock, the NBIC asserts the signals 
BGACK*, FB*, SIZ[I:O) and GSLAVE*. Also, it places an address on the bus and 
dri ves the signal R!W* high to indicate a read transaction. 

Clock 2: During the ftrst phase of the clock, the values on the data lines , RfW* and 
SIZ[ I :0) signals are valid to be sampled by the local bus slave. Also, the NBIC as­
serts both of its strobe signals (AS· and DS·). The AS* signal is used by the local 
bus slave to latch the address. The OS· signal informs the local bus slave that it can 
place data on the bus. Both strobe signals remain asserted throughout the transac­
tion. 

Clock 3: During the ftrst phase of the clock the address lines become invaJjd. 

Clock 4: The NBIC is waiting for the local bus slave to assert its termination signal 
STERM· to indicate that data shall be vaJjd on the next trailing edge. 

Clock 5: During the second phase of the clock, the local bus slave asserts the sig­
nals BACK· and STERM*. 

Clock 6: The NBIC latches data (01) on the trailing edge of the clock. 

Clock 7: The NBIC latches data (02) on the trailing edge of the clock. 

Clock 8: The NBIC latches data (03) on the trailing edge of the clock. Also, the 
NBIC deasserts the signal BREQ· indicating to the slave that it does not want to re­
ceive another burst of data. 

Clock 9: During the fIrSt phase of the clock, the local bus slave deasserts the signal 
BACK· indicating that the last word is to be transferred. The NBIC latches data 
(04) on the trailing edge of the clock. During the second phase of the clock, the NBIC 
deasserts both of its strobe signals and the local bus slave deasserts the signal 
STERM·. 

Clock 10: During the ft rs t phase of the clock, the NBIC deasserts the FB*, RJW· 
and the SIZ[ I :0) signals. Also, the data lines on the bus become invalid during this 
clock cycle. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Figure 7.6. Burst Read from Local Bus Slave. 

Clk 1 Clk 2 Clk 3 Clk 4 Clk 5 Clk 6 Clk 7 Clk 8 Clk 9 Clk 10 

LCLK 

BGACK* ~L __________________________________ ___ 

FB· ~~------------------~~ 
LAD 

AS· 

OS· 

RIW* L 
SIZ[I :0] 

STERM* 

BREQ· 

BACK· 

GSLAVE.~L __________________________________ ___ 

SOURCE: Catherine Mikkelsen, "NeXTbus Interface Chip Preliminary 
Specifica ti ons", (NeXT, 1989), pg. 6-9, Figure 6-6. 



I 
I 
I 
I 
I 

CHAPfERVm 

OVERVIEW OF THE INTERFACE BOARD 

Introduction to the Board and its Features 

The infonnation presented up to this point has introduced the coprocessor archi­

tecture, the NeXTbus communication protocol and the NeXTbus Interface Chip. The 

purpose of this chapter is to introduce the functional blocks of the interface board The 

following chapters shall present a top-level design for the functional blocks introduced 

in this chapter. The functional blocks (modules) introduced in this chapter shall be 

the basis for the detail design of the interface board-

The NeXT-to-Motherboard interface board shall interface a NeXT computer to an 

array of coprocessors. This board is a parallel-to-serialJserial·to-parallel quad trans­

puter link interface on a standard NeXT bus car<i A top-level block diagram of the 

board is shown in Figure 8.1. Each port contains bidirectional transputer links with 

an accompanying set of system services (Reset, Analyze and Error). The ports com­

municate via the NBIC with the NeXT host processor. Each link port appears to the 

NeXT host processor as two separate peripherals with the same address space. One 

of the peripherals processes outgoing data (NeXT-to-Unk) to the array of coproces­

sors and the other peripheral processes incoming data (Link-to-NeXT). The NeXT 

can transfer data to the ports at a much faster rate that the ports can serially transfer 

data to the array of coprocessors. However, the NeXT can access only one port at a 

time while all four ports can be actively transferring data asynchronously with the ar­

ray of coprocessors. The ports continue to transfer data with the array of coproces­

sors as long as there is data in the Input FIFO (NeXT-ta-Link). To make up for the 

difference in the two transfer rates, the host processor can cyck from FIFO to. FIFO 

65 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Ne XTbus -, 

66 

Fi gure 8. 1. Top-level Block Diagram of IllIe rface Board . 

32- Bit LinkO VO 

LOCAL BU S Data 
Inpu t/Output lMS , 

FIFO 's CO il 
NBIC ~ 

Control 
S ignals Pon #{) -VO Con troller 

Link I I/O 

.Pata 
Configurati on Inpu t/Ou tput IMS 

Controll er FIFO's COil 

Port #1 -I/O Controller 

Address Link 2 I/O 

Decoder Data 
Input/Output IMS 

FIFO's COi l 

Pon #2 I-
I/O Controller 

ERROR 
Link 3 VO 

COlli roller 
Data 

Input/O utput lMS 
, ~ FIFO's COil 

Pon #3 
- SYSTEM I/O Controller 

SERVICES 

SS #1 
RESET 

and 
SS #2 

ANALYZE SS #3 

LOG IC SS #4 

... 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

67 

loading or unloading entire blocks of data one at a time. By doing this, the four ports 

shall be active transmitting the data to the appropriate root transputer in the array of 

coprocessors. The root transputer is the transputer connected 10 the host via a link 

adaptor. All other transputers in the network are connected together via serial links 

to the root transpu ter. 

Memory Map of Board 

The memory map of the board shall define all valid address locations decoded by 

the board. The memory map shall indicate which port is 10 process data or if any sys­

tem services such as a link reset is to be issued. Recall that the NeXTbus address­

ing range is from sOOOOOOO hex to sFFFFFF hex where s is the slot identification 

number. Also, the address bits 2EOO through 2E06 have bee predefined by NeXT. 

The two least significant bits (Isb's) (2EOO - 2EOI) are used to encode the type of 

transaction and the other four bits (2E02 - 2E06) are used 10 encode the burst size 

during burst transactions. The board shall use address bits 2E08 - 2E23 10 deter­

mine which port shall process the data or which special registers 10 read or write. 

Figure 8.2 shows the memory map of the board. If the address for a transaction is be­

tween sXOOOOXX through sXOFFFXX, then the data shall be processed by Port #0. 

The same is true for the remaining addressing ranges shown in Figure 8.2 . Each Port 

address space consists of 4096 (4k) words. The port address space is defined from 

sXPOOOXX - sXPFFFXX, where P is the Port number ( P = 0 - 3). The upper 256 

words ( PFOO - PFFF ) of each Port are used 10 enable Burst Byte write transac­

tions. During this type of transaction, only byte 0 (bits(31 :24]) shall be written into 

the Input FIFO. All other burst transactions shall write all four bytes of the 32-bit 

word. It is important to mention that all Bw>t read transactions within the appropri­

ate Port address space are 32-bit reads . Table 8.1 shows the special registers which 

can be access by the user. The special regi sters provide FIFO status per link and 



--------------------......................... . 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

4010 

4019 

4015 

4011 

400D 

4009 

4005 

4001 

sX4FFFXX 

sX4000XX 

sX3FFFXX 

sX3000XX 
sX2FFFXX 

sX2000XX 

sXIFFFXX 

sXIOOOXX 

sXOFFFXX 

sXOOOOXX 

Figue 8.2. Memory Map of Board 

SPEcIlL'\ 
REGISTERS i ' 

PORT #0 

These Address locations 
are only I'Olid [or Burst Writes. 

Burst Byte 3FOO • 3FFF 

Burst Byte 2FOO . 2FFF 

Burst Byte IFOO • IFFF 

Bu rst Byte OFoo . OrFF 

Table 8.1. Mapping of Special Registers . 

405D 

4059 

4055 

4051 

404D 

4049 

4045 

4041 

SUBSYTEM SERVICES 

409D 40DD Subsystem Analyze 

4099 40D9 Subsystem ResetlErr 

INPUT FIFO ( NeXT· to • LINK) 

4095 40D5 FIFO FULL 

4091 40Dl FIFO EMPTY 

408D 40CD FIFO HALF FULL 

OUTPUT FIFO (LINK. to • NeXT) 

4089 

4085 

4081 

40C9 FIFO FULL 

40C5 FIFO EMPTY 

40Cl FIFO HALF FULL 

• 

Write Only 

WritelRead 

Read Only 

Read Only 

Read Only 

Read Only 

Read Only 

Read Only 

68 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

69 

provide the user the capability to reset or analyze a node of the coprocessor. A write 

to the subsystem reset/error register shall reset the root transputa connected to that 

panicular Pon . A read to the subsystem reset/error register shall provide the error 

flag of the root transputer subsystem. All of the special registers are one bit in size 

(bit 0) . Each pair of links can be used to configure or analyze different nodes in the ar­

ray of coprocessors. 

Different Functional Modules on the Board 

The board is composed of five functional modules. Each module shall be briefly de­

scribed in this section. The following chapters shall provide a top-level functional de­

sign of each of the modules. The modules which provide t11e basis for the detail de­

sign of the interface Qoard are the configuration controller, address decoder, pon con­

troller(s), error con troller and reset logic. 

The configuration controller is only executed during the power on sequence or 

when the reset signal (LRESET*) is assened by the NBIC. It shall initialize all the 

NBIC internal registers such as the Control and NBIC Identification registers. Two 

different functional designs shall be presented in Chapter IX. The board's designer 

shall have the flexibility of selecting one of the designs presented or derive a new de­

sign based on the ideas presented. Also, this controller· shall contain the external ar­

biter of the board. The arbiter shall grant the local bus to the NBIC when requested 

by assening the bus grant signal (BG*). The board's logic shall only have ownership 

of the local bus while configuring the NBIC internal registers. All other times, the 

NBIC shall receive a bus grant (BG*) signal from the controller when it asser1S its 

bus request (BR*) signal. 

The address decoder module shall latch the address of a transac tion and set the 

appropriate Pon control signals. The signals assened by the address decoder are 

used by the Port controller and error controller to deternline which sequence of states 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

70 

to execute. This module shall assure that only one Pon Controller is involved in a 

transact jon with the host processor at any given time. 

The Pon controller shall provide all the control signals to communicate with the 

NBIC and with the Inmos IMS COl I link adaptor. This controller actually consists of 

two independent pon controllers (Input and Output). The Input pon controller inter­

faces with the NBIC and writes data into the Input FIFO (NeXT-ta-Link) and reads 

data from the Output FIFO (Link-to-NeXl). Also, this controller shall provide the 

control signals required to read the status flags from the appropriate pon FIFO or the 

error flag from the subsystem. The output pon controller interfaces with the IMS 

COl I link adaptor. It shall read data from the Input FIFO and write data into the Out­

put FIF O. 

The error controller shall be responsible for generating a bus error (BERR *) 

transac tion termination when the user attempts to access an invalid memory address 

of the interface board or access a valid memory location incorrectly. This controller 

terminates an invalid transaction so that the NeXT bus master does not have to wait 

until clock cycle 256 for a bus timeout error to occur. A bus timeout error shall be is­

sued by the NeXT CPU board in slot 0 if no termination is generated by cycle 256. 

The reset module shall provide all the reset and analyze signals to the appropri­

ate FIFO's, link adaptor and root transputers. This module shall be defined in terms 

of a timing diagram. The user shall have the freedom of implementing this module any 

way desired. There are timing restrictions for resetting the root transputers and link 

adaptors which must be met. Also, this logic shall provide the transputer analyze 

timing sequence on a pon basis when requested by the user. The analyze sequence 

is used to determine the state of a transputer based network. Finally, this module 

shall also be responsible for generating the local interrupt signal (SINT*). When the 

signal SINT* is assened by this module and the mask interrupt regi ster is enabled, 

then an interrupt signal shall be generated onto the NeXTbus by the NBIC. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

CHAPTER IX 

TOP-LEVEL DESIGN OF CONFIGURATION CONTROLLER 

The purpose of this chapter is to provide a functional top-level design for the con­

figuration controller. This controller shall initialize the NBIC identification register 

(ID) and the control register. Recall, that the configuration register is configured by 

board resistors. The configuration of this register shall be defined before the design of 

the configuration controller is presented. 

The configuration register shall be setup to select the signals SINT*, EXSEL and 

EXIDREGEN bits 26, 25 and 23, respectively. These bits are selected by placing 

10,000 Ohm res istors from the appropriate bits to +5 volts. The signal SINT* shall 

be asserted by the board's logic to generate a NeXThus global interrupt signal 

(GINT*). The EXSEL signal shall be asserted by the NBIC when a NeXTbus mas­

ter references the slot address space or ID register. The EXIDREGEN bit is en­

abled since the NBIC ID register shall be contained inside the NBIC instead of the 

board's memory space. The SSDECODE bit shall not be selected which cause a bus 

timeout error for any references to the board's slot address space (does not include 

ID or Interrupt registers). A dip switch shall be used to select the different bits of 

the configuration registers. A block diagram of the NBIC with the configuration resis­

tors is shown in Figure 9.1. 

The configuration controller shall interface with the NBIC, a byte size PROM, 

four registers with output and clock enables and one quad register. The PROM shall 

be used to store the address and data for the NBIC ID and control registers. The reg­

isters with clock enables shall be used to store the appropriate bytes of the 32-bit ad-

71 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

To Edge 
Connectors 

SID 

SID [29) 

SID 
SID [31) 

Figure 9.1. NBIC Configuration Register Selec tion. 

10K Ohm 
Resistors 

\OK 
Ohm 

RESERVED 

GSLA VE*'SINT'" 

LBGIEXSEL 

SSDECODE 

EXlDREGEN 

72 

+5 VOLTS 

dress or data. The quad register shall be used to sample the negative edge signals. 

The controller shall be clocked by the positive edge of LCLK while the quad D flip­

flop shall be clocked by an inverse LCLK (or trailing edge of LCLK). A top-level 

block diagram of the hardware required for the configuration sequence is shown in 

Figure 9.2. The contents of the PROM are shown in Figure 9.3. The state-diagram 

of the controller is shown in Figure 9.4. The AHPL description of the controller is 

shown in Figure 9.5. Finally, a timing diagram for the configuration sequence is 

shown in Figure 9.6. The configuration controller begins to execute after an LRE­

S ET'" pulse (approx. 1.28 us) is received from the NBIC. The sequence of events de­

picted in the timing diagram are described below: 

L C LK #1: The signal LRE SET* is asserted by the NBIC. 



-------------------

GMASTER* 

BR* 

LRESET· 

Figure 9.2. Top-level Diagram of the Configuration Controller Hardware Architecture. 

ADRS [4] 

Clk En [4] 

BQ· 

SIZ[I:0] 

-OE 

-OE 

LAD [31:24] 
• 

.'"' LAD [23:16] 
• 

'"1'% LAD [15:08) 
• 

• LAD [07:00) 
• 

...... 
w 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Figure 9.3. Contents of PROM in Configuration Architecture. 

ADRS 

()() 

01 

02 

03 

04 

05 

06 

07 

08 

09 
OA 

OB 

LCLK #2: The configuration controller is initialized to State Number #01. 

74 

LCLK #3 : The controller goes to State Number #02. While in this state, the PROM 
address is zero and the clock enable Isb is set (CNT_EN[3] = I). AHPL notation us­
es a Big-Endian byte ordering scheme. (CNT_EN <-- 4 T I • SET CNT_EN[3] = I). 

LCLK #4 : During the rising edge of this clock, the Isb byte of the NBIC ID register ad­
dress is latched. The PROM address equals one and the three msb's of the clock en­
ables are set 

LCLK #S: During the rising edge of the clock, the remaining bytes of the NBIC ID reg­
ister address are latched. Also, the PROM address equals two and the Isb clock en­
able is set During the trailing edge of the clock, the signal ASIN* is asserted. 

LCLK #6 : The configuration controller sequences to State Number #05 where the 
PROM address equals three and the next byte of the clock enable is set During the 
rising edge, the Isb byte of the NBIC ID register data is latched. During the trailing 
edge of the clock, the signal NCS· is asserted to indicate an internal register transac­
tion. 

LCLK #7: The configuration controller sequences to State Number #06. During the 
ri sing edge of the clock, the next byte of the NBIC ID register is latched. 

LCL K #8: The configuration controller sequences to State Number #07. During the 
ri sing edge of the clock, the next byte of the NBIC ID register is latched. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

NO 

Figure 9.4. State-Diagram for Configuration Controller. 

" Wait in this state until the 
" signal LRESEP is deasserted 
" so the configuration sequence 
" is only perfonned one time. 

NO 

YES 

75 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Figure 9.S. AHPL Description for Configuration Controller. 

MODULE: CONFIGURA nON_CONTROLLER 
MEMORY: CNT[I]. 
INPUTS : GMASTER"; LRESET*; BR". 
OUTPUTS: R/W"; SIZ [2]; ADRS [4]; CLK_EN [4]; DE"; 

ASIN_EN"; NCS_EN"; STERM_EN"; BG". 

" Description of Inputs 
" 
.. GMASTER" .. 
.. LRESET* 
.. BR" 

.. 

= NBIC asserts this signal 10 inform the configuration 
controller that it is performing as a local bus slave . 

= Local reset signal from NBIC (approx. 1.28 us) . 
= This is an open-<lrain wired "OR" signal which is 

asserted by the NBIC when it wants ownership 
of the board's local bus. 

" Description of Outputs 
" 
" R/W* 
" 
" SIZ[I:O] 
" ADRS[4] 
.. CLK_EN[4] 
" DE" 
" ASIN_EN" 

BODY 

= Asserted low by configuration controller when in the 
process of writing to NBIC otherwise oi-stated. 

= Size transfer bits which indicate nurober of valid bytes. 
= Address to the PROM external to configuration controller. 
= Chip (byte) enables to the 32-bit byte loadable register . 
= Output enable for the 32-bit byte loadable register. 
= Enable signal for the Address Strobe signal 10 indicate 

to the NBIC that a valid address is on the bus. The 
actual signal (ASIN") is clocked external on a -LCLK. 

= Enable signal for the NBIC chip select signal (NCS") 
which is asserted by controller to indicate to the NBIC 
that an internal register transaction is to take place. 

= Enable signal for the synchronous termination signal. 
= Bus Grant from the controller when configuration is complete. 

I. ---> ( LRESET*)/ ( I); ADRS <--- 4 T 0; 
CNT <--- 0; CLK_EN <--- 4 T 1; R/W" = Z; 
DE" = I; BG" = I; SIZ <--- 2 T Z. 

" Stay in this state till 
" the signal LRESET" 
" goes High. ( Z = oi-state) 

2. ADRS <--- INC(ADRS); OP = 0; 
CLK_EN <--- 4 T 14; R/W" = 0 ; 
SIZ[2] = 2 T 0; BG" = I. 

3. ADRS <--- INC(ADRS); DE" = 0; 
CLK_EN <_.- 4 T I ; R/W" = 0; 
SIZ[2] = 2 T 0; BG" = I; 
ASIN _EN* = I; NCS _EN* = I ; STERM_EN* = I. 

.. Increment Address to 
"PROM. Enable output 
" enable & set DE" low. 

.. Increment PROM address 
" Deassert all the trailing 
" Edge signals . 

76 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Figure 9 .5. Con'1. 

4. ADRS <--- INC(ADRS); OP = 0; 
CLiCEN <--- 4 T 2; RJW* = 0; 
SIZ(2) = 2 T 0; BG" = I; 
ASIN_EN* = 0; NCS_EN* = I; STERM_EN* = 1. 

5. ADRS <--- INC(ADRS); OP = 0; 
CUCEN <--- 4 T 4; RJW* = 0; 
SIZ(2) = 2 TO; BGo = I; 

ASIN_EN* = 0; NCS_EN* = 0; STERM_EN* = 1. 

6. ADRS <--- INC(ADRS); OP = 0; 
CLK_EN <--- 4 T 4; RJW* = 0; 
SIZ(2) = 2 T 0; BG* = 1; 
ASIN_EN* = 0; NCS_EN* = 0; STERM_EN* = 1. 

7. ADRS <--- INC(ADRS); OE* = 0; 
CLK_EN <--- 4 TO; RJW* = 0; 
SlZ(2) = 2 T 0; BG* = I; 
ASIN_EN* = 0; NCS_EN* = 1; STERM_EN* = 1. 

8. ---> ( GMASTER *)1 ( 8); OE* = 0; 
RJW* = 0; BG* = 1; SIZ <--- 2 TO; 

" Assert ASIN_EN* to 
" indicate to NBIC that the 
" Address is valid. 

" Assert NCS~N* to 
" indicate to NBIC that the 

77 

" transaction is to an internal 
" register. 

" ASIN_EN* and NCS_EN* 
" remain asserted throughout 
.. the transaction. 

" Next clock kill a ll clock 
" Enables since aU the NBIC 
" ill regi sters byte have been 
" accessed from the PROM. 

" This state might not be required. 
" It is included in the design 

ASIN_EN* = 0; NCS_EN* = 0; STERM_EN* = 1; " as a safety measure to verify 
" that NBIC has responded to 
" the NCS* signal. 

9. OE* = 0; RJW* = 0; BG* = I; SIZ <--- 2 T 0; 
ASIN_EN* = 0; NCS_EN* = 0; STERM_EN* = O. 

10. OE* = 0; RJW* = 0; BG* = I; SlZ <--- 2 T 0; 
ASIN_EN* = I; NCS_EN* = I; STERM_EN* = 1. 

"Assert STERM_EN* 
" to indicate to NBIC to latch 
" data on next trailing edge. 

" Deassert STERM EN" 
" to indicate to NBi'C that 
" data is no longer valid. 

11. OE* = 1; RJW* = Z; BG* = 1; SIZ <--- 2 T Z; " Tri-State RJW*, and the two 
CNT * (GMASTER) <--- 1 ; " Size transfer bits. 
--> (CNT, GMASTER /\ CNT, GMASTER* /\ CND/( 12, I, II ). 

12. OE* = 1; RJW* = Z; SIZ <--- 2 T Z; 
BG* = BR*; 
-> ( LRESET*)/(12); 
ASIN_EN* = 1; NCS_EN* = I. 

END SEQUENCE 

---> (LRESET*)/( 1 ). 

END. 

" This state acts as an external 
.. arbiter. Signal bus grant is 
.. asserted when a bus request 
.. is received from the NBIC. 

" Go to State I if there is a reset 
" pulse from the NBIC. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

7S 

LCLK #9: The configuration controller sequences to State Number OS. During the 
ri sing edge of the clock, the msb byte of the NBIC lD register is latched. The clock 
enables are all zero. The controller stays in this state until the signal GMASTER· is 
low. If GMASTER * is low, then the controller shall sequence to State Number #09. 

LCLK #10: During the trailing edge of the clock, the signal STERM* is asserted to 
indicate to the NBIC to latch data on the next trailing edge of the clock. 

LCLK #11: During the trailing edge of the clock, the signals STERM*, ASIN* and 
NCS* are deasserted . 

LCLK #12: The controller sequences to State Number #11 where it wailS for the 
signal GMASTER * to be deasserted by the NBIC. 

LCLK #13: The signal GMASTER* is not deasserted so the controller stays in 
State Number II. 

LCLK #14: 1lle signal GMASTER * is not deasserted so the controller stays in 
State Number 11. 

LCLK #15: The signal GMASTER* is deasserted and the controller sequences to 
State Number 02. The address in this state is six which is the Isb byte of the Control 
register address in the PROM. The signal CNT is set during the transition. 

LCLK #16: During the rising edge of the clock, the Isb byte of the Control register 
address is latched. 

LCLK #17: During the rising edge of the clock, the remaining three msb bytes of the 
Control register address is latched. During the trailing edge of the clock, the signal 
ASlN* is asserted. 

LCLK #18: During the rising edge of the clock, the NBIC latches the address and 
the Isb byte of the Control register data is latched. During the trailing edge of the 
clock, the signal NCS* is asserted. 

LCLK #19: During the rising edge of the clock, the next byte of the Control register 
is latched. 

LCLK #20: During the ri sing edge of the clock, the next byte of the Control register 
is latched. 

LCLK #21: During the rising edge of the clock, the msb byte of the Control register 
is latched. The controller sequences to State Number #OS during this edge. 

LCLK #22: The controller sequences to State Number #00 since the signal GMAS­
T ER· is asserted by the NBIC. During the trailing edge of this clock, the .. signal 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

79 

STERM* is asserted. 

LC LK #23: The Control register data is latched during the trailing edge of the clock 
and the signals STERM*, ASIN* and NCS* are deasserted. 

LCLK #24: The controller sequences to State Number #11. 

LCLK #25: The controller sequences to State Number #12 since the signal CNT is 
set. This indicates that the configuration sequence is complete. While in State Num­
ber 12, the controller acts as the external arbiter. When the NBIC asserts the bus re­
quest (BR *) signal, the controller shall assert the bus grant signal (BQ*). The 
R/W*, SIZ[ I :0], AddresslData lines and STERM* signals shall be tri-stated. The 
signals ASIN_EN*, CLK_EN[4] and NCS_EN* shall remain deasserted in this state. 

LCLK #25 - #29: The controller remains in State Number #12 until a reset signal 
(LRESET*) is received from the NBIC. At this time, the configuration sequence shall 
repeat its sequence beginning with State #1. The controller shall remain in State #1 
unti l the reset pulse is deasserted. The reason being that the LRESET* pulse is ap­
proximately 1.28 microseconds and the controller can cycle through all its states fin­
ishing up in State #12 before the reset pulse goes high. If the controller is in State 
#12 and the reset pulse is still asserted (LOW), then the configuration cycle will exe­
cute again; therefore, the configuration cycle shall begin when the reset pulse 
(LRESET*) is deasserted. 

The signal GMASTER * is used in this controller as an acknowledgment from the 

NBIC that it is performing as a local bus slave. This is the only time when the NBIC 

shall be a slave on the local bus. All transactions on the local bus shall be initiated 

by the NBIC during all other transactions. The configuration controller shall grant the 

bus to the NBIC after the sequence is complete by asserting the signal BG*. 

An alternative method is to use four registered PROM with output enables such 

as the Cypress CY7C225. This PROM is a 512 X 8 registered PROM with output en­

ables. The advantage of this method is that there are less cycles required to build the 

32-bit address and data word for the registers. The disadvantage is that there are 

four programmable parts on the board and only four loca60ns shall be valid in each 

PROM. lne design for this method shall not be presented. The designer can use one 

of the two methods presented or derive a new implementation for the configuration se­

quence from the ideas presented in this chapter. 



--------------------

Figure 9.6. Timing Diagram for Configuration Sequence. 

elk I elk 2 elk 3 elk 4 elk 5 elk 6 elk 7 elk 8 elk 9 elk IO elk 11 elk 12 elk 13 elk 14 elk 15 

LCLK )-

LRESET* -.J 
State 
Number 

ADRS 

Clock 
Enables 
(0 .. 3) 

ASIN* ++ .---------..J..,', )----
~------~ 

NCS* ++ .-----------.,', )----
L.--_____ ~ 

GMASTER* .----...... ','r-
~--------~ 

STERM* ++ .-----------l.,~ )-

CNT [1] 

NOTES: ++ These signals are sampled at the trailing edge of LCLK. CLOCK ENABLES = E represents CLK_EN(O:2] = 1. 00 
o 



-------------------

Figure 9.6. Con'r. 

elk 15 elk 16 elk 17 elk 18 elk 19 elk 20 elk 21 elk 22 elk 23 elk 24 elk 25 elk 26 elk 27 elk 28 elk 29 

LCLK 

LRESEP (deasserted) 

State 
Number 

ADRS 

Clock 
Enables 
(0 .. 3) 

ASIN· ++ 

NCS· ++ 

GMASTER· --------, 

STER.tYl· ++ ------. 

cm [1] 

00 -



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

CHAPTER X 

TOP·LEVEL DESIGN OF ADDRESS DECODER 

The purpose of this chapter is to provide a functional top-level design for the 

address decoder module. This module shall latch the address at the beginning of a 

transaction and set the appropriate PORT control signals. A top-level block dia­

gram of the address decoder is shown ip Figure 10.1. A state-{jiagram represent­

ing the sequence of events is shown in Figure 10.2. The AHPL description for the 

Figure 10.1. Top-level Block Diagram of Address Decoder. 

R/W* 

LAD [1:01 

2 
LAD [23:81 

16 

LRESET* 

TRANSACTION 

GP ANALYZE 

Where X is the PORT NUMBER (0 - 3) 

82 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

address decoder module is shown in Figure 10.3. The module ,hall latch the address 

at the first rising edge of LCLK after the signal AS. is asserted by the NBIC. The 

Figure 10.2. State-Diagram for Address Decoder. 

NO 

YES 

PORT signals shall be set according to the memory map of the board shown in Table 

8.1 and Figure 8.2. The signal denoted by TRANSACTION shall be set by the ad­

dress decoder when it is in State 2_ This signal is used to alert the Error Controller 

that a NeXTbus transaction is starting. 

The RJW· and BREQ· signals are used by the address decoder to determine 

which PORT signals to assert. For example, if the address bilS 23 through 8 equal 

'4019 ' hex, then the RJW· signal is used to determine which of the two possible sig­

nals to assert (PORTO_RESET or PORTO_ERROR). If the signal RJW* is high, 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Figure 10.3. AHPL Description for Address Decoder. 

