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ABSTRACT

This paper describes a low-power processor tailored for fast Fourier
transform computations where transport triggering template is ex-
ploited. The processor is software-programmable while retaining an
energy-efficiency comparable to existing fixed-function implemen-
tations. The power savings are achieved by compressing the com-
putation kernel into one instruction word. The word is stored in an
instruction loop buffer, which is more power-efficient than regular
instruction memory storage. The processor supports all power-of-
two FFT sizes from 64 to 16384 and given 1 mJ of energy, it can
compute 20916 transforms of size 1024.

Index Terms— Fast Fourier Transform, Transport Triggered
Architecture, Application-Specific Instruction-Set Processor

1. INTRODUCTION

Fast Fourier transform (FFT) is one of the most widely used signal
processing algorithms thanks to its ability to represent a time-domain
signal in a frequency domain. For example, FFT is used in orthog-
onal frequency division multiplexing (OFDM) systems, which are
employed in wireless communication devices. Due to the popularity
of embedded and battery-powered systems, minimizing power con-
sumption is a major objective.

Regarding power consumption, application specific integrated
circuit (ASIC) implementations are considered as more efficient
compared to reconfigurable hardware (such as field-programmable
gate array (FPGA), coarse-grained reconfigurable array (CGRA))
or general purpose processors (GPPs). However, ASIC-based FFT
processors are mostly fixed-function and lack programmability.
While the reconfigurable fabric offers more silicon reusability than
ASIC, their functionality can be only modified by a hardware de-
sign process similar to ASIC. The goal of this work is to propose
a software-programmable mixed radix-4/2 FFT processor with an
energy-efficiency comparable to fixed-function ASIC implementa-
tions. Other software implementations of FFT are implemented on
either GPP [1] or a graphics processung unit (GPU) [2]. However,
both of these approaches aim for the best performance and do not
provide sufficiently low-power solutions.

Fixed-function ASIC FFT processors can be divided into two
categories - pipelined and memory based. Pipelined architectures
([3], [4], [5]) rely on a cascade of processing elements (PEs) pro-
cessing the input data stream. The intermediate results are stored
in a distributed memory system. Due to a higher number of PEs,
pipelined architectures consume more power and occupy larger sil-
icon area than memory based architectures. However, they usually
have higher throughput, which can lead to a high energy-efficiency.

Memory based architectures ([6], [7]) typically have one PE and
data is processed in a sequential fashion. They typically use only

one or two global memory elements, thus a conflict-free memory
access has to be maintained. The proposed architecture is memory
based, using a single-port data memories as it allows for a convenient
software-programmable implementation.

The processor was designed using a transport triggered archi-
tecture (TTA) template [8]. It improves a previous FFT processor
[9] by further increasing its energy-efficiency. Several optimizations
were applied to allow compressing the computation kernel into only
one - repeatedly executed - instruction word that can be executed in
a more energy-efficient way.

2. FFT ALGORITHM

The proposed processor supports all the power-of-two FFT sizes
from 26 to 214. A mixed radix-4/2 algorithm was used, following a
decimation-in-time (DIT) approach [10] as it provides better signal-
to-noise ratio (SNR) compared to decimation-in-frequency (DIF)
approach[11]. Otherwise, they share the same arithmetic complex-
ity. Radix-4 is used in a majority of the stages because is requires
less operations per FFT than the radix-2 algorithm [12]. At the
same time, radix-4 butterfly operation requires only trivial opera-
tions. Higher radices require more complicated operations. How-
ever, using only radix-4 would restrict the processor to only power-
of-four FFT sizes. Therefore, in the last stage of the computation,
radix-2 butterflies are used for FFT sizes which can not be computed
using radix-4 algorithm (i.e. for FFT sizes 2k where k is odd). The
computation follows an in-place approach where output samples are
written back to the same memory locations from which the operands
were read. This allows to utilize only one memory module of the
size equal to the computed FFT size.

