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Abstract

Multimedia applications are driving wireless network operators to add high-speed data services such as Edge

(E-GPRS), WCDMA (UMTS) and WLAN (IEEE 802.11a,b,g) to the existing GSM network. This creates the need

for multi-mode cellular handsets that support a wide range of communication standards, each with a different RF

frequency, signal bandwidth, modulation scheme etc. This in turn generates several design challenges for the analog

and digital building blocks of the physical layer. In addition to the above-mentioned protocols, mobile devices often

include Bluetooth, GPS, FM-radio and TV services that can work concurrently with data and voice communication.

Multi-mode, multi-band, and multi-standard mobile terminals must satisfy all these different requirements. Sharing

and/or switching transceiver building blocks in these handsets is mandatory in order to extend battery life and/or

reduce cost. Only adaptive circuits that are able to reconfigure themselves within the handover time can meet the

design requirements of a single receiver or transmitter covering all the different standards while ensuring seamless

inter-interoperability. This paper presents analog and digital base-band circuits that are able to support GSM (with

Edge), WCDMA (UMTS), WLAN and Bluetooth using reconfigurable building blocks. The blocks can trade off

power consumption for performance on the fly, depending on the standard to be supported and the required QoS

(Quality of Service) level.

I. I

The growing economic and social impact of mobile telecommunication devices, together with the evolution

of protocols and interoperability requirements among different standards for voice and data, is currently driving
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worldwide research towards the implementation of fully-integrated multi-standard transceivers. The most advanced

fully integrated solutions in the scientific literature and on the market do not cover the four most important

telecommunication standards, namely GSM, WCDMA, Bluetooth, and wireless LANs (WLANs). In order to allow

the user to switch seamlessly among different standards, achieving so-called “global roaming“, for both voice

and data applications, all these standards have to be supported by an integrated transceiver. GSM and WCDMA

(UMTS) are the dominant standards for voice and mixed voice/data mobile services, while WLANs based on the

IEEE 802.11a/b/g protocol are the most important standards for high data-rate wireless internet access. Finally,

Bluetooth enables the terminal to be wirelessly connected with other devices at low data rates over a short distance.

Implementation of an integrated multi-standard transceiver that is competitive with solutions based on separate

devices for the different standards must take various points into account. First of all, both silicon area and static power

consumption must be minimized, thus requiring the maximum possible hardware sharing among the transceivers

for the different standards. In order to reach this goal, one must define which standards can be used at the same

time. We assumed that only two standards among the supported ones can operate concurrently at a given time

(e.g WLAN with Bluetooth or voice with Bluetooth or voice with WLAN) and that no handover is supported for

Bluetooth.
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Fig. 1. Receiver channels

From these considerations, we defined the receiver and transmitter architectures shown in Fig. 1 and Fig. 2,

respectively. These architectures reflect the following basic ideas:

• two parallel receiver (RX) chains based on direct conversion architecture are implemented, one supporting all

cellular standards and Bluetooth, and the other supporting all WLAN standards and Bluetooth;

• two parallel transmitter (TX) chains are implemented, one based on direct modulation for GSM, Bluetooth and

possibly WCDMA (UMTS), and the other, based on direct conversion architecture, for all WLAN standards

and Bluetooth;
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Fig. 2. Transmitter channels

• the RX and TX chains covering the cellular standards can reconfigure themselves in a short time (less

than 200µs), thus allowing vertical handover between GSM and WCDMA, which do not need to operate

concurrently;

• vertical handover between cellular and WLAN standards, which can operate concurrently, is based on the use

of two different transceivers;

The project “Enabling technologies for reconfigurable wireless terminals”, funded by the Italian National Project

FIRB, is a first step toward the above mentioned multi-standard integrated transceiver. In particular, five different

chips, which represent a preliminary step towards the final device, are presently under testing: (1) receiver and (2)

transmitter for DCS1800, UMTS, and Bluetooth, (3) receiver and (4) transmitter for WLAN at 2.4GHz and 5GHz,

and Bluetooth as well as (5) the digital processor for all standards. This paper presents the baseband section (both

analog and digital) for all five chips, discussing the most important design aspects and the achieved experimental

results. RF circuits are presented in a companion paper.

II. A B S

The challenges in designing the analog baseband section of a reconfigurable transceiver are mainly related to the

very different specifications of the different standards. In particular, bandwidth, gain, noise, resolution and linearity

requirements are quite different from one standard to another. One “brute force” approach to design could be to

select the most stringent requirement for each parameter, thus deriving a set of specifications valid for all standards.

This approach, however, is definitely not efficient, especially in terms of power consumption. A more reasonable

approach, which has been adopted for the design of the circuits reported in this paper, is to adapt the circuit

performance, and hence the power consumption, to the standard considered. This adaptation of an analog device is

performed through a digital control which either adjusts the biasing conditions of the active building blocks (e.g.

operational amplifiers) or turns on or off entire stages (e.g. in an analog-digital converter or in a programmable-gain



CAS MAGAZINE 4

amplifier) or reconfigures the interconnections among the blocks of the circuit. The details of architectural choices

and circuit design for the receiver and transmitter chains are reported in the next Sections.