MODULE: ADDRESS DECODER 
MEMORY: ADRS [16], RESET, ANALYZE. 
INPUTS: LAD[23:8]; LAD[I:O]; AS·; RJW·, BREQ*, LRESET·, 
OUTPUTS: PORTO ACTIVE, PORTI ACTIVE, PORT2 ACTIVE; 

PORTI-ACTIVE; PORTO-ANALYZE; -
PORn-ANALYZE; PORTI ANALYZE; 
PORTI -ANALYZE; PORTO -RESET; PORTI RESET; 
PORT2-RESET; PORTI RESET; PORTO ERROR; 
PORTl-ERROR; PORT2-ERROR; PORn ERROR; 
PORTO-IN FF FLG; PORTl IN FF FI..G; 
PORT2-IN-FF-FLG; PORTI-IN-FF-FLG; 
PORTO-IN-EF-FLG; PORTl-IN-EF-FLG; 
PORT2-IN-EF-FLG; PORTI-IN-EF-FLG; 
PORTO-IN-HF-FLG; PORTl-IN-HF-FLG; 

PORT2=IN=HF=FLG; PORTI=IN=HF=FLG; 
PORTO_OUT_FF_FLG; PORTI_OUT]F_FLG; 
PORT2_0UT_FF_FLG; PORTI_OUT_FF_FLG; 
PORTO_OUT_EF_FLG; PORTl_OUT_EF_FLG; 
PORT2_0UT_EF_FLG; PORTI_OUT_EF_FLG; 
PORTO_OUT_HF_FLG; PORTI_OUT_HF_FLG; 
PORT2_0UT_HF_FLG; PORTI_OUT_HF_FLG; 
BURST BYTE ENO, BURST BYTE ENl; 
'BURST=BYTE=EN2, BURST=BYTE=EN3; 
STATU so ACTIVE, STATUS 1 ACTIVE; 
STATUS2=ACTIVE, STATUS3=ACTIVE; 
TRANSACTION; AD[2]; GP_RESET; GP_ANALYZE. 

" Description oj Inputs 

.. LAD[I:O] 

.. LAD[23:8] .. 

.. AS· 
tt RIW* 
.. BREQ* 
.. LRESET· 
.. GP RESET 
.. GP ANALYZE 

" Description oj Outputs 

.. TRANSACfION .. 

.. AD[I :O] 

.. PORTX ACfIVE 

.. PORTX RESET 

= Address lines which carry transaction information . 
= Address lines which are used to decode the type 

of transaction to be performed. 
= Address Strobe signal from NBIC . 
= Read - 1 I Write - 0 (From NBIC). 
= Bunt Request signal from NBIC. 
= Reset Pulse from NBIC, 
= Asserted when any port is to be reset 
= Asserted when any port is to be analyzed . 

= Set High when in State 2 and not performing a 
PORT Reset or Analyze sequence . 

= The value of the two LSB's of the address lines . 
= Set High when the address is within the memory 

map limits of the appropriate PORT (Read or Write), 
= Set High when a Write transaction is performed to 

the appropriate PORT address to Reset that PORT. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

" PORTX ANALYZE 
" 
" PORTX ERROR 
" 
" 
" PORTX IN FF FLO 
" 
" PORTX IN EF FLO 
" 
" PORTX IN HF FLO 
" 
"PORTX OUT FF FLG 
" 
" POR TX OUT EF FLG 
" 
" PORTX OUT HF FLO 
" 
" BURST BYTE ENX .. - -
" STATUSX ACTIVE 
" -
" GP RESET 
" GP ANALYZE 

BODY 

Figure 10.3. Con ' l 

= When set used by the Reset Module to 
send appropriate analyze signals to network. 

= When set used by Input Port Controller to place 
the status of the appropriate PORT Error Flag 

on the LSB of the address line. 
= Set High when the user request the status of the 

FIFO FUll flag from the Input FIFO PORTX. 
= Set High when the user request the status of the 

EMPTY FIFO flag from the Input FIFO PORTX. 
= Set High when the user request the status of the 

FIFO HALF FULL flag from the Input FIFO PORTX. 
= Set High when the user request the status of the 

FIFO FULL flag from the Output FIFO PORTX. 
= Set High when the user request the status of the 

EMPTY FIFO flag from the Output FIFO PORTX. 

8S 

= Set High when the user request the status of the 
FIFO HALF FULL fl ag from the Output FIFO PORTX. 

= Set by Address Decoder when a Burst Byte Transaction 
is to take place. (Only byte 0 of each word is written). 

= Set by Address Decoder when the user request one 
of the possible seven status flags (on a per port basis). 

= Asserted when any port is to be resel 
= Asserted when any port is to be analyzed. 

1. ADRS. (AS*) <--- LAD [23:8]; 
AD[O:I] • (AS'*) <--- LAD[O:I]; 
--> (ASi)/(2) . 

" Latch address lines from 
.. NBIC and go to State 2 
.. when AS· goes low. 

2. TRANSAcnON 
PORTO_AcnVE 
PORT!_AcnVE 
PORT2_AcnVE 
PORn_AcnVE 
PORTO_ANALYZE 
PORT! ANALYZE 
PORT2=ANALYZE 
PORn_ANALYZE 
PORTO_RESET 
PORT! RESET 
PORn_RESET 
PORn RESET 
PORTO_ERROR 
PORT! ERROR 
PORn ERROR 
PORn=ERROR 

" Decode all valid 
= 1 ; " address locations 
= ( ADRS[O:3] = 4 TO); .. Port 0 ReadIWrite 
= ( ADRS[O:3] = 4 T 1 ); .. Port 1 ReadlWrite 
= ( ADRS[O:3] = 4 T 2 ); .. Port 2 ReadlWrite 
= ( ADRS[O:3] = 4 T 3 ); .. Port 3 ReadIWrite 

= JVWf /\ (ADRS = 16 T 16413) /\ BREQ*; .. 4010 hex 
= JVWf /\ (ADRS = 16 T 16477 ) /\ BREQ*; .. 405D hex 
= IDWi /\ ( ADRS = 16 T 16541 ) 1\ BREQ*; .. 409D hex 
= IDWi /\ (ADRS = 16 T 16605 ) /\ BREQ*; .. 40DD hex 
= TiJW?-/\ (ADRS = 16 T 16409) /\ BREQ*; .. 4019 hex 
= 1VW" /\ (ADRS = 16 T 16473) /\ BREQ*; .. 4059 hex 
= 1VW" /\ (ADRS = 16 T 16537) " BREQ*; .. 4099 hex 
= TiJW?- /\ (ADRS = 16 T 16601 ) " BREQ*; .. 4009 hex 
= RIW* /\ (ADRS = 16 T 16409) " BREQ*; .. 4019 hex 
= RIW* /\ (ADRS = 16 T 16473 ) /\ BREQ*; .. 4059 hex 
= RIW* /\ (ADRS = 16 T 16537) " BREQ*; .. 4099 hex 
= RIW* /\ (ADRS = 16 T 16601 ) " BREQ*; .. 40D9 hex 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

vv 

Figure 10.3. Con'l 

State #2 Con'l 

PORTO_INJF_FLO = RJW* /\( ADRS = 16 T 16405) /\ BREQ*; "4015 hex 
PORT! IN FF FLO = RJW* /\( ADRS = 16 T 16469) /\ BREQ*; "4055 hex 
PORT2-IN-FF-FLO = RJW* /\( ADRS - 16 T 16533 ) /\ BREQ*; "4095 hex 
PORTI=IN=FF=FLO = RJW* /\( ADRS = 16 T 16597 ) /\ BREQ*; "4005 hex 
PORTO IN EF FLO = RJW* /\( ADRS = 16 T 16401 ) /\ BREQ*; "4011 hex 
PORT(IN=EF=FLO = RJW* /\( ADRS = 16 T 16465) /\BREQ*; "4051 h~x 
PORT2 IN EF FLO = RJW* /\( ADRS = 16 T 16529) /\BREQ*; "4091 hex 
PORTI-IN-EF-FLO = RJW* /\( ADRS = 16 T 16593) /\BREQ*; "4001 hex 
PORTO-IN-HF-FLO = RJW* /\( ADRS = 16 T 16397) /\ BREQ*; "4000 hex 
PORT!-IN-HF-FLO = RJW* /\ ( ADRS = 16 T 16461 ) /\ BREQ*; "4040 hex 
PORT2-IN-HF-FLO = RJW* /\( ADRS = 16 T 16525) /\ BREQ*; "4080 hex 
PORT3-IN-HF-FLO = RJW* /\( ADRS = 16 T 16589) /\ BREQ*; "4OCD hex 
PORTO-OUT FF FLO = RJW* /\ ( AORS = 16 T 16393 ) /\ BREQ*; "4009 hex 
PORT!-OUT-FF-FLO = RJW* /\( ADRS = 16 T 16457)/\ BREQ*; "4049 hex 
PORT2- 0UT-FF-FLO = RJW* /\( ADRS = 16 T 16521)/\ BREQ*; "4089 hex 
PORTI-OUT-FF-FLO = RJW* /\ (ADRS = 16 T 16585) /\ BREQ*; "40C9 hex 
PORTO-OUT-EF-FLO = RJW* /\ (ADRS,. 16 T 16389) /\ BREQ*; "4005 hex 
PORTl-OUT-EF-FLO = RJW*/\(ADRS = 16TI6453)/\BREQ*; "4045 hex 
PORT2-0UT-EF-FLO = RJW* /\( ADRS = 16T 16517)/\ BREQ*; "4085 hex 
PORTI-OUT-EF-FLO = RJW* /\ (ADRS = 16 T 16581 ) /\ BREQ*; "4OCS hex 
PORTOOUT-HF-FLO = RJW* /\ (ADRS = 16 T 16385 )/\ BREQ*; "4001 hex 
PORTl-OUT-HF-FLO = RJW*/\ (ADRS = 16 T 16449)/\ BREQ*; "4041 hex 
PORT2-0UT-HF-FLO = RJW* /\ (ADRS = 16 T 16513 )/\ BREQ*; .. 4081 hex 
PORTI=OUT=HF=FLO = RJW* /\ (ADRS = 16 T 16577)/\ BREQ*; "4OC1 hex 
BURST BYTE ENO = 1fJWO/\( ADRS[O:7],. 8 T 15) ; " OF hex 
BURST-BYTE-ENI = RJW*/\( ADRS[O:7]" 8 T 31) ; .. IF hex 
BURST-BYTE - EN2 = RJW*/\ ( ADRS[O:7] = 8 T 47 ) ; .. 2F hex 
BURST-BYTE - EN3 = RJW*/\ ( ADRS[O:7] = 8 T 63 ) ; .. 3F hex 
STA TUSO AcrlVE = PORTO IN FF FLO V PORTO IN EF fLO V 

- PORTO-IN-HF-FLOVPORTO-OUT FF fLOV 
PORTO=OtIT_EF_FLO V PORTo_OUT}iFJLGV 
PORTO ERROR; 

STATUS1 ACflVE =PORTl-IN FF FLGVPORTl IN EF FLGV 
PORTl-IN-HF-FLO VPORTl-OUT FF fLOV 
PORT(OUT_EF_FLO V PORT1_0UTJfF_FLOV 
PORTl_ERROR; 

STATUS2_ACflVE = PORT2 IN FF FLO VPORT2 IN EF FLO V 
PORT2-IN-HF-FLOVPORT2-0UT FF FLO V 
PORT2=OUT_EF_FLO V PORTI_OUT}IF_FLGV 
PORT2_ERROR; 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Figure 10.3. Con't 

STATUS3_ACflVE = PORTI IN FF FLO V PORTI IN EF FLO V 
PORT3-IN-HF-FLGVPORTI-OUT FF FLOV 
PORTI=OUT_Ef'_FLG V PORD_OUT}WJLGV 
PORTI_ERROR; 

--> ( AS·, ~ ) I ( 1,2); "Stay in this state till AS· goes high 

END SEQUENCE 

--> ( [RESET. ) I ( I); "00 to State #1 when Reset Pulse is asserted. 

OP RESET = PORTO RESET V PORT! RESETV 
- PORT2=RESET V PORTIY.ESET; 

" Set OP Reset signal 
" if any Port is to be reset 

v i 

OP ANALYZE = PORTO ANALYZE V PORT! ANALYZEV 
- PORT2=ANAL YZE V PORTI=ANAL YZE ; 

" Set OP Analyze 

END. 

" signal if any Port 
" is to be Analyzed. 

then the PORTO_ERROR signal is asserted. If the signal R/W. is low, then the 

signal PORTO_RESET is asserted. The AHPL description follows the memory map 

of the board. If a register is identified as read only and a write to that register is 

perforined, then the Error Controller shall issue a bus error (BERR·) termination 

signal since no data shall be placed on the bus by the Input Port Controller. All ref­

erences to the FIFO status flags and Subsystem Port (Reset, Analyze, Error) ad­

dresses listed in Table 8.1 must be single-word read or write transactions. The ap­

propriate flag such as PORTO_IN_EF_FLO ( Address = '4011' hex) shall not be 

set if a burst transaction is attempted by the user. The signals OP RESET and OP 

ANALYZE shall be used by the Error Controller to issue a synchronous termina­

tion (STERM·) when the user selects to reset or analyze a port. The Input Port 

Controller shall issue a synchronous termination for all other port transactions 

(Read, Write or Status). 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

CHAPTER XI 

TOP·LEVEL DESIGN OF INPUT PORT CONTROLLER 

Brier Introduction to the Port Controllers 

The purpose of this chapter is to describe the design of the Input Port controller. 

The Port Controllers are composed of an Input and Output Controller. The Input Con­

troller is responsible for all transactions between the NBIC local bus and the in­

put/Output (VO) FIFO's. The Output Controller is responsible for all transactions 

between the I/O FIFO's and the Inmos serial link adaptors (IMS COil). Figure 11.1 

shows a block diagram of the Port Controllers interconnections with the NBIC, I/O 

FIFO's and the IMS COIl. Both Port Controllers (input and output) work indepen-

Figure 11.1. Block Diagram of Port Controller Interconnections. 

NeXT bus Address/Data 

32 

Control 
Unes 

Address 
Decoder 

t--F'/Ii'I 

M 
U 
X 

32 8 

bit 

NeXT ·to-Llnk 

INPUT 
8 

FIFO 
IMS 

WR RD 
COIl 

Link·to-NeXT LINK 
8 

OUTPUT 
FIFO 

RD WR 

88 

Serial 
Links 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

dently of each other. The multiplexor shown in Figure 11.1 is used to select the valid 

bytes in the 32·bit bus of the NBIC. Recall, that the local bus of the NBIC is a Big­

Endian bus since the NBIC performs byte-swapping. The two SIZE bits (SIZ[l :0]) 

and the two least significant bits (lsb's) of the address (LAD[ I :0]) detennine which 

bytes are valid in the word. The valid transaction types are shown in Table 7.1. All 

bytes are shifted into the Input FIFO since the transputer instruction set is composed 

of bytes. The 32-bit byte loadable register is used to build a 32-bit word which shall 

be transferred to the NBIC. Also, the Input Pon Controller is responsible for placing 

the appropriate FIFO status when requested by the user. The user can request sta­

tus on any of the FIFO's by issuing a single-word read to the appropriate address of 

the board as shown in Table 8.1. 

Introduction to Input/Output FIFO's 

Before the design of the controllers is presented, the type of FIFO's to be used 

must be introduced. The reason being that the FIFO controls such write (W) and 

read (R) vary between FIFO's. The FIFO's selected by the author to be used in the 

Next-to-Motherboard interface board are the CYPRESS 74C2X-YY series. The 2X 

number represents the number of words the FIFO can buffer and the size of the pack­

age (300 mil or 600 mil). The YY number represents the FIFO data access time. 

These FIFO's contain three active low status flags which are used to detennine the 

state of the dual pon RAM. The dual pen RAM refers to the architecture of the mem­

ory cell used to buffer the data. This type of architecture allows a read and write 

transaction to be performed independently of each other. This type of architecture is 

required for truly asynchronous transactions to take place between the NBIC and the 

array of coprocessors. The status flags available are empty FIFO (EF*), FIFO full 

(FF*) and FIFO half empty (HF*). A write transaction can take place if the FIFO 

Full fl ag (FF*) flag is deassened. Similarly, a read transaction can take place if the 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

FIFO Empty (EF*) flag is deasserted. 

These FIFO's have two types of modes known as Single DevicelWidth Expansion 

Mode or Depth Expansion Mode. Single Device/Width Expansion Mode is selected 

by grounding the XI input on the FIFO. During this mode, the HP flag and retrans­

mit features are valid. The retransmit feature (RT-) is used when transferring paclr::­

elS of data. It allows data to be analyzed by the receiver and can be retransmitted if 

necessary. This feature shall not be used in the design of the interface board. The 

Depth Expansion mode is used when the user needs to expand the depth of the 

FIFO. It is suffice to state that for our interface board, the XI and RT* inputs of the 

FIFO must be deasserted. The FIFO's read/write timing shall be described next so 

the reader understands how input/output transactions are performed with the FIFO's. 

A FIFO write timing diagram is shown in Figure 11.2. The data meeting the set­

up time (Tsd) before the rising edge of the write pulse and the hold time (Thd) after 

Figure 11.2. FIFO Write Sequence and Status Flags. 

LCLK! S) ! 
I·Tpw .1. Twr 

W- IL---If 
I· Twc 

I. Tsd .1. Thd.1 
LAD [31 :0] 

---i·1'1~i~Ij:¥~r(tl¥ 

EF* 
I Twef 

HF-

FF* 

·1 
I f 

·1 
f 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

the rising edge of the write pulse shall be written into the FIFO. The status flags rel­

evant to the rising or trailing edge of the write pulse are shown since the input con­

troller shall use these flags to determine if data can be written or read from the in-

put/output FIFOs. Table 11.1 shows all the timing parameters listed in Figure 11.2 

for the five different FIFO's available from CYPRESS. 

Table 11.1. Timing Parameters for FIFO Write Transaction. 

NOTES: All times shown above are in nanoseconds. The information for 
this table was obtained from the CYPRESS SEMICONDUCTOR 
BiCMOS/CMOS DATA BOOK, published March 1, 1990. 

A FIFO read timing diagram is shown in Figure 11.3. The data shall be valid Ta 

nanoseconds (access time) after the trailing edge of the read pulse (R*). The data 

shall be invalid Tdvr nanoseconds after the rising edge of the read pulse. The data is 

tri-stated when the read pulse signal is at a high (deasserted) state. Also, the state 

of the FIFO status flags relevant to the read pulse are shown in the timing diagram 

since these flags shall be used by the input controller. Table 11 .2 shows all the tim­

ing parameters listed in Figure 11.3 for the five different FIFO's available from CY-

PRESS. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

LCLK 

HF* 

Figure 11.3. FIFO Read Sequence and Status Flags. 

S> 1 1 

I· Trr . I 
L 

~. 
Tpr • I 

~I 
Tdvr 

I-! 

, 
I' Trc 

L 
·1 

I' ·1 Tref L. ______________________________ __ 

Ilrhf .1 

Table 11.2. Timing Parameters for FIFO Read Transaction. 

NOTES: All times shown above are in nanoseconds. The information for 
this table was obtained from the CYPRESS SEMlCONDUCfOR 
BiCMOS/CMOS DATA BOOK, published March I, 1990. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Description oOnDU! Controller 

The Input Port Controller shall consists of a Write ControUer, Read Controller and 

Status Controller. All controllers receive control signals from the Address Decoder 

module and the NBIC. The Write Controller shall control ill burst or single-word 

write transactions with the Input FIFO and shill support all valid NeXThus transac­

tion types. The Read Controller shall control all burst or single-word read transac­

tions with the Output FIFO. All reads from the Output FIFO shill be 32-bit reads. 

Finally, the Status Controller shall place the appropriate Input/Output FIFO status 

flags (Half Empty, FIFO Full, FIFO Empty) or the PORT Subsystem Error Flag on 

the Isb's of the address/data line (LAD [On. The ftrst controller to be introduced is 

the Write Controller. 

Top-level DesIgn of Write Controller 

A top-level block diagram of the Write Controller (on a per port basis) and its in­

terconnections is shown in Figure 11.4. The Write Controller shall output the two 

multiplexor select signals, the write enable signal, the bunt acknowledge signal and 

the synchronous termination signal. The asynchronous logic shown in Figure 11.4 is 

used to generate the appropriate wri te pulse CW*) to the input FIFO. The timing cri­

teria for the write pulse is shown in Figure 11.2. The AHPL description for the Write 

Controller is shown in Figure 115. The AHPL description given in Figure 11 .S shill 

handle all write transaction between the NBIC and the input FIFO. Several write 

timing diagrams are given in Figures 11.6 through 11.10 to shown the different types 

of write transactions which can occur. Figure 11.6 shows a 32-bit single-word write 

(all four bytes are valid) transaction. Figure 11.7 shows a halfword #1 (bits [15 :0]) 

write transaction. Figure 11.8 shows a halfword # I write transaction with the FIFO 

Full Flag asserted between FIFO write pulses. The Write Controller AHPL descrip­

tion always checks the FIFO Full Flag before asserting the write signal which is 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Figure 11 .4. 

PortX 

Top-level Block Di agram of Wri te Controller and its Interconnections_ 

Data to Link 

LAD[31 

32-Bit 
to 

8-Bit 
MUX 

8 INPUT FIFO 
NeXT-to-Link 

IMS COli 

w* FF* r-.----, 

NQk: Only the 
signals used are 
shown on the 
Input FIFO. 

FIFO Full 
~--------------------~REG 

STERM* .,....----------f REG 1----' 

used to derive the FIFO write pulse. This is also true for the synchronous termina­

tion signal (STERM_EN*). The FIFO Full Flag used in the Write AHPL description 

is a registered version from the Input FIFO. The FIFO's status flags are set during 

the cycle where a write or read transaction is being performe<i The WRlTE and 

STERM_EN* signals are connections in the AHPL during the given cycle and must 

remain at the same logic level; therefore, the FIFO status flags such as FIFO Full 

and FIFO Empty must be registered. The period of LCLK must be sufficient to allow 

for propagation delay of the three status flags and register setup time. Finally, Fig­

ures 11.9 and 11.1 0 show the two type of burst write transactions available. Figure 

11.9 shows a burst write byte-mode timing diagram. During this type of transaction, 

only byte 0 (bits[31 :24]) are valid. Figure 11.10 shows a burst write word-mode tim-

ing diagram. During this type of transaction all four bytes contain vaJjd data. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Figure 11.5. AHPL Description for Write Controller. 

MODULE: WRITE CONTROLLER 
MEMORY: CNn2], BURST-. 
INPUTS: PORTX_ACfIVE, BREQ*, R/W*J)CFP, DS*; 

BURST_BYTE_ENX, AD[I:O], SIZ[I:O], LRESET*. 
OUTPUTS: MUX_SELX[2], BACK*, STERM_EN*, WRITEX. 

" Description of Inputs 

" PORTICACTlVE 
" 
" BREQ* 
" 
" R/W* 
" 

" 

" 
" DS* 
" AD[I :O] 
" SIZ[1:0] 
" LRESET* 

" Description of Outpuls 

" MillCSELX[2] 
" 
"BACK* 
" STERM_EN* 
" 
" 
" WRITEX 
" 

BODY 

= Sei by address decoder module when 
a valid transaction is to take place on Port X. 

= Set by NBIC when a Burst transaction 
is to take place (Burst transaction are 4 words). 

= High for a Read transaction and Low for 
a Write Transaction. 

= A registered version · of the FIFO FULL status 
flag from the Input (NeXT-to-Link) FIFO of Port X. 

= Set by address decoder module when burst byte 
transactions are to be performed on Port X. Only 
byte 0 [31 :24] shall be written in this mode. 

= Data strobe signal from NBIC. 
= Two LSB of the Address from Address Decoder. 
= Two Size Information bits from NBIC. 
= Reset Pulse from NBIC (approx. 1.28 microseconds). 

= Signal used to select which byte of the 32-bit 
word is to be written into the Input FIFO of Port X. 

= Signal used to acknowledge a Burst Request 
= Synchronous termination signal set 00 leading 

edge of LCLK and clock on trailing edge of 
LCLK external to controller. 

= Signal set by controller which is used to derive 
the write pulse CW*) to the input FIFO of Port X. 

1. n> (PORTX_ACI'IVE VR/W*, PORTX_ACfIVEARlW*) I ( 1,2) ; 
" Stay in State 1 if PORTX_ACTIVE is low or if there is a READ Transaction 
" Go to State 2 if there is a WRITE Transaction and the PORT is active. 

2. --> (DS*)/(2); "Stay in this State till data strobe (DS*) is active. 
BURST* <-- BREQ*; "Store BREQ* since it is deasserted after third Word. 
CNT <-- 2 T 0; " Clear the counter (used to keep track during Burst) 

3. --> (BYTE I , (HFI VB YTE2), BYTE3) / ( 5, 6, 7 ); 

4. MUX_SEL = 2 TO; "Select Byte 0 [31 :24] 
WRITEX = IX_FF*; "Set Write signal if FIFO full flag is deasserted. 
STERM_EN* = ((BYTEO A(BURST- V BURST_BY I E_ENX» V 1XFu-_T'F'"'F*; 

--> (VCFP, (BYTEOV (BURST*ABURST_BYTE_ENX) A IX_FF*) I (4 ,8); 
BACK'" <-- BREQ*; "Assert BACK* if BREQ* is asserted 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Figure 11..5. Con'L 

.5 . MUX_SELX = 2 T I ; .. Select Byte 1 [23:16] 
WRlTEX = IX JF*; .. Set Write signal if FIFO full registered 

.. flag is at a High State. 
STERM_EN'" = (FIFO ABYTE1 )VIXJF*; 

--> (IX1F"', (HFO VBYTEI ) A IX_FF* ) I (.5,8); 

6. MUX_SELX = 2 T 2; .. Select Byte 2 [15:8] 
WRlTEX = IXJF*; .. Set Write signal if FIFO full registered 

.. flag is at a High State. 
STERM.::EN'" = ( BYTE2 V IXJF*); 
--> (IXJF*, BYTE2 A IX_FF"') I ( 6, 8 ); 

7. MUX_SELX = 2 T 3; .. Select Byte 3 [7:0] 
WRlTEX = IX_FF"'; .. Set Write signal if FIFO full registered 

.....,-..., .. ~flag is at a High State. 
STERM_EN'" = lX_FF*; 
BACK'" <-- BREQ'" 
--> ( IX_FF"') I ( 7 ); 

8. WRITEX = 0; 
STERM_EN'" = I; 
CNT <-- INC ( CNT ) ; 
--> ( BuRSt- A CNT_NE_3) I (4 ); 

BACK'" <-- BREQ* ; 

.. Set WRITE and STERM EN* 

.. to their deasserted state:-

.. Increment CNT which is used 

.. to keep track during BURST 

.. transactions. 

.. If burst transaction and CNT 

.. not equal to three go to State #4. 

9. --> ( PORTX_ACTIVE, PORTX_ACIlVE) I ( 9, I ); " Wait in this State till 
.. PortX_Active signal 
.. is deasserted by the 
.. address decoder. END SEQUENCE 

WORD = (s12[1) A s12[O] A ATI[l] A mrm A BURST"'); "Word [31:0] 
HFO = (SIZ[I] A SiztO] A mm A iIDIO]A BURST"');" Halfword 0 [31 :16] 
HFI = (SIZ[I] A SIZ[O] A mm A ADTO'JA BURST'" );" Halfword I [15 :0] 

BYTEO = (SI2[1] A SIZtO] A ATI[I) A mrm A BURST"');" Byte 0 [31:24] 
BYTE I = ( SIZ[I] A SIZ[O] /I. ATI[I) A AD[O] /I. BURST"');" Byte I [23: 16] 
BYTE2 = ( SIZ[I] /I. SIZ[O] /I. AD[I] A AlJIO) A BURST"'); " Byte 2 [15 :8] 
BYTE3 = (SIZ[I] /I. SIZ[O] /I. AD[I] /I. ADLO] A BURST'" );" Byte 3 [7:0] 

CNT _ NE _3 = ( CNT[ I] /I. CNT[Q» V (CNT[I I A CNT[OJ) V (CNT[ I] /I. eNTIO»; 
--> ( LRESET* ) I ( I ); " Go to State #1 when LRESET'" is asserted 

END 



-------------------
Figure 11.6. Timing Diagram for 32-bit Word Write Sequence. 

elk 1 elk 2 elk 3 elk 4 elk 5 elk 6 elk 7 elk 8 elk 9 elk 10 elk 11 elk 12 elk 13 elk 14 

LCLK 

AS· _I~==;---------.J..__­
DS· 

LAD[31 :0) 

Port Active 
---' 

RIW* ~~-------------------~ 
SIZ[I :O) 

Mux SeI[2) 

WRITEX I 
W* LJLS1SU 
STERM* 

BREQ* 

BACK· 

State 
Number 



- - - - - - - - - - - .- - - - - - -
Figure 11.7. Timing Diagram for Half Word #1 Write Sequence. 

elk 1 elk 2 elk 3 elk 4 elk 5 elk 6 elk 7 elk 8 elk 9 elk 10 elk 11 elk 12 elk 13 elk 14 

LCLK 

AS- _I~::::::; ____ --""r----
OS-

LAD[31:0) 

Port Active 

RJW-

SIZ[l :O) 

Mux Se\[2) 

WRITEX 

W-

STERM-

BREQ­

BACK-

State 
Number 

--...I 

I~ _____ --~ 

______ ~II ~ ______________ __ 

ULJ 
I 

'" c 



-------------------

LCLK 

AS* 

DS* 

LAD[31 :0] 

Port Active 

R/W* 

SIZ[I :O] 

Mux SeI[2] 

WRITEX 

W* 

STERM* 

IX FF* 

BREQ* 

BACK-

State 
Number 

Figure 11.8. Timing Diagram for Half Word #1 Write Sequence with FIFO Futt Flag Asserted. 

elk 1 elk 2 elk 3 elk 4 elk 5 elk 6 elk 7 elk 8 elk 9 elk 10 elk 11 elk 12 elk 13 elk 14 

______ I I ,--1L.....-____ _ 

U U 

I 

" " 



-------------------
Figure 11.9. Timing Diagram for Burst (Byte Mode) Write Sequence. 

elk 1 elk 2 elk 3 elk 4 elk 5 elk 6 elk 7 elk 8 elk 9 elk 10 elk II elk 12 elk 13 elk 14 

LCLK 

AS* I_~===:--------------l 
DS* 

LAD[31:0) -I~ ' I _ ~ I d a 
Port Aeti ve I 
ruw* ~~ ______________________________________ ~ 

SIZ[I :0) 

Mux Sel(2) 

WRITE 

W· 

STERM* 

BREQ* 

BACK* 

State 
Number 

L..-..-.I1U I l-lL..-__ _ 

1,----, 

I~----------------~ ,---
-
~ 



-------------------

LCLK 

AS· 

DS· 

LAD[31 :0] 

Pon Active 

R/W. 

