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ABSTRACT

Unmediated Interaction: Communicating with Computers
and Embedded Devices as If They Are Not There

Brian A. Smith

Although computers are smaller and more readily accessible today than they have ever

been, I believe that we have barely scratched the surface of what computers can become.

When we use computing devices today, we end up spending a lot of our time navigating

to particular functions or commands to use devices their way rather than executing those

commands immediately.

In this dissertation, I explore what I call unmediated interaction, the notion of people

using computers as if the computers are not there and as if the people are using their own

abilities or powers instead. I argue that facilitating unmediated interaction via personaliza-

tion, new input modalities, and improved text entry can reduce both input overhead and

output overhead, which are the burden of providing inputs to and receiving outputs from

the intermediate device, respectively.

I introduce three computational methods for reducing input overhead and one for reduc-

ing output overhead. First, I show how input data mining can eliminate the need for user

inputs altogether. Specifically, I develop a method for mining controller inputs to gain deep

insights about a players playing style, their preferences, and the nature of video games that

they are playing, all of which can be used to personalize their experience without any ex-

plicit input on their part. Next, I introduce gaze locking, a method for sensing eye contact

from an image that allows people to interact with computers, devices, and other objects

just by looking at them. Third, I introduce computationally optimized keyboard designs



for touchscreen manual input that allow people to type on smartphones faster and with far

fewer errors than currently possible. Last, I introduce the racing auditory display (RAD),

an audio system that makes it possible for people who are blind to play the same types of

racing games that sighted players can play, and with a similar speed and sense of control

as sighted players. The RAD shows how we can reduce output overhead to provide user

interface parity between people with and without disabilities.

Together, I hope that these systems open the door to even more efforts in unmediated

interaction, with the goal of making computers less like devices that we use and more like

abilities or powers that we have.
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Chapter 1

Introduction

Although the last few decades have brought computers much closer to becoming small,

readily accessible devices through which to perform tasks, I believe that we have barely

scratched the surface of what computers can become. Their evolution so far — from main-

frames that only specialists could use to desktop personal computers (PCs), laptops, smart-

phones, and new form factors such as smartwatches and head-worn displays — has been

described as a movement toward increased computational intimacy [Harrison 2013] since

computers are becoming closer and closer to people’s bodies and lives, the benefit being

that computers are becoming much smaller and easier for the average person to use. Still,

computers have many of the same problems today as they did decades ago.

Almost every device lives in its own ecosystem, for example, separate from other sys-

tems and with its own unique interface for controlling it, requiring users to switch between

many different controllers and interfaces when using these devices. Smaller devices are

difficult to control and type on, and users must configure each device or system to suit

their preferences individually — a painstaking process. In general, we end up spending a

lot of our time on computers navigating to particular functions or commands rather than

executing those commands. Computers themselves may be getting more capable, but that

capability does not always extend to us.
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I believe that this problem stems from how we have grown to view computers over the

last few decades: as being intermediaries between people and the tasks they would like to

perform. People must often focus their attention on computers and use them their way to

perform their tasks successfully.

In this dissertation, I will explore what I have come to call unmediated interaction, an

interaction mentality that I believe can reduce or eliminate the burden of using computers.

Unmediated interaction is the notion of people using computers as if the computers are not

there and as if the people are using their own abilities or powers instead. An example would

be the ability to turn on a lamp or other device just by looking at it and perhaps making a

quick hand gesture instead of interacting with a physical switch as an intermediary. Devices

that facilitate unmediated interaction are ones that work to minimize the perception of

themselves as intermediaries between people and the computing tasks those people would

like to perform.

The idea that computers should strive to become transparent to the user is not new.

Rutkowski, for example, describes “the ideal relationship between user and tool” as trans-

parency, in which “[t]he user is able to apply intellect directly to the task; the tool itself

seems to disappear” [Rutkowski 1982]. Shneiderman describes direct manipulation as a

system model that can turn users’ “grudging acceptance or outright hostility” toward using

an interactive system into “glowing enthusiasm” and delight [Shneiderman 1983]. It is

the notion of a system “display[ing] a representation of the objects of interest [to the user]

and permit[ting] rapid, incremental, reversible operations through physical actions rather

than command syntax” [Shneiderman 1983] — in other words, allowing a system’s users to

perform tasks by directly manipulating graphical representations of objects in the software.
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Hutchins et al., using Laurel’s concept of first-personness [Laurel 1986] (published

subsequently) as a lens, identifies direct engagement as being an important aspect of direct

manipulation [Hutchins, Hollan, and Norman 1985]. Specifically, it is that of “provid[ing]

the user with a world in which to interact” so that “objects [ . . . ] behave as if they are the

real thing, [ . . . ] remov[ing] the perception of the computer as an intermediary” [Hutchins,

Hollan, and Norman 1985]. As Shneiderman himself explains, “[t]he trick in creating a

direct manipulation system is to come up with an appropriate representation or model of

reality” [Shneiderman 1983]. Such thinking embodies the approach that we have taken to

create these types of interfaces so far.

The difference between unmediated interaction as I am defining it and these other con-

cepts — with direct engagement being the closest in meaning — is that unmediated in-

teraction frames the concept of direct engagement in terms of today’s world of embedded

computing and the Internet of Things (IoT), in which the objects of interest to the user are

no longer mere representations of real-world objects but rather objects and devices them-

selves. The choice of how to represent these objects is largely moot because they already

exist in the real world; our focus for achieving unmediated interaction will therefore be

to reduce the overhead associated with the computing intermediary being present. I use

the term unmediated instead of direct for the same reason: when the object of interest and

the intermediate device are one and the same, users can be said to interact with the object

directly even if there is great overhead in doing so, whereas the interaction can only be

described as unmediated when the overhead is unnoticeably small. I believe that just as

direct engagement (and by extension, direct manipulation) in software can improve users’

interaction speed, effectiveness, and sense of satisfaction as Shneiderman holds [Shneider-
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man 1983], unmediated interaction with today’s embedded computing devices can improve

interaction speed, effectiveness, and users’s sense of satisfaction when using them.

1.1 The Makings of Unmediated Interaction

The point of unmediated interaction is to reduce the burden of using a device as an interme-

diary for performing a computing task as much as possible, ideally completely. The burden

occurs twice: when users provide inputs to a device (i.e., command the device), and when

users interpret outputs from the device. These moments roughly correspond to Norman’s

gulfs of execution and evaluation, respectively [Norman 2013]. Hence, in order to make in-

teracting with computers and devices unmediated, we must explore ways of reducing both

input overhead and output overhead as I will call them.

To reduce output overhead, a device should display its output immediately, continu-

ously, and in a manner that is representative of the device’s current state. The output should

also be easy for the user to understand at a glance, without having to “parse” or translate it

in order to draw insights from it. These maxims might seem obvious but in certain contexts

— particularly in cases in which devices cannot have standard displays such as screens

or must accommodate users with disabilities such as blindness — fulfilling them is a rich

research challenge.

Devices should be able reduce input overhead in three ways. First, they should be

able to eliminate the need for users to provide them with inputs whenever possible by

anticipating what that input would be. Doing so requires learning a personalized model of

users’ habits, needs, and predicted behavior. A smart thermostat, for example, should be
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able to learn a user’s preferred temperature schedule so that it can adjust the temperature

on its own without requiring anymore of the user’s input.

Second, for cases in which anticipating the users’ inputs is not possible but those inputs

are basic, the device should be able to offer an input modality such as gaze that is near

instantaneous. Going back to the smart thermostat, it should allow users who would like to

deviate from their habitual temperature schedule to indicate so and change the temperature

instantly — without the overhead of walking to the thermostat and navigating its menus —

by perhaps looking at it from across the room and making a quick hand gesture.

Finally, for cases in which anticipating the users’ inputs is not possible and those inputs

are complex, the device should offer users as painless a typing experience as possible. For

example, suppose that the smart thermostat allowed users to give their preset temperature

schedules names. In this case, naming the schedule requires complex input that cannot be

entered with just a glance, so the thermostat should make the process of typing as easy

as possible, with an on-body keyboard perhaps or at the very least a touchscreen (soft)

keyboard.

1.2 Research Questions

Each of the requirements for facilitating unmediated interactions that I just described is

the basis for a research question that I explore in this dissertation. The first three questions

relate to reducing input overhead and the last relates to reducing output overhead.

RQ 1. How can we help eliminate the need for users to enter inputs on devices completely?
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Specifically, how can we personalize a person’s experience with a computer or a device

without requiring them to input their preferences explicitly?

Personalization is key to computers being able to understand and anticipate what users

will want in different contexts. It is also the most useful way for devices to offer unmedi-

ated interaction because it can preclude users from having to enter inputs altogether. Rec-

ommendation systems are becoming a fact of life and are present in services ranging from

Amazon to Netflix. The key challenge is to personalize a user’s experience or recommend

experiences for the user based on experiences that they have already had, without requiring

any explicit input from the user.

As an example, we will soon live in a world in which people can shop among

many different types of virtual reality (VR) experiences on demand in pay-per-view or

Netflix-type marketplaces. These experiences could include going on tours, going to the

arcade, playing escape room puzzles, and visiting theme park attractions. When that

happens, finding experiences that a person would like based on the history of experiences

that they liked before will be difficult. We will explore how to do this in the context

of video games — a domain in which we can track what users do completely — using

nothing more than the controller inputs that they used to play the game anyway.

RQ 2. In cases where it is not possible to anticipate users’ inputs but the inputs themselves

are basic, how can we make inputting nearly instantaneous?

Often, the only input we need to give a device is a simple command such as turning the

device on or off or asking the device to display the previous or next item in a list. For these

types of interactions, navigating to the particular device that we would like to command
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is the most time-consuming part. Light switches, remote controls, and settings menus in

apps and programs are just a few examples. If computers and devices could sense attention

themselves so that we could interact with them by looking at them, using them would be

much less cumbersome.

A promising and very natural way of enabling computers and devices to sense attention

is to incorporate gaze tracking systems into them. The idea has not gained much ground,

however, because gaze tracking systems suffer from many limitations: they only work at

close range (80 cm or less), require each user to undergo a calibration process, are not

robust to varying head poses, and they are active, meaning they require special infrared

illumination hardware. As a result, I explore — along with my colleagues — whether

there is a better way for computers to sense attention, and work to develop a technique for

doing so that does not suffer from these limitations.

RQ 3. In cases where it is not possible to anticipate users’ inputs and the inputs themselves

are complex, how can we make typing — specifically on small devices — as painless as

possible? Specifically, how can we make typing on small devices such as smartphones as

fast and as accurate as typing on large devices such as desktop PCs?

Perhaps the central usability problem pertaining to smartphones, smartwatches, and

other small devices is that of entering text. While button presses and touchscreen gestures

for scrolling, zooming, and switching applications can get users far in their interactions

with those devices, typing is inevitable. Touchscreen typing in particular is slow and prone

to errors and typos.

Gesture typing, the concept of drawing word gestures on a touchscreen by swiping
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to connect words’ letters, has been proven to be faster than touch typing but suffers from

a major drawback not present in touch typing: word gesture ambiguity. Many words

such as “or” and “our” have identical gestures on the Qwerty keyboard, and many more

such as “pretty” and “prey” have very similar gestures, all because users must swipe over

unintended letters to reach intended ones. We will explore how we can modify existing

gesture typing keyboards to make typing much faster and more error-free.

RQ 4. How can we reduce output overhead to accommodate users with disabilities? Specif-

ically, how can we make it possible for people who are blind to play video games — a

real-time visual interactive system — without slowing down the interaction?

As mentioned earlier, people spend much of their time using today’s devices on just

navigating to particular functions or commands rather than executing those commands.

The situation is bad already but is even worse for people with disabilities, who must often

use specialized interfaces or devices that are much slower and more cumbersome to use

than what others can use.

Providing user interface parity between people with and without disabilities is chal-

lenging; user interface designers lose some or all of the channels for providing inputs to

or getting outputs from a computer system. Designers lose some of the expressiveness or

“throughput” that they can achieve via a visual display when designing for users who are

visually impaired, for example, and lose that type of display entirely for users who are

blind. Likewise, they lose input throughput when designing for users with motor impair-

ments. As a result, I will explore how to achieve as similar a throughput as possible using

a challenging domain — making racing games equally accessible to people who are blind
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— as a case study.

1.3 Contributions

This dissertation contributes to human–computer interaction in three primary ways. First,

we describe the notion of unmediated interaction, which is when computing devices allow

users to perform tasks with them as if the devices themselves are not there and as if the

user is using their own abilities or powers instead. Second, we argue that devices must

reduce both input overhead and output overhead to near-zero levels to facilitate unmediated

interaction. In particular, input overhead can be reduced by eliminating the need for users to

enter inputs altogether, by making the process of entering basic inputs nearly instantaneous,

and by making typing complex inputs as painless as possible.

Last, and most significantly, we explore each of the aforementioned methods for re-

ducing input overhead — personalization for eliminating the need to provide inputs, new

input modalities for making basic input nearly instantaneous, and less laborious typing for

complex input — and do so in a computational manner. We do so by performing input

data mining on users’ inputs to achieve personalization, by developing a new computer

vision approach for sensing eye contact to achieve near-instantaneous input, and by opti-

mizing touchscreen keyboards for gesture typing to make typing less laborious. We also

contribute a system for reducing output overhead by providing a computational representa-

tion of a video game’s current state to blind players.

I summarize each contribution in detail below. Each of them brings us closer to the

goal of truly unmediated interaction, making computers less like devices that we use and
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(a) World 3-2 (b) World 5-9 (c) World 5-Fortress2 (d) Hammer Bros.

Figure 1.1: Stage recommendations from controller inputs. Although these stages look
quite different at first glance, they all share the same primary type of gameplay: jump-
ing around flying enemies or projectiles. Here we see (a) Flying Cheep-Cheeps, (b) Fire
Chomps and their fireballs, (c) Podoboos, and (d) Hammer Bros. Super Mario Bros.
3 © Nintendo.

more like abilities or powers that we have.

C 1. A method for mining controller inputs to recognize individual video game players and

personalize the experiences for them:

Here, I show how to make it possible for a system to find experiences that a person

would like based on ones that they liked before by analyzing the content of those experi-

ences: what having those experiences entails. This problem is common in the realm of

video games, which I use as a domain. Super Mario Maker for the Wii U, for example, fea-

tures a marketplace with hundreds of thousands of player-created levels that are not curated

in any way, making it difficult for players to find levels that they might enjoy playing. The

method that I contribute, which is to perform data mining on input words that are formed

from players’ controller inputs, can be used as the basis for a Netflix-type recommendation

system for video games and virtual reality experiences.

The method itself involves observing a player’s controller inputs (raw actions) as

they play a video game level and using advanced statistical inference techniques to infer
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✓
✓×

Figure 1.2: Gaze locking. We propose the idea of sensing eye contact directly from an
image in a passive, appearance-based manner. The main idea is to focus on gaze locking (a
binary problem) rather than gaze tracking (a continuous problem) and exploit the special
appearance of direct eye gaze. Our approach can be used to facilitate a wide range of
applications.

information about both the game level and the player themselves from those inputs.