A. Receiver Analog Baseband Channel

The input spectrum of the receiver baseband block typically includes adjacent channels, in-band and out-of-band

blockers, that can dominate (by up to 40-60dB) the signal to be processed. For this reason analog baseband blocks

are required to exhibit not only a target in-band dynamic range, but excellent linearity for out-of-band signals. This is

because a non-linear behavior with out-band-signals would result in an intermodulation whose product components

would fall in the signal band, corrupting the signal quality. The analog baseband block of a receiver is composed

of a series of Voltage Gain Amplifiers (VGA) and Low-Pass Filters (LPF). The VGAs increase signal amplitude,

while the LPF reduces the amount of the out-of-band signal in order to increase the signal dynamics available for

the useful signal. This functionality is shown in Fig. 3.
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Fig. 3. Receiver baseband analog signal processing

The design of the receiver baseband channel implies a trade-off between LPF selectivity (higher filter selectivity

would result in a lower number of stages) and circuit complexity. In the design considered in this paper, we used

a structure with two VGAs and one LPF, as shown in Fig. 4.

Fig. 4. Block diagram of the developed analog baseband signal processing channel

For the channel devoted to cellular application, the signal is amplified by 59dB. This is because the input signal

can be very low. The VGA1 (with a gain programmability in the 0dB-29dB range) then requires a reduced linear

range, while it must have a very low Input Referred Noise (IRN ≈ 5nV/
√

Hz). This constraint was satisfied by

using an open loop approach implemented by a resistively-degenerated and resistively-loaded differential stage,

whose dc-gain is fixed by a resistive ratio. In this scheme we used an open-loop architecture to reduce the power
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consumption. For small input signals, a large gain is required. This is achieved by minimizing the degeneration

resistance, which also reduces theIRN, as required by the low input signal amplitude. On the other hand, for

large input signals, a reduced gain is required. This is achieved by maximizing the degeneration resistance, which

also increases the linear range, as required by the large input signal amplitude. Several solutions for the filter are

proposed in literature. Active-RC structures exhibit excellent linearity at the cost of high power consumption [1].

On the other hand,gm-C filters feature a reduced linear range but with low-power consumption [2]. In this design

we developed a novel structure that is the merging of the two solutions above and is called “active-gm-RC”. Fig. 5

shows the 2nd order low-pass active-gm-RC cell structure in its single-ended form.

R1

C1

vi

R2

voADC

1+s·

Fig. 5. The active-gm-RC biquadratic cell

The operational amplifier (op-amp) has a single-pole transfer function (in the frequency range of interest) that is

taken into account in the transfer function synthesis. An Adjusting Circuit controls the op-amp frequency response

in order to track the time constant of the passive components (R and C). This has the effect to transform the

dependence of the filter frequency response on the transistor parameters into a dependence only on the passive

component values (R’s andC’s). The active-gm-RC cell exhibits the following features, which make it preferable

for the implementation of the baseband filter of portable multi-standard terminals:

• low power consumption(a key objective for portable terminals): one op-amp is used to synthesize a 2nd order

transfer function, halving the power consumption compared with standard two-op-amp active-RC biquadratic

cells. In addition, the op-amp frequency response is used to synthesize the filter frequency response. Thus

the op-amp unity-gain-bandwidth is comparable with the filter pole. This reduces its power consumption with

respect to other closed-loop structures (active-RC or MOSFET-C), in which the op-amp unity-gain bandwidth

fu > 50÷ 100· fLP is used, requiring a large power consumption;

• high-linearity: a very large linear range is achieved due to its closed-loop structure. Moreover, out-of-band

signals are first filtered by the very linearR1-C1 low pass filter at the input. This gives a very high out-of-band

IP3 (3rd order intercept point), which is particularly interesting in telecom systems where the higher amplitude

of out-of-band blockers requires a large out-of-band linearity;

• frequency response accuracy: the Adjusting Circuit makes the op-amp frequency response depend on the passive
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component values (R andC) spread, which is the only spread to be compensated.

The 4th-order UMTS/WLAN reconfigurable filter is realized by the cascade of two active-gm-RC biquadratic cells.

The filter can be reconfigured to adjust the bandwidth to the selected standard (2.11MHz and 11MHz for UMTS and

WLAN, respectively) by a single bit that controls the values of the resistors (this keeps the overall noise constant).

In addition, in the UMTS case the power consumption is reduced by controlling the input stage device sizes and

their current level. For both standards, the capacitors are grounded in order to seen by the common-mode signal as

well. Otherwise, a high frequency resonance for the common-mode signals would be present. This implies that the

capacitance dominates the overall filter area. However, sharing the capacitors for the two standard configurations

thus minimizes the area occupation. The capacitor values are finally adjusted by the tuning circuit to compensate

for technology variations. A key feature of this structure is the limited power consumption due to the use of low

fu op-amps. In fact, thefu/ fLP ratio is less than two.

The full filter design has been optimized in order to minimize the power consumption using a specifically

developed automatic design toolbox, which for a given set of constraints (noise, linearity, transfer function) and

device models, directly defines all the device sizes in order to minimize power. Finally, the amplitude of the input

signal of the second VGA is very large (after the previous amplification), so that for this stage linearity is more

important than noise performance. For this reason we used a closed loop architecture, with two 17.5dB gain-stages

and a 2.5dB gain resolution. This block also implements an additional 1st order LPF. Finally since the offset may

be significant at this stage, due to the large amplification of the previous stages, it includes an offset compensation

circuitry. Tab. I reports the overall simulated baseband channel features.

