
CIRCUIT SDlULATION USING
DISTRIBUTED WAVEFORM
RELAXATION TECHNIQUES

A Thesis
Submitted to the College of Graduate Studies and Research

in Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy
in the

Department of Electrical Engineering
University of Saskatchewan

Anant D. Jalnapurkar
Saskatoon, Saskatchewan, Canada

Spring 1998

O Copyright Anant D. Jalnapurkar, 1998. All rights resenred.

National Library I*I ,,nacia
Bibliottkque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques

395 Wellington Street 395, rue Wellington
Ottawa ON K1 A ON4 Ottawa ON K1 A ON4
Canada Canada

The author has granted a non- L'auteur a accorde une licence non
exclusive licence allowing the exclusive pennettant a la
National Library of Canada to Bibliotheque nationale du Canada de
reproduce, loan, distribute or sell reproduire, przter, distribuer ou
copies of this thesis in microform, vendre des copies de cette these sous
paper or electronic formats. la fome de microfichelfilm, de

reproduction sur papier ou sur format
electronique.

The author retains ownership of the L'auteur conserve la propriete du
copyright in this thesis. Neither the droit d'auteur qui protege cette these.
thesis nor substantial extracts fkom it Ni la these ni des extraits substantiels
may be p ~ t e d or otherwise de celle-ci ne doivent etre imprimes
reproduced without the author's ou autrement reproduits sans son
permission. autorisation.

The author has agreed that the Library, University of Saskatchewan, may

make this thesis freely available for inspection. Moreover, the author has

agreed that permission for extensive copying of this thesis for scholarly

purposes may be granted by the Professor who supervised the thesis work

recorded herein or, in his absence, by the Head of the Department or the
Dean of the College in which the thesis work was done. It is understood that

due recognition will be given to the author of this thesis and to the
University of Saskatchewan in any use of the material in this thesis. Copying

or publication or any other use of this thesis for financial gain without

approval by the University of Saskatchewan and the author's written
permission is prohibited.

Requests for permission to copy or to make any other use of the material in

this thesis in whole or in part should be addressed to:

Head of the Department of Electrical Engineering

University of Saskatchewan

Saskatoon, Canada S7N OW0

ACKNOWLEDGEMENTS

The author would like to express his gratitude and appreciation to his

supenisors Prof. H. C. Wood and Prof. Carl D. McCrosky for their guidance

during the course of this work. Their help in the preparation of the thesis is
thankfully acknowledged.

The author would like to thank members of the research committee, Prof. A.
E. Krause, Prof P. Pramanick, Prof. Ram Manohar, Prof. Ron Bolton and
Prof. T. S. Sidhu for their valuable comments and suggestions

Help and guidance provided by Dr. Res Saleh and his student Mr. Y. Wen
during author's visit to the University Illinois a t Urbana-Champagne is
thankfully acknowledged.

The author would like thank Dr. Rama Munikoti, Director, Software
Engineering and Analysis Laboratory, Nortel, for his encouragement and
support. The author would like to thank his friends, Mr. Pramod Dhakal,
and Dr. Atul Jain for their help during the course of this research and in the
preparation of the thesis.

The author is grateful to his uncle, Mr. Madhav Jalnapurkar, aunt Mrs.
Sheela Jalnapurkar for their constant encouragement and support.

Financial support provided by the University of Saskatchewan in the form of
graduate scholarship and, Natural Sciences and Engineering Research
Council of Canada, in the form of research assistantship is thankfully
acknowledged.

Finally, the author would like to thank his wife Mrs. Archana Jalnapurkar

for her patience and support.

ABSTRACT

Simulation plays an important role in the design of integrated circuits. Due
to high costs and large delays involved in their fabrication, simulation is
commonly used to verify functionality and to predict performance before
fabrication. Depending upon the level of abstraction used, simulators may be
classified as behavioral simulators, register transfer level simulators, gate
level logic simulators, switch level simulators and electrical circuit
simulators. Gate and switch level simulators provide approximate timing
information, however, none of these simulators provide detailed timing
information. Electrical circuit simulation is the only tool that provides
accurate timing information and performance details. This, however,
requires more than three orders of magnitude more computing time
compared to gate or switch level simulators The importance and the high
computing cost of circuit simulation provides motivation for the development
of fast and accurate electrical circuit simulators. These can be achieved by
using improved algorithms and high performance computer architectures to
run the simulation engines.

This thesis describes analysis, implementation and performance evaluation
of a distributed memory parallel waveform relaxation technique for the
simulation of MOS VLSI circuits. The waveform relaxation technique
exhibits inherent parallelism due to the partitioning of a circuit into a
number of sub-circuits. These sub-circuits can be concurrently simulated on
parallel processors. In addition, the 111 window waveform relaxation
technique permits exchange of large and infrequent messages among sub-
circuits. This feature is useful for parallel implementation on low cost
distributed memory machines.

Different forms of parallelism in the direct method and the waveform
relaxation technique are studied. An analysis of single queue and
distributed queue approaches to implement parallel waveform relaxation on
distributed memory machines is performed and their performance
implications are studied. The distributed queue approach selected for
exploiting the coatse grain parallelism across sub-circuits is described. A
distributed queue implementation involves static partitioning and placement
of sub-circuits on processors. An algorithm based on the critical path method
and an algorithm based on bin packing heuristics are used to partition
Gauss-Seidel and Gauss-Jacobi task graphs respectively. Parallel waveform
relaxation programs based on Gauss-Seidel and Gauss-Jacobi techniques are
implemented using a network of eight Transputers. Static and dynamic load
balancing strategies stumed. A dynamic load balancing algorithm is

developed and implemented. Results of parallel implementation are
analyzed to identify sources of bottlenecks.

This thesis has demonstrated the applicability of a low cost distributed
memory multi-computer system for simulation of MOS VLSI circuits. Speed-
up measurements prove that a five times improvement in the speed of
calculations can be achieved using a full window parallel Gauss-Jacobi
waveform relaxation algorithm. Analysis of overheads shows that load
imbalance is the major source of overhead and that the fraction of the
computation which must be performed sequentially is very low.
Communication overhead depends on the nature of the parallel architecture
and the design of communication mechanisms. The run-time environment
(parallel processing framework) developed in this research exploits features
of the Transputer architecture to reduce the effect of the communication
overhead by effectively overlapping computation with communications, and
running communications processes at a higher priority.

This research will contribute to the development of low cost, high
performance workstations for computer-aided design and analysis of VLSI
circuits.

Table of Contents

PERMISSION TO USE
ACKNOWLEDGEMENTS
ABSTRACT
TABLE OF CONTENTS
LIST OF FIGURES
LIST OF TABLES

1. INTRODUCTION
1 1 Circuit Simulation
1.2. Parallel Processing
1.3. Motivation and Research Objectives
1.4. Thesis Outline

2. CIRCUIT SIMULATION TECHNIQUES
Formulation of the Equations
2.1-1. Branch Relations
Direct Method
2.2.1. Time Step Control
Relaxation Methods
2.3.1. Linear Relaxation
2.3.2. Nonliniar Relaxation Methods
Iterated Timing Analysis
Waveform Relaxation
2.5.1. Windowing Mechanism
2.5.2. Circuit Partitioning

summary
3. PARALmL RELAXATION METHODS

Parallel Processing Techniques
3.1.1. Shared Memory Systems
3.1.2. Distributed Memory Systems
3.1.3. KSR Architecture
Efficiency and Speed-up in Parallel Systems
Parallel Direct Methods
Common Parallelism in Relaxation Methods
Parallel Waveform Relaxation
Parallel Iterated Timing Analysis

...
Vlll

3.7. Static Partitioning Techniques
3.8. Placement Techniques

3.9. Summary
4. PARALLEL WAVEFORM RELAXATION IMPLEMENTATION

4.1. Implementation Strategies

4.1.1. Parallel Model Evaluation

4.1.2. Single Queue Approach
4.1.3. Distributed Queue Approach
4.1.4. Multicomputer Interconnection Network

4.2. Program Structure Chart
4.3. Partitioning Algorithms

4.3.1. Partitioning Algorithm for Gauss Seidel Task Graph
4.3.2. Partitioning Algorithm for Gauss Jacobi Task Graph

4.4. Placement Algorithm

4.5. Parallel Transient Analysis
4.5.1. Process Framework
4.5.2. Instrumentation for Performance Measurements

4.6. Summary

5. DYNAMIC LOAD BALANCING
5.1. Limitations of Static Partitioning
5.2. Dynamic Load Balancing Methods
5.3. Dynamic Load Balancing Algorithm
5.4. Implementation of Dynamic Load Balancing

5.5. Summary
6, RESULTS

6.1. Gauss Seidel Method
6.2. Gauss Jacobi Method
6.3. Analysis of Performance Limiting Factors

6.3.1. Communication Overhead
6.3.2. Sequential Computation

6.3.3. Load Imbalance Overhead
6.4. Dynamic Load Balancing

6.5. Summary

7. SUMMARY, CONCLUSION AND FUTURE WORK
7.1. Summary

7 -2. Conclusions

7.3. Future Work
REFERENCES

A. DEVICE MODEL EVALUATION
A. I. Linear Devices
A.2. Nonlinear Devices

B. NUMl3RICAL ANALYSIS
C. TRANSPUTER AND OCCAM

vii

List of Figures

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5

Figure 2.6
Figure 2.7
Figure 3.1
Figure 3.2
Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6
Figure 3.7
Figure 4.1
Figure 4.2
Figure 4.3

Figure 4.4
Figure 4.5
Figure 5.1
Figure 5.2
Figure 5.3

Figure 6.1
Figure 6.2
Figure 6.3

A MOS nand gate.

A MOS transistor in free space.
A MOS transistor model.
Flowchart of simulation process
Waveform properties [a] Latency [b] Multi-rate
behavior.
Relaxation-based techniques.
A linear circuit considered for partitioning.
Shared memory interconnection networks.
Multi-computer interconnection network topologies.
KSR-1 architecture with a slotted ring for
communication.
Examples of Gauss-Seidel and Gauss-Jacobi partial
ordering for one iteration.
Unrolled (a) Gauss-Seidel (b) Gauss-Jacobi
iterations.

A n -processor network.
A two-level search tree with two processors.
Network topology.
Program structure chart.
Circuit partitioning, task graph partitioning and
placement.
Data structures.
Process fixmework.

A dynamic load balancing algorithm.
The sjm.remoteO (Simulate Remote) procedure.

The sim.rdy.ckts() (Simulate Ready Circuits)
procedure.

Node voltage waveforms for OPAMP.
Node voltage waveforms for DECPLA
Node voltage waveforms for CRAMB.

List of Tables

Table 6.1 Benchmark Circuits.
Table 6.2 Speed-up for GS Algorithm.
Table 6.3 Speed-up for GJ Algorithm.

Table 6.4 Variation of Communication Cost.

Table 6.5 Aggregrate Processors Idle Time.

1. INTRODUCTION

Advancement in integrated circuit technology has been very rapid since its
inception in the early 1960s. Integrated circuit technology has penrasively
influenced developments in many areas of science and technology. Several
application domains such as data processing, consumer electronics,
telecommunications, industrial electronics and automotive electronics have
witnessed a phenomenal growth, especially in the last decade. This can
largely be attributed to the developments in integrated circuit technology.

The economic impact of this technology in the world market has been
remarkable. According to 1992 figures, electronics goods had a total market
of over $1000 billion, which constituted approximately 10% of the worldwide
gross product. Projections for year 2000 indicate that electronics will have a
market of over $3000 billion [1][2]. A large sector of this market is driven by
advancements in integrated circuit technology and its ever increasing
applications.

The complexity of integrated circuits has grown tremendously. In the late
1960s, it was projected that the transistor density of chips would quadruple
every three or four years. The actual growth in the complexity of the
integrated circuits has exceeded these expectations.

An integration density of up to one million transistors per chip has become
the reality and industry is now focusing on the integration of a billion

transistors in a single chip. The major contributing factors in the growth of
the integration density have been high-resolution lithography, improved
reliability in processing silicon wafers, better understanding of system level
design issues, and the availability of better computer aided design tools for
circuit layout, simulation, verification and testing.

Simulation plays an important role in the design of integrated circuits. Due
to high costs and large delays involved in their fabrication, simulation is

commonly used to verify functionality and to predict performance before
fabrication. Fast and accurate simulation programs have been used to
reduce the time to market the products. They provide a competitive
advantage in today's rapidly changing marketplace.

Simulation programs have replaced traditional breadboard based prototyping
techniques which are commonly used to validate circuits consisting of
discrete components. Development of a breadboard based prototype of a
modestly sized integrated circuit can be expensive and time consuming. In
addition, it may provide - grossly inaccurate results due to differences in the
behavior of devices and values of parasitic components. Simulation programs
also permit evaluation of architectural and design alternatives, during
different phases of a development cycle, at a substantially lower cost than
build and test methods. Early feedback on the validity of architecture and
design can provide large economic gains.

A simulation program represents a circuit to be simulated in the form of an
abstract model. The model accepts the primitive elements, and the rules of
interconnection and operation as inputs. The output of the simulator
describes the predicted behavior and performance characteristics of the
circuit.

Different levels of abstraction of the circuit model are used at different stages

of the design process. Depending upon the level of abstraction used,
simulators may be classified as behavioral (also called algorithmic or
functional) simulators, register transfer level simulators, gate level logic
simulators, switch level simulators and electrical circuit simulators [Z].

Behavioral simulators are used during the initial phase of design to verify

important design concepts and algorithms. Behavioral simulators describe
digital systems using functional blocks. Examples of applications

appropriate for behavioral simulation include validation of the operation of a

direct memory access (DMA) controller, or checking a new network protocol

for a local area network (LAN).

Register transfer level (RTL) simulators describe integrated circuits using
combinational components such as multiplexers, arithmetic units, and

sequential components such as counters and registers. RTL simulators have

been commonly used for data path design.

Gate level logic simulators use macro-models of logic gates that simulate

digital circuits. Gate level simulators provide approximate timing

information including the detection of hazards, glitches, and race conditions.

Switch-level simulators are used for logic simulation of MOS digital circuits.

These simulators simulate the circuit at the transistor level. The transistors
are modeled as gate controlled switches.

Electrical or circuit level simulators describe integrated circuits using
devices such as transistors, resistors, capacitors and diodes. A system of
equations is formulated using circuit topology, device models, input signals
and initial conditions and solved using numerical methods. Circuit
simulators provide detailed information about the circuit behavior and

performance.

The nature of information provided by a simulator and its execution time

depend on the level of abstraction. In general, as the level of abstraction goes
down, the amount of computation increases. Behavioral and RTL simulators
verify important design ideas and compare architectural alternatives without

providing timing information. Gate and switch level simulators provide
approximate timing information, however, none of these simulators provide
the detailed timing information. Electrical circuit simulation is the only tool

that provides accurate timing information and performance details. Typical
timing accuracy is 1 nano-second and voltage tolerance is 0.001 Volts

relative. This, however, requires more than three orders of magnitude more
computing time compared to gate or switch level simulators [3].

The importance and the high computing cost of circuit simulation provides
motivation for the development of fast and accurate electrical circuit

simulators. These can be achieved by using improved algorithms and high

performance computer architectures to run the simulation engines.

Circuit Simulation

Electrical circuit simulation programs such as SPICE [4], ASTP [51 and
SLATE [6] are commonly used by IC designers. SPICE is the most popular

circuit simulation program. Many different versions of SPICE such as

SPICEZ, and SPICE3 [7] and commercial implementations such as HSPICE,
PSPICE, and IGSPICE are in use [8]. These simulators are robust and

permit analysis of a wide variety of circuits. However, they are not cost-

effective for the analysis of circuits with more than few hundred transistors.

Commonly used circuit simulators such as SPICE and HSPICE provide
models for several nonlinear, active circuit devices such as field-effect
transistors (FETs), bipolar-junction transistors (BJTs), and diodes. They
offer a wide varietg of analyses including dc analysis, time domain transient
analysis, ac analysis, noise analysis, and distortion analysis. Among these,
time domain transient analysis is the most expensive in terms of computer
time. The present work focuses on techniques to improve the speed of time-
domain transient analysis while maintaining acceptable waveform accuracy.

The transient analysis process can be divided into two stages: eqwtion
fornulation and equation solution. Given the circuit external excitations and
topological description, the equations are derived by means of KirchoRs
current law (KCL), Kirchoffs voltage law (KVL) and branch relations (BR).
Branch relations are mathematical descriptions of the electrical behavior of
circuit elements, for example the diode current-voltage relation. Applying
KCL, KVL and BR to a circuit yields a set of nonlinear algebraic-differential
equations (NL-ADEs). The unknowns are usually node voltages and branch
currents. Two approaches are used to solve NGADEs. The f i s t approach
consists of transforming the NL-ADEs into nonlinear algebraic equations.
Subsequently, a set of linear algebraic equations is derived. These equations
are then solved using a conventional direct method, generally LU
decomposition.

The second approach, developed more recently, employs iterative or
relaxation, methods at different levels of the simulation process. Depending

upon the stage of application of iterative techniques, relaxation techniques
can be classified as linear relaxation, non-linear relaxation and waveform

relaxation [3]. Linear relaxation techniques are used to replace Gaussian
elimination. Non-lipear relaxation techniques such as non-linear Gauss-

Seidel and Gauss-Jacobi techniques can be used to solve the system of non-
linear algebraic equations. Waveform relaxation techniques use iterative
techniques at the differential equation level. Simulators based on these
algorithms provide waveforms as accurate as those of a standard circuit
simulator, with up to two orders of magnitude speed improvement for large
circuits [9,10,11]. These simulators have been used for simulation of both
digital and analog MOS ICs. Relaxation methods lend themselves well to
parailel processing and have been the subject of extensive research within
the last few years [lo, 11, 12, 131.

Conventional circuit simulators such as SPICE a d ASTAP were designed for

the analysis of circuits containing up to a few hundred transistors [14].
Many designers have used these programs for simulating circuits containing
thousands of transistors even though the computation requirement is several
CPU hours. Saleh and Newton [a] have reported that at some companies the
SPICE program is executed over 50,000 times a month. It is observed that
80% are small jobs which consume 20% of the CPU time, while 20% of the
jobs consume 80% of the CPU time.

The main reasons for high computing costs are briefly explained below. The
time domain transient analysis involves formulation and iterative solution of
nonlinear ordinary differential equations. The equation formulation is an

O M) process where M is the total number of devices in the circuit. If M is
large and device model equations are complex then the formulation process
requires a large number of floating point operations. The order of complexity
of each solution iteration varies &om O N - 1) to o@), where N is the total
number of equations in the system, depending on the sparseness of the
system [3]. Several such iterations are required to obtain the solution of the
system at each time point. Therefore, time-domain transient analysis is very
expensive in terms of computer time. The importance and the CPU intensive
nature of transient analysis is the motivation for the development of high
performance simulators.

Two approaches have been used to improve
first approach involves the development

the simulator performance. The
of new algorithms, such as

waveform relaxation and iterated timing analysis. These algorithms have
proven effective for the analysis of MOS digital circuits. The second

approach involves partitioning the circuit simulation problem into sub-

problems such that a number of them can be evaluated concurrently using
parallel processing techniques. More recently this approach has attracted a

lot of attention. This research focuses on the application of parallel

processing techniques to enhance performance of waveform relaxation
techniques.

1.2 Parallel Processing

Parde l processing is a form of information processing that exploits
concurrent manipulation of data elements to reduce total elapsed time to

completion. Pipelining and task parallelism are two methods used to achieve
concurrency [15]. Pipelining increases concurrency by dividing a
computation into a number of steps. Each computation step is assigned to a
pipeline stage. Buffers exist between pipeline stages and the pipeline control
mechanism ensures that a l l the pipeline stages are evenly loaded.

Parallelism is the use of multiple resources (processing elements). Parallel
processor designs can be divided into three classes according to the number
and cornplexi~ of the processing elements used: fine-grain, medium-gain
and large-grain [16]. In fine-grain parallel processing systems, each
processing element (PE) is typically capable of executing a few simple
instructions, whereas each PE of a medium-grain system is able to process a
procedure-sized group of instructions, and a PE of a large grain system may
have the capacity of an entire modern day computer. Several medium-grain

systems have been built in the last decade; their popularity can be partly
attributed to the availability of off-the-shelf medium-grained components

(microprocessors and memory units).

According to the number of instruction and data streams used, parallel
systems can be classified as single instruction, multiple data systems (SLMD)
and multiple instruction, multiple data systems (MIMD) [17]. SlMD
operation involves multiple processors simultaneously executing the same

instruction on different data. A wide variety of array processors fall in this

category. MIMD operation involves multiple processors autonomously

executing diverse instructions on diverse data. Depending upon the inter

processor communication technique used, MIMD systems can be further
classified as shared memory and message passing [MI. Each of these has its
advantages and disadvantages. The primary advantage of shared memory
systems is the ability of parallel processes to share a single address space; a
significant disadvantage is the bottleneck created by this shared resource. In
addition, other important problems such as data access synchronization and
cache coherence must be solved. In message passing architectures, PEs
share data by passing messages. These architectures have been principally
constructed in an effort to provide a parallel architecture that will scale
(accommodate a s i w c a n t increase in number of processors) well and will
satisfy the performance requirements of large scientific applications

characterized by local data references [I61 [19]. This architectural approach
requires that a parallel program be divided into disjoint processes such that
there is minimal communication between them. An important disadvantage
of the message passing approach is the message latency as the data is
queued and forwarded by intermediate PEs. It is important to note that
neither of the two approaches described above is a clear cut winner.
Substantial research is in progress to find a match between applications and
suitable architectures.

As mentioned above, medium p i n systems can be built using commercially
available processors and memory chips. These are usually less expensive in

comparison with fine grain and large grain systems. Hardware complexity
and cost of medium grain message passing systems is usually lower than that
of shared memory systems. Several medium grain systems are readily
available in the market. Therefore, a medium-grained message passing
architecture based on the Inmos microprocessor T800 [20] is used for the

project.

1.3 Motivation and Research Objectives

A number of approaches have been used to improve the performance of

conventional DIRECT circuit simulators [3]. Look-up table techniques have
been used to reduce the time required to evaluate complex device model

equations [21, 221. Techniques based on special purpose micro-code have

been investigated for reducing the time required to solve the sparse linear
systems arising from the linearization of circuit equations [23]. Node
tearing techniques have been used to exploit circuit regularity by bypassing
the solution of sub-circuits whose state is not changing [24] and to exploit the
vector processing capabilities of high performance computers such as the
CRAY-1 [25]. In all the above cases, the overall speed im.ovement of the
simulation has been at most an order of magnitude, for practical circuits [3].

Several commercial implementations of both shared memory and distributed
memory parallel processing systems have become available in recent years.
Multi-processor/multi-computer systems are attractive due to their low cost.
These systems have been used to implement parallel direct method
simulators. Parallel direct methods can exploit parallelism in formulation
and solution of systems of equations. Newton and Sangiovanni-VincenteIli
[3] have reported that for large circuits the majority of the time is spent in
solution of linear systems of equations. The linear equation solution time
grows faster than Linearly with the circuit size. The LU factorization, forward
elimination, and backward substitution used for the solution offers a limited .
amount of parallelism. In addition, the sparse and asymmetric nature of the
system matrix makes parallel implementation difEcult.

Relaxation techniques such as non-linear relaxation and waveform
relaxation partition the system of equations into a number of sub-systems.
Iterative techniques are used across sub-systems. This avoids p a r d e l
solution of large and sparse systems of linear equations. It is usually
possible (depending on the algorithm used and the nature of the circuit) to
solve sub-systems in parallel. Some parallel architectures also allow
exploitation of fine grain parallelism within an iteration of a single sub-
system. Thus parallelism available at various levels of the simulation

process can be exploited. In addition, relaxation based simulators allow the
use of waveform properties such as latency and multi-rate behavior to reduce
the simulation time. Therefore parallel relaxation based simulators have
become a focus of research. 'ItRo relaxation based techniques, parallel
Iterated Timing Analysis and parallel waveform relaxation have been
reported in the literature [11][10]. Waveform relaxation is a robust
technique. It inherently exploits multi-rate properties. It is also possible to

reported in the literature [11][10]. Waveform relaxation is a robust
technique. It inherently exploits multi-rate properties. It is also possible to

organize parallel implementation in such a way that sub-systems exchange
large relatively infrequent messages. This property is useful for parallel
implementation on distributed memory machines.

Most of the relaxation based parallel simulator implementations described in
the literature [10711,12,13], with the exception of CONSISE (a simulator

developed at CALTECH by Sven Mattison [12]), use shared memory
multiprocessors. CONSISE does not perform block partitioning. Block
partitioning and its impact on parallel implementation will be discussed later
in the thesis. The message passing programming model is substantially
different from a shared-memory programming model. Therefore detailed
investigation of problems involved in implementing a circuit simulator on the
more economical message passing systems is necessary.

While a few implementations have been described in the literature, there
has been little done by way of performance analysis and evaluation of
distributed memory parallel waveform relaxation. This is an area that

deserves much more attention to identify bottlenecks of particular
implementations or architectures.

The principal objective of this work is to study issues involved in the
application of distributed memory parallel processing for the simulation of

MOS digital VLSI circuits using waveform relaxation techniques. In

particular, this thesis will determine how much the speed of calculation in
circuit simulation can be increased with a low cost distributed memory
parallel processing system. Also, a method will be sought to efficiently

implement circuit simulation on the distributed memory machine.

The study involves analysis of different forms of parallelism in the direct

method and the waveform relaxation technique. An analysis of various
implementation strategies and their performance implications will be
performed. A strategy appropriate for implementation on medium grained
distributed memory machines will be selected. Two forms of the waveform

relaxation algorithm will be implemented using a multi-transputer system to
compare their performance characteristics. Load imbalance is a major

algorithm will be developed and implemented. Results of parallel
implementation will be analyzed to identify sources of bottlenecks and

possible remedies will be suggested.

1.4 Thesis Outline

This thesis describes important aspects of the distributed memory parallel
waveform relaxation technique for the simulation of MOS VLSI circuits. The
understanding of the research work requires background information in
waveform relaxation techniques and parallel processing.

Chapter 2 reviews prior research on the waveform relaxation techniques.

The chapter presents speed and robustness enhancement techniques, such as
circuit partitioning and window selection. The waveform relaxation
technique partitions a circuit into a number of sub-circuits. The direct
method is used for simulation of sub-circuits, therefore, the direct method is
also described. The topics presented in this chapter are mainly based on

131 [I41 [81 D61.

The objective of Chapter 3 is to describe issues and options involved in the
parallel implementation of relaxation based circuit simulators. The
information presented in this section can be divided into two logical parts.
The first part consists of generic background on parallel processing issues.
Important classes of parallel architectures are described and the effects of
different forms of overheads on performance of parallel applications are
analyzed. The second part is devoted to the analysis of issues involved in
the parallel implementation of circuit simulation programs. Coarse and fine
grain parallelism in the direct and relaxation methods are analyzed. The
discussion in Section 3.3 and Section 3.4 is based on the work of Saleh et al.