SIZ[l:O] 

Mux Se1[2] 

WRITE 

W· 

STERM· 

BREQ· 

BACK· 

State 
Number 

Figure 11.10. Timing Diagram for Burst (Word Mode) Write Sequence. 

elk 1 elk 2 elk 3 elk 4 elk 5 elk 6 elk 7 elk 8 elk 9 elk 10 elk 11 elk 12 elk 13 elk 14 

--l ~I 
j 

~I 
--, )~ 

I 

( 
~ 



-------------------
Figure 11.10. Con't. 

elk 14 elk15 elk 16 elk 17 elk 18 elk 19 elk 20 elk 21 elk 22 elk 23 elk 24 elk 25 elk 26 elk 27 

LCLK 

AS* 

DS* 

LAD[31:0] 

Port Active 

R/W* 

SIZ[I :0] 

Mux Sel[2] F~ 'y .. ~~,~I V?'''.;V.l;t}~)l;r 

WRITE 

W* 

STERM* 

BREQ* 

BACK* 

State 
Number 

-.J - --- 1,"",-----, 

I 

s 

--



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Top-level DesIgn or Rfa d Controller 

The Read Controller shall perform single-word and burst read transactions be­

tween the Output FIFO's and the NBIC. All read transactions shall be 32-bit word 

reads; therefore, four bytes must be read out of the Output FIFO. A top-level block 

diagram of the Read Controller (on a per port basis) and its interconnections is shown 

in Figure 1I . ll . The AHPL description for the Read Controller is shown in Figure 

11.1 2. The 32-bit register shown in Figure 11.11 is used to selectively clock in any 

one of the four bytes of the 32-bit word to be transferred to the NBIC. This is accom­

plished by setting the chip enable (CE) of the byte to be registered. Once the four 

bytes have been accessed from the Output FIFO, the synchronous termination 

(STERM _EN·) signal shall be asserted by the Read Controller. The 32-bit byte 

loadable register shall also have an output enable which is controlled by the read out-

Figure 11 .11. Top-level Block Diagram of Read Controller and its Interconnections. 

r-------...., Data from Link 
32-Bit 8 OUTPUT FIFO 

RJW· 

LAD[31:0] Byte 1+-::"'""' Llnk-lo-NeXT i+--r'---
'"':!;~ Loadable - R· EF. 1-------, 

STERM EN· 

l!is!tt: Only the 
signals used are 
shown on the 
Output FIFO. 

Used to 
tri-state 
LAD[31 :0] 
registers. 

-----------1 REG 14---" 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Figure 11.12. AHPL Description for Read Controller. 

MODULE: READ_CONTROLLER 
INPUTS: PORTX_ACTlVE, BREQ*, R/W*, OX_Eft. 
OUTPUTS: READX, CE[41 , STERM_EN*, RD_OE* . 
., Description of Inputs 

.. PORTX_ACTIVE = Set by address decoder module when a valid 

.. Read or Write transaction is in progress on Port X . 

.. BREQ* = Set by NBIC when a Burst Transaction is to 

.. take place. (All burst transactions are 4 words). 

.. R/W* = High for a Read transaction and Low for a 

.. Write transaction . 

.. OX_Eft = A registered version of the Empty FIFO status 

.. from the Output (Link-te-NeXT) FIFO of Port X . 

., Description of Outputs 

.. READX 

CE[O:3] 

BODY 

= A signal set by the controller which is used to 
derive the read pulse to the Output FIFO of Port X. 

= Chip enables to clock data into the 32-bit byte 
loadable register on a per byte basis. 

= Synchronous termination signal set on leading 
edge of LCLK and clock on trailing edge of 
LCLK external to Input Controller. 

= Output enable for 32-bit byte loadable register. 
= Burst Acknowledge signal (Active Low) to NBIC. 

I. --> (PORTX_ACIlVE VR/W*, PORTX_ACTIVE AR/W*) I ( I, 2) ; 
.. Stay in State 1 PORTX_ACITVE is low or if there is a Write Transaction 
.. Go to State 2 if there is a Read Transaction. 

2. CEO = OX_EF* ; .. Set Olip Enable 2EOO if empty FIFO flag is High 
READX = OX_E? ; .. Set READ signal if empty FIFO flag is High 
STERM_EN* = 1 ; .. Deassert Synchronous Termination 

--> ( OX_Eft) / ( 2 ); .. Stay in this state is empty FIFO flag is LOW 

BACK* <-- BREQ* ; .. Assert BACK* if BREQ* is asserted-

3. CE 1 = OX_EF*; .. Set Chip Enable 2EO I if empty FIFO flag is High 
READX = OX_Eft; .. Set READ signal if empty FIFO flag is High 
STERM_EN* = I ; .. Deassert Synchronous Tennination 

--> ( OX_EF* ) / ( 3 ) ; .. Stay in this state is empty FIFO Oag is LOW 

4. CE2 = OX_EF* ; .. Set Chip Enable 2E02 if empty FIFO flag is High 
READX = OX_EF* ; .. Set READ signal if empty FIFO flag is High 
STERM_EN* = 1 ; .. Deassert Synchronous Termination 

--> ( OX_EF* ) / ( 4 ) ; .. Stay in this state is empty FIFO fl ag is LOW 

lU4 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Figure 11.12. Con'l 

5. CE3 = OX_EF· ; " Set Chip Enable 2E03 if empty FIFO flag is High 
READX = OX_EF* ; " Set READ signal if empty FIFO flag is High 
STERM EN· = OX_EF·; "Deassert Synchronous Termination 
-> (OX_EF*, OX_EF·/\BREQ") I (5,2); 

" Stay in this State if EF REG O· is asserted. If OX EF· is 
" deasserted and Burst transacuon go to State 2 else go to State 6 

6. READX = 0; " Word has been built so kill READ signal 
STERM EN· = I ; "Deassert Synchronous Termination 

7. --> (PORTX ACTIVE, PORTX ACTIVE) I ( 7, 1 ) ; - -

END SEQUENCE 

" Wait for PortX Active 
"to go LOW. -

RD _ OE. = 0; "While performing a READ Transaction set OE low. 
--> ( LRESEP) I (I). 

END 

put enable (RD _ OE·) signal from the Read Controller. Several timing diagrams are 

presented to show the sequence of states of the AHPL description. Figure 11.13 

shows a 'single-word transaction where four bytes are accessed from the output 

FIFO. Figure 11.14 shows a single-word transaction where the Empty FIFO flag is 

asserted during the transaction. The AHPL description handles the case during any 

of the read states where the Output FIFO has no data to be processed. The Read 

Controller shall wait in that particular state until data has been entered into the Out­

put FIFO by the Output Port Controller. Finally, Figure 11.15 shows a burst read 

transaction. Recall, that burst read transactions shall consists of four 32-bit words. 

The SIZE (SIZ[1 :0]) information is not relevant during burst transactions because 

the NBIC only handles burst transactions of four words. This is a limitation of the 

NBIC. The NBIC specification does not state what would occur if a 16 or 32 word 

burst transaction is attempted over the NextBus. The NBIC does not provide any er-

ror checking for the size (number of words) of the burst transaction. The Read Con-

troller AHPL description assumes all burst transactions consists of four words. The 

next controller to be introduced is the Status Controller. 



-------------------

LCLK 

AS· 

DS· 

LAD[3I:O) 

Port Active 

State 
Number 

Clk Enable 
(0 .. 3) 

READX 

R* 

Figure 11.13. Timing Diagram for Input Port Controller Single-Word Read Sequence. 

elk 1 elk 2 elk 3 elk 4 elk 5 elk 6 elk 7 elk 8 elk 9 elk 10 elk 11 elk 12 elk 13 elk 14 

1 
I 

----~II ~ ____________ _ 

LILJLJU 
STERM*++-------------------------. 

BREQ* ++ 

BACK* 

OX EF* 

NOTES: ++ Indicates Signals asserted on the trailing edge of LCLK. (R/W* - I). 

. 
~ 



-------------------

LCLK 

AS" 

OS" 

Figure 11.14. Timing Diagram for Single-Word Read Sequenee with Empty FIFO Flag Asserted. 

elk! elk 2 elk 3 elk 4 elk 5 elk 6 elk 7 elk 8 elk 9 elk 10 elk 11 elk 12 elk 13 elk 14 

I~------------------~ 
I ~--

LAD[31 :0) lam!{$Vt\1iijl li!.I.it-
Port Active 

State 
Number 

Clk Enable 
(0 .. 3) 

READX 

R" 

----~I ~I __ __ 

L....--__ ----II 1'---__ 

LIL.J LIL.J 
STERM"++-----------------------------------------, 

BREQ" ++ 

BACK· 

OX EF* 

NOTES: ++ Indicates Signals asserted on the trailing edge of LCLK. (RJW* - 1). 

c , 



-------------------

LCLK 

AS· 

DS· 

LAD[31 :0) 

PortX Active 

State 
Number 

Clk Enable 
(0 .. 3) 

READX 

R· 

Figure IUS. Timing Diagram for Input Controller Burst Read Sequence. 

elk I elk 2 elk 3 elk 4 elk 5 elk 6 elk 7 elk 8 elk 9 elk 10 elk 11 clk 12 elk 13 elk 14 

I Sf j 

I " 

II _____ ~r }) 

STERM·++ ------------, II 
II 

BREQ· ++ 

BACK· 

OX EF· 

NOTES: ++ Indicates Signals asserted on the trailing edge of LCLK. (RIW. ~ I). 

U 11 

Sf I 
l , 



------------------~ 

LCLK 

AS* 

OS* 

LAD[31:0] 

PortX Aetive 

State 
Number 

Ok Enable 
(0 .. 3) 

READX 

R* 

Figure 11.15. Con't. 

elle 14 elk 15 elk 16 elk 17 elk 18 elk 19 elk 20 elk 21 elk 22 elk 23 elk 24 elk 25 elk 26 elk 27 

STE~*++ I 

BREQ* ++ 

BACK* 

OX EF* 

NOTES: ++ Indicates Signals asserted on the trailing edge of LCLK. (RJW· - 1). 

• c 
" 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

IlV 

Top-level Design of Sialus Controller 

The Status Controller shall be responsible for placing one out of seven status 

flags on the Isb (LAD[O)) of the address/data lines. The seven status flags are com­

posed of six FIFO status flags and one SubSystem Error Flag (this is on a per 

PORT basis). The Input and Output FIFO's each have three status flags (FIFO 

empty, full and half empty). The Status Controller receives six FIFO registered flags 

along with the SubSystem Error flag. The controller shall select the appropriate flag, 

depending on the signal set by the Address Decoder module, and enable it on the Isb 

of the address/data lines. Recall, that the Read Controller has a 32-bit byte loadable 

register which connects to the NBIC address/data lines. This register shall be tri­

stated while the Status Controller is active. The Status Controller shall enable its 

own LAD[O] data line when the user request one of the seven status flags. A top­

level block diagram of the Status Controller and its interconnections is shown in fig­

ure 11.16. The AHPL description for the Status Controller is shown in Figure 11 .17. 

Finally, a timing diagram is shown in Figure 11.18. which shows the sequence of 

states executed to obtain the flag requested by the user. The reads to any of the sta­

tus flags shall always be single-word transactions_ The burst request (BREQ·) sig­

nal should always be deassened when a status flag is requested_ If the user request 

one of the seven flags by a burst read, then the Address Decoder module shall not set 

the appropriate flag and the transaction shall result in a Bus Error (BERR·) termina­

tion signal being assened by the Error Controller. 

Up to this point, all the controllers which make up the Input Controller have been 

introduced. Only one of the three controllers (Read, Write or Status) can be active at 

any given time. Also, the NBIC can only be involved in a transaction with one of the 

four pons and with one of the three controllers mentioned in this chapter. The fmal 

section of this chapter shall compile all the information for the Write, Read and Status 

Controller to derive the AHPL description for the Input Pon Controller. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

... 

Figure 11.16. Top-level Block Diagram of Status Hardware. 

LAD[31 

32 

I---iR 

I 

NeXT-Io-Unk 
1---7''-+1 INPUT FIFO 

L..-___ .,-...J FIFO Status Flags 
(FF*. EF* and HF*) 

'-----'---. 

REG 

STATUSX ACTIVE 

LAD [0] 