TABLE I

S        

Parameter Value

Filter order 5th

Power supply 2.5V

Power consumption (UMTS/WLAN) 51.7mW/55mW

VGA1 19mW

LPF (UMTS/WLAN) 22.7mW/45mW

VGA2 10mW

Gain range (UMTS/WLAN) −6dB÷68dB/4dB÷39dB

In-band IIP3 (UMTS/WLAN) @ Max gain 5dBm/1dBm

Out-of-band IIP3 (UMTS/WLAN) @ Max gain 30dBm/26dBm

IRN (UMTS/WLAN) @ Min gain 9.6µVRMS/51µVRMS
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B. Analog-to-Digital Converter

The architecture of the ADC stems from the observation that while Delta-Sigma is the topology of choice for

low speed high resolution conversion, pipelined topologies are well suited to medium-high speed and medium-

low resolution. Thus the combination of the two can cover a wide portion of the speed-resolution space [3]–

[6]. Furthermore, both topologies include the same building blocks, such as op-amps, comparators, switches and

capacitors. The difference between them is the network that interconnects the blocks. Thus, a converter made

of those building blocks and a reconfigurable interconnection network can implement different topologies and

work at the different bandwidth and resolution levels needed for the various standards. In addition to supporting

reconfiguration among different standards, the ADC can adapt its architecture, performance and power consumption

to its environment. A dynamic configuration manager, considering the required Quality of Service (QoS), can

exploit the reconfigurability of the ADC in order to save power and extend the battery life-time [7], [8].

Another key aspect of the ADC architecture proposed in this work is the extensive use on the digital side

of background self-calibration algorithms [9]–[21]. Those algorithms are used in the background to overcome

the effects associated with the limited precision of analog building blocks and with component mismatches that

impair performance. This also turns out to be a very efficient way to reduce the power consumption of the ADC.

For instance, the capacitances can be sized to meet thermal noise requirements rather than matching (which is

compensated digitally), which often results in a smaller capacitor size and therefore less op-amp current for the

same gain-bandwidth product. The complete ADC architecture, including the digital blocks used for background

self-calibration, is highlighted in Fig. 6. The ADC core is made of six equally sized stages, each one resolving 1.5

bits, followed by a 2-bit quantizer. In order to further reduce the power dissipation, every pair of stages shares one

op-amp; this block therefore requires only three op-amps. The maximum achievable resolution is 8 bits, and a 6

bit resolution can be digitally selected. In this case the first two stages are switched off and the input signal is fed

directly to the third stage. To increase the overall ADC resolution a 2/3 bit reconfigurable stage has been added

before the core ADC block, extending the overall resolution to 10 or 11 bits. In∆Σ mode, the hardware is reused

to implement a second order 2-bit modulator which achieves 74dBDR over a 200kHz signal bandwidth.

Component matching and a finite op-amp gain-bandwidth product affect the linearity of the ADC, thus reducing

the IP3 of the system. In order to overcome this potential problem, two digital algorithms have been implemented

in the chip. The first one, called DAC Noise Cancellation (DNC) [21], estimates and corrects the non-linearity

error introduced by the multi-bit (2/3 bit) unit element DAC mismatch of the first conversion stage. The second

one, called Gain Error Correction (GEC) [15], [19], estimates and corrects gain errors in the first, second and third

stages. In both techniques the analog error is modulated by a pseudo-random noise sequence and then the digital

output is processed in order to extract the modulated information and digitally enhance the ADC performance. It is

worth noting that those techniques require few modifications in the analog part of the chip, while more complexity

is added in the digital part. As CMOS technology scales, more digital signal processing (DSP) becomes available

for the same area at a reduced power consumption; hence those techniques are very attractive when the reduction of
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Fig. 6. Block diagram of the reconfigurable ADC

the overall power consumption is of major importance, as in the case of portable terminals. Combining those digital

techniques with the selective power-down of unused blocks can minimize the power consumption. For example, the

single ADC in WLAN-mode can convert the input signal (10MHz bandwidth) with a 9 bit resolution consuming

6.8mA; if the resolution is switched to 6 bits the current used is only 3.2mA. In UMTS-mode, the required resolution

is 11 bits and the input signal (2MHz bandwidth) is converted using 8mA. When a GSM-EDGE signal has to be

converted, the architecture is reconfigured in∆Σ-mode; in this case only the first two stages are used and the current

consumption is 4mA.

A key aspect for a multi-mode terminal is the ability to switch from mode to mode in a seamless way. This in

turn sets a requirement on the time allotted for so-called vertical handover (in some cases this time is specified by

the standards). The same is true for a change in theQoS, which should be transparent to the user. This ADC can

change mode in less than 100µs, while a switch from 10 bit to 6 bit resolution takes only 600ns. Fig. 7 shows the

measured power spectral density of a full scale 9.6MHz input sine wave before and after the background correction

in WLAN mode. The digital algorithms improve theS NRby more than 10dB and theS FDRby more than 19dB.

The digital algorithms dramatically reduce the second and the third harmonic to a level of−80dBc and−77dBc.

Fig. 8 shows the measured relationship between the analog power consumption and theS NDRof the converter. This

reconfigurable converter efficiently exploits the trade-off between resolution and power consumption highlighted in

this plot.
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C. Transmitter Analog Baseband Channel

The transmitter analog baseband channel has to transform the digital data stream produced by the digital processor

(described in Section III) into an analog signal, which is then delivered to the RF section. The analog baseband

channel developed for the reconfigurable terminal described in this paper presents the following challenging key

features:

• it operates at low voltage (i.e. at 1.2V);

• it is reconfigurable in terms of bandwidth, resolution and data-rate in order to satisfy the different standards;

• its power consumption changes depending on the selected standard, in order to maximize the efficiency.