[27]. The discussion concentrates mainly on issues involved in parallel
implementation of waveform relaxation programs on shared memory multi-
processors. Issues specific to distributed memory machines such as
partitioning and allocation are described in Sections 3.7 and 3.8.

Chapter 4 presents an implementation of a parallel waveform relaxation

program. Two implementation strategies, a single queue and a distributed
queue approach are compared. The parallel processing framework, and the

placement and partitioning algorithms used for the implementation are
described.

An imbalanced workload in a parallel processing system results in low
overall efficiency and speed-up. Load offered by a circuit simulator when
simulating a large digital circuit changes with simulation time due to latency
and multi-rate behavior. Therefore, load imbalance is an important source of
overhead. Chapter 5 presents dynamic load balancing techniques used to
reduce the load imbalance overhead. A implementation using a multi-
transputer system is also presented.

Results of implementations described in Chapters 4 and 5 are given in
Chapter 6. The effects of performance Iimiting factors are also analyzed.
Finally Chapter 7 concludes the thesis, and gives suggestions for further
research.

2. CIRCUIT SIMLTLATION TECHNIQUES

The last two decades have seen a substantial growth in the size and
complexity of integrated circuits. Conventional prototyping techniques used

to verify electronic circuit design and predict performance, such as

breadboard implementation, are inadequate for large integrated circuits for

several reasons. For example, modeling of parasitic components is difficult
because the physical contexts of the prototype and the resultant system are

so different. In addition, time and cost of prototype development is usually
very high. Important goals of integrated circuit development are to
minimize development time and to reduce risk. These goals fostered the
development of computer programs to simulate integrated circuits. Early

attempts in this direction led to the development of a simulation program
CANCER [28]. SPICE, a successful circuit simulation program, evolved from
CANCER. Later versions of SPICE, SPICE2 [4], and SPICE3 [7] added
hctionality and improved robustness. These programs use conventional

Newton-Raphson based methods.

A wide variety of algorithms to improve the performance of simulators
without sacrificing accuracy have been described in the literature. Of these

approaches, the relaxation based approaches, such as, waveform relaxation

[9][10], iterated timing analysis [I I] and waveform-relaxation-Newton [I U
are ideally suited for simulating MOS digital circuits. This is due to the

unidirectional nature of MOS devices. That is, due to the insulated gate

terminal, the current through the gate is independent of the voltages at the

other device terminals, if the effects of small gate-to-drain and gate-to-source

capacitances are ignored [14]. The unidirectionality property helps
relaxation decomposition, as will become clear later. This chapter describes

basic mathematical techniques used for development of a circuit simulation

program to perform time-domain transient analysis. Techniques used to

formulate a system of non-linear ordinary differential equations are

described. Both direct and relaxation based techniques are discussed.

Topics presented in this chapter are mainly based on [3] [I41 [S] [26] [29] [30].

2.1 Formulation Of The Equations

The t i rs t task performed by a circuit simulator is to read the circuit
description and formulate a set of algebraic differential equations based on
Kirchoffs Current (KCL) and Voltage law (KVL), and Branch relations.

- There are several different ways of formulating a system of equations. The
most popular of these are Nodal Analysis, Modified Nodal Analysis and
Sparse Tableau Analysis. Nodal analysis is the oldest and the most
frequently used method [29]. Node voltages are unknown variables in this
formulation. The main reason for popularitg of nodal analysis is its
simplicity. However it is diflidt to simulate circuits with floating voltage !

sources and current controlled devices. Direct evaluation of branch currents
i d s o difficult. Modified Nodal Analysis (MNA), implemented by Ho et al.
1311, overcomes these difliculties. MNA can treat node voltages, voltage
source currents, output currents and controlling source currents as unknown
variablh. The SPICE2 program uses MNA.

Sparse Tableau Analysis is the most general inethod. In this method, the set
of unknown variables includes all branch voltages, branch currents and node
voltages. This method formulates more equations per circuit than the
previous two techniques, however the system of equations is usually very
sparse and therefore the number of floating point operations necessary to
solve these equations can be less than the number required to solve smaller,
more dense systems such as those derived &om nodal analysis [29].

MOS 'digital circuits seldom use floating voltage sources and current
controlled devices. Therefore NA is an adequate formulation for their
analysis. NA has been d e d in this thesis. The following assumptions are
made while formulating the system of equations.

1. AU resistive elements, including active devices, are characterized by

constitutive equations where voltages are controlling variables and
currents are controlled variables.

2. All energy storing elements are two-terminal, possibly nonlinear, voltage-
controlled capacitors.

3. All independent voltage sources have one terminal connected to ground or
can be transformed into independent current sources with the use of the
Norton transformation.

Another important assumption required by relaxation-based simulators is
that a two-terminal capacitor be connected &om each node of the circuit to
ground. This assumption is satisfied by circuits where lumped parasitic

capacitances are present between circuit interconnect and ground or on the
terminals of active circuit elements. This assumption helps in ensuring that
the capacitance matrix has all non-zero diagonal elements. This point is
fbrther elaborated in Section 2.3.

The process of formulating a system of equations with node voltages as
unknown variables consists of three steps. The first step is to use KCL to
formulate a system of equations in terms of branch currents and node
charges. The form of KCL which states that the algebraic sum of currents
incident at a node must be equal to the rate of change of the algebraic s u m

of charges at the node, is assumed in the discussion. Then the branch
currents and node charges are expressed in terms of branch voitages using
branch relations. Finally, branch voltages are expressed in terms of node
voltages using KVL.

The application of nodal analysis to a (N + I) node circuit yields N linear
independent equations in N unknowns. Node W+l) is treated as a reference
or ground node and the corresponding equation is discarded. Thus, for each
node in the circuit the following equation can be written:

The resulting system of N equations can be written in the form:

where q(v(t), u(t).kRnis the vector of the sum of charges due to the capacitors
connected to nodes, q(v(t),u(t)) E W is the vector of time derivatives of q(v(t),

&))E Rn, v(~)E Rn is the vector of node voltages at time t , dt) E Rn is the
input voltage vector at time t and f , f :RR x Rn + Rn is a vector function. It

can be expressed as:

An ith element off, 6 (v(t),u(t)), represents the sum of currents charging the

capacitors connected to node i. Equation 2.1 is known as the charge
formulation of the circuit equations because charge is treated as a state

variable. It is also possible to treat voltage as the state variable. The
resulting system of N equations can be written in the following fomx

rn

where C(*):Rn + Run represents the nodal capacitance matrix. The two

formulations are equivalent for circuits with h e a r capacitors. However
charge formulation must be used in circuits with nonlinear capacitors in

order to keep the total charge in the system constant during the simulation
process. Both formulations are used in this thesis. The equation formulation
process can be explained with help of the following example [14]. Consider
the nodal equation formulation for the MOS nand circuit of Figure 2.1:

The nodal equation for the first node is:

and for the second node,

where idml and idm2 are the currents fkom drains to sources of transistors M I
and M2 respectively, and q, ,qC2 ,qsm2are the charges accumulated at the

m l

drain of transistor M1 and the drain and source of transistor M2,
respectively. Although KVL equations have not been formulated explicitly,

they have been used for expressing branch voltages in terms of node
voltages. Current and charge terms in these equations can be expressed in
terms of node voltages using branch relations. Branch relations are
discussed in the following subsection.

Figure 2.1: A MOS nand gate 1141.

2.1.1 Branch Relations

Branch relations are mathematical descriptions of the electrical behavior of
circuit elements. The br ch relations can be divided into three different
categories: resistive, cap c e and inductive. Resistive and capactive branch a
relations are described because these are necessary for analysis of MOS
digital circuits. Resistive branch relations relate voltages to currents and
capacitive equations relate voltages to charges.

The branch relations for an n-terminal device can be represented by a set of
(n-I) algebraic equations involving (, - I) terminal voltages and currents or

charges. One terminal is used as a reference and voltages of the other
terminals are determined with respect to this reference terminal. The
relation between diode current and anode-to-cathode voltage is an example of
resistive branch relation. The current through the diode, i,, can be computed

from the following approximate equation:

where v , is the anode-tocathode voltage across the diode, I, is the
saturation current and V, is the thermal voltage.

If the device currents can be uniquely determined from the equations, given
the device voltages, then the device equations are said to be voltage-
controlled. Often, given a set of device equations, it is possible to perform a
transformation so that the device currents are explicit functions of device
voltages. For example, Equation 2.5 is voltage-controlled because in it the
current, i, , is an explicit function of the device voltage, v,.

The commonly used approximate equations for a MOS transistor are another
example of voltage-controlled device equations. The approximate device
equations can be expressed as:

. kW
r , = - [2 (ugs - u,)v, - V;] for vd, I vga - vT ;

2L

where id is the drain current, k is a parameter depending on the carrier

mobility and thickness of the oxide, W and L are the width and the length of
the channel of the transistor, v, is the gate-to-source voltage, v, is the
drain-to-source voltage, v, is the threshold voltage, and i, is the gate current.

The branch cument equations for the MOS transistor are specified by two
different algebraic hctions, where the function is determined by the
voltages at the terminals. Most of the devices in use today can be expressed
by voltage controlled equations and therefore satisfy the first assumption
mentioned above.

Figure 2.2: A MOS transistor in f?ee space.

Branch equations for an n-terminal capacitive device are a set of (n-I)
algebraic equations involving terminal voltages and terminal charges. For
most commonly modeled devices, there exists a set of equations for the
terminal charges that are voltage-controlled. For example, consider the
junction capacitance for the diode for the case where the voltage across the
diode v,, 5 0.0. Then, the anode charge, q., can be computed to the first

order with the equation:

where C, is the zero-bias junction capacitance and $ is the junction potential.

Similarly, charge equations for capacitors of a MOS transistor (see Figure
2.2) in the saturation region are given by:

where q, and q, are respectively the charge stored at the gate and the charge
stored at the drain of the device, C, is the oxide capacitance, and C, is small

parasitic capacitance.

Given a physical device, its electrical behavior is best described by a

combination of resistive and capacitive branch equations. Certain devices
may require inductive branch equations as well. Inductive effects are
usually considered for analysis of high frequency circuits. Analysis of MOS
digital circuits seldom involves inductive branch equations. Therefore, these
equations have been omitted from the discussion. Often the branch
equations are symbolically represented by ideal elements such as two-

terminal linear and nonlinear resistors, two terminal capacitors and
controlled sources. For example, the MOS transistor model is represented by
Figure 2.3.

g *

Figure 2.3: A MOS transistor model.

2.2 Direct Method

This section describes the procedure to obtain transient response of a given
circuit using the direct method. As mentioned in the previous section,
transient analysis involves formulation and solution of a system of nonlinear
algebraic differential equations. Important mathematical steps involved in
the simulation process are described below.

The f i s t step is to formulate a system of equations similar in form to
Equation (2.1) or Equation (2.2). The time derivative terms in the system of
equations are then discretized using stiffly stable integration formulas, such

as Backward Euler (BE), the Trapezoidal Rule (TR), or Gear's Variable-

Order Method (GE) [26] [29]. An integration method divides the continuous
simulation interval [O, TI, into a set of M discrete time points defined by

The system of equations is solved at each time point tncl. The quantity hn is
known as the time step at time point t , . The commonly used stiffly stable

integration formulas are given below:

Backward Euler:

Trapezoidal Rule:
n

Gear's Variable Order Method:

where vn is the value of the unknown variable v at time t,, h, is the nth

integration time step, and a and k are constants that depend on the order of
the Gear's method. The application of integration formulas results in a set of
nonlinear algebraic equations of the form:

where u E RN is the vector of unknown voltages at t,,,. These equations are

then solved using a Newton-Raphson algorithm. A general form of the
Newton-Raphson iteration equation to solve F (u) = 0, where u c R" and

F:RN +RN is:

where JF (v) is the Jacobian of F(v) and vk+', v k are k+I th and kth iterates

respectively. Thus,the Newton-Raphson algorithm yields a , set of linear

equations of the form:

where A E RNfl is a matrix related to the Jacobian of g and b~ RN.
Typically less than 2 percent of the entries of A are non-zero for N > 500.
The matrix is sparse because each node in the circuit is connected to only a
few other nodes. These equations are then solved by using direct methods,
such as sparse LU decomposition or Gaussian elimination. The Newton-
Raphson process is iterated until convergence or until an upper bound on the
number of iterations is reached. Typical bounds on convergence are 50
micro-volts absolute and 0.001 relative. A new time step is then selected.
This procedure is continued until the simulation is complete.

Figure 2.4 shows a flowchart of the simulation process. The simulator
operation begins by reading the circuit description. Values of the
independent sources are computed at the present time point and values of
the unknown variable are predicted using their values at previous time
points. Each device is represented using resistors, capacitors and current
sources. Integration formulas are applied to linear and nonlinear capacitors,
nonlinear devices are Iinearised using the Newton-Raphson method and a

system of linear equations is formulated. The process of applying integration
formulas to capacitors and linearising nonlinear devices (steps 4, 5 and 6) is
known as device model evaluation which is described in Appendix k The
system of equations is solved using sparse matrix techniques. Upon
convergence of the NR iteration, local truncation error estimates are used to
test the accuracy of the solution and to select a new time step. Time step
control techniques are discussed in the following subsection. Steps (2) to (13)
are repeated until the simulation is complete.

The direct method discussed above has proved to be reliable and accurate for
simulation of a wide variety of circuits. However it has several limitations.
Referring again to Figure 2.4, the majority of time spent in steps (2) to (13)
can be lumped in two categories: the time required to form entries of A and
b in Equation 2.5, the FORM phase (steps (5) and (611, and the time
required to solve the system of sparse linear equations, the SOLVE phase,
(steps (7) and (8)). Several researchers have observed that for small circuits

I
- - - - -

Update values of independent
sources at t ,+ 1 I

f
Predict values of independent

Variables at t
C * .

Apply integration formulae to
linear capacitors

Apply integration formulae to
nonlinear capacitors

I Apply Newton-Raphson method
to nonlinear circuit elements I

linear circuit equations

Read circuit description
and intialitt data structures

I Solve linear circuit I

I estimate to test accuracy at tn+l I

I equations I +

I Save solution if acceptable 1

-
no

+
I Select a new time step I

Has Newton-Raphson
Converged ?

and new t n+ 1 I

+
Use Locai Truncation Error 1

1 Print output data and stop I

Figure 2.4: Flowchart of the simulation process [32].

(N < 20), the majority of the time is spent in performing the FORM, however,
when the size of the circuit grows, an increasing percentage of the time is
spent in the SOLVE phase [3]. The time spent in the SOLVE phase has been
measured to grow as o (N ~) where 1.1 < /k 1.5 [3]. On the other handTthe

time required for FO-ows lipearly with the number of circuit elements.
Thus the SOLVE phase becomes a major bottleneck while simulating large
circuits using the conventional approach. In addition, it is difficult to exploit
waveform properties described later such as latency and multi-rate behavior.
The relaxation-based techniques described in the next section attempt to
solve these problems.

2.2.1 Time Step Control

The time required for simulating a circuit is proportional to the number of
time steps necessary. Therefore, an objective of any circuit simulation
algorithm is to reduce the number of time steps without sacrificing accuracy.
Several schemes to select time steps for solving systems of NL-ADEs have
been described in the literature. Commonly used time step control schemes
for circuit simulation are: global Gxed time step, iteration count, and Local
Truncation Error (LTE) based time step control [4, 18,261.

The fixed time step scheme selects the time step depending upon the fastest
changing variable of a circuit. This scheme is very inefficient because several
unnecessary time points are computed for time intervals when signals are
changing slowly. The iteration count scheme uses some heuristic for
selecting an initial time step. If the number of iterations required for
convergence is larger than some N,,,, the step size is reduced by some factor.

If the number of iterations is less than N,ow, the step size is increased by some

factor. Otherwise the step size remains the same. This scheme is efficient;
however there is no explicit accuracy control. It is commonly used in

conjunction with the LTE-based scheme described below.

The LTE-based schemes observe the state of the circuit and the time step is
adaptively changed accordingly. The Local Truncation Error (LTE) is the
error made in one time step. If x,,, is the numerical solution of a system of

differential equations of the form

at time point t,+, and x(tn+,) is the corresponding exact solution. Also if all
previous solutions (x n , xn-I , - - -) are exact. Then the local truncation error for

a general multistep integration method is defined as:

The local -cation error depends on the integration method and the time
step. For example, the LTE for the trapezoidal method [26] can be shown to
be

The general form of the local -cation error [29] for most multistep
integration methods of order k is given by

k+l (&+I) LTE,,, = Ekh x (5) tn 1 5 6 t,,. (2.16)

where ck is a constant which depends on the integration method. The LTE-

based time step control scheme estimates the LTE at each time step. The
solution is accepted if the estimated LTE is less than the user-specified
tolerance. The user-specified tolerance is usually expressed in terms of an
absolute error parameter E, and a relative error parameter E, as

E U ~ E = &a + ~r x max(xn+lv x n I (2.17)

The value of the term ~ " ' " (5) in the Equation 2.16 above is

unknown. It can be approximated using divided difference as

where DD,+, (t,,,) is the k+lst order divided difference. The LTE estimate is

then

If predictor-corrector technique and BDF integration methods are used for
the solution of differential equations then LTE can be easily estimated using
the difference between the computed solution x,+, and the predicted value
x t . The estimated LTE for a kth order BDF is given by [ll]:

where the predicted solution x P (r n + ,) can be computed using an explicit

integration method. The

where the superscript 0

predictor can be expressed as

indicates the 0th iteration and the y, values are
selected such that the predictor x:, is correct if the solution is a kth order

polynomial. Usually a kth-order predictor is used with a kth order
integration method. The computed solution xn+, is accepted if

Saleh [ll] has proposed a convenient method of implementing this check
which is described below. A ratio r of allowable LTE and the actual LTE is
computed.

Therefore

and

then the solution is accepted. The ratio can be also used to compute the next
time step. The next recommended step is given by

In addition to limits imposed by the local truncation error, a few practical
considerations are also used for selecting the next time step. For example,
time step is selected in such a way that steps f d on input break points and
window boundaries. Bryton et al. [33] have observed that in several practical
cases, rapid changes in step sizes introduce instability problems. Therefore it
is necessary to limit changes in step size. The Relax2.3 and iSPLICE3 [14, 81
programs use four parameters, s,, s,, a , and to control changes in step

size. The step can be reduced at most by a factor s, and increased by a factor

s,. The factor a permits the same step size to be used a number of times

and p is a growth factor. The strategy used for limiting changes in step size
is described below. If r,, < 1.0 then the step size is reduced by a factor
MtLY(s,, r,,). If 1.0 < r, < a, the same step size is maintained. Similarly if
r , 2 a then the step size is increased by MIN(s, J3rLTE). Typical values of the
parameters are r, =0.25, s, =2.O, a= 1.2 and p=0.9.

2.3 Relaxation Methods

Relaxation methods are numerical techniques used for the solution of a

system of linear, nonlinear and Merentid equations. The basic structure of

a relaxation-based simulator is similar to the standard circuit simulator. A
set of NZrADEs, in the form of Equation 2.2 or Equation 2.3, are formulated
using KCL, KVL and branch relations and relaxation-based techniques are
used to solve them. The relaxation techniques have two advantages: they
do not require direct solution of a large system of linear equations, resulting
in a considerable reduction in the SOLVE bottleneck, and they pennit the
simulator to exploit latency and multi-rate behavior efficiently [Ill. Latency
and multi-rate behavior are discussed below.

As discussed in Section 2.2, most direct method circuit simulators use a
common time step for the complete circuit. This results in computation to
solve for each variable at every time point. The time step at a time point is
computed by calculating a minimum of recommended time steps for all

variables. Therefore the fastest changing variable in the system determines
the time step. As a result, several extra points are calculated for slowly
changing variables than necessary to represent the variable accurately. This
effect is particularly significant for variables that are not changing

appreciably over some interval of time. Waveform latency refers to the
situation where a variable is not changing appreciably over some interval of
time and its solution can be obtained from the explicit equation:

That is, the value x,,, is not computed using a numerical integration formula

but instead is updated using the value at the previous time point. Latency is
a well-known property of large digital circuits. Figure 2.5a shows a node
voltage waveform with three latent regions, L1, L2 and L3, where node
voltages are updated using their previous values. Multirate behavior refers
to signal values changing at different rates, relative to one another, over the
same internal of time. MOS digital circuits show multirate behavior because
of different transistor sizes and capacitance values. Figure 2.5b shows
voltage waveforms of two nodes of a sub-circuit which are changing at
different rates where large time steps are used to obtain the slowly changing,
first, waveform and smaller time steps are taken to obtain the rapidly
changing, second, waveform. This is an example of the multirate behavior.
An effective exploitation of latency and multirate behavior can result in
significant reduction in simulation time.

As shown in Figure 2.6, relaxation based techniques can be used at various
stages of the solution process. Depending upon the stage at which the
relaxation process is applied, the techniques are classified as Linear,
Nonlinear or Waveform. The most commonly used numerical analysis
techniques for the purpose are Gauss-Seidel and Gauss-Jacobi.

2.3.1 Linear Relaxation

Linear relaxation techniques use iterative methods for the solution of system

of linear equations. Referring to the flow chart of a direct method simulator
shown in Figure 2.4, either Gauss-Seidel or GaussJacobi methods can be

used instead of LU decomposition or Gaussian elimation in steps (7) and (8).
GS and GJ algorithms used for the solution of equation Ax = 6 , are given
below. The constant e indicates the error tolerance and k is the iteration

count.

-
time

time

time

Figure 2.5: Waveform properties [a] Latency [b] Multi-rate behavior (81.

Nonlinear Relaxation
RELAXATION

I

iteration .

Linear Relaxation

Waveform Relaxation
RELAXATION

iteration
L

iteration

+ """"ON k-

System of nonlinear

differential equations

v
Solution subvector

1

ImpIici t numerical Implicit numerical

Integration formula Integration formula
2

I

Newton-Raphson Newton-Rap hsoa

iteration I iteration I

I

, Sparse Gaussian 1

System of nonlinear
algebraic equations

System of linear
algebraic equations

1 Elimination

Figure 2.6: Relaxation-based techniques [9].

Gauss-Jacobi Algorithm to Solve A+ = b

estimate x O ;

repeat (
k t k + l ;

Gauss-Seidel Algorithm to solve Ax = b

estimate x O ;

repeat {
k t k + l ;
foreach (i ~ {I,--.,d 1

It is important to note that in the GJ method, each iteration x f is calculated
by using values from the previous iteration, xf ". Therefore equations can be

solved in any order or can be scheduled in parallel on multiple processors. In
the GS method, the most recent (i.e. latest k) iteration values are used for
calculating the current iteration. Therefore the order of processing equations
is important. This is indicated by the use of the foreach construct.

In order to study convergence properties of the GS and GJ methods, A in the
equation Ax = b c a n be expressed as A = L+D+U, where L E Rn is strictly

lower triangular, D E Rn is diagonal and U E R" is strictly upper triangular.

The application of GJ and GS methods results in the following equations:

Gauss-Jacobi:

Gauss-Seidel:

A necessary and sufficient condition for iterations defined by Equations 2.26
and 2.27 to converge to the solution of equation Ax = b, independent of any
starting vector x O , is that the eigenvalues of M , and Mw be inside the

unit circle in the complex plane [34]. If these conditions are satisfied then
GS and GJ methods converge at least linearly. That is, the error at each
iteration decreases according

where 2 is the solution of the equation Ax = b.

The two relaxation based methods can be compared with the standard
approach. The direct methods are certainly more reliable, however, their
computational cost is compared with O N) for the relaxation based
methods 131. Thus relaxation methods are advantageous f?om a
computational point of view, if the number of iterations required to converge

is of the order of No-'.

It is also possible to compare the Gauss-Seidel approach with the Gauss-

Jacobi approach. Gauss-Seidel can be shown to converge faster than Gauss-
Jacobi in most cases. For example, if A is lower triangular, Gauss-Seidel can

converge to the solution of the system of equations in one iteration while

Gauss-Jacobi converges in N iterations. However, in the Gauss-Jacobi

approach, computations for all the equations can proceed in parallel,

therefore this technique is appropriate for parallel systems having a large
number of processors.

2.3.2 Nonlinear Relaxation Methods

As mentioned in the earlier section, the f is t step in solving a system of
differential equations obtained from the circuit description is to convert it to
a system of nonlinear algebraic equations using integration formulas (refer
Equation 2.4). The system of nonlinear equations thus formed can be solved
using relaxation techniques without linearising them. This technique is
known as nonlinear relaxation.

Consider a system of nonlinear equations F(x) = 0, F : Rn -t R" with
components (f, , f2 ,*-•, f,) and f, :Rn + R . Gauss-Seidel and Gauss-Jacobi

algorithms for solution of F(x) = 0 are given below. The index k is the
iteration count and E ~ , are error tolerances

Nonlinear Gauss-Seidel Algorithm:

k t o ;
assume x 0

repea#
k t k + l ;

The foreach construct specifies that the computations for each value of i
must proceed sequentially and in the specified order. As mentioned earlier,
convergence of this method depends on the order of processing equations.

The order can be determined statically or dynamically.

Nonlinear GaussJacobi Algorithm:

assume x 0

repeat {

k + k + I ;

The f o r d construct specifies that the computations for all values of i can
proceed concurrently, i.e. in parallel and in any order.

The conditions under which these methods converge are similar to the linear
case. Let F' (x) denote the Jacobian of F at x and let i be the solution

vector, i.e. F (i) = 0. Assume that F is continuously differentiable in the open
neighborhood Soof 2. The Jacobian ~ ' (x) can be expressed as

L (i) + D (i) + U (i) where L (i) , D(i), and U (i) are lower triangular, diagonal
and upper triangular parts respectively. Let MGJ (i) and M&) be defined

as:

If D (i) is non-singular and the spectral radii p(MGs(i))< 1, p(MG, (2)) < 1,
then there exists an open ball S c So such that nonlinear Gauss-Jacobi and

Gauss-Seidel methods converge to the solution i for any starting vector
xo E S [35]. It is important to note that unlike linear relaxation, convergence
is guaranteed only if the initial guess (starting vector) is sufficiently close to
a solution.

The nonlinear Gauss-Seidel and GaussJacobi algorithms presented above
assume -- that the equations can be solved exactly. However, since these are

nonlinear equations, iterative methods must be used for obtaining their
solution. Each equation, in one unknown, is usually solved using a single
variable Newton-Raphson method. The resulting composite methods are
known as Gauss-Seidel-Newton and GaussJacobi-Newton. Ideally the inner
Newton-Raphson loop should be iterated to convergence. However, it is found
that a single iteration of the loop is usually adequate [35].