STERM EN-

STERM­
~~~~---~REG~---~ 

-LCLK

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

112

Figure 11.17. AHPL Description for Status Controller.

MODULE:
MEMORY:

STATUS_CONTROLLER.

INPUTS: ST A TUSX_ACflVE, PORTX_ERROR. PORTX_IN_FF _FLO,
PORTX_IN_EF _aG, PORTX_IN_HF YLG, PORTX_OUT....FF _aG,
PORTX_OUT_EF_FLG, PORTX_OUT_HFYLG, IX_FF*, IX_E?,
IX_HF*, OX_FF*, OX_EP, OX_HP, SUBX_ERROR, LRESE-r-.

OUTPUTS: LAD[Ol, STERM_EN*.

" Description of Inputs

"
= Set by Address Decoder (AD) when a status flag

has been requested by the user.
= Assened by AD when the Subsystem flag has been

requested for PortX.
PORTX_IN_FF _FLO = Assened by AD when the input FIFO FULL flag

for PortX has been requested by the user.
PORTX_IN_EF _FLO = Asserted by AD when the Input EMPTY FIFO

flag for PortX has been requested by the user.
PORTX_IN_HF _FLO = Asserted by AD when the Input FIFO HALF FULL

flag for PortX has been requested by the user.
" POR TX_ OUT _FF _FLO = Assened by AD when the Output FIFO FULL flag
" . for PonX has been requested by the user.
" PORTX_OUT_EF _FLO = Assened by AD when the Output EMPTY FIFO
" flag for PortX has been requested by the user.
" PORTX_OUT _HF _FLO = Assened by AD when the Output FIFO HALF FUlL
" flag for PortX has been requesled by the user.
" IX_FF* = PortX registered Input FIFO FUlL flag.
" IX_EF* = PonX registered Input EMPTY FIFO flag.
" IX_HF* = PonX registered Input FIFO HALF RJlL flag.
" OX_FF* = PonX registered Output FIFO FUlL flag.
" OX_EF* = PortX registered Output EMPTY FIFO flag.
" OX_HF* = PonX registered Output FIFO HALF FULL flag.
" SUBX_ERROR = PortX registered SubSystem ERROR flag.
" LRESET* = Active Low reset pulse from NBIC (1.28 microseconds).

" Description of Outputs

" LAD[Ol
" STERM_EN*
"
"

BODY

= LSB of the AddresslData lines to and from NBIC.
= Synchronous Termination Signal Assened during

rising edge of LCLK from Status Controller and clocked
on trailing edge of LCLK external to controller.

I. --> (STATUSX_ACTIVE) / (I). "Stay in this State till StatusX_Active
is assened by Address Decoder.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

113

Figure 11.17. Con'!.

2. STERM_EN" = 0; " Select the appropriate Status Flag .
LAD[O) <-- (DCFP! IX_EP ! IX_HP ! OX_FF* ! OX_EP ! OX_HP !

SUBX_ERROR) ... (PORTIUN_FF _FLO, PORTIUN_EF _FLG,
PORTX_IN_HF _FLG, PORTICOUT_FF _FLG,
PORTX_OUT_EF _FLG, PORTX_OUT_HF _FLO, PORTX_ERROR).

" The register LAD[O) is enabled dUring State #2 & 3. All other states Tri-stated

3. STERM_EN" = 1; " Stay in this State till StatusX_Active goes low
--> (STATUSX_ACflVE, STATUS X_ACTIVE) / (3, I).

END SEQUENCE

--> (LRESET*) / (1). "Go to State #1 if Reset Pulse assened.

END.

Figure 11.1 8. Timing Diagram for a Status Controller Transaction.

LCLK

OS"

LAD[31 'O) ----{~.~ ... '~ •.. ··~··"""~··:ti~·· ··"~·i;~"'~"~"··-I" ··I" ~D;t----1I~' ~-:·-·F·~··'L··~·~A··~··~~·· .. ·_»::."'·:-I~.'·-.-.:.·;.1-:.1• ------' !;J"P""""~;t{m" : U";:::~

STATE
NUMBER

Address Decoder
Flags -------.....

STERM"

R/W* ~

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

114

Input Controller Top-k""! Specifications

All the controllers introduced in this chapter have been designed on a per port

basis. The NBIC can only be involved in one transaction at any given time; therefore,

only one of the four ports shall be active at any given time. Since only one port is ac­

tive at any given time, the NeXT-to-Motherboard interface board only requires one

Input Port Controller. There is no need to duplicate the same slate-machine four

times when it is known that only one port shall be active_ Duplicating the Input Port

Controller four times shall result in hardware which is only used at most one-fourth of

the time. The purpose of this section is to combine the AHPL descriptions from the

Write, Read and Status Controllers into a single AHPL description which shall be

used in transactions involving any of the four ports. A top-level block diagram of the

Input Port Controller is shown in Figure 11.19. This figure shows all 78 inputs and 18

outputs of the Input Port Controller. The symbol X represents per port signals. For

example, the Port Active signal for Port 0 is denoted by PORTO_ACTIVE (X = 0 - 3).

Since there shall only be one Input Port Controller, the interface board shall con­

tain only one 32-to-8 input multiple)(or (shown in Figure 11.4) and only one 32-bit

byte loadable register (shown in Figure 11.11). The output of the multiplexor shall be

connected to all Input FIFO's on the interface board. Recall, that the Configuration

Controller also interconnects with a 32-bit byte loadable register (shown in Figure

9.2). The designer of the board should attempt to only use one 32-bit byte loadable

register. All of the Output FIFO's shall have their 8-bit dala lines connected 10 the

32-bit byte loadable register inputs on a byte basis. Also, the data lines from the

PROM in the Configuration Controller hardware shall have its 8-bit data lines con­

nected to the same 32-bit byte loadable register. Recall, that the PROM and Output

FIFO's shall have their 8-bit data lines tri-stated when not involved in a transac­

tion. All the read transaction timing diagrams presented in this chapter (Figures

11.13 - 11.15) show the read pulse (R *) deasserted until its time to access data from

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

115

the appropriate Output FlFO. If the read pulse is dcasserted. then the 8·bit data

lines of the FIFO are tri-stated. The designer needs to generate one global output

enable for the 32-bit byte loadable register using the output enables generated by the

Configuration and Input Port Controllers.

The state-diagram for the Input Port Controller is shown in Figure 11.20. This di­

agram is composed of the AHPL descriptions from theWrite. Read and Status Con­

trollers previously defined. The syntax used for the traIisition conditions shown in

Figure 11 .20 are as follows: A pound sign (#) indicates a logical "OR"; An amber­

sign (&) indicates a logical "AND"; An exclamation mark (!) in front of a variable

stands for a logical "NOT". The AHPL description for the Input Port Controller which

corresponds to the state-diagram of Figure 11.20 is shown in Figure 11.21. No tim­

ing diagrams shall be presented for the Input Port Controller AHPL description since

they have been presented already. The timing diagrams previously presented in this

chapter apply to the Input Port Controller AHPL description shown in Figure 11 .21.

This chapter has presented a top-level design of the Input Port Controller. The

AHPL description presented in this chapter shall be the basis for the detail design of

the Input Port Controller. The asynchronous logic which is shown in Figures 11.4

and 11.11 shall be designed by the designer. This logic depends on the period select­

ed for the local bus clock (LCLK). The Input Port Controller AHPL descriptions out­

puts four READ and WRITE signals (one per port). These signals (READ and

WRITE) shall be used to derive the FIFO READ (R.) and WRITE CWO) pulses.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure 11 .19. Top-level Block Diagram of Input Controller.

STATUSXA
. . INPUT PORT

~~------l ·"CONTROUER

WRITEX

READX

Where X is the Port
Number (0-3).

1 10

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

"B . WIllTE
' S -0.''''''''

NO

YES

111

Figure 11 .20. State-Diagram for Input Port Controller.

NO

YES

YES

NO

TRANSmON CONDmONS
CoodA • IIFJ • 9)'102
CoodB = B)<dJ' (IBunt' .l BUnI_Byte_lWC)
0JndC = HR)' Byte 1
CondO= IBunt'.l orr JlEJ
CmdE = Poo_Active I bus_Active

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

JllS

Figure 11.21. AHPL Description for Input Controller.

MODULE: INPUT_CONTROLLER.
MEMORY: CNT[2), BURST-.
INPUTS: PORTO_ACTIVE, PORTl_ACTIVE, PORTI_ACTIVE,

poRn_ACTIVE, STATIlSO_ACTIVE, STATIlSI_ACTIVE,
STATIlS2_ACTIVE, STATIlS3-.ACTIVE, BREQ*, R/W*,
DS*, AD[I:O), SIZ[I:O), LRESEP, BURST_BYTE_ENO,
BURST_BYTE_ENI, BURST,;,BYTE_EN2, BURST_BYTE_EN3,
PORTO_ERROR, PORTl_ERROR, PORTI_ERROR, PORn_ERROR,
PORTO_IN_FF _FLO, PORTl_IN_FF _FLO, PORTI_IN_FF _FLO,
PORn_IN_FF _FLO, PORTO_IN_EF _FLO, PORTl_IN_EF _FLO,
PORTI_IN_EF _FLO, PORn_IN_EF _FLO, PORTO_IN_HF _FLO,
PORTl_IN_HF _FLO, PORT2_IN_HF _FLO, PORT3_IN_HF _FLO,
PORTO_OUT_FF _FLO, PORTl_OUT_FF _FLO, PORTI_OUT_FF _FLO,
PORn_OUT_FF_FLO, PORTO_OUT_EF_FLO, PORTl_OUT_EF_FLO,
PORTI_OUT_EF _FLO, PORn_OUT_EF _FLO, PORTO_OUT_HF _FLO,
PORTl_OUT_HF _FLO, PORTI_OUT_HF _FLO, PORT3_0UT_HF _FLO,
IO_FF*, Il_FF*, I2_FP, I3_FP, IO_EF*, Il_EF*, I2_EF·, I3_EF*,
IO_HF*, Il_HF*, I2_HF*, I3_HF*, OO_FF*, OI_FF*, 02_FF*, 03_FF*,
OO_EF*, OI_EF*, 02_EF*, 03_EF*, OO_HF*, OI_HF*, 02_HF*,
03_HF*, SUBO_ERR, SUB I_ERR, SVB2_ERR, SUB3_ERR, BERR*.

OUTPUTS: MUX_SEL[2), BACK·, STERM_EN*, WRITEO, WRITEI, WRITE2.
WRITE3, READO, READI, READ2, READ3, CE[4), LAD[O), RD_OE*.

" Description of Inputs
"
" PORTX_ACTIVE
"

" BREQ*
R/W*
DS*

AD[I:O)

SIZ[I:O)

LRESET*
" BURST_BYTE_ENX
"
"

"

"

= Asserted by the Address Decoder module when the
user requests a Write or Read transaction with Port X.

= Asserted by the Address Decoder module when the
user request one of the seven status flags from Port X.

= Asserted by the NBIC for all burst transactions.
= High for a Read transaction and low for a Write.
= Asserted by the NBIC when data is ready on the bus

(Write) or data can be received by the NBIC (Read).
= Two Isb's of the address latched by the Address

Decoder module.
= Two size bits which are used 10 determine the type

of transaction which is to take place.
= Local bus reset signal from the NBIC.
= Signal(s) asserted by the Address Decoder module

when the user performs a burst write (byte-mode)
transaction on Port X. Only set during burst Writes.

= Asserted by the Address Decoder module when the
user request the Subsystem Error flag from Port X.

= Asserted by the Address Decoder module when the
user request the Input FIFO full flag from Port X.

= Asserted by the Address Decoder module when the
user request the Input FIFO empty flag {Torn Port X.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure I 1.21. Con'l

.. PORTX_IN_HF _FLG = Asserted by the Address Decoder module when user

.. request the Input FIFO half empty Aag from Port X.

.. PORTX_OUT_FF _FLG = Asserted by the Address Decoder module when user

.. request the Output FIFO full flag from Port X .

.. PORTX_OUT_EF_FLG = Asserted by the Address Decoder module when user

.. request the Output FIFO empty flag from Port X .

.. PORTX_OUT_HF_FLG = Asserted by the .Address Decoder module when user

.. request the Output FIFO half empty flag from Port X.

.. IX_FF* = Registered Input FIR) full flag from Port X .

.. IX_EF* = Registered Input FIFO empty flag from Port X .

.. IX_HF* = Registered Input FIFO half empty flag from Port X.

.. OX_FF* = Registered Output FIR) full flag from Port X .

.. OX_EF* = Registered Output FIFO empty flag from Port X .

.. OX_HF* = Registered Output FIFO half empty flag from Port X.

.. SUBX_ERR = Registered Subsystem Error Flag from Port X .

.. BERR * = Signal asserted by NBIC if a timeout error occurs or

.. asserted by Error Controller if an invalid address on

.. the board is referenced by the user.

" Description of Outputs ..
.. MUX_SEL[I:O) = Multiplexor select lines wruch are used during Write

transactions to select appropriate byte of 32-bit word .
= Asserted by Input Controller to acknowledge burst

request from the NBIC.

..

.. BACK· ..

WRITEX

= Asserted on rising edge of LCLK 10 terminate a
transaction with the NBIC. Used to generate STERM·.

= Asserted when a WRITE to Input FIR) of Port X is to
take place. External asynchronous logic shall generate
the write pulse signal (W*) 10 the FIR) of Port X.

READX

.. CE[3:0) ..

.. LAD[O) ..

..

BODY

1. --> (

= Asserted when a READ from Output FIR) of Port X
is to take place. External asynchronous logic shall
generate the read pulse signal (R *) to FIFO of Port X.

= Chip byte enables for the 32-bit byte loadable register .
This register is used to build 32-bit word during Reads.

= Least significant bit of the local bus address/data lines .
This bit is asserted by Input Port Controller when the
user requests one of the seven status flags .

= Output enable signal for the 32-bit byte loadable
register. Asserted during READ transactions.

PORT_ACTIVE V STATUS_ACTIVE,
PORT _ACTIVEA ff.7W*, PORT _ACTIVE A R/W*,
STATUS_ACTIVE) / (I , 2, 10, 15).
MUX_SEL = 2 TO; BACK· <-- I ;
WRITEO = 0; READO = 0;
WRITEI = 0; READI = 0;
WRITE2 = 0; READ2 = 0;
WRITE3 = 0; READ3 = 0;
CE = 4 TO ; LAD[O) <-- Z;

Either stay in State #1
or go execute a Write (State 2),
Read (State 9) or Status (State 15)
sequence. Set all Outputs to
their deas..<erted state.
The Symbol Z indicates Tri -state.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure 11.21. Con't

" Begin WRITE Sequence
2. --> (DS*)/(2);

BURST* <-- BREQ*; .. Store BREQ* since it is deasser1ed after third Word.
CNT <-- 2 T 0; .. Clear the counter (used to keep track during Burst)

3. --> (BYTEI, (HFI VBYTE2), BYTE3) 1 (5,6,7);

4. MU_SEL=2TO; .. Select Byte 0 [31:24)
WRITEO = IO_FF*;\ PORTO_ACIlVE; .. Set WRITE signal if Input FIFO
WRITEI = Il_FF*;\ PORTl_ACITYE; .. full flag is deasserted. WRITE
WRITE2 = 12_FF*;\ PORTI_ACITYE; .. signals are asserted depending
WRITE3 = I3_FF*;\ PORn_ACIlVE; .. on the PORT which is active.
STERM_EN* = «BYTEO ;\(BURST* V BURST_BYTE_EN» VGI_FF*;
--> (GCFF*, (BYTEOV (BURST*;\ BURST_BYTE_EN)y\ GCFF*) 1 (4,8);
BACK* <-- BREQ*; .. Assert BACK* if BREQ* is asserted

5. MUX_SEL = 2 T 1 ; .. Select Byte 1 [23: 16)
WRITEO = 10_FF*;\ PORTO_ACIlVE; .. Set WRITE signal if Input FIFO
WRITEl = Il_FF*;\ PORTl_ACIlVE; .. full flag is deasserted. WRITE
WRITE2 = U_FF*;\ PORTI_ACIlVE; .. signals are asserted depending
WRITE3 = I3_FF*;\ PORn_ACIlVE; .. on the PORT which is active.
STERM_EN* = (HFO /\BYTEl)VGCFF*;
--> (GCFF*, (HFOV BYTEI)/\ GI_FF*) 1 (5,8);

6. MUX_SEL = 2 T 2 ;
WRITEO = IO FF*;\ PORTO ACIlVE· - -,
WRITEl = Il_FF*;\ PORTl_ACIlVE;
WRITE2 = 12_FF*;\ PORTI_ACIlVE;
WRITE3 = J3_FF*;\ PORn ACTIVE;
STERM_EN* = (BYTE2 V IF _FF*);

.. Select Byte 1 [15:8)

.. Set WRITE signal if Input FIFO

.. full flag is deasserted. WRITE

.. signals are asserted depending

.. on the PORT which is active.

--> (GCFF*, BYTE2 ;\ GCFF*) 1 (6, 8);

7. MUX_SEL = 2 T 3 ;
WRITEO = 10 FF*;\ PORTO ACIlVE· - -,
WRITEI = II_FF*;\ PORTl_ACTIVE;
WRlTE2 = 12_FF*;\ PORTI_ACITVE;
WRlTE3 = I3_FF*;\ poRn_ACTIVE;
STERM_EN* = GCFF*;
BACK* <-- BREQ*
--> (GI_FF*) 1 (7);

.. Select Byte 3 [7:0)

.. Set WRITE signal if Input FIFO

.. full flag is deasserted. WRITE

.. signals are asserted depending

.. on the PORT which is active.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure 11.21. Con;t

8. WRlTEO = 0; WRITEI = 0;
WRlTE2 = 0; WRlTE3 = 0;
STERM_EN* = 1;
CNT <-- INC (CNT) ;
--> (BURST*VCNT_NE_3,
BACK* <-- BREQ* ;

" Begin READ Sequence

" Set WRITE and STERM_EN*
" to their deasserted state.
" Increment CNT which keep track of
" number of words during burst transfers.

BORSP A CNT_NE_3) / (15,4);

121

9. CE[O) = GO_EF*; "Set Chip Enable 2EOO if Output FIFO empty flag is High
READO = OO_EF*A PORTO_ACTIVE; " Set READ signal if Output FIFO
READI = ol_EpA PORTI_ACTIVE; "FIFO empty flag is deasserted.
READ2 = 02_EF*A PORT2_ACTIVE ; "READ signals are ~sert~ depending
READ3 = 03_EF*A PORT3_AcrlVE ; " on the PORT which IS active.
STERM_EN* = 1 ; .. Deassert Synchronous Termination

--> (GO_EF*) / (9); .. Stay in this state if the empty FIFO flag is LOW
BACK* <-- BREQ* ; .. Assert BACK* if BREQ* is asserted.

10. CE[I] = GO_EF*; .. Set Chip Enable 2EOI if Output FIFO empty flag is High
READO = OO_EF* A PORTO_ACTIVE; .. Set READ signal if Output FIFO
READI = OI_EPA PORTI_ACTIVE ; "FIFO empty flag is deasserted.
READ2 = 02 EPA PORT2 ACTIVE ; "READ signals are asserted depending
READ3 = 03=EP A PORT3=ACTIVE ; " on the PORT which is active.
STERM_EN* = 1 ; " Deassert Synchronous Termination

--> (GO_EF*) / (10); .. Stay in this state if the empty FIFO flag is LOW

1 I. CE(2) = GO_EF*; .. Set Chip Enable 2E02 if Output FIFO empty flag is High
READO = oo_EpA PORTO_ACTIVE; " Set READ signal if Output FIFO
READI = OI_EPAPORTI_ACTIVE; "FIFO empty flag is deasserted.
READ2 = 02 EPA PORT2 ACTIVE' "READ signals are asserted depending
READ3 = 03=EF* A PORT3=ACTIVE ; " on the PORT which is active.
STERM_EN* = I ; " Deassert Synchronous Termination

--> (GO_EF*) / (II); "Stay in this state if the empty FIFO flag is LOW

12. CE(3) = GO_EF*; "Set Chip Enable 2E03 if Output FIFO empty flag is High
READO = OO_EF* A PORTO_AcriVE ; "Set READ signal if Output FIFO
READI = OI_EF*A PORTI_AcrlVE ; "FIFO empty flag is deasserted.
READ2 = 02_EF*A PORT2_AcrlVE ; "READ signals are as.serted depending
READ3 = 03_EF*APORT3_AcrIVE; "on the PORT which is active.
STERM_EN* = GO_EF*; "Deassert Synchronous Termination

--> (GO_EF*, GO_EF* A BREQ*) / (12,9);
" Stay in this State if GO_EF* signal is asserted. If GO_EF* is
" deasserted and Burst transaction, then go to State #2 else go to State #6.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure 11.21. Con'l,

13. READO = 0; READI = 0; "Deassert the FIFO Read signals
READ2 = 0; READ3 = 0;
STERM_EN* = I ; " Deassert Synchronous Termination
--> (15). "Go to State #15 to Wait for Port_Active to go LOW.

" Begin STA TUS Sequence
14. STERM_EN* = 0; " Select the appropriate Status Rag .

LAD[O) <-- (IF _FF* I IF _EF* ! IF JiP ! OF _FF* ! OF _EF. ! OF _HP I
SUB_ERROR) • (PORT_IN_FF_FLG, PORT_IN_EF_FLG,
PORT_IN_HF_FLG, PORT_OUT_FF_FLG,

122

PORT_OUT_EF _FLG, PORT_OUT_HF _FLG, PORT_ERROR).
" The register LAD[O) is enabled during State #14 & IS.
" All other states, the register is tri-stated

IS. --> (PORT ACTIVE V STATUS ACTIVE,
PORT_ActivE V STATOS_ACilYE) / (IS, I).

END SEQUENCE

" Wait in this State
" till PorOCActive
" or StatusX_Act:ive
" are deasserted by
" Address Decoder.

WORD = (SIZ[I) /\ siztO) /\ ADm /\ AU[U] /\ BURST·); "Word [31 :0)
HFO = (SIZ[I) /\ SIZtO) /\ Ar5[I) /\ JJ5{0)/\ BURSP'); "Halfword 0 [31 :16]
HFI = (SIZ[I) /\ SIZtO) /\ Ar5[I) /\ JJ5{0)/\ BURSP'); " Halfword 1 [15:0]

BYTEO = (SIZ[I) /\ SIZtO] /\ Ar5[I) /\ JJ5{0] /\ BURSP'); " Byte 0 [31:24]
BYTE 1 = (SIZtl) /\ SIZtO) /\ Ar5[I) /\ AD[O]/\ BURSP'); "Byte 1 [23:16]
BYTE2 = (SIZ[I) /\ SIZtO) /\ AD[I] /\ JJ5{0J/\ BURSP'); " Byte 2 [15:8)
BYTE3 = (SIZ[I] /\ SIZ[O] /\ AD[I] /\ AD[O)/\ BURSP'); " Byte 3 [7:0]

CNT_NE_3 = (CNT[I) /\ CNTIO» V (CNT[l) /\ CNT[O]) V (CNT[I] /\ CNT[O);

-> (LRESEP V BERR') / (I); " Go to State #1 when LRESEP' is asserted

RD_OE* = PORT_ACilvE V f{JWi;

PORT_ACTIVE = PORTO_ACTIVE V PORTl_ACTlVEV
PORTZ_ACTIVE V PORD_ACTIVE;

STATUS ACTIVE = STATUSO ACTIVEV STATUS I ACTlVEV
- STATUS2=ACTIVEV STATUS3-"="ACTIVE;

BURST_BYTE_EN = (BURST_BYTE_ENO! BURST_BYTE_ENI !
BURST_BYTE_EN2! BURST_BYTE_EN3) •

(PORTO_ACTIVE, PORTI_ACTIVE,
PORTZ_ACTIVE, PORD_ACTIVE);

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure I 1.21. Con 'I.

PORT_ERROR = PORTO_ERROR V PORTl_ERROR V
PORT2_ERROR V PORn_ERROR;

SUB_ERR = (SUBO_ERR I SUB I_ERR I SUB2_ERR I SUB3_ERR) *
(STATUSO_ACTIVE, STATUSI_ACITVE,

STATUS2_ACTIVE, STATUS3_ACITVE);
PORT_IN_FF_FLG = (PORTO_IN_FF_FLG V PORTUN_FF_FLGV

PORT2_IN_FF_FLG V PORTI_IN_FF_FLG);

PORT_IN_EF_FLG = (PORTO_IN_EF_FLG V PORTl_IN_EF_FLGV
PORT2_IN_EF_FLG V PORTI_lN_EF_FLG);

PORT_IN_HF _FLG = (PORTO_IN_HF _FLG V PORTl_IN_HF _FLGV
PORT2_IN_HF _FLG V PORTI_IN_HF _FLG);

PORT_OUT_FF_FLG = (PORTO_OUT_FF]LG V PORTI_OUT_FF_FLGV
PORT2_0UT_FF_FLGV PORTI_OUT_FF_FLG);

PORT_OUT_EF_FLG = (PORTO_OUT_EF_FLG V PORTI_OUT_EF]LGV
PORT2_0UT_EF_FLGV PORTI_OUT_EF_FLG);

PORT_OUT_HF_FLG = (PORTO_OUT_HF_FLGV PORTl_OUT_HF_FLGV
PORT2_0UT_HF_FLGV PORTI_OUT_HF_FLG);

IF_FF* = (IO_FF* ! lI_FF* ! U_FF* I 13_FF*) * (STATUSO_ACITVE,
STATUSI_ACfIVE, STATUS2_ACITVE, STATUS3_ACITVE);

IF_EF* = (IO_EF* ! lI_EF* ! U_EF* ! 13_EF*) * (STATUSO_ACITVE,
STATUSI_ACflYE, STATUS2_ACITVE, STATUS3~CITVE);

IF_HF* = (IO_HF* ! lI_HF*! U_HF*! 13_HF*) * (STATUSO~CITVE,
STATUSI_ACflVE, STATUS2_ACITVE, STATUS3_ACITVE);

OF _FF* = (OO_FF* ! OI_FF* ! 02_FF* ! 03_FF*) * (STATUSO_ACITVE,
STATUSI_ACTIVE, STATUS2_ACflVE, STATUS3_ACITVE);

OF_EF* = (OO_EF* ! OI_EF* ! 02_EF* ! 03_EF*) * (STATUSO_ACITVE,
STATUSI_ACfIVE, STATUS2_ACIlVE, STATUS3_ACITVE);

OF_HF* = (OO_HF* ! OI_HF* ! 02_HF* ! 03_HF*)· (STATUSO_ACflVE,
STATUSI_ACflVE, STATUS2_ACIlVE, STATUS3_ACITVE);

GCFF* = (IO_FF* ! lI_FF* ! U_FF* ! 13_FF*) * (PORTO_ACTIVE,
PORTl_ACTIVE, PORT2_ACTIVE, PORn_ACflVE);

GO_EF* = (OO_EF* ! OI_EF* ! 02_EF* ! 03_EF*) * (PORTO_ACfIVE,
PORTl_ACflVE, PORT2_ACTIVE, PORTI_ACTIVE);

END.

123

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

CHAPTER XI]

TOP-LEVEL DESIGN OF OUTPUT PORT CONTROLLER

Description or the Output Port Controller

The purpose of this chapter is to present a top-level design of the Output Port

Controller. This controller shall communicate with the InputJOutput FIFO's and the

Inmos Link Adaptor (IMS COli). The controller shall write bytes received from Link

to the appropriate Output FIFO and read data from the Input FIFO so that it can be

transmitted to Link. The controller shall control all the handshaking signals between

the CYPRESS FIFO's and the Inmos Link Adaptor. Before the design of the Output

Controller is presented, the Inmos Link Adaptor must be introduced since it interfaces

with the Output Controller.

Introduclion to the 'nmos Link Adaptor OMS COW

The Inmos Link Adaptor provides full duplex communication between a peripheral

or microprocessor and the transputer serial links. The IMS COli has two modes of

operation: peripheral interface and bus interface. When the IMS COli is configured

has a peripheral interface (Mode I), it has two byte-wide port interfaces to communi­

cate with the serial links of the transputer. Both ports (input and output) have their

own two-wire set of handshaking lines. When configured has a bus interface (Mode

2), it is used to interface an Inmos transputer serial link with a microprocessor sys­

tem bus. Only the peripheral interface mode shall be used on the NeXT-to-Mother­

board interface board; therefore, the bus interface mode shall not be presented. A

block diagram of the IMS COl I configured in Mode 1 is shown in Figure 12.1. The

system services are used to startup and maintain the link adaptor. A brief descrip-

124

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

125

tion of the system services and port interface signals are shown in Table 12.1. The

designer should read the specifications of the IMS COl I linlr. adaptor (or detail design

Figure 12.1. Block Diagram of IMS COil Configured in Mode I.

SYSTEM
£J!J1lMll!ll!.!L..t SERVICES

Input
InJerj'ace

LINK

SOURCE: INMOS, The Transputer Databook 2ed. (Redwood
Bum LTD, Trowbridge: 1989), pg. 504, Figure 1.1.

Table 12.1. IMS COll Mode I Signal Description.

PIN In/Out FUNCTION

VCC,GND Power Supply and Return
CapMinus External capacitor for internal power supply
Clockln In Input Clock (5 MegaHertz) .
Reset In System reset
SeparatelQ In Select Mode and Mode 1 link speed
LinkIn In Serial data input channel
LinkOut Out Serial data output channel

10-7 In Parallel Input bus
IValid In Data on 10-7 is valid
lAck Out Acknowledge 10-7 data received by link

QO-7 Out Parallel Output bus
QValid Out Data on QO-7 is valid .
QAck In Acknowledge from peripheral that data read

SOURCE: INMOS, The Transputer Databook 2ed. (Redwood Bum
LTD, Trowbridge: 1989), pg.505, Tables 2.1 - 2.2.

I
I
I
I
I
I
I
I
I
I
I
I.
I
I
I
I
I
I
I

126

application notes on the system service signals. Information on the details of the

system services such as that the Clocklo signal must be derived from a crystal oscil­

lator instead of an RC oscillator are not covered in this research report.

The mode of operation is selected by the SeparateIQ input signal. .Also, both

modes of operation support link speeds of either 10 or 20 Megabits per second. Ta­

ble 12.2 shows the mode selection and speed selection for the IMS COIL The link

speed for Mode 2 is determined by another input called Linkspeed. The signal Link­

speed is not part of the Mode I signal description.

Table 12.2. Mode Selection for IMS COIL

SOURCE: INMOS, The Transputer Databook 2ed.
(Redwood Bum LTD, Trowbridge: 1989), pg. 508, Table 3.2.

The IMS COil input port interface is used to transmit bytes of data from a periph­

eral to a transputer via link. The communication is accomplished by a two-wire hand­

shake provided by the signals IValid and lAck. The peripheral asserts the signal

IYalid when data is valid on the input port of the IMS COil to begin communication.

When the data has been acknowledged by the appropriate serial link, the IMS COi l

asserts the signal lAck to complete the handshake. Recall from Chapter two that

each byte has to be acknowledged before the next byte can be transmitted. Refer to

Figure 2.2 for the formats of the data and acknowledge packets on the serial links.

Figure 12.2 shows a timing diagram for an IMS CO II input port transaction. Refer to

the lomos databook for specific timing parameters.

The IMS COli output port interface is used to convert serial data received on its

input link into byte format When the data is available on the IMS COli output port,

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

121

it asserts its QValid signal. The IMS COIl docs not accept another serial transmis­

sion until an QAck is received from the Output Port Controller. When the QAck sig­

nal is received, the IMS COIl shall transmit an acknowledge packet (ACK) on its

output serial link. Once an ACK packet is transmitted, the IMS COIl shall deassert

its QValid signal and can accept another serial transmission on its input serial link.

A timing diagram showing an IMS COIl output port transaction with the Output Port

Controller is shown in Figure 12.3.

Figure 12.2. IMS CO II Mode 1 Parallel Data Input to Link Adaptor.

10-7 XX X _In-,P,-u_t D_a_ta_V_a_lid_I_0-_7_-,X X X X X X __ _
IValid / ___ ..J '\. /
lAck /
-------------~ ,,'------

Link_O_u_t __________ ~I~w~e~~~,'~~«J~:~~~@~~$M~"'L_ __________________________ __

LinkIn ~cR!1 =------~~~,~,~'" ~,-------------
SOURCE: INMOS, The Transputer Data Book 2ed. (Redwood Burn LID,
Trowbridge: 1989), pg. 512, Figure 5.1.

Figure 12.3. IMS COl1 Mode I Parallel Data Output from Link Adaptor.

Q0-7 _______ ---JX Data Is Valid on Output Port X'--__
QVa~lid~ ___________ __'~ ,,'---------/
QAck / ---------------' ,,'--~---

SOURCE: INMOS, The Transputer Data Book 2ed. (Redwood Bum LID,
Trowbridge: 1989), pg. 513, Figure 5.2.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

128

Design Spcsitkations for Oulpul PorI Controller

The Output Pon Controller shall contain two independent controllers. One con­

troller shall communicate with the input pon of the IMS COil and the other controller

with the output pon of the IMS COIl. A top-level block diagram of the Output Pon

Controller and its interconnections is shown in Figure 12.4.

The Output Pon Controller IMS input sequence shall begin when there is data in

the Input FIFO (NeXT-to-Link) to process. The communication shall be asynchro-

n.ous between the Input FIFO and the IMS COlI. The Output Pon Controller shall

communicate with the IMS COil via a two-wire handshake. Once the IMS COil de-

tects a high level on the !Valid signal. it shall transmit the byte received on its input

Figure 12.4. Top-level Block Diagram of Output Pon Controller Interconnections.

8

R
1+------'

IX EP

8 I()'7

<lo.7

Async.
Logic

IValidX

LinkOulX

LinkinX

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

129

data lines serially on its output serial link. When the byte has been acknowledged

by the transputer, the IMS COil shall asserts its IAck signal. This process contin­

ues as long as there is data in the Input FIFO to process. The AHPL description for

the Output Port Controller Input IMS Controller is shown in Figure 12.5. The state­

diagram for this controller is shown in Figure 12.6. Finally, timing diagrams are pre­

sented to show the two different transactions possible. Figure 12.7 shows and IMS

COil input transaction with the Input FIFO Empty Flag (IX_EP) deasserted

throughout the entire transaction. Figure 12.8 shows the same transaction but with

the Input FIFO Empty Flag asserted after the first byte has been transmined to the

link adaptor.

The Output Port Controller Output IMS Controller shall write data into the Output

FIFO (Link-te-NeXT) when the link adaptor receives a byte from the appropriate

tran sputer. When a byte of data has been received on the input link, the IMS COil

shall assert its QValid signal. The assertion of this signal shall begin the handshak­

ing sequence berween the Output Port Controller and the IMS all I. The Output Port

Controller IMS Output Controller shall write the byte into the Output FIFO if the

FIFO is not Full and assert the QAck signal to conclude the transaction. When the

IMS COil receives the QAck signal, it shall transmit an acknowledge packet on its

output link. This sequence is repeated on a Port basis every time a Port input link re­

ceives a byte of data. Figure 12.9 shows the AHPL description for the Output Port

Controller IMS Output Controller. The state-diagram for this controller is shown in

Figure 12.10. Finally, timing diagrams are presented to shown the two different type

of transactions which can occur. Figure 12.11 shows an Output IMS sequence with

the Output FIFO Full (OX_FF*) flag deasserted throughout the transaction. Figure

12.12 shows an Output IMS sequence with the FIFO Full flag asserted when the

QValid signal is asserted by the link adaptor.

This chapter has presented the design of the Output Controller. The Next-te-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

130

Motherboard interface board shall contain four Output Port Controllers (one per

port). The purpose of having four ports is so code to be executed in the network of

coprocessors can be down loaded faster or so that different nodes of the network can

be initialized simultaneously. Each port's Output Port Controller shall begin trans­

mit bytes of data with its appropriate IMS COil as soon as the Input FIFO Empty

Flag is deasserted. Since all port's can be actively transmitting or receiving bytes of

data, four Output Controllers and IMS CO II's are required on the interface board.

The designer can implement the Output Port Controller any way feasible. The au­

thor suggest using a PAL implementation approach The design of the Output Port

Controller can fit in one CYPRESS 22VlO PAL (one PAL per port). The ABEL list­

ing for the Output Port Controller implemented in a CYPRESS 22VlO is shown in Ap­

pendix C.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Fi gure 12.5. AI lPL Description of Output PORT Controller IMS COIl Input.

MODULE:
MEMORY:
INPUTS:
OUTPUT:

IX_EF*. IACKX. LRESET*.
IV ALIDX. READX.

"Description of Inputs
"
" IX_EF*
"

= Registered version of Input FIFO Empty Flag for
PORT X. where X = 0 - 3.

"IACKX
"

= Input Data acknowledge from the IMS COIl Link
Adapter of PORT X.

" LRESET* = Reset pulse from the NBIC.

"Description of Outputs
"
"IVALIDX
"

= Asserted by controller when data is valid at the
input PORT of the IMS COIL

"READX
"

= Signal used to derive the Read Pulse for the
PORT X Input FIFO.

BODY

~. READX =0;
IVALIDX = 0;
--> (IX_EF*) / (1).

2. READX = I;
IVALIDX =0;

3. READX =0;
IVALIDX = 1;
--> (IACKX) / (3).

" Stay in this state till there is
" data in the PORT X Input
" FIFO to process.

" Assert the READX signal to
" read a byte from the Input FIFO.

" Assert IValidX to commence
" handsha.1cing sequence with IMS COIL
" Stay in this state till IAckX is asserted
" by the IMS COlI of PORT X.

4. READX =0;
IVALIDX = 1;
--> (IACKX. IA~T""'CICX;TO[T""IX_EF*. IAcICX" IX_EF*) / (4.2. 1).
" Stay in this state till the acknowledge signal from the IMS COlI
" is deasserted. Once the signal (IAckX) is deasserted. go to
" State #2 if the FIFO Empty Flag is deasserted to process another
" byte in the Input FIFO. If the Empty FIFO Flag is asserted. then
" go to State #1 and wait for the flag to be deasserted.

END SEQUENCE

n> (LRESET*) / (I). "Go to State #1 if Reset pulse is asserted.

END.

131

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

132

Figure 12.6 .. State-Diagram for Output Controller to IMS COil Input Sequence.

NO

NO

YES

NO YES NO

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

LeU(

Figure 12.7. Timing Diagram for Output Controller Input Transacti0n
with FIFO Empty Flag Deasserted during Transaction.

IX EF*

READX

133

FIFO Readc..:P~u:.:..:ls:.::.e __ ---,nL.. ________ ---InL.. ___ _

IVAUDX

IACKX

STATE
NUMBER

Figure 12.8. Timing Diagram for Output Controller Input Transaction
with FIFO Empty Flag Asserted during Transaction.

LeU(

IX EF*

READX

FIFO Read;....:p:....;u""/::..:se'--__ ..JnL ___________ ~nL_ __
IVALlDX '--____ ---ll
IACKX

STATE
NUA1BER ~~~~~~2L~~~~~~~~~~~~2C~~

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure 12.9. AHPL Description of Output PORT Controller IMS COIl Output.

MODULE:
MEMORY:
INPUTS :
OUTPUT:

OUTPUT_CONTROLLER_OUTPUT_~S

QVALfDX, OX_FF·, LRESET*.
QACK.)(, WRlTEX.

"Description of Inputs
"
" QVALIDX
"

"
" LRESET·

= Assened by the link adaptor of Pon X when there
is a valid byte on its output pon interface.

= Registered version of t.he Output FIFO Full nag
from Pon X.

= Reset pulse from the NBIC.

"Description of Outputs
"
"QACK.)(
"

= Assened by controller when data has been written
to the Output FIFO of Pon X.

" WRlTEX
"

= Signal used to derive the Write Pulse for the
PORT X Output FIFO.

BODY

I. WRITEX = 0;
QACK.)(=0;
--> (QVALIDX) / (I).

2. WRITEX = OX_FF·;
QACK.)(=O;
--> (OX_FP) / (2).

" Stay in this State until the link
" adaptor of Pon X assens the
" QV ALIDX signal to begin handshake.

" Stay in this State till the Output FIFO
" is ready to accept another byte.

3. WRITEX = 0; " Stay in this State till the IMS CO 11
QACK.)(= 1; " of Pon X deassens its QVALID signal.
--> (QVALIDX, QVALfDX) / (3, 1).

END SEQUENCE

--> (LRESEP) / (1). "Go to State #1 if Reset pulse is assened.

END.

134

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

135

Figure 12.10. State·Diagram for Output ControUer to IMS COIl Output Sequence.

NO

NO

NO

YES

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure 12.11. Timing Diagram for Output Controller Output Transaction
with FIFO Full Flag Deasserted during Transaction.

LCu(

OX FP

QVAUDX __ ---'

WRITEX

FIFO Write Pulse u U

136

L

QACKX

STATE
NUMBER

L--__ -----II

Figure 12.12. Timing Diagram for Output Controller Output Transac tion
with FIFO Full Flag Asserted during Transaction.

LCu(

OX FP

QVAUDX __ ~

WRITEX

FIFO Write Pulse

QACKX

STATE

u
L

NUA1BER ~~~~~~~~~~~~~~~~~~~~~~~

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

CHAPTERXIU

TOP·LEVEL DESIGN OF ERROR CONTROLLER

Description of Error Controller

The purpose of this controller is to terminate an invalid transaction requested

by the user with an error termination status or acknowledge any Pon Reset or Ana­

lyze transactions. If the user reads or writes to an undefined address on the board

or to a valid address incorrectly, then the Error Controller shall be activa ted and is­

sue a Bus Error (BERR *) tennination signal. For example, suppose the user

wan ts to know if the Input FIFO of PORT #0 is empty. If the user perfonns a burst

read to address 'SX40 1 lXX' (X are don' t care bytes and S is the board's slot num­

ber), then the address decoder module shall not assen the signal

"PORTO_IN EF _FLG" because a burst read was issued instead of a single-word

read. If thi s case occurs, then the Error Controller needs to be activated to issue a

Bu s Error tenni nation signal . The BERR' signal shal l indicate to the user that the

NeXT-to-Motherboard interface board can not place valid data on the bus for the

given address. Also, this controller shall terminate (assen signal STERM*) any

Pon Reset or Analyze transactions issued by the user. This controller can be con­

sidered as the watchdog controller of the board. It shall inform the user if an invalid

memory address of the board has been referenced.

Top-Level Specifications for Error Controller.

A top-level block diagram of the Error Controller is shown in Figure 13. I. The con­

troller receives all of it s inputs from the address decoder module. The TRANSAC­

TION signal is set when a valid Port transaction begins. The PORTX_ACfIVE

137

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

138

signals (one per pon) shall be set when the user reads or writes to the appropri ate

Pon address, The STATUSX_AcrrvE signals (one per pon) shall be set when the

use r reads to the appropriate special register address of the board's memory address

space, If any of the four Status signals are set, then the user is reques ting FIFO sta ­

tus or Subsystem Error status from the board. If any of the Pon active or Statu s ac­

tive signals are set, then the Error Controller shall not issue a Bus Error s ignal.

Figure 13, I, Top-Level Block Diagram of Error Controller.

BERR*
- -.~

GP RESET •
-LCLK

Reg

The AHPL description for the Error Controller is sho wn in Figure 13,2. This is the

onl y AHPL description which assens the BERR * signal , However, the AHPL de-

scription for the Input Pon Controller also assens the synchronous tennination signal

STERM*' The designer needs to combine the Error Conrroller' s STERM_EN* with

the Input Controller's STERM_EN* signal to generate a C0=:>Il STERM_EN * sib-

nal , Thi s can be accomplished by a logical" AND" of the rwo STERM_EN* signals,

If a controller (Input or Error) is not activated, then it shall deassen its STERM_E N*

signal. If any of the STERM_EN* signals are assened, then the common

STERM_EN* signal shall also be assened. Two timing diagrams for the Error Con­

troll er AHPL description are sho wn in Figures 13 ,3 and 13.4. TI><: timing diagram of

Figure 13.3 shows an invalid Pon Transaction since none of the active signals from

the address decoder are assened. The transaction shown in Figure 13,3 results in a

Bus Error being issued by the Error Controller. The second timing di agra m sho ws the

sequence of states executed for a valid Pon Transaction.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure 13.2. AHPL Description for Error Controller.

MODULE: ERROR CONTROLLER.
MEMORY: ERROR.-
INPUTS: TRANSACTION, LRESET*, PORTO ACTIVE, PORT! ACTIVE,

PORTI ACTIVE, PORn ACTIVE, STATU SO ACTIVE,
STATUS I ACTIVE, STA-TUS2 ACTIVE, STATuS3 ACTNE,
OP_RESET, OP_ANALYZE. - -

OUTPUTS: BERR-, STERM_EN-.

"Description of Inputs
"
"TRANSACTION = Set by Address Decoder when a valid Port transaction
" is to take place. (Not set for a Port Reset or Analyze).
"LRESET* = Asserted by NBIC when a reset is 10 take place.
"PORTX ACTIVE = Set by Address Decoder when a Read or Write
,,- transaction to Port X is to take place (X = 0 - 3).
"STATUSX ACTIVE = Set by Address Decoder when a FIFO Status Flag or
" - or Subsystem Error nag has been requested for Port X.
" OP RESET = Asserted by the Address Decoder when any of the
" four ports is to be reset
" OP ANALYZE = Asserted by the Address Decoder when any of the
" four ports is to be analyzed.
"Description of Outputs
"
"BERR­
"STERM EN*

= Set by Controller to issue a synchronous 32-bit bus error.
= Asserted by controller to terminate transaction.

BODY

I. --> (TRANSACtION) I (I).
BERR* = I; STERM_EN- = I.

2 --> (ACTIVE) I (5).
BERR- = I; STERM_EN* = I.

3. BERR· = RESET ;
STERM EN- = O.

4. BERR· = RESET;
STERM EN- = I.

"Stay in this State until a Port transaction
" is to take place. Deassert all outputs

"00 to State #5 if the ACTIVE signal
"is asserted. Deassert all outputs

"Assert Bus Error if not reset
"assert synchronous termination signals.

"Assert Bus Error if not reset and
"deassert synchronous termination signal.

5. --> (TRANSACTION, TRANSACTION) I (5, I). " Stay in this state till
" Transaction signal is
" deasserted." END SEQUENCE

139

ACTIVE = (PORTO ACTIVE V PORT! ACTIVE V PORTI ACTIVEV
PORn- ACTIVE V ST ATUSO ACTIYEV STA TuS I ACTIYEV

- - -
STATUS2_ACTIYEV STATUS3_ACTfYE);

RESET = OP_RESET V OP_ANALYZE;

--> ((RESET'") I (I). "00 to State # I if local Reset pulse is
"asserled by NBIC. END.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

LCLK
AS*

Figure 13.3. Timing Diagram for an Invalid Port Transaction ..

TRANSACfION

PORTX
ACTIVE

STATUSX
ACTIVE

BERR*

ST ERM*

STATE
;\ Ul\113E R (··sc i 51 I SI I S2 I 53 54 I 55 SJ I Sl I 51

140

OTES: Assumes GP _RESET and GP _ANALYZE signals are deassertcd.

LCLK
AS*

Figure 13.4. Timing Diagram for a Valid Port Transaction.

TRANSACTION

PORTX
ACTIVE

STATUSX
ACTIVE

BERR*

STERM*

STATE
NUMBER I ~'si\ I· 81 81 82 IS5 'I ssl 8S 85 I 85 . I SI

NOTES: Assumes GP _RESET and GP _ANALYZE signals are deasserted.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

CHAPTER xrv

RESET, ANALYZE AND INTERRUPT SIGNALS

Description or Reset and Analyze Signals

The purpose of this chapter is to descril>e all the reset, analyze and interrupt sig­

nals which are required on the NeXT-to-Motherboard interface board. All the reset

and analyze signals shall l>e represented in terms of a timing diagram. No AHPL de­

scription or state-diagrams shall be presented in this chapter. A top-level biock dia­

gram of the inputs to the reset and analyze logic is shown in Figure 14.1. The signals

PortX _Reset and PortX _Analyze are asserted by the address decoder module. The

PortX_Rese t signal (one per port) is asserted when the user selects to reset the root

transputer of a Port X. Similarly, the PortX_Analyze signal is asserted when the us­

er selects to analyze the state of the transputer network of Port X. The assertion of

the signals is accomplished by writing to the appropriate special register address on

the interface board (listed in Table 8.1). The FIFO and IMS COli reset signals are

asserted by the reset logic every time the LRESET* is asserted by the NBIC. The

FIFO reset signal is used to reset all the Input and Output FIFO's on the interface

board. Similarly, the IMS COli reset signal is used to reset all the link adaptors on

Figure 14.1. Top-level Block Diagram of Reset and Analyze Logic.

PORTX RESET 4

LRESET*

141

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

142

the board. The next section shall introduce timing diagrams for a Link Reset, Link

Analyze, . FIFO or Link Adaptor (IMS COlI) reset sequence (Inmos, "The Transput­

er Databook).

The trailing edge of the reset pulse to the transputer (LINKX RESET) shall ini­

tialize the transputer, trigger the internal and external memory configuration and be­

gin the bootstrap sequence. All of the events described above are -'performed in se­

quence instead of in parallel The Analyze signal is used in conjunction with the Re­

set signal to halt the root transputer and allow the user to examine the internal states

of the transputer so the cause of an error may be determined. The state of the Ana­

lyze signal indicates if the transputer is to be ana:yzM or reset. If the Analyze signal

is asserted, then the transputer /l ags are not altered and the processor sha ll halt at

the next descheduling point. The Reset signal must be asserted and deasserted

some time after the Analyze signal has been asserted. By asserting and deasserting

the Reset signal, the root transputer shall not performed the memory configuration se­

quence nor the refresh cycles which follow; therefore, the previous memory configura­

tion shall be used for any external memory accesses. If the Analyze signal is deas­

serted before the Reset signal is asserted, then the state and operation of the trans­

puter are undefined. If the signal BootFromRom is high, then the transputer shall

executed its boot program in ROM at the trailing edge of the Analyze signal . Other­

wise, the transputer shall wait for a control byte after the trailing edge of the Analyze

signal. Figure 14.2 shows a transputer Reset timing diagram and Figure 14.3 shows

a transputer Analyze timing diagram. From the timing diagrams, it can be seen that

the minimum time that the reset pulse is maintained at a high level depends on the

transputer clock period denoted by the variable ClockIn. Recall , that the Error Con­

troller shall issue a synchronous termination signal (STERM*) when the user per­

forms a link reset or analyze sequence.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure 14.2. Transputer Reset Timing Diagram.

PortX Reset

PortX Analyze IL. ___________________ _

LinkX Reset I· (8 • Clockln)
Minimum

-~'LI __
LinkX Analyze LI _____________________ _

NOTES: Variable Clockln denotes the period of the transputer clock.

Figure 14.3. Transputer Analyze Timing Diagram.

PortX Reset

PortX Analyze

LinkX Reset ___________ ~F=(8.aockffi)=4. ____ __
Minimum -

LinkX Analyze ___ ...1"I.f---~.1
Min = 10 ms

I· ·L
I • Clockln
Minimum

NOTES: Variable Clockln denotes the period of the transputer clock.

143

The next reset signal required is for all the Input and Output FIFO's on the

board. This signal can probably be a buffered version of the LRESET* signal. Figure

14.4 shows a FIFO reset timing diagram. The state of the FIFO nags are shown in

this timing diagram for completeness. The timing parameters shown in Figure 14.4

are defined in Table 14.1. The last n:set signal to be defined is the IMS COlI reset

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Figure 14.4. FIFO Reset Timing Diagram.

LRESE'P' ~r·~::::::~~a£Pp~ro~x~. ~1.~2!8~u~S~::::::::=·jl