The overall DAC+filter architecture, implemented with a fully-differential topology, is shown in Fig. 9. An 8 bit

Current-steering DAC drives a resistive load (RL = 600Ω) and the resulting output voltage is directly applied to a
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4th-order low pass analog filter. A number of design choices, described in the rest of this section, were made in

order to minimize the power consumption, while achieving a reconfigurable device.
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Regarding the DAC structure, a current-steering approach has been preferred to aR-2R ladder DAC, since it

avoids the use of input and output reference voltage buffers, which would increase power consumption. Regarding

the coupling between DAC and filter, use of DAC load resistorsRL (instead of forcing the DAC current directly

into the virtual ground of the first filter op-amp) allows us to decouple the DAC output current from the filter

op-amp output current, which can be designed to be much smaller than the former. As a consequence the desired

output dynamic is achieved by using large resistances in the filter, and by making the filter input impedance much

higher thanRL. This power consumption reduction is obtained at the cost of an increased thermal noise which,

however, is still negligible with respect to the quantization noise. The DAC structure has been designed to achieve

the worst-case linearity and dynamic range target specifications even in the presence of worst case technology

mismatches and parameter variations [22].

The same analysis suggested that, due to the 8 bit resolution, the area penalty of a fully thermometric implemen-

tation is negligible with respect to the linearity improvement. The unit current source area is designed to satisfy

the matching requirements. A maximum relative standard deviationσrel of 2% results in an Integral Non-Linearity

(INL) yield of 99%, with 0.5LSB as the upper limit [23]. Thus the minimum area (W× L) of each current source

is obtained from the Pelgrom model of the mismatch [24]. The choice of the unit current source overdrive (Vov)

is a trade-off between low sensitivity to threshold voltage mismatches (which would require a largeVov) and the

headroom available from the 1.2V supply (which limits the maximum value ofVov). As a consequence, we chose

the valueVov ≈ 70mV, which requires an area of 36µm2 for the unit current source. Finally, the unit current level

(IUNIT) is designed to minimize the glitches introduced by the charge injection of the switchesMS (Fig. 9). The

glitch amplitude is reduced by setting minimum device sizes for the differential switches and by driving them

with minimum swing signals (Vlow = 300mV, Vhigh = 800mV). The resulting glitch is about 1µA. To make this

contribution negligible aIUNIT of 5µA is chosen, which impliesW = 6µm andL = 6µm for the unit current cell.

The coupling between different unit sources is reduced by using a driver circuit for each of them to provide the
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desired voltage levels for the switches. The currentIUNIT is generated with the bias circuit shown in Fig. 9, which

makesIUNIT = VREF/RB. ResistanceRB is matched with the load resistance (RL) in order to make theRL/RB ratio

constant. This reduces the dependence of the DAC output voltage amplitude on the technology spread.

The output common mode voltage is fixed to analog ground (VDD/2) through a common-mode feedback circuit

CMFB. The maximum swing on each of the output nodes (controlled byVREF) is fixed to 350mVpp around the

analog ground. This is a trade-off between having a significant input signal for the filter following and introducing a

negligible signal distortion due to the current source output impedance, which is anyway large thanks to the cascoding

action of the current switches. This choice implies a value ofΩ for RL, considering that the full-scale peak-to-peak

differential current is equal to 1.275mA. Again in designing the 4th-order Bessel low-pass reconfigurable baseband

filter, particular care was taken to reduce power consumption. The filter is the cascade of two identical multi-path

active-RC biquadratic cells. Active-RC allows us to achieve the required linear range. The use of a single op-amp

to synthesize two poles reduces power consumption. In this structure the op-amp bandwidth has to be about 50-100

times broader than the position of the filter poles.

The op-amps that we used are based on a fully-differential Miller-compensated two-stage topology, which allows

for rail-to-rail output swing. In fact, the full-scale peak-to-peak differential output voltage of the block is 1.8V, which

means a filter DC gain of 8.2dB. The op-amp bandwidth is reduced for lower pole frequencies (UMTS) by reducing

the bias current. As a result, the power consumption is also reduced. The DAC+filter block can be reconfigured

for two standards (WLAN and UMTS) as follows. The DAC sampling frequency (FS) can be changed in order to

achieve the required resolution, exploiting the resulting oversampling ratio (OS R) to increase the signal-to-noise

ratio (S NR) to above the 8 bit level. In the case of WLAN, theOS Ris 4 (usingFS = 80MHz), which leads to a

resolution of 9 bits (this implies a design margin of 1 bit with respect to the requiredS NR). Similarly, in the UMTS

case, theOS Ris 8 (usingFS = 40MHz) with a 1.5 bit additional resolution. On the other hand, the filter transfer

function can be programmed for two bandwidth values (11MHz and 2.11MHz) through a selection bit (BS), which

digitally controls the value of the resistors, and the in-band noise floor. The smaller band for the UMTS standard

(obtained with larger resistance values) can accept the resulting larger noise floor. The choice of programming the

cut-off frequency with the resistance values allowed us to reduce the power consumption for low bandwidth. The

selection switches were carefully designed and layouted in order to minimize their parasitic effects. The switches

are connected to virtual ground nodes (op-amp inputs, with a limited voltage swing on the parasitic capacitances)

or to low impedance nodes (op-amp outputs). In addition the capacitor values can be adjusted by±35% with a 4

bit digital word, in order to control the technology spread or to allow a fine selection of filter bandwidth. Finally,

the filter power consumption is optimized to the standard selected by the signalBS, which selects a bias current

level for the op-amp, in order to save power when a smaller bandwidth is programmed.