Nonlinear iteration methods can be compared with the direct Newton-
Raphson method. It is observed that the convergence rate of direct Newton-
Raphson methods is quadratic while it is only linear for relaxation based
methods. However, each iteration of the direct Newton-Raphson method
requires solution of a set of simultaneous equations while the relaxation
method involves a set of decoupled equations. Thus, relaxation methods have
better inherent parallelism. In addition, relaxation methods are ideally
suited to exploit the latency of the circuit under analysis.

A comparison can be made of the use of relaxation methods at the linear and
nonlinear equation level. The linear relaxation methods have an outer
Newton-Raphson loop and an inner relaxation loop embedded in it, while
nonlinear relaxation methods have an outer relaxation loop and an inner
Newton-Raphson loop, operating independently on each equation, embedded
in it. The use of relaxation at the linear equation level involves computation
of the Jacobian of F, which is quite expensive. Nonlinear relaxation coupled
with an inner Newton-Raphson only needs the partial derivative of f,, with
respect to x i , resulting in a considerable saving of computer time per

iteration.

The application of iterative methods at the linear and nonlinear equation
level has been presented. It is also possible to use these techniques at the
differential equation level. This method is known as Waveform Relaxation
and is discussed in Section 2.5. The following section describes a circuit
simulation approach based on nonlinear relaxation, known as Iterated

Timing Analysis (ITA).

2.4 Iterated Timing Analysis

Iterated Timing Analysis is an electrical circuit simulation approach suitable
for simulation of large MOS digital circuits. Enhancements in the timing
analysis algorithms led to the development of ITA. Nonlinear relaxation
based timing simulators such as MOTIS [22] and SPLICE1 [3], solve each
nodal equation by performing only one relaxation iteration and one o r more
Newton-Raphson iterations per time step. It is assumed the correct solution
can be obtained by appropriate selection of the time step. Performing only
one relaxation iteration results in a substantial reduction in simulation time,
however it is impossible to guarantee accuracy for an arbitrary connection of
MOSFETs. In addition, it is difEcult to simulate circuits with tight feedback
loops and floating capacitors. Therefore timing simulators have not.. .been
successfid for simulation of custom VLSI circuits. ITA based simulators
overcome these difficulties by continuing the relaxation process to
convergence at each time point. The circuit simulator, iSPLICE3 [8],
developed at the University of Illinois at Urbana-Champagne is based on

PTA. It has been used for simulation of large MOS digital and complex
analog circuits. ITA is also amiable for implementation on advanced
computer architectures such as vector and array processors as well as data-
flow machines-

Important steps involved in ITA are described below. A system of nonlinear
ordinary differential equations similar in form to Equation 2.1 or 2.2 is
formulated. It is discretized and converted to a system of nonlinear algebraic
equations using a stiffly stable integration formula. The resulting system of
NGADEs is then solved using nonlinear Gauss-Seidel or Gauss-Jacobi
method. Only one iteration of the inner Newton-Raphson loop is performed.

A special feature of ITA is the use of an event driven selective trace

technique for exploiting latency. In the selective trace technique, every
circuit node maintains two tables; one contains the names of its fan-in

elements and the other contains the names of fan-out elements. Whenever
the voltage at a node changes, all its fan-out elements are scheduled for
processing. In this way, the effect of a change at the input to a circuit may be

traced as it propagates to other circuit nodes via the fan-out tables and the

circuit elements which are connected to them. Only nodes directly affected

by the change are processed. Therefore this technique is selective. It is more
efficient than the bypass techniques used with standard circuit simulators

El -

ITA uses nonlinear relaxation techniques, therefore its convergence
properties are identical to the basic nonlinear relaxation, as discussed in
greater detail below. It was shown in the previous section that convergence
requires diagonal dominance of the Jacobian of the discretized nonlinear
equations. Referring again to Equation 2.2 ,

where C is the capacitance matrix in which, C, ; i # j, is the total floating

capacitance between nodes i and j, and C, is the sum of the capacitances of
0

all capacitors connected to node i. f is a continuous function, each component
of which represents net current charging the capacitor at a node due to other
conductive elements. Now, if C(u,u) is assumed to be symmetric and positive
definite, and hence strictly diagonally dominant, then it can be shown that
the Jacobian matrix of the discretized nonlinear circuit equations is also

diagonally dominant provided that the time step is small [3]. As mentioned
above, the diagonal dominance of the Jacobian is necessary to guarantee
convergence of relaxation-based methods. Thus, diagonal dominance of the
capacitance matrix can be used to check the diagonal dominance of the
Jacobian matrix. The assumption made about the capacitance matrix holds
if all the capacitors in the circuit are two terminal and are positive for all
values of v. Lelarasmee [9] has proved the convergence properties of ITA.

The important steps involved in Gauss-Seidel ITA are given in the following

algorithm; the algorithm can be easily modified to GJ form. For every
simulation time point, two event lists, EA (t ,) and EB (t,) are generated.

These are used to separate the nodes that are to be processed in the

successive iterations, K, k + l , of the Gauss-Seidel-Newton process.

Gauss-Seidel ITA Algorithm:

Put alI nodes that are connected to independent sourc ent list E, (0):

tn = 0;
while (t, < TSTOP)

k t O ;
while (event list E, (t,) is not empty)(

foreach (i in EA (t,)){
k+I k obtain v:" fkom gi(v:+',--*.v, ,-,vN) = O

using single Newton-Raphson step

if (IV;+' - vtk I 5 E; i.e. convergence is achieved){
use LTE to determine the next time t, for processing node i;
add node i to event list EA (t,);

1
else (

add node i to event list EB (t,);

where t,, is the present time for processing and t,,, is the next time at which

an event will be scheduled. Detailed discussion on the time step control
technique is given in Deutsch [13]. Several variants of the ITA technique
and latency exploitation schemes are discussed in [Ill.

2.5 Waveform Relaxation

The previous two sections demonstrate the application of relaxation

techniques at the linear and nonlinear equation level. As mentioned earlier,
relaxation techniques can also be applied at the differential equation level.

This technique is known as waveform relaxation (WR). Waveform relaxation
has been derived from Picard iteration and classical relaxation techniques
such as Gauss-Seidel and Gauss-Jacobi. In waveform relaxation, iteration

variables are node voltage waveforms. This section reviews the basic WR
technique and presents a few extensions. Waveform relaxation can be best
explained with the help of the following example.

Consider a system of equations in v(t) c R2 on t E [0, T]

The Gauss-Seidel and Gauss-Jacobi forms of waveform relaxation are defined
by the iterations:

Gauss-Jacobi \7PR:

c; = f2(v;,v;-',t)

Gauss-Seidel

The basic idea of Gauss-Seidel waveform relaxation is to assume an initial
value for the waveform v,:[O,T] + R and solve Equation (2.31) as an
equation in one variable v, on the time interval [O, TI. The waveform thus
obtained for v, is substituted in Equation (2.32) making it an equation in one
variable v,. The waveform for v , obtained by solving Equation 2.32 is then
substituted in Equation 2.31. This process is iterated until waveforms for v,

and v, converge. In Gauss-Seidel waveform relaxation, order of solution of

equations is important, as waveforms obtained during the current iteration

are used to solve subsequent equations. In Gauss-Jacobi WR, waveforms
obtained from the previous iteration are used to solve all the equations.
Therefore equations can be solved in any order. Thus waveform relaxation

replaces the problem of solving a system of differential equations in two
variables by one of solving a sequence of differential equations in one
variable. So it is a technique for time-domain decoupling of differential
equations. It is important to note that each equation is solved at its own rate
_L

using an independent time step control mechanism. This allows the use of
small time steps for rapidly changing variables and large time steps for
slowly changing variables.

A Gauss-Seidel form of the WR algorithm for transient analysis of an
electrical circuit is described below. Recall the system of NL-ADEs used to
describe an electrical circuit ,

where C(u,v) is a capacitance matrix and f is a continuous function each
component of which represents the net current charging the capacitor at each
node.

The convergence of the WR method is guaranteed under the following
conditions. If C(v(t),u(t)) E Rnm is strictly diagonally dominant uniformly
over all v (t) E Rn and u(t) E Rr and Lipscitz continuous with respect to v(t)
for all u(t 1, then the sequence of waveforms generated by the Gauss-Seidel or

Gauss-Jacobi WR algorithm will converge to the solution of Equation 2.2
independent of the initial guess [lo].

In terms of the equation above, the Guess-Seidel algorithm can be written as
follows 181:

Gauss-Seidel WR Algorithm:

k + O

guess waveform vo i t) ; t E [O , TI such that vo (0) = vo

(for example, set vo (t) = V , t E [O,T]);

repeat

solve

k k A-I f ; (v, , - * * ,vi , Vi+, , * - - ,u) = 0

A Gauss-Jacobi form of the WR algorithm can be obtained &om the GS WR
algorithm by replacing the foreuch statement by a firall statement and
adjusting the iteration indices in such a way that strictly previous iteration
values are used for calculating v" me algorithm shown above partitions a

given system of equations into a number of sub-systems each consisting of
one unknown variable. This is equivalent to partitioning a given circuit into
a number of sub-circuits each consisting of one electrical circuit node. A
description of WR in terms of an electrical circuit is given below.

A circuit is partitioned into a number of sub-circuits. Each sub-circuit is
simulated using an implicit integration and the Newton-Raphson algorithm
at its own rate. Output waveforms of a sub-circuit are used as inputs for its

fanout sub-circuits. The sub-circuit simulation process is iterated until all
node waveforms converge within a user-specified tolerance. In Gauss-Seidel

WR, present iteration waveforms are used for simulating fanout sub-circuits.
Therefore sub-circuits are ordered in accordance with the direction of signal
flow. In the Gauss-Jacobi algorithm, previous iteration waveforms are used
for simulating fanout sub-circuits. Therefore sub-circuits can be simulated in
any order.

The gain of the WR approach is approximately determined by the following
quotient:

Gm G
(Matrix Partitioning)(Multirate Factor)

(No. WR Iterations)(Implementation Factor)
WI -

The GS WR algorithm shown above decomposes a given system of equations
into a number of systems each having strictly one unknown variable. It is
also possible to decompose the system of equations in such a way that each
sub-system contains more than one unknown. In this case, the direct method
is used for solving sub-systems and an iterative technique is used across
sub-systems. This technique is discussed in the following section. The Matrix
Partitioning yields an improvement due to the solution of smaller matrices
instead of a large sparse matrix. The Multirate Factor also results in
substantial gains for large circuits. Large digital circuits usually have 0.01
to 20 percent of a circuit active a t a typical point. In addition circuit
partitioning allows effective exploitation of multirate behavior since
rnultirate activities can be contained in the sub-circuits.

The gain of the WR approach is inversely proportional to the number of
waveform iterations. Techniques for reducing the number of WR iterations
are discussed in the following two sub-sections. An average of 2 to 4 WR
iterations is typical for a simple circuit. The efficiency of the programming
implementation can have significant impact on performance. Therefore
appropriate selection of data structures and algorithms is important. This
effect is represented by the implementation factor.

2.5.1 Windowing Mechanism

The conditions for convergence mentioned above are satisfied by a wide
variety of combinational, sequential and analog circuits. However, it is
observed that circuits with tight feedback loops require large numbers of
iterations for convergence. In addition, the number of iterations required to
converge is proportional to the simulation interval [14]. This motivated
development of a windowing mechanism. In this scheme, the simulation
interval LO, T] is divided into a number of sub-in tervals
[O. T, 1, [I ; , T, 1, [T, . T, 1, = - , [T,-, , TI, known as windows. Waveform relaxation

is used for computing waveforms for the first window and the values of node
voltages a t T, are used as initial conditions for the analysis of the second

window; this process is repeated for the analysis of all windows. An
appropriate selection of window size is important for minimizing the time

required for simulating a circuit. WR converges more rapidly as window size
is reduced. However as window size is reduced, some advantages of WR are
lost. Very small windows limit time steps selected to compute a waveform
resulting in unnecessary calculations. A large number of windows increase
the scheduling overhead. In addition, latency can be exploited over a window
and not over the complete waveform. Optimal selection of window size is
very difficult, so heuristic techniques are usually used. A window selection
algorithm proposed by White 1141 is given below.

The algorithm begins by selecting an initial estimate of the window size. The
size of the next window is reduced if the number of points necessary to
describe a waveform in the current window is more than a pre-defined limit.
This limits the amount of storage necessary for waveforms. Similarly the
size of the next window is reduced if the number of iterations required for
convergence exceeds a pre-defined limit. Upon converge of the present
window, the size of the next window is computed using the size of the present
window and the maximum number of points required to describe a waveform
in the previous window. A few optimizations to ensure that window
boundaries lie on input breakpoints have been omitted fkom the algorithm for

clarity.

Windowing Algorithm

start time = Beginning of window

stop time = End of window

endtime = End of user - defined simulation int erwl

usedpts = Max. number of po int s used the last window

prevwindow = Size of the window used in the previous iteration

if (Not entirely converged in this window)

{

if (usedpts 2 max pts)

{
Shorten window if the wavefomzs overran storage buffers.

stoptime = stamime + (prevwindow * maxpts * 0.7) / usedpts;

1
else i f (numiters mod 5) == 0)

{
/ * Haifwindow size afier every five WR iterations * I
stoptime = prevwindow / 2 + starttime

1
eke

{
I * Just do the same window * 1

stoptime = stamime + prevwindow;

1
1

else

{
I * New Window * I
starttime = stoptime;

stoptime = starttime + (prevwindow * max prs * 0.7) l usedpts;

1
1

2.5.2 Circuit Partitioning

Waveform relaxation based simulators partition a given circuit into a number
of sub-circuits. Circuit partitioning avoids solution of large sparse matrices.
h addition, it is observed that the presence of even a few tightly coupled
nodes in a circuit slows convergence. Therefore tightly coupled nodes can be
isolated in sub-circuits and sub-circuits can be solved using a direct method.

Circuit partitioning techniques can be classified as static and dynamic.
Static techniques perform a pn'ori partitioning of a given circuit. Dynamic
partitioning techniques re-partition the circuit during simulation. A dynamic
partitioning implementation for simulation of bipolar circuits has been
reported by Marong et al. [36] However dynamic partitioning techniques are
rarely used in practice due to their complexim. Static partitioning schemes
are described below.

Approaches which have been used for static partitioning of circuits can be
classified as user partitioning, functional extraction, dc component (dcC)
partitioning [3?] 1381 and Norton equivalent conductance partitioning [lo]. In
the first scheme, the user specifies partitions. This scheme works well for
many practical circuits. However users usually spec* partitions from the
design point of view which may not be ideal for the WR algorithm. Therefore
some form of san i t y check is necessary. The functional extraction method
extracts functional blocks (gates, flip-flops) of a circuit to form sub-circuits. It
is assumed that nodes of a fknctional block are tightly coupled; therefore
they may be placed in a sub-circuit. This type of partitioning is difficult to
perform, since the algorithm must recognize broad classes of functional

blocks.

The dcC partitioning algorithm and Norton equivalent partitioning algorithm
explicitly use coupling information for partitioning. Therefore these

algorithms are likely to give better partitions for WR. The dcC algorithm
uses circuit topology to determine coupling. According this algorithm, a set of
elements is said to form a sub-circuit or dcC if there exists a direct path
exclusively composed of two-terminal elements (resistors, voltage sources)

and/or drain-source connections of MOS transistors between two nodes of

that set. Further any two nodes of this set cannot be linked to any node of

the remaining circuit by such a path. This initial partitioning obtained by

this algorithm is refined by breaking large sub-circuits and combining very

small sub-circuits. A typical dcC implementation represents a circuit as a
graph and the depth first search technique is used to obtain strongly

connected components of the graph which represent sub-circuits. This
technique is described in [37] and [38].

The Norton equivalent conductance partitioning algorithm uses estimates of
the Norton equivalent conductance between nodes to partition a circuit. It is
an extension of diagonally dominant loop criteria for partitioning linear
systems which is explained below. Consider a system of equations of the
form f (x) = 0. where x E Rn , f: Rn -+ Rn and xk is generated by the kth

iteration of the relaxation algorithm. Then the iteration factor y is defined

as the smallest positive integer such that

for any k > 0, and any bounded initial guess xO. The size of y indicates the
speed of convergence. If y is much less than 1 then the relaxation
converges rapidly. However, if y greater than 1 then the relaxation may not

converge. Consider a 2 dimensional system of equations given by:

If the Gauss-Seidel method is used to solve the equation then the iteration

factor is bounded by the spectral radius of the iteration matrix which is

- Q 2 ~
~ ~ G L L

If both a,, and a?, are large, relative to &,, and a,, then x, and x, are called
tightly coupled variables. Similarly if both a,, and a2, are small then x, and
X, are loosely-coupled variables. According to diagonally dominant loop
partitioning criteria, two variables xi and x, are lumped if

where a is a constant.

The Norton equivalent conductance partitioning algorithm can be best
explained with the help of an example electrical circuit [14, 81. Consider the
linear circuit shown in Figure 2.7. The circuit behavior can be described
using a system of linear equations. The iteration factor for the conductance
portion of the circuit is given by:

Figure 2.7: A linear Circuit Considered for Partitioning.

A similar expression can be written for the capacitance portion of the circuit.
Two nodes are placed in a sub-circuit if the iteration factor exceeds a
particular threshold. If nodes 1 and 2 are a part of a larger circuit then g,

and g, are the corresponding Norton equivalent conductances. Heuristics

used for computing Norton equivalent conductances of MOS circuits are
given below.

Devices are replaced by their linear equivalent circuits. Nonlinear device
conductances/capacitances and therefore their linear equivalents vary with
inputs. The worst case values of conductances/capacitances are assumed for

partitioning. The computation of Norton equivalent conductance seen by a
node involves tracing paths from that node to all other nodes in the circuit.
Since the worst case conductance of a MOS transistor is zero, the trace is
truncated whenever the gate of a MOS transistor is encountered. The
resulting partitioning algorithm is given below [8].

g,, + 0; g, + 0; g, +- 0;
foreach (conductive elements between nodes 1 and 2) (

g,Z t g,, + maximum element conductance over all v:

Remove the element from the circuit;

1
g, t sum of the minimum Norton equivalent

conductance of each element at node 1.

g, t sum of the minimum Norton equivalent
conductance of each element at node 2.

if (g 12
g12 >a){

(g2 (g, +gn)

Place the two terminai nodes in the same subcircuit;

1

A similar algorithm is written using capacitive elements and the union of the
two results is used for partitioning. A disadvantage of this algorithm is that
it may produce some very large sub-circuits An additional partitioning pass

is usually necessary to break large circuits and combine small circuits. It is
also important to note that the partitioning criterion is very local.

This chapter has described the basic techniques for formulation of the circuit
equations based on Kirchoffs laws. Direct and iterative techniques for
solution of these equations have been described. Selection of an appropriate
simulation time step is essential for reducing the simulation time while
maintaining accuracy. Various techniques for selecting time steps have been

described. Three iterative techniques namely: linear relaxation, non-linear

relaxation and waveform relaxation have been discussed. Speed-up
techniques used in conjunction with the WR techniques were also outlined.
The relaxation based techniques are ideally suited for implementation on
parallel processors. The following chapter describes parallel relaxation
methods.

3. PARALLEL RELAXATION RlETHODS

Relaxation techniques partition a circuit into a number of sub-circuits. Each
sub-circuit is simulated independently using either a direct or an iterative
technique, and an iterative technique is applied across sub-circuits. This
makes relaxation techniques suitable for parallel implementation. Parallel
relaxation methods are designed to exploit coarse grain parallelism across
sub-circuits and h e grain parallelism in a single iteration of a sub-circuit.
Appropriate selection of a parallel relaxation method depends on the nature
of the circuit and the characteristics of the parallel architecture. This
chapter describes parallel architectures and issues involved in implementing
parallel applications. Parallel forms of waveform relaxation and iterated
timing analysis are described. Partitioning and placement techniques used
for implementing applications on distributed memory machines are also
discussed.

3.1 Parallel Processing Techniques

The basic principle of any parallel processing system is to partition a given
problem into a number of sub-problems and solve the sub-pmblems
concurrently. As computing device characteristics approach their physical
limits, it will become increasingly expensive to implement high performance
uniprocessor systems. Therefore parallel processing techniques are
increasingly used for the solution of CPU intensive problems such as image

processing, three-dimensional fluid modeling and finite element analysis.
More recently, due to commercial availability of multiprocessor systems,
parallel processing systems have become attractive for the analysis and
design of VLSI circuits. Important advantages of parallel processing systems
include their low cost to throughput ratio and scalability. This section
describes the issues involved in the design and application of MIMD
computers. Shared memory and distributed memory architectures are

discussed [16][18]. The Kendell Square Research KSR-1 139, 40, 411 is an
example of a novel shared-memory multiprocessor. Important features of

KSR-1 are described.

3.1.1 Shared-memory Systems

Shared memory architectures use a global, shared memory for inter-processor
communication and coordination. The mechanism used for interconnecting
processors and memory modules is an important architectural characteristic
of shared-memory computers. Commonly used interconnection mechanisms
are shared bus, crossbar switch and multi-stage inter-connection network

1161

A time-shared common bus is the simplest mechanism to interconnect
processor and memory modules. It can be used for systems with moderate
numbers of processors, ranging kom four to 20. Since only one processor
accesses the bus at any given time, the bus bandwidth usually limits
performance of the system.

The crossbar interconnection technology uses a crossbar switch of n2 cross
points to connect n processors with n memories (see Figure 3.1). The crossbar
switch is a non-blocking network. It provides a dedicated path for
communication between each processor-memory pair, therefore contention for
communication links is avoided. Power, pinout, size and cost considerations
have limited crossbar architectures to a small number of processors (from
four to 16). The Alliant FX/8 is a commercial architecture that uses a

crossbar scheme [16].

Multistage interconnection networks strike a compromise between
pricdperformance alternatives offered by crossbars and buses. An N x N
MIN connects N processors to N memories using multiple stages of switches.
When N is a power of 2, one alternative is to employ log, N stages of N / 2
switches, using 2 x 2 switches. A significant feature of MINs is scalability.
The BBN Butterfly multiprocessor used a MIN for connecting processors to
memories. It could be configured with up to 256 processors [16].

Figure 3.1: Shared memory interconnection networks 1161
a) Common bus b) Crossbar switch
C) Multistage interconnection

Each processor in a shared-memory architecture can address the global

shared memory. This makes the shared memory programming model similar
to the uniprocessor programming model. Parallel versions of commonly used

programming languages such as parallel FORTRAN and parallel C allow
conversion of existing sequential code to a form suitable for running on
shared memory machines. In addition, lower inter-processor communication
costs make this architecture suitable for exploiting tine grain parallelism.
However important problems such as data access synchronization and cache
coherency, must be solved. These problems are briefly described below.
Coordinating processors with shared variables requires atomic
synchronization mechanisms to prevent one processor from accessing a

datum before another finishes updating it. The "test-and-set" is an example
of a synchronization mechanism. It provides an atomic operation that
subjects a key to a comparison test before allowing the key or associated data
to be updated.

Typically each processor in a shared memory architecture also has a local
memory used as a cache. Therefore multiple copies of the same shared data
may exist in various processor's caches at a given time. Maintaining
consistent versions of such data is the cache coherency problem. Cache
coherency mechanisms provide new versions of cached data to each involved
processor whenever a processor updates its copy. Small multiprocessor
systems can use hardware "snooping" mechanisms to determine when shared
data has been updated. Large systems usually depend on software
mechanisms to ensure consistency.

3.1.2 Distributed Memory Systems

Distributed memory architectures connect multiple autonomous processing
modules using a processor-to-processor interconnection network. Each

processing module consists of a processor and its local memory. Processing
modules (nodes) share data by explicitly passing messages through the
interconnection network. Distributed memory computers are relatively less
expensive and scale well. Various interconnection networks have been
proposed to support scalability. In addition, certain classes of algorithms can
be efficiently implemented using a specific interconnection topology.
Several metrics are used to compare interconnection networks. ?tvo

important characteristics of a network are node degree and network
diameter. Node degree refers to the maximum number of communication

links supported by a node and network diameter is the maximum number of
communication links that must be traversed to transmit a message to any
node along the shortest path. It is assumed that all nodes in the network are

identical. Figure 3.2 shows commonly used topologies.

Figure 3.2: Multi-computer interconnection network topologies [16]
a) Ring b) Mesh c) Tree d) N-dimentional cube

Ring topologies are most appropriate for a small number of processors
executing algorithms not dominated by data communications. A two
dimensional mesh or lattice has n' nodes, each connected to its four
immediate neighbors. Wrap-around connection c y be provided at the edges 7
to reduce the diameter of the network t *%* (Ln / 2 J). Communications can be , L
augmented by providing additional diagonal links or by using buses to

connect nodes by rows and columns. Mesh topology architectures are used
for matrix computations. Tree topology architectures have been constructed

to support divide-and-conquer algorithms for searching, sorting and image
processing applications. Strategies used to reduce the communication
diameter of tree topology include adding additional links to connect all nodes
at the small tree level. A hypercube topology uses N = 2" processors arranged
in a n-dimensional cube [19]. Individual nodes are uniquely identified by n-
bit numeric values ranging from 0 to N-1 and assigned in a manner that
ensures adjacent node's values differ by one bit. Hypercube architectures
were developed to support performance requirements of 3D scientific
applications. Examples of commercial hypercube implementations include
the Ametek Series 2010, the Intel Personal Super-computer and the
NcubdlO [l6].

The distributed memory programming model is substantially different from
the shared-memory programming model. It is usually difficult to program
distributed memory computers. Partitioning, allocation and load balancing is
usually done by the application programmer. General forms of partitioning
and allocation problems are NP complete [42]. These are discussed in
Sections 3.8 and 3.9. Load balancing techniques are discussed in Chapter 5.

3.1.2.1 KSR Architecture

Kendell Square Research introduced KSR-I, a shared-memory
multiprocessor that combines the advantages of conventional shared-memory
and distributed-memory architectures 139, 40, 411. The KSR-I can be
configured with up to 1088 processors. The scalability of KSR-1 can be
attributed to a novel distributed memory scheme, ALLCACHE, which
provides efficient mechanisms for exploitation of locality. Work is not bound
to a particular memory, but moves dynamically to available processors.
Hardware support is provided for reducing access time. The KSR-I
architecture is briefly described below.

The K;SR-I system is designed using a hierarchy of slotted rings. The lowest

level in the hierarchy, level 0 ring, operates at 1 GB/sec (128 million accesses

per second) and connects 32 processor cells (see Figure 3.3). Each processor

cell consists of a 64-bit superscaler processor, 32-Mbytes local cache and a
local cache directory. The processor cell consists of a search engine which

provides hardware support for migrating data to and &om other nodes and
provides memory coherence throughout the system using distributed
directories and for ring control. The level I ring is used to connect 34 level 0

rings. A standard KSR-I level 0 ring consists of 34 slots: 32 for the processors
and two for the directory cell connected to the level 1 ring. Each slot can be
loaded with a subpage consisting of 16-byte header and 128 byte of data.