Regarding the game level, the system infers the types of action that it fosters, such as

puzzle solving and jumping on narrow platforms, and uses that information to recommend

levels that play similarly. Figure 1.1 shows an example of this. Regarding the player

themselves, the system can learn their unique playing style and subsequently recognize

them in just 20 seconds of gameplay. Neither form of understanding is obvious to a human

observer, but the system can nonetheless infer these from the nuances of players’ controller

input behaviors.

C 2. A gaze “locking” system for interacting with objects just by looking at them:

First, I propose the idea of simplifying the continuous gaze tracking problem into a

binary gaze “locking” problem: that is, detecting eye contact instead of exact gaze direction.

I then developed a computer vision system that can sense attention by detecting eye contact
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(a) Qwerty (b) GK-D (c) GK-T

Figure 1.3: Keyboards optimized for gesture typing. The ‘o’ key is shaded to mark the
beginning of the word gestures for “or” (white) and “our” (black). (a) The Qwerty key-
board suffers from the problem of gesture ambiguity. Many pairs of words (such as “or”
and “our” shown here) share the same gesture on Qwerty. (b) The GK-D keyboard (“Ges-
ture Keyboard—Double optimized”) is the best compromise for gesture clarity and gesture
speed. Here, the gestures for “or” and “our” are noticeably different. (c) The GK-T key-
board (“Gesture Keyboard—Triple optimized”) is the best compromise for gesture clarity,
gesture speed, and Qwerty similarity. Again, the two gestures are noticeably different.

directly from images and video. It exploits the special appearance of direct eye gaze, which

is a subtle difference from slightly averted gaze. The resulting system, shown in Figure 1.2,

is calibration-free, requires no extra hardware, and is over 90% accurate at detecting eye

contact from a distance of 18 meters.

The idea came from noticing the difference between how people seem to sense

attention compared to how gaze tracking systems sense attention. People have dif-

ficulty determining the angle that someone else is looking at but seem to be very

good at determining when someone else is looking at them. Moreover, most important in-

teractions between people involve determining whether the other person is looking at them.

C 3. A touchscreen keyboard optimized for gesture typing:

With this contribution, I show how to modify existing gesture typing keyboards to make

typing on small devices much faster and more error-free than is currently possible. Specif-

ically, I explore modifying Qwerty, the standard keyboard layout, to make word gestures
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shorter and more distinct without making users have to learn how to type all over again.

To see if a touchscreen keyboard layout can be changed in a beneficial and easy-to-learn

way, I developed three models for predicting a given keyboard layout’s worth. The models

were: (1) gesture clarity, which models how distinct a keyboard layout’s word gestures are;

(2) gesture speed, which models how quickly users can type on a given keyboard layout

based on human motor control theory; and (3) learnability, which models how easy a given

keyboard layout would be to learn. By performing a rigorous optimization procedure using

these models, I found that error rates can be reduced by 52% over Qwerty. Figure 1.3

shows two keyboards optimized for gesture typing.

C 4. The racing auditory display (RAD):

The racing auditory display, or the RAD for short, is an audio system makes it possible

for people who are blind to play the same types of racing games as sighted players can, with

a similar speed and sense of control as what sighted players have. It works with a standard

pair of headphones and comprises two novel sonification techniques: the sound slider for

understanding a car’s speed and trajectory on a racetrack and the turn indicator system for

alerting players to the direction, sharpness, length, and timing of upcoming turns. Figure

1.4 illustrates the RAD.

The RAD shows how computation and clever system design can combine to allow

users with disabilities — in this case, users who are blind — to control computers with a

throughput very similar to users without disabilities. The RAD’s focus is on achieving out-

put (display) parity compared to what sighted players receive, and it does so by presenting

players who are blind with stimuli that allows them to make the same moment-to-moment
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Figure 1.4: Playing racing games without sight. A study participant who is congenitally
blind playing a racing game uses the racing auditory display (RAD), which outputs spatial-
ized sound through a standard pair of headphones. Using the RAD, players can understand
their car’s pose, their car’s speed, and the direction, sharpness, length, and timing of up-
coming turns.

decisions that sighted players make while they race.

More specifically, the RAD distills many pieces of information — the car’s lateral

position on the track, its heading with respect to the track’s, its speed, the track’s width,

whether the track is about to immediately turn, and more — into a single measure that is

no less relevant to the process of racing than all of that information put together. Moreover,

it does so in a way that gives players the freedom to decide how riskily they would like to

race: whether they should cut corners by racing close to the track’s inside edge or stay safe

by racing closer to the track’s center. I liken this process of distilling the many pieces of

information to a more compact, salient form to that of dimensionality reduction in machine

learning and statistics.
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Chapter 2

Related Work

Given the varied nature of this dissertation work, this section is organized around each con-

tribution. The work on mining controller inputs to understand gameplay and personalize

games for players builds on game analytics systems (Section 2.1) as well as work in prob-

abilistic topic modeling (Section 2.2). The gaze locking system builds on work in gaze

estimation and tracking (Section 2.3), gaze perception (Section 2.4), and gaze-based inter-

active systems (Section 2.5). The touchscreen keyboard optimized for gesture typing builds

on existing stroke-based virtual keyboards (Section 2.6) and keyboard layout optimization

work (Section 2.7). The racing auditory display builds on earlier audio navigation sys-

tems (Section 2.8) and earlier blind-accessible racing games and driver assistance systems

(Section 2.9).

2.1 Game Analytics

Game analytics research is focused on developing new ways to extract meaningful infor-

mation about players and games. This information includes understanding the players

themselves, what is happening in the game, and to what extent players are enjoying the

game. Together, this information allows game developers to mold game content to players’

tastes, perform matchmaking in multiplayer games, discover game exploits and illicit ac-
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tivity, and refine their games to create a desired experience for the player. El-Nasr et al.’s

recent book [El-Nasr, Drachen, and Canossa 2013] provides a comprehensive review of the

field.

To understand the players themselves, game analytics systems compute metrics from

logs of user-initiated events (UIEs), which record information about what is happening in

the game such as items used, enemies defeated, and causes of death. Such an approach

is inspired by how Hurst et al. [Hurst, Hudson, and Mankoff 2007] determine a software

user’s skill level from metrics such as the depth of the user’s menu selections and the av-

erage velocity of the user’s mouse cursor during those selections. Likewise, Buckley et

al. [Buckley, Chen, and Knowles 2013] use mouse- and keyboard-based metrics to deter-

mine players’ skill levels. From the UIE-based metrics, the game analytics systems can

predict when players will stop playing [Mahlmann, Drachen, Togelius, Canossa, and Yan-

nakakis 2010]; cluster players based on skill level; and cluster players into behavioral per-

sonas such as pacifists, puzzle solvers, and assassins [Drachen, Canossa, and Yannakakis

2009; Drachen, Sifa, Bauckhage, and Thurau 2012; Gow, Baumgarten, Cairns, Colton, and

Miller 2012]. They can also discover illicit behavior such as game bots [Kang, Woo, Park,

and Kim 2013] and real money trading (RMT) [Itsuki, Takeuchi, Fujita, and Matsubara

2010] by finding outliers from the clustering.

To understand how players are experiencing a game, game analytics systems combine

UIE logs with attitudinal data from surveys and, sometimes, with gameplay videos [Kim,

Gunn, Schuh, Phillips, Pagulayan, and Wixon 2008] or affect measures [Yannakakis and

Togelius 2011]. Together, the data form records of which parts of a game work well and

which parts of a game do not. From these records, developers can learn which game param-
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eters need to be tuned [Kim, Gunn, Schuh, Phillips, Pagulayan, and Wixon 2008; Pedersen,

Togelius, and Yannakakis 2009; Shaker, Yannakakis, and Togelius 2011] and can even tune

them on the fly [Hastings and Stanley 2010; Yannakakis and Hallam 2009; Yannakakis and

Togelius 2011].

Our key observation is that today’s game analytics systems can only reveal information

about games that is expressible in terms of UIEs. If we depict video games as Moore finite

state machines (FSMs) [Moore 1956] as shown in Figure 3.1, we can see that this type of

information can only be found at the edge circled in purple in that figure. Other types of

information — such as the nuances of each player’s control styles, the types of action that

a game fosters, and the extent that each game level fosters each type of action — remain

out of reach of today’s systems. By observing the player’s controller inputs — the edge

circled in green in Figure 3.1 — we can begin to understand and describe these other types

of information in a quantitative way.

2.2 Probabilistic Topic Modeling

Probabilistic topic modeling is concerned with developing unsupervised algorithms for

discovering the topics or themes present in a corpus of documents. Latent Dirichlet alloca-

tion (LDA) [Blei, Ng, and Jordan 2003] is the simplest topic model and was first used to

analyze text corpora such as news articles and scientific papers. Over the last decade, LDA

has been used to infer topics from source code [Lukins, Kraft, and Etzkorn 2008; Maskeri,

Sarkar, and Heafield 2008], genes [Pritchard, Stephens, and Donnelly 2000], speech and

audio [Chien and Chueh 2008; Kim, Narayanan, and Sundaram 2009], and images [Blei
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and Jordan 2003; Sivic, Russell, Zisserman, Freeman, and Efros 2008]. It has also been

used to detect spam and fraud [Bíró, Siklósi, Szabó, and Benczúr 2009; Xing and Giro-

lami 2007]. Blei [Blei 2012] provides an excellent overview of topic modeling and its

applications.

The present work is, to the best of our knowledge, the first to extend topic modeling to

the realms of user inputs and gameplay. In doing so, we solve two challenges. The first

challenge is mapping input streams to discrete words that represent gameplay primitives

and are compatible with probabilistic topic models; we solve this with our concept of

input words (Section 3.1). The second challenge is isolating the effect of a player’s play

style from our understanding of the gameplay types present in a game; we solve this by

proposing the player–gameplay action (PGA) model (Section 3.3), a novel extension of

LDA.

2.3 Gaze Estimation and Tracking

Both gaze estimation and gaze tracking (gaze estimation at video rate) have been studied

extensively in the past few decades. Hansen and Ji [Hansen and Ji 2010] and Morimoto and

Mimica [Morimoto and Mimica 2005] provide excellent surveys of earlier work. Ideally, a

gaze tracking system should be accurate, passive, non-intrusive, calibration-free, and robust

to distance and head pose [Morimoto and Mimica 2005]. Unfortunately, current systems

maintain accuracy at the expense of other qualities—they are predominantly active systems

that work only at close range (80 cm or less).

For example, Morimoto et al.’s [Morimoto, Amir, and Flickner 2002] and Beymer and
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Flickner’s [Beymer and Flickner 2003] feature-based techniques are accurate and robust

to head pose, but are active, require calibration, and work only at close range. Baluja

and Pomerleau’s [Baluja and Pomerleau 1994] and Tan et al.’s [Tan, Kriegman, and Ahuja

2002] appearance-based techniques are accurate and calibration-free, but are active, sensi-

tive to head pose, and work only at close range. Hansen and Pece’s [Hansen and Pece 2005]

commercial off-the-shelf (COTS) system is passive and easy to calibrate, but is sensitive

to head pose and again works only at close range. Nishino and Nayar’s method [Nishino

and Nayar 2004] is passive and produces an image of what a person is looking at, but re-

quires a high resolution image of the eye to provide useful results. Stiefelhagen et al.’s eye

tracker [Stiefelhagen, Yang, and Waibel 1997] is passive and boasts an accuracy of up to

1.3◦, but requires a fixed head pose and was only tested on four users at close range. They

also developed an earlier gaze tracking system [Stiefelhagen, Yang, and Waibel 1996] that

tracks only head pose and not eye gaze direction. The gaze locking approach that we de-

velop in Chapter 4, by contrast, can be applied to any image (including those from COTS

products or even from the Web) and is accurate, passive, non-intrusive, calibration-free,

and robust to distance and head pose.

2.4 Gaze Perception

A number of studies evaluating people’s perception of gaze have been performed, starting

with Gibson and Pick’s study [Gibson and Pick 1963] using six subjects and an in-person

gazer. It concludes that, at 2 m, people sense eye contact when others are looking between

the left and right edges of their face, but the authors urge a repeat of the experiment using
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a model (e.g., a set of photographs) as stimulus instead of a live person. Cline’s in-person

study [Cline 1967] using a half-mirror incorporates several head poses and eye occlusion,

confirming Gibson and Pick’s eye contact results and measuring errors in the perception of

gaze direction in general. Gamer and Hecht [Gamer and Hecht 2007] explore the effects

of distance, eye occlusion, and the presence of a second head as well, while Martin and

Jones [Martin and Jones 1982] examine the effects of distance and lighting intensity from

a signal detection standpoint. Symons et al. [Symons, Lee, Cedrone, and Nishimura 2004]

focus on triadic eye gaze acuity (the ability to judge where someone is looking in space)

rather than dyadic eye gaze acuity, and verify that digital photographs are a good substitute

for in-person gazers. Gemmell et al. [Gemmell, Toyama, Zitnick, Kang, and Seitz 2000]

and Chen [Chen 2002] explore how the design of videoconferencing systems can promote

gaze awareness without using special-purpose hardware.

2.5 Gaze-Based Interactive Systems

The pursuit of more natural, ubiquitous user interfaces has been an important goal for the

HCI community. A new class of user interfaces, called attentive user interfaces, aims to

facilitate more social interactions between users and devices by treating users’ attention as

a valuable resource [Vertegaal 2003]. In doing so, they must (a) sense users’ attention, (b)

make inferences about what users want to do, and (c) negotiate “turns” amongst themselves,

as Vertegaal and Shell describe [Vertegaal and Shell 2008].

To date, however, these interfaces have been limited by current gaze tracking tech-

niques, making it difficult to sense users’ attention. Although sensing attention through eye
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contact alone would be ideal, many systems incorporate either gesture-based control [Bolt

1980], manual input [Zhai, Morimoto, and Ihde 1999], or intrusive head-mounted cam-

eras [Smith, Vertegaal, and Sohn 2005] as a workaround. Shell et al., however, did in fact

propose standalone eye contact sensors [Shell, Vertegaal, Cheng, Skaburskis, Sohn, Stew-

art, Aoudeh, and Dickie 2004], but they use active infrared illumination and interfere with

each other if placed within 80◦ of visual angle of each other. They extend Morimoto et

al.’s PupilCam design [Morimoto, Koons, Amir, and Flickner 2000] (which locates pupils

by reflecting infrared light on them) by comparing the location of a corneal glint (i.e., the

first Purkinje image) with that of the pupil reflection. The gaze locking technique that we

develop in Chapter 4, by contrast, is completely passive, is not prone to interference, and

is accurate at long range. We compare the two techniques directly in Section 4.4.