The DAC+filter block has been fabricated in a standard 0.13µm CMOS technology with six metal layers and

MIM capacitors. Fig. 11 shows the micro-photograph of the chip, whose active area is 0.82. Fig. 10 shows the

measured output power spectra of the circuit for a WLAN 802.11a and a UMTS input signal. In both configurations

the transmitter baseband channel respects the transmission masks for the standards. The measured features of the
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complete circuit are summarized in Tab. II.
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Fig. 10. Measured output power spectra of the transmitter baseband channel for a WLAN 802.11a and an UMTS input signal

III. D  B S

Digital signal processing systems aimed at the wireless consumer market must handle a variety of high perfor-

mance real-time tasks, for which traditional general-purpose processors are often a poor match. Flexibility is required

to reduce masks and design costs, high computational power must match the growing complexity of applications,

and low power consumption is needed to ensure portability, under severe battery capacity constraints.

A common way to tackle such constraints is by mapping critical computational kernels on custom-designed

hardware units inside the processor pipeline [25], [26], providing application specific extensions to the standard

instruction set. However, in most cases, extensions are defined at mask level, severely limiting the flexibility and

application field of the device. Such application-specific standard processors (ASSPs) also involve high up-front

non-recurring design costs, justified only for long lifespan and high volume products. Low volume or frequently

updated products require novel methodologies to match flexibility with high computational power and low cost.

Reconfigurable processorsare an appealing option [27]–[33], combining standard processor cores with embedded

programmable hardware. Reconfigurable processors offer high programming flexibility by means ofrun time

extensionof the instruction set. Non-critical computations or control-dominated tasks can be efficiently mapped

on the hardwired portion of the processor, taking advantage of its software programmability and shortening the

overall development time. According to Amdahl’s law and the 90-10 rule (90% of time is spent executing 10% of

the code, [34]), performance can be enhanced by up to one order of magnitude by simply focusing implementation

efforts on identification and improvement of relatively small critical kernels. Several techniques can be used to

exploit spatial (i.e. concurrency between resources) and temporal (i.e. pipelining) parallelism at the reconfigurable

instruction level. The widespread knowledge of the ANSI-C programming language among embedded systems and
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Fig. 11. DAC+filter chip micro-photograph

wireless algorithm developers suggests using it as the application description language for reconfigurable processors

as well. This introduces the problem of translating behavioural C into some form of HDL description, or directly

into hardware (in the case of reconfigurable devices, configuration bits). Most existing reconfigurable architectures

use automated or semi-automated C-to-HDL conversion tools to plug into standard synthesis and Place & Route

techniques for configuring the hardware accelerator. Unfortunately, the introduction of these abstraction layers hides

many implementation choices from the designer, making it difficult to obtain high-quality results without a deep

understanding of the tools and the underlying architecture.

In this section we present a reconfigurable system based on a VLIW processor architecture including a runtime

reconfigurable embedded function unit called PiCoGA. The integration of the PiCoGA inside the processor core

reduces communication overhead towards other functional units, thus making it easier to use for a variety of

computation kernels. In what follows, we will use the name “XiRisc” to refer to the processor architecture with the

tightly integrated reconfigurable unit, as opposed to a standard processor core accelerated by an external device. In

this context, trading off some potential performance speed-up for a higher level of programmability was a key design

decision, since it permits a dramatic decrease in application development time, and hence it may allow a design

team, always working under severe time pressure, to speed up a larger number of critical kernels. Consequently,
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TABLE II

S        

Parameter Value

Technology CMOS 0.13µm

Supply voltage 1.2V

Core area 0.8mm2

Standard WLAN UMTS

Fs 100MHz 50MHz

Filter bandwidth 11MHz 2.11MHz

Differential output swing 1.8Vpp 1.8Vpp

DR (@ FS) 54dB 58dB

SFDR (@ FS) 54dB (@ 3MHz) 61dB (@ 0.6MHz)

THD (@ FS) −51dB (@ 3MHz) −60dB (@ 0.6MHz)

OIP3 29.3dBm 32.5dBm

DAC power consumption 5.4mW 5.4mW

Filter power consumption 5.6mW 3mW

Total power consumption 11mW 8.4mW

the PiCoGA was designed to be programmed using a C-like description language, resulting in tighter integration

of the hardware and software design flows.

A. XiRisc Architecture Description

XiRisc can be described as a Very Long Instruction Word (VLIW) RISC processor, with a 32-bit datapath (see

Fig. 12). The basic XiRisc instruction set includes a set of DSP-specific instructions such asmultiply-and-accumulate,

branch-and-decrement, SIMD (Single Instruction Multiple Data) and saturating arithmetic operations. The XiRisc

architecture [35] is strictly separated into control logic and data path. The micro-architecture was designed to provide

a simple straightforward control model and to offer the programmer full control over the processor resources. All

Functional Units (FUs) are independent, concurrent, and fully pipelined.

The control architecture is based on the classic RISC five stage pipeline, with a strict load/store architecture that

may result in a bottleneck for memory intensive applications. In order to maintain a high data throughput to and

from the FUs, the processor is structured as a Very Long Instruction Word machine, fetching and decoding two

32-bit instructions each clock cycle. The instruction pairs are then executed concurrently on the set of available FUs,

determining two symmetric execution flows. Simple, commonly used FUs such as ALU and Shifter are duplicated in

both data channels, while other FUs such as the multiplier and the branch unit are shared between the two channels.