The ALLCACHE design of KSR-1 eliminates memory hierarchy and the
corresponding physical memory addressing overhead. It represents a
confluence of cache and shared virtual memory concepts. The KSR machine
provides a strictly sequential consistency programming model. In this
model, every processor returns the latest value of a written value. Therefore
results of an execution on multiple processors appear as some interleaving of
operations of individual nodes when executed on a muhi-threaded machine.
ALLCACHE mechanisms also provide hardware support for memory
management though migration and replication of data.

The KSR-1 provides three levels of cache access: an intra-node, an inter-node
with the responder processor/cache cell connected to the same level 0 ring,

and an inter-node with the responder processor/cache cell connected to a
different level 0 ring. The inter-node commuaication for remote cache access
is done through a searching process. When the requester and responder are
connected to the same level 0, a local cache directory provides the local cache-
access reference. When the requester and responder are connected to a
different level 0, the request is communicated using level I. The level I
consists entirely of ring routing cells. Each ring routing cell contains the
directory of the level 0 ring connected to it. These directories are used for
routing the request to the appropriate level 0 ring and subsequently to the
appropriate cell.

The KSR system uses a Mach-based operating system. The multi-
programmed operating system allows users to run multi-process multi-
threaded applications. The KSR-1 also provides a scalable commercial
programming environment for transaction processing that accesses relational

databases in parallel .

Level I directory

w Level 0 directory

/ \ r\ 0 Local cache directory
. a Local cache

@) Local processor

Processor
cell

--.-.-... *-.--..-.. .---.-*..-

Figure 3.3: KSR-1 architecture with a slotted ring for communication [39].

3.2 Efficiency and Speed-up in Parallel Systems

To exploit the power of a multiprocessor computer, as much of the

computation as possible should be performed concurrently. In order to
understand how to partition the circuit simulation problem to get maximum
concurrency, it is necessary to estimate how much faster an N processing
element (N-PE) machine is, compared to a single processing element
machine.

The speed-up of an N-PE machine is def ied as
4 s=-,
lv

where r, is the time required for solving a problem I

(3.1)

lsmg one PE, and r , is

the time required to solve the problem using N concurrent PEs. An ideal case

is linear speed-up, i-e., an N fold reduction in computation time resulting
fmm an N fold increase in the number of processors t , = N * t,,, . However, it is

usually not possible to run the entire program in parallel. Therefore, with a
the portion of the program requiring sequential execution,

Now as N tends to S t y ,

This is known as Amdahl's law, and can be stated in the following fonn: The
reciprocal of the fraction of the computation that must be done sequentially
limits the number of processors that can usefully be put to work on a given
problem [43].

From Amdahl's law it is evident that to use many concurrent processors, the
sequential fraction must be small. The situation discussed above depicts an
ideal case in which the parallelizable part can be equally split between N .
PEs. However, in practice, load imbalance may result in partially idle

processors. Communication overhead also contributes to extra work

performed by each processor. Collecting the idle time and the overhead time
into one parameter, 0, and applying it to r,, .

which yields, if inserted in Equation 3.1

In the case when a is independent of N, and a is very small compared to N,
it is possible to use each computing element with an efficiency of

that is, each processing element will spend a fraction S M of the elapsed time

in solving the actual problem.

The assumption that a is independent of N is simplistic. However, it can be
observed that an algorithm that causes some extra work, i.e. has large 0, can
st i l l be useful if it has low a. A fairly low efficiency can be tolerated as long
as t , decreases with an increase in the value of N.

3.3 Parallel Direct Methods

Most relaxation based simulators use direct methods for simulation of sub-
circuits. Therefore it is important to study the parallelism in the direct

method. An algorithm for performing transient analysis using the direct
method is presented in Section 2.2. The majority of time spent in performing
transient analysis is lumped in two categories: time required to assemble a
system of linear equations for each iteration of Newton's method at each time
point, the FORM phase, and the time required to solve the system of sparse
linear equations, the SOLVE phase. The FORM phase requires linearization
of the nonlinear element characteristics and the addition of various
conductances, currents and charge values into the Jacobian and the right-
hand-side (RHS) vector. The SOLVE phase tgpically involves LU
decomposition to solve the system of equations. Several researchers have
observed that for small circuits, with number of nodes less than 20, the
majority of the time is spent in performing the FORM. However, when the
size of the circuit grows, an increasing percentage of the time is spent in the ;. - + &9,
SOLVE phase. Therefore e s y to s pw&lism in both phases.
The actual pardalism that can be effectively exploited depends on the
nature of the circuit, the complexity of device models, and the
characteristics of the target parallel computer. Strategies for exploiting
parallelism in the FORM and the SOLVE phases using shared-memory and
distributed-memory architectures are described below.

The contributions of each device to the Jacobian and the RHS can be
computed independently. Therefore parallelism is inherent in the FORM
phase. However, this is a tine grained parallelism and it is necessary to
ensure that overheads do not offset gains due to parallel implementation. As

the contributions are computed they have to be added to the Jacobian and
the RHS vector. This accumulation is a serial process. Its implementation

on shared-memory machines requires synchronization to ensure that only
one processor is updating a particular element of the matrix a t a time. Lock-
based or barrier-based methods can be used for synchronization. Lock-based
methods use a lock on some region of data, for example, per element, per row
or one for the entire matrix. Processors accumulate contributions of devices
to the Jacobian and RHS in local storage assigned to each instance of a
model. A lock is seized before making an update to the region associated
with it- An increase in the number of l o c h reduces the Likelihood of
processor contention at the cost of increasing the locking overhead. A lock-
per-row scheme is usually considered a reasonable compromise. Barrier-

based methods transform distributed lock synchronization points into one or
more barriers which separate the sequence of evaluation and accumulation
operations. A matrix template is allocated for each device in global memory.
Therefore, contributions of all devices can be computed and stored in parallel.
A single synchronization point is used at the end of calculations. After the
synchronization point, the Jacobian and RHS can be updated sequentially or
in parallel. The main drawback of this approach is the increased storage
requirement.

Several M e r e n t parallel device model evaluation schemes are possible using
distributed memory computers. An appropriate selection scheme depends on
the size of the circuit, the size of the primary and secondary storage
associated with a node, and computation-to-communication ratio of the device
model evaluation task. A basic process farming scheme and its variants are
described below. The process farming scheme divides the pool of processors
into a single farmer and multiple workers. The farmer stores Jacobian, RHS
vectors, and a queue of devices. The farmer sends the device information
(e.g. instance specific model information, node voltages, node charges) to a
free worker which computes contributions of the device to the Jacobian and
the RHS and sends it back to the farmer. The farmer updates the Jacobian
and the RHS. A linear array and m-ary tree topologies are commonly used
for implementing a process faTming scheme. The m-ary tree topology is useful
for reducing the average distance between a farmer and a worker. The

process farming approach works well on architectures that can overlap

computation with communication. Buffers are provided on each node to

improve utilization of worker processors. It is also possible to organize the

process farm as a single master, multiple farmers and each farmer associated
with a set of workers. This arrangement also distributes templates of the
Jacobian and the RHS to farmers. Farmers do partial accumulation of the
Jacobian and the RHS-

Parallelizing the SOLVE phase involves parallel solution of a system of
asymmetric sparse linear equations. Parallelizing the SOLVE phase is
complex compared to pardelizing the FORM phase due to dependencies
involved in Gaussian elimination. This problem has been widely studied in
the literature and is an active area of research [25][44][45]. A brief
discussion of issues involved in parallel sparse system solution is given
below.

The linear equation solution is usually performed by using LU factorization
followed by forward elimination and backward substitution. A typical form
of LU decomposition consists of the following steps. The row/column
associated with the diagonal element a,, is divided by the pivot element (a, ,)
and then each element aq in the lower right comer of the matrix is updated
by subtracting the product oIj *a,. This is followed by the division and

updating (factorization) of a,. a,, ,- - . a, until the entire matrix is factorized.

Parallelism involved in the LU decomposition process can be classified as fine
grained, medium grained, and coarse grained. In fine grained parallelism
division of all elements in a pivot row are performed in parallel. This is
followed by a parallel update of all elements in the particular row/columns
involved in the factorization step. In medium grained parallelism, the
operations associated with two or more rows are performed in parallel. Fine
and medium grained parallelism are considered appropriate for
implementation on vector processors. The efficiency of these approaches
depends highly on the architecture and the overheads of the
implementation. Coarse grained parallelism is associated with independent
pivots. This form of parallelism can be exploited using shared-memory and

distributed-memory machines. It is described below.

A pivot a, is dependent on pivot a, if a j must be factored after a, to

guarantee a correct solution. The dependence can be direct or indirect, that
is, aU may depend on some other pivot which in turn is dependent on a,.

Computations associated with independent pivots can be performed in
parallel, however, it is important to note that shared-memory
implementations require appropriate synchronization mechanisms to ensure
correctness of solution. Most parallel implementations which exploit coarse
grain parallelism, reorder the matrix to increase the number of independent
pivots. This pivot reordering can conflict with the conventional sparse matrix
reordering (e.g. Markowitz ordering) done to reduce the number of
operations. Therefore appropriate selection of a reordering scheme that
balances the increase in parallelism against minimizing fill-ins is very
important. Block structured approaches such as nested dissection I461 and
sub-structuring [471 can be used for this purpose. Examples of parallel
circuit simulators that exploit this form of parallelism are SUPPLE [48] and
PECSI [49].

3.4 Common Parallelism In Relaxation Methods

An objective of this section is to analyze parallelism common to relaxation
methods. Issues involved in implementing relaxation based simulators on
shared memory machines are reviewed. The discussion in this section is
based on the work of Saleh et al. [27].

A closer look at ITA (nonlinear relaxation) and Waveform relaxation reveals
that two forms of parallelism exist in both methods: coarse gain parallelism
across sub-circuits, and fine grain parallelism within a single Newton
iteration of a particular sub-circuit, i.e., some sub-circuits can be evaluated
in parallel and the sub-circuit evaluation process itself can be broken down
into small sub-processes. Some of these sub-processes (not necessarily all)
can be executed concurrently.

The computations involved in the solution of a single Newton iteration are

similar to those in the standard method. Therefore, the problem of
parallelizing a single Newton iteration is equivalent to the problem of
parallelizing the direct method. Considering the small size of each sub-

circuit, one that may contain even a single circuit node, parallel model
evaluation is the only form of parallelism available at the h e s t level of
granularity. The largest-grain parallelism exists a t the sub-circuit level, and
the amount of parallelism available depends on the particular relaxation
scheme used and any additional synchronization points that are introduced
o r removed for architectural and programming reasons.

The first task performed by a parallel circuit simulator is to partition the
circuit and generate a sub-circuit graph. The sub-circuit graph contains a

vertex for each sub-circuit and the edges represent the dependency
relationships between sub-circuits. There is a directed edge from vertex i to
vertex j, if sub-circuit j contains an equation that depends on the value of the
node voltage in sub-circuit i. The edges represent the flow of signals
bemeen sub-circuits. Thus the sub-circuit graph originates fkom primary
inputs and terminates on the final outputs.

The sequence of scheduling sub-circuits (partial ordering information) can be
extracted from the sub-circuit graph. If the sub-circuit graph is acyclic, then
the circuit can be solved by exactly one relaxation iteration, provided that the
solution of a sub-circuit is not started until the solution of its fan-in sub-
circuits is completed. MOS circuits without feedback, that use simplified
transistor models, where the gate-to-drain and gate-to-source capacitances
have been omitted, can result in acyclic sub-circuit graphs.

Circuits with feedback and complex device models result in sub-circuit
graphs that contain cycles, i.e. a directed edge from sub-circuit i to j as well
as an edge £kom sub-circuit j to i. This directed cyclic graph can be converted
to a directed acyclic graph (DAG), by retaining only one edge which
corresponds to the dominant direction of signal flow (usually the one in the
feed forward direction). The DAG specifies the data dependence to be
enforced in one relaxation iteration. It is also the sub-circuit task
dependence graph which determines the exploitable parallelism at the sub-

circuit level.

Consider the Gauss-Seidel iteration as an example. The first step in
determining the partial ordering is to break any global feedback loops by
deleting one or more of the edges in the loop and converting them into cross

iteration edges. In order to understand the process, consider three circuits A,
B, and C. Outputs of A are connected as inputs to circuit B and outputs of
circuit B are connected as inputs to circuit C. There exists a global feedback
from circuit C to A. For generating a DAG, the global feedback from C to A is
broken and the output &om the kth iteration of C is treated as an input to
the k+lth iteration of A. The n sub-circuits are thus partially ordered into rn
ranks based on the distance in terms of the directed edges from the input
source.

As mentioned earlier, the partial ordering detines the data dependence of a

single Gauss-Seidel iteration. Specifically, a circuit can execute its kth
iteration when all the sub-circuits of lower rank fanning into it by a directed
edge have completed their kth iteration and all the sub-circuits of higher
rank fanning out from it have completed their k-lth iteration. The Gauss-
Jacobi method is generated by placing all the sub-circuits in a single rank
and ignoring directiondie of the circuit within a single iteration. Figure 3.4
shows the examples of Gauss-Seidel and GaussJacobi partial ordering for a
single iteration. The Gauss-Seidel (GS) graph has three ranks and the
Gauss-Jacobi (GJ) graph has only one rank.

Figure 3.4 shows sub-circuit level pardelism. Any circuit in the same rank
can be processed simultaneously, leading to an implementation known as the
multiple barrier approach. The implementation essentially consists of a

sequence of m DOALL loops corresponding to the rn ranks of the task graph.
Artificial synchronization points (barriers) can be introduced between two
ranks in order to exchange essential global information and take
convergence decisions. The approach is attractive for circuits that have
adequate activity in each rank and can be easily implemented on machines
that have hardware support for loop-based parallelism including the DOALL
construct. However, latency of sub-circuits and dramatically different sub-
circuit sizes can make this approach less effective. In such cases, the use of
synchronization points between ranks can suppress parallelism that is
inherent in the relaxation scheme.

One way of overcoming this problem is to statically alter the partial ordering,
i.e., shift sub-circuits from one rank to another at compile time. This
approach has its limitations. The limiting case is the Gauss-Jacobi technique

in which all the sub-circuits are in the same rank. The obvious disadvantage
of this approach is a possible reduction in convergence rate. Therefore,
factors such as number of available processors, coupling between sub-
circuits, the effect of the change on convergence rate, latency, and the sub-
circuit task sizes must be considered before altering the partial ordering.

Figure 3.4: Examples of Gauss-Seidel and Gauss-Jacobi partial ordering for
one iteration (a) Original sub-circuit task graph (b) Gauss-Seidel
ordering m=3 (c) Gauss-Jacobi ordering m= 1 [27].

Another way to improve the multiple barrier approach is to remove artificial
synchronization points between ranks and introduce only a single barrier
synchronization point at the end of each iteration. This barrier ensures that

all the sub-circuits have completed their kth iteration before starting the
k+lth iteration. This modification involves processing the sub-circuits using
a dataflow driven scheduling mechanism. When a processor gets a sub-
circuit task, it waits for the dependencies of the assigned sub-circuit task to
be satisfied before proceeding with the task. Although this mechanism is
conceptually straightforward, it implies a more complicated implementation
of the control mechanism. Typically an efficient queue based scheduling
mechanism is essential. It is important to note that Gauss-Jacobi single-
barrier and multiple-barrier versions are identical because all the sub-
circuits belong to a single rank.

The multiple barrier and single barrier approaches are summarized below. A
multiple-bamer GaussSeidel approach divides the sub-circuits in several
ranks based on their distance h m the primary inputs. When all the sub-
circuits in the mth rank (always starting with the first rank and first .
iteration) complete the kth iteration, sub-circuits in the m+lth rank are
scheduled for execution of the kth iteration. Upon completion of the kth
iteration by all the sub-circuits, the sub-circuits in the first rank are
scheduled for performing the k+lth iteration and the process is continued
until convergence. In the single-barrier Gauss-Seidel approach, execution of
the kth iteration continues in a data driven manner. When all the sub-
circuits complete the execution of the Rth iteration, the k + l t h iteration is
scheduled for execution. In both the techniques described above, at any
given time, only one iteration is available for execution.

The amount of parallelism in the above mentioned approaches can be
M h e r increased by removing the restriction that only one iteration can be
scheduled for execution at any given time, i.e., by eliminating the artificial
barrier between the iterations. The k+lth iteration of tasks can be scheduled
for execution as soon as the appropriate tasks in the kth iteration are
completed. This can be viewed as "unrolling" the data dependence graph as
illustrated in Figure 3.5. The convergence decisions and update of global
information that were performed at the synchronization points are now

distributed. This results in a fairly complicated thread of control and

requires priority queue based scheduling mechanism to ensure that tasks
&om earlier iterations take precedence. The return on the increased
complexity is circuit and architecture dependent. This scheme is feasible only

if unrolling of a limited number of iterations is allowed.

Iteration k
(a)

Iteration k+ I

Iteration k

Iteration k+l

Figure 3.4: Unrolled (a) Gauss-Seidel (b) Gauss-Jacobi
iterations [27]

Another important issue common to most parallel implementations is the
determination of the appropriate size of individual sub-circuits. Large
variation in sub-circuit sizes may create load imbalance among processors.
One way to deal with this problem is to perform partitioning in two passes.
The second pass can combine small sub-circuits andlor break large sub-
circuits. The effect of combining two smaller sub-circuits into one large sub-
circuit is two-fold. First the amount of parallelism is reduced in favor of
making the task sizes uniform. Second, the efficiency of circuit latency
exploitation is reduced since the probability of having at least one active

node in a large sub-circuit is higher. However, improvement in the
execution speed may offset the two negative consequences of combining sub-
circuits, making it a worthwhile alternative. The second option of breaking

up larger sub-circuits into smaller ones offers a trade-off of convergence
speed for parallelism. The specific application of the two approaches depends
on the number of processors available in the system.

3.5 Parallel Waveform Relaxation

As discussed in Section 2.5, the waveform relaxation technique applies the
relaxation techniques at the differential equation level. The WR algorithm
computes node waveforms over the complete time interval of interest
(window). Node waveforms are exchanged and the process is iterated until
convergence. The WR algorithm can be implemented in conjunction with the
circuit partitioning and parallel processing techniques described in Section
2.5.1. In this case, the largest-grain task consists of solving a sub-circuit over
an entire time window for one relaxation iteration. This is known as the fiill
window technique and is described with the help of an example of a Gauss-
Seidel single-barrier implementation.

A sub-circuit evaluation task in the current window [q,,, , I;,,] begins

executing only after dl of the waveforms from the fan-in tasks are computed
over the same window interval. When a sub-circuit has computed its
internal waveforms, it checks to see if any fan-out circuits are ready for
execution. If so, these fan-out circuits are scheduled for processing. In this
scheme, sub-circuit evaluation is treated as an indivisible entity. Since the
sub-circuit evaluation task typically involves large amounts of computation,

the granularitsf of each task is very high and therefore task scheduling is
relatively inexpensive. However, this approach does not l l l y exploit
parallelism. It becomes inefficient if the number of processors is large or the
sub-circuit task graph is long and narrow and does not provide enough
parallelism to keep all the processors busy.

The time-segment and time-point [27] pipelining approaches provide more
parallelism by simultaneously processing sub-circuits in different ranks. The
increased parallelism is at the expense of increased overhead and a more
complicated thread of control. The basic principle behind these approaches is
to allow sub-circuits to begin computing their waveforms as soon as adequate
information is available, instead of waiting for the fan-in circuits to complete
computations for the entire window. For example, it is possible for a sub-
circuit to compute its internal waveforms up to time t, [r < t,,], if all its fan-

in sub-circuits have computed the required waveforms until time t. This form
of parallelism can be exploited to various degrees by adjusting the number of
time-points that a sub-circuit computes. If the sub-circuits are allowed to
begin computing whenever their fan-ins have computed one new solution ,
point, it is referred to as time-point pipelining. If a fixed number of time-
points are computed before propagation occurs then the technique is referred
to as time-segment pipelining.

Several different implementations of WR algorithms are possible, each
having its own characteristic features and trade-offs. For example, GJ and
GS algorithms trade parallelism for convergence rate. It has been reported
that GS generates a set of computations that generally converge to the
solution in fewer iterations than G J [34]. However, the GJ method generates
a higher degree of parallelism, as all the sub-circuit tasks of a given iteration
can be executed concurrently. In the case of 111 window and time-point

pipelining schemes, trade-offs exist between parallelism and overhead. Full
window techniques lie on one end of the scale, with the least overhead and
parallelism, whereas the time-point pipelining scheme lies at the other end of
the scale, with a high degree of parallelism obtained at the expense of a large
overhead. The time-segment pipelining scheme encompasses all the
intermediate granularities between the two extremes. The appropriate choice

of algorithm that would provide maximum possible speed-up depends on the

features of the target architecture and the nature of the circuit being
simulated. In particular, the number of available processors, the costs of

memory references, message passing costs, locks and other sources of
overhead in the implementation, and the topology of the task graph all affect
maximum possible speed-up. For example, for a circuit having a number of
processors equal to the number of sub-circuits in each rank, with tasks of
approximately uniform size, a full window technique using Gauss-Seidel
approach would be appropriate. For a massively parallel machine with a

relatively low communication overhead, an algorithm that provides the
maximum amount of parallelism such as the GaussJacobi approach with
time-point pipelining would be most suitable.

Ideally, a pre-processing step in a parallel relaxation program would
automatically determine the appropriate form of relaxation algorithm and
degree of pipelining, based on the characteristics of the architecture and the
circuit being simulated. This is usually quite diflicult in practice. Although a
rough estimate of speed-up can be obtained from the task graph, a prior+
determination of task sizes is usually difEcult. This is due to the

unpredictable nature of latency characteristics and the relaxation
convergence speed. Therefore, post-simulation estimates, based on the
information collected during uniprocessor simulations of a circuit, are used to
predict the ideal speed-up of a particular algorithm on a varying number of
processors.

Saleh et al. [27] have reported development of a program, PARASITE
(PARAUel Shulation Timing Estimator), to estimate parallel execution
times for any combination of pipelining and relaxation on a given number of
processors. ARer performing a circuit simulation for a particular form of
relaxation on a uniprocessor system, a weighted task graph is constructed for
the form of pipelining specified. PARASITE takes a task graph, the CPU
times associated with the tasks, and the number of processors used, as
inputs. It mimics the operation of the specified parallel waveform relaxation
algorithm, but instead of performing the computations to solve the circuit
equations, it simply keeps track of the time that would be required to execute

the tasks on a specified number of processors. The speed-up computed in this
manner is an approximate upper bound because PARASITE neglects the

overheads. It is also possible to vary the degree of pipelining. The estimates
obtained fkom PARASITE can be compared with the actual execution time of

a parallel circuit simulator to determine the efficiency of the implementation.

3.6 Parallel Iterated Timing Analysis

As discussed in Section 2.4, Iterated Timing Analysis is a circuit simulation
approach based on nonlinear relaxation. It uses a selective trace technique

for latency exploitation. The simplified static scheduling models described in
the previous subsection have a number of limitations when latency is
exploited. It is difficult to predict which sub-circuits will become latent at the
next simulation time point. Even if the sub-circuit task graph is updated at
every simulation time point, it may be dScult to anticipate the sub-circuits
that will become latent or be activated, due to fan-out scheduling, during the
iteration process. Updating the task graph at every iteration a t a time point
involves considerable overhead and requires larger circuits than are often
appropriate in ITA

The above mentioned problems can be considerably reduced by appropriately
selecting the subset of sub-circuits that can be processed on a given iteration.
It is also important to decide when the selected sub-circuits can be scheduled
for execution and the priority rule applied while scheduling. This can be best
explained with the help of the following example. Consider implementation
of the single barrier Gauss-Seidel approach. It can be modified so that a sub-
circuit does not have to wait for all its external connections to satisfy the
Gauss-Seidel scheduling conditions. An extreme form is used in the event-

driven selective trace technique [3]. This technique treats the sub-circuit
graph as a signal flow graph. Each vertex has a fan-in and fan-out table.

Whenever the value of an input node or any internal node changes, an event

is generated. As a result, all its fan-out sub-circuits are scheduled for

processing. Subsequent events generated after processing the fan-out sub-

circuits cause their fan-out sub-circuits to be scheduled for processing. The
only circuits that are processed are those which are directly affected by the

change. The order of processing sub-circuits is a function of the order of

signal flow in the network and it therefore constitutes dynamic ordering.

Whenever the fan-out sub-circuits are scheduled, they are placed on a queue

with priority based on the ranking due to dominant edges of the Gauss-Seidel

task graph. The circuit may be scheduled more often than a sequential case.

3.7 Static Partitioning Techniques

The problem of solving a single problem using multiple processing units

consists of two parts. The first part is to partition the problem into a number
of task sets in such a way that maximum possible pardelism can be
exploited. Partitioned task sets usually communicate with one another. The
second part is to assign these task sets to interconnected processors. The
objective of partitioning and allocation phases is to minimize run time by
minimizing inter-processor communication and load imbalance overheads.
The objectives of minimizing communication overhead and maximizing
parallelism are usually conflicting. Similarly the requirement of minimizing
communication overhead and Ioad imbalance conflict with one another.

Static partitioning refers to a priori assignment of tasks to processors.
Dynamic scheduling refers to runtime allocation of tasks to processors.
Static partitioning schemes are commonly used for programming distributed
memory machines, while most shared memory implementations use dynamic

scheduling schemes. Shared memory machines typically maintain job
queues common to all processors in the shared memory and free processors
obtain jobs from the job queue during runtime. Dynamic scheduling is
economical due to shared data structures and relatively low inter-processors
communication costs. A similar arrangement is difficult in distributed
memory machines due to a lack of shared address space and relatively high
inter-processor communication costs, therefore a priori assignment of tasks to
processors is commonly done. Several researchers have combined the static
partitioning and allocation problems [50, 51, 521. This section describes issue

related to partitioning and to the partitioning-allocation combination. The
following section describes allocation strategies.

Two approaches are commonly used to solve the partitioning and allocation
problems. The first approach involves the use of domain-specific heuristic.

This approach works well in situations where the parallel application is well

structured and the geometry of the problem can be used for partitioning.

Examples of domain specific heuristic are box-wise decomposition, stripwise
decomposition and scattered decomposition. Domain-specific heuristics are
commonly used for parallel solution of partial differential equations and
iterative solution of sparse linear systems. The second, more general
approach, is based on a mathematical cost h c t i o n . The mapping obtained
using this approach attempts to minimize the cost function. The domain
specific heuristic schemes are usually cornputationally efficient. The cost
fimction based schemes are often computationally time consuming, but more
generally applicable and potentially capable of obtaining better mappings.
Task graphs of relaxation based circuit simulation problems are usually
unstructured. Therefore cost function based schemes are appropriate for this
application. A formal statement of the partitioning/allocation problem 1531
and a brief description of cost funetion based schemes are given below.