Omron’s commercial OKAO Vision system [Omron 2012] includes a passive gaze

tracker, and Ye et al. [Ye, Li, Fathi, Han, Rozga, Abowd, and Rehg 2012] combine this with

an active and intrusive head-mounted camera in order to determine mutual gaze (simultane-

ous eye contact) between the person wearing the camera and another person. However, Ye

at al. find OKAO Vision’s gaze tracker to be inaccurate and sensitive to head pose. Their

resulting system has an MCC of 0.72, was only tested on one pair of subjects, and was

not shown to work over long distances. Our gaze locking approach is accurate, passive,

non-intrusive, robust to head pose, and achieves an MCC of over 0.83 at distances of 18 m.
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2.6 Stroke-Based Virtual Keyboards

Cirrin [Mankoff and Abowd 1998] and Quikwriting [Perlin 1998] are the first virtual key-

boards designed specifically for word-level unistroke text entry. In both of those keyboards,

users trace gestures that alternate from the center of a radial layout to one or more zones

around the center (representing characters), with one articulation per character. However,

since these gestures are completely determined by character layout without statistical pat-

tern recognition, the letter layout has to be one-dimensional and most word-gestures de-

fined on these layouts are very complex.

SHARK [Zhai and Kristensson 2003] and SHARK2 [Kristensson and Zhai 2004] intro-

duced gesture typing as we know it today. Gesture typing is also known as shape writing

and the word-gesture keyboard paradigm. In these systems, users gesture words by swiping

from letter to letter on a virtual Qwerty keyboard. The word gestures are much simpler than

they are on Cirrin and Quikwriting, but since Qwerty has no central “dead zone” for strokes

to cross from character to character, users must stroke over unintended characters to reach

intended ones, causing an inherent ambiguity in word gestures compared to Qwerty (see

Figure 5.1(a)). Even with sophisticated models for predicting users’ intended words, Bi et

al. [Bi, Chelba, Ouyang, Partridge, and Zhai 2012] found that the error rate from gesture

typing is 5–10% higher than that from touch typing.

2.7 Keyboard Layout Optimization

As has been widely published [Rick 2010; Yamada 1980; Zhai, Hunter, and Smith 2002],

Qwerty was designed to reduce jamming in mechanical typewriters by placing common
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digraphs (consecutive letter pairs) on opposite sides of the keyboard. Though this works

well for two-handed or two-finger typing, researchers have long acknowledged that this

is unsuitable for one-finger typing [Getschow, Rosen, and Goodenough-Trepagnier 1986;

Lewis, Kennedy, and LaLomia 1999]. There have been many proposed optimized key-

board layouts over the years for both bimanual [Oulasvirta, Reichel, Li, Zhang, Bachyn-

skyi, Vertanen, and Kristensson 2013] and unimanual typing [Bi, Smith, and Zhai 2012;

Bi, Smith, and Zhai 2010; Dunlop and Levine 2012; MacKensie and Zhang 1999; Rick

2010; Zhai, Hunter, and Smith 2000; Zhai, Hunter, and Smith 2002]. Most of these layouts

were optimized for touch typing, but the Square OSK layout [Rick 2010] was optimized

for stroking.

We should emphasize, however, that existing optimized layouts are predominantly op-

timized for typing speed — essentially minimizing finger travel distance — and that opti-

mizing for word gesture clarity is an entirely different, and often conflicting, problem. As

an example, the Dvorak layout arranges common letters in the home row to make biman-

ual typing faster [Yamada 1980], but this also makes word gestures more similar (and less

unique, hurting gesture clarity) since many paths between keys become straight lines on

the home row. In Chapter 5 we optimize for word gesture clarity along with gesture typing

speed and Qwerty similarity.

As another example, the ATOMIK [Zhai, Hunter, and Smith 2002] and Square

ATOMIK [Zhai and Kristensson 2010] keyboards were optimized for speed with a bias

for having keys appear in alphabetical order. Although these keyboards were tuned so that

the gestures for 17 common words were short and memorable, they were not specifically

optimized for gesture clarity. These keyboards, in fact, predate gesture typing altogether.

23



Other examples include Quasi-Qwerty [Bi, Smith, and Zhai 2010], which was optimized

for speed and familiarity, and the Sath keyboards [Dunlop and Levine 2012], which were

optimized for those metrics plus tap interpretation clarity for improved spell checking.

Few optimized layouts have gained widespread adoption. This is likely due to both

learnability and the complexity of tapping input: users may type with one, two, or even ten

fingers, and a good layout must accommodate each. The increasing popularity of gesture

typing, however, may offer a better chance at introducing new layouts since most users ges-

ture words with one finger and our optimized layouts significantly improve both accuracy

and speed over Qwerty.

2.8 Audio Navigation Systems

Audio navigation systems help people who are blind navigate on foot from one place to

another in the real world. They consist of a GPS tracker, a computing device, and a pair

of headphones. Perhaps the most archetypal examples are audioGPS [Holland, Morse, and

Gedenryd 2002] and SWAN [Wilson, Walker, Lindsay, Cambias, and Dellaert 2007] (short

for System for Wearable Audio Navigation), which both guide users from their current

location to their destination via a sequence of waypoints that they must reach along the

way. The user must follow a sound known as an acoustic beacon to travel from waypoint

to waypoint until they reach their destination.

Most research in this area has focused on how to perfect these types of systems, such

as discovering which type of sounds are easier to localize and follow [Tran, Letowski,

and Abouchacra 2000] or how large each waypoint’s “capture radius” should be [Walker
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and Lindsay 2004; Walker and Lindsay 2006]. These systems, however, are unsuitable

for racing games for two reasons. First, they assume that the user is walking and has the

flexibility to stop and rotate to center the acoustic beacon in front of them. Second, using

these systems amounts to simply following orders, while video games should afford players

a high sense of control over what they are doing.

2.9 Blind-Accessible Racing Games

A number of driving systems and racing games currently employ mechanisms to assist

drivers and players who are blind. Here, we will survey three blind-accessible video games

and a blind driver assistance system, each employing a different user interface for driving

a car on a virtual track. We can only show screenshots of the latter two systems because

the first two do not have graphics.

Blindfold Racer (iOS, 2014)

Blindfold Racer [Shultz 2014a] is an audio racing game developed on iOS by Marty Schultz

as part of his series of blind-accessible smartphone games. In Blindfold Racer, players

steer by rotating their mobile device left and right as they would a steering wheel. The

goal is to drive to the end of a track without hitting fences on the track’s sides. The player

can also adjust their speed to three fixed values by swiping up or down on their device’s

touchscreen. The game outputs sound in stereo and pans a music track between the left and

right channels as a means of displaying the car’s lateral position on the track. It will play

exclusively in the left channel if the player’s car is adjacent to the left side of the track and
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vice-versa.

Treasure and animals are indicated using repeating audio samples that grow louder

as the player approaches them. The player should try to center the sounds of treasure

between the left and right channels to collect the treasure, and they should keep the sounds

of animals panned to the left or right to avoid hitting the animals.

With respect to Figure 6.2, we would classify Blindfold Racer as an efficiency-

preserving game. While Blindfold Racer moves at a pace that is just as fast as racing games

with graphics, the three elements of player intention as described in the previous section

are limited in Blindfold Racer compared to racing games that sighted players would play.

In Blindfold Racer, it is not possible for the player to anticipate upcoming turns, accel-

erate and decelerate in an analog manner, or perform higher level strategies such as cutting

corners. In fact, the developer explains that there is no concept of vehicle physics, that

tracks are modeled using a simplified geometry that requires straightaways to be in the

same direction and all turns to be less than 90° [Shultz 2013], and that car steering is sim-

plified so that the car will move in that straightaway direction when the mobile device is

tilted to the center position [Shultz 2014b].

Mach 1 (PC, 2003)

Mach 1 [audiogames archive 2015] is an audio-based racing game published on PC by Jim

Kitchen eleven years before Blindfold Racer was released. The player’s goal is similar that

from Blindfold Racer, but in Mach 1 there are no obstacles present on the track. Players

accelerate, decelerate, and steer using a USB steering wheel or controller joystick, and they
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can press a button to have a voice speak their current lateral position on the track: a number

from 1 to 100 where 1 represents the track’s left edge, 100 the right edge, and 50 the center.

The player should tap the button repeatedly to monitor their lateral position continuously.

As the player approaches an upcoming turn, the game will loop a predetermined sound

effect in the left or right stereo audio channel depending on the direction of the turn. The

sound effect starts playing quietly but grows louder as the player approaches the beginning

of the turn. The game will play a thumping sound as the player reaches the turn, and the

process will repeat to signify the end of the turn: a random looping sound effect growing

louder followed by a thump.

Unlike Blindfold Racer, Mach 1 allows players to anticipate upcoming turns and accel-

erate and decelerate in an analog manner. Still, players do not have full freedom to “read

the road” since it is difficult to determine from the increasing volume effect exactly when

a turn will begin and the game only alerts players of a single upcoming turn or straight-

away at a time. As with Blindfold Racer, there is no concept of vehicle physics, tracks are

modeled using a simplified geometry (so there is no concept of cutting corners), and car

steering is simplified so that the car will move in a straightaway direction whenever the

player lets go of the steering.

Top Speed Series (PC, 2004)

The Top Speed [Ruijter, Ruijter, Duvigneau, and Loots 2004] series is a series of racing

games released on PC by a team of four developers. The goal for players is the same as in

Blindfold Racer and Mach 1: to reach the end of the track as quickly as possible without
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hitting the sides. Top Speed 2 and 3 support multiplayer races, though the cars cannot

collide with each other or interact with each other in any way. Players steer with a joystick

controller as in Mach 1.

Like Blindfold Racer, a sound is panned between the left and right channels as a means

of displaying the player’s lateral position on the track. In the Top Speed series, however,

that sound is the sound of the player’s car’s engine. A speech clip saying a phrase such as

“easy left” or “hard right” will play when the player enters a turn. These phrases describe

the direction and sharpness of the turn, and the player must react quickly by steering the

appropriate amount. As with Blindfold Racer and Mach 1, there is no concept of vehicle

physics, tracks are modeled using a simplified geometry, and car steering is simplified so

that the car will move in a straightaway direction when the player lets go of the steering.

Sucu and Folmer’s Haptic Steering Interface

Sucu and Folmer’s haptic steering interface [Sucu and Folmer 2014] is a driver assistance

system published as a response to the National Federation of the Blind’s Blind Driver

Challenge [National Federation of the Blind 2013], an initiative to make it possible for

people who are blind to drive a car by themselves. The driver steers with a steering wheel

and has rumble motors (in this case, PlayStation Move controllers) attached to the back of

their hands.

At each time step, the system computes the location of what Sucu and Folmer call a

target point, which is the point on the median of the track a fixed distance ahead of the

driver’s current position. If the car’s current heading points too far away from the target
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point’s direction, the system will vibrate the left or right rumble motors. The analogy is

that of a rumble strip on the side of a highway: if the vibration is felt on the right the player

should steer to the left and vice-versa.

Although the authors state that making a racing game with this system is promising

future work, we feel that its current goal as a driver assistance system runs contrary to

supporting intention. When drivers use this system, they must follow its orders as soon as

those orders are felt and nothing more. Our interface, by contrast, is designed to support

player intention.
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Chapter 3

Mining Controller Inputs to Understand Gameplay

In many ways, personalization is key to helping computers help people. By understanding

each person’s preferences and abilities and adapting to them, computers should be able to

give each person experiences that feel tailored to them individually, making each person

feel as if the world is designed for them.

In this section, we explore whether it is possible to personalize a user’s experience

or recommend experiences for the user based on experiences that they have already had,

without requiring any explicit input from the user. More specifically, we develop a system

that can analyze the content of experiences — what having those experiences entails — to

find new experiences that are similar. We can think of this as categorizing experiences and

in an automatic way.

We explore how to do this in the context of video games since we can track what a user

does completely in this domain using nothing more than the controller inputs that they used

to play the game anyway. The resulting system can be used as the basis for a Netflix-type

recommendation system for video games and virtual reality experiences as well as a way

for game developers to analyze the experiences that players are having in their games.
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Figure 3.1: Games as Moore finite state machines [Moore 1956]. Each node and edge can
be observed to learn about different aspects of how players are experiencing a game. Game
analytics as we know it today is based on event logs triggered by state transitions: the edge
circled in purple. We show how to use the player’s raw controller inputs — the edge circled
in green — to understand and describe gameplay in a quantitative way. Our methods can
complement those based on event logs and those based on the game’s output to paint a
fuller picture of the experiences that players have with games.

Controller Inputs as a Gameplay Signal

Today’s game analytics systems use event logging code to help developers understand how

players are experiencing their games. By recording many aspects of what is happening in

games — items used, enemies defeated, causes of death, and much more — event logs can

help developers discover game sections that are too difficult [Kim, Gunn, Schuh, Phillips,

Pagulayan, and Wixon 2008], cluster players into meaningful types [Drachen, Canossa, and

Yannakakis 2009; Drachen, Sifa, Bauckhage, and Thurau 2012; Gow, Baumgarten, Cairns,

Colton, and Miller 2012], predict when players will stop playing [Mahlmann, Drachen,

Togelius, Canossa, and Yannakakis 2010], and more to varying degrees of success. They

cannot, however, capture other information about gameplay that may be of interest to de-
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velopers — information such as whether there is enough variety in the action from level to

level and whether particular game levels feature the appropriate style of gameplay. Indeed,

the concept of gameplay itself is difficult to define and quantify.

Here, we will show how to use a very different source of information — the player’s

raw controller inputs — to understand and describe gameplay in a quantitative way. The

key idea is to form input words from the stream of controller inputs to represent gameplay

primitives: sequences of inputs occurring within small periods of time. We can then treat

the problem of describing the types of gameplay — or action — in a game as a case of

probabilistic topic modeling [Blei 2012], in which the “topics” are gameplay types, the

“documents” are play sessions for sections of the game, and the “words” are input words.

We show that just as topic models such as latent Dirichlet allocation (LDA) [Blei, Ng,

and Jordan 2003] can discover the prevailing topics in a corpus of news articles — topics

such as science and politics — they can discover the main types of action in a video game

when applied to streams of controller inputs. In Super Mario Bros. 3 [Nintendo 1988], a

classic platforming game that we use as a case study, making precise running jumps onto

narrow platforms and jumping around flying enemies and projectiles are two such game-

play types. We also show that just as topic models output each article’s topic composition

in the case of news articles — 30% science and 70% politics, for example — they output

each game level’s gameplay type composition in the case of controller inputs. Moreover,

we can discover all of this in an unsupervised manner. Developers can use this information

to verify that their levels feature the appropriate style of gameplay and to recommend levels

with gameplay that is similar to levels that players like.

The types of gameplay inherent in a game are not the only factors that determine the
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controller inputs entered by the player, however. Other factors such as randomness within

the game and the choices that players make can affect the controller inputs as well. In

the latter case, a player might prefer fighting to sneaking when given the choice, so when

they are playing a level that gives both choices they are more likely to enter input words

that are fighting-related than sneaking-related. With this insight we developed the player–

gameplay action (PGA) model, a novel extension of LDA that allows us to learn what

gameplay types are present in a game in a way that is independent of each player’s play

style. We train a player recognition system on the PGA model’s output to verify that its

discoveries about gameplay are in fact independent of each player’s play style. Our system

can recognize a player from a database of eight players with over 90% accuracy in about

20 seconds of playtime, even for levels that the player has never played before and even

when the controller is passed from another player.