3. TRANSPORT TRIGGERED ARCHITECTURE

TTA [8] is a processor template, which exposes its internal datapaths
to a programmer. Similarly to very long instruction word (VLIW)
[13], it utilizes long instruction words and instruction-level paral-
lelism. The difference is that TTA gives a programmer the control
over the data flow. It is possible to bypass accesses to register files
(RFs) by feeding results from one functional unit (FU) directly to
the input of another. Register bypassing reduces the required RF
size and hardware complexity leading to significant power savings
[14].

The data transports are defined by a move instruction - the only
instruction of the TTA’s instruction set. Moving data into a trig-
ger port of a FU triggers the desired operation. FUs can also have
operand ports for additional data that can be loaded anytime without
triggering the operation. Memory access is performed by load-store
unit (LSU) in a similar way as any other instruction. A control unit
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Fig. 1. Architecture of the proposed TTA processor. TFG: twiddle
factor generator: AG: address generator. DLY: rotating register as
a delay unit. CMUL: complex multiplier. CADD: complex adder.
ADD: adder. LSU: load-store unit. SH: shifter. RF: 8x32 register
file. GCU: general control unit. Gray color denotes unused connec-
tions. Trigger ports are marked with ‘*’.

responsible for instruction fetching, decoding, and executing is also
implemented as one of the FUs. Data moves are distributed over
an interconnection network consisting of several parallel buses. The
number of the parallel buses determines the maximum number of in-
structions that can be executed in parallel, i.e., the maximum number
of simultaneous data moves.

4. PROPOSED PROCESSOR ARCHITECTURE

The proposed architecture is shown in Fig. 1. The architecture con-
sists of ten 32-bit wide buses (B0–B9) and one 1-bit bus (b), rep-
resented by horizontal lines. FUs and one RF are connected to the
buses. Vertical lines represent sockets, which connect input/output
ports of FUs to the interconnection network. The connections are
marked as dots.

Two LSUs are connected to a data memory system that behaves
like a dual-port memory. In fact, two single-port memories are used
and connected to the LSUs via an added logic, which provides a
conflict-free memory access. The parallel memory system was cho-
sen due to a lower power consumption of single-port memories com-
pared to multi-port memories [15].

The parity of the address determines which one of the two
single-port memories is accessed. In the case when both LSUs are
trying to access an address with the same parity (i.e. the same mem-
ory module), the processor is temporarily locked and the accesses
are resolved sequentially. However, the conflict-free memory access
is guaranteed for the FFT addressing scheme.

The streamlined instruction schedule (see Section 6) implies
generation of two parallel streams of addresses - read and write. In
order to guarantee a different parity for any two parallel addresses
(thus conflict-free memory access), a special scheduler module was
put between the LSUs and the parallel memory logic described in
a previous paragraph. The scheduler internally buffers and resched-
ules the LSU data in a way that always two parallel read addresses
or two parallel write addresses are loaded into the parallel memory
logic. Because the address generator preserves parity (see Section
5.1), the scheduler guarantees a conflict-free memory access. The
internal buffering is not recognized by a high-level compiler and,
therefore, the programming is only possible by low-level assembly.
However, it is possible to provide a software-exposed switch in a
form of another port of LSU or a special FU that toggles the sched-

uler on and off, thus preserving a full compiler support for generic
applications.

Loop buffer [16] - a critical component of the design - is im-
plemented as a part of the general control unit (GCU). It is a small
instruction memory cache used for storing frequently repeated in-
struction words, e.g., loops. Reading from a loop buffer consumes
significantly less power than reading an instruction directly from the
instruction memory.

Each single-port data memory is composed of increasingly sized
memory blocks (32, 32, 64, 128, ..., 4096 - summing up to total
8192). Based on the access address, only one block is selected at
a time while the other do not receive any control signals. This sig-
nificantly decreases dynamic power consumption when computing
smaller FFT sizes.

The processor was designed using TTA-based Co-Design Envi-
ronment (TCE) toolset developed at Tampere University of Tech-
nology (TUT) [17]. TCE provides a comprehensive set of tools for
designing TTA processors including a retargetable compiler and a
hardware description of the most common FUs. For data and in-
struction memories, low power Cacti-P models were used [18].

5. SPECIAL FUNCTION UNITS

This section describes special FUs developed specifically for this
work. All the other FUs were taken from TCE component libraries.