The parallel program is characterized by a task graph G(T,E), whose vertices,
T = {t, , tz , - - - , tn }, represent the tasks of the program, and edges E, correspond

to the data communication dependencies between those tasks. The weight of
a task ti, denoted w,, represents the computational load of the task. The
weight of an edge e, between ti and t , denoted as cii, represents the relative

amount of communication between the two tasks.

The parallel computer is represented using a processor graph G (P , E,). The

vertices, P = {p, , p, , = - = , p,), represent the processors and the edges

represent the communication. The system consists of homogeneous
processors and communication links. The cost of communication is assumed
to be proportional to the size of the message and the distance between sender
and receiver. The distance dq, between processors p, and p, is defined as

the length of the shortest path between pq and pr.

The function M: T + P maps a task ti to processors. The task set (TS,) of a
processor p, is the set of tasks mapped onto it:

The work load (WL,) of processor p, is the total computational weight of all

tasks mapped on to it:

The communication load (CL,) of processor p, is the total weighted cost of

edges in its communication set, where each edge is weighted by the physical

path

The

length to be traversed under the mapping M:

t

C L ~ = C C (C , , * ~ ~ J M (~ ~) = P , and M (r ,) = p ,) q = O J. . . . ,k (3.9)

estimated parallel program time is used as the cost function for
optimization. It is the completion time of the processor that completes tasks
assigned to it last. If T, (p) , T, (p) , and i; (p) are the computational execution

time, the time spent for communication and the idle time for processor p,

then the total program completion time is given by:

If the task execution times are known then T, (p) can be accurately modeled
using WL,. Although accurate modeling of T , (p) is difEcult, i t can be

estimated with reasonable degree of accuracy. The idle time (p) is the most

difficult to model. It depends on synchronization delays during program
execution. If T , (p) is modeled using CL, then the parallel program

execution time c a n be expressed as:

where weights k, and kc represent different relative time requirements for a

unit of computation and a unit of communication. The idle time can be
ignored because the maximum among all processors of the sum of
communication time and computation time is calculated. The objective of any
mapping function is to minimize Tw. This is know as a "minmcrr" approach.

The minmax approach lumps all communication costs incurred in multi-hop

communication and associates them with the sender of the message. The
sum cost approach described below avoids this unrealistic assumption.
According to this approach an ideal mapping distributes computational load

uniformly among all processors and no communication cost is incurred. The
summed cost approach expresses the cost function as:

cost = Penalty for computation imbalance + Penalty for communication

The penalty of computation imbalance is calculated as the sum among all
processors of (the absolute values of) the deviation of the actually assigned
load and the ideal average load. The total communication load in the system
represents the penalty for communication. Thus the cost function is given by

Partitioning is a difficult problem because an optimal solution must be
selected out of the k n possible assignments that arise when n tasks are
assigned to k processors. This problem has received generous attention in the
literature. Algorithms which yield true optimal solutions in the absence of
resource constraints are well known to be NP-complete [42]. The approaches
used for partitioning can be divided into three categories: graph theoretic
approach [54, 55, 56, 571, mathematical programming approach [581, and
heuristic approach [so, 51,52,53]. A brief description of these approaches is
given below. A comparison of these approaches is also presented at the end
of the discussion.

Stone [54, 551 and Bokhari [56, 571 have conducted several studies of the
task assignment problem for non-precedence constrained task systems with
an objective of minimizing total execution time and communication costs.
Their work is mainly based on the graph theoretic approach. Stone has
proposed an approach based on the network flow problem using the
maximum flow algorithm developed by Ford and Fulkerson [59]. This
approach forms a basis for later work in this area. The network flow problem
and its application to task assignment are presented below.

The maximum flow problem involves a commodity network graph which
consists of source nodes, sink nodes and several interior nodes; interior nodes
are neither sources or sinks. All nodes are linked by weighted branches;
source nodes represent production centers, and sink nodes represent demand
centers. The branches represent commodity transport linkages, with weight
of a branch indicating the capacity
commodity flow is the sum of the

of the corresponding link. The value of a
net flows out of the source nodes of the

network which equals the sum of the net flows into the sink nodes. The
maximum flow in the network is obtained by &ding the minimum cutset. A
cutset of a commodity network graph is the set of edges which when removed
disconnects the source nodes &om the sink nodes. The weight of the cutset is
equal to the s u m of the capacities of the branches in the cutset. The weight

of the minimum cutset gives the maximum flow in the commodity network.

Using the network flow model described above, a system consisting of k
processors and n tasks can be modeled as a network in which each processor
is a distinguished node (source/sink) and each task is an ordinary node
(interior node). An edge between pairs of tasks ti and t j with weight c,

represents the communication costs between two tasks. As shown in Figure
3.6, an edge is drawn from each task node t i to each processor node p, with

the weight

where x, and x, represent costs of execution of task t i on processor p, and
p, respectively. A k-way cut in this network can be defined to be the set of

edges that partition the nodes of the network into k disjoint subsets with
exactly one processor node in each subset. Each subset represents
assignment of tasks to processors. The cost of a k-way cut is defined as the
sum of weights
equals the total
assignment.

of the edges in the cut. The cost of the k-way cut exactly
sum of execution and communication costs incurred by the

Figure 3.5: A n -processor network.

As discussed above, in a two processor system, a maximum flow corresponds

to a minimum cut. Therefore an optimal assignment of tasks to processors in
a two processor system can be obtained by using a maximum
flow/minimurn cut algorithm. The running time of the algorithm can be
bounded above by the fifth power of the number of nodes in the graph.
However the problem is NP-hard for arbitrary k. In addition, this approach
does not make any effort to exploit concurrency. Virginia Mary Lo has
proposed a family of heuristic algorithms [60] to extend Stone's approach.
Her algorithms yield assignments with a greater degree of concurrency.

The integer o r mathematical programming approach is based on an implicit
enumeration algorithm subject to some additional constraints. Enumeration
involves exploring every possible assignment of tasks to processors. The
number of combinations that must be enumerated given n tasks and K
processors is k". The method is implicit because some combinations can be
eliminated without being fully explored, due to the presence of constrains.
M a et al. [58] have proposed an approach based on branch-and-bound. It is
described below.

The task allocation method developed by Ma et al. [58] consists of three steps.
The first step is to compute a cost kc t ion based on inter-processor
communication and processing cost. Then a set of constraints to meet the
requirements of the application are formulated and an algorithm is used to
obtain the minimum total cost solution. Important constraints included in
the model are task preference and task exclusion. Task preference is
specified by a matrix P. If P,, = 0 then task i cannot be assigned to processor

j. Similarly exclusion is specified using matrix E. If E , = 1. then task i and k

cannot be assigned to the same processor.

The branch-and-bound based approach proposed by Ma et al. [58] represents
the partitioning/allocation problem as a search tree. The number of levels in
the tree correspond to the number of tasks. The allocation decision represents
a branching at the tree node corresponding to the given task. A two-level
search tree with two processors is shown in Figure 3.7. The Branch-and-
bound technique used by Ma et al. employs nine rules, (B, S, D, F, L, U, E,
BR, RB), to prune the tree and thus reduce the search space. A few of the
rules are presented below to illustrate the idea.

, , , , - - . Task 1 assigned

Figure 3.7: A two-level search tree with two processors.

The following rules determine whether the selected branch for a given node k
should be eliminated. The Rule F checks the preference matrix for task k and
processor i. If P, = 0, then the branch is eliminated. Similarly rule E checks

the exclusion matrix. The Rule RB checks the cumulative memory
requirement of tasks against the processor memory capacity. Rule D
compares the partial cost L with the complete cost U. E L is greater than U,
then the solution cannot be improved. Hence branch i for node k is
eliminated. In addition to the elimination d e s mentioned above, the
following rules are applied to select the next node to investigate and to
terminate the algorithm. The selection rule S selects the next node to be
expanded. The branching rule B selects the processor allocation for a given
node. The terminating rule BR terminates the algorithm when all possible
paths have been investigated or a pre-specified number of iterations has been
reached.

The integer programming technique seems best suited to applications where
the goals of the allocation are complex and numerous. If more constraints
are placed on the allocation possibilities, the search space reduces.
Theoretically the algorithm proposed by Ma et al. [58] generates an optimal
allocation with respect to inter-processor communication costs. However for
large problems (many processors and/or tasks) achieving optimality remains
intractable. It is suggested that the algorithm can be stopped after a certain

number of iterations, although this may not provide an acceptable solution.
Since the tree is searched depth first, the paths on the right hand side of the
tree may be left totally unexplored.

As mentioned above, the problem of finding optimal assignment of tasks to
processors is NP-hard except in very restricted cases [42]. Therefore research
has focused on development of heuristic algorithms to find sub-optimal

assignments. Several algorithms use a classical graph theoretic approach or a
mathematical programming approach to formulate the problem, and
appropriate heuristic techniques are used to obtain a sub-optimal solution.
Researchers have also proposed application of Simulated Annealing [61] and
genetic algorithms [62] to solve the partitioning and assignment problem. A
wide variety of heuristic techniques are described in the literature. A few of
these approaches are briefly described below as examples.

Virginia Mary Lo I601 has proposed a family of heuristic algorithms to extend
Stone's graph theoretic approach. Her heuristic repeatedly uses a max-flow
min-cut algorithm to find optimal mapping. It consists of three parts: Grab,
Lump, and Greedy. In Grab, the n processor network is converted to a two
processor network consisting of a selected processor and a super-node which
represents the other (n-1) processors. A maximum fiow/rninirnum cut
algorithm is then applied to this two processor network to fmd those tasks
that would be assigned to the selected processor. This procedure is repeated
for all processors. Grab may yield partial assignment of tasks to processors;
if Grab halts with unassigned tasks, then Lump is invoked. Lump uses
computation times and inter-task communication costs of unassigned tasks to
test the possibility of assigning them to one processor. Greedy locates
clusters of un-lumped tasks with high inter-task communication costs. These
are assigned to the same processor.

A wide variety of clustering schemes are presented in the literature.
Clustering schemes used in [50] and 1631 reduce the number of tasks by
forming task clusters. Tasks with maximum data exchange are merged to
form a task cluster. These task clusters are assigned to processors. Finally to
balance the load on processors, modules are shifted from heavily loaded

processors to Kghtly loaded processors. Chen and Eshaghian [64] have
proposed a clustering scheme with time complexity of O(MN) where M is the

number of tasks and N is the number of processors. They have compared
their approach with other leading techniques and shown that their mappings
are similar or better, require less computing time and fewer o r an equal
number of processors. Clustering schemes are usually simple to implement

and fast, however no attempt is made to enumerate all possible partitions;
they tend to find a local minimum. An optimal or near optimal solution is
not guaranteed.

The early research done on graph theoretic approaches formed a basis for
later work on static partitioning. This approach d e h e d the problem and
several heuristics schemes for its solution were later developed. The graph
theoretic approach, however, is mainly of theoretical importance. Its
application to practical systems consisting of several processors and tasks is
diflicult, for example, Stone's approach 154, 551 is NP-hard for an arbitrary
number of processors. The integer programming technique is best suited to

applications where the goals of the allocation are complex and numerous. If
more constraints are placed on the allocation possibilities, the search space
reduces. Theoretically, this approach provides an optimal solution, however
for large problems (many processors and/or tasks) achieving optimality
remains intractable. Limitations of graph theoretic and integer

programming approaches have led to development of a wide variety of
heuristic techniques. These schemes do not guarantee optimal or near
optimal solutions, however heuristic techniques are commonly used due to

their simplicity and low computational cost. A scheme based on heuristic
solution of bin packing problem is used in this thesis. A brief description of
the scheme and reasons for its use are presented in Chapter 4.

3.8 Placement Techniques

Several researchers have divided the static partitioning problem into two
parts: partitioning the task graph into a number of partitions less than or
equal to the number of processors, and assignment of the partitions to

processors. Placement is the assignment of partitions to processors, although
the placement problem is also known as a mapping problem. With n
processors and partitions, n! distinct placements are possible. The objective

of a placement algorithm is to select a partition with minimum inter-
processor communication cost.

The placement problem can also be viewed as a graph mapping problem (65,
661. In this case, a task graph is matched against the system graph in order
to minimize the inter-processor communication cost. This problem is also
equivalent to the graph isomorpism problem which is known as a classically
difficult combinatorid problem. Several heuristic placement algorithms are
presented in the literature. Most of these are developed for a specific
application domain and a parallel architecture. An approach proposed by
Bokhari [65] is briefly described below.

Bokhari has described his approach using an example of structural analysis
problem solved using a finite element machine (FEM), an array of processors
developed at NASA Langley Research Center. He assumes that all edges of
the task graph have equal weight and number of taswtask clusters are less
than or equal to the number of processors. The quality of mapping is
determined by the number of problem edges that fd on array edges. This
number is called the cardinality of the mapping. The algorithm starts with
the adjacency matrix of the task graph, and the adjacency matrix of a square
FEM onto which it is to be mapped. A permutation of the task graph
adjacency matrix that matches more closely with adjacency matrix of the
FEM is produced as the output.

The algorithm starts by examining the pair-wise exchange of each node with
every other node. The pair-wise exchange with the largest gain in
cardinality of mapping is examined. If the gain is greater than or equal to
zero then that exchange is made. The pair-wise exchange process is stopped
if no exchange leads to an improvement. The best mapping obtained by the
pair-wise exchange heuristics is stored. The pair-wise exchange heuristics is
not guaranteed to provide the best mapping. Some mappings are not optimal

and can not be improved by a pair-wise exchange. Bokhari refers to these
mappings as dead ends. The algorithm attempts to leave the dead ends by
randomly exchanging n pairs of nodes. The pair-wise exchange process is
then resumed. If the mapping obtained after the random exchange is poorer

than the previously obtained best mapping then the algorithm terminates.

Bokhari's approach has several limitations. He assumes that all edges of the
task graph have equal weight and number of taswtask clusters are less than
or equal to the number of processors. Therefore his approach is useful for

only a selected class of problems. However several researchers have
enhanced. Bokhari's approach [65], for example, Lee and Aggmal's
approach attempts to remedy several limitations of Bokhari's approach. It is
explained below.

Lee and Aggarwal's approach [66] also assumes that the number of task
graph nodes is not greater than the number of processors, however task
graph edges are allowed to have different weights. Their approach involves
accurate characterization of the communication overhead and it is assumed
that the communication in parallel systems takes place in phases. Aphase is
the time interval during which the communication for a problem edge is
carried out. It is observed that communication along certain problem edges is
required in the same phase, and in some others, in different phases. Some
problem edges are used more frequently than others indicating that greater
weight has to be given to that edge. In addition, a system link may be shared
by multiple problem edges communicating in the same phase which may
change the communication overhead of the corresponding problem edges.

Lee and Aggarwal [66] formally express communication overhead in terms of
objective hct ions OFI, OF2 and OF3. The objective function OF1 assumes

that no two problem edges are required in the same phase, and OF2 assumes
that all problem edges are required in the same phase. The objective
function OF3 assumes a combination of the previous two cases. An
appropriate selection of the objective function depends on the needs of the
application.

Lee and Aggarwal's [66] algorithm consists of two parts: initial assignment,
and a pair-wise exchange. In the assignment phase, a task with the largest
communication intensity is selected and assigned to a processor with degree
(the number of communication Iinks) as close as possible to the task. Then a
task which is adjacent to already assigned tasks and has the highest

communication intensity is selected. It is placed on a processor such that
certain measure derived from a selected OF is minimized. This process is
used for placement of all tasks. The pair-wise exchange part of the algorithm

attempts to improve the initial mapping. Lee and Aggarwal's approach does
not exhaustively exchange all pairs of tasks. The candidate task is selected
according to a measure derived from the selected OF. An exchange of this
task with all other tasks is attempted and the exchange giving the smallest
O F is accepted. The time complexity of Lee and Aggrawal's algorithm is
0 (n 3) where n is the number of tasks and processors.

To reduce the complexity of the placement problem, a number of approaches
such as graph contraction and clustering have been studied [50, 67, 681.
Most of these graph matching based techniques only cluster the task graph.
The clustered task graph is then matched with the system graph. Most of
these techniques perform partitioning and allocation. Chen and Eshagian
[64] have proposed a fast recursive placement algorithm. It clusters both
system and task graphs into a hierarchy of clusters. Clustering of task and
system graphs is done only once, independent of one another. The highest
level task clusters are first mapped on to the system cluster. Then the
mapping is done recursively at each clustering level. Their algorithm can be
used for directed and undirected task graphs. The time complexity of their .
algorithm is O(rnn), where rn is the number of tasks and n is the number of

processors.

3.9 Summary

This chapter describes issues involved in implementing circuit simulation on

parallel computers. Shared memory and distributed memory parallel
architectures are introduced. Shared memory architectures use a global,
shared memory for inter-processor communication and coordination, and
distributed memory architectures connect multiple autonomous processing

modules using a processor-to-processor interconnection network. Shared
memory programming model is similar to the uniprocessor programming

model, therefore these machines are easier to program. Shared memory
architectures are, however, complex and expensive and synchronization for

shared resources limits their scalability. Distributed memory computers are
relatively less expensive and scale wall, however it is usually difficult to
program distributed memory computers.

The performance of parallel applications is limited due to sequential fraction,
communication overhead and load imbalance. It is observed that an
algorithm that causes some extra work can still be useful for implementation
on distributed memoIy computers if it has low sequential fkaction. This is
mainly due the low cost of adding extra processors.

The rest of the chapter is devoted to the analysis of parallelism in circuit
simulation. Relaxation-based simulators often use direct methods for
simulation of sub-circuits; therefore parallelism in direct methods is studied.
Issues involved in implementing parallel relaxation based simulators using
shared and distributed memory computers are analyzed. Waveform
relaxation techniques have two forms of parallelism: coarse grain parallelism
across sub-circuits and fine grain parallelism within a single Newton-
Raphson iteration of a sub-circuit. Techniques used to exploit both forms of
parallelism are described.

The circuit simulation program presented in this thesis uses a distributed

memory computer. Appropriate partitioning and allocation of program
segments is essential for efficient parallel implementation on distributed
memory machines. Therefore partitioning and allocation issues are studied at
the end of the chapter. The following chapter describes an implementation of
a parallel waveform relaxation based simulator.

4. PARALLEL WAVEFORM RSLAXATION
IMPLEMENTATION

An objective of this thesis is to implement a parallel circuit simulation
program in order to demonstrate and test the design concepts developed
during th is project. A typical circuit simulation program consists of a
number of analysis modules each performing a different kind of analyses, for
example ac, dc or timedomain transient analysis. This chapter concentrates
on the parallel implementation of a transient analysis module. Parallel
implementations of Gauss-Seidel and Gauss-Jacobi parallel waveform
relaxation programs for distributed memory machine are described.

Waveform relaxation programs are implemented using a Transtech
MCPlOOO parallel processing board (691 which is based on the INMOS IMS
T800 Transputer [20]. Transputers are a family of microprocessors
specifically designed for parallel processing. The LMS T800 Transputer has
four high-speed serial communication links which can be used to create many
different network topologies. Transputers are attractive due to their low cost
to performance ratio. In addition, MCPlOOO boards plug into a slot of
standard workstations. This would facilitate development of low cost
multiple processor systems on workstations for VLSI CAD applications.

A distributed memory parallel programming language, Occum2, specifically
developed for Transputers, was used for the implementation 1701. The basic
principle of Occam is simplicity; unnecessary duplication of language
mechanisms is systematically avoided. Occam, unlike parallel versions of
sequential programming languages, was designed to support concurrency. It
is based on C. A. R. Hoare's theoretical model of Communicating Sequential
Processes (CSP) [71]. Within the CSP framework, each program is a
collection of sequential processes, each of which may be executing
concurrently with others. The processes interact or communicate only via

synchronized inputioutput operations. The use of the CSP model simplifies

the task of program verification, by allowing application of mathematical

proof techniques to prove correctness of programs. In addition, the formal
semantics of the language facilitates automatic synthesis of Occam programs
from high-level specifications. Appendix C gives a brief description of
Transputers and Occam2.

The chapter consists of six sections. Possible strategies used to implement
waveform relaxation programs on distributed memory machines are
described and compared in Section 4.1. A distributed queue approach to
exploit coarse grain parallelism across sub-circuits has been selected for
implementation. The overall structure of the parallel waveform relaxation
program using the distributed queue approach is described in Section 4.2.
The program consists of three modules: input processing, task graph
partitioning, and parallel transient analysis. The input processing module is
described in Section 4.2. Algorithms used to partition the sub-circuit task
graph into a number of partitions equal to the number of processors are

presented in Section 4.3. Section 4.4 describes the algorithm used for

placement of partitions on processors. The parallel transient analysis
module is described in Section 4.5 and Section 4.6 presents a summary of the
chapter.

4.1 Implementation Strategies

The organization of algorithms for parallel execution has been approached in

a number of different ways. These approaches can be broadly classified into
three parallelism categories: algorithmic, geometric and process fanning [61].

Algorithmic parallelism has quasi-independent tasks which execute sections
of the algorithm. Tasks are usually non-identical and data and computed
results are passed among the tasks. A pipeline is an example of algorithmic
parallelism. In geometric parallelism tasks are quasi-independent and
identical; each task operates on a part of the data and interacts with the

other tasks according to the geometry of the problem. Geometric parallelism

can be used for solving, for example, finite element analysis problems. In
process farming, tasks are independent but identical and data are processed

in a random order. A typical application area for process farming is image

processing.

In the context of parallel waveform relaxation, a sub-circuit solution task can
use the process farming approach for evaluating device models. The
application of process farming approach for parallel model evaluation is
described in the following subsection. Sub-circuit evaluation tasks are

quasi-independent and identical, they interact with one another according to
the circuit topology. Therefore the parallelism across sub-circuits can be
classified as geometric. Techniques to exploit parallelism across sub-circuits
are described in Sections 4.1.2 and 4.1.3.

4.1.1 Parallel Model Evaluation

Section 3.3 describes the use of the process farming approach to exploit fine-
grained parallelism in the FORM phase of the parallel direct method. Issues
involved in the use of process farming based parallel model evaluation for
waveform relaxation are similar to parallel direct methods. A typical

implementation consists of a queue of sub-circuits on a processor called the
mot processor. Most computations associated with the global waveform
relaxation implementation (for example, window selection, time-step control,
linear equation solution and convergence checks) are performed by the root
processor and device model evaluation tasks are dynamically assigned to free
processors. This approach is conceptually simple; however it is efficient only
for a small number of processors. It has been observed that if the number of
processors is more than three or four then speed-up saturates because
additional processors remain idle for most of the time. This serves as a

motivation for exploiting coarse grain parallelism across sub-circuits. Two
approaches, a single queue and a distributed queue, can be used for
exploiting geometric parallelism across sub-circuits. These are described
below.

4.1.2 Single Queue Approach

The single queue approach is similar to the process farming approach. In
this approach a central queue of sub-circuits is maintained on the root

processor. Sub-circuits are simulated using a data-flow driven scheduling
mechanism. A circuit ready for simulation is sent to a free processor. After

simulating the circuit the processor returns the results to the root processor.
Since all computations associated with sub-circuits are performed on worker
processors, the amount of sequential computation performed on the root
processor is low. The root mainly performs window selection and scheduling.
An important advantage of this technique is its ability to perform dynamic
load balancing due to run-time assignment of sub-circuits to free processors.

The applicabiliw of this approach is mainly limited due to high
communication costs. It is necessary to send all node voltage waveforms,
initial conditions, window boundaries, and the sub-circuit netlist to worker
processors. Worker processors return the node voltage waveforms, and
convergence information to the root. Transputers provide hardware support
for communication. Therefore a goal of most Transputers based
implementations is to overlap computations with communications so that
message passing latency can be hidden fkom the applications. In the context
of a single queue approach, it is desirable to ensure that the sum of total
message passing latency and message establishment costs for a sub-circuit is
less than the cost of computing a window iteration for the sub-circuit since
the message passing latency costs can affect utilization of processors. The
mean distance between the root processor and a worker processor depends on
the network topology and the number of processors. In most practical
topologies, i t increases with an increase in the number of processors.
Therefore the mean communication cost also grows with the number of
processors. In addition, the root processor and communication links near the
root become a bottleneck. Another disadvantage of this approach is poor
memory utilization.

4.1.3 Distributed Queue Approach

The distributed queue approach statically partitions the sub-circuit task
graph into partitions equal to the number of processors; each partition is
statically assigned to a worker processor. The root processor is responsible
for implementing a barrier synchronization point to ensure that all sub-
circuits have completed a window iteration before the next iteration is

started. The root also computes the size of the next window. The amount of

sequential computation performed on the root is very low. Worker processors
examine dependencies of sub-circuits (sub-circuit scheduling), simulate
eligible sub-circuits and communicate node voltage waveforms to fanout sub-
circuits. A worker completes a window iteration for each sub-circuit assigned
to it and sends synchronization messages to the root. Thus this approach
allows implementation of a distributed sub-circuit scheduling mechanism.

In most practical situations, communication of node voltage waveforms can
be overlapped with the computation (with the exception of the last sub-circuit
in the queue). It is also possible to combine synchronization messages to the
root in order to avoid delays a t the communication links near the root. This
arrangement has less communication overhead as compared with the single
queue approach because sub-circuit description and initial values are
communicated to a worker processor only once during a simulation interval.
The inter-processor (inter-worker) communication which consists of
messages for updating the node voltage information for fanout circuits can be
effectively overlapped with computation.

This approach statically partitions the sub-circuit task graph. Circuit
simulation problem exhibits highly data dependent behavior, therefore a

priori estimation of task sizes is difficult. In addition, task sizes vary during
a simulation interval. These factors make effective static partitioning
difficult, so load imbalance can become a dominating source of overheads.
Each approach has its advantages and limitations but the distributed queue
scheme is potentially more scalable. Therefore it has been used in this
thesis.

4.1.4 Multi-computer Interconnection Network

The MCP 1000 parallel processing board provides s o h a r e support for

configuring the multi-computer interconnection network topology. The
multi-computer interconnection topology used for the parallel
implementation is shown in Figure 4.1. This topology can be easily realized

using 4 links of IMS T800 Transputers. The following sections describe an
implementation based on a distributed queue scheme.

Figure 4.1 Network Topology

4.2 Program Structure Chart

, Worker
6 1

A program structure chart for the parallel circuit simulation program is
shown in Figure 4.2. The circuit simulation program is divided into three
modules: input processing, task graph partitioner and parallel transient
analysis. The input processing module reads the circuit description written

in a hardware description language. It consists of program segments for
parsing (syntax checking), filling intermediate data structures, DC analysis,
and circuit partitioning.