~~~ ~+)----11·:=~2~~~~~~~~·~1-------------

Empty FIFO 
(EP) 

FIFO Half 
Empty (HP) 

FIFO Full 
(Ff+) 

I: : :: 
I. TIfb .1 

Source: CYPRESS, Semiconductor BiCMOSICMO~ Data Book, 
published March I, 1990, page 5-33, No figure number. 

Table 14.1. Timing Parameters for FIFO Reset Transaction. 

Para- 7C4XX-20 7C4XX-25 7C4XX-30 7C4XX-40 7C4XX-65 
meter 

MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX 

Tpmr 20 25 30 40 65 

Tefl 30 35 40 50 80 

Thtb 30 35 40 50 80 

Tffh 30 35 40 50 80 

NOTES: All times shown above are in nanoseconds. The information for 
this table was obtained from the CYPRESS Semiconductor BiCMOS/CMOS 
Data Book, published March I, 1990. 

144 

The IMS CO II needs to be rc:set every time the LRESET* signal is asserted by 

the NBIC. After power is applied to the board, the clock input of the IMS COIl needs 

to be operating at least 10 milliseconds (ms) before the tra iling edge of the reset 

pulse. The minimum pulse width of the IMS COIl reset pulse is also dependent on 

the frequency of its clock. The minimum assertion time for the IMS CO II reset pulse 

is eight times the period of the clock ( 8 + Clockln). When the IMS CO)) is reset, the 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

145 

signal Linkout is held at a low state, the handshaking lines lAck and QValid are held 

low and the output port data lines (QO-7) are undefined- The last section of this 

chapter shall explain the generation of the local bus interrupt signal S~. 

Des<:rlptlon of the InterDlDt Signal 

The Inmes Host Interface guidelines specifies that the interface board shall have 

the capability to interrupt the host processor. The NeXT-to-Motherboard interface 

board shall assert the local interrupt signal SINT* when any of its four Output 

FIFO's (Link-to-NeXT) have data to be processed. When bytes of data are re­

ceived on any of the four link inputs (LinklnX), tile appropriate Output Port Controller 

sha ll wti te the byte into the appropriate Outpu t FIFO. After the data is wri tten, the 

empty FIFO fl ag for that FIFO shall be deasserteci The four empty FIFO flags 

should be "NORed" to form the active low interrupt signal SINP. When the SINT* 

signal is asserted and the mask interrupt register is enabled, the NBIC shall generate 

a NeXTbus interrupt signal. The host software can enable or disable the mask inter­

rupt register depending on the type of operation being performed- If the host is ex­

pecting return data from the array of coprocessors, then the host software shall en­

able the appropriate bit in the mask interrupt register so the interface board ean alert 

the host when data is valid in the Output FIFO. Once the interrupt is acknowledged 

by the host software, the bit in the mask interrupt register should be cleared. The 

reason for clearing the bit is that the NBIC shall continue to assert the NeXTbus in­

terrupt signal since the empty FIFO flag should still be deasserted until all the data 

has been read from the Output FIFO. The assertion of the interrupt signal SINT* 

shall indicate to the host that there is data from the network of coprocessor to be pro­

cessed. It does no t inform the host software which of the ports have the data. The 

host software should be smart enough to know which of the ports should be expecting 

return data. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

CHAPTER XV 

CONCLUSIONS 

This research report has presented a top-level design using the NBrC for a NeXT­

to- Motherboard interface board. The design of the interface board is composed of the 

following six hardware modules: Configuration Controller, Address Decoder, Input 

Pon Controller, Output Port Controller, EJTf)r Controller and Reset, Analyze and In­

tem/pt logic. The Confi gura tion Controller shal l initial ize all the appropriate reg isters 

in the NBIC. The Address Decoder module shall latch the address at the beginning of 

a tran sact ion and assert the appropriate control signals for the Pon Controllers, Error 

Contro ll er, Rese t and Analyze logic. The Input Pon Controller is responsible for all 

transac tions between the NBIC local bus and the input/ou tput FIFO's. The Output 

Pon Controller is responsible for all transactions between the input/output FIFO's 

and the Inmos serial link adaptors (IMS COl I). The Error Controller shal l terminate 

a transaction with an error status when an invalid memory address on the board has 

been referenced by the user or terminate a Port Reset or Analyze transaction with a 

32-bit acknowledge status. Finally, the reset logic generates all the required reset 

signals for the interface board and asserts the appropriate link reset signal (on a port 

basis) when requested by the user. The link reset signal is used to reset the root 

transputer in the motherboard connected to that particular pon. The Analyze logic as­

sens the appropriate analyze and reset signal (on a port bas is) when reques ted by 

the user. The analyze and reset signals in a transputer are used to halt the proces­

sor so the cause of a sys tem error can be identified. The intemal states of a transput­

er can be analyzed when the processor has been halted by an analyze sequence. The 

146 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

147 

Interrupt logic asserts the local interrupt signal (SINT*) which is used by the NBIC 

to generate a global interrupt signal on the NeXThus. 

All of the modules described in the previous paragraph have been designed in 

AHPL. Also, timing diagrams have been generated for all of the modules and state 

diagrams have been generated for several of the modules. The tor,rlevel design has 

been performed on a module basis so that modularity can be achic.ed on a per port 

basis. A top- level block diagram of all the hardware modules and their interconnec­

tions is shown in Figure 15.1. The board has been initially designed with four ports 

which shall a llow four motherboards or nodes of a parallel network 10 be initialized. If 

more than four ports are required, then extra port hardware needs to be added and the 

Address Decoder, Input Port Controller, Error Controller and Resa modules need to 

be modified to support the extra port(s). Each port hardware consists of an Input 

FIFO, Output FIFO, Output Port Controller and an Inmos serial link adaptor as 

shown in Figure 15. 1. If less than four ports are required, then only the required num­

ber of pon hardware is required and the appropriate control input signals of the Input 

Port Conn-oller, Error Conn-oller and Reset modules needs to be deasserted. The In­

put Port Controller, Address Decoder, Error Controller and Reset. Analyze and Inter­

rupt modules on ly need to be modified if more than four pons are required. The author 

selected four po rts has a starting number for the design. The algorithm presented in 

this research repon can be modified to support any number of ports.. The actual num­

ber of ports on the board shall depend on the specific application of the board and the 

amount o f real estate remaining on the NeXThus card after the detail design of the 

Confi guration Conn-oller, Address Decoder, Error Controller, Input Pon Controller and 

the Reset, Analyze and Interrupt Logic is complete. The real estate remaining on the 

board shall allow the designer to determine the maximum number of pon hardware 

(Input FIFO, Output FIFO and Output Port Controller) which the roard can support. 

If the max imum number of ports is greater than four, then extra rca.J estate might be 



-------------------
Figure 15 .1 All Hardware Modules and the ir Interconnections. 

" ............ .... ................ ............... ............. ........ . 
~2-bit Local B~~ 

..it Input FIFO ~ 
NeXTbus - MUX 

NBIC Control I , : 
EF* IMS S!Ji..nals mux : WR J t COIl se lects RD 

Serial 
Link ...:. 32-bit XL : 

Output FIFO 8L Adaptor ~ 

r-- R EG 
FP Configuration 

Controller RD J t ..WE.. , 
r-

t--A (/dress - INPUT 
"'- Reg \I n " OUTPUT Decoder PORT 
~r--- OAck : 

PORT r-- Controller 

Controller ...ill'aJ.i.d. : 

lAck : 

: r- Torror 
t- ON A PER PORT BASIS Controller ... ........ ..... ... ....... ......................................... .... . 

FIFO Reset Reset L---. 
Analyze IMS CO Il Reset 

EP = Empty FIFO Flag 
and Link Reset ~er Pon FF* = FIFO Full Flag 

Interrupt Link Analyze.Qer Port 

: 
: Serial 
: Links 

./:>. 
00 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

149 

required because several of the modules requ ired modifications to support the extra 

pon(s). 

The design of the NeXT-to-Motherboard interface board is based on using the 

NeXTbus Interface Chip (NBIC) from NeXT Corporation. There are advantages and 

disadvantages in using the NBIC in the design of the interface board. .Am obvious ad­

vantage in using the NBIC is that it reduces the amount of design time and logic re­

quired to interface to the NeXTbus since it provides a single-chip interface to the 

NeXTbus. A disadvantage of the NBIC is that it only supports a burst transfer size 

of four words during burst transactions. The NBIC does not fully suppon the NeXT­

bus protocol since the NeXTbus supports a maximum burst transfer size of 32 words. 

The reason that the NBIC only supports a transfer size of four words during burst 

transactions is due to the limitation of silicon real estate. Recall, the NBIC has two 

internal FIFO's where each FIFO can buffer two transactions. Each transaction 

stored in the FIFO consists of one address and either one or four data words. The 

NB IC contains two internal FIFO's since it supports both Master and Slave opera­

tions. If NeXT Corporation had designed a NBIC for Slave only applications, then the 

NeXTbus Master!Local Slave Transaction FIFO shown in Figure 5.5 (page 45) can 

be deleted from the chip. The deletion of this FIFO shall create extra silicon real es­

tate which shall expand the Local MasterlNeXTbus Slave Transaction FIFO to buffer 

a minimum of eight data words during burst transactions (maybe more depending how 

muc h control logic can be deleted from the chip). Another disadvantage about the 

NBIC is that it does not generate an error when a burst transfer size of greater than 

four is attempted over the NeXTbus. After talking to a technical representative from 

NeXT, it is believed that only the first four words of the transaction are stored in the 

app ropriate transaction FIFO. The remaining words are acknowledged but never 

stored in the FIFO. When performing burst transactions with the N1HC, the burst 

transfer size must always be four words. The only solution to correct the limita-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

150 

tions of the NB IC is to design cu stom logic which shall suppon the NeXTbus protocol 

completely. 

The design of custom interface logic shal l increase design time and logic required . 

An adva ntage of designing a custom interface is that the user shall have the capabi li ­

ty of selecting different burst transfer sizes (up to a maximum of 32 words) . Also, 

process ing speed of the board shall improve for any burst transfer size greater than 

four words. A disadvantage of designing a custom interface is that the number of 

pons on the board shall be reduced due to the extra real estate consumed by the ex­

tra logic. The dec ision between using the NB IC or designing a custom interface de­

pends on severa l factors which need to be defi ned. First, is the speed of the inlerface 

accepta ble using the NB IC with a maximum burst transfer size of four words? The 

an swer to thi s questions depends on the number of words to be transferred across 

the interface and the period of the local bus c lock (LCLK) selected by the designer of 

the board. Code can be downloaded quicker with a burst transfer size of 32 words 

(one transaction equals 32 words) versu s a burst transfer size of 4 words (eigh t 

transac tions shall equal 32 words). Recall, every transaction has an address phase, 

data phase and acknowledgment phase. Extra clocks are wasted due to the address 

and acknowledgemel1l phase when a small burst transfer size is used. Second, what 

is the max imum number of pons which shall be required for the interface board? Af­

ter these two questions are answered, the designer can determine which approach 

(NBIC versus Custom Logic Interface) shall suppon the two criterias. The author 

has assumed that the performance achieved by using the NBIC is acceptable in the 

design of the interface board. If custom logic is to be designed , an allempt should be 

made to have a local bus inte rface similar 10 the NBIC so the amount of redesign time 

for several o f the hardware modules defined in thi s research repon can be reduced. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

CHAPTER XVI 

SUMMARY OF WORK REMAINING 

The purpose of this chapter is to state all the task which the au thor believes re­

main to be perfomled . This research repon has define the ground work for the detail 

design of the NeXT-to-Motherboard interface board. It has describe the modules of 

the board in AHPL so the designe r has total freedom of impkme ntati on. The only is­

sue which was not addressed by th is report is testabi lity of the board. This is the 

fi rs t task which the author believes needs to be addressed. 

The task of the board's testab ility requires the current AHPL desc riptions to be 

modified so data can be written and read from the I'\~XTb u , without the coprocessor 

architecture con nected to the in terface board . Thi s tas k can be accomplished by dif­

ferent methods. One method is by using one of the undefined address bits 

(LAD[27:24]. LAO[7 ]) to indicate a test transaction . Recall. that an address be­

tween sX()()()()X X through sXOFFFXX (s is the slot number of the board) shall be 

processed by Pon #0 and that address bits 2EOO th rough 2E06 have been previously 

defined by NeXT. When a write transaction (single-word or burst) is performed with 

the new address bit enab led, the Input Port Contro ll er shal l rerfo rm the write transac­

tion spec ified and enable a test mode bit o n the board. However, th e Output Port 

Controller shall read data from the Input FIFO and write il to the Outpu t FIFO in-

stead of to li nk when the test mode bit is assened. After 3n interrupt is generated 

by the interface board, the user can then perfonn a read rr:; nsaction (single -word or 

burst) with the new test address bit asserted to read the data previously written . 

The read is performed wi th the new address bit assened so that the test mode bit on 

151 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

152 

the board remains assened This new test mode bit can be added to state one of the 

address decoder AHPL description. A multiplexor shall be used to selec t between 

the Input FIFO data lines or the IMS COlI link adaptor output pon data lines. The 

multiplexor shall select the Input FIFO data lines when the test mode bi t is enabled . 

Otherwise. the multiplexor sha ll select the output dat.a lines from the Jjnlc adaptor. 

By addi ng thi s new address bit. all the FIFO's on the board can be tested. Blocks of 

data writlen to the Input FIFO's would eventually be wrillen into the Output 

FIFO·s. If the blocks of data writlen into the Input FIFO of Pon X compares to the 

blocks of data read from the Output FIFO of Pon X. then read/write access to Pon X 

has been tested. 

Alo ng with the new AHPL desc riptions to be redesigned , an interface software 

program needs to be developed to test the board. The software program needs to 

have the following capabi lities: Write (single-word or burst) known data panem s of 

arbi trary size into any of the four ports; Read (single-word or burst) data of arbitrary 

size from any of the pons; Obtain FIFO statu s (Empty FIFO. FIFO Full. FIFO Half 

Empty) infomlation from any of the FIFO's on the board; Perform a write/read trans­

action of arbitrary size on any of the four ports. A write/read transaction shall con­

sists of writing a user supp lied number of bytes into the Input FIFO of Pon X and 

comparing the bytes to the bytes read from the Output FIFO of Pon X. The program 

should repon to the user the number of bytes which were compared and the total num­

ber of failures. If byte fai lure(s) exists. then the program should display a li st of the 

bytes writlen to the Input FIFO versus the bytes read from the Output FIFO. Data 

patlems should be selected so that every bit in a byte is toggled at least once. 

After the testabi lity of the board has been designed. the detail design and simula­

tio n of the interface board can begin. The detai l design/simulation phase sha ll prove 

the validity of the AHPL descriptions or improve upon the algorithms described in this 

research repon . If the board is to be designed on a CAD system. logic and simula-



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

153 

tion mcx:l els fo r the NBIC will necd to be mcx:lc1cd. If the s imulation mcx:lel for the 

NBIC can no t be developed, then simulation can be perfomlcd a ssuming the inputs to 

the board are the local bus signals of the NBIC. By assuming the local bus signals of 

the NBIC as the inputs to the interface board, all the AHPL descriptions described in 

this research report can be tested . During the detail design phase, the pericx:l of the 

local bus clock (LCLK) needs to be determined . Recall , that the board needs a crys­

tal 5 MegaHenz (MHz) oscillator for the four IMS CO II link adaptors. Also, the 

connector and cables between the interface and the Motherboard of the array of copro­

cessor needs to be defined. The connector(s) on the in terface board should follow 

the standard TRAM pinouts. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

APPENDIX A. NeXTbus Backplane Pinout. 

PIN # PIN NAME PIN # PIN NAME 

Al +12V BI ADO· 
A2 +12V B2 ADI" 
A3 +12V B3 AD2" 
A4 +12V B4 AD3" 
A5 SPO* BS AD4. 
A6 SPI* B6 ADS· 
A7 RESERVED B7 AD6. 
A8 ACK* B8 AD7· 
A9 TMO* B9 AD8" 
AIO# INT* BIO AD9" 
All MCLKSEL" BII AD 10* 
A12# ARBO" BI2 ADII* 
A 13# ARB I " B13 AD12" 
A 14# ARB2* BI4 AD 13* 
A 15# ARB3" BI5 AD I4* 
A 16# RQST* BI6 AD15* 
A17# RESERVED B17 AD16" 
A I8 TMI* BI8 AD17* 
AI9 DRQ* BI9 ADIS" 
A20 SPV* B20 AD19" 
A2 I RESERVED B21 AD20* 
A22 DSTB* B22 AD21* 
A23 RESET" B23 AD22" 
A24 RESERVED AB4 AD23* 
A25 START* B25 AD24* 
A26 RESERVED 826 AD25* 
A27 BUSCLK 827 AD26* 
A28 SP2* 828 AD27" 
A29 SP3* 829 AD28" 
A30 RESERVED 830 AD29* 
A31 PON 83! AD3O" 
A32 PUP 832 AD31" 

# 220 Ohm pullup res istor 

154 

PIN' PIN NAME 

CI -12V 
C2 -12V 
C3 -12V 
C4 -12V 
C5 GND 
C6 GND 
C7 VCC 
C8 GND 
C9 VCC 
CIO GND 
Cll VCC 
CI2 GND 
C13 VCC 
C I4 GND 
CI5 VCC 
CI6 GND 
CI7 VCC 
CIS GND 
CI9 VCC 
C20 GND 
C2I VCC 
C22 GND 
C23 vee 
C24 GND 
C25 GND 
C26 vee 
C27 GND 
C28 GND 
C29 SID28 
C30 SID29 
C31 SID30 
C32 SID3! 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

APPEND IX B. NllIC Pinout Definit ion. 

A I GTMI' C7 GND H I3 vee 
A2 GAD IS' CS GSTART' HI4 LADI7 

A3 SPARE C9 VCC HIS LADI6 
A4 GAD20' CIO GND 1\ GMCLKSEL' 

AS GDSTB' C II GAD29 ' 12 GAD9' 
A6 SPARE CI2 LADO 13 GND 
A7 GAD23' C I3 LAD3 1\3 GND 
AS GAD24' C I4 LAD5 1\4 LAD20 

A9 GAD2S' C IS LADS 115 LADIS 

AIO GBUSCLKO DI GARB3' KI GMCLKS ELO' 

A ll GAD26' D2 GAD IS' K2 GINT' 

AI 2 GAD27' D3 GND K3 vee 
A I3 GAD28' DI3 GND KI3 LAD23 
AI4 GAD 30' DI4 LAD7 K I4 LAD22 

A IS LAD I D I5 LA D9 K 15 LAD I9 

BI GRESET' EI GARB2 ' LI GADS ' 

B2 GADI 7' E2 GAD I4 ' 1.2 Gn-tO' 
B3 GSPV' E3 GND L3 vee 
B4 GAD I9' EI3 LAD6 Ll 3 LAD27 
BS GDSTBO' E I4 LAD IO Ll4 LAD2S 

B6 SPARE E IS LADII LIS LAD21 

B7 GAD22' F I GARBI' MI GAD7 ' 
BS SPARE F2 GADI 3' M2 GAD6 ' 
B9 GBUSCLK F3 VCC M3 GND 
BIO GSP2' FI3 GND M I3 LAD3 1 

B II GSP3' FI4 LADI 2 MI4 LAD2S 
B I2 BUSCLKIN F IS LAD I4 MI5 LAD24 
B 13 GAD31' G I GAD II ' N I GACK' 
B I4 LAD2 G2 GAD I2 ' N2 SPARE 
B IS LAD4 G3 GND N3 GSPI' 

C I GRQST' GI 3 VCC N4 GAm' 

C2 GADI6' G I4 LADI3 N5 CPUCLK 

C3 GDRQ' GI5 LADIS N6 GND 
C4 VCC HI GADIO' N7 BG AC K' 

CS GND H2 GARBO' N8 BREQ' 

C6 GAD21' H3 GND N9 VCC 

155 

NIO SIZO 
NI l GND 
NI 2 STERM ' 
NI3 NCS' 
NI4 LAD30 
NIS LAD26 
PI GADS' 
P2 GAD4' 
P3 GAD2' 
P4 GADO' 
PS GMASTER' 
P6 LBG/EXSEL 
P7 GSLA VP/SINT' 
P8 BR' 
P9 RMC ' 
P IO Rj W ' 
P I I AS ' 
PI 2 DSACK I' 
P I3 BAC K' 
P I4 OE 
PIS LA D29 
Q I GSPO' 
Q2 GAD I' 
Q3 LCLK 

Q4 GBC YC' 
QS LBR' 
Q6 HALT' 
Q7 BERR ' 
QS BG' 
Q9 OS' 
Q IO FB 
QII SIZI 
Q I 2 ASIN' 
QI 3 DSACKO" 
QI 4 PON 
QI 5 LR ESET' 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

APPENDIX C. ABEL PAL Implementation of Ouput 
Port Controller using a 22VIO. 

module output_controUer fl ag' -r3', '- tl' 

title 
'Output Pon Controller for 
NeXT-ta-Motherboard Interface board 
A. Alvarez September 26, 1990' 

Outpuccontroller device 'P22vlO' 

" -- --- ----------- --------- ----------------- ----------- ----------------
" DESCRIPTION: 

" This PAL is used to transfer bytes of data between the 
" IMS CO Il Link Adaptor and the Output FIFO or between 
" Input FIFO and the lMS COlI. All transfers are performed 
" via a two-wire hand" shake. 