Games as Moore Finite State Machines

Our choice to mine controller inputs and not some other signal to understand gameplay can

be best explained by thinking of video games as Moore finite state machines (FSMs), which

we depict in Figure 3.1. Here we see the feedback loop from which players’ experiences are

generated: the graphics and sound that are output by the game influence the player’s next

action. By observing different nodes and edges in the figure, we can learn about different

aspects of the experiences that players have with games. Affect measures such as player

surveys or skin conductance observe the Player node, for example, while vision and audio

processing algorithms observe the Graphics and Sound nodes.
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Figure 3.2: Nintendo Entertainment System (NES) controller. It features eight buttons: Up
(U), Down (D), Left (L), Right (R), START (S), SELECT (E), B (B), and A (A). In Super
Mario Bros. 3, the focus of our case study, Left and Right move Mario; the A button makes
Mario jump, swim, float, or fly; and the B button makes Mario accelerate, throw fireballs,
and open treasure chests. The START button pauses the game and the SELECT button
moves the cursor in menu screens.

Today’s game analytics systems observe the edge circled in purple, where games transi-

tion from state to state and generate event logs. But the point at which the player acts upon

the game, and where the player’s actions are most salient, is the edge circled in green: the

player’s controller inputs. By observing this edge, we can begin to understand and describe

gameplay in a quantitative way. Of course, understanding gameplay fully would only be

possible if we also measured what players are feeling in response to the game’s output. We

therefore view our focus on controller inputs as a first step towards making the evaluation

of gameplay more objective. The methods that we present can complement those based on

event logs and those based on the game’s output to paint a fuller picture of the experiences

that players have with games.
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3.1 Defining the Concept of Input Words

Suppose we have a continuous stream of controller inputs as shown in Figure 3.3. Each row

corresponds to a different button on the Nintendo Entertainment System (NES) controller

(shown in Figure 3.2), and shaded bars mark the intervals when the buttons are pressed.

Such a stream is a rich signal of what the player is doing, but we must somehow extract

units of gameplay from this signal for it to be useful. How, then, can we represent these

inputs in a way that encapsulates a meaningful notion of gameplay and is compatible with

probabilistic inference methods?

This problem is nontrivial, and several properties of input streams make the problem

even more challenging. First, input streams are noisy: players often press buttons on acci-

dent, and the exact timings of their button presses and releases do not matter. Whether a

player makes Mario jump nine or ten frames after starting to accelerate, for example, makes

no difference — they both represent the same semantic action. Second, input streams come

in surges: although the NES receives inputs at 60 FPS, there are periods of very few inputs

— or even no inputs — and periods of many inputs, even within a single level. Moreover,

common actions such as running to the right or pressing no buttons at all reveal very little

about a game’s gameplay.

We solve this problem with the concept of input words that are analogous to words

in natural language processing and visual words in computer vision. First, we define an

input state to be the set of input buttons pressed during a given input frame. For example,

“RBA” means that the player pressed Right, the B button, and the A button at the same time

during an input frame. The input state “_” represents no buttons pressed. Then, we define

35



R“ ”+ RA RBA+ +RB+ B + LB +B

A

B
SELECT

START

Right
Left
Down
Up

N
E
S 
C
on
tr
ol
le
r 
B
ut
to
n

Formed Input Word:

Input Frames

Figure 3.3: Forming input words. The shaded bars mark the intervals when buttons on
the NES controller are pressed. The colors of the bars correspond to the colors of the
buttons. There are seven input states over the course of this time interval: R, RA, RBA,
RB, B, LB, and B. This sequence of inputs can therefore be represented with the input word
“R+RA+RBA+RB+B+LB+B.” NES games run at 60 FPS.

an input word to be a sequence of input states entered over a fixed number of contiguous

input frames called the word’s “extent” — in our case 30 frames, or half a second worth of

controller inputs. The sequence of inputs in Figure 3.3, for example, would be represented

as the word “R+RA+RBA+RB+B+LB+B.”

Defining input words in this way helps us reduce the noise from input streams because

the input words ignore the number of frames that each input state is held. If the player

pressed Right for one, two, or even three frames longer than depicted in Figure 3.3, for

example, the formed input word would be the same. We labeled very common or rare

words as “stop words” to exclude them from our consideration. The common stop words

comprised 24.4% of words by frequency and the rare stop words comprised 10.2%. The

word “_” alone, representing no buttons pressed during a 30-frame (half a second) time

interval, comprised 18.2% of all observed words. Finally, we set the “word step size,” the
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number of frames between the start of one sampled word and that of the next, to be 10

frames. Since each of the sampled words is 30 frames long, the words overlap with one

another.

Semantics of Input Words

Semantically, input words represent what we call gameplay (or action) primitives: small

combinations of input states or “verbs” [Crawford 2012] that define the possibility space

of what the player can do at any given time. In many ways, these actions combine to form

the greater dynamics [Hunicke, LeBlanc, and Zubek 2004] of how the game plays out, so

they can be thought of as microdynamics as well. Moreover, we can treat them as discrete

variables in probabilistic models to represent units of gameplay. Below is a sample of input

words we observed in our experiments and what they represent in the context of players’

playthroughs of Super Mario Bros. 3 [Nintendo 1988], the subject of our case study:

“RB+RBA+B+LB”: Making a fast forward jump, then holding Left to stop Mario’s mo-

mentum;

“R+_+A+_+A+RA+R”: Making nimble swimming movements to squeeze past a row

of Cheep Cheeps (enemy fish);

“A+_+A+_+LA+L+_+A”: Wagging Raccoon Mario’s tail while falling to slow his de-

scent, enjoying a moment of freedom before returning to the ground.
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Figure 3.4: Word count distributions for representative input word extents and step sizes.
The horizontal axis represents a count of one, the inverse logarithm of zero. The extent
controls the number of frames that input words are sampled from, and the step size controls
the number of frames between the start positions of consecutive words. The words were
formed from about 15 hours of playtime. Since these curves have similar shapes, the
vocabularies they represent have similar structures, and we can sample words coarsely
without loss of generality. We chose a word extent of 30 frames and a step size of 10
frames — the solid blue line — for the experiments in the remainder of the paper. We label
the top three ranking words and all words with counts less than ten — meaning log counts
less than one — as stop words to exclude them from our analysis.

Choosing Word Extents, Step Sizes, and Stop Words

Earlier, we indicated that we formed each input word from 30 frames of input (meaning

the “word extent” was 30 frames), that we began sampling a new word every 10 frames

(meaning the “step size” was 10 frames), and that we labeled very common and rare words

as “stop words.” In order to set the parameters for word extent and step size, we searched

the parameter space by forming input words from all of our recorded inputs using different

configurations of these parameters. We then compared the distributions of word counts for

each of the parameter configurations.

Figure 3.4 shows four representative distributions that correspond to different config-

urations of word extent and word step size. The words are ordered by decreasing count,

and the horizontal axis represents a count of one — the inverse logarithm of zero. We note
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that every distribution that we observed had the same general shape, suggesting that word

extent and word step size do not affect the structures of input word vocabularies to a drastic

degree. As a result, we elected to sample words more coarsely to make our algorithms run

faster, setting the word extent and word step size to 30 and 10 frames, respectively. This

corresponds to the solid blue line in Figure 3.4. Lastly, we labeled the top three words by

count and all words with counts less then ten as stop words, leaving us with a vocabulary

of 907 words.

3.2 Quantifying Gameplay with Topic Modeling

In the previous section, we saw that we can form input words from players’ controller input

streams to reveal gameplay (or action) primitives — what the player is doing from moment

to moment in a video game. In this section, we show how to use input words to discover

the types of gameplay that a game fosters and the extent that each game level fosters each

type of gameplay, all in an unsupervised manner.

Using input words to discover gameplay types is challenging for two reasons: (1) the

relationship between observed controller inputs and gameplay types is not obvious; and (2)

it is difficult to objectively define which gameplay types are present in a game and to what

extent they are present in different parts of the game. To address these challenges, we treat

the problem of discovering gameplay types from controller inputs as a case of probabilistic

topic modeling, which allows us to discover “topics” that represent gameplay types from

players’ recorded controller inputs. More specifically, we use latent Dirichlet allocation

(LDA) [Blei, Ng, and Jordan 2003] — the simplest and most popular probabilistic topic
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model — to model why some input words are entered by players and others are not. Our

choice of LDA stems from four observations:

1. Input words recorded during a player’s playthrough of a level can be combined into

a “document” that represents what happened in that level;

2. Input words can show us what types of gameplay a level fosters;

3. Each level can be represented as a mixture of various gameplay types; and

4. Semantically similar input words tend to occur together.

This last observation forms our working definition of a gameplay type: a set of fre-

quently co-occurring input words. Our experimental results in the remainder of this section

will show that this definition is both intuitive and valid. Given this definition of “gameplay

type,” we can model each gameplay type in a quantitative way as a probability distribution

over input words. Moreover, we will be able to quantify the extent that each gameplay type

is present in each part of the game. Neither form of understanding is possible with existing

game analytics methods. We did not use a deep learning approach to discover gameplay

types because the interpretability of what we find — what the gameplay types mean —

matters as much as the discovered gameplay types themselves.

Latent Dirichlet allocation (LDA)

Figure 3.5 shows the graphical model (Bayesian network) for LDA and Figure 3.6 shows

the generative process for LDA — how LDA models which controller inputs players en-

ter. Our description here will focus on what the variables in LDA mean in the context of

gameplay and controller inputs.
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Figure 3.5: Graphical model for latent Dirichlet allocation (LDA). The generative process
is shown in Figure 3.6. In our application of LDA to controller inputs, each document d is
a gameplay session of a game section and θd are the gameplay type mixture proportions for
that section. zd,n is the gameplay type assignment for word wd,n, the nth word in document
d. β1:K are the gameplay types (“topics”).

The K gameplay types βk are synonymous with topics and are represented as probability

distributions of input words. Each document d is a gameplay session for a game section,

and the game section exhibits multiple topics βk with mixture proportions θd . The ND input

words from that document are categorically chosen from βd , the weighted average of the

gameplay types that the game section exhibits:

βd =
K

∑
k=1

θd(k) ·βk. (3.1)

We call βd the effective gameplay type of the game section represented by d. Here, θd(k)

is the kth element of θd .

To compare LDA with the PGA model that we propose later, we define ϕs,p to be the

categorical distribution that the input words from player p’s playthrough of game section s

are effectively drawn from. For LDA, this is simply βd for the document d representing s:

ϕ LDA
s,p = βd. (3.2)
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wd,n is the nth word of document d and zd,n ∈ {1:K} is the random gameplay type that that

word is drawn from. The presence of the z variables make representing βd more tractable.

The boxes that surround the nodes in Figure 3.5 are called plates and represent repli-

cation — there are D different copies of the node θd , for example. The input words are

all that we observe, so the wd,n node is the only one that is shaded. We perform posterior

inference on the unshaded nodes to infer what their values are likely to be. The nodes that

we care about most are θ1:D, the mixtures of gameplay types for each section of the game;

and β1:K , the input word distributions of the gameplay types themselves. We are able to

infer the values of these nodes in an unsupervised manner. We set the hyperparameters α

and η to 0.2 and 0.1, respectively. They control the respective sparsities of the documents’

mixture proportions and the gameplay types’ word distributions.

LDA Experimental Procedure

We analyzed the NES platforming game Super Mario Bros. 3 (SMB3) as a case study,

and we chose SMB3 for three reasons: (1) unlike other genres such as simulation games

and role-playing games (RPGs), the player’s controller inputs directly control the main

character in platforming games; (2) SMB3 is one of the highest grossing video games of

all time; and (3) the NES controller has just two action buttons, making the problem of

recognizing patterns in inputs more challenging.

We invited a person who is experienced with SMB3 to perform an entire playthrough

of the game while we recorded her inputs to form a data set to provide as input to LDA.

In all, we recorded all 91 of SMB3’s stages and five of its six types of special areas1. We

1The six types of special areas in SMB3 are world map screens, Toad’s houses, Spade minigames, N-
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Generative Process for LDA

1. For each of K gameplay type (“topic”) indices k:
a) Draw βk ∼ Dirichlet(η)

2. For each of D documents d:
a) Draw θd ∼ Dirichlet(α)
b) For each of the Nd words in document d:

i. Draw zd,n ∼ Categorical(θd)
ii. Draw wd,n ∼ Categorical(βzd,n)

Figure 3.6: Generative process for latent Dirichlet allocation (LDA). The graphical model
is shown in Figure 3.5. Step 2b draws words wd,n from the document’s effective gameplay
type βd as defined in Equation 3.1.

recorded the inputs over six play sessions lasting a total of roughly eight hours. In cases

where it took the player multiple attempts to complete a stage, we concatenated the inputs

from each attempt to form the final “document” for that stage.

We used the Bizhawk emulator [TASVideos community 2016] to record inputs for this

experiment. We wanted the ability to play back previously recorded inputs so we could

learn what different input words and gameplay types looked like in the game. Since the

process of playing back players’ controller inputs is sensitive to CPU load times, we had to

use a frame-perfect emulator in order to play back these inputs properly. Bizhawk is con-

sidered by the tool-assisted speedrun (TAS) community to be the definitive frame-perfect

NES emulator. The player recognition system that we develop later in this paper uses an

input recording program that we built ourselves.

To perform posterior inference, we ran four separate chains of a No-U-Turn sampler

(NUTS) [Homan and Gelman 2014] — a Markov chain Monte Carlo (MCMC) method

— for 4,000 iterations apiece, with a burn-in period of 2,000 iterations and a lag of one

Mark Spade minigames, Hammer Bros. stages, and the legendary Treasure Ship, this last of which was not
encountered during our player’s playthrough.
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iteration. The latent variables that we care about most are θ1:D, the mixtures of gameplay

types for each section of the game; and β1:K , the input word distributions of the gameplay

types themselves. We are able to infer the values of these nodes in an unsupervised manner.

We set α to 0.2, η to 0.1, and K (the number of gameplay types) to 12 after inspecting the

results from a few shorter trial runs. The sampler took over two days to run on a modern

machine.

LDA Experimental Results

The two primary outputs from LDA are the game levels’ gameplay type mixture propor-

tions θ1:D (Figure 3.7) and the discovered gameplay types β1:K (Table 3.1), both of which

are unshaded in Figure 3.5. Put differently, θ1:D (Figure 3.7) depicts the extent that each

of SMB3’s stages fosters each of the discovered gameplay types (“topics”), while β1:K (Ta-

ble 3.1) depicts the discovered gameplay types themselves. Figure 3.7 is displayed in heat

map form where the rows represent stages and the columns represent the twelve gameplay

types. The fact that there are many dark blues in the figure means that the mixtures are

relatively sparse and, as a result, that each stage exhibits a small number of gameplay types

— a desirable property for a topic model to have. Table 3.1, to be precise, shows a sample

of β1:K: the top 15 input words in four of the discovered gameplay types.