Worker
4

RELAX23 is a sequential program developed a t the University of California,
Berkeley [14]. The input processing module of RELAX2.3 was modified and
adapted for this application. The circuit partitioning program segment uses

a Norton equivalent conductance partitioning algorithm to partition a given
circuit into a number of sub-circuits. This algorithm is described in Section
2.5.2. The input processing module also generates information about
dependency relationships among sub-circuits.

Worker
2 Root

i

The task graph partitioning module accepts this information and generates a

sub-circuit task graph. The Gauss Seidel algorithm treats the sub-circuit
task graph as a directed graph and the Gauss Jacobi algorithm considers it

as an undirected graph. Therefore, appropriate selection of a partitioning

, r

v

Worker Worker Worker Worker 7 ,

b > 1 5 . 1 3

algorithm depends on the type of WR algorithm to be used. Task graph

partitioning algorithms used in this thesis are described in Section 4.3.

Each partition is loaded on an independent processor for transient analysis
using the placement dgorithm described in Section 4.4. Relationships

among circuit partitioning, task graph partitioning, and placement stages are
shown in Figure 4.3. The input processing and task graph partitioning
modules are d iEcu I t to convert to parallel form; however these modules
require only a &action of the total simulation time. Therefore these modules
are executed sequentially on the host workstation.

The parallel transient analysis module can be divided into two parts: a
transient analysis application and a process framework. The transient
analysis application consists of program segments for performing sub-circuit
scheduling, window selection, time step control, device model evaluation,
linear equation solution, and convergence check.

The sub-circuit scheduler checks aU dependencies of a sub-circuit before
simulation begins. Window selection and time step control algorithms are
discussed in Chapter 2 while device model evaluation techniques are
described in Appendix A. The program has device models for resistors,
capacitors, diodes and MOS transistors. The waveform convergence checker
is used to compare waveforms from the present iteration with the previous
iteration.

The process fkamework consists of program segments for implementing
message routing and buffering; it also provides =-time support to the
parallel application. The process framework is described in Section 4.5. The
parallel transient analysis module consists of approximately 5000 lines of

Occam2 code. The following section describes algorithms used by the task
graph partitioning module.

Host
computer

Input processing

DC Analysis

List of Sub-circuits with
initial conditions

v i

Task graph Partitloner
&

Partmoned Subcircuit
Task graph

I

Mu Wtransputer
System Porailel Transient

Analysis
*

Figure 4*2: Program structure chart.

Circuit c
+ Circuit partitioning

Task graph partitioning

o 1-1 Number of partitions equal + Placement
to the number of processors

-1 Partitions assigned
P3 to processors

Figure 4.3: Circuit partitioning, task graph partitioning and placement.

Partitioning Algorithms

As mentioned in the previous section, the input processing module generates
a sub-circuit task graph. This task graph is partitioned into a number of
equal partitions and each partition is allocated to a processor. It is known

that partitioning and allocation problems are NP-complete, hence heuristic
techniques are commonly used. Newton et al. [3] have reported that for

small circuits, i.e. for circuits with less than 20 nodes, device model
evaluation time dominates the matrix solution time, so sub-circuits are
usually small. Therefore the partitioning algorithm assumes that a sub-

circuit simulation task size (node weight) is proportional to the number of
devices in the sub-circuit. Most of the communication is overlapped with
computation, and message establishment costs are very small compared with
a sub-circuit simulation time. Therefore the partitioning algorithms attempt
to minimize load imbalance overhead. The allocation algorithm has been
developed to minimize communication costs.

An algorithm based on the Critical Path Method (CPM) [72] has been used to .
partition the directed task graph generated by the GS W R algorithm. This
technique has been selected for the present system because the GS WR task
graph does not have any regular structure and CPM baaed techniques are
established methods for scheduling unstructured directed task graphs on
parallel computers. An algorithm based on the solution of the bin packing
problem has been used for partitioning the undirected G J task graph because

it is a simple approach. Since exact task sizes are not known a priori, a

complex technique is unnecessary. These algorithms are described below.

4.3.1 Partitioning Algorithm for Gauss-Seidel Task Graph

The CPM algorithm is based on two concepts: tasks on the critical path have
to be executed in sequence, and the sum of execution times of tasks on the
critical path determines the minimum execution time of a program. The
algorithm ranks nodes according to the lengths of their critical paths and
generates a priority list. Then the node with the highest priority is assigned

to the most appropriate PE. The following definitions are used for describing

the CPM algorithm. 1721

DEFINITION 1: Accumulated time of a processor PEi AT(PEi) is the total
time required for PEi to finish all tasks assigned t o it.

'

DEFINITION 2: A task graph node is said to be mature at time t, if it has
no parent nodes or if all of its parent nodes are already assigned to some
processor PEk and AT(PEd 5 t , for all k.

DEFINITION 3: An exit path of a task graph node P is the longest path
fmm P to a leaf node of the DAG. If there are many maximal paths from a
node then any one of them can be an exit path. It is important to note that
finding a length of the critical path is equivalent to finding an exit path for a
node.

The fist step in the CPM algorithm is to determine the length of an exit path
for each node. The exit path algorithm is described below. Let n be the
number of nodes in the DAG. Let Ni and Li be the out degree and the length
of exit path for node Pi. Let CL be a list. Initially CL is empty, Li = 0; for all
i. and Ni = 0; for all leaf nodes.

Exit Path Algorithm:

1.0 For all leaf nodes Pk assign the weight of Pk to Lk. Add all leaf nodes to CL

2.0 kt Pi be a node in CL Repeat steps 2.1-2.3 until CL is empw

2.1 For each parent node P, of node Pi do:

2.1.1 N, = N, - I

2.1.2 if L, c WT(P,) + Li, then Lm = WT(Pm) + Li.
2.2 If Nm = 0 and P, is not an entr). node, add Pm to CL

2.3 Remove Pi from CL.

The exit path algorithm calculates exit path lengths for all DAG nodes. In
this algorithm, each node is processed only once in step 2.0 and steps 2.1-2.3
can be repeated a maximum of n times. Therefore the time complexity of the

algorithm is oh2).

The CPM algorithm:
1.0 Call exit path algonrhm

2.0 Repeat steps 2.1-2.4 until the accumulated time for all the processors is the same and there are no

mature nodes available.

2. I Choose processor PEi such that AT(PEi) is the smallest.

2.2 Find the mature node with the largest exit path length.

2.3 If found assign it to PEi.

2.4 If there are no mature nodes avaiidie. then assign a dummy node to processor PEi such that

WT(Pdummv) = AT(PE,) - AT(PEi) where AT(PEm) > A T(PEi) and WT(Pd-,l is the weight

of the dwnmy node.

The information regarding the length of an exit path is kept in a heap. Step
1 requires 0(n2) iterations. Step 2 is executed n times, and Step 2.2 requires
O(log n) time to complete. Therefore the time complexity of the CPM
algorithm is about (d o g n + n2) which is, o(&.

4.3.2 Partitioning Algorithm for Gauss-Jacobi Task Graph

Since the task graph generated by the GJ WR algorithm is undirected, an
algorithm based on the solution of the bin packing problem is used for
partitioning the task graph. The algorithm is similar to a non increasing best
fit heuristic. It is described below.

I . Arrange n sub-circuit task in a non increasing (descending) order of weights.

2. Assign first rn rasks to m processors in a n y suitable order.

3 For remaining (n - m) tasks. repear steps 3. i and 3.2

3.1 Determine the processor with the lowesr accumulated weight. In the case of conflict, a select

processor with lowesr number oft&.

3.2 Assign the n m largest sub-circuit task to this processor.

Since the number of tasks is usually greater than the number of processors,
the order of complexity of the algorithm is determined by step 1 which is
O(nZogn). The two algorithms discussed above partition the given task graph
into partitions equal to the number of processors. It is necessary to assign a
partition to a processor using an algorithm as described below.

4.4 Placement Algorithm

The allocation algorithm assigns partitions to worker processors in such a
way that communication cost is minimized. The cost of communication

between two partitions is proportional to the number of DAG edges shared by
the two partitions. Each edge is assigned a unit weight The following

algorithm is used.

1.0 Select a partition pair with the highest communication and place it on two adjacent

processors.

2.0 Select a partition with highest communication with any one of the placed partitions and place

it on an adjacent processor.

3.0 Repeat Step 2 until all partitions are assigned

Each worker runs a copy of the parallel transient analysis module. The
organization of the parallel simulation program and the implementation of
the transient analysis module are described in the following section.

4.5 Parallel Transient Analysis

The eight processors used for the application are organized as one root
Transputer and seven worker Transputers. The root Transputer reads sub-
circuits from the host's file system and loads them on appropriate processors.
It also synchronizes the operation of the worker Transputers. The root
Transputer initiates simulation by sending the size of a window to worker
processors which evaluate a window iteration for all sub-circuits assigned to
them and communicate appropriate waveforms to fanout sub-circuits
residing on other processors. Worker processors also compare waveforms
obtained during the present iteration with those obtained from the previous
iteration and determine how far the waveform convergence has progressed.
Workers communicate two values: the maximum number of time points
necessary for describing waveforms, and the smallest value of the waveform
convergence point to the root. When all waveforms converge at the end of
the window, the root calculates the size of the next window depending upon
the maximum number of time points and iterations required for the previous

window and communicates it to the workers.

The main data structures used for the implementation are shown in Figure
4.4. Occam 2 does not provide pointers, or facilities for dynamic memory

allocation and composite data types such as C structures or Pascal records.
Therefore single and multi-dimensional arrays are used for implementing
data structures. A row of the Sub-circuit list array provides all information
about a sub-circuit assigned to a processor. Information about all devices is
stored in a single vector and the Sub-circuit queue along with Ready and
Simulated (both arrays of flags) are used for sub-circuit scheduling. All
circuit node voltage waveforms on a processor are stored in voltage and time
arrays. Two instances of these arrays are used for storing waveforms &om
the present and previous iterations. Iteration counts of waveforms are used
for scheduling waveforms for execution. A Sub-circuit fanout list, and a
Subcircuits~toqrocessors map are used for sending messages to fanout sub-
circuits residing on other processors. A transient analysis application module
rurining on a worker processor is embedded in a process fhnework as
described below.

4.5.1 Process Framework

The process framework provides a run-time environment for the application.
It consists of program segments for message routing, buffering and
synchronization. The process framework has been designed to improve
utilization of Wprocessors, minimize communication latency, and avoid
deadlocks. Transputers provide hardware support for inter-processor
communication using autonomous DMA engines. Therefore Transputer links
can perform bi-directional data transfers without seriously affecting the
processor performance [73]. It is possible to improve utilization of links and
processors by de-coupling computation from communication. Independent
concurrent Occam processes are used for communication and computation.
Communication latency is minimized by appropriate design of process

configuration and the use of an efficient message routing algorithm. Occam
processes communicate using synchronous messages. This messaging

paradigm is prone to deadlocks. Communication deadlock avoidance
techniques typically involve use of intermediate buffer processes which

allows asynchronous messaging among communicating processes. A process
framework designed for the present system is described below.

Sub-Circuit-List Device-List

size1 inputs 1 device-listjq 1

Waveform Buffers for Present and Previous Iterations

0

MI'

Sub-circuit-Queue Ready

I

Device Iist for a
Sub-circuit

Sub-circuit-Fanout-List

T i e Iteration-Cnt Diff-time

Simulated Routing Table

Legend:
MB = Maximum size of waveform-buffer
MP = Maximum number of processors
MS = Maximum number o f sub-circuits
MN = Maximum number of nodes

MF = Maximum number of fan-outs per sub-circuit

Figure 4.4: Data Structures.

Figure 4.5 shows a process framework running on a worker Transputer.
Circles denote processes and arcs denote communication channels. The
process framework consists of six router processes, a buffer process and an
application process. T w o router processes are associated with each link, one
for input and the other for output. Router processes run in parallel with the
application process and with one another which allows communication to be
overlapped with computation. AU links can send and receive messages
simultaneously to reduce communication latency and improve link
utilization. Router processes implement a shortest path routing algorithm.
Router processes have a higher priority over the buffer and the application
process.

The buffer process has been introduced for buffering input messages to make
router processes free for accepting and transmitting messages. The buffer
process is also useful for avoiding deadlocks. A handshaking protocol has
been used for co~~llllunication between the buffer process and the application
process. A b d e r process initiates communication by sending buffered
messages received from the root and/or other Transputers. No M e r
messages are sent until an acknowledgment is received from the application

process. The application process receives messages, simulates sub-circuits
eligible for execution, sends node voltage waveforms to appropriate fanout
sub-circuits, and then sends an acknowledgment to the buffer process. This
arrangement is necessary for avoiding deadlocks.

4.5.2 Instrumentation for Performance Measurements

The IMS T800 Transputer has two on-chip hardware timers one for each
priority level [20]; these are used to perform timing measurements. The high
priority timer is incremented every microsecond and the low priority timer is
incremented every 64 microseconds. Occam provides an interface to these
timers using special input-only channels of type m R . Transputer/Occam
timers are cyclic; therefore modulo arithmetic is used for calculating time
delays. The cycle time for high priority and low priority timers are 1.2 hours - LC?

and 76 hours respectively. These timers are used for performance all of the
:G

measurements. /

Router Router

Figure 4.5: Process framework.

4.6 Summary

This chapter describes parallel implementations of waveform relaxation

programs using a network of Transputers. Different strategies for parallel
implementation such as, a single queue approach and a distributed queue
approach are described and compared. The distributed queue approach is
selected for exploiting the coarse grain parallelism across sub-circuits. This
approach is more generic and scales well. A distributed queue
implementation involves static partitioning and placement of sub-circuits on
processors. The program uses an algorithm based on the critical path method
to partition a GS task graph and a bin packing heuristics to partition a GJ
task graph. These algorithms are described. In addition, a placement

heuristic which attempts to minimize the communication overhead is also

discussed. The parallel processing framework provides a skeleton for
implementing parallel applications. An efficient implementation of the
processing fkamework which exploits characteristics of the underlying
hardware is necessary to improve CPU utilization. Therefore, the parallel
processing framework is discussed in detail. A dominating source of overhead
in distributed queue implementation is load imbalance. The following
chapter describes techniques to minimize this problem.

5. DYNAMIC LOAD BALANCING

Distributed memory multi-computers permit efficient implementation of
large parallel applications, however, it is necessary to minimize the effects of

performance limiting factors. Load imbalance, an uneven distribution of
workload among processors due to which some processors are overloaded and
other remain idle, is an important source of overhead in distributed memory
machines. Load balancing techniques attempt to improve system
performance by providing better utilization of resources in the entire system.
The purpose of load balancing is to reduce the mean time to complete a job by

distributing the workload evenly. Load balancing techniques are classified
as either static or dynamic. Static techniques described in earlier chapters
use a priori estimation of task sizes and communication overheads to

partition and allocate tasks while, dynamic techniques perform load
balancing during run time by migrating tasks from heavily loaded processors
to lightly Loaded processors.

Several load balancing schemes are described in the literature

[52][74][75][76]. Most of these schemes are validated and compared using
synthetic workload models and simulation, and very few practical
implementations are presented. This chapter describes an implementation of

a dynamic load balancing algorithm similar to the contracting within
neighborhood approach [76].

The chapter consists of five sections. Limitations of static partitioning
schemes are described in Section 5.1. Section 5.2 describes various dynamic

load techniques. The load balancing algorithm used in this thesis is
presented in Section 5.3 and its implementation is described in Section 5.4.
Section 5.5 presents a summary of the chapter.

5.1 Limitations of Static Partitioning

Static partitioning schemes assume static task graphs, i.e. the number of

tasks, task sizes and communication patterns among task sizes are fixed.
However, in many application areas, for example, search problems and

symbolic applications, tasks are dynamically created, also, applications

developed using programming paradigms, such as functional and logic
programming do not have static task graphs. This may result in load

imbalance among processors and require dynamic load balancing.

Several scientific applications can be partitioned into a b e d number of tasks

which do not change during run time. Although task graphs of these
applications have fixed topology, task sizes may vary drastically during run
time. Nicol and Reynolds Jr. have described a parallel solution of a system of

partial differential equations arising in fluid dynamics [77]. In this problem,
computation consists of several distinct phases wherein workload

characteristics of each phase is different. Nicol and Reynolds Jr. have
proposed dynamic re-mapping of computation after a phase change. Their
approach is applicable to only a specific class of applications which have a

few distinct phases.

Most numerical algorithms based on iterative methods show data dependent
behavior. For example, the finest granularity task in the parallel solution of
non-linear algebraic equations using non-linear relaxation involves an

iterative solution of a single equation. The number of iterations required for
convergence depends on the values of coefficients and initial values of

iterates. In addition, a priori estimation of task, size which depends o n the

number of iterations, is difficult. Since some applications show a wide
variation in inter-task communication patterns during run time. These

applications may need dynamic load balancing to reduce the communication
overhead.

The workload offered by a parallel waveform relaxation based circuit
simulator depends on the nature of the circuit, complexities of device models,

and input waveforms; it may vary widely during the simulation interval.

The finest granularity task consists of computing a window iteration for a

sub-circuit. Absolute and relative values of sub-circuit evaluation task sizes

vary widely due to input conditions, latency, partial waveform convergence
and multi-rate behavior and this can be a major source of load imbalance.
The cost of computing a window iteration for a sub-circuit depends on the
number of time points used to describe the waveform and the cost of

computing individual time points. Since an adaptive time step control is
used, the number of time points necessary to describe a waveform vary across
iterations. It is also difficult to predict the total number of time points. The

number of Newton-Raphson iterations necessary to compute node voltage
values a t a time point depend on the spectral radius of the Jacobian matrix
and initial conditions. Thus, sub-circuit evaluation task sizes vary widely
over the simulation time interval. In addition, static partitioning is an NP-
complete problem. Therefore only sub-optimal partitioning is practical or

even possible.

5.2 Dynamic Load Balancing Methods

The nature of and reasons for load imbalance overhead depends on the
application domain. A wide variety of techniques are proposed in the
literature to meet the needs of different applications and no technique is

universally applicable. Load balancing techniques can be classified
according to control policy, information policy, initiation policy, transfer
policy, and location policy [74].

Control policy refers to the agency making the load transfer decisions.
Control policy can be centralized or distributed. Centralized schemes have a

central controller that collects load information and makes load transfer
decisions while in distributed schemes, each node is responsible for making
transfer decisions and control authority is distributed. Centralized schemes

can take near optimal load migration decisions, however, collection of state
information from all nodes can be expensive. Distributed schemes usually

perform local load balancing at a considerably lower cost.

Information policy determines the method of exchanging and using the load
status information. Information policy can be static o r probabilistic, where in
a static or deterministic approach, current system state such as CPU
utilization, memory utilization, and average response time are used to make

load migration decisions. In a probabilistic approach, an arriving job is sent

to an appropriate node according to a set of branching probabilities.

Initiation policy determines who invokes load balancing activities under
decentralized control. Initiation policy can be sender or receiver initiated. In
a sender initiated method, heavily loaded nodes initiate the load transfer. In
receiver initiated method, lightly loaded nodes initiate load transfer. The
location policy refers to the strategies used for load placement and the
transfer policy decides when to transfer the load. Load balancing methods
can be adaptive or non-adaptive. Adaptive schemes modify load balancing

policies according to system state.

Most literature on dynamic load balancing describes applications in which
tasks are dynamically created or a m v e at a processor from the external
world during run time. However, in the circuit simulation problem the
number of tasks is fixed. Load imbalance is caused by differing task sizes
during different iterations. Therefore, several techniques described in the
literature are not directly applicable to distributed circuit simulation. The
load balancing algorithm developed in this thesis is loosely based on

contracting with in neighborhood and the gradient model (7511761. These

approaches are described below; both algorithms described below are
distributed in nature. A distributed approach has been selected due to low

overhead.

The Contracting Within Neighborhood approach proposed by Kale' 1761
defines neighborhoods and horizons of processors in terms of number of hops
between processors. All processors exchange load status information with
processors within their neighborhood. A newly created task is sent to the

least loaded processor within a neighborhood but beyond the immediate
vicinity .

Lin and Kellor [75] have proposed a dynamic load balancing scheme based on

the Gradient Model. In this model, processor load is viewed as a surface. The
surface is smoothened by migrating tasks fkom heavily loaded processors to

less loaded processors. A processor can be in one of three states

ABUNDANT, IDLE and NEUTRAL depending upon the size of its job queue

and memory utilization. Abundant nodes have excess migratable tasks, idle

nodes have few tasks and neutral nodes are neither abundant nor idle.

Gradient planes are formed by assuming that idle nodes have the lowest
potential. The potential of a node is computed by considering its state and
proximity to an idle node. Tasks are initially allocated to the processor on
which they are created then load balancing is initiated when a processor
becomes idle. The idle processor requests tasks from its neighbors. An
Abundant neighbor transfers an excess task to an idle processor. A Neutral
node propagates the request for a task to more distant processor. Thus load
migration is performed only when necessary. The following section describes
a load balancing algorithm used in this thesis.

5 -3 Dynamic Load Balancing Algorithm

This section presents a high level overview of the load balancing algorithm
used in this research. Important implementation details are presented in the
following section. The nature of load imbalance in a distributed queue WR
implementation and reasons for selection of the load balancing approach are
described below. A distributed queue implementation partitions a sub-circuit
task graph into partitions equal to the number of processors. Each processor
is assigned a partition for evaluation. During a simulation interval,
processors compute a window iteration and synchronize a t the end of each
window iteration. A processor which completes a window iteration before
others remains idle. It waits for all other processors to complete the current
iteration.

Several load balancing schemes were evaluated for the application to the

problem. Load offered by a circuit depends on the nature of the circuit and
input conditions. Unlike fluid dynamics problem described by Nichol and
Reynolds Jr., no distinctive phases are apparent, therefore periodic re-
mapping schemes may not prove effective. Load offered by consecutive
waveform iterations of a sub-circuit can be different. Therefore schemes
which reassign sub-circuits to processors after a window iteration may not
yield good results. The load balancing approach used in this thesis involves
temporary migration of sub-circuits from busy processors to idle processors.
A high level overview of the load balancing algorithm is given below.

The algorithm is receiver initiated therefore load balancing actions are
initiated only when a processor becomes idle. This avoids unnecessary

overhead. The algorithm does not depend on the characteristics of
Transputers or the Occam language, however the implementation described
in the following section considers the synchronoushlocking nature of the
inter-process communication. The algorithm takes into account the nature of
the application domain. The synchronou~locking nature of inter-process
communication makes implementations prone to deadlocks. Commonly used
deadlock resolution schemes involve the application of time-outs. In the
circuit simulation problem, a priori estimation of sub-circuit evaluation times
is difficult, therefore time-outs are not used to avoid deadlocks.

- Figure 5.1 shows a pictorial representation of the algorithm. Each processor
maintains a list of processors adjacent to it and an idle processor sends an '1
urn idle' message to all its busy neighbors. Busy neighbors return yes.work
message if they have adequate work to off load. The idle processor sends a

4 b" ! sendwork message to only one busy processor and sends a dontsend message
i, ;&'

'.I
to all other busy processors. The busy processor returns a sub-circuit to the

L ' ' idle processor. If a number of sendwork messages are received then a sub-
: ,[- t '- ,tC

.I \ @ circuit is sent to only one idle processor and all other processors receive a
?- -
h - nacircuit message. An idle processor which receives a no.circuit message

$ &""
V\? / L

instead of a sub-circuit to evaluate will repeat its request for work. T h i s
, .<I.. keeps the algorithm simple. A processor which takes on a sub-circuit for

up- - , 4 another processor, computes a window iteration for that sub-circuit and (.- ;,;<.
I c)- returns results to the processor which provided the task. Each round of
" -

message exchange is identified by an iteration count in order to avoid
ambiguities due to stale messages.

5.4 Implementation of Dynamic Load Balancing

This section describes details of the load balancing algorithm and explains
the strategy used for implementation. Procedures relevant to the discussion
on load balancing are sirn.renoteO (simulate on a remote node), check.ckts()
(check circuits) and sim. rdy. cktso (simulate ready circuits). The procedure

BUSY IDLE BUSY

idle idle - I
yes. work yes. work - -
don~send send. work - -

ckt

IDLE BUSY IDLE

idle idle - -
yes. work yes. work
1 -

send. work send. work -
nockt - 1

ckt -
Figure 5.1: A Dynamic load balancing algorithm.

sin.remote0 runs on each worker node and c d s check-cktsO and
sim.rdy.cktsO. The procedure check.ckts0 checks sub-circuit dependencies
and marks circuits ready for simulation. The procedures sirn.rdy.ckts0

simulates ready circuits and implements key parts of the dynamic load
balancing algorithm. The dynamic load balancing implementation is
explained in terms of these procedures. Dynamic load balancing has been
implemented for GJ waveform relaxation, however the framework is generic
and is independent of the algorithm used.

Figure 5.2 gives Occam pseudo-code for sim.remote0. Several details have
been omitted for the sake of clariw. The root transputer sends sub-circuit
device lists, sub-circuit initial conditions, sub-circuit-to-processor maps, and
sub-circuit fanout lists to each processor. The sub-circuit-to-processor maps
are generated by partitioning and allocation modules described in the earlier
chapter. The sub-circuit-to-processor map along with processor topology is
used to generate distributed routing information.

Sub-circuits are re-ordered in a descending order according to the estimated
simulation time. Reordering ensures that large circuits are simulated on a
local processor. Sub-circuits near the tail of the queue are migrated for load
balancing. The WHILE loop used for simulation of sub-circuits consists of
PRI ALT and a CASE on tagged messages startstop, finish, values and a

default case TRUE. Details of Occam PRI ALT and CASE constructs are
given in Appendix B.

The root transputer sends a start.stop message at the beginning of every
window along with the start and the end of the window to every worker
processor. Upon receiving the start.stop message, the worker processor re-
orders the sub-circuit queue in a descending order according to the history of

execution times. Lists of idle processors and iteration counts are initialized.
All sub-circuits ready for simulation are determined and simulated. The
finish message sent by the root is used to store plot data and terminate the
process framework. The values message is received &om other processors
with fan-in sub-circuits. It can satisfy dependencies of some sub-circuits
which can be identified and simulated in the default case.

sim.remote(- ** Simulate Remote **
SEQ

- Receive device list, sub-circuit-to-processor mapping, sub-circuit
fanout information and details of individual sub-circuits.

- Rearrange sub-circuits according to size
WHILE(N0T Done)

SEQ
PRI ALT

input ? CASE
staztstop; start-time; stoptime

SEQ
- Rearrange sub-circuits according to history
- Initialize idle processor and iteration count m a y s .
- Check circuits
- Simulate ready circuits.

finish; processor.count
SEQ

- Send plot data to root. Done set to TRUE.
- Shut down process framework.

values; processor.count
SEQ

- Receive values &om other processors.
- Rotate waveforms after a window iteration.