Complex numbers are represented by two 16-bit fixed point
numbers sharing one 32-bit data word. The real part occupies least
significant bits (LSBs) of the data word while the imaginary part
takes the most significant bits (MSBs).

In order to prevent overflow, each addition is divided by two.
When summed up, the complex adder divides the result by four in
case of radix-4 and by two in case of radix-2 butterfly. The complex
multiplier divides the result by two.

5.1. Address Generator

The address generator (AG) is responsible for computing the mem-
ory addresses for butterfly operands. It is generated from a linear
counter by a bit pair permutation following the same pattern as the
reference implementation [19]. An example of an address genera-
tion for a 128-point and 256-point FFT is illustrated in Fig. 2. Each
bi represents an i-th bit of a linear counter. The ‘index’ bits are
sufficient to represent the index within one stage while ‘stage’ deter-
mines the current stage of the computation. The position of the LSB
bit pair is determined by the ‘stage’ part of the linear counter.

The address generator preserves the parity of the linear counter.
Thus, any two consecutive addresses have a different parity and if fed
in parallel into the parallel memory logic (described in 4), a conflict-
free memory access is guaranteed.

5.2. Twiddle Factor Generator

The generation of twiddle factors is based on a lookup table
(LUT) implemented as a single-port synchronous read-only mem-
ory (ROM) of pre-computed values. It follows the same approach
as the one described in [20]. The address for the LUT ROM is
computed from the linear index by a bit permutation and scaling
based on the current FFT size. Only N/8 + 1 complex coefficients
need to be stored in the LUT [20]. All the remaining coefficients can
be reconstructed by a trivial manipulation (negating and swapping
the real and imaginary parts) of the stored coefficients. Therefore,
in order to support the maximum 16384-point FFT, the LUT has
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Fig. 2. Address generation from a linear counter for 128-point
(above) and 256-point (below) FFT.

to contain 2049 coefficients. A side function of the twiddle factor
generator (TFG) FU is determining whether the current stage is
radix-4 or radix-2. This information is then used by the complex
adder (CADD).

5.3. Complex Adder

The CADD performs a butterfly operation on four inputs. Based on
its ‘rx2’ input, it performs either one radix-4 or two radix-2 butter-
flies.

Traditionally, the CADD would be implemented as a four-input
FU with the four inputs buffered in register files before feeding them
in parallel into the CADD’s ports. However, due to the single-
instruction kernel requirement, the register file buffering is not possi-
ble since the data can be moved only to a single location. Therefore,
the proposed CADD FU has one serial data input port and performs
the buffering internally. This makes the FU unusable for high-level
programming since this mode of operation can not be recognized by
a high-level compiler.

Figure 3 shows the CADD’s results based on its ‘rx2’ input. The
‘cnt’ column is an internal counter that increments each time a data

rx2 cnt result
0 00 a + b + c + d
0 01 a - i*b + c + i*d
0 10 a - b + c - d
0 11 a + i*b - c - i*d
1 00 a + b
1 01 a - b
1 10 c + d
1 11 c - d

Fig. 3. An operation performed by a complex adder based on the
value of its ‘rx2’ input and an internal counter (‘cnt’). Four operands
(a, b, c, d) and rx2 are constant until the next reset of the counter.
i denotes an imaginary unit.
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add.r → add.t
add.r → ag.t
add.r → tfg.t
ag.r → lsur.t

ag.r → dly11.t
lsur.r → cmul.o

tfg.r → cmul.t
cmul.r → cadd.t
cadd.r → lsuw.o
dly11.r → lsuw.t

tfg.rx2 → cadd.o

Fig. 4. Bus reservation table of computing one radix-4 butterfly

sample is loaded into the FU’s trigger port. Both signals form an
opcode selecting the operation of the complex adder.

5.4. Complex Multiplier

The complex multiplier performs generic complex multiplication of
two operands. The proposed implementation requires four multipli-
ers and two adders.

5.5. Rotating Register

Rotating register is used to delay the address of a butterfly’s input
sample for the in-place computation. After the butterfly operation is
complete, the output of the rotating register is used as an address for
the results to store them back to the memory.