In a traditional context, we could understand what each topic represents just by exam-

ining the words in their column in Table 3.1. A topic featuring the words “party,” “elec-

tion,” “debate,” and “primary,” for example, could be understood to be about politics. Here,

however, it is not so easy to understand what the gameplay types represent because the
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relationships between each topic’s input words are not so obvious. What does Gameplay

Type 5 here mean, for example? To answer this question, we find examples of stages that

strongly exhibit the gameplay type using Figure 3.7, then we watch gameplay videos of

those stages — which we recorded using Bizhawk earlier — to see how that gameplay

type’s input words are manifested in those stages. In the case of Type 5, we find that

that topic is prominent in nine of SMB3’s stages2, four of which are shown in Figure 3.9.

Although these stages look very different from each other at first glance, their gameplay

videos reveal that they all require players to jump around flying enemies or projectiles such

as Flying Cheep Cheeps or Podoboos. Type 5, therefore, seems to represent this type of

gameplay.

Likewise, Type 12 is exhibited by stages that require repeatedly pressing the A or B

button respectively while stationary. Figure 3.8 shows two such cases: World 6-7, in which

Fire Mario and throws lots of fireballs; and World 1-6, in which Raccoon Mario lands softly

with his tail.

Together, Figure 3.7 and Table 3.1 allow us to describe the types of gameplay in SMB3

in a quantitative way. As a point of comparison, a topic model applied to a news corpus

might show that a news article has a blend of 30% science and 70% politics. Likewise in

our case, Figure 3.7 shows that World 3-2 has a blend of 35% Gameplay Type 5 (jumping

around flying enemies and projectiles) and 23% Gameplay Type 3 (making precise running

jumps onto narrow platforms). Since Worlds 3-3 and 6-3 have very similar blends of game-

play types (Figure 3.7), players who like the type of action in World 3-2 should enjoy these

2The nine stages that strongly exhibit Type 5 are Worlds 3-2, 3-3, 3-7, 3-8, 5-9, 5-Fortress2, 6-3, 6-5, and
the Hammer Bros. battles.
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1-Fortress

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
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Figure 3.7: Inferred gameplay type mixture proportions for selected stages in Super Mario
Bros. 3 as output by LDA. Each row represents a stage and sums to 100%. The columns
represent gameplay types. The bottommost rows represent the five types of special areas,
which are easy to differentiate from the regular stages. Stages with high proportions of
Types 4 and 10 are underwater stages. A recommendation system can use this information
to recommend stages with similar gameplay to ones that players like.
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(a) World 6-7 (b) World 1-6

Figure 3.8: Stages representative of Gameplay Type 12 from Figure 3.7 and Table 3.1. In
(a) Mario throws fireballs to thaw coins frozen in ice, and in (b) Raccoon Mario lands
softly by wagging his tail. Both stages encourage pressing an action button repeatedly
while stationary.

stages as well. This type of understanding is new to our method and cannot be found from

event logs. Using this approach, developers can learn if their game has enough variety to

keep players’ interest, see which types of gameplay are most popular with players, check

to see if a level fosters a desired gameplay type, and build recommendation systems to help

players find levels that play similarly to ones they like.

Figure 3.7 can also help us discover outlier stages: stages in SMB3 that play very

differently from the rest of the game. The world map, Spade minigames, and N-Mark

Spade minigames at the bottom of Figure 3.7 are three such stages since their gameplay

type mixtures that are unlike the rest. These stages consist of players choosing items from

menus. Likewise, SMB3’s underwater stages3 can also be considered outliers. These stages

strongly exhibit Gameplay Types 4 and 10, which are included in Table 3.1. Many players

dislike playing underwater levels because of how different they feel to play [WeFightFor-

3SMB3’s underwater stages are Worlds 3-1, 3-5, 3-Fortress2, 4-4, and 7-4. World 6-6 also has a substan-
tial underwater component.
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Type 4 Type 5 Type 10 Type 12
R LB R B+_

_+A+_ LB+B _+A+_ DB
_+R B+RB+RBA _+R _+B

R+RA+R B+LB D RA+R+RA+R+RA+R+RA
_+R+_ LB+LBA R+RA+R _+B+_

A+_ LB+B+RB _+R+_ _+A
RA+R+RA+R+RA+R+RA B+LB+B A+_ _+R+RA

R+_ LBA+LB R+_ R+RA+R+RA+R+RA+R
_+A B+RB _+L+_ _+A+BA+B+_

_+L+_ RBA+RB+B+LB _+A RA+R+RA+R+RA+R
_+L RBA+RB DB _+B+_+B+_+B+_

R+RA RBA+BA+B+LB _+L B+BA
R+RA+R+RA+R+RA+R RB+B+LB D+_ R+RA+R+RA+R+RA

RA+R+RA+R+RA+R LB+B+RB+RBA L+_ RBA+RB+B
R+RA+R+RA+R+RA B+RB+B _+D+_ B+_+B

Table 3.1: Inferred gameplay types (“topics”) from LDA for one player’s complete
playthrough of Super Mario Bros. 3. We show the top 15 input words in each gameplay
type in order of decreasing frequency. Type 5 relates to jumping around flying enemies or
projectiles, as Figure 3.9 shows. Type 12 seems to relate to pressing action buttons repeat-
edly to land softly as Raccoon Mario or melt ice with fireballs, respectively. Type 10 relates
to basic directional movements such as walking slowly and making menu selections.

ever 2015], and the results in Figure 3.7 support that assertion. Interestingly, only half of

World 6-6 is underwater, and that stage exhibits lesser amounts of Types 4 and 10. By

examining our recorded gameplay videos, we see that Type 4 captures short, nimble hops

in land levels and nimble swimming movements in water levels while Type 10 captures

slower, more gradual movements on land and in water.

Finally, Figure 3.7 can help us infer the specific choices that our player made within

the game, as long as those choices manifest themselves in the input words that we observe.

For example, we can infer whether a player completes an underwater level the hard way

or wears a Frog Suit instead by examining the mixture proportions of Gameplay Types 7

and 8. Figure 3.10 shows gameplay from both cases. In the latter case, the proportions for

Gameplay Types 7 and 8 increase to twice their regular values. Of course, we can discover

the answer to this particular question by simply recording event logs, and we argue that
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(a) World 3-2 (b) World 5-9

(c) World 5-Fortress2 (d) Hammer Bros. stage

Figure 3.9: Stages representative of Gameplay Type 5 from Figure 3.7 and Table 3.1. Al-
though these stages look quite different at first glance, they all share the same primary type
of gameplay: jumping around flying enemies or projectiles. Here we see (a) Flying Cheep-
Cheeps, (b) Fire Chomps and their fireballs, (c) Podoboos, and (d) Hammer Bros. Super
Mario Bros. 3 © Nintendo.

controller inputs should complement — and not replace — such information. We include

this example, however, to show how expressive controller inputs can be.

3.3 The Player–Gameplay Action (PGA) Model

In the previous section, we showed how to use LDA to understand the types of action

present in a video game from streams of recorded controller inputs. Although LDA yielded
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Figure 3.10: World 3-Fortress2 with and without the Frog Suit, respectively. The Frog Suit
allows Mario to swim in the water much more easily. This stage is difficult and culminates
in a mini-boss fight, so many players save a Frog Suit to wear for the occasion. By exam-
ining the gameplay type mixtures of a playthrough of this level, we can tell whether the
player wore the Frog Suit or completed it the hard way. Super Mario Bros. 3 © Nintendo.

α θs zd,n wd,n

πpε

σd ρd

βk η

S

P

N

D

K

Figure 3.11: Graphical model for the player–gameplay action (PGA) model. The gen-
erative process is shown in Figure 3.12. Each document d is a gameplay session for a
particular player p as indicated by ρd and a particular section of the game s as indicated by
σd . θs are the gameplay type proportions for section s of the game. zd,n is the gameplay
type assignment for word wd,n, the nth word in document d. β1:K are the gameplay types
and π1:P are the players’ play styles.
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meaningful results, one of its shortcomings is that it assumes that the stages’ gameplay

type mixture proportions and the gameplay types themselves are the only factors that affect

which controller inputs players enter. In reality, other factors such as (a) randomness within

the game, (b) the unique way that each player holds the controller and presses buttons, and

(c) the choices that players make can affect the controller inputs as well. Regarding the

last case, suppose a game level gives players the choice between two types of gameplay:

sneaking past enemies or fighting them head-on. Such a level can be modeled as a mix

of 50% sneaking and 50% fighting, assuming players are equally likely to make either

choice. If we observed the controller inputs from a single player’s playthrough of the

level, however, we might infer that the level comprises 100% of the gameplay type that the

player chose to play instead of the more accurate representation of 50% sneaking and 50%

fighting.

With this insight we propose the player–gameplay action (PGA) model, a novel exten-

sion of LDA that allows us to understand the types of action present in a video game in a

way that is independent of each player’s play style. This corrects for both (b) and (c) in

the previous paragraph. Figure 3.11 shows the graphical model for the PGA model and

Figure 3.12 shows the generative process for the PGA model. S is the number of sections

in the game, P is the number of players, and D is the total number of recorded gameplay

sessions. We use the generic term “section” instead of “stage” or “level” here because the

model is also applicable to games that are not divided into traditional stages or levels. In

LDA, each document d is a gameplay session for a specific section of a game, but in the

PGA model each document d is a gameplay session for a specific section of a game played

by a specific player. σd ∈ {1:S} and ρd ∈ {1:P} indicate the gameplay section being played
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Generative Process for PGA

1. For each of K gameplay type (“topic”) indices k:
a) Draw βk ∼ Dirichlet(η)

2. For each of the S game sections s:
a) Draw θs ∼ Dirichlet(α)

3. For each of the P players p:
a) Draw πp ∼ Dirichlet(ε)

4. For each of the D gameplay session documents d:
a) For each of the N words in document d:

i. Draw zd,n ∼ Categorical(θσd )

ii. Draw wd,n ∼ Categorical
(

βzd,n πρd
|βzd,n πρd |

)
, where |βzd,nπρd | is a normal-

izing constant

Figure 3.12: Player–gameplay action (PGA) model generative process.

and the player who was playing during gameplay session d, respectively. β , θ , α , and η

are unchanged from LDA. We set ε to be 0.1 like α .

Two factors control the input words that are generated in the PGA model: the gameplay

types β1:K and the players’ play styles π1:P, which are both represented as categorical

distributions over input words. Figure 3.13 shows how we model their interaction. The

main idea is that the two distributions act as filters on each other so that the input words

are generated from the (normalized) product of the two distributions. A player’s fighting-

oriented play style, for example, would filter out input words related to sneaking from a

game section that exhibits both fighting and sneaking. Likewise, a fighting-oriented game

section would filter out input words related to sneaking from the play style of a player who

is indifferent to fighting and sneaking. In equation form, the PGA model redefines ϕs,p

from Equation 3.2 to be:

ϕ PGA
s,p = |βsπp|. (3.3)
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Figure 3.13: Player–gameplay interaction in the PGA model. The distributions above are
distributions over input words. LDA assumes that input words are generated from a game’s
gameplay types β1:K — the red distribution only — ignoring the players’ play styles π1:P.
The PGA model, however, assumes that gameplay types and players’ play styles act as fil-
ters on each other, and that input words are generated from the (normalized) product of the
two. In the example shown here, a player’s fighting-oriented play style dampens sneaking-
oriented input words from a gameplay type that exhibits both fighting and sneaking.

βs is defined in Equation 3.1, in which d is used in place of s.

PGA Model Experimental Procedure

To analyze the PGA model’s performance, we recorded controller inputs from eight players

playing SMB3. For Player 1, we used the same data as we did in our LDA experiment: a

full playthrough of SMB3, 91 regular levels plus 5 types of special areas, totaling 96 stages.

For the other players, we used data from their playthroughs of World 1, which total eight

stages and five types of special areas each. Players 1, 2, 3, and 5 were very experienced

with platforming games, Players 4 and 8 were somewhat experienced, and Players 6 and 7

were not at all experienced.

We estimated the latent variables θ1:S, β1:K , and π1:P by running four NUTS chains for

2,000 iterations apiece, with a burn-in period of 1,000 iterations and a lag of one iteration.
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Type 3 Type 7 Type 9 Type 11
_+A+_ R _+R+RA L

LB RA+R LB _+R+RA
_+R+_ _+A+_ RB+RBA RA

A+_ R+RA+R DB URA
_+L+_ R+RA RA+R+_ R+RA
LB+B A+_ LB+B+RB RA+R+_

LB+LBA UR B+DB RA+R+RA+R+RA+R+RA
B+LB _+R+_ RA+R+RA+R+RA+R+RA RB+RBA
_+A R+UR L+_+R _+R+UR

_+D+_ _+A URA UR+URA
_+R+_+R R+_ RA L+LA+L

LBA _+L+_ RBA+RB RA+R+_+L
LBA+LB R+_+L RA+R+_+L _+R+UR+URA

RB+B+LB _+D+_ DB+B _+UR+URA
R+_+R+_ RA+R+_ UR+URA R+RA+R+RA+R+RA+R

Table 3.2: Inferred gameplay types (“topics”) from the PGA model. This table is red to
match βk in Figure 3.13. We show the top 15 input words in each gameplay type in order
of decreasing frequency. These gameplay types correspond to the ones in Figure 3.14.

We set K to 12 as we did in our LDA experiment. The sampler took several days to run on

a modern machine.

PGA Model Results

The PGA model infers three things at once, providing them as output: the game levels’

gameplay type mixture proportions θ1:S (Figure 3.14), the discovered gameplay types β1:K

(Table 3.2), and the discovered play styles π1:P of players (Table 3.3). Recall that the

first two were output by LDA and that the third is modeled and output here to remove its

effect from the first two. Our focus here will be on seeing if the PGA model outputs more

accurate depictions of θ1:S (Figure 3.14) and β1:K (Table 3.2) than LDA did in Figure 3.7

and Table 3.1.

Starting with θ1:S, we see that the PGA model’s output mixture proportions in Fig-

ure 3.14 have a greater range than LDA’s in Figure 3.7, but the sparsity of each stage’s
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T. 1 T. 2 T. 3 T. 4 T. 5 T. 6 T. 7 T. 8 T. 9 T. 10 T. 11 T. 12
1-1
1-2
1-3
1-4
1-5
1-6

1-Airship
1-Fortress

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9

3-Airship
3-Airship2
3-Fortress

3-Fortress2
4-1
4-2
4-3
4-4
4-5
4-6

4-Airship
4-Fortress

4-Fortress2
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9

5-Airship
5-Fortress

5-Fortress2
6-1
6-2
6-3
6-4
6-5
6-6
7-4

Hammer Bros.
World Map

Toad’s House
N-Mark Spade

Spade

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Figure 3.14: Inferred gameplay type mixture proportions for selected stages as output by
the PGA model. The rows represent stages and the columns represent gameplay types.
Each row sums to 100%. The values here have a greater range than those output by LDA in
Figure 3.7 and the topics seem easier to interpret. Gameplay Types 7 & 12 seem to indicate
underwater stages, Type 11 represents flying or floating, Type 9 represents making long
running jumps, and Type 3 represents backtracking.
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mixture proportions as measured by their range and standard deviation is not significantly

different between the two. Moving to β1:K , we find that the coherence scores [Mimno,

Wallach, Talley, Leenders, and McCallum 2011] for the top 30 words in the PGA model’s

output gameplay types (M: -299.9, SD: 40.7) are significantly worse on average than those

for LDA’s gameplay types (M: -189.1, SD: 46.4); t11 = 6.34 (p < 0.0001). A coherence

score is a popular measure of topic quality and measures how often a topic’s most frequent

words occur in documents together.