-- -- -- --- --- ----- --- --- -------- -- ------- -- ----- --- ------ --------- --- -

" Co nstant s: 

ON = I; 
OFF = 0; 
H = I; 
L = 0; 
X =.X. ; 
C = .c.; 

" State Definitions for Output Controller. 

ST_OA = "bOOO; "State #1 of AHPL Description of Figure 12.9 
ST_OB = "bOO I ; "State #2 of AHPL Description of Figure 12.9 
ST_OC = "bOlO ; " State #3 of AHPL Description of Figure 12.9 
ST _OC = "bOIl ; " Unused State 

ST _IA = " bOOO ; " State #1 of AHPL Description of Figure 12.5 
ST_IB = "bOO 1 ; "State#2of AHPLDescription ofFigure 12.5 
ST _IC = "bO I 0; " State #3 of AHPL Description of Figure 12.5 
ST_IC = "bOIl ; "State #4 of AHPL Description of Figure 12.5 

156 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

" Appendix C Con't. 

" Input Pin Names 

LCLK pin I;" Local Bus Clock:. 
QYalid pin 2;" Asserted by IMS COil when a byte is valid. 
lAck: pin 3;" Asserted by rMS COil when a byte is accepted. 
!OuCFF pin 4;" Output FIFO Full flag (active low). 
!In_EF pin 5;" Input FIFO Empty flag (active low). 
!LRESET pin 6;" Local bus reset pulse from NBIC. 

" Output Pin Names 

QAck: pin 23; .. Asserted after byte has been wrinen 
IYaljd 
WRlTE 
READ 

pin 22; .. Asserted when a byte has been read from FIFO. 
pin 2i ; .. Write signal used to derive FIFO write pulse. 
pin 20; " Read signal used to derive FIFO read pulse. 

" Declare Output for State-Machines 

ST_OUTl, 
ST_OUTO pin 19,18; 

STATE_OUT = [ST_OUTI, ST_OUTO]; 

ST _IN I, 
ST_INO pin 17,16; 

STATE_TN = [ST_INI, ST_INO]; 

@radix 16; "Set base to hexadecimal 

equat ions 

state_diagram STATE_OUT .. Output Port Controller IMS COil Output 
.. Byte transferred from IMS COil --> Controller 

" Begin AHPL Description of Figure 12.9 

WRITE = OFF; .. Disable write to FIFO 
QAck: = OFF; "Disable acknowledgment to rMS COil 
if (LRESET) then ST_OA 

else 
if (QYalid) then ST_OB 

else ST_OA; 

.. Stay in thi s state until 

.. the IMS COli asserts 
" is QYalid signal. 

157 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

" Appendix C Con't. 

state ST_OB: WRITE = !Out_FF; "Write = I when FIFO full flag is deasserted 
QAck = OFF; .. Disable acknowledgment to IMS COl I 
if ( LRESET ) then ST _OA 

else 
if (OuCFF) then ST_OB 

else ST_OC; 

.. Stay in this state if the 

.. FIFO Full Flag is asserted 

.. else go to State C 

state ST_OC: WRITE = OFF; .. Disable Write to FIFO 
QAck = ON ; .. Assert acknowledge signal to IMS COl I 
if (LRESET) then ST_OA .. Stay in this State until 

else .. the IMS CO II deasserts 
if (QValid) then ST_OC .. its QValid signal. 

else ST_OA; 

sta te ST_OD: WRITE = OFF; .. Disable Wri te to FIFO 
QAck = OFF; .. Deassert acknowledge signal to IMS COil 
if (LRESET) then ST_OA ; 

state_di agram STATE_IN .. Output Port Controller IMS COIl Input 
" Byte transferred from Controller --> IMS COli 

state ST _IA READ = OFF; "Disable Read to FIFO 
IValid = OFF; .. Deassert valid byte signal to IMS COIl 

if ( LRESET ) then ST _IA .. Stay in this State until 
else .. there is data to process 

if ( In_EF ) then ST _IA .. in the Input FIFO. 
else ST_IB ; 

state ST _IB READ = ON ; .. Read byte from Input FIFO 
IValid = OFF; .. Deassert valid byte signal to IMS COIl 

if (LRESET) then ST_IA .. Read byte from Input FIFO 
else ST _IC ; .. and goto ST _Ie. 

state ST_IC READ = OFF; .. Disable Read to FIFO 
IValid = ON ; .. Assert valid byte signal to IMS COlI 

if ( LRESET) then ST _IA "Stay in this State un til 
else .. the IMS CO II acknowledges 

if ( !IAck) then ST_IC .. the byte. 
else ST_ID; 

158 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

" Appendix C Con't. 

state ST _ID : READ = OFF; .. Disable Read to FIFO 
IValid = ON ; .. Assert valid byte signal to IMS COIl 

if (LRESET) then ST_lA .. Stay in this State until 
else .. until lAck is deasserted 

if ( lAck) then ST _ID .. by IMS CO II, then goto 
else .. either ST _ill or ST _lAo 

if ( ! lAck & !In_EF) then ST_IE 
else 

( !lAck & In_EF) then ST _lA ; 

tescvectors ([LCLK, !LRESET, QValid, !OucFF,lAck, !In_EF] 
-> [STATE_OUT, QAck, WRITE, STATE_IN, IValid, READ] 

[C,O, 0, 0, 0, 0] -> [ST_OA, 0, 0, ST_lA,O, 0]; 
[C, I, 0, 0, 0, 0] -> [ST_OA, 0, 0, ST_lA,O, 0]; 
[C, I, 0, 0,0,0] -> [ST_OA,O, 0, ST_lA,O, 0]; 
[C,I, 1,0,0,0] -> [ST_OB, O, 0, ST_lA,O, 0]; 
[C,I, 1,0, 0,0] -> [ST_OB,O, 0, ST_lA,O, 0]; 
[C, I, 1,0, 0,0) -> [ST_OB, O, 0, ST_lA,O, 0); 
[L, I, I, I, 0, 0] -> [ST_OB, 0, I, ST_lA,O, 0]; 
[C, I, I, I, 0, 0) -> [ST_OC, I, 0, ST_lA,O, 0]; 
[C, I, I, I, 0, 0] -> [ST_OC, I, 0, ST_lA,O, 0]; 
[C, I, I, I, 0, 0] -> [ST_OC, I, 0, ST_lA,O, 0]; 

. [C, I, I, I, 0, 0) -> [ST_OC, I, 0, ST_lA,O, 0); 
[C, I, 0, I, 0, 0] -> [ST_OA, 0, 0, ST_lA,O, 0]; 
[C, I,O, 1,0, I] -> [ST_OA,O, 0, ST_ill,O, I]; 
[L, I, 0, I, 0, I] -> [ST_OA, 0, 0, ST_ill,O, I]; 
[C, I, 0, I, 0, I] -> [ST _OA,O, 0, ST_IC, I, 0]; 
(C, I, 0, I, 0, I] -> [ST_OA, 0, 0, ST_IC, I, 0]; 
[C, I, 0, I, I, I] -> (ST_OA, 0, 0, ST_ID, I, 0]; 
(C, I, 0, I, I, I] -> [ST_OA, 0, 0, ST_ID, I, 0]; 
[C, I, 0, I, 0, I] -> [ST_OA, 0, 0, ST_ill,O, I]; 

end output_controller; 

159 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

REFERENCES 

Cathe rine Mikkelsen, "NeXThus Interface Chip Preliminary Specifica tion", 
NeXT Computer Inc. , published Oc tobe r 11 , 1989. 

160 

Catherine Mikke lsen, " NeXTbus Specifications Final Draft", NeXT Computer Inc., 
Reorder Prod uct #N60 10, publi shed October 11 , 1989. 

Cypress Semiconductor, BiCMOSICMOS Databook, Cypress Semiconductor, San Jo­
se California, publi shed March 1, 1990. 

Harold S. Stone, Microcomputer In terfac ing, Addison-Wesley Publi shing Company, 
February 198 3, Reading, Massachu sett s. 

Hill J . F. & Peterson R. G., Introduction to Switching Theory & Logica l Design 3ed . 
John Wiley & So ns, [nc., New York, New York, 1981. 

Hill J. F. & Pe terson R. G., Digital Svstems: Hard ware Organiza tion and Design 
3ed. John Wiley & Sons, Inc., New York. New York 1987 . 

Jnmos, The Transputer Databook 2ed . . Redwood Burn LTD Pu bl ishing Company, 
Trowbridge. 1989. 

[nmos, The Tr~ n s puter Development and ig sl-stems Databook 1 ed .. Redwood Bum 
LTD Publ ishing Company , Trowbridge, 1989. 

W. D. Peterson, The VM Ebus Handbook: A User's Guide to the IEEE 1014 and IEC 
82 1 Microcomputer Bus, VITA Publicati ons. VMEbus Intern ational Trade Associa­
tion; Scottsdale, Ari zona. 1983 . 



I 
I 
I 
I 
I 
I 

Appendix III 

Research Paper 
on 

A Benchmark 
for 

Evaluating Computer 
Performance 

in 
Flight Simulator 

Applications 



I 
I 
I 
I 
I 
I 
I 
I 

A PORTABLE BENCHMARK FOR SIMULATOR PROCESSORS 

Thomas L. Clarke 
Institute for Simulation and Training 

University of Central Florida 
Orlando, Florida 

ABSTRACT 

Training simulator software makes unique demands on computing 
hardware. The synchronous, interrupt-driven simulator computational 
environment is not well approximated by standard benchmarks. FORTRAN 
code from an T-2C trainer supplied by the Naval Training Systems Center 
(NTSC) has been used as the basis for a portable benchmark. The code was 
converted to the C language which is generally the first high-level language 
available on new processors. The C-Ianguage training simulato r benchmark 
has been used to evaluate a variety of RISC (Reduced Instruction Set 
Computer) and CISC (Complex Instruction Set Computer) architectures. 
These include the Sun SPARC, the MIPS R2000 , the Motorola 88000, the IBM 
RS/6000, the Motorola 68030 and the Intel 80386. Results are about as would 
be expected on the basis of standard benchmarks with the exception of the 
Motorola 88000, whose performance is so fast as to raise skepticism. 

INTRODUCTION 

In the last few years a new type of 
microprocessor has gained prominence. 
These new microprocessors are based on the 
reduced instruction set design philosophy. 
Controversial at first, computers based on 
RISC (Reduced Instruction Set Computer) 
processors have become very successful as 
technical workstations. Conventional CISC 
(Complex Instruction Set Computers) continue 
to remain dominant in many arenas, however. 

Because of the long life cycle of the 
embedded computer in training simulators, it is 
especially important to assess the value and 
longevity of the RISC processor. Is the RISC 
processor just a "flash in the pan" that will 
vanish five years from now in favor of a new 

generation of CISC processors, or do RISC 
processors represent an enduring change in 
the art of computer design? In addition , do the 
RISC features that serve so we ll in 
workstations offer improved performance in th e 
simulator environment? 

CISC processors are in most cases 
"code museums" which continue to be used 
because of the large body of available CISC 
software [1]. RISC practitioners zealously 
push the virtues of the RISC simplicity. In Hal 
Hardenbergh's words, there is a tendency for 
RISC processors to become "religious 
artifacts" . RISC advocates sometimes simplify 
their machines to the detriment of performance. 

This paper is a report on research 
designed to assess the utility and performance 
of RISC processors in the simulator 
environment. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

ARCHITECTURAL ISSUES 

RISC (Reduced Instruction Set 
Computer) processors offer improved 
periormance relative to conventional CISC 
(Complex Instruction Set Computer) 
architectures by trading complexity for speed. 
The simplified instruction set of a RISC 
processor facilitates the use of techniques such 
as instruction pipelining and hardwired control 
of execution that increase processor speed. 
Pipelining breaks instructions into parts such as 
load, execute and store whose execution can 
be overlapped. Hardwired control insures that 
each part of an instruction completed within 
one clock cycle , so that overall one instruction 
is executed per clock cycle . In contrast a 
CISC generally takes many cycles to 
complete one instruction. Since the clock rate 
is limited by the speed of the transistors 
produced by the given integrated circuit (IC) 
technology, a RISC will be able to execute 
more instructions per second than a CISC. 

The periormance of a RISC is not 
.totally without cost, however. Processor clock 
rates are generally faster than memory speeds 
so that a faster, more expensive cache or 
buffer memory must be inserted between the 
processor and the slower, less expensive 
main memory. The cache memory stores the 
most recently accessed data and instructions 
so that when the processor is executing a 
loop (a very common circumstance) , the 
effective memory speed is determined by the 
cache. 

Except for cost, the cache memory 
poses no problem for most types of computer 
processing. In simulator and other real-time 
systems, the cache memory can cause 
determinism problems. Due to the interrupt 
driven nature of the simulation environment, 
the necessary instructions may not be in the 
cache when an interrupt occurs. If not , the 
RISC processor must slow to system memory 
speed. The interrupt service time will then 
appear to be random since it depends on what 

other tasks the processor is executing at the 
time. 

The determinism problem can be 
avoided by not using a cache , but RISC 
processor periormance then drops to the level 
of CISC. As Figure 1 suggests , there is a 
periormance continuum depending on the 
"granularity" of the program. Granularity is a 
measure of the size of the typical fragment of 
code being executed. Tight loops have small 
granularity, whereas code driven by ex1ernal 
events as in a simulator would tend to have a 
large granularity. The code executed in 
response to an external interrupt would on 
average be far away from the currently 
executing task. 

PERFOR MPNCE 

__ ____ __ ___ ________ :~~_~!~3~ ______ ___________ _____ . 

Rise 

else 

717 

mahmemory 

'Of GRAWlAArrY 

Figure 1. Schematic view of memory access 
limited periormance of CISC and RISC 
processors as a function of problem granularity. 

It is a main goal of this research to 
determine where on the periormance curves 
typical simulators fall. If they fall to the left or 
small granularity side, then RISC processors 
have a clear advantage. If they have large 
granularity to the right then it a toss up as to 
whether RISC is better than CISC. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

In addition to issues re lated to cache 
memory, there are several other architectural 
issues that are important in determi ning the 
RiSe versus else performance trade-off. 
Stephen Furber [2] gives an excellent 
discussion of the architectures of available 
RiSe microprocessors. Briefly these are: 

o 
I i ' 

1" 
! ! 

00 ...... -

---;;u;--. 
. ~. . """,.,. 
: ~ 

." ~ 

, ..... ' ... ' . 
.... ,IN[ : ..... ""' . 

: ~~ l~: 
I 1 

t I • 

I ' 
0;1""", 1--'=--" 
"Mel' 

. ---- ." ~ 

..,..". 

:-;;riiil'i~: 
: 'noo"""O/l : 

5~j 

Figure 2. Block diagram of Motorola 88000, 
showing major features of RiSe architecture . 
Figure taken from [3]. 

1. Register Set Size. A smaller number of 
registers permits a greater variety of 
instructions to be encoded in the instruction 
word because fewer bits are needed to 
specify the reg ister. This may permit extra 
instructions better tailored to the simulator 
workload and resulting in increased 
performance. More registers , on the other 
hand permit the processor to switch 
contexts and respond to interrupts more 
rapid ly. When an interrupt occurs, the 

processor can simply switch to using an 
alternate set of registers rather than having to 
save the contents of a smaller register set. 
This rapid response may outweigh the 
penalty of the circumlocutions required by a 
smaller instruction set. 
2. Location of Floating Point Unit. Some 
RiSe processors incorporate a closely 
integrated on chip floating-point arithmetic 
unit (FPU) . In other designs, the FPU is 
a more loosely coupled off-chip unit. There 
are speed penalties associated with moving 
off-chip, but moving the FPU off-chip frees 
silicon for use as additional registers or as 
on-chip high speed memory (RAM). Again , 
the best compromise for the simulation 
environment is not clear. 
3. Bus-Structure_ Some processors use the 
conventional von Neumann single bus which 
combines data and instruction 
transmission. Other processors use the 
Harvard architecture in which a separate 
bus is used for instructions and for data . 
Separate buses permit a higher data-rate, 
but have corresponding costs in silicon area 
and hence other capabilities. 
4. Special Functions. Some RiSe 
processors feature the capability of 
expansion. The Motorola 88000 in particular 
is designed to permit the incorporation of 
user designed special-function units 
(SFUs). These SFUs are intimately coupled 
to the processor in the same way as the FPU 
and offer the option of incorporating special 
simulator specific functions in the hardware. 
5. Network Support. Adequate performance 
is presently obtained from simulators only 
by combining several computers into a 
mUlti-processor network. The same multiple 
processor configuration will be needed with 
RiSe technology. It is thus important to 
evaluate the networking capabilities of the 
various RiSe processors. One of the 
strengths of the Inmos transputer is the 
ease with which it interconnects into 
networks. Customized network interfaces 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

may be a vital component of the custom 
VLSI RISC processor developed during later 
years of this research. 
6. High Level Language (Ada)Support. 
Simulator software is broken down into 
Computer Software Components (CSC) ; 
each CSC controls one function of the 
simulation , e.g . landing gear, engine , etc. 
In the Ada language, each CSC might 
correspond to an Ada task. During an 
update cycle of the simulator, a CISC 
computer must be able to handle all the 
CSCs as interrupts occur; this may result in 
excessive overhead due to context 
switching. A RISC could operate by 
handling each CSC completely before 
beginning the next, avoiding much 
overhead. The RISC processor thus might 
be a much more efficient Ada platform. 

BENCHMARK DEVELOPMENT 

Comparing periormance between widely 
different processor architectures is a common 
problem. The general computing world has 
developed a variety of benchmark programs 
whose periormance on a target machine is 
widely accepted as a measure of the 
periormance to be expected from that machine. 
Two of the most commonly used are the 
dhrystone benchmark and the whetstone 
benchmark. Omri Serlin [3] discusses both of 
these benchmarks in detail. 

The dhrystone benchmark is designed to 
measure the periormance of a processor in 
general computing applications. It is a 
synthetic program that exercises the integer, 
character and control instructions of a machine. 

The Whetstone benchmark is designed 
to test a machines ability to periorm numerical 
calculations. The Whetstone benchmark was 
criginally coded in Ada but has been translated 
to FORTRAN and C. The Whetstone 
benchmark consists of multiple loops 
containing matrix, and transcendental 

mathematics operations. Many of the 
calculations are embedded in procedure 
(subroutine or function for FORTRAN and C) 
calls to avoid optimization. In a fairly simple 
benchmark, the calculations are necessarily 
repetitive and trivial and a optimizing compiler 
sometimes will optimized them out of 
existence. 

No benchmark is designed specifically to 
measure periormance of a processor in the 
simulator environment. As part of a Florida 
High Technology and Industry Council 
sponsored project, the Institute for Simulation 
and Training (1ST) has taken on the 
development of such a benchmark. 

This new benchmark must exercise the 
same features of a processor that are 
exercised in a simulator. At the same time the 
benchmark must be reasonably portable 
between various processors. This two 
requirements conflict , as it is impossible to 
exercise the hardware interrupt capabilities of a 
processor with a portable benchmark. The 
details of interrupt servicing are intimately tied 
to each specific processor. 

An approach was taken that has proven 
useful at the Naval Training Systems Center 
(NTSC). In developing a benchmark for in­
house use, NTSC took code from a T-2C 
training simulator and modified it to remove the 
machine-dependent interrupt-driven portions. 
The interrupt driven portion was replaced with a 
main routine that executes a main control loop 
which corresponds to the simulator frame time . 
Within each iteration of the loop the various 
service routines are called on a quasi-random 
basis. This approach has the advantage that 
the operations periormed by the processor 
running the benchmark will be identical to the 
operations periormed in the simulator. While 
the absolute periormance will differ between 
the simulator and the benchmark, relative 
periorrnance measures between processors 
should be the same for simulator and 
benchmark. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Bill Rowan of NTSC kindly made the 
FORTRAN source code for benchmark 
available to 1ST. To further increase the 
portability of the benchmark, it was decided to 
translate from FORTRAN to C. The C 
language is generally the first high-level 
language available on a new processor, so that 
benchmarking can be carried out at an early 
date. This decision has proven a good one at it 
has made it possible to run the benchmark on a 
wider range of machines. 

The FORTRAN code was converted to 
C using the commercial FOR_C translator 
from Cobalt Blue, Inc. FOR_C was very useful 
and took care oi most of the mechanics or 
translation such as converting SUBROUTINES 
to functions and the like. Nevertheless, a fair 
amount of hand coding had to be done as the 
code dates from the mid-70s and was originally 
used many techniques to adapt it to small host 
computers such as the PDP 11 /45. The most 
troublesome technique was the use of 
EQUIVALENCE to establish correspondence 
between data arrays with two different names. 
These techniques are discouraged, if not 
forbidden, under modern software development 
guidelines. 

The original program structure, 
consisting of some 117 separately compiled 
program modules, was retained. While many 
modules are short and could · have been 
combined into a single C function, this would 
have opened the danger of having some 
calculations optimized out of existence. Also, 
as noted above, many small modules 
separately compiled and linked together and 
then called quasi-randomly is about as close to 
the true interrupt driven simulator environment 
as possible as can be gotten in a portable 
benchmark. 

The control program was modified to 
automatically fly four scenarios that have 
been used at NTSC for benchmarking. These 
scenarios are basically level flight with vanous 
step or impulse inputs to the control surfaces. 
At the time of writing the benchmark compiles 
error free and runs with little trouble on a 
variety of machines. It, however, crashes 
before the complete test run is complete, 
probably due to some lingering FORTRAN to C 
conversion problems. After the crash , the 
simulator resets and continues flying . ThiS 
behavior should not influence the relative utility 
of the benchmark timings. The computations 
needed to crash and reset are . also 
representati ve of simulator computational 
loads. Before the benchmark is released to 
industry , th is final bug will be exterminated , 
however. 

PERFORMANCE MEASUREMENTS 

Before discsussing the results, the units 
of the simulator benchmark need to be named. 
No euphonious combination involving. sto~e 
came to mind, but then the alleged bnck-like 
aerodynamics of certain aircraft suggested: 

brick·bat \'brik-,bat\n 
[bdck-+ br (lump, [ngrnent» ) 
(1563) . 
1: a fn.t .. 1n:.'l: of a hard material (as ! brick); esp: one used. DJi II. Inlssfie 
2; a."l. UIlcemp1i::n~:l.tary remark 

Brickbat has the requisite two syllables and the 
missile-like connotation of definition 1 is 
appropriate. In addition, definition two is 
relevant to those processors that don't do well 
on the benchmark. 

The benchmark was tested on all the 
readily available workstations at 1ST. These 
machines included two conventional CISC 
machines and four RISC machines. Results 
are shown in the table along with published . I 
whetstone and dhrystone ratings. Brickbats wi!. 
be defined as 1000 divided by the benchmark 
execution time. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

PERFQRMANCE TABLE 

Processor dhrystones whetstones brickbats 

RS/6000 60700 27250 27.4 

88000 34000 6676 108.7 

SPARC 21700 5184 11.6 

MIPS 18400 5757 9.2 

68030 5720 1477 4.5 

80386 3000 546 3.9 

The timings were performed by running 
the brickbat benchmark under control of the 
UNIX /bin/time program which reports the 
amount of time actually used by the user 
program while executing. 

Beginning with the slowest, the first 
CISC machine was a Hewlett Packard OS/16 
using the Intel 80386 processor. The 80386 is 
a standard 32 bit "code museum" that derives 
from the PC tradition. It ran at 16 MHz with 
100 nsec memory. 

The second-slowest CISC machine was 
a NeXT workstation using a Motorola 68030 
processor. It ran at 25 MHz with 100 nsec 
memory. Apparently the memory speed 
prevented the 68030 from benefiting much from 
its faster clock rate. 

The four RISC workstations were a SG 
4D70GT using the MIPS R2000 processor 
running at 16.7 MHz, a SUN Sparcstation using 
the SPARC processor at 20 MHz,a Data 
General Aviion using the Motorola 88000 at 16 
MHz, and an IBM RS/6000 workstation using 
IBM's RISC chipset running at 25 MHz. Little 
technical information is available about these 
machines beyond the clock rate. 

BriCk.balS 
J. 

2. -

:J 
x.M'K 

,. 

X-SUN 

X· MPS 

, 
2. 3. 

)('18M 

, , , 
•• 5. •• ,. 

OrryslonU. 

Figure 3. Comparison of dhrystone benchmark 
results with Brickbat results. 

The performance of the various 
processors ranged from a low of 3.9 brickbats 
(256 seconds execution time) for the 80386 to 
a high of 108.7 brickbats (9.2 seconds) for the 
88000. As discussed below, the figure for the 
88000 seems anomalously low, so that the real 
range was probably up to the 27.4 brickbat 
(36 .5 seconds) value of the IBM RS/6000. 

Both the dhrystone and the whetstone 
bench marks were good predictors of the 
brickbat value. Figure 3 plots brickbats versus 
dhrystones. When the Motorola 88000 is 
excluded (off scale in figure 3), the correlation 
between either dhrystones or whetstones and 
brickbats is greater than 90%. This is not 
surprising since all processors tested include 
floating point hardware so that there is a good 
correlation between dhrystones and 
whetstones. Figure 4 plots brickbats versus 
whetstones. 

The results for the Motorola 88000 seem 
anomalous. Its performance is better by a 
factor of nearly eight compared to what would 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

be expected on .the basis of its dhrystone or 
whetstone rating . No reasons for the anomaly 
have been identified. The flying time of the 
benchmark was varied to perhaps isolate a 
time anomaly in the Aviion , but the resu lts 
tracked as if the 88000 is truly very fast. 

The re only feature of the 88000 
architecture that might account for this speed is 
the Harvard style of memory access. As figure 
2 'shows, the 88000 has two complete paths to 
cache memory: one for data and one for 
instructions. It is difficult to see how this dual 
bus architecture would account for more than a 
factor of two in performance , however. 

Possibly the combination 01 Harvard 
architecture and a separate autonomous 
floating point unit enable the routine calling and 
return code to effectively overlap calculations. 
Since the brickbat benchmark consists of many 
calls to small routines which are calculation 
intensive, th is may result in a large speed-up 
factor. The IBM RS/6000 architecture also 
features multiple paths from cache (DCU in 

Brickbats 
30 ~ BeK 

20 

X-SUN 

10 X-M PS 

10 20 
Whetstones 

X·IBM 

30 

Figure 4. Comparison of whetstone benchmark 
results with Brickbat results. 

figure 5) to the instruction processor (ICU) and 
the floating (FXU) and fixed (FXU) arithmetic 
units. The IBM FPU is described as tightly 
coupled, however, so perhaps something about 
the simulator instruction mi x favors the 88000. 

CONCLUSIONS 

Training simulator software makes 
unique demands on computing hardware. 
The synchronous, interrupt-driven simulator 
computational environment is not well 
approximated by standard benchmarks. The 
brickbat benchmark reported here which is 
based o~, code from a T-2C trainer should 
provide an approximation of that environment. 

The C-Ianguage brickbat train ing simulator 
benchmark has been used to evaluate a variety 
of RISC (Reduced Instruction Set Computers) 
and CISC (Complex Instruction Set 
Computers) architectures. These include the 
Sun SPARC, the MIPS R2000, the Motorola 
88000, the IBM RS/6000, the Motorola 68030 
and the Intel 80386. Results are as expected on 
the basis of standard benchmarks with the 
exception of the Motorola 88000 , which seems 
too fast to be true. 

While the Motorola 88000 thus seems to 
be the best processor tested for simulators. The 
excessive amount of its performance increment , 
raises doubts as to whether this performanc8 
would be realized in an actual simulator. 

Many interesting processors, such as 
Intel's i960 and 80486, Motorola's 68040 , 
AM D's 29000, etc., have not been tested . Some 
such as the Inmos transputer and the intel i860 
will be tested in the near future. In addition thi s 
benchmark will be made available to industry 
and shou ld prove extremely useful in 
evaluating computers for use in simulators. 
The benchmark will be offered to the 
Systems Performance Evaluation Cooperative 
(SPEC) for inclusion in their suite of 
benchmarks. 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Figure 5. IBM RS/6000 Architecture. From 
Bakoglu et al [5] 

REFERENCES 

[1] Hardenbergh, Hal. "Religious Artifacts and 
Code Museums" , Dr. Dobb 's Journal, 15,2,13-
131 . 1990. 

[2]Furber, Stephen B. VLSI RISC 
Architecture and Organization, Marcel Dekker, 
New York, 1989. 

[3]Motorola. MC88100 RISC Microprocessor 
User's Manual, Prentice Hall , New York, 1990. 

[4]Serlin, Omri . "MIPS, Dhrystones and Other 
Tales" in Reduced Instruction Set Computers, 
edited by William Stallings, IEEE Press , 
Washington , 1986. 

[5] Bakog lu , H.B., G.G. Grohoski, and R.K. 
Montoye , ''The IBM RISC System/6000 
processor: Hardware Overview", IBM J. Res 
and Dev, 34, 1, 12-22. 

ACKNOWLEDGEMENTS 

Thanks to Bill Rowan of NTSC for 
providing the flight simulator code. 

This research was funded by the 
Florida High Technology and Industry Counci l 
(FHTIC) as part of a project to evaluate the 
utility of RISC processors in simulator,; . 