To simplify hazard handling, software compilation schedules instruction pairs which avoid simultaneous access to
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the same shared FU, so that pairs of instructions never need to be separately stalled during computation. All other

pipeline hazards are resolved at run-time by a fully bypassed architecture and a hardware stall mechanism. The

PiCoGA is handled by the control logic and the compilation tool chain as a shared functional unit. Operands are

read from and results written into the register file, and specific assembly instructions are used to control both array

elaboration and configuration. The XiRisc instruction set is extended at runtime by mapping new functionalities on

the gate-array through the issue ofpGA-load and pGA- f ree instructions. As a result, after a configuration latency

of a few hundred cycles, extended instructions calledpGA-op’s are available to execute custom computations on

the PiCoGA pipelines. After an execution latency that may range from 1 to 24 cyclespGA-op results are written

back into the processor register file.
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From an architectural point of view, the main differences between the PiCoGA and the other FUs are:

1) The PiCoGA supports up to 4 source and 2 destination registers for each instruction. In order to avoid

bottlenecks on the write-back channels, a special purpose register file has been designed, featuring four read

and four write ports, of which two are reserved for the PiCoGA.

2) The PiCoGA instructions may have unpredictable latency, if they directly include data-dependent loops.

A special register locking mechanism was designed to maintain program flow consistency in case of data

dependency between PiCoGA instructions and other instructions.

The PiCoGA is seen as a customizable unit that dynamically adapts the instruction set to the application workload.

Application-specific custom instructions are synthesized using a dataflow-oriented paradigm. They are modeled as

ANSI-C procedures which are automatically translated by the compiler into data-flow graphs (DFGs). The DFG

extraction step from the ANSI-C function description is performed using a customized version of the Impact

compiler [36].

B. System Architecture

The high-bandwidth memory transfer requirements that are typical of DSP algorithms required the careful

implementation of a layered memory hierarchy (see Fig. 13), supported by an on-chip AMBA bus architecture. A

single AHB channel is used to load instructions and data from the system memory. Possible conflicts on the bus

interface are resolved by a dedicated arbitration logic within the AHB master. Processor transfers are converted

into AHB cycles, supporting wrap burst transfers for cache line refills and locked accesses. The AMBA system is

connected to a set of IO peripherals, on-chip SRAM and an interface for off-chip memories (EMI) featuring up to
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1.328 Gbit/s bandwidth. In order to support a parallel load of data and instructions according to its Harvard internal

structure, the processor includes direct-mapped instruction and data caches.
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Cache memory sizes are programmable at time of synthesis. The memory management unit supports run-time

cacheable space configuration, allowing a flexible distribution of program, data and gate array configuration among

different memory spaces. Furthermore, the data cache may alternate at runtime between write-back and write-through

policies, depending on the running application.

Memory resources have also been adapted to handle configuration bits of the reconfigurable gate-array, which are

described in the processor addressing space (viewed as part of the program code). Configuration bits for different

pGA-op operations can thus be placed anywhere in the addressing space but, in order to minimize configuration

latency, they are loaded on a specific 64KB on-chipconfiguration cachememory directly connected to the array.

Programming data can be loaded into this memory via the AHB bus from a larger third library of configurations

stored in an external SRAM or FLASH. The peripheral APB bus contains configuration and status registers for

several system peripherals, a programmable timer, an interface for external LCDs, and a parallel port interface for

connection to an external host.

C. Pipelined Configurable Gate Array

The PiCoGA (Pipelined Configurable Gate Array) [37] is a reconfigurable datapath which has been designed

specifically to be integrated inside a processor core. The aim was to provide a device which can reduce both execution

time and energy consumption over a wide range of heterogeneous applications and can be easily programmed by

a software developer.
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Computational efficiency in a reconfigurable fabric is achieved by exploiting parallelism and implementing

customized operators with the minimum size required by the operands. Achievable parallelism is related to the

capacity of the device, while operand size customization depends on the array granularity. Both are design parameters

whose values have been a direct consequence of the architectural choice of integrating the accelerator inside the

processor core. In this context there is no communication overhead between the processor FUs and the configurable

device, so that they can cooperate together, under direct control of the processor logic. The computation can be

partitioned at a very fine level of granularity between the reconfigurable device and the processor functional units,

almost without penalty. As a consequence, a relatively small array with a fast reconfiguration time can achieve high

acceleration of computational kernels.

Concerning device granularity, we considered that the processor functional units perform very well 32-bit standard

operations, while they are very inefficient when dealing with unusual operations over a few bits. Therefore, in order

to efficiently cover the widest range of applications, we designed the configurable array with fine granularity to

balance well the overall architecture.

The computational model for the PiCoGA has been chosen to be easily integrated inside a processor core.

For this reason the gate array provides a hardware platform where application specific instructions can be easily

implemented and added to the native instruction set. This is achieved by means of a special structure which supports

direct mapping of pipelined computations. Concurrency does not have to be explicitly described by the user, in

order to help software developers (who are used to sequential high level languages). Instruction level parallelism

is extracted from sequential code by our tools in order to program the dedicated PiCoGA control unit. Once the

PiCoGA is configured, the pipeline activity is automatically controlled, handling irregular input data flow, loops

and other synchronization issues between pipeline stages. When apGA-op instruction is decoded, new input data

are provided by the register file to the PiCoGA and, depending on the connectivity of the mapped DFG, the control

unit activates each PiCoGA row in the right order following a dataflow paradigm, whenever its operands are ready.

At the end of the computation a write-back operation is performed.

From a structural point of view the PiCoGA is an array of rows, each representing a stage (or part of a stage) of the

implemented pipeline. The width of the configurable datapath has been designed to fit the processor architecture,

so each row is able to process 32-bit operands. As shown in Fig. 14, each row is connected to the others via

configurable interconnect channels, and to the processor register file via six 32-bit global busses.