In our experience, however, we found that the PGA model’s gameplay types in Ta-

ble 3.2 were easier to interpret than LDA’s in Table 3.1. Types 7 and 12 in the PGA model,

for example, seem to indicate underwater stages even more strongly than Types 4 and 10

from LDA did. Within minutes of examining gameplay videos, we were able to interpret

the general meaning of most of these gameplay types. Type 2 is akin to Type 5 from LDA,

Type 11 represents flying or floating with Raccoon or Tanooki Mario’s tail, Type 9 repre-

sents making long running jumps, and Type 8 represents jumping on enemies, bosses, and

Starman items that move around sporadically. Type 3 seems tuned to backtracking and is

most salient in maze-like levels with lots of backtracking. We feel that coherence scores

may not be suitable for the PGA model because, as Figure 3.13 shows, this model does not

model input words as being generated directly from topics like LDA does.

Finally, Table 3.3 shows a sample of the players’ play styles π1:P, an output not present

in LDA. Here we can see the distinguishing factors of each player’s play style. Player 1

floats a lot compared to other players, for example, exhibiting input words of the form

"R+RA+R+RA...". Moreover, the less experienced players’ (Players 6–8’s) play styles are

much more basic than the other players’, with much shorter input words. Together, Fig-
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ure 3.14 and Table 3.3 suggest that the play style distributions π1:P capture the variations in

controller inputs caused by each players’ unique playing style, leaving the inferred game-

play types β1:K less affected by those variations. In other words, the PGA model allows

us to understand the gameplay types present in SMB3 in a way that is independent of each

player’s play style. The accuracy of our player recognition system in the next section will

further this conclusion.

3.4 Player Recognition Using the PGA Model

The PGA model allows developers to categorize levels based on how they feel to play,

build recommendation systems that account for players’ tastes, adapt game content to play-

ers’ individual play styles, and more. In this section, we demonstrate one such application:

a player recognition system based on controller inputs alone. Although recognizing users

from their inputs is by no means novel [Buckley, Chen, and Knowles 2013; Hurst, Hudson,

and Mankoff 2007], we do this here to show that the PGA model can indeed control for the

effect that a players play style has on the controller inputs he or she enters, allowing devel-

opers to understand the types of action present in a video game in a way that is independent

of each players play style.

Our system represents each player p with his or her play style πp. It is a simple classifier

that computes the most likely player p given the input words w observed so far and the PGA

model’s outputs θs and π1:P, where s is the game section being played. This likelihood can
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Player 1 Player 2 Player 6 Player 7
LB DB R R

RB+RBA DB+B RA+R R+_+L
RA+R+RA+R+RA+R+RA B+RB+B R+_ L+_+R

LB+LBA DB+B+DB RA+R+_ L
B+RB B+RB _+A+_ L+LA

_+U+_ B+DB _+L _+L+_+R
B+LB B+RB+B+RB _+L+_ L+LA+L
RB+B RB+B L+_ R+RA

LBA+LB DB+B+DB+B+DB+B+DB R+RA+R R+RA+R
LB+B+RB DB+DRB+RB R+RA _+L

_+B B+LB+B _+R+_ R+_
R+RA+R+RA+R+RA+R DB+B+RB A+_ RA+R

_+R+RB BA _+R+RA _+L+_
LB+B RB+DRB+DB _+A R+_+R

RA+R+RA+R+RA+R RB+B+RB R+_+R L+_
Table 3.3: Inferred play styles from the PGA model. This table is blue to match πp in
Figure 3.13. We show the top 15 input words in each play style πp for four of our eight
players, who are nicknamed Alice, Bob, Dave, and Eve respectively in Figure 3.16. These
words are the ones that best distinguish each player, not just the ones that each player input
the most. Players 6–8 were inexperienced with platforming games and have much more
basic play styles than the other players do.

be computed as follows:

p(ρ = p | θs,β1:K,π1:P,w) = ∏
wi∈w

ϕ PGA
s,p (wi), (3.4)

where ϕ PGA
s,p is defined in Equation 3.3 and ϕ PGA

s,p (wi) is the probability of wi in the distribu-

tion ϕ PGA
s,p . To test this classifier, we recorded a new set of inputs in which five of our eight

players played eight stages each: four stages that they previously played during our PGA

model experimental procedure and four stages that they did not play before. We compare

this classifier with two others that use different approaches for calculating the categorical

distribution parameters ϕs,p. Classifier MLEsingle sets them to be “smoothed” versions4

of the maximum likelihood estimates (MLEs) given the inputs player p previously made

4In reality, we use a Dirichlet–Categorical conjugate model with hyperparameter 0.1 to “smooth” out the
MLE, ensuring that all of its elements are nonzero.
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Figure 3.15: Player recognition system accuracy over play time. We show this accuracy
for (a) stages that players played before and (b) stages that players did not play before. We
compare three recognition strategies. ‘PGA’ recognizes players using Equation 3.4 and the
PGA model’s outputs. ‘MLEsingle’ computes players’ maximum likelihood estimates given
their inputs from their previous playthrough of the stage being played — it does not apply
for stages that players did not play before. ‘MLEall’ computes the same but for all stages
that players previously played. The PGA model-based system can recognize players with
95% accuracy after about 20 seconds of playtime — the same as if we used the ‘MLEall’
approach — for both previously played stages and never before played stages.

on stage s, and Classifier MLEall sets them to be the “smoothed” MLEs given the inputs

player p made on all previously played stages. We simulated the same inputs across all

three classifiers via remulation [Bi, Azenkot, Partridge, and Zhai 2013a].

Player Recognition Results

Figure 3.15 shows our three recognition systems’ accuracy over time during a player’s play

session. Both the PGA model-based system (‘PGA’) and Classifier MLEall (‘MLEall’) are

able to recognize the player with over 90% accuracy in roughly 20 seconds of playing,

even for stages that he or she has never played before. The mean (std. dev.) accuracy

between the 20 s and 30 s marks for stages the player has played before is 91.3% (12.9%)

for ‘PGA,’ 65.3% (31.6%) for ‘MLEsingle,’ and 90.0% (15.5%) for ‘MLEall.’ There is a

significant main effect for the classifier used; F2,8 = 7.29 (p = 0.016). Pairwise mean
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comparison showed that the differences were significant for every pair except ‘PGA’ vs.

‘MLEall.’ For stages that the player did not play before, there is no significant difference

between this accuracy metric for ‘PGA’ (M: 93.6%; SD: 8.5%) and ‘MLEall’ (M: 93.1%;

SD: 8.3%); t4 = 0.15 (p = 0.89). These results show that the PGA model’s outputs can

power player recognition systems that work just as well as ones based on players’ complete

word frequency distribution histories. This means that the play styles output by the PGA

model do in fact capture the unique playing styles of each player. Hence, the PGA model

can indeed control for the effect that a player’s play style has on the controller inputs he or

she enters — unlike LDA.

Figure 3.16 shows how the ‘PGA’ recognition system performs when players take turns

playing by passing the controller to each other. It can recognize each player in turn from a

database of eight after he or she plays for 10–20 seconds. To simulate the turn-taking, we

concatenated 45 seconds apiece of the five players’ new playthroughs of World 1-3. This

version of our recognition system computes its output from a sliding window of the last

25 seconds of inputs heard. The two players most confused for each other are Dave and

Eve, who correspond to Players 6 and 7 in Table 3.3 and had no previous experience with

platforming games. This suggests that novice players are harder to tell apart than expert

players.

3.5 Discussion

In this chapter, we show that analyzing players’ controller inputs using probabilistic topic

models allows game developers to describe the types of gameplay — or action — in games
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in a quantitative way. To do this, we define the concept of input words to represent game-

play primitives, then show how probabilistic topic models such as LDA can extract mean-

ingful gameplay types from these primitives. To make the same types of discoveries about

gameplay in a way that is independent of each player’s play style, we develop the player–

gameplay action (PGA) model, a novel extension of LDA. We train a player recognition

system on the PGA model’s output to verify that its discoveries about gameplay are in fact

independent of each player’s play style. It recognizes players with over 90% accuracy in

about 20 seconds of playtime.

We describe the limitations of our methods and ideas for future work in Section 7.2.
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Chapter 4

Gaze Locking: Passive Eye Contact Detection for
Human–Object Interaction

This chapter explores how we can make computers sense attention in a lightweight and

accurate way. By doing so we can make providing input (or commands) to computers

much faster, an important part of this dissertation’s goal of making using computers feel

more like using powers of our own.

We will start with some theory. Each command that we give to a computer or device

specifies three things, either explicitly or implicitly: the computer or device that must

perform the action, the action that must be performed, and, if necessary, the object that the

action should be performed on. These parts correspond to the components of an imperative

sentence: the subject, verb, and direct object, respectively. In imperative sentences, the

subject (meaning, the recipient of the command) is often the easiest to specify and, in fact,

is usually a given. Take, for example, the following two commands: “Open the door” and

“Turn off the light.” In both cases, the subject is the implicit “you.”

When it comes to commanding devices, however, specifying the subject is often the

most time-consuming and laborious part. To turn on a TV, for example, a user must first

find the particular remote that controls the TV, hold the remote, orient it the proper way in

their hand, and point it toward the TV — all of this equates to specifying the TV as the

subject of the command. To turn on a light, the user must first navigate to a particular light

63



switch — either a physical switch or, for smart lights, a particular screen on a particular

app on the user’s phone that controls the light.

Gaze as an Input Mechanism

A natural idea for making specifying the subjects commands much faster is to treat people’s

eye gaze as an input mechanism, allowing them to select the subjects of commands and

perhaps the direct objects of commands as well just by looking at them. In theory, gaze

input offers several advantages over other types of input: it is nearly instantaneous, can be

done over long distances, and often requires no additional effort from the user since they

would be likely look at what they intend to interact with anyway.

Gaze input also echoes how people communicate with each other: eye contact is a major

form of nonverbal communication and people use it to seek information (e.g., to see how

something we say is received), regulate interaction (e.g., by signaling when it is someone

else’s turn to speak), and much more [Argyle and Dean 1965; Kendon 1967; Vertegaal,

Slagter, Veer, and Nijholt 2001]. Interestingly, while we have a hard time determining the

exact angle at which someone else is looking, we seem to be very good at determining

when someone else is looking at us (i.e., at or very near our eyes), and are acutely aware

of it [Gemmell, Toyama, Zitnick, Kang, and Seitz 2000].

Most gaze-based interactive systems today rely on gaze tracking. They find the exact

angle users are looking at instead of sensing eye contact directly. Although gaze tracking

has been extensively studied and current methods [Baluja and Pomerleau 1994; Beymer

and Flickner 2003; Hansen and Pece 2005; Morimoto, Amir, and Flickner 2002; Tan,
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Figure 4.1: Gaze locking. We propose the idea of sensing eye contact directly from an
image in a passive, appearance-based manner. The main idea is to focus on gaze locking (a
binary problem) rather than gaze tracking (a continuous problem) and exploit the special
appearance of direct eye gaze. Our approach can be used to facilitate a wide range of
applications.

Kriegman, and Ahuja 2002] are highly accurate, they suffer from several limitations that

restrict their practical use. They generally work only over short distances (often 80 cm

or less) [Baluja and Pomerleau 1994; Beymer and Flickner 2003; Hansen and Pece 2005;

Morimoto, Amir, and Flickner 2002; Tan, Kriegman, and Ahuja 2002] or with direct head

poses [Baluja and Pomerleau 1994; Hansen and Pece 2005; Tan, Kriegman, and Ahuja

2002], or require active infrared illumination [Baluja and Pomerleau 1994; Beymer and

Flickner 2003; Morimoto, Amir, and Flickner 2002; Tan, Kriegman, and Ahuja 2002],

intrusive equipment (such as head-mounted cameras), or extensive calibration [Beymer

and Flickner 2003; Morimoto, Amir, and Flickner 2002]. One exception is Shell et al.’s

system [Shell, Vertegaal, Cheng, Skaburskis, Sohn, Stewart, Aoudeh, and Dickie 2004],

which does in fact sense eye contact directly, but also requires active illumination. To

overcome these limitations, we show the following in this chapter.
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Gaze Locking Contributions

Gaze Locking

We propose the idea of sensing eye contact directly from an image in a passive, appearance-

based manner (Figure 4.1). The main idea is to focus on gaze locking (a binary problem)

rather than gaze tracking (a continuous problem) and exploit the special appearance of

direct eye gaze. In addition to being passive (no special illumination or hardware required),

our approach is non-intrusive, calibration-free, and robust to distance and head pose. Like

Shell et al.’s active method [Shell, Vertegaal, Cheng, Skaburskis, Sohn, Stewart, Aoudeh,

and Dickie 2004], it can be used to allow humans to interact with computers, devices, and

other objects just by looking at them.

Sample Detector

As a proof of concept, we demonstrate that even a simple and lightweight gaze locking

system can yield accurate and robust results. Our sample detector uses very basic features—

the eye area’s pixel intensities—yet achieves a Matthews correlation coefficient (a measure

of accuracy for binary classifiers) of over 0.83 at long distances (up to 18 m) and large pose

variations (up to ±30◦ of head yaw rotation) without requiring calibration. This equates to

a 92% accuracy on our training data set. It runs at over 20 FPS on a computer with an Intel

Core i5-3470 processor, 8 GB of RAM, and an NVIDIA GeForce GTX 660M graphics

card. A more advanced classifier could be used to improve accuracy even further.
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Human Performance Evaluation

We performed a study to see how accurate people are at sensing eye contact and found

several interesting results. For example, we found that people achieve MCCs of over 0.2 at

distances of 18 m, and that their accuracy decreases roughly linearly over distance regard-

less of others’ (horizontal) head orientations. We also found that people are often more

accurate when they can only see one of the other person’s eyes.

Gaze Data Set

To facilitate our human study and provide training data for our sample detector, we created

a gaze data set of 56 people and 5,880 images, available at http://www.cs.columbia.

edu/CAVE/databases/columbia_gaze/. It has more images and fixed gaze targets than

any other publicly available gaze data set. To ensure robustness, our data set spans a variety

of parameters: 5 head poses and 21 gaze directions per head pose. Our subjects were

ethnically diverse and 21 of them wore glasses. We use our data set for gaze locking

purposes, but it can serve as a very large resource for gaze tracking purposes as well.