TRUE & SKIP
SEQ

- Check circuits.
- Simulate ready circuits.

Figure 5.2: The sim.remoteO (Simulate Remote) procedure.

The sim.rdy.ckts0 (simulate ready circuits) procedure consists of a SENDER
and a RECEIVER WHILE loops. The SENDER loop receives results of an
off-loaded sub-circuit, simulates a local sub-circuit and sends status
information to adjacent processors. It receives information about the state of
adjacent processors and load balancing activities are initiated upon detecting
an idle processor. A busy processor (sender) sends a yes.work message to
idle processors if it has at least two outstanding circuits. It receives
send.work /dont.send messages from idle processors and sends a circuit to the
first processor requesting for work. The SENDER loop attempts to minimize

protocol overhead on a busy processor. The RECEIVER loop is entered after
simulating d local sub-circuits. It implements an idle processor protocol

described in the previous section. The RECEIVER loop monitors the state of
adjacent processors and terminates when all adjacent processors are idle.

sim.rdy.ckts(. . . .) - ** Simulate Ready Circuits **
SEQ

WHILE(circuits.to.do > 0) -- SENDER
SEQ

- Receive results fiom off loaded circuits.
- Simulate a local sub-circuit.
- Send status to all neighbors.
- Receive number and list of idle processors.
IF

(number.of.idle > 0)
SEQ

- Send yes.work or no.work to adjacent idle processors.
- Receive send.work or dont.send to eom idle processors.
- Send circuit to the first idle processor requesting work ,

and
... no.circuit to d other idle processors. Do not send
... anything to processors that refused work.
- Send circuit to an idle processor.

- Receive a number and list of busy processor.
WHIIX(number.busy.processors > 0) - RECEIVER

SEQ
- Send 'I am idle' message to all busy processors.
- Accept yes.work or no.work from busy processors.
- Send send-work to only one procesor and dont.send to all other

processors.
- Receive a circuit. Simulate circuit and return results.
- Receive a number and list of busy processors.

Figure 5.3: The sim.rdy.ckts0 (Simulate Ready Circuits) procedure.

5.4 Summary

This chapter describes application of dynamic load balancing techniques to
distributed waveform relaxation problems. Limitations of static partitioning
techniques are described and the motivation behind using dynamic load
balancing techniques is presented. Some existing load balancing techniques
are reviewed. A load balancing algorithm is described and important details
of the implementation strategy are presented.

6. RESULTS

The primary objectives of this research were to study issues involved in
parallel distributed memory Waveform Relaxation based circuit simulation

and to analyze the effects of performance limiting factors. Gauss-Seidel and

Gauss-Jacobi waveform relaxation programs were developed using a

distributed memory parallel programming language, Occam2, to study these
issues. A Transtech MCPlOOO parallel processing board [69], based on the

INMOS IMS T800 Transputer [20], was used to implement the required
experiments.

This chapter presents the results obtained from the studies of Gauss-Seidel

and Gauss-Jacobi parallel WR programs. A key performance index of
interest is the speed-up due to parallel implementation. Results of the
sequential version of the program are described below; Section 6.1 gives
results for the Gauss-Seidel algorithm, and results for the Gauss-Jacobi
algorithm are given in Section 6.2. Section 6.3 presents an analysis of

results. In addition, a discussion on the effects of performance limiting

factors is presented. Dynamic load balancing was used for circuits which
showed low speed-ups due to large load imbalance. Results for load
balancing are given in Section 6.4. A summary of this chapter is presented in

Section 6.5.

The sequential version of the program was tested using benchmark circuits
obtained from the University of California, Berkeley. The following circuits

were used.

CINV4, the simplest circuit, consists of a chain of 4 inverters. CINV4 was

used to debug the simulator. Relaxation techniques are most effective for

simulation of loosely coupled circuits in which node voltages do not depend
too strongly on one another. Circuits with tight feedback loops such as,

TRINGTX and OPAMP have strongly dependent nodes, therefore application

of waveform relaxation for simulation of these circuits is difficult. The
difficulty in simulating these circuits makes them ideal cases to test

algorithms.

Table 6.1: Benchmark Circuits.

Name

Node voltage waveforms for selected nodes were compared with those
obtained using the Relax23 program to validate operation of the simulator.
Node voltage waveforms for selected nodes obtained using Relax2.3 and the
simulator developed in this research are shown in Figure 6.1, Figure 6.2 and
Figure 6.3. The mean deviation in results is within typical tolerance limits,
0.01 Volts absolute and 0.01 Volts relative which is adequate for the analysis
of MOS digital circuits.

DOMINO
TRINGTX
OPAMP

6.1 Gauss-Seidel Method

I -

Devices

This section gives results for the parallel Gauss-Seidel waveform relaxation

implementation. As described in Section 4.5, the experimental set-up
consisted of eight Transputers organized as one root Transputer and seven
worker Transputers.

8

13

94

The root Transputer performed initial placement of circuits on worker

Transputers and implemented a synchronization barrier at the end of each

waveform iteration. Speed-up measurements were done using the

measurement instrumentation described in Section 4.5.2.

Nodes Sub-
circuits

12

6

13

2

3

1

Speed-up figures for five circuits obtained from the University of Illinois,

Urbana Champagne [78] are tabulated below, where speed-up represents the
ratio of the time required to simulate a circuit using one processor to the time
required to simulate the circuit using seven processors.

Table 6.2: Speed-up for GS algorithm.

Parallelism in GS waveform relaxation is limited due to dependencies among
sub-circuits of a given iteration. However the Gauss-Seidel algorithm is

suited for a class of circuits which have strong directional properties. Speed-
up for the first two circuits, DECPLA and CRAMB is low. The DECPLA
circuit has very few sub-circuits. Therefore starvation and load imbalance
cause low speed-up. CRAMB has one very large sub-circuit and uneven sub-
circuit sizes result in reduced in parallelism and therefore low speed-up.

6.2 Gauss-Jacobi Method

Analysis of parallel versions of Gauss-Seidel and Gauss-Jacobi waveform

relaxation algorithms shows that parallel Gauss-Jacobi is asymptotically
faster than parallel Gauss-Seidel when a sufficiently large number of
processors are used [79]. Distributed memory machines are usually built

using a large number of relatively less expensive processors. Therefore G J is
an important algorithm. Results for the Gauss-Jacobi case are tabulated

below.

Reasons for lower speed-up for DECPLA and CRAlk/][8 are similar to the GS
case. Load imbalance is a potential source of overhead. A detailed analysis of
overheads is presented in the following section.

6.3 Analysis of Performance Limiting Factors

This section presents a simple model to analyze the effects of performance

limiting factors. Three performance limiting factors: communication,

sequential fraction and load imbalance are analyzed. Communication is an
important source overhead in distributed memory machines, therefore a
detailed discussion of communication overhead is presented below. Inter-
processor communication can be divided into two categories: communication

among processors to exchange node voltage waveforms and communication
among root and worker Transputers to determine the size of the next

window. Both categories are analyzed. INMOS Transputer T800

communication mechanisms and their costs obtained &om [73] and [80] are

used to illustrate concepts.

Table 6.3: Speed-up for GJ algorithm.

DECPLA I 66 116 30 3.91

6.3.1 Communication Overhead

Sub-

circuits
Transistor

s

Circuit

CRAMB
DIGFI

SCDAC

The cost of communication between adjacent Transputers can be represented
as the sum of a fixed cost a and an incremental cost per unit length P . The

GJ
Speed-up

Nodes

fixed cost is the start-up time for any message. The initial part of analysis

assumes that the cost of sending a message is equal to the start-up cost and

neglects the incremental cost.

149

385
155

277

698

416

76

178

50

2.64

4.67

4.33

The Transputer links are autonomous DNlA engines. knks permit bi-

directional transfer of data without seriously degrading the performance of
the processor [73]. The run-time environment described in Chapter 4 de-

couples computation assigned to a processor fkom its link communication.

Communication processes are run at a higher priority and communication is
overlapped with computation. Under these circumstances, the incremental

cost is incurred mainly due to D M . cycle stealing. In this work, however, the

incremental cost due to cycle stealing has been neglected to simplify the
analysis without compromising accuracy. The worst case analysis of the

DMA cycle stealing overhead is given at the end of the section.

The notation, symbols and assumptions used for the analysis are described
below. The number of processors in the system is denoted by p and the
number of circuits is denoted by c . A uniform allocation of circuits to
processors is assumed to simplify analysis so the number of circuits per
processor is I = c / p. Each circuit communicates with f, other sub-circuits

residing on other processors. This is known as a sub-circuit fanout.
Therefore fanout per processor f, is given by f, = fc*l and each processor
sends f, messages during each window iteration. An average distance

traveled by a message is denoted by a, hops. The analysis does not take into

account the effects of locality in message passing.

Analysis of inter-processor communication to exchange node voltage
waveforms is presented below. The majority of inter-processor messages are

to exchange node voltage waveforms, therefore this form of communication is
the most important source of communication overhead. The total message
establishment cost for a window iteration is given by:

Message Establishment Cost = 2* f,* p* a, message establishments.

Both processors involved in the communication incur message establishment
cost, therefore the multiplication factor 2 appears in the equation. Message

establishment cost per processor is given by:

Cost per Processor = 2* f, * a, message establishments.

The analysis given below can be divided into two parts: overhead analysis for

the eight Transputer system (one root and seven workers) and estimation of

the effect of increasing the number of processors. Overhead analysis for the

eight transputer system is given below. A synthetic circuit used for analysis

has 70 sub-circuits and the complexity of each sub-circuit is approximately

equal to an average DECPLA sub-circuit. Each sub-circuit communicates
with 3 other sub-circuits which reside on other processors. A partitioning

algorithm partitions the circuit into 7 equal partitions, therefore each

processor is assigned 10 sub-circuits to evaluate. Measurements done on

DECPLA indicate that the average window evaluation time for a sub-circuit

using the INMOS T800 processor is 9600 micro-seconds. Therefore 10 sub-

circuits require 96000 micro-seconds to complete a window iteration. The
average distance traveled by a message for the 2 x 4 mesh topology (see

Figure 4.1) is 2 hops.

The per processor of message establishment cost is therefore given by:

Cost per Processor = 2* f, * a, = 2* (3+ 10) * 2 = 1 20 message establishments.

Boreddy and Pulraj have measured message establishment costs for INMOS
T800 Transpurers under different operating conditions [SO]. Their results
indicate that the average message establishment cost is 25 micro-seconds.

Therefore the message establishment cost for a window iteration for a

processor is 3000 micro-seconds. This is less than 3.5% of the computation

cost of a window iteration on a processor.

The analysis of communication overheads presented above can be extended to

study the effect of increasing the number of processors. It is assumed that

the problem size grows with the number of processors so the number of sub-

circuits assigned to a processor remains constant. A 2 dimensional torus

network with even width is used for the analysis. The average message path

length of a w-wide, D-dimensional torus is:

W* D
ad = - for k v even [39].

4

The following table shows the variation of the message passing cost with an
increase in the number of processors.

The communication cost increases linearly with the number of processors,
therefore appropriate partitioning and allocation to exploit locality of
message communication is necessary. In addition, if the problem size does
not scale with an increase in the number of processors then the
communication cost as a percentage of computation cost will increase.

Table 6.4: Variation of Communication Cost.

The analysis presented above assumes that the cost of senhng a message is
equal to the start-up cost and ignores the incremental cost. The incremental
cost, in this case, is mainly due to DMA cycle stealing overhead. Once
transfer over a link is started it typically consumes 4 processor cycles (0.2

micro-seconds), to perform one memory read or write per 32-bit word every 4

micro-seconds [73]. Therefore each link consumes 5 percent of the memory
time. This cycle stealing can cause the CPU to stall until the transaction is
complete.

P

16

36

64

Another form of communication involves the communication between the root
and the worker processors since the root communicates information about the
next window to worker processors. This communication is not overlapped
with computation, however, the message size is usually very small (typically
80 bytes or less). In addition, a form of broadcast communication is used.
The root communicates values to adjacent processors which propagate the
values to their neighbors. An estimate of the worst case latency to the
farthest processor is given by:

bV
ad =-

2

2.0

3.0

4.0

Cost per
processor in

micro-seconds

3000

4500

6000

Communication
cost as a

percentage of the
computation cost

3.12

4.68

6.25

L = (a + p* M) + Length of rhr longest pnrh.

where M is the length of the message in bytes, a is the start-up cost in micro-
seconds, p is the incremental cost in bytes per micro-second and the length

of the longest path is expressed in terms of the number of hops. The length
of the longest path for the 2 x 4 mesh network is 4. Assuming ct = 25 micro-
seconds, /3 = 0.80 micro-seconds per byte [80], and M = 80 bytes gives:

L = (25 + 64)* 4 = 356 micro - seconds.

The estimated worst case latency is approximately 0.37 percent of the time
required for computing a window iteration, which is very low.

6.3.2 Sequential Computation

The sequential computation performed by the root Transputer involves
computing the size of the next window. The root Transputer accepts
information such as the maximum number of time points required to describe
waveforms and convergence status from worker processors. The algorithm
used for computing the size of the next window is presented in Section 2.5.1.
Timing measurements done for the DECPLA circuit indicate that 128 micro-
seconds are required to determine the size of the window which is 0.13
percent of the time required for a window iteration. The sequential

computation required to calculate the size of the next window does not
depend on the number of sub-circuits, however the root Transputer receives a

message from every processor and two comparisons per processor are

performed. Messaging from worker Transputers to the root could be easily

reduced by combining values sent from worker processors to the root at

intermediate processors. Therefore sequential fraction is not a major source
of overhead.

6.3.3 Load Imbalance Overhead

The time required to simulate a sub-circuit depends on the nature of the sub-
circuit and the input excitation conditions. Also sub-circuit execution times

vary widely over iterations. These factors make a priori estimation of sub-

circuit sizes and accurate static partitioning difficult. Therefore some

processors complete their window iteration before others, and remain idle.

Load imbalance overhead depends highly on the nature of the circuit, for
example, DECPLA and CRAMB show relatively low speed-ups.

Run-time traces for DECPLA and CRAMB were collected to determine the

reasons for low speed-ups. The run-time trace for a processor consisted of the
following information: window iteration number, time required to complete
the window iteration, and time required to simulate its sub-circuits during
the window iteration.

Run-time traces collected from worker processors were stored at the root
processor. Post-processing of the mn-time traces was done by an analysis
program, which generated statistical information on that record. The
program calculated aggregate processor idle time for a window iteration

using the following equation:

Aggregate processor idle time = Number of proccessors * Time spent by the
slowest processor - Sum of individual sub-circuit execution times.

The total idle-time for the entire simulation interval was calculated by

summing-up the aggregate processor idle time for all the windows. The
aggregrate processor idle time for DECPLA and CRAMB is given in Table

6.4.

Table 6.4: Aggregrate Processors Idle Time

DECPLA 1 GS I 75.80
1 I DECPLA I GJ 35.01
I

The result of the experiment presented in Table 6.4 clearly demonstrates that
the performance of the multi-computer system is severely affected by idling
of processors. This arises due to load imbalance and starvation conditions.

6.4 Dynamic Load Balancing

The dynamic load balancing algorithm described in Chapter 5 relies on
temporary migration of sub-circuits from busy to idle processors to reduce the

effects of load imbalance. The performance of this algorithm is determined by
implementing it on a network of Transputers. The pedormance of the
algorithm is measured by simulating test circuits.

The parallel GJ waveform relaxation simulator with a dynamic load
balancing module was used to simulate the DECPLA and CRAMB circuits.
As discussed in the previous section, these circuits have a large load
imbalance overhead, which makes them appropriate cases to test the load
balancing algorithm.

The procedure used to verify the load balancing algorithm can be divided in
three steps. The first step is to identify the window iterations in which sub-
circuit migrations take place and processors which off-load and whlch receive
sub-circuits. The second step obtains run time traces for the selected window

iterations and appropriate processors. The third step verifies if migrations
occur according to the algorithm described in Chapter 5.

The information used to identify iterations with migrations included run
time traces for the parallel GJ algorithm without the load balancing module

and the processor adjacency list. The run time traces for the parallel GJ
algorithm described in Section 6.3.3 provided the following information:

window iteration number, time required to complete the window iteration,
and time required to simulate the 'individual sub-circuits during the window

iteration. The adjacency list of a processor provides node numbers of all
neighbors. Migrations take place when a busy processor has more than one

outstanding sub-circuit and it detects an idle neighbor. Run-time traces for
selected iterations and appropriate processors were obtained. They show

migrations of sub-circuits in accordance with the algorithm described in

Chapter 5.

Five test runs for DECPLA and C W I B each were performed in order to

account for small variations among test m s . All the test runs clearly
indicated that there was no appreciable gain in speed-up. The best possible
speed-up for DECPLA was 3.93, which was not significantly higher than the
3.9 1 that was achieved without dynamic load balancing.

Reasons for low gain due to load balancing are described below. The dynamic
load balancing algorithm permits migration of circuits only when the number

of outstanding circuits on a processor is more than one. Each partition of a
DECPLA consists of only 4 or 5 sub-circuits, so very few circuit migrations
can occur. Circuits are already arranged in a decreasing order of execution
times, so only small circuits migrate. In the case of CRAMB, load imbalance
is mainly due to one large sub-circuit. It is important to note that the gain
due to application of dynamic load balancing depends on the nature of the
circuit and number of processors.

6.5 Summary

This chapter presents speed-up results for parallel GS and parallel GJ
waveform relaxation programs. Three performance limiting factors:
communication, sequential fraction, and load imbalance a re analyzed. The
communication overhead depends on the architecture of the multi-computer
system and the nature of the circuit. Transputer links are autonomous DMA
engines and the effect of communication overhead can be minimized by

effectively overlapping computation and communication. Analysis and
measurement of the sequential part of the program shows that i t is not a

major source of overhead for a 111 window WR technique. Load imbalance is

the largest source of overhead. Results for dynamic load balancing
techniques are presented.

7. SUMMARY, CONCLUSIONS AND FUTURE
WORK

This chapter presents a summary of the research described in this thesis.
Objectives of the research are reviewed and main contributions are
summarized. Finally possible future work is discussed.

This thesis describes analysis, implementation and performance evaluation
of a distributed memory parallel waveform relaxation technique for the
simulation of MOS VLSI circuits.

Detailed electrical circuit simulation is commonly used to simulate MOS
VLSI circuits to verify functionality and to predict their performance before
fabrication. Electrical circuit simulators perform ac, dc and time domain
transient analysis of circuits. The time domain transient analysis provides
accurate timing information and performance details, however the time
required for the simulation of a circuit consisting of a few thousand
transistors can be several CPU hours. This research was, therefore, aimed at
finding the techniques to improve the speed of electrical circuit simulators,
without sacrificing the accuracy of analysis, so that a substantial reduction in
development cycle time and cost of integrated circuits could be achieved.

Transient analysis requires solution of a system of nonlinear algebraic-
differential equations. Equations are formulated using Kirchoff s current

law, Kirchoffs voltage law and branch relations, and solved using direct or
iterative techniques. Waveform relaxation is an iterative technique for the
solution of a system of nonlinear algebraic-differential equations. This
technique transforms a system consisting of n coupled differential equations
into n equations consisting of one variable each. Each de-coupled equation is
independently solved and Gauss-Jacobi or Gauss-Seidel techniques are used

to iterate the equations.

Waveform relaxation based circuit simulators provide waveforms as accurate
as those of a standard circuit simulator, with up to two orders of magnitude
speed improvement for large circuits. The speed improvement is obtained by

exploiting waveform latency and multi-rate behavior.

Prior research on the waveform relaxation technique is reviewed in Chapter
2. It presents circuit partitioning and window selection techniques, which

enhance the robustness and speed of the basic waveform relaxation
technique. Various partitioning schemes such as, functional extraction, dc
component (dcC) partitioning and Norton equivalent conductance
partitioning are described. Isolation of tightly coupled nodes into sub-circuits
aids convergence, therefore Norton equivalent conductance partitioning is
used in this research. The window selection technique divides the simulation
interval into a number of sub-intervals known as windows. Each of these
windows is simulated using the waveform relaxation technique. This scheme
is particularly useful for simulation of circuits with logic feedback loops. A
heuristic technique to determine the size of a window is presented. The
direct method used in this research for simulating sub-circuits is also
described in Chapter 2.

The waveform relaxation technique exhibits inherent paralIelism due to the
partitioning of a circuit into a number of sub-circuits. These sub-circuits can
be concurrently simulated on parallel processors. In addition, the 111
window waveform relaxation technique permits exchange of large and
infrequent message among sub-circuits. This feature is useful for parallel
implementation on distributed memory machines.

The issues and options involved in the parallel implementation of relaxation
based circuit simulators are described in Chapter 3. Important classes of
parallel architectures such as shared memory and distributed memory are
described and design methodologies for parallel applications are studied.
The shared memory programming model is more similar to the uniprocessor
programming model, therefore these machines are easier to program. In
addition, their lower inter-processor communication cost allows exploitation
of fine grain parallelism. Shared memory architectures are, however,

complex and expensive, and synchronization for shared resources limits their
scalability. The distributed memory programming model is substantially

different from the shared memory programming model. Distributed memory

computers are relatively less expensive and scale well, however it is usually
difficult to program distributed memory computers. Partitioning, allocation,

and load balancing are usually done by the application programmer.

The performance of parallel applications is limited due to sequential paction,
communication overhead, and load imbalance* The fkaction of the
computation that must be performed sequentially limits the number of
processors that can be usefully put to work on a given problem.
Communication and load imbalance can be represented as additional work.
It is observed that an algorithm that causes some extra work can still be
useful for implementation on distributed memory computers if it has a low
sequential fraction. This is mainly due to the low cost of adding extra
processors. A fairly low speed-up per processor can be tolerated as long as

the execution time decreases with an increase in the number of processors.

The rest of Chapter 3 is devoted to the analysis of parallelism in circuit
simulation. Coarse and fine grain parallelism in the direct and relaxation
methods are analyzed. Waveform relaxation techniques have two forms of
parallelism: coarse grain parallelism across sub-circuits and fine grain
parallelism within a single Newton-Raphson iteration of a sub-circuit.
Techniques used to exploit both forms of parallelism are described. Tradeofls

between parallelism and complexity thread of control are studied. The
discussion concentrates mainly on parallel implementation of waveform
relaxation programs on shared memory multi-processors. Partitioning and
allocation techniques specific to distributed memory machines are also
described.

Chapter 4 presents an implementation of a parallel waveform relaxation
program. Different strategies for parallel implementation such as a single

queue approach and a distributed queue approach are described and
compared. The distributed queue approach is selected for exploiting the
coarse grain parallelism across sub-circuits. This approach is more generic
and scales well.

A distributed queue implementation

placement of sub-circuits on processors.
involves static partitioning and
Static partitioning techniques use

task execution and inter-task communication times to partition a task graph.
Very little a pn'ori information about task execution and inter-task
communication times is available, therefore the program uses an algorithm
based on the critical path method to partition a GS task graph. This
algorithm attempts to generate partitions with a high degree of parallelism.
An algorithm based on bin packing heuristics is used to partition a G J task
graph. The objective of these algorithms is to reduce the effect of load
imbalance overhead. The two algorithms discussed above neglect the effects
of communication overhead, therefore a placement heuristic which attempts
to minimize the communication overhead is used.

The parallel processing framework provides a skeleton for implementing
parallel applications. An efficient implementation of the processing
framework which exploits characteristics of the underlying hardware is
necessary to improve CPU utilization. Therefore, the parallel processing
framework is discussed in detail.

An imbalanced workload in a parallel processing system results in low
overall efficiency and speed-up. The load offered by a circuit simulator when
simulating a large digital circuit changes with simulation time due to latency
and multi-rate behavior. Therefore, load imbalance is an important source
of overhead. Chapter 5 presents dynamic load balancing techniques used to
reduce the load imbalance;. several load balancing schemes were evaluated
for application to the problem. The load balancing approach developed in
this thesis involves temporary migration of sub-circuits from a busy
processor to its idle neighbors. The algorithm is receiver initiated. Therefore
load balancing actions are initiated only when a processor becomes idle. This
avoids unnecessary overhead. An implementation using a multi-transputer
system is also presented.

Results of implementations described in Chapters 4 and 5 are given in
Chapter 6. Six benchmark circuits and seven worker processors were used to
measure speed-up results for parallel GS and parallel GJ waveform
relaxation programs. The speed-up for parallel GS varied from 1.45 to 3.02

and the speed-up for parallel GJ varied from 2.64 to 5.53. Three performance
limiting factors: communication, sequential fraction, and load imbalance are

analyzed. The communication overhead depends on the architecture of the

multi-computer system and the nature of the circuit. Transputer links are

autonomous DMA engines and the effect of communication overhead can be
minimized by effectively overlapping computation and communication.
Analysis and measurement of the sequential part of the program shows that
it is not a major source of overhead for a full window WR technique. Load
imbalance is the largest source of overhead. Results for dynamic load
balancing techniques are presented, however no appreciable gain in speed-up
was observed for the cases studied. Conclusions drawn from the research are
presented in the following section.

7.2 Conclusions

The principal objective of this research was to study issues involved in the
application of distributed memory parallel processing for the simulation of
VLSI circuits using waveform relaxation techniques. A specific aim of the
thesis was to determine how much the speed of calculation in circuit
simulation can be increased with a low cost distributed memory parallel
processing system. Also, a method to efficiently implement circuit simulation
on the distributed memory machine was sought.

Different forms of parallelism in the direct method and the waveform
relaxation technique were studied. An analysis of a single queue and
distributed queue approaches to implement parallel waveform relaxation on
distributed memory machines was performed and their performance
implications were studied. The distributed queue approach was selected for
exploiting the coarse grain parallelism across sub-circuits. A distributed
queue implementation involves static partitioning and placement of sub-
circuits on processors. An algorithm based on the critical path method and
an algorithm based on bin packing heuristics were used to partition GS and
GJ task graphs respectively. Parallel waveform relaxation programs based
on Gauss-Seidel and Gauss-Jacobi techniques were implemented using a
network of one root and seven worker Transputers. Static and dynamic load
balancing strategies were studied. A dynamic load balancing algorithm was
developed and implemented. Results of parallel implementation were

analyzed to identify sources of bottlenecks.

This thesis has demonstrated the applicability of a low cost distributed
memory multi-computer system for simulation of MOS VLSI circuits. Speed-
up measurements prove that a five times improvement in the speed of
calculations can be achieved using a full window parallel Gauss-Jacobi
waveform relaxation algorithm. Analysis of overheads shows that load
imbalance is the major source of overhead and the fraction of the
computation which must be performed sequentially is very low.
Communication overhead depends on the nature of the parallel architecture
and the design of communication mechanisms. The rumtime environment
(parallel processing framework) developed in this research exploits features
of the transputer architecture to reduce the effect of the communication
overhead by effectively overlapping computation with communications, and
running communication processes at a higher priority.