1) Configuration Caching:One of the reasons for tightly integrating an FPGA in a processor core is the

opportunity to use it frequently, for many different computational kernels. However reconfiguration of a traditional

FPGA can take hundreds or even thousands of cycles, depending on the re-programmed region size. Although

execution can still continue on other processor resources, scheduling will hardly find enough instructions to avoid

stalls that could nullify any benefit from the use of dynamically configurable arrays. Furthermore in some algorithms

the exact function to be executed is only known at runtime, so that reconfiguration cannot be done in advance. In

such cases it is very difficult to take advantage of a configurable unit.

Three different approaches have been adopted to overcome these limitations. A first level cache (or more
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precisely a scratchpad, since it is managed directly by the software) has been implemented, which stores 4

configuration contexts for each logic cell inside the PiCoGA [38], [39]. Context switch takes place in one clock cycle,

providing 4 immediately availablepGA-op instructions. Furthermore Partial Run-Time Reconfiguration (PRTR) [40]

is supported, allowing reconfiguration of just a portion of the array to implement more functions in the same context

layer. While the PiCoGA is computing, reconfiguration of the next instruction can be performed, so that cache misses

are rare, even when the number of configurations used is large.

These two mechanisms are useful to accelerate parts of a kernel or different kernels of the same algorithm.

However, in the case of a reconfigurable cellular terminal, the communication protocol can even change during the

same phone call, requiring the PiCoGA to be completely reconfigured. Therefore reconfiguration time has been

shortened, exploiting a wide configuration bus to the PiCoGA. Reconfigurable Logic Cells (RLC) in a row are

written in parallel with 192 dedicated wires, taking a few hundred cycles to complete the reconfiguration of one

PiCoGA context layer. A dedicated second-level on-chip cache is needed to feed such a wide bus, while the whole

set of available functions can be stored in an off-chip memory.

2) Reconfigurable Logic Cell:A Reconfigurable Logic Cell (RLC) is composed of a cluster of 24-input LUTs,

each having 2-bit granularity. An RLC contains four pairs of registers, which are controlled by the configurable

control unit or by another RLC. A single RLC can implement purely combinational logic, as well as both single

cycle and two-cycle pipeline stages, in order to support timing optimization and improve the maximum throughput

in a pipeline having a complex Data Flow Graph.

The RLC includes two internal feed-back paths: a synchronous one and an asynchronous one. The first one is

used for implementing accumulator-like operators, while the second one enables a LUT to be fed with the output

of the other one. Both internal paths are useful for reducing the amount of routing resources required. Initialization

of state inside the array (e.g. value stored in an accumulator) is performed by dedicated hardware logic managed

by the PiCoGA control unit.

Dedicated wires along each row are provided to achieve fast propagation of carry signals. A carry-select architec-

ture has been implemented, where a 2-to-1 multiplexer, driven by the carry-in signal coming from a previous RLC,

is used to select the correct carry-out. One of the LUTs (LUT1 in Fig. 15) computes carry-out signals, in the case

of carry-in equal to both 0 and 1. Appropriate programming of LUT1 also allows one to use the chain for efficient

implementation of a number of useful functions such as comparators, wide input logic gates (AND,OR,. . . ), parity

bit generator/checker and sign inversion. Furthermore the PiCoGA carry chain is enhanced combining the carry

select architecture with a lookahead level-1 technique, which roughly cuts the critical path in half.

3) Programmable Interconnections:The PiCoGA routing network has been designed with 2-bit granularity,

reducing the area occupation with respect to a single-bit granularity. However, input connection blocks provide

both 2-bit and 1-bit connection granularity in order to maintain routability and efficiency of resources in cases like

odd shifting and single bit control signals. Channels are composed of 15 pairs of tracks with a length of 3 tiles,

which has been found to be a good trade-off between propagation delay and routability. Furthermore, four global

horizontal lines have also been designed to support fast propagation of multi fanout control signals.
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Fig. 15. RLC architecture

In standard FPGAs the routing network is largely responsible for most of the area occupation and delays. This

becomes even worse in the case of multi-context arrays, where configuration bits have to be replicated. For this

reason connect and switch blocks include a decoding stage between configuration memories and programmable

switches. For example the output connect block can connect an output line of the RLC to only a single wire in

a routing channel, because of the 1 over N decoding logic introduced. This causes a small loss of routability, but

allows one to have a logarithmic reduction of the number of multi-context SRAM cells needed [41].

D. XiRisc Computation Pattern

The exploitation of run-time reconfigurability requires the designer to explore a complex space in order to identify

and optimize critical kernels in the target application [42]. Typical kernels, for a wide spectrum of embedded

applications, are the cores of innermost loops, which can be usually described using traditional data-flow graphs.

Significant speed-ups can be achieved by overlapping successive loops iterations. In case of configurable computing,

we can increase throughput by pipelining overlapped and/or unrolled loop kernels. Of course, this technique requires

accurate management of the custom pipeline. Starting from a source code written in (slightly extended) ANSI-C

[43], a scheduler creates a pipelined DFG and then maps:

• DFG-node operatorsto the array of Reconfigurable Logic Cells (RLCs) in the PiCoGA;
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• pipeline managementto a row-based dedicated control unit which enables the execution of pipeline stages

implemented on the PiCoGA computational resources.