Demonstration of Applications

Lastly, we show a few applications that gaze locking facilitates. First, since camera mod-

ules are becoming increasingly small and inexpensive to produce, we can allow any device

to respond to eye contact by embedding a camera that serves as an eye contact sensor in-

side it. Our technique can thus serve as a backbone for allowing humans to interact with

computers, devices, and other objects simply by looking at them. In addition, our method

is passive and hence can be applied to any existing image. Therefore, it can be used to sort
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Figure 4.2: Sample Columbia Gaze Data Set images. Our gaze data set includes 56 subjects
and five different head poses (shown on top): 0◦, ±15◦, and ±30◦ horizontally. For each
subject and head pose, there are 21 different gaze directions (shown on bottom for the 0◦

head pose): the combinations of seven horizontal ones (0◦, ±5◦, ±10◦, ±15◦) and three
vertical ones (0◦, ±10◦). For each of these, we also show a cropped area of the eye region.

images on the web and on personal computers by their degree of eye contact, improving

image search. Finally, we can incorporate a gaze trigger in cameras to capture group photos

exactly when everyone in the group is looking straight back.

4.1 Gaze Locking in People

People seem to have an uncanny ability to tell when others are looking at them. In this

section, we describe a two-part experiment that we performed to show how accurate people

really are. First, we created a gaze data set, then we asked a set of “players” to determine

which of those images are gaze locking and which ones are not. Our experiment revealed

some very interesting trends in human vision, and we used those to guide the design of our

gaze locking approach.
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Creating a Gaze Data Set

Data Set Statistics

Our data set contains a total of 5,880 high-resolution images of 56 different people (32 male,

24 female), and each image has a resolution of 5,184×3,456 pixels. 21 of our subjects were

Asian, 19 were White, 8 were South Asian, 7 were Black, and 4 were Hispanic or Latino.

Our subjects ranged from 18 to 36 years of age, and 21 of them wore prescription glasses.

As shown in Figure 4.2, for each subject, we acquired images for each combination

of five horizontal head poses (0◦, ±15◦, ±30◦), seven horizontal gaze directions (0◦, ±5◦,

±10◦, ±15◦), and three vertical gaze directions (0◦, ±10◦). Note that this means we col-

lected five gaze locking images (0◦ vertical and horizontal gaze direction) for each subject,

one for each head pose. Figure 4.3 compares our gaze data set with data sets recently made

by McMurrough et al. [McMurrough, Metsis, Rich, and Makedon 2012], Ponz et al. [Ponz,

Villanueva, and Cabeza 2012], and Weidenbacher et al. [Weidenbacher, Layher, Strauss,

and Neumann 2007] for gaze tracking.

Collection Procedure

We recorded each image with a Canon EOS Rebel T3i camera and a Canon EF-S 18–

135 mm IS f/3.5–5.6 zoom lens. As shown in Figure 4.4, subjects were seated in a fixed

location in front of a black background, and a grid of dots was attached to a wall in front

of them. The dots were placed in 5◦ increments horizontally and 10◦ increments vertically.

There were five camera positions marked on the floor (one for each head pose), and each

position was 2 m from the subject. The dots were organized in such a way that each camera
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  McMurrough 
et al. 

Gi4E Weidenbacher 
et al. 

Our 
Data Set 

# Subjects: 20 103 20 56 
# Fixed Gaze 

Targets per 
Subject per 
Head Pose: 

16 12 2-9 21 

# Fixed 
Head Poses: 1 N/A 19 5 

Head Pose 
Calibration? N/A No Yes Yes 

Resolution 
(px): 768×480 800×600 1600×1200 5184×3456 

Total # 
Images: N/A 1,236 2,220 5,880 

Figure 4.3: Gaze data set comparison. A comparison of our gaze data set with ones recently
made for gaze tracking. McMurrough et al.’s data set is video-based and includes precise
head pose measurements rather than simply calibrating head pose. The Gi4E data set does
not stabilize subjects’ head pose. Weidenbacher et al.’s data set offers a wide variety of
fixed head poses, but many have only two corresponding gaze directions.

position had a corresponding 7×3 grid.

The subjects used a height-adjustable chin rest to stabilize their face and position their

eyes 70 cm above the floor. The camera was placed at eye height, as was the center row

of dots. For each subject and head pose (camera position), we took three to six images of

the subject gazing (in a raster scan fashion) at each dot of the pose’s corresponding grid of

dots. To ensure the subject was in focus, not blinking, and looking in the correct direction,

we viewed each image at full resolution afterwards and kept the best one from each set of

three or six.

Human Accuracy

Experimental Setup

After creating our gaze data set, we asked 52 “players” (27 male, 25 female) to play a

computer-based quiz to determine which of those images are gaze locking and which of
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Figure 4.4: Setup for image capture. (a) Subjects were seated in front of a black back-
ground and used a chin rest to stabilize their face. (b) We captured images from five differ-
ent camera positions asynchronously. Each position represented a (horizontal) head pose.
The subjects focused on a grid of dots placed on the wall behind each camera location.

those are not. The players were all paid volunteers and were mostly university students.

We asked the players to state whether or not the subject in each image was looking directly

at him or her, a simple yes/no response. Each gaze-locking image was seen by an average

of 8.8 players and each non-gaze-locking image was seen by an average of 3.96 players.

Each player participated in one 40-minute session, viewing 440 images in the process.

The players viewed our images on a computer monitor, so we needed the subjects to

appear at the same resolution as they would if seen in person for the results to be accurate.

In addition, each image was captured at a distance of 2 m from the subject, so we created

four more copies of each image to serve as a proxy for distances of 6 m, 10 m, 14 m, and

18 m. Section 4.2 describes how we scaled the images—taking the acuity of the human

eye into account—to solve both of these problems. We did not find a statistical difference

in people’s accuracy when we used a small sample of “true” 6-18 m images instead of our

scaled images.
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Figure 4.5: Gaze locking in people. (a) People are relatively accurate at sensing eye contact,
even when the person gazing (i.e., the gazer) is wearing prescription glasses. At distances
of 18 m, gazees still achieve MCCs of over 0.2 if the gazer is not wearing glasses. Here,
the gazer is at a frontal (0◦) head pose. (b) The gazee’s accuracy decreases roughly linearly
over distance regardless of the gazer’s (horizontal) head pose. Head poses that are more off-
center (such as ±30◦) have slightly lower MCCs. (c) The gazees are least accurate when
the gazer is actually looking at them (the 0◦ case)—that is, the false negative rate is higher
than the false positive rate. Interestingly, if the gazer is looking away, the gazee is more
accurate when he or she can only see one of the gazer’s eyes (the blue line is not strictly
above the red and green lines). Each accuracy measurement was calculated over all five
distances and head poses. Here, we use percentage accuracies instead of MCCs because
each horizontal gaze direction besides 0◦ is always non-gaze locking by definition and the
MCC is not well-defined when only one class of data is used.
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Human Accuracy Results

Figure 4.5 highlights some of our observations. We use the Matthews correlation coef-

ficient (MCC) [Matthews 1975] to represent accuracy in Figure 4.5(a) and Figure 4.5(b)

since it is widely used in machine learning for assessing binary classification performance

with uneven class sizes. An MCC of 1.0 represents perfect classification, an MCC of -1.0

represents completely incorrect classification, and an MCC of 0.0 represents classification

that is no better than random guessing. The MCC is not well-defined when only one class

of data is used, so we use percentage accuracies in Figure 4.5(c).

In Figure 4.5(a), we find that humans are indeed rather adept at determining when others

are looking at them. At distances of 18 m, their MCC can still surpass 0.2. Moreover, even

though the size of someone else’s face decreases quadratically over distance, humans’ gaze

locking accuracy decreases only linearly with distance.

In Figure 4.5(b), we see that humans’ accuracy is largely maintained across different

head poses, even extreme ones such as ±30◦ to the side. Shechtman et al. [Shechtman,

Riordan-Eva, and Hardigan 2005] find that a 50◦ ocular duction (i.e., eye movement) is

nearly impossible for many age groups, and we found during our experiments that people

are uncomfortable moving their eyes 30◦ to the side. Hence, eye contact from even a ±30◦

head pose is unlikely to happen in everyday life.

Lastly, Figure 4.5(c) shows the results from an extended test that we performed with

10 players. In this test, the players viewed images whose left or right half was cropped off,

showing only one of the subject’s eyes, in addition to non-cropped images. Interestingly,

we found that the players are often more accurate when they can only see one of the other
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person’s eyes. This is the case when the subject is looking away and the visible eye is the

one that is looking more off-center.

4.2 Scaling Columbia Gaze Data Set Images

In the experiment described above, our players (study participants) viewed our images in

front of a computer screen, but we needed the subjects in the images to appear as they would

in person for the results to be accurate. We also needed to represent a variety of distances

(2 m to 18 m) properly for both the human and sample detector experiments. Hence, we

took the parameters of our camera, computer monitor, and even the acuity of the human

eye into account to scale the images accordingly and display them at the proper resolution.

The calculations are described here.

Human Test

An “eye pixel” is the smallest area of the human fovea that can distinguish a point or a

line pair [Blackwell 1946; Curcio, Sloan, Kalina, and Hendrickson 1990]. In our human

experiments, if the player were to view the subject directly from a distance of do, the

subject’s face would subtend E of the player’s eye’s pixels in width, where:

E =
w

2do tan(θe/2)
. (4.1)

w is the width of the subject’s face (usually ≈14 cm). θe is the angular resolution of the

human eye fovea, and is roughly 0.3 arc-minutes (or 0.005◦ per eye pixel) [Blackwell 1946;
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Curcio, Sloan, Kalina, and Hendrickson 1990].

When the subject is captured by a camera instead, his or her face subtends C camera

pixels in width, where:

C =
Pcw

wc(u/ f −1)
. (4.2)

Pc is the camera’s horizontal pixel count, wc is the width of the image sensor, f is the

camera’s focal length, and u is the distance from the subject to the camera.

Then, if the player views the captured image on a screen, the subject’s face would

subtend S eye pixels in width:

S =
αCws

2dsPs tan(θe/2)
, where α ≤ 1. (4.3)

α is the factor by which the image dimensions are scaled on the screen (1 represents 100%),

Ps is the screen’s horizontal pixel count, ws is the screen’s width, and ds is the distance from

the player to the screen.

For the player to view the subject on the screen without a loss in resolution compared

to seeing the subject in person, both C and S must be greater than or equal to E. This was

true in our configuration, in which u = 2 m, f = 85 mm, Pc = 5184 px, wc = 22.3 mm, Ps

= 2560 px, ds = 664 mm, D = 508 mm, and the corresponding (do, α) pairs (i.e., the scale

factors we used to represent each distance) were (2 m, 19.5%), (6 m, 6.5%), (10 m, 3.9%),

(14 m, 2.8%), and (18 m, 2.2%).
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Sample Detector Experiments

When testing the accuracy of our sample detector, we wanted the detector to “see” each

image as if they were being viewed by a person at the appropriate distance do. That is,

the subject’s face in each image should be of the same resolution that the human retina

would see it at a distance of do. Hence, we can simply downsample our data set’s images

to a resolution of E via Equation 4.1 to get versions of them that correspond to different

distances do.

4.3 Sample Gaze Locking Detector

Here, we show a simple, lightweight detector design that is nonetheless accurate and robust.

It runs at over 20 FPS on a computer with an Intel Core i5-3470 processor, 8 GB of RAM,

and an NVIDIA GeForce GTX 660M graphics card.

Given an image, the detector outputs binary decisions that indicate whether each face in

the image is gaze locking or not. It is composed of three broad phases, shown in Figure 4.6

and described below.

Pre-Processing Phase

In the first phase, we locate the eyes in an image and transform them into a standard coordi-

nate frame. We find the eyes by taking the eye corner locations output from a commercial

face and fiducial point detector [Omron 2012]. We rectify each eye via an affine transforma-

tion to remove the influence of head pose. Figure 4.7 shows several examples of rectified

features.
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Figure 4.6: Gaze locking detector pipeline. Our gaze locking detector is comprised of three
broad phases, shown here in different colors. In the first phase, we locate the eyes in an
image and transform them into a standard coordinate frame. In the second phase, we mask
out the eyes’ surroundings and assemble pixel-wise features from the eyes’ appearance.
Finally, we project these features into a low-dimensional space, then feed them into a binary
classifier to determine whether the face is gaze locking or not.

(a) (b)

Figure 4.7: Rectified eye features and gaze locking failure cases. (a) Examples of rectified
and masked features. Each eye has been transformed to a 48×36 px coordinate frame. The
crosshairs signify eye corners detected in the first phase. We mask each eye with a fixed-
size ellipse whose shape was optimized offline for accuracy. (b) Two failure cases: strong
highlights on glasses (top) and low contrast (bottom).
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Feature Extraction Phase

The most difficult part of using the eyes’ appearance for classification purposes is the in-

herent variance in the eyes’ appearance. Both the eyes’ shape and degree of openness

significantly affect their appearance, even after performing the affine transformation in the

first phase. Training our detector with a large number samples helps account for this, but

we take the additional step of masking out the areas around the eyes to remove the influence

of their variances in appearance.

Our mask (Figure 4.7) is a fixed-size ellipse whose major axis lies on the line segment

connecting the two eye corners. Choosing the size is nontrivial: a larger ellipse reveals

more of the eye’s surroundings and more information about gaze, but a smaller ellipse is

more robust to noise from the surroundings. We used a brute-force search of all possible

major and minor axis lengths offline to choose the best size. We chose the values that

achieved the best accuracy in our set of training data, which is separate from our testing

data.

After applying the mask, we concatenate the remaining pixels’ intensity values into a

high-dimensional feature vector, then normalize the feature vector to unit magnitude. This

unit-magnitude feature vector is our final representation of the eyes’ appearance.

Classification Phase

In the final phase, we project the high-dimensional feature vector onto a low-dimensional

space via principal component analysis (PCA) [Turk and Pentland 1991] and multiple dis-

criminant analysis (MDA) [Duda, Hart, and Stork 2001], then feed the projected vector
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into a support vector machine (SVM) [Chang and Lin 2011] that we trained offline. The

SVM decides whether the face is gaze locking or not. Since gaze locking is a binary classi-

fication problem rather than a continuous one, it is more robust to noise and requires fewer

training samples. The Binary Classifier subsection describes the training process.

PCA + MDA Compression

Dimensionality reduction is a common task in appearance matching. It boosts classifica-

tion speed, removes redundancies in the representations of features, avoids over-fitting, and

reduces the effects of noise on classification. Hence, we use PCA to compress our feature

vector to roughly 200 dimensions. Afterwards, we employ MDA to form a highly discrimi-

native subspace, compressing our feature vectors even more. We find that a six-dimensional

subspace, used to separate seven distinct classes of data, yields the highest accuracy. One

class corresponds to gaze locking images and the rest correspond to non-gaze-locking im-

ages. This is likely because our training data set comprises seven horizontal gaze directions,

one of them gaze locking (0◦) and the rest non-gaze-locking.