The main contributions made by this thesis are:

1. the development of the first method to implement waveform relaxation on
a low cost distributed memory machine,

2. the analysis of overheads and performance limiting factors, and

3. the development and implementation of a dynamic load balancing
algorithm.

This research will contribute to the development of low cost, high
performance workstations for computer-aided design and analysis of VLSI
circuits.

7.3 Future Work

Several interesting studies could be usefully conducted to further improve
and extend the results of this research.

Gains due to dynamic load balancing depend on the nature and size of the
circuit and the available number of processors. Most benchmark circuits
used in this research were small. Dynamic load balancing should be tested
on larger circuits and using more processors. The multi-computer system

used in this research had only 4 Megabytes of memory on each node which
made simulation of large circuits difficult.

Granularitst of window iterations in a full window waveform relaxation
technique is coarse. This increases the effect of load imbalance. Schemes
which dynamically change the granularity depending on the circuit size and
the number of available processors seems promising. Fine grained
computations due to parallel model evaluation and time segment pipeline
techniques could be used in conjunction with coarse grained parallelism to
balance load more effectively. In addition, dynamic processor partitioning
techniques used in the multi-programmed multi-computer environment could
be employed to improve utilization of processors.

Parallel ITA codd be implemented on distributed memory machines. It uses
event driven selective trace techniques to schedule sub-circuits. This would
make static partitioning and dynamic load balancing challenging.

Shared and distributed memory machines represent two extremes styles of
parallel architectures. Several parallel architectures have been proposed
which share attributes of shared and distributed memory machines. Issues

involved in parallel implementation of circuit simulation programs on these
architectures should be studied.

1. Lee James M., Verilog Quick Start, Kdwer Academic Publishers,
Boston 1997.

2. Mukheqjee A., Introduction to nMOS and CMOS VLSI Systems Design,
Prentice-Hall, Englewood Cliffis, NJ 07632.

3. Newton AR., Sangiovanni-VincentteIli Alberto L., "Relaxation-Based
Electrical Simulation," IEEE Transactions on Computer-Aided Design,
Vol. CAD-3, October 7 1984, pp. 308-331.

4. Nagel W., SPICEQ: A Computer Rogmm to Simulate Semiconductor
Circuits, Electronics Research Lab. Report No. ERGM520, University
of California, Berkeley, University of California Berkeley, 197 5.

5. Weeks W. T., Jimenez A. J., Mahoney G. W., Metha D., "Algorithms for
A S P - A Network Analysis Program," IEEE Transactions on Circuit
Theory, Vol. CT-20, November 1973, pp. 628-634.

6. Yang P., Haiji I. N., and Trick T.N., "SLATE: A Circuit Simulation
With Latency Exploitation and Node Tearing," Proceedings of the IEEE
International Conference on Circuits and Computers, 1980.

7. Quarles T. L., Analysis of Performance and Convergence Issues for
Circuit Simulation, Ph.D.. dissertation, Dept. of Electrical Engineering
and Computer Science, University of California Berkeley, 1989.

8. Saleh R. A. and Newton A- R., Mixed-Mode Simulation, Kulwer
Academic Publisher, Boston, USA, 1990.

9. Lelarasmee E., The Waveform Relaxation Method for Time Domain
Analysis of Large Scale Integrated Circuits, Ph.D. dissertation,
University of California, Berkeley, 1982.

White J., Multimte Integmtion Properties of Wavefon Reluxation
With Applications to Circuit Simulation and Parallel Computation,
Ph.D. dissertation, University of California, Berkeley 1986.

Saleh R. A., Nonlinear Relaxation Algorithm for Circuit Simulation,
Ph.D. dissertation, University of California, Berkeley, 1986.

Matisson S., CONCISE: A Concurrent Circuit Simulation Program,
Ph.D. dissertation, Dept. of Applied Electronics, University of Lund,
Sweeden, 1986.

Deutch J. T., Algorithms a n d Architectures for Multipmcessor-Bused
Circuit Simulation, Ph.D. dissertation, Uniersity of California,
Berkeley, 1985.

White Jacob K, Alberta Sangovanni-Vincentelli, Relaration
Techniques for Simulation of VLSI Circuits, Kulwer Academic
Publishers, Boston, USA, 1987.

Stone Herald, High-Performance Computer Architecture, Addison-
Wesley Pub. Co., Reading Mass., 1990.

Duncan R. "A Survey of Parallel Computer Architectures," IEEE
Computer, Vol23, No 2, February 1990, pp. 5-17.

 fly^ M. J., "Some Computer Organizations and Their Effectiveness, "
IEEE Transations on Computers, Vol. C-21, September 1972, pp. 948-
960.

Hwang K. and Briggs F. A*, Computer Architecture and Parallel
Processng, McGraw Hill, New York, 1984.

Seitz C. L., "The Cosmic Cube," Communications of the ACM, January
1985, Vol28, No. 1, pp. 22-23.

The Transputer Databook, INMOS Limited, Prentice-Hall1988..

Burns J. L., Newton A. R., Pederson D. O., "Active Device Table Look-
up Models for Circuit Simulation," Proceedings of the 1983 int. Symp.
on Circuits and Systems, 1983.

Chawla B. R., Gummel H. K, Kozak P., "MOTIS: a MOS Timing
Simulator," LEEE Transactions on Circuits and Systems, Vol. CAS-22,
Dec. 1975, pp. 901-909.

Cohen E., Performance Limits of Integrated Circuit simulation on a
Dedicated Minicomputer System, UCB/ERL M81/29, University of
California Berkeley, Electronics Research lab., University of California
Berkeley, 1981.

Sangiovanni-Vincentelli, Chen L.K., Chuo L. O., "A New Tearing
Approach - Node Tearing Nodal Analysis," IEEE International Symp.
on Circuits and Systems, Vol. I, 1977, pp. 143-147.

Valdiminrescu, LSI Circuit Simulation on Vector Computers, Ph.D.
dissertation, University of California, Berkeley, 1982.

McCalla William J., Fundamentals of Computer-aided Circuit
Simulation, Kulwer Academic Publishers, Boston, 1988.

Saleh R. A, Gallivan K. A, Mi-Chang Chang, Hajji I. N., Smart David,
and Trick T. N., "Parallel Circuit Simulation on Supercomputers,"
Proceedings of the IEEE, Vol. 77, No. 12, December 1989, pp.1915-
1931.

Nagel L. W. and Rohrer R. A., "Computer Analysis of Nonlinear .
Circuits, Excluding Radiation (CANCER)," IEEE Journal of Solid -
State Circuits, Vol. SC-6, August 1971, pp 166-182.

C hua L., Lin P., Computer-Aided h a lysis of Electronic Circuits:
Algorithms and Computational Techniques, Prenice-Hall, 1975.

Valch J. and Singhal K, Computer Methods for Circuit Analysis and
Design, CBS Publisher and Distributors, Delhi-110032 (INDIA).

Ho C. W., Ruheli A. E., Brenan P. A., "The Modified Nodal Approach to
Network Analysis," IEEE Transactions on Circuits and Systems, Vol.
CAS-22, June 1975, pp. 504-509.

Sangiovanni-Vincentelli A., Circuit Simulation in - Computer Design
Aids for VLSI Circuits, P. Antognetti, Peterson D. 0. and De Man H.,
Groningen, The Netherlands: Sijthoff and Noordhoff, Netherlands,
1981, pp. 19-113.

Brayton R. L., Gustavson F. G., Hatchtel G. D., "A New Efficient
Algorithm for Solving Differentid-Algebraic Systems Using Implicit
Backward-Differentiation Formulas," Proceeding of the IEEE, Vol. 60,
No. 1, Jan. 1972, pp. 98-108.

Verga J., Mat& Iterative Analysis, Prentice-Hall, Englewood cliffs,
NJ:, 1962.

Ortega J. M. and Rheinbolt W. C., Iterative Solutions of Nonlinear
Equations i n Seueral Variables, New York: Academic Press, New York,
1970.

Marong G. and San@ovanni-Vincentelli, 'Waveform Relaxation and
Dynamic Partitioning for Transient Simulation of Large Scale Bipolar
Circuits," International Conference in Computer-Aided Design, Santa
Clara, CA, Nov. 1985.

Debefve Paul, Odeh F. and Ruehli, 'Waveform Techniques" in Circuit
Analysis, Simulation and Design, 2, Elsevier Science Publishers B. V.
North-Holland, 1987.

Carlin C. H., Vachoux A, "On Partitioning for Waveform Relaxation
Time-Domain Analysis of VLSI Circuits," International Symposium on
Circuits and Systems, Montreal, Canada, May 1984.

Zang X, Castaneda R. and Chan E. W., "Spin-lock Synchronization on
Butterfly and KSR1," IEEE Parallel and Distributed Technology,
Spring 94.

Gordon Bell, "Ultracomputers: A Tetraflop Before its Time,"
Communications of the ACM, Vol. 35, No. 8, August 1992, pp. 26-47.

Hwang Kai, Advanced Computer Architecture: Parallelism, Scalability,
Programmability, McGraw-Hill series in Computer Science, McGraw-
Hill Inc. 1993.

El-Rewini H., Lewis T. G. and Ali H . H., Task Scheduling in Parallel
and Distributed Systems, Prentice-Hall 1994.

Amdahl G., ''The Validity of the Single Processor Approach to
Achieving Large Scale Computing Capabilities," AFlPS Conference
Proceedings, Vol. 30, 1967.

P. Sadayappan, V. Visvanathan, "Circuit Simulation on a
Multiprocessor," Proceeding of the Custom Integrated Circuit
Conference, Portland, OR, May 1987, pp. 124-128.

0. Wing and J.W. Huang, "A Computation Model for Parallel Solution
of Linear Equations," LEEE Trunsactions on Computers, Vol. C-29,
1980, pp. 632-638.

George A and Liu J. W. Computer Solution of Large Positive Definite
Systems, Englewood Cliffs, NJ: Prentice Hall, 198 1.

Noor A, Kamal Hand Fulton R. "Substructuring Techniques- Status
and Projections," Computers and Structures, Vol. 9, 1978, pp. 621-632.

Cox P., Burch R., Hocevar and Yang P., "SUPPLE: Simulator Utilizing
Parallel Processing and Latency Exploitation," Proc. of Int. Conf: on
Computer-Aided Design, Sank Clara, CA, November 1987, pp. 368-
371.

Yuan C. P., Lucas R., and Chan P., Dutton R., ''Parallel Electronic
Circuit Simulation on the iPSC System," IEEE 1988 Custom
Integrated Circuit Conference, Rochester NY, May 1988.

Sarje A K and Sagar G-, "Hueristic Model for Task Allocation in
Distributed Computer Systems," IEE Proceedings-E Vol. 138, No. 5,
September 1991, pp. 313-317.

Efe , "Heuristic Models of Task Assignment Scheduling in
Distributed Computer Systems," Computer, 1982, Vol. 15, No. 6, pp 50-
56.

Reed Daniel A. and Fujimoto Richard M., Multicomputer Networks:
Message-Based Parallel Processing, MIT Press series in scientific
computation, 1987.

Sadayappan P. and Ercal Fiket, "Cluster-partitioning Approaches to
Mapping Programs onto a Hypercube," Lecture notes in Computer
Science, 297, Springer-Verlag.

Stone H. S., "Multiprocessor Scheduling With the Aid of Network
Algorithms," IEEE Transations on Software Engineering, SE-3, No. 1,
January 1977.

Stone H. S., Rao G. and Hu T. C., "Assignment of Tasks in a
Distributed Processor System with Limited Memory," IEEE
Transactions on Computers, Vol C-28, April 1979, pp. 291-298.

Bokhari S. H., "Partitioning Problem in Parallel, Pipelined and
Distributed Computing," IEEE Transactions on Computers, Vol. 37,
NO. 1, 1988, pp. 48-57.

Bokhari S. H., "A Shortest Tree Algorithm for Optimal Assignment
Across Space and Time in a Distributed Processor System," IEEE
Transactions on Sofiware Engineering, Vol, SE-7, No. 11, pp. 583-589.

Ma P. R, Lee E. Y., and Tsuchiya M., "A Task Allocation Model for
Distributed Computing systems," IEEE Transactions on Computers,
Vol. (3-31, January 1982, pp. 41-47.

Ford L. R. and Fulkerson D. R., Rows in Networks, Princeton NJ,
Princeton Univ. Press, 1962.

Lo Virginia Mary, "Heuristic Algorithms for Task Assignments in
Distributed Systems," IEEE Thmsactions on Computers, Vol. 37, No.
11, November 1988, pp. 1385-1397.

Shield J., "Partitioning Concurrent VLSI Simulation Programs onto a
Multiprocessor by Simulated Annealing," IEE Proceedings-E, Vol. 134,
No. 1, pp.24-30.

Muhlenbein H., Groges-Schleuter and G a m e r O., "New Solutions to
Mapping Problem of Parallel Systems: The Evolution Approach,"
Parallel Computing 4,1987,269-279.

Gylys V. B. and Edwards J. A, "Optimum Partitioning of Workload for
Distributed Systems," Digest of Papers, COMPCON 76, Fall 1976.

Chen Song and Eshaghian Mary M., "A Fast Recursive Mapping
Algorithm," Concurrency: Practice and Experience, Vol. 7, No. 5,
August 1995.

Bokhari Shahid H., "On Mapping Problem," IEEE pansadions on
Computers, Vol. C-30, No. 3, March 1981.

Lee Soo-Young and Aggarwal J. K., "A Mapping Strategy for Parallel
Processing," IEEE Transactions on Computers, Vol. C-36, No. 4, April
1987, pp. 433-441.

Sarkar V. Partitioning and Scheduling Parallel Prognns for Execution
on Multiprocessors, MIT Press 1989.

Berman F.and Snyder L., "On Mapping Parallel Algorithms onto
Parallel Architectures," Journal of Parallel and Distributed
Computing, 4,1987,43948.

MCP 1000 Reference Manual, Transtech Ltd, 1992.

Occam2 Reference Manwl, Inmos Ltd, Prentice-Hall 1988.

Hoare C. A. R., Communicating Sequential Processes, Prentice-Hall,
1985.

Gerasoulis A. and Yang T., "A Comparison of Clustering Heuristics for
Directed Acyclic Graphs on Multiprocessors," Journal of Parallel and
Distributed Computing, Vol. 16, 1992, pp. 276-291.

The Transputer Applications Notebook: Systems and Perfomuznce,
INMOS Ltd., 1989.

Xu J. and Hwang K "Heuristic Methods for Dynamic Load Balancing
in a Message-Passing Multicomputer," Journal of Parallel and
Distributed Computing, Vol. 18, No. 1-13, 1993, pp. 1-13.

Lin, Frank C. H. and Kellor R. M.; "Gradient Models: A Demand-
Driven Load Balancing Scheme," IEEE 6th international Conference
on Distributed Computing Systems; May 1986.

Kale', L. V.; Comparing the Performance of Two Dynamic Load
Distribution Methods; Report No. UIUCDCS-RS7-1387, Dept. of
Computer Science, University of Illinois; 1987.

D.M Nicol, P. F. Reynolds Jr, "Optimal dynamic remapping of data
parallel computations," IEEE Transactions on Computers., Vol. 39, No.
2, (1990).

Xia E.Z. and Saleh R. A., "Parallel Waveform-Newton Algorithms for
Circuit Simulation," IEEE Transactions on Computer-aided Design of
Integrated Circuits and Systems, Vol. 11, No. 4, April 1992, pp. 432-
442.

Smart David, Parallel Processing Techniques for the Simulation of
MOS VLSI Circuits using Waveform Relaxation, Ph.D. dissertation,
Dept. of Electrical Engineering, Univ. of Illinois at Urbana-Champagn,
1988.

80. Boreddy J. and Paulraj A., "On the Performance of Transputer Arrays
for Dense Linear Systems," Parallel Computing, Vol. 15,1990, pp. 107-
117.

81. Zein David A, "Solution of a Set of Nonlinear Algebraic Equations for
General Purpose CAD Programs," in Circuit Analysis, Simulation and
Design, Elsevier Science Publishers B. V., 1986.

82. John Galletly, O c c a d , Pitman Publishing, London, 1990.

A. DEMCE MODEL EV'UATION

Nodal analysis is a commonly used technique because it permits formulation
of circuit equations by inspection for linear and non-linear circuits. The
equation formulation process considers one device at a time. The device
Branch Constitutive Equations (BCE) and node voltages are used to compute
contributions of the device to the left and right hand side of the equation.
This is known as device model evaluation. This appendix illustrates device
model evaluation for linear and non-linear circuit elements with the help of
simple examples. A pattern based technique described by McCalla [26] is
presented.

A. 1 Linear Devices

The nodal equations for a linear circuit can be expressed in the form:

W= I, (a. 1)
where Y is the nodal admittance matrix, V is the vector of node voltages to be
found and I is the vector representing independent current sources. The
term y, in Y represents the sum of admittances of all the branches connected
to node i; y, in Y represents the negative sum of admittances of all branches

connecting node i and node j. The term i, represents the sum of source

currents entering node k. If a resistor of value R is co~ec ted between nodes
3 and 5, (G = 1 / R) is added to y,, and y,, and subtracted &om y,, and y,, .
If a current source of magnitude I is connected between nodes 2 and 4
directed from 2 to 4. then I is subtracted from i, and added to i,. The matrix

representation of Equation a.1 with the resistor and current source is:

It is observed that each network element is associated with a distinct pattern.
The pattern of a circuit element gives information about its contributions to

the admittance matrix and RHS. For example a resistor pattern can
represented as [26] :

where V+ represents the column in Y corresponding to the positive reference
node and V- represents the column corresponding to the negative reference
node. Similarly E+ and E- represent the rows of Y and the RHS. McCalla

has discussed patterns of different network elements used for DC and
transient analysis. Contributions made by a resistor to the admittance
matrix are the same for DC and transient analysis.

Contributions made by a linear capacitor to the admittance mahix and RHS
depend on the integration method used. Branch constitutive equations of a
linear capacitor can be expressed as:

Application of the Backward Euler Formula gives:

where Gc = C l h and I , = - (C l h)lr,. The resulting pattern of a capacitor is

given by:

A2 Nonlinear Devices

The nodal equations for a nonlinear circuit can be expressed in the form:

F(v) = 0, (a. 6)

V +

A general form of the Newton-Raphson iteration equation to solve F (v) = 0,

where v €RN and F:RN + RN is:

V - I RHS

J , (v k)(vkt1 - u k) = -F(vk), (a. 7)

where JF (u) is the Jacobian of F(v) and vk+', v k are k+lth and Kth iterates

respectively. The Jacobian can be expressed as:

Model evaluation for a nonlinear device involves computing contributions of
the device to the Jacobian and the M S . This is explained with the help of
an example of the Schichman-Hodges model of a MOSFET. This model has
been described in detail in Chapter 2. Only those parts relevant to the
discussion are given below.

Assume B = r.W/L where r is a transconductance parameter and */L is the

width to length ratio. The drain-to-source current in the triode region is

given by:

and the drain-to-source current in the saturation region is given by:

Also I , =0 if (V, - VT) 1 0 and the threshold voltage VT can be expressed

as:

VT = V;, + K(V, + q)OJ (a. I I)

where VFB is a flat-band voltage and K is a constant. Application of the

Kirchoffs law at the d and s nodes gives:

(a. 12)

The resulting pattern of matrix contributions of a FET is given by:

Assuming an N-channel device,
stamp for the saturation region is

the explicit
given below:

form of the elements of the

In the triode region these contributions are:

(a. 14)

(a. 13)

Some circuit simulators add a 10" ohm resistor &om source and drain nodes
to ground to ensure non-zero contributions to the s and d rows. This large
resistor has negligible impact on simulator accuracy. In addition, a I ohm
resistor is also added in parallel, for the first few NR iterations to aid
convergence [Bl]. This resistor can help convergence by giving a better
initial estimate of the solution.

B. NUMERICAL ANALYSIS

This appendix presents a proof of the basic waveform relaxation theorem. It
is based on the discussion by Debefve et al. [37]. A detailed discussion of the
subject is given in [14]. The general form of the
algorithm may be described in its canonical form as:

waveform relaxation

0. I)

where f is a vector function which depends on the choice of the relaxation
method used. The proof of the convergence of the WR theorem depends on
the standard contraction mapping theorem which is stated below.

Contraction Mapping Theorem

Let Y be a Banach space and F:Y + Y. If F satisfies ,
I l ~ (y) - F(x)(~ 5 yfly -XI for all y E [O, 1) then f has a unique fixed point y
which may be obtained from any initial guess E Y by a Picard iteration
Y' = F(~'-').

Convergence Proof

The proof considers one iteration step and the convergence mapping principle
is applied to Equation b.1. Variables w = f "' , z = xi , and the operator S :

are defined for notational convenience. Using this notation, Equation b.1 can
be written as:

The variable w refers to quantities from the previous iteration and the
variable u refers to circuit input waveforms which are known. Therefore the
equation above can be written as:

It is necessary to show that the operator G is a contraction map in some
norm. Consider the space of continuous fimctions on (0, t:il. Convergence] with
the norm

where A is a parameter to be chosen later. Assume that fin Equation b.1 is
Lipshitz with constants K,, KZ with respect to first two arguments and
contractive, with constant y < 1, with respect to the third argument.
Therefore

Using the Lipshitz condition gives

Consider the term (Is(w, - w,)I1

IIS(WI - w2)II t ty . l e-'leAr.e-"lw, (7) - w2(5)l d~
0

Substituting these results in Equation b.3 gives

Taking A. large enough one has

Thus the operator G is a contraction map in the norm defined by Equation
b.2 which proves the iteration defined by Equation b.1 converges to a unique
fixed point. The continuity of G shows this fixed point satisfies the equation
7 = Gz. C

C. TRANSPUTER AND OCCAM

Transputers are a family of processors designed for parallel processing 1201.
Occam is a distributed memory parallel programming language specifically
designed for Transputers [70] [82]. It is based on C. A. R. Hoare's theoretical
model of Communicating Sequential Processes (CSP) 1711. Within the CSP
fkamework, a program is a collection of sequential processes each of which
may be executing concurrently with others. The processes interact only via

synchronized inter-process inputjoutput operations. When a senderheceiver'
reaches an input/output operation it waits for the comesponding process to
reach the matching operation. At this point the inputloutput operation is
performed. There is no buffering or queuing of messages.

The Transputer family consists of several processors (e.g., T414, T800, T805
and T9000). The multiprocessor system used for this research uses the
INMOS transputer T8OO [20]. It is described below. The IMS T800 is a 32-
bit microprocessor with a 64-bit floating point unit. The microprocessor runs
at 20 MHz and can deliver 10 MIPS. The floating point unit operates
concurrently with the microprocessor. It provides both single and double
length operations. The unit implements IEEE floating-point arithmetic and
can deliver 1.5 MFLOPS. The TSOO contains a micro-coded priority scheduler
and can time-share any number of concurrent processes. The context
switching overhead is on the order of a few microseconds.

The processor has 4 KBytes of on-chip memory. It can directly address a
memory address space up to 4 GBytes. Memory above the on-chip 4 Kbytes is
accessed via the external memory interface. The IMS TSOO has four high
speed communication links. Each link can transfer data at over 1 Mbytes per
second with automatic handshaking in each direction. The four
communication links permit development of multi-transputer systems with
different inter-connection network topologies such as pipeline, ring and
hyper cube. The processor has two timers each for a priority level. The high

priority timer is incremented every microsecond and cycles approximately

every 4,295 seconds. The low priority timer increments every 64
microseconds and cycles approximately every 76 hours.

An informal description of important aspects of Occam is given below [70].
An Occam program is a collection of communicating processes. Parallel

processes communicate exclusively via Occam channels. The use of
shared/common variables is not permitted. The fundamental unit of an
Occam program is a primitive process. Primitive processes defined in Occam
are assignment, input, output, SKIP and STOP. Assignment processes
assign values to a named program variable. They have the form:

variable := expression.

The input process allows a value to be input from an Occam channel and
assigned to a named variable. Input processes have the form:

channel ? variable

The output process outputs the value of an expression along a named
channel. It has the form:

channel ! expression

The SKIP process starts, performs no function and terminates immediately.
The STOP process starts and does not terminate. Program execution is held
up after a STOP. It can be used to react to an illegal condition in the logic of
the program.

Occam is a strongly typed language. The primitive data types available in
Occam 2 are BYTE, INT16, INT32, INT64, REAL32, REAL64 and BOOL.
The only structured data type defined in Occam is a multi-dimensional array.

Channels used by a process are specified in the same way as variables and
constants. A channel is associated with a protocol. The protocol defines the

type of data to be transferred along the channel in any communication. A
channel communication has the form:

CHAN OF type channel:

where type is the data type of the channel, and channel is the Occam
identifier of the channel,

High-level processes may be built from primitive processes using Occam
constructions. A construction consists of a collection of component processes.
It becomes another Occam process. Important constructions are the
sequential construction (SEQ), the parallel construction (PAR), and the
alternate construction (ALT). The sequential construction causes component
processes to be executed one &r the other. It has the form:

SEQ
process 1

process n

The parallel construction causes processes to be executed concurrently, each
at its own rate. The parallel construction terminates only aRer all the
component processes have terminated. The parallel construction has the
form:

PAR
process 1

process n

The alternate construction allows selection of a process fkom a list of
component processes depending on the condition of the corresponding input
guard. An alternate process terminates after execution of the selected
process. It has the form:

ALT
input I

process 1

input 2
process n

An important enhancement of the ALT construction is t h e PRI ALT (priority
alternate) construction. If inputs are available on multiple channels, then
this construction selects the process with the highest priority input guard.
The first alternative process is the high priority process.

A few other important constructions are conditional construction, selection
construction and repetition construction. A conditional construction has the
form:

Boolean expression I
process 1

Boolean expression n
process n

e* A selection construction has the form:

CASE selector
case expression L

process I

case expression n
process n

The repetition construction has the form:

WHILE Boolean expression
process

Occam has a versatile replicator feature. It has the form:

index = start FOR count

It is possible to replicate SEQ, PAR, IF and ALT constructions.

Parallel programs in Occam are usually developed and tested on a single
Transputer. It is possible to distribute the same program on multiple
Transputers without any changes in software. Occam provides mechanisms
to spedy the configuration of a program. Configuration associates the
components of an Occam program with a set of physical resources.

TEST TARGET (QA-3)

APPLIED 2 IWGE . Inc - 1653 East Main Street -
,--A Rochester, NY 14609 USA -- -- , , Phone: 7 t61482-O3OO -- -- - - Fax: 716/288-5989

0 1993. Applied Image. Inc.. All Rights Reserved