6. INSTRUCTION SCHEDULE

The computation of one radix-4 butterfly can be visualized with the
aid of a reservation table in Fig. 4. Each column represents one clock
cycle. Buses are represented by rows and their names (on the right)
correspond to the ones shown in Fig. 1. Gray square denotes that an
instruction, i.e., data transfer, is executed on the bus during the clock
cycle. The instruction (data move) transferred on each bus is shown
on the left. The syntax respects the following pattern: source.port
→ destination.port. Source and destination are FUs. Port can be t
(trigger), o (operand), r (result) and rx2 (output port of TFG signal-
izing whether the butterfly is radix-4 or radix-2).

Full FFT is computed by repeating the above pattern multiple
times every four clock cycles. At 13th clock cycle, the bus utiliza-
tion reaches 100% and the instruction word becomes constant until
no new samples need to be computed. Thus, the execution can be
separated into three stages: prologue (first 13 cycles), kernel (length
depends on FFT size) and epilogue (last 13 cycles). The size of the
prologue and epilogue is constant for all FFT sizes. Because the ker-
nel consists of only one repeated instruction word, it can be loaded
into the loop buffer from where it can be fetched consuming minimal
power.

Apart from the prologue, kernel and epilogue, a setup code con-
sisting of 6 instructions is present to distribute static parameters be-
tween FUs. Thus, the size of the complete code is 33 (6+13+1+13)
instructions. The architecture uses 51-bit wide instruction words.

7. EVALUATION

The processor was synthesized using Synopsys Design Compiler and
two IC technologies were used - a 28 nm FDSOI low-power technol-



type tech. volt. freq WL t power FFT/mJ FFT/mJ norm. programmable
(nm) (V) (MHz) (bits) (µs) (mW)

[4] pipelined 65 1.10 50 16 21.5 17.60 2641 3196 no
proposed memory based 28 0.60 450 16 11.4 4.19 20916 3243 yes
[21] memory based 65 1.20 500 16 2.6 170.0 2287 3292 no
[9] memory based 130 1.50 250 16 20.6 60.40 802 3609 yes
[6] memory based 600 3.30 173 20 30.0 845.0 39 6058 no
proposed memory based 65 1.00 450 16 11.4 12.21 7171 7171 yes
[7] memory based 90 1.00 160 16 2.6 29.00 13360 18498 no
[5] pipelined 55 0.90 18 16 1.5 8.88 77131 52865 no

Table 1. Comparison of various FFT processor architectures (1024-point FFT).

ogy and another 65 nm technology.
In order to be able to compare different technologies, the energy

was normalized according to the following formula [6], [22]:
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3
W

) , (1)

where En is the normalized energy; E, L, U and W are parame-
ters of the proposed architecture (energy, technology size, voltage
and word length, respectively); the ref suffix marks the reference
technology (65 nm, 1.0 V, 16 bits).

Table 1 compares the proposed architecture with selected state-
of-the-art solutions and traditional architectures. The chosen focus
point is a 1024-point FFT as a mid-point between the smallest and
largest supported FFT sizes. The frequency 450 MHz is close to the
maximum achievable frequency (500 MHz for 28nm/0.60V and 550
for 65nm/1.00V). The maximum achievable frequency is 1150 MHz
with 28nm/1.10V technology.

8. CONCLUSION

In this paper, a low-power software-programmable FFT processor
was proposed, which is is based on a TTA template. The key con-
tribution is reducing the computation kernel into only one repeated
instruction word and executing it from a loop buffer instead of fetch-
ing from an instruction memory every clock cycle. This reduces the
power consumption of an instruction memory to a negligible value.
In order to achieve the instruction word compression, an internal
buffering was introduced in case of a complex adder and a memory
access, which renders them unusable by a high level language com-
piler. However, it is possible to provide a software-accessible switch
to disable the memory buffering for more generic applications. Ad-
ditional functionality can be introduced by adding other functional
units. Synthesis power evaluation performed at two different ASIC
technologies (28 nm and 65 nm) shows that the processor can pro-
vide an energy efficiency comparable with fixed-function ASIC pro-
cessors.
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