ABOUT THE AUTHOR 

Thomas Clarke is a Senior Scientist at the 
University of Central Florida's Institute for 
Simulation and Training where he serves as 
Principal Investigator on a variety of simulation 
and training related projects. He has a 
doctorate in applied mathematics from the 
University of Miami. 



I 
I 
I 
I 
I 

Appendix IV 

Technical Portion 
of 

Proposal 
to DARPA 
Based on 

Technology Developed 
Under FHTIC 
Sponsorship 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Volume! • Technical 

DARPA BAA #90·15 
(Stategic Computing Program) 

Optimal Virtual World Displays 

Principal Investigator: 

Thomas L. Clarke 
Institute for Simulation and Training 

University of Central Florida 
12424 Research Parkway, Suite 300 

Orlando, FL 32826 
(407) 658-5030 

clarke@ucf-cs.ucf.edu (internet) 
TCLARKE@UCF1 VM (bitnet) 

Administrative POC: 

Irene Martin 
Division of Sponsored Research 
University of Central Florida 

PO Box 25000, Orlando, FL 32816 
(407) 823-3778 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Table of Contents 

B. SUMMARY of INNOVATIVE CLAIMS .................... .... .... .. ... .... .. .... ..... ... ........ 2 
C. DELIVERABLES .. .... ... ................... ...................... ....... .. .... ..... ...... .. ..... ........... 3 
D. SCHEDULE and MILESTONES ....... ... ............. ......... .... .. ......... ..... ... .... .... ... .. 4 
E. PROPRIETARY INFORMATION .. ....... .. .. ... ..... .... ... .. ... .. .. .... ................ ...... ... .. 5 
F. STATEMENT OF WORK ....... .. .......... .. .. ............ .. ... ........ ............ ..... .. ..... ... ... . 6 
H. RESULTS, PRODUCTS, and TRANSFERABLE TECHNOLOGy ..... ............ 8 

The Virtual Reality Explorer 
The Programmer ... .... ........ ... ... ...... ... ......... ...... ...... ....... .......... ... .. .... ..... .. .. 8 
Advanced Application Developers .... .......... .. ...... ... .... ..... ........ ...... ..... ..... . 8 
The Trainee ... .. ... .... .... ... .............. .. ... ..... .... ... .... ......... .. ... ................ ...... .... 8 
The Teleoperator. ......... ...... .. ........ .............. ......... ..... .. ........ .. ............... .. ... 9 
Technology Transfer to Other Products .............. ... ...... ... ........ .. .. .......... ... . 9 

H. TECHNICAL RATIONALE ...................................... ... ... ................................... 10 
The Problem .... ............... .. ............. .. ............... ... .. .... .. ..... .............. ..... .... ... 1 0 
The Solution ...... ... ... ... ....... ... ..... .......... ... .. ... ... ..... ... ......... .. .... ...... .... ......... 10 
Optical Desig n ..... ..... .. .. ...... ... , ............ ... ... .... ..... ................ .. ...................... 12 

Design Goals ............. .......... ....... .................. .... ... ...... .. ................... 12 
A Sample Optical Design ................... ... .. ....... ..... ...... .... ................. 12 

Warping Algorithms....... ............................ ... ...... ... .. ........... ........... ..... .... 15 
An Example of Image Warping.......... ... ....... ....... .. ... .... .. ... ...... ............. ... 20 
Research and Implementation Plans........ ..... ... ....... .. ... .... ... ... ... ............ 24 
Comparison with Other Research........... .. ....................................... ..... 25 
Summary ..... ... ... ...... ...... .... ...... .... ........... .... ... .. .... ... .. .... .. ....... ........ ......... .. 26 

I. PREVIOUS ACCOMPLISHMENTS and QUALIFiCATIONS .......................... 27 
Related Research ................................. ............................................. ...... 27 
Significant Papers............................ ............. .......... ......... .... ....... ... ........ . 27 
Biographical Sketch... ... .. ..... .. .. ... ..... .... ... ..... ..... ... ... ........ .... ...... ......... .. ... 28 
Publications..... ... ...... ... ..... .... . ...... ... .. . .. ... ... ..... ... .. ...... .... . ........ .... ....... .... .. 28 
Patents... .. .. ... .. ... .... .... ..... ...... .... ... ........ ..... ....... .. ................. ... ..... .... ...... .. 30 
Proposals Pending... ........ .. ............... ..... ............ ........ .. ................ .. ........ . 30 
1ST Facilities .. .. ...... ..... ......... .. ..... .. .. ..... .............. ...... ..... ...... .... .... ........ ..... 30 

J . BIBLIOGRAPHy .... .. .... .. ...... ...... ....... ... .... ... .. .......... .. .... .. ....... .. ... ....... ....... .. ... 32 

List of Figures 

Figure 1. Visual resolution of the human eye.......... .. ........................................ 11 
Figure 2. Example of a vari-pixel optical system design...... .............. .... ........... 14 
Figure 3. Distortion of optical system in Figure 2 ............ ................................. 15 
Figure 4. Pre-distortion of a rectangular grid.... .. .......... .. ............ ...... ................ 16 
Figure 5. Mappings involved in vari-pixed imaging.................................... ....... 19 
Figure 6. A P38 fighter plane........ ....................................................... .............. 21 
Figure 7. Pre-distorted image of P38........................ ..... ............ ........ .. ... .......... 22 
Figure 8. Simulated view of P38 through distorting optics......... ... .................... 23 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

B. SUMMARY of INNOVATIVE CLAIMS 
.. 

Small low-power visual displays for use with embedded micro systems 
applications such as virtual reality require finesse rather than the brute force approaches 
used for conventional visualizat ion displays. Research at 1ST funded by the State of 
Florida has identified the utility of differential-geometric concepts in algorith ms for 
generating graphics that are optimally matched to the characteristics of the human 
visual system. 

Differential geometric techniques together with distorting optics will be used to 
optimally utilize scarce embedded microsystem computational resources. In princip le , 
two million properly distributed pixels are sufficient to feed the mil lion or so fibers in the 
optic nerve, producing a perfect display. In practice , a 512 by 512 pixe l display with 
proper optics and head position feedback will produce a convincing illusion of reality. 

Significant optical size and weight savings can be realized by designing the optics 
and the distorting algorithms as an integrated system. For example , chromatic 
aberrations can be corrected by sizing the three images in a co lor display to match the 
optics. Conversely, the proper choice of optics can result in substantial savings of 
computational and display hardware. Distort ion can be produced easily with simple 
optics saving the need for display pixels and computation cycles at the edge of the field 
of view. 

The display system to be developed at 1ST will have variable pixe l sizes across 
the image. This vari-pixel display will use differential geometry as the math ematical 
foundation of its image transformation algorithms. Recent work has made it clear that 
Lie transformation groups are the most appropriate mathematics for visual 
transformations. This is no accident ; as in physics, transformation group symmetries 
provide the best expression for models of physical reality. 

The display system would consist of image warping algorithms together with 
special optics that would give a variable resolution image matched to the eye's 
characteristics. As mentioned above and detailed in the Technical Rationale, designing 
the optics in conjunction with the algorithm can lead to simplifications in the optics, 
saving cost and weight. 

The display system developed as part of this research will be truly opti mal in that 
it will require the least number of pixels possible for a wide field of view, full-resolution 
image. The demonstration system will utilize graphic workstation hardware and custom 
designed optics to yield throughput equivalent to tens of thousands of polygons per 
second. Adaptability of the vari-pixel concept to higher performance systems is 
guaranteed by the local nature of the Lie transformation groups used. Their locality 
ensures that the warping algorithms can be adapted to the special purpose VLSI 
parallel processing hardware required for the highest performance. 

Applications that will benefit vari-pixel display technology include train ing , 
telepresence, virtual reality, and scientific visualization. 

2 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

C.DELIVERABLES 

Year 1: 

1. Reports detailing the applicability of group-theoretic transforms to image 
generation will be prepared. 

During the first year, theoretical and experimental studies supported by 
computer modeling will be used to establish an appropriate design and 
architecture for the image generation system. The design ideas will be testedusing off­
the-shelf computer hardware (e.g. Amiga 3000) and "Sony Watchman" type displays 
with bread-board optics. 

These reports will cover the background concepts of group theory and 
differential geometry in sufficient detail for someone skilled in image display but 
unfamiliar with the theory to be able to make use of the research. 

2. Copies of software developed to test group-theory based image generation 
concepts will be delivered. 

The software will be programmed in the C language, and runon the computer 
hardware which generates displays on the "Watchmen". These displays will be viewed 
through the bread-board optics. 

Year 2: 

1. Reports detailing the design specifications of a high performance vari-pixel system 
using workstation-class graphics hardware, state of the art displays and custom optics 
will be prepared. . 

NeXT has announced a color graphics coprocessor for the NeXT using the Intel 
i860 processor. This system (or a system of equivalent performance) will be used to 
drive the display. Performance enhancement by special purpose co-processors will be 
considered. Possible co-processors include the Motorola 56001 DSP in the NeXT or 
arrays of Inmos transputers. The display will be state-of-the art compatible with use as 
an eye-phone ; helmet-mounted-display quality CRTs and fiber optic displays will be 
considered. 

2. Test results detailing progress in implementing the high performance vari-pixel 
display will be submitted. 

Year 3: 

1. Reports detailing the high-performance vari-pixel display will be completed. These 
reports will contain sufficient detail for the system to be reproduced by someone skilled 
in the art. 

2. Detailed software and hardware designs for the vari-pixel display will be submitted. 

A number of refereed papers will also result from this research effort. 

3 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

D. SCHEDULE and MILESTONES 

This project is inherently a mUlti-year project. Aher a year of theoretical and 
experi mental groundwork, two years will be needed to develop a working prototype 
of an optimal image display system. 

The first year is devoted to theoret ical and experimental studies of how best to 
apply group-theoretical ideas to image display. The broad outlines are clear, as can 
be seen in the Technical Rationale section, but there are many details that need to 
be worked out before the prototype is implemented. The budget for the first year will be 
$98,851 . 

During the second year, implementation of the display system will begin in 
earnest. The system sohware will be coded, and the prototype hardware assembled. 
The system will be debugged and preliminary testing done. The budget for the second 
year will be $146,988. 

In the third year, the group-theoretic display will be tested , refined and made 
ready for transition to general use. The budget for the third year will also be 
$115,092K. 

Total project cost will be $360,931 . 

Month 

Year 1 

Report 
Theory 
Optical Design 
Experimentation 

Year 2 

Year 3 

Report 
Coding 
Construction 
Testing 

Report 
Testing 
Refinement 
Implementation 

123456789 10 1112 

1-----------------------1 
1---------------------1 

1----------1 

1--------------------------1 
1--------------- ---- -----1 

1-----------------1 

1---------1 

1-----------------1 
1-----------------1 

4 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

E. PROPRIETARY INFORMATION 

There is no proprietary information needed to support this research . 

Any inventions or patentable software that result from this project would be 
subject to applicable Florida State University System and Federal disclosure 
regulations. 

5 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

F. STATEMENT OF WORK 

The Institute for Simulation and Training (1ST) of the University of Cenlral Florida 
(UCF) will conduct research designed to develop a novel , high-performance display 
system (vari-pixel display henceforth) in response to DARPA BAA 90-17 for research 
into the field of embedded microsystems. 

This research encompasses the following tasks: 

Year 1: 

Conduct theoretical and experimental studies supported by computer modeling 
to establish an appropriate design and architecture for the image generation system. 
The design ideas will be tested using off-the-she lf computer hardware such as Amiga 
3000 and "Watchman" type displays with bread-board optics. 

Prepare a report on the resu lts of these studies including sufficient detail on the 
background concepts of group theory and differential geometry that someone ski lled 
in image display but unfamiliar with the theory to be able to make use of the 
research. 

Software to test group-theory based image generation concepts. This software will 
be written in the C language, and will run on the computer hardware which generates 
displays on the "Watchmen". These displays will be viewable through bread-board 
optics. Copies of this software will be be made available to the sponsor. 

Year 2: 

Produce a detailed design for a vari-pixel display with workstation-class performance, 
state-of-the-art resolution and custom optics. Performance will be equal to that 
expected for the NeXTdimension color processor using the Intel i860 processor. The 
display will have the highest state-of-the art reso lution compatible with use as an eye­
phone ; helmet-mounted-display quality CRTs and fiber optic displays wil l be 
considered. Optics will be of a solid and robust design using quality components. 

The software developed to implement the pre-distortion will be documented so that it is 
useful to other developers. 

Details of the design and results of testing the components will be reported to the 
sponsor. 

Year 3: 

The high-performance vari-pixel display will be integrated and fully tested; its 
performance will be evaluated as a display for virtual reality, as a workstation 
visualization display, as a display for telepresnece and as a display for training. 

6 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

The detailed design of the vari -pixel display will be delivered to the sponsor. 
Recommendations for future directions of research and development will be made to th e 
sponsor." In addition, copies of papers and conference proceedings resulting from the 
work will be delivered to the sponsor. 

7 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

H. RESULTS, PRODUCTS, and TRANSFERABLE TECHNOLOGY 

The vari-pixel display technology to be developed as part of this research will be 
of potential benefit to many users of computer graphics displays. The following 
paragraphs describe how the technology will impact various users. 

The Virtual Reality Explorer 

A user would find the vari-pixel displays developed under this project to be a 
revelation. Upon donning the phones, the user would find a vast difference in 
performance compared to current eye-phones. The visible field-of-view is much larger 
than that in current eye-phones; at the same time, the image appears to be sharper than 
any currently available. The weight of the eye-phones is also reduced and they are 
more comfortable to wear. Processing response delay artifacts are reduced compared 
to other visual systems of comparable apparent resolution and field of view. 

On the whole, the illusion of virtual reality is much stronger. 

The Programmer 

The software tools provided with the vari-pixel display permit the use of many 
sources of visualization data. Not only are polygonal data bases usable, but the use of 
Lie group techniques permits the use of photographic data as well. 

Efficient use is made of advanced VLSI co-processors so that the host computer 
is not overly burdened by graphics tasks. 

Advanced Application Developers 

The advanced developer finds the technology to be ideal for incorporation into 
portable information systems. The algorithms are a good match to the capabilities of 
VLSI co-processors. 

Available pixels are deployed in a manner designed to match human visual 
system characteristics; this minimizes overall system cost for given performance level. 

The Trainee 

A trainee using vari-pixel displays would experience a much more realistic 
simulation of the training environment. The wider field-of-view would contain more of 
the cues used in actual performance. The trainee's peripheral vision would be 
exercised to an extent not possible with current technology; this would avoid false 
training in which the trainee might learn to ignore peripheral cues. 

8 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

The Teleoperator 

The wide field of view of the vari-pi xe l display would benefit an operator 
working remotely through telepresence. As with a trainee, peripheral cues are very 
important to someone working remotely through a data link. 

The pre-distortion and optical rectification used in the vari-pixel technique is 
also a form of data compression. The operator will be able to receive the same 
amount of visual information over a much narrower bandwidth signal. 

Technology Transfer to Other Products 

The vari-pixel display is an enabling technology. By providing a relatively low­
cost but high resolution and wide field of view display, the vari-pixel display will open up 
a potentially wide range of applications. The uses listed above are those that are 
conventionally associated with virtual reality and like technologies. The verisimilitude of 
the vari-pixel display is likely to suggest other applications. 

Various possibilities include: 

" medical telepresence - like Fantastic Voyage 

" telepresence in manufacturing - multiplying the skilled worker 

" consumer applications - if the price falls enough. 

9 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

H. TECHNICAL RATIONALE 

The Problem 

Virtual reality is a new technology with "potential to radically alter the way many 
people interact with computers" (VanName and Catchings, 1990). The virtual reality 
user is provided with a direct sensory input to the computer such as a data gloves and 
other position sensors. In turn the computer generates a visual scene that the user 
views through a head mounted display, or eye-phone. The user's interaction with the 
computer is direct and intuitive and avoids the awkward bottleneck found in other 
approaches to visualization of data. 

Achieving the promise of virtual reality requires that the visual display be realistic 
enough so that the user can suspend disbelief. Th is level of reality requires a display 
that updates rapidly enough to avoid jerky motion as the user moves about in the virtual 
world. The display must also have high enough spatial resolution to present a realistic 
appearance free of aliasing and other sampling artifacts. Telepresence makes similar 
demands on display technology. 

Achieving speed and resolution requires large computational resources and 
exotic display technology. It is the goal of this research to reduce the amount of 
computation required and to improve the performance of conventional display devices in 
virtual real ity applications. 

An ideal virtual reality display would present the user with a full visual hemisphere 
at the human eye's resolution of one arc minute. To achieve full resolution on this 
hemispherical display (2Jt steradians) would require 75 million display elements; this 
resolution is beyond any technology easily affordable for the foreseeable future. 

Updating a 75 million pixel display fast enough to avoid flicker and other motion 
artifacts is also beyond present capabilities. Even if only a few instructions are required 
to update each pixel, a 30 Hz update rate would require in excess of 10,000 MIPS. 
Only experimental supercomputers currently achieve this rate of computation . 

The Solution 

A solution to the problem of virtual reality displays is suggested by the fact that 
the human visual system does not have uniform resolution across the field of view. As 
Figure 1 shows, the resolution in the central or foveal area is an arc minute, but drops 
fairly rapidly away from the fovea. Sixty degrees, approximately one radian, from the 
fovea the resolution has dropped to only 20 minutes of arc. Approximating the eye's 

resolution curve as e3$ (where $ is the angle from the fovea in radians) and integrating 
gives only 7 million resolution elements over the full hemisphere. That is, the effective 
area over which the eye has 1 minute arc resolution is .65 steradians or -2000 square 
degrees. 

10 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

20 

§ 
~ 

=! 
i5 15 
Vl 

'" '" .. 
~ . 
0-

~ ,~ 10 
~~ .. 
::J 
:::> 

5 ::J 

~ 
:>: 

, , 
• 

, , 
• 

o 10 20 lO 40 ~O 50 

DISTANCE or TARen 'ROI.! 
f iXATION (o l orus) 

Figure 1, Visual resolution of the human eye (Boff et ai, 1986), 

Seven million pixels is still large for current display technology, but if the 
resolution is reduced to 2 minutes of arc, the pixel count reduces to about two million 
pixels. This reduced resolution corresponds to that of a typical workstation screen with 
a .3 mm color mask viewed at a distance of 600 mm or 24 inches. Two million pixe ls is 
within the range of today's large display technology. Small displays such as those used 
for eye-phones are more limited, but the two million pixel level should be reached in the 
near future. 

Generating a display of 2 million pixels at a 30 Hz update rate must be done 
efficiently, Even efficient algorithms will require hundreds of MIPS to update the display, 
This problem can be solved by using VLSI processors together with paralle l processing 
techniques. Single chip processors r.aw achieve tens of MIPS, so that a system with a 
reasonable degree of parallelism will be able to update the display. The display 
algorithms, of course, must lend themselves to decomposition into parallel executing 
sub-tasks. 

It is the goal of this project to develop a vari-pixel display that can practically 
achieve non-uniform distribution of resolution matching the human eye. The vari-pixel 
display will have two components. The first component is an optical system which 
magnifies the image of the display device in a controlled non-linear fashion to achieve 
the desired distribution of pixel resolution . The second component is algorithms for 
producing appropriately pre-warped images on the display. The pre-distorted image 
will have correct perspective when viewed through the optics, The details are 
discussed in the next two sections. 

11 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Optical Design 

Design Goals 

The vari-pixel optics must meet several design diverse goals. They must provide 
non-linear magnification approximating of the inverse of the human visual acuity curve 
(Figure 1). The optics must not introduce any perceptible aberrations into the image. 
Also , the optics must be light and compact enough for use as an eye-phone worn by the 
virtual reality user. 

Fortunately, distortion is fairly easy to achieve. Consider the distorted 
hemispherical field of view achieved by the simple optics in the common door peep-hole 
viewer. Also it is fairly easy to equal the human eye's resolution; the diffraction limited 
design of the Hubble telescope is not needed. A minute of arc on the optical axis, falling 
to 20 minutes of arc 60 degrees off-axis can be easily achieved as the fo llowing 
"xample shows. 

A Sample Optical Design 

When designing an optical system for direct vievJing by the human eye there are 
a variety of optical effects that prove useful (Clarke, 1983): 

D Parallel beams of light (infinity focus) refracted by a plane surface are free of all 
aberrations except distortion and lateral chromatic aberration; think of a window or 
prism. 

D A spherical surface with a pupil at the center of curvature has only spherical 
aberration, longitudinal chromatic aberration, and curvature of fie ld ; this is the 
design principal of the Schmidt camera. 

D An optical element located at an image plane introduces only curvature of field; 
this effect can be used to flatten an otherwise curved field. 

The optical system for the vari-pixel display shown in Figure 2 makes use of 
these optical effects. Starting with the eye, parallel light passes through the plane 
surface nearest the eye. This surface introduces lateral chromatic aberration, and 
distortion. Leaving consideration of the lateral chromatic aberration for later, the 
distortion can be desirable. 

To get a feel for the magnitudes involved, consider a system using lucite plastic. 

The index of refraction is then n = 1.5, and a field of 2Ae = 1800 at the eye, is 

reduced to 2Ao = 820 

law: 

after passing through the plane surface according to the sine 
.~ . 

12 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

sin Ae = n sin Ao 

Locally, th e pixels at the edge of the field are stretched according to 

dAe/dAo = n cosAd cosAe 

At a field angle of 2Ae = 1600 , to avoid the singularity at 180°, the resolution of the 

image reduces by a factor of nearly 6 at the field edge. This is a good first 
approximation to the characteristics of the eye and permits the limited number of 
pixels available in displays to be stretched over a wider field. 

A spherical surface is beyond the plane input surface. The radius of th is 
surface is chosen so that the eye's pupil at apparent distance nE is located at its 
center of curvature. Therefore neglecting thickness, R - nE. This surface thus 
focuses upon a surface at distance R/(n-1) - nE/(n-1) introducing only curvature of 
field , spherical and long itudinal chromatic aberrations. The seriousness of the 
spherical and chromatic aberrations depends on the focal length and are negligible if E 
is sized for eye-phones. With a 2 inch (50 mm) diagonal display, E = 16.7 mm 
would be appropriate (focus = diagonal). The longitudinal chromatic aberration 
would be .67 mm. With a 3 mm eye pupil (f/16) the chromatic blur would be 1.43 
minutes of arc. This is comparable to the resolution of the eye, and smaller than the 
limit set by pixel number of practical displays. Third order aberration formulas 
(Welford, 1974) show that spherical aberration is likewise unimportant. 

Curvature of field can be removed with a plano-concave lens located near the 
image plane so that it introduces no new aberrations. For a flat field , the Petzval sum 
must be zero ; if this lens is made from the same material as the first, its radius must be 
-R. The flat field requirement can be relaxed considerably since the eye has low 
resolution at the edge of the field of view. In particular, 6 mm of focus shift can be 
tolerated at the field edge for the 3 mm exit pupil (f/16) assumed above. 

Thus two lenses with proper curvature and location leave only lateral 
chromatic aberration, and distortion as significant aberrations. Distortion is desi rab le for 
the vari-pixel display system, but lateral chromatic aberration is not. At the edge of a 

160° field, the edges of the blue and red (F and C lines) images will be separated by 

1.78°. This is several times the eye's 20 minute field-edge resolution and is 
unacceptable. Even though the eye is relatively insensitive to color at the edge of the 
field of view, the colored fringes caused by lateral chromatic aberration will be 
perceived as a degradation in image sharpness. 

For a monochromatic display, the lateral chromatic aberration can be minimized 
by using light over only a narrow range of wavelengths. For the more desirable case of 
a full-color display, lateral chromatic aberration can be removed in software. Separately 
warping each of the red, green and blue display images according to the optical 
system's color-dependent distortion will result in a perceived image that is free of lateral 
color. This solution requires extra computation, of course, but this can be minimized as 
will be seen in the section on algorithms. 

13 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Figure 2. Example of a vari-pixel optical system design. 

Pre-d istorted 

Pre-color nberro..led 

Image 

L CD Displ ay 

"Wo...tchITlo.n" 

This sample vari-pixel optical system discussed above distorts a rectangular grid 
as shown in Figure 3. Pixels at the edges of an image are magnified so that their 
effective resolution is reduced relative to the center. This variable magnification 
provides an approxirr.ation to the desired curve in Figure 1. 

A significant goal of this research is to develop an optimized optical system that 
closely approximates the desired vari-pixel resolution curve. Several design options will 
be explored. Rotier (1989) discusses some of the optical possibilities for helmet-
mounted displays. 

Among the possibilities that will be explored is the use of multiple lenses near the 
eye so that their distortion contributions are compounded. Mirror optics may have prove 
advantageous as well since they are inherently free of chromatic aberrations. Half­
silvered mirrors can be used to fold the optical path reducing the size of the overall 
system. Fresnel lenses could useful in reducing the size and weight of the optics. 
Fresnel lenses are thin plates of optical material embossed with concentric grooves. 
This results in considerable weight savings relative to a thick spherical lens. The 
texture of a Fresnel lens should not be a problem as long as the grooves are small 
compared to the eye's pupil size. 

14 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Pincushion 

! I 
I 

I \ 

\ 

Figure 3. Optical system in Figure 2 warps a uniform grid of straight lines into the 
hyperbola-like curves in the figure. 

Warping Algorithms 

In order for the vari-pixel display to provide a view of the virtual world with correct 
perspective, the image on the display device must be pre-distorted with the complement 
of the pattern shown in Figure 3. There are many well-know techniques for warping 
images. Warping algorithms share many tech niques with image generation. The 
following is :l brief discussion of some recent work. 

In general, there are two broad approaches to generating images: ray 
tracing and polygonal rendering. Andrew Glassner of Xerox PARC (Palo Alto 
Research Center) has provided a broad survey of the field. Within Glasser's 
survey, a particularly valuable work is the stochastic sampling approach which 
avoids aliasing artifacts by redistributing under-sampled energy across the 
spectrum. Stochastic casting or rays are a good way to divide effort among an 
array of VLSI processors. Glassner also discusses various methods of speeding 
ray-tracing, including the use of vector and parallel architectures. A rather 
complete ray-tracing bibliography is also included. 

Another valuable source is the work edited by Dew, Earnshaw and 
Heywood (1989). It contains a variety of algorithms oriented toward speeding 
visualization using parallel computation. In particular, many algori thms for parallel 
ray-tracing are presented. 

15 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

The work of Magnenat-Thalmann and Thalmann (1987) is also germane. 
They present a variety of techniques for dealing with texture that are appl icable to 
the problem of generating images using arrays of processors. 

Very recent relevant research has been done by Frederick and Schwartz 
(1990). They identified the utility of the mathematical technique of conformal 
mapping for performing the transformations needed in image generation . Their 
suggestion of the use of abstract mathematical tools suggests the use of the 
machinery of differential geometry and in particular of Lie groups. In particular, 
Hoffman (1966 and 1989) has shown the utility of Lie groups in the analysis of vision. 

These mathematical tools provide an expressive language for constructing the 
algorithms needed for vari-pixel imaging. Consider Figure 4 which shows how a 
rectangular grid must be pre-warped so that the optical distortion of Figure 3 will yield 
a rectangular grid. The ellipse-like curves in Figure 4 can be naturally handled via 
differential geometric techniques. Conversely, po lygons are warped into regions with 
curved sides. This presents difficulties for approaches that depend on polygons for 
rapid image generation. 

Pincushion 

1 I; 

H\ 

~ if 
Figure 4. Pre-distortion of a rectangular grid. 

A brief summary of Lie theory is needed in order to appreCiate in detail its 
applicability to vision problems. This mathematical material can be bypassed to reach 
the textual explanation at the end of the section if a qualitative understanding is desired. 

The basis of Lie group theory is the concept of a manifold. An m-dimensional 
manifold is a set M, together with a countable collection of subsets Ua ~ M, called 

coordinate charts, and 1:1 functions Xa : Ua -> Va onto open sets Va ~ Rm, tailed 

16 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

local coo rdinate maps which satisfy : 

(1) The coordinate charts cover M, U U =M a a ' 
(2) The coordinates are smooth, on U n Ufl a 1-', 

the composite map 

-I U 
Xp Xa: Xa( anUpl - > Xp( UanUpl 

is C~ (or analytic) , and 

(3) The coordinates induce a Hausdorf topology on M, 

if XE Ua ' yE Up' XcFy, 

then 3 open sets Xa(X)E A Va, and Xp(Y)E 8 Va ') 

Xa -1(A)n Xp -1(8) = 0. 

The notion of smoothness of maps between manifolds is needed. If M and N are 

COO manifolds, a map F:M -> N is COO if 

- -
V Xp: U p -> V p ~ Rn on N, 

Xp F X
a

- I : Rn -> Rm is COO on Xa [ Uan F-1( U-p)], 

Coo~1) is the set of COO functions from M to R. 

An r-parameter Lie group can now be defined as a group G which also has the 

structure of an r-dimensional COO manifold in such a way that both the group operation 

m: G x G -> G, m(g,h) = g'h, g,h E G, 

and the inversion 

I: G -> G, I(g) = g-1, 9 E G 

are COO maps between manifolds. 