The pipeline is built through careful stage scheduling, starting from the above mentioned ANSI-C representation

of the functionality of each extended instruction. The dedicated programmable control unit manages the pipeline

activity, by starting new PiCoGA operations or by stalling them when requested resources are not yet available.

The control unit has a minimum granularity of one array row, but more than one PiCoGA row can be used to

build a wider pipeline stage. In order to maintain a fixed clock frequency, cascaded RLCs have to be mapped to

different pipeline stages. When a pipeline stage completes its computation, it produces a “token” which is sent both

to predecessor and to successor nodes through dedicated programmable interconnection channels.

E. Digital System Performance

The digital system architecture discussed in this section has been implemented as a prototype chip (Fig. 16)

[44] fabricated in 0.13µm, 1.2V, 6 metal layer CMOS technology provided by STMicroelectronics. The die size

is 36mm2 and contains 17.5M transistors. The SoC operates at a nominal frequency of 166MHz and fits in a

256-pin package with 151 I/Os. Static power consumption is 35mW, while average dynamic power consumption

is 1.48mW/MHz for the whole system, except for the reconfigurable gate-array which consumes 100µW/MHz for

each active row.
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Fig. 16. Digital system micro-photograph

1) Benchmarks:In order to prove the effectiveness of our reconfigurable digital processor for new generation

cellular handsets, we first analyzed one of the most challenging wireless communication specifications, namely

3GPP. Of course, we cannot assume that digital architecture will be used only for telecommunication algorithms,

since we expect that in the future the number of applications provided by network operators will grow very rapidly.

We thus also evaluated the performance of the XiRisc architecture on multimedia applications.
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TABLE III

P  

Parameter Value

Technology 0.13µm CMOS process

6 Metal Layers

Power Supply 1.2V

Clock Frequency 120MHz (WC-COM)

166MHz (TYP)

Power consumption Static: 35mW

Dynamic (excluding PiCoGA): 1.48mW/MHz

Dynamic (PiCoGA): 100µm/MHz per active row

SRAM Memory Size Main memory: 128KB

Instruction cache: 4KB

Data cache: 4KB

Tag memories: 1KB (x2)

PiCoGA configuration cache: 64KB

Chip size 6x6 mm2

PiCoGA size 11 mm2

I/Os 151

Transistor count 17.5M

Tab. IV shows some results for different applications and algorithms, comparing the execution time and the

energy consumption of the XiRisc with those of a DSP-like architecture with the same processor core, DSP-specific

function units and cache memories, but with a single datapath.

In the telecom application field, we implemented a benchmark based on a turbo-decoder algorithm compliant

with the 3GPP mobile communication specifications [45]. We chose aLinear-log MAP algorithm [42], [46],

because it offers BER performances which are up to 0.5dB better than the more commonMax-log-MAPalgorithm

with an increase in computational cost of about 40%. On a 640 bit block size, the proposed SoC requires

432 cycles/bit/iteration, corresponding to 384 kbps/iteration at a typical clock frequency of 166MHz. The same

algorithm requires 3715 cycles/bit/iteration on a basic XiRisc processor, so that the resulting speed-up is 8.6x.

The energy consumption is 1mJ (84% saving). Further optimizations are possible through manual optimizations at

assembly level. For instance, with optimized scheduling, only 84 cycles/bit/iteration are required for the mathematical

operations involved in theLinear-log MAPalgorithm, providing a theoretical performance upper-bound of 2Mbps.

Another algorithm that is typically used for both channel coding environments and a variety of different applica-

tions is Reed Solomon (RS) error correction coding. The implementation of the RS encoder on a 239-byte message,
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with 16 redundancy bytes, uses the PiCoGA device very efficiently, achieving an impressive 80x speedup. This is

mainly due to the bit-level nature of the algorithm, which nicely fits the fine granularity of the reconfigurable array.

The same considerations apply to the case of the DES encryption algorithm.

As a reference benchmark on multimedia applications, we present the results obtained on an MPEG-2 encoding,

applied to a standard QCIF stream with a frame resolution of 176x144 pixels and half-pel precision. The recon-

figurable architecture permits a 5x execution speed-up, thus allowing encoding of up to eight frames per second.

The overall energy consumption to process a 12 frame stream is 718 mJ, corresponding to a 66% energy reduction

compared to the traditional DSP. Setting a full-pel resolution, the frame rate increases to 12 frames/sec, as required

by the H261 video compression standard.

Fig. 17 summarizes energy consumption contributions from the main architectural components and shows signif-

icant savings in energy consumption for both the processor and the bus, mainly due to the execution time decrease.

The use of cache memories further reduces energy consumption of memory accesses by 90%. One notices that both

energy and execution time are reduced very significantly over a broad range of applications.
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TABLE IV

T       DSP

Algorithm
Rows

Speed-up
Energy

Occupation Saving

MPEG-2 23 5x 66%

Turbo-decoder 24 8.6x 84%

Reed Solomon Encoder 14 80x 94.5%

DES 5 13.5x 89%

CRC 11 4.3x 49%

Motion estimation 24 14.8 74.8%
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IV. C

This paper has described the analog and digital baseband channels for a multi-standard reconfigurable terminal

supporting GSM (with Edge), WCDMA (UMTS), WLAN and Bluetooth, developed within the “Enabling technolo-

gies for reconfigurable wireless terminals” project, funded by the Italian FIRB Project. The RF circuits of such a

terminal are described in a companion paper. All the most important design issues, relating to the management of

different standards in a reconfigurable transceiver, are analyzed. Experimental results on five test chips are reported

to validate the solutions adopted both at the architecture and at the circuit level.
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