2,026 research outputs found

    An end-to-end review of gaze estimation and its interactive applications on handheld mobile devices

    Get PDF
    In recent years we have witnessed an increasing number of interactive systems on handheld mobile devices which utilise gaze as a single or complementary interaction modality. This trend is driven by the enhanced computational power of these devices, higher resolution and capacity of their cameras, and improved gaze estimation accuracy obtained from advanced machine learning techniques, especially in deep learning. As the literature is fast progressing, there is a pressing need to review the state of the art, delineate the boundary, and identify the key research challenges and opportunities in gaze estimation and interaction. This paper aims to serve this purpose by presenting an end-to-end holistic view in this area, from gaze capturing sensors, to gaze estimation workflows, to deep learning techniques, and to gaze interactive applications.PostprintPeer reviewe

    Haptic feedback in eye typing

    Get PDF
    Proper feedback is essential in gaze based interfaces, where the same modality is used for both perception and control. We measured how vibrotactile feedback, a form of haptic feedback, compares with the commonly used visual and auditory feedback in eye typing. Haptic feedback was found to produce results that are close to those of auditory feedback; both were easy to perceive and participants liked both the auditory ”click” and the tactile “tap” of the selected key. Implementation details (such as the placement of the haptic actuator) were also found important

    Description and application of the correlation between gaze and hand for the different hand events occurring during interaction with tablets

    Get PDF
    People’s activities naturally involve the coordination of gaze and hand. Research in Human-Computer Interaction (HCI) endeavours to enable users to exploit this multimodality for enhanced interaction. With the abundance of touch screen devices, direct manipulation of an interface has become a dominating interaction technique. Although touch enabled devices are prolific in both public and private spaces, interactions with these devices do not fully utilise the benefits from the correlation between gaze and hand. Touch enabled devices do not employ the richness of the continuous manual activity above their display surface for interaction and a lot of information expressed by users through their hand movements is ignored. This thesis aims at investigating the correlation between gaze and hand during natural interaction with touch enabled devices to address these issues. To do so, we set three objectives. Firstly, we seek to describe the correlation between gaze and hand in order to understand how they operate together: what is the spatial and temporal relationship between these modalities when users interact with touch enabled devices? Secondly, we want to know the role of some of the inherent factors brought by the interaction with touch enabled devices on the correlation between gaze and hand, because identifying what modulates the correlation is crucial to design more efficient applications: what are the impacts of the individual differences, the task characteristics and the features of the on-screen targets? Thirdly, as we want to see whether additional information related to the user can be extracted from the correlation between gaze and hand, we investigate the latter for the detection of users’ cognitive state while they interact with touch enabled devices: can the correlation reveal the users’ hesitation? To meet the objectives, we devised two data collections for gaze and hand. In the first data collection, we cover the manual interaction on-screen. In the second data collection, we focus instead on the manual interaction in-the-air. We dissect the correlation between gaze and hand using three common hand events users perform while interacting with touch enabled devices. These events comprise taps, stationary hand events and the motion between taps and stationary hand events. We use a tablet as a touch enabled device because of its medium size and the ease to integrate both eye and hand tracking sensors. We study the correlation between gaze and hand for tap events by collecting gaze estimation data and taps on tablet in the context of Internet related tasks, representative of typical activities executed using tablets. The correlation is described in the spatial and temporal dimensions. Individual differences and effects of the task nature and target type are also investigated. To study the correlation between gaze and hand when the hand is in a stationary situation, we conducted a data collection in the context of a Memory Game, chosen to generate enough cognitive load during playing while requiring the hand to leave the tablet’s surface. We introduce and evaluate three detection algorithms, inspired by eye tracking, based on the analogy between gaze and hand patterns. Afterwards, spatial comparisons between gaze and hands are analysed to describe the correlation. We study the effects on the task difficulty and how the hesitation of the participants influences the correlation. Since there is no certain way of knowing when a participant hesitates, we approximate the hesitation with the failure of matching a pair of already seen tiles. We study the correlation between gaze and hand during hand motion between taps and stationary hand events from the same data collection context than the case mentioned above. We first align gaze and hand data in time and report the correlation coefficients in both X and Y axis. After considering the general case, we examine the impact of the different factors implicated in the context: participants, task difficulty, duration and type of the hand motion. Our results show that the correlation between gaze and hand, throughout the interaction, is stronger in the horizontal dimension of the tablet rather than in its vertical dimension, and that it varies widely across users, especially spatially. We also confirm the eyes lead the hand for target acquisition. Moreover, we find out that the correlation between gaze and hand when the hand is in the air above the tablet’s surface depends on where the users look at on the tablet. As well, we show that the correlation during eye and hand during stationary hand events can indicate the users’ indecision, and that while the hand is moving, the correlation depends on different factors, such as the degree of difficulty of the task performed on the tablet and the nature of the event before/after the motion

    The Effects of Gaze Guidance on Educational Software

    Get PDF
    There are currently three main kinds of eye tracking applications: gaze-responsive, gaze-aware, and gaze-contingent. A fourth classification, termed gaze-guiding, to our knowledge, coined and implemented for the first time. The gaze-guiding technique is the use of motion, light, color, or other visual stimuli to modify the user\u27s fixation to predetermined locations when the user fixates on specific areas of interest. To test the technique, an education software program that teaches physics through the use of gaze-guidance was developed. It is suggested that a natural mapping exists between gaze-guidance and the software\u27s built-in lesson plan. It is also speculated that gaze-guidance reduces the extraneous cognitive load of associating written and visual problem elements. An experiment was conducted to evaluate gaze-guidance. Although not found to significantly affect performance, most participants considered gaze-guidance helpful, especially for difficult problem examples

    Development of a Typing Skill Learning Environment with Diagnosis and Advice on Fingering Errors

    Get PDF
    AbstractExisting application software for touch typing training cannot diagnose fingering errors. Given this fact, we developed a skill learning environment for touch typing training that can diagnose fingering errors by recognizing fingers with color markers using image recognition technique. This study developed two systems: a learning support environment for an experimental group and a learning environment for a control group. We evaluated the effect of the learning environment that can diagnose fingering errors for the experimental group, by comparison with the other learning environment for the control group

    Human-computer interaction in ubiquitous computing environments

    Full text link
    Purpose &ndash; The purpose of this paper is to explore characteristics of human-computer interaction when the human body and its movements become input for interaction and interface control in pervasive computing settings. Design/methodology/approach &ndash; The paper quantifies the performance of human movement based on Fitt\u27s Law and discusses some of the human factors and technical considerations that arise in trying to use human body movements as an input medium. Findings &ndash; The paper finds that new interaction technologies utilising human movements may provide more flexible, naturalistic interfaces and support the ubiquitous or pervasive computing paradigm. Practical implications &ndash; In pervasive computing environments the challenge is to create intuitive and user-friendly interfaces. Application domains that may utilize human body movements as input are surveyed here and the paper addresses issues such as culture, privacy, security and ethics raised by movement of a user\u27s body-based interaction styles. Originality/value &ndash; The paper describes the utilization of human body movements as input for interaction and interface control in pervasive computing settings. <br /
    corecore