The concept of a vector field requires the definition of the tangent space T xM as 

the m-dimensional vector space determined by the tangent vectors to curves passing 
through the point x . 

17 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

A tangent vector v is defined geometrically as the equivalence class (J of curves . x 
passing through x with all derivatives equal. A tangent vector induces a derivation on 

Coo(M) by 

vF = dF(<!x(t»/dt 11=0 

Alternatively a tangent vector can be defined algebraically as a derivation, in which cas 

it can be shown that in general 

-1 
for some functions vi(x ) and stands for the derivation along Xu (tXj) where xI is the ith 

coordinate in Rm. The tangent bundle is the collection of all tangent spaces 

TM=U MT M 
XE x 

the TM is a manifold of dimension 2n. 

Finally , a vector field v on M is a smooth map from v(x) e ' T xM, xe M. Smooth 

means V Fe C oo(M), the composite map 

(vF)(x) = v(x)F : M -> R 

The utility of all this mathematical machinery in visiun and visual processing 
comes from the concept of exponentiation. Beginning with the ideas of an integral curve 
as a parametized curve x=<p(t) whose tangent vector coincides with v, d$ldt = v(<P(t», 
the uniqueness of ODE insures that for t sufficiently small Vx there exist integral curves 
'If{t,x), with 'If{O,x)=x. 'V is called the flow generated by v . 

Note that 'V is a one-parameter group of transformations since 

'V(x, 'V(t,x» = 'V(t+s,x). 

The flow is usually written suggestively 

'V(t,x) = exp(tv)x 

The Lie bracket or commutator of two vector fields v,w 

18 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

[v,W](F) = v(w(F))-w(v(F)) 

Determines group properties via Lie's theorems, in particular 

Let v, w be vector fields on M, Then 

exp(tv) exp(sw)x = exp(sw) exp(tv)x 

iff [v,w] = O. 

v is said to be an infinitesimal generator of the group G. 
The transformations needed for imaging, and in particular for vari-pixel imaging, 

can be viewed as a vector field. Concentrating on only the vertical (or horizontal) lines in 
Figure 4, the vector field which defines a unique direction to each point in the image 
manifold is evident. By Lie's theorem, this visual warping, or any other, can be 
generated locally according to the lip. algebra. 

Database 

Target Source 

Figure 5. The mappings involved in generation of images with variable pixel sizes. The 
source image can be bypassed 'by using Lie group theory. 

19 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

This ability to generate the warping through local action has important benefits for 
the construction of algorithms using paralleled processors. Since the Lie algebra 
determines the vector field locally, the warping need not be solved in a closed form 
expression. Instead, the warping transform can be generated locally by starting at a 
pixel in the target image that corresponds with a known pixel in the source image. For 
example, such points may lie along an axis. 

As Figure 5 shows, a line or curve of pixels in the target image induces a 
trajectory or flow in the source image. The pixels along the source trajectory are the 
values needed in the target image. The important point is that these flows are locally 
determined as the differential notation in Figure 5 suggests; global solutions are not 
needed. 

The possibility of using local solutions saves computational resources. Whereas 
global solutions typically involve expressions of transcendental functions with high 
computational cost , the local of Lie algebra expressions are relatively simple, taking the 
form of small matrix and vector operations. As a result , it will be computat ionally more 
efficient to utilize the local Lie algebra expressions. 

When the image is algorithmically generated (rather than acquired as a video 
image) more economies are possible. In this case the pixel can be traced through to its 
source in the data base. The pixel will typically original on a polygonal facet or other 
object within the data base. The local flow parameters can be carried along to the data 
base object where they generate a trajectory in three dimensional space as suggested in 
Figure 5. The source image plane which is intermediate between the data base and th e 
target image need only be visited once for each data base object. 

Passing directly from the data base to the target image results in substantial 
computational savings. Using this direct mapping, generating the pre-distorted display 
required by vari-pixel imaging will require only a little more computation than generating 
a standard undistorted image. Pletincks (1988) presents similar techniques that use 
quaternions rather than vector language. 

A major port ion of this research will be directed at developing efficient algorithms 
so that the distortion overhead can be held to 50% or less. Lie's theorems guarantee 
that direct mapping from database to target is feasible; what remains is to develop 
efficient algorithms. 

An Example of Image Warping 

Software was developed to distort images off-line using Lie group techniques. A 
variant of the software was used to simulate the distortion properties of the optics. This 
software was implemented on a NeXT workstation using Absoft objective- FORTRAN 
77. FORTRAN was used to emphasize the computational aspects of the problem. 
Absoft's implementation provides interface to the object-oriented environment of the 
NeXT. 

The images distorted were in the form of Postscript graphics files. Postscript is 
the native graphics language of the NeXT computer and provided an easily readable 
data format for these demonstration programs. 

20 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Figure 6 shows a 320 by 200 pixel image of a WWII P38 fighter as read from a 
disk of canned images. The postscript image was reproduced on an Apple Laserwriter 
connected to the NeXT. This reproduction process provides about 4 bits of gray scale 
th rough dithering . 

Figure 6. Postscript image of a WWII P38 fighter. Image is 320 by 200 pixels with 4 bit 
gray scale. 

The image in Figure 6 was pre-distorted according to the equation 

p = r or/(r o-r) 

wh'lre r is the radial coordinate in the source image and p is the radial coordinate in the 
target image. The radius r 0 is a parameter chosen to produce the desired distortion. 

The polar angular coordinate remains unchanged. 
This equation produces a dramatic warping since as r -> r 0 since p -> 00. The 

sample optical system above does not produce such a dramatic distortion, but such 
blow-ups of radial coordinates can easily be produced with optical systems. As 
refracted rays approach angles of total internal reflections, optical singularities develop. 
Also, reflected rays go through singularities as rays become tangent to the reflecting 
surface. 

21 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Figure 7. Pre-distorted image of P38. 

The pre-distorted image is shown in Figure 7. Note that the center of the image 
has the same scale and perspective as the original image in Figure 6. The full resolution 
of the image is thus preserved at the center of the field. 

The outer edges of the field are substantially compressed so that the area 
occupied by the distorted image is less than a third that required by the original image. 
This variable compression is what permits a y{ider field of view for a given display. 

In a vari-pixel display system, the image of Figure 7 would be viewed through 
distorting optics something like those in Figure 2. The user would then see a wide fie ld 
of view image in correct perspective. The center of the image would have high 
resolution whereas the edge would have lower resolution . This fall off in reso lution 
would match the resolution curve of the human eye shown in Figure 1. 

The analog computation the optical system provides cannot be shown here, but a 
simulation is shown in Figure 8. In this figure, the pre-distorted image has been 
distorted according to the inverse mapping function : 

22 



I 
I 
I 
I 
I 
I 
I 
I Figure 8. Simulation of view of Figure 7 through distorting optics. Image of P38 has 

correct perspective but variable resolution . 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

The image is in Figure 8 has been restored to its original size and perspective, 
but it looses resolution at the edges relative to the original. This is of cou rse just what is 
needed to match the human visual system and make optimal use of the available display 
pixel budget. 

Figure 8 contains many aliasing artifacts near the edge of the image. This is due 
to the digital nature of the simulation ; not attempt has been made to anti-alias the image. 
In the real system, the analog optical calculation would simply magnify pixels falling near 
the edge of the field. The optics wou ld also provide some inherent anti -aliasing since 
the optical transfer function would naturally decrease in resolution toward the edge of 
the fie ld. This would provide high-frequency filte ring and anti-aliasing. 

Note that all functions used for radial distort ion are flat, that is have zero 
derivative , at r=p=O. The distortion function must be smootn or zero-derivative near the 
axis, since an eye-phone type display does not incorporate eye-tracking. The saccadic 
movements of the eye will then bring regions near the center of the display to the 
maximum resolution foveal viewing area. It is important therefore that the resolution be 
relatively constant near the center so that the resolut ion taper does not become too 
obvious as a result of saccadic movements. 

23 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Research and Implementation Plans 

A system for optimal display will be implemented in stages. Duri ng the first 
year, vari -pixel display technology will be demonstrated using off-the-shelf technology. 
During the second and third year, more advanced technologies will be used to produce 
vari-pixel displays with state-of-the-art performance. At the conclusion of the th ird year, 
the vari-pixel technology will be ready for marketing. 

Early development will be done using easily available inexpensive compon ents. 
The most readily available display technology suitable for eye-phone type displays is th e 
liquid crystal display (LCD) use in portable, "Watchman"-type televisions. These 
displays typically have reso lutions of about 320 by 240 pixels equivalent to the example 
images above. 

In order to drive a Watchman display, a computer system with a composite video 
output is necessary. The early low-resolution CGA display had such an output, but is 
too primitive a technology. Some workstations , such as Silicon Graphics can be 
programmed to produce a composite display, but such workstations are more advanced 
than necessary I for the feasibility demonstration. 

A good compromise between excessive sophistication and primitive simplicity is 
found in the Am iga 3000 computer. The Amiga 3000 uses a 25 MHz Motorola 68030 
with 68882 numerical coprocessor. In addition a custom VLSI chip provides graphic 
BitBL T (Sit BLock Transfer) operations independent of the CPU. The Am iga is easily 
networked over ethernet with other the other workstations at 1ST. THe UCF Film 
Department has had good success in using the Amiga in film animation applications. 

The early optics will be of a bread-board nature and will use ready made 
components mounted in hand-made fixtures. Ready made optics are available from a 
variety of sources in many materials and configurations. 

These components will provide ample support for testing the theory and 
algorithms developed during the first year of the project. During later phases of the 
project , higher performance hardware will be obtained and developed so that a state of 
th e art vari-focal eye-phone display can be deve loped. 

Workstation-level graphics performance is the goal for project as a whole. The 
recently announced NeXTdimension board for the NeXT workstation :s a Iikley choice for 
the display generation side of the system. The NeXTdimension uses an Intel i860 RISC 
graphics coprocessor. The i860 is capable of 33 MIPS, 66 MFLOPS and has built-in z­
buffer support. NeXT rates the i860 at 30,000 Gauraud polygons/second. These are 
real polygons, since the screen clear time is 30 MS; all too often polygons/second 
figures are given for unrealistically small polygons. Like the Amiga, the NeXTdimension 
supports a variety of display frequencies and formats. 

Dr. Thomas Clarke, principal investigator, has had much experience with the 
NeXT and is developing a RISC-based coprocessor for the NeXT using the Inmos 
transputer under FHTIC funding. The NeXTdimension thus fits naturally with on-going 
research efforts at 1ST. The Inmos transputers may prove a way to boost performance 
beyond that obtainable with the INtel i860 alone. 

Proprietary software will be avoided as much as possible. Graphics standards 
will be utilized whenever practical so that the vari-pixel system will be as portable as 
possible. The development language will be C for maximum portabil ity in any case. 

24 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

The display system will be chosen after a careful evaluation of the state-of-the­
art . In order of preference , possibilities available in the near future include: high 
resolution miniature LCD, miniature CRT, and CRT combined with fiber optic. 

It would be ideal if the television industry would produce a high-resolution LCD fo r 
HDTV (H igh Definition TV) use within the time frame of this project. While th is will 
ultimately happen, progress in fabrication technology may not be fast enough to meet 
the goals of this project. 

Small high-resolution CRTs developed for use as helmet mounted displays 
(HMOs) could be combined in triads with appropriate filters to produce a high-resolution 
co lor display. Drawbacks to the use of HMO CRTs are cost and fabrication . These 
CRTs are special purpose items and tend to be fairly expensive. Also the use of 
multiple CRTs, filters and combining optics can lead to a complicated structure with 
difficulties in maintaining optical alignment. 

A final option would be to use a large CRT with a fiber-optic relay to the final 
head-mounted eye-phone display optics. This approach takes advantage of mass 
produced display technology but has the draw back of a large and somewhat fragile 
fiber-optic umbilicus. A medical endoscope fiber bundle may be adequate for th is 
application, however. The Visual Technology Research (VTRS faci lity of the Naval 
Training Systems Center (NTSC) here in Orlando has experience with fiber-opt ic relays 
for head-mounted projection displays, and their expertise can be utilized (Browder, 
1989). 

At the time of writing the fiber-optic relays seems the most practical. It would be 
viewed as stop-gap solution since the miniature LCD is much more desirable. A 
compromise would be to design with the fiber-opticJlarge-CRT behaving as a virtual 
miniature LCD. 

The optics for this second phase of the project will be specially deSigned and 
fabricated by a US manufacturer specializing in th is type of optical fabrication. The 
mounting hardware will be designed for durability and long-life. 

The algorithms developed during the first year will be adapted to the high­
performace hardware platform. This high performace vari -pixel system will then be 
mace available to industry for marketing and production . 

Comparison with Other Research 

The emphasis in this project is to use a group theoretic approach to vision as the 
basis for design of an optimized virtual-world display. Group theory is the natural 
language since the human visual system is optimized for detecting curves and lines 
which are invariants of Lie transformation groups identified by Hoffman (1966). 

Several approaches to implementing Lie groups are possible as discussed 
above. The projective geometry transformations used in visual systems are examples of 
a type of group transformation, and Lie group transformations can be implemented in a 
similar fashions by expressing the components of the transform in matrix format. Lie 
groups are inherently local, however, so that if parallel hardware is available, there will 
be no problem in using it to rapidly process different portions of the image. 

A more recent approach to implementing vision transforms relies on the 

25 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

mathematics of conformal transforms ( Frederick and Schwartz, 1990). These 
researchers utilize the Riemann mapping theorem to implement the transforms fou nd in 
the visual system. The approach of Frederick and Schwartz is also very amenab ~e to 
implementation on parallel hardware. 

Standard approaches using projective geometry techniques can be found in Dew 
et. al. (1989), Glassner (1989) and Magnenat-Thalmann (1987) . Full use will be made 
of appropriate existing work in the field of computer image generation and visualization. 

Summary 

In summary. the first year will be devoted to developing algorithms for 
implementing image pre-distortion based on lie group theory. These algorithms will be 
tested using general purpose computer hardware and low cost displays. 

During the second and th ird years, a state of the art system will be developed 
utilizing the algorithms and configuration proven during the first year. 

26 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I. PREVfouS ACCOMPLISHMENTS and aUALIFICA TIONS 

Related Research 

The papers "Stereo Processing with Artificial Neural Networks" (1990 
Florida Artificial Intelligence Research Symposium), and the paper "Generalization of 
Neural Networks to the Complex Plane" (1990 International Joint Conference on 
Neural Networks in San Diego), both apply" reverse engineering" of human signal 
processing to the solution of recognition problems. 

Dr. Clarke has also done work on the recognition of underwater acoustic 
echoes as in "A Pattern Recognition Approach to Acoustic Bottom Recognition"; 1987 
in Acoustical Imaging, H. W. Jones editor, Plenum, NY. In addition, Dr. Clarke has 
applied quantum mechanical techniques such as path integration to underwater 
acoustic problems in Wave Propagation in Focusing Random Media; 1982; NOAA 
Tech Memo ERL AOML-51 . 

Optical design work by Dr. Clarke is represented by his 1983 paper describing a 
new eyepiece design he developed. 

Facilities available to Dr. Clarke include NeXT computers, DSP hardware, and a 
variety of workstations used in support of mathematical simulation. They are described 
more fully below. 

Significant Papers 

Clarke, T.L., (1990a). Stereo Processing with Artificial Neural Netwo rks. 
Proceedings 1990 Florida Artificial Intelligence Research Symposium 

Clarke, T.L. (1990b). Generalization of Neural Networks to the Complex Plane. 
Proceedings 1990 In1. Joint Conference on Neural Networks, San Diego. 

Clarke, T. L. (1987). A pattern recognition approach to remote acoustic bottom 
char:::cterization , in Progress in Underwater Acoustics, Harold M. Merklinger ec, 
(Plenum, New York), 225- 230. 

Clarke, T. L. , (1983) Simple flat field eyepiece, ApplOptics, 22, 1807-1811. 

Clarke, T. L. (1982) . Wave propagation in focusing random media, NOAA Technical 
Memorandum, AOML-51. 

27 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Biographical Sketch 

Thomas L Clarke 

SUMMARY: Dr. Clarke has more than 15 years research experience involving 
propagation modeling, digital processing of acoustic signals, statistical analysis, and 
numerical modeling. He has two patents. Dr. Clarke has published extensively in 
professional journals and is affiliated with the Institute of Electrical and Electronics 
Engineers, Audio Engineering Society, and Acoustical Society of America. 

Education 

Ph.D. in Applied Mathematics, May 1982, University of Miami. 

M.S. in Applied Mathematics, August 1975, University of Virginia. 

B.S. in Mathematics, Dec. 1973, Florida International University. 

Experience 

·1988- present. Senior Scientist, University of Central Florida/Institute for Simulation 
& Training. Dr. Clarke's activities involve planning and developing new research 
projects. Areas of research with UCF faculty include the application of advanced 
computer architectures to problems of training simulator design and application of 
applied mathematics to simulation. 

1985 - 1988. Consultant and contract researcher on various acoustical projects. 
Obtained SBIR grant to study optical propagation in the atmosphere doing business 
as TLA Research. 

1975 - 1987. Mathematical Oceanographer at Ocean Acoustics Division of Atlantic 
Oceanographic and Meteorological Laboratory, U.S. Dept. of Commerce. cnyaged in 
research relating to Doppler current senSing and echo-sounding techniques. 

Publications 

Dr. Clarke has published over 50 articles and conference presentations. The 
following are among his most scientifically significant. These are primarily from his stint 
as an underwater acoustical applied mathematician but still ref lect his broad range and 
versatility as a researcher. 

1977 Clarke, T. L., FET Pair and op-amp linearize voltage- controlled resistor, 
Electronics, 50, No. 9,111-113. 

1978 Clarke, T. L., Oblique factor analysis solution for the analysis of mixtures, 
Mathematical Geology, 10,225-241 

28 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

1981 Clarke, T. L., Para llel channel processing overlaps data acquisi tion and 
reduction , Computer Design, 20, No. 8, 127- 132. 

1981 Clarke , T. L., Augmented passive-radiator loudspeaker systems, Part I, J . 
Audio Eng. Soc., 29 , 394-404. 

1981 Clarke, T. L., Augmented passive-radiator loudspeaker systems, Part II , J. 
Audio Eng. Soc. , 29 , 511-516. 

1982 Clarke, T. L. , Wave propagation in focusing random media, NOAA Technical 
Memorandum, AOML-51. 

1982 Clarke, T. L. , D. J . P. Swift, R. A. Young, A numerical model of fi ne sediment 
transport on the cont inental shelf, Environ . Geol., 4,117-129. 

1982 Clarke , T. L. , G. L. Freeland, B. Lesht, D. J . P. Swift, and R. A. Young, Sediment 
resuspension by surface wave action: An examination of possible mechanisms, 
Mar. Geo l., 49 , 43- 59. 

1983 Clarke , T. L., W. L. Stubblefield , and D. J. P. Swift, Use of power spectra to 
estimate characterist ics of sand ridges on continental shelves, J. Geology, 91, 
93-97. 

1983 Clarke, T. L., Simple flat field eyepiece, Appl Optics , 22, 1807-1 811 . 
1983 Clarke , T. L., D. J . P. Swift, and R. A. Young , A numerical modeling approach 

to the fine sediment budget of the New York Bight, J . Geophys. Res., 88, 9653-
9660. 

1984 Clarke , T. L., and D. J . P. Swift, The formation of mud patches by non-linear 
diffusion, Cont. Shelf Res ., 3, 1-7. 

1984 Clarke, T. L., Limitations of physical theory , Nature, 308, 1984 Clarke, T. L. , J . 
R. Proni and J . F. Craynock, A simple model for the acoustic cross-section of 
sand grains, J . Acoust. Soc. Am., 76, 1580-1582. 

1984 Clarke , T. L. , An application of measure theory to the problem of flexib le 
working hours, J. Irreproducible Results, 29, No.2, 15. 

1986 Clarke , T. L. , Radiation pressure induced instability in Saturn's rings, 
Astrophysical Ltrs., 25, 51-56. 

1986 Clarke, T. L. , and J. R. Proni , Remote acoustical measurement of ocean 
bottom parameters, in Current Practices and New Technology in Ocean 
Engineering, T. McGuinnes and H. Shih eds, (ASME, New York) 145-148. 

1986 Clarke, T. L. , and G. J . Williams, Transverse Doppler current profiler phase I 
development final report, General Oceanics Technical Report. 

1987 Clarke, T. L. , A pattern recognition approach to remote acoustic bottom 
characterization , in Progress in Underwater Acoustics, Harold M. Merklinger ed, 
(Plenum, New York), 225- 230. 

1987 Clarke , T. L. , Final report phase I multi-wavelength refraction correction , 
TLA Research Report. 

1989 Clarke, T .L. , GRASS Research at 1ST, Proceedings 5th Annual GRASS User's 
Conference. 

1989 Clarke , T.L. , The Application of RISC Processors to Training Simulators, FHTIC 
Final Report. 

1989 Clarke, T.L., Terrain Data Bases for Simulation, FHTIC Final Report. 
1990 Clarke , T. L., Stereo Processing with Artificial Neural Networks, Proceedings 1990 

Florida Artifical Intelligence Research Symposium (FLAIRS). . 

29 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

1990 Clarke, T. L., Genera lizat ion of Neu ra l Networks to the Complex Plane, 
Proceedings 1990 International Joint Conference on Neural Networks (IJCNN). 

Patents 

Dr. Clarke in addition holds two patents. This illustrates his practical turn of mind. 

US Patent 4070697. Augmented Passive Radiator Loudspeaker. Feb 28, 1976 

US Patent 4623224. Anast igmatic Eyepiece. Nov 18,1986. 

Proposals Pending 

The principal investigator is currently receiving funding from the Florida High 
Technology and Industry Council (FHTIC) for research into RISC processors and Terrain 
Daia 3ases. He currently devotes about 60% of his tiMe to these two projects. 
Renewal proposals for these projects are pending. 

The PI has a proposal pending with the NSF for development of an 
undergraduate simulation-based matematics and science course. 

1ST Facilities 

The Institute for Simulation and Training (1ST) is part of the University of Central 
Florida (UCF) . 1ST employs students from a variety of advanced degree programs in 
engineering, science and mathematics. Graduate students from mathematics and 
computer science will playa significant role in this research project. 

1ST has extensive laboratory facilities that can be divided into four broad 
categories : Visual Systems Laboratory, Networking Laboratory , Human Factors 
Laboratory, and the Mathematical Simulation Laboratory. 

Visual Systems Laboratory 

The Visual Systems Laboratory contains a variety of computer systems used 
in support of research into visual system technology. These systems include: 

a Silicon Graphics 4D70GT and two PersonallRISs. RISC based UNIX 
workstations with specialized graphics hardware used in support of simulator 
data base development and prototyping and experimentation of image 
generation algorithms. 

a Sun 386i. Intel 80386 based UNIX workstation used for applications dealing 
with geographical information processing. 

a NeXT. Motorola 68030 based UNIX workstation used for research into object 
oriented user interfaces or "glass cockpits". 

a Macintosh fix. Motorola 68030 computing appliance used for experiments in 
object-oriented simulation. 

30 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

c Various PC/AT-class personal compute rs used for hardware interface and 
control. 

Networking Laboratory 

The Networking Laboratory contains a variety of US Army fumished SIMNET 
compatible equipment including : 

" Two M1 SIMNET tank simulators together with MCC network controller. Also 
scheduled for delivery are: SIMNET Stealth Vehicle, SIMNET Data Logger, 
SIMNET Plan View Display, SIMNET Long Haul Gateway, and Perceptronics 
ASAT (Aviation Situational Awareness Trainer). In addition, the Networking 
Laboratory possesses a variety of general purpose computing resources 
including : 

" DEC VaxStation 3100. VAX VMS or UL TRIX workstation used in support of 
network data analysis. 

" Seven Hewlett-Packard Vectra Intel 80386 XENIX or MS/DOS PCs. These are 
used for program development and testing and for network protocol 
conversion. 

" Harris NightHawk 68030 computer. 
c Evans and Sutherland ESIG-500 image generator. 

Human Factors 

Under the Human Factors umbrella fall a variety of equipment used in on-going 
experiments in training effectiveness. This equipment includes two TOP GUN part 
task gunnery trainers, two General Aviation Trainers (GATS), two VIGS tabletop part 
task gunnery trainers, two Electronic Information Delivery Systems (EIDS) , and a 
network of Accer computers used for team training research. 

Also fall ing in this category is the Human Performance Laboratory which contains 
an SAIC Delta" neural network coprocessor hosted by a 386 PC. 

Mathematical Simulation 

The Computer Systems category includes a variety of equipment that is 
particularly relevant to this project. This equipment includes: 

" Three 80386 PC compatible computers. A Hewlett-Packard Vectra OS-16 and 
two special purpose home-built computers. These machines are used to host a 
variety of hardware add-in cards such as a PC-Vision Plus video digitizer, an 
OKI Semiconductor digital signal processing (DSP) card, and an Inmos 
transputer coprocessor. 

" Two NeXT Motorola 68030 UNIX workstation. In addition to its object oriented 
features, the NeXT contains a Motorola 56001 DSP chip and provides access to 
the workstation network in the Visual Systems Laboratory. These are being 
upgraded to 68040 mainboards and plans are afoot to convert the old 68030 
mainboards into home-brew NeXT compatibles. 

31 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

J . BIBLIOGRAPHY 

Boff, Kenneth R., Lloyd Kaufman, and James P. Thomas, 1986. Handbook of 
Perception and Human Performance, Vall: John Wiley and Sons, New York, p 
7-49. 

Browder, Blair, 1989. Evaluation of a helmet-mounted laser projector displaY,in 
Helmet-Mounted Displays, Jerome T. Carollo , editor. SPIE, Bellingham , Wash , 
14-18. 

Clarke, T. L. , 1983. Simple flat field eyepiece, Appl Optics, 22, 1807-1811 . 
Clarke, T.L., 1990a. Stereo Processing with Artificial Neural Networks. Proceedings 

1990 Florida Artificial Intelligence Research Symposium. 
Clarke, T.L. 1990b. Generalization of Neural Networks to the Complex Plane. 

Proceedings 1990 Int. Joint Conference on Neural Networks, San Diego. 
Dew, P. M., R. A. Earnshaw, and T. R. Heywood (editors) , 1989; Parallel 

Processing for Computer Vision and Display, Addison-Wesley Publishing 
Company, New York, 503pp. 

C)odwell , Peter C., 1983. The Lie transformation group model of visual perception, 
Perception and Psychophysics, 34, 1-16. 

Frederick, Carl and Schwartz, Eric. L. 1990. "Conformal Image Warping" , IEEE 
Computer Graphics and Applications, March, 54-61 . 

Glassner, Andrew S. (editor), 1989; An Introduction to Ray Tracing; Academic 
Press, New York, 327pp. 

Hoffman, W. C. ,1966. The Lie algebra of visual perception. J. Math. Psychol. , 3, 65-
98. 

Hoffman, W. C. ,1989. The visual cortex is a contact bundle. Applied Math. 
Comput.,32, 137-167. 

Hubel, D. H. and Wiesel, T. N. ,1959. Receptive fields of single neurons in the cat's 
striate cortex. J. Physiol. (London), 148,574-591 . 

Lenz, Reiner, 1990. Group invariant pattern recognition . Pattern Recognition, 23, 199-
217. 

Magnenat-Thalmann , N. and D. Thalmann; 1987; Image Synthesis ; Springer­
Verlag, New York, 400pp. 

Olver, Peter J. ,1989. Applications of Lie Groups to Differential Equations Springer­
Verlag, New York, 497 pp. 

Plenticks, D. , 1988. The use of quaternions for animation , modelling and rendering, in 
New Trends in Computer Graphics, N. Magnenat-Thalmann and D. Thalmann, 
editors, Springer-Verlag, New York, 44-53. 

Rotier, Donald J., 1989. Optical Approaches to the Helmet Mounted Display, in Helmet­
Mounted Displays, Jerome T. Carollo, editor. SPIE, Bell ingham, WaSh , 14-18. 

VanName, Mark L., and Bill Catchings, 1990. "Virtual Reality Reprsents New Level of 
Communication", PC Week, 7,41, p53. 

Welford, W.T., 1974. Aberrations of the Symmetrical Optical System, Academic, 
New York. 

32 

b 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Copies of the articles by Dodwell (1983) , Frederick and Schwartz (1990), 
Rotier(1989), Pletinicks (1988) and Browder (1989) are attached. Each of these 
articles provided important background to this proposal. 

Dodwell presents a very readable account of the utility of Lie groups in vision based 
on Hoffman's work. 

Frederick and Schwartz establish the utility of conformal mappings for image 
generation. 

Rotier presents a survey of the many variet ies of optical systems that are adaptable 
to head-mounted computer displays. 

Pletinicks discusses how quaternions, arother formulation of differential ge metry, 
can be used for image transformations. 

Browder discusses the applications of fiber optics to head mounted displays in the 
context of the on-going research at the Naval Training Systems Center VTRS. 

33 

F 



s 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

0000105 


	The Application Of RISC Processors To Training Simulators
	Recommended Citation

	tmp.1440086406.pdf.jtYnx

