2,939 research outputs found

    A framework for FPGA functional units in high performance computing

    Get PDF
    FPGAs make it practical to speed up a program by defining hardware functional units that perform calculations faster than can be achieved in software. Specialised digital circuits avoid the overhead of executing sequences of instructions, and they make available the massive parallelism of the components. The FPGA operates as a coprocessor controlled by a conventional computer. An application that combines software with hardware in this way needs an interface between a communications port to the processor and the signals connected to the functional units. We present a framework that supports the design of such systems. The framework consists of a generic controller circuit defined in VHDL that can be configured by the user according to the needs of the functional units and the I/O channel. The controller contains a register file and a pipelined programmable register transfer machine, and it supports the design of both stateless and stateful functional units. Two examples are described: the implementation of a set of basic stateless arithmetic functional units, and the implementation of a stateful algorithm that exploits circuit parallelism

    Baseband analog front-end and digital back-end for reconfigurable multi-standard terminals

    Get PDF
    Multimedia applications are driving wireless network operators to add high-speed data services such as Edge (E-GPRS), WCDMA (UMTS) and WLAN (IEEE 802.11a,b,g) to the existing GSM network. This creates the need for multi-mode cellular handsets that support a wide range of communication standards, each with a different RF frequency, signal bandwidth, modulation scheme etc. This in turn generates several design challenges for the analog and digital building blocks of the physical layer. In addition to the above-mentioned protocols, mobile devices often include Bluetooth, GPS, FM-radio and TV services that can work concurrently with data and voice communication. Multi-mode, multi-band, and multi-standard mobile terminals must satisfy all these different requirements. Sharing and/or switching transceiver building blocks in these handsets is mandatory in order to extend battery life and/or reduce cost. Only adaptive circuits that are able to reconfigure themselves within the handover time can meet the design requirements of a single receiver or transmitter covering all the different standards while ensuring seamless inter-interoperability. This paper presents analog and digital base-band circuits that are able to support GSM (with Edge), WCDMA (UMTS), WLAN and Bluetooth using reconfigurable building blocks. The blocks can trade off power consumption for performance on the fly, depending on the standard to be supported and the required QoS (Quality of Service) leve

    The Chameleon Architecture for Streaming DSP Applications

    Get PDF
    We focus on architectures for streaming DSP applications such as wireless baseband processing and image processing. We aim at a single generic architecture that is capable of dealing with different DSP applications. This architecture has to be energy efficient and fault tolerant. We introduce a heterogeneous tiled architecture and present the details of a domain-specific reconfigurable tile processor called Montium. This reconfigurable processor has a small footprint (1.8 mm2^2 in a 130 nm process), is power efficient and exploits the locality of reference principle. Reconfiguring the device is very fast, for example, loading the coefficients for a 200 tap FIR filter is done within 80 clock cycles. The tiles on the tiled architecture are connected to a Network-on-Chip (NoC) via a network interface (NI). Two NoCs have been developed: a packet-switched and a circuit-switched version. Both provide two types of services: guaranteed throughput (GT) and best effort (BE). For both NoCs estimates of power consumption are presented. The NI synchronizes data transfers, configures and starts/stops the tile processor. For dynamically mapping applications onto the tiled architecture, we introduce a run-time mapping tool

    Non-power-of-Two FFTs: Exploring the Flexibility of the Montium TP

    Get PDF
    Coarse-grain reconfigurable architectures, like the Montium TP, have proven to be a very successful approach for low-power and high-performance computation of regular digital signal processing algorithms. This paper presents the implementation of a class of non-power-of-two FFTs to discover the limitations and Flexibility of the Montium TP for less regular algorithms. A non-power-of-two FFT is less regular compared to a traditional power-of-two FFT. The results of the implementation show the processing time, accuracy, energy consumption and Flexibility of the implementation

    Digital implementation of the cellular sensor-computers

    Get PDF
    Two different kinds of cellular sensor-processor architectures are used nowadays in various applications. The first is the traditional sensor-processor architecture, where the sensor and the processor arrays are mapped into each other. The second is the foveal architecture, in which a small active fovea is navigating in a large sensor array. This second architecture is introduced and compared here. Both of these architectures can be implemented with analog and digital processor arrays. The efficiency of the different implementation types, depending on the used CMOS technology, is analyzed. It turned out, that the finer the technology is, the better to use digital implementation rather than analog

    Low-power Programmable Processor for Fast Fourier Transform Based on Transport Triggered Architecture

    Get PDF
    This paper describes a low-power processor tailored for fast Fourier transform computations where transport triggering template is exploited. The processor is software-programmable while retaining an energy-efficiency comparable to existing fixed-function implementations. The power savings are achieved by compressing the computation kernel into one instruction word. The word is stored in an instruction loop buffer, which is more power-efficient than regular instruction memory storage. The processor supports all power-of-two FFT sizes from 64 to 16384 and given 1 mJ of energy, it can compute 20916 transforms of size 1024.Comment: 5 pages, 4 figures, 1 table, ICASSP 2019 conferenc
    corecore