Binary Classifier

In our sample detector, we use a linear SVM classifier [Chang and Lin 2011] with default

parameters (which includes a radial basis function kernel) to output our final binary deci-

sion. Even though we use an SVM, any binary classifier (e.g., LDA or neural networks)

would work. The kernel allows input features similar to our positive training samples to

be “lifted airborne,” so to speak, separating them from ones near our negative samples

that are still “on the ground.” As was the case with the data set statistics described earlier,
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the number of positive and negative training samples we had was highly unbalanced (280

gaze locking images and 5,600 non-gaze-locking images), so we randomly perturbed our

training data to generate 5,000 additional gaze locking samples and 15,000 additional non-

gaze-locking samples. We accomplished this by making small, random adjustments to the

resolution and detected eye corner positions of our training images.

4.4 Experiments

We tested our gaze locking detector via leave-one-out cross-validation on a modified ver-

sion of our gaze data set. The original data set, described earlier in the Creating a Gaze

Data Set subsection, comprises five head poses and 21 gaze directions but was captured

with a high-resolution camera from a distance of 2 m. The modified data set comprises five

downsampled copies of each of the original data set’s 5,880 images, where the resolution

of each copy matches that seen by the human retina at distances of 2 m, 6 m, 10 m, 14 m,

and 18 m. Equation 4.1 in Appendex A describes how we downsampled the images. Note

that even the 2 m image is downsampled by a factor of 58.0%. Our supplementary video

shows how our detector performs on raw footage from webcams and iPad video feeds.

Comparison with Human Vision

Figure 4.8 shows our sample detector’s performance and compares it with human vi-

sion’s performance (from Figure 4.5). We again use the Matthews correlation coefficient

(MCC) [Matthews 1975] to represent accuracy since it is widely used in machine learn-

ing for assessing binary classification performance with uneven class sizes. Although our
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detector uses a very standard set of tools, it achieves an MCC of over 0.83 at a distance

of 18 m, significantly outperforming the 0.15 MCC of human vision (Figure 4.8(a)). This

high accuracy over long distances is a result of using very low-resolution feature vectors.

As we see in Figure 4.8(b), this accuracy is maintained across different horizontal head

poses, even fairly extreme ones such as ±30◦.

Figure 4.8(c) shows our detector’s accuracy with respect to a person’s actual gaze di-

rection. As with human vision, our detector is least accurate when a person is looking

at or very near the camera (i.e., at the borderline between gaze locking and “almost gaze

locking”). However, even in this case, our detector is much more accurate than human

vision (86% vs. 67%). We use percentage accuracies instead of MCCs here because each

horizontal gaze direction besides 0◦ is always non-gaze locking by definition and the MCC

is not well-defined when only one class of data is used.

Comparison with an Active System

Here, we compare our sample detector’s accuracy with that of the eyebox2 [eyebox2 2007],

a leading commercial implementation of Shell et al.’s active approach to eye contact detec-

tion. Recall that our approach is completely passive and hence does not use active illumi-

nation or special hardware like the eyebox2 does. The eyebox2 is specified to work best

at a range of 5–10 m in Normal mode and 1.3–3.3 m in Close Range mode, so we asked

six people to sit (indoors using a chin rest) 6 m in front of it in Normal mode and 2 m in

front of it in Close Range mode. They stared at the eyebox2 and six dots placed horizon-

tally around it (at ±5◦, ±10◦, and ±15◦) for ten seconds apiece. To analyze the eyebox2’s
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Figure 4.8: Gaze locking detector performance. We downsampled our detector’s test im-
ages to match the resolution seen by the human fovea at the respective distances. (a) Our
detector achieves MCCs of over 0.83 at a distance of 18 m, significantly outperforming
humans’ accuracy. The detector’s accuracy is fairly constant over distance because our
method uses very low resolution features. (b) Our detector’s accuracy is also fairly con-
stant over a variety of (horizontal) head poses. (c) As with human vision, our detector’s
accuracy is worst when people are looking at or very close to the camera. Our detector
significantly outperforms human vision nonetheless. We use percentage accuracies here
because the MCC is not well-defined when only one class of data is used.
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Figure 4.9: Comparison with an active system. A comparison of our sample detector with
an eyebox2, which implements Shell et al.’s active approach to eye contact detection, in
both Normal (6 m) and Close Range (2 m) modes. Though passive, our detector is more
accurate than the eyebox2. The eyebox2’s Normal mode seems to be tuned toward reduc-
ing false positives, and its Close Range mode seems to be tuned toward reducing false
negatives.

accuracy, we measured the proportion of time the eyebox2 claimed they were making eye

contact.

Figure 4.9 shows the results. Our sample detector is more accurate than the eyebox2

regardless of the actual gaze direction. In Normal mode, the eyebox2 seems tuned toward

reducing false positives—although we adjusted its illuminator position, threshold setting,

and focus setting as the manual instructed, its output was very jittery in the gaze locking

case. We also found its range for reliable tracking to be around 5–7 m, and that it does

not work well for people with glasses (the participants represented in Figure 4.9 did not

wear glasses). In Close Range mode, the eyebox2 seems to be tuned toward reducing false

negatives—it usually claims that people are looking at it unless they are looking at least 15◦

away. Our gaze locking approach works for a greater range of distances (at least 2–18 m)
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without separate modes of operation, is more robust to eyeglasses, and can be applied to

any image, including existing images.

Failure Cases

As with all appearance-based recognition systems, our approach can be prone to errors

when a feature’s visual appearance (in our case, that of the eyes) differs significantly from

that of average features. For example, even though 22 of 56 subjects in our training data

set wore glasses, our detector may not work well for all types of glasses over all head

poses, given the large variety. This, however, is also true for active techniques that rely on

reflections. Our approach is also prone to errors when the eyes are severely occluded (e.g.,

if a person’s hair blocks an eye), when the illumination is extreme (e.g., strong highlights

or profile illumination), or when there is very low contrast in the image. Figure 4.7(b)

highlights two of our sample detector’s failure cases.

4.5 Applications of Gaze Locking

We now demonstrate four of the applications that gaze locking facilitates. For each of these

applications, we recorded video feeds from the respective devices (iPads, webcams, and a

DSLR camera) and ran our detector on them offline.

Human–Object Interaction

Cameras are becoming increasingly small and inexpensive to produce. By embedding cam-

eras in everyday devices and objects, the devices and objects can be selected or activated
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✓× ×

Figure 4.10: Human–object interaction. Our gaze locking approach allows people to inter-
act with objects just by looking at them. In this proof of concept, we process the videos
from the embedded cameras of three iPads to sense when the iPads are being looked at.
Here, the woman is looking at the iPad in the middle. Since the iPads’ cameras are on their
extreme left, she was instructed to look at the iPads’ left halves.

✓×

Figure 4.11: User analytics. Two ordinary webcams are placed above two ads for the same
product. By counting the number of times each advertisement is viewed, we can gauge
which one is more effective. The counts incremented when the viewers looked at the ads’
top halves.

simply by looking at them.

As an example, Figure 4.10 shows a proof of concept system that we created with 3rd

generation iPads. We process the videos from the iPads’ built-in cameras (which have a

640×480 px resolution) to sense when they are looked at, then display relevant content such
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as news headlines or reading lists. As another example, a museum exhibit or department

store item could be rigged with a small camera to inform passersby about them when they

look at them.

Some smartphones (e.g., the Samsung Galaxy S III and the Samsung Galaxy S4) al-

ready include “smart pause” and “smart scroll” features to pause videos by looking away

from the phone and scroll documents by looking up and down. However, we found that

both features on the Galaxy S4 seem to work reliably only when a user moves his or her

entire head, although the system also responded sometimes to large eye motions alone. Our

technique can distinguish eye contact from a subtle ±5◦ gaze away, and it works over long

distances.

User Analytics

Several commercial systems [eyebox2 2007; EyeTech 2013] embed cameras in product

displays or advertisements as a means of measuring consumer attention, but these systems

employ active infrared illumination. As Figure 4.11 shows, our method offers a completely

passive alternative that is robust to distance and does not require special hardware.

As with the commercial systems, our method has a reasonably sized tolerance for what

it considers gaze locking, allowing it to work for cameras placed adjacent to regions of

interest as well. Our detector was trained to distinguish between 0◦ and ±5◦ horizontally

and between 0◦ and ±10◦ vertically, so we estimate its tolerance to be roughly 2.5◦ in

either direction horizontally and 5◦ in either direction vertically. This corresponds to a

8.7×17.5 cm target at a distance of 1 m and a 43.7×87.5 cm target at a distance of 5 m.
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Figure 4.12: Image search filter. Our approach is completely appearance-based and can be
applied to any image, including existing images such as ones from the Web. Hence, we
can sort these images (A–D) by degree of eye contact to quickly find one where everyone
is looking at the camera. These are actual decisions made by our detector.

Image Filtering

Unlike active methods, our method can be used to detect eye contact in existing images

such as ones from the Internet. There are billions of images on the Internet, and over 300

million photos are uploaded to Facebook alone each day [Kiss 2012]. Hence, as Figure 4.12

shows, we can sort and filter photos by degree of eye contact with our method to improve

image search.

Gaze-Triggered Photography

With today’s cameras, taking a group photo can be difficult since everyone must be looking

at the camera at the right moment. With our technology, however, cameras can incorporate

a gaze trigger that works as follows: the photographer would initiate the function, then join

the group as the camera waits to see another face (the photographer’s) enter the frame. As
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Figure 4.13: Gaze-triggered photography. By incorporating a gaze locking detector in
a consumer-level camera, the camera could automatically take a picture when the entire
group is looking straight back, allowing the photographer to join the group and still capture
a perfect photo. Our accompanying video shows our detector’s output on the camera’s feed.

soon as this is detected, the camera would take a picture when the entire group is looking

straight back. Figure 4.13 and our supplementary video demonstrate this concept.

Already, many consumer-level cameras (e.g., the Sony Cyber-shot W650) feature an

anti-blink function that helps users capture photos when subjects are not blinking. Other

cameras (e.g., the Canon PowerShot XS160 IS) also include face self-timers that release

the shutter only when an additional face (the photographer’s) enters the frame. By sensing

eye contact instead of simply sensing blinking or the presence of faces, our technology can

make cameras aware of when people are actually looking straight back.

4.6 Discussion

In this work, we have created a passive approach for sensing eye contact from a live camera

or an existing still image or video recording and demonstrated several of the applications

that it facilitates, such as human–object interaction and gaze-triggered photography. We
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also performed a study on how accurately humans can perform the same task, finding sev-

eral interesting results. Lastly, we created a large gaze data set. Unlike existing gaze

tracking approaches, our approach exploits the special appearance of direct eye gaze, mak-

ing it largely robust to distance and pose, even though it is passive, non-intrusive, and

calibration-free. Furthermore, it does not require any special hardware.

Section 7.2 describes what we feel is the future of gaze locking.
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Chapter 5

Optimizing Touchscreen Keyboards for Gesture Typing

This chapter explores how to modify existing gesture typing keyboards to make typing

on small devices much faster and more error-free than is currently possible. It addresses

a central usability problem pertaining to mobile devices: that of entering text, which is

inevitable in the course of using mobile devices. It also makes it as painless as possible for

users to type on small devices when their inputs cannot be anticipated by the system and

their inputs are complex. Touchscreen typing in particular is slow and prone to errors and

typos.

Specifically, we explore modifying Qwerty, the standard keyboard layout, to make word

gestures shorter and more distinct without making users have to learn how to type all over

again. The impact of doing so may be enormous: the amount of time humanity collectively

spends typing e-mail alone on mobile devices is over 120 millennia per day1.

1We can see this with some back-of-the-envelope calculations. Using the conservative assumption that
at least 10% of e-mail is sent from mobile devices and the facts that as of 2018 people send 281 billion
e-mails globally each day [Email Statistics Report, 2018-2022], the average e-mail length is 47 words [You
Probably Write a Novel’s Worth of Email Every Year], and the average smartphone typing speed is 20 words
per minute [MacKenzie, Zhang, and Soukoreff 1999], we can calculate that humanity collectively spends
over 120,000 years each day typing e-mails on mobile devices.
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5.1 Gesture Typing Advantages and Pitfalls

Gesture typing offers several advantages over touch typing (tapping): it supports a grad-

ual and seamless transition from visually guided tracing to recall-based gesturing, allows

users to approximate words with gestures rather than tapping each key exactly, and miti-

gates one major problem plaguing regular touchscreen typing: the lack of tactile feedback.

Since its invention in the early 2000’s [Zhai and Kristensson 2003], gesture typing has

gained large-scale adoption on mobile devices and can be found on all major mobile com-

puting platforms in products such as ShapeWriter, Swype, SwiftKey, SlideIT, TouchPal,

and Google Keyboard.

Despite these benefits, gesture typing suffers from an inherent problem: highly ambigu-

ous word gestures. Bi et al. [Bi, Azenkot, Partridge, and Zhai 2013b] showed that the error

rate for gesture typing is approximately 5–10% higher than for touch typing. This prob-

lem occurs because when gesture typing, the input finger must inevitably cross unintended

letters before reaching the intended one. The Qwerty layout itself further exacerbates this

problem. Because common vowels such as ‘u,’ ‘i,’ and ‘o’ are arranged together on Qw-

erty, many pairs of words (such as “or” and “our”) have identical gestures, and many others

(such as “but” and “bit”) have very similar gestures. Figure 1(a) shows the gestures for “or”

and “our” — their superstrings “for” and “four” also have identical gestures. In fact, our

analysis over a 40,000-word lexicon showed that 6.4% of words have another word with

an identical gesture on Qwerty.
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(a) Qwerty (b) GK-D

(c) GK-T

Figure 5.1: Keyboards optimized for gesture typing. The ‘o’ key is shaded to mark the
beginning of the word gestures for “or” (white) and “our” (black). (a) The Qwerty key-
board suffers from the problem of gesture ambiguity. Many pairs of words (such as “or”
and “our” shown here) share the same gesture on Qwerty. (b) The GK-D keyboard (“Ges-
ture Keyboard—Double optimized”) is the best compromise for gesture clarity and gesture
speed. Here, the gestures for “or” and “our” are noticeably different. (c) The GK-T key-
board (“Gesture Keyboard—Triple optimized”) is the best compromise for gesture clarity,
gesture speed, and Qwerty similarity. Again, the two gestures are noticeably different.

5.2 Toward Error-Free Gesture Typing

Given Qwerty’s obvious problems, rearranging the keys to make word gestures more dis-

tinct should reduce the error rate when gesture typing. However, a layout optimized for

gesture clarity (distinctness) might increase the length of each gesture (reducing typing

speed) or may be difficult for users to learn. Many questions arise when deciding whether

or not to introduce a new layout for gesture typing. For example, if the layout is exclusively

optimized for clarity, to what degree will it improve in accuracy over Qwerty? What is the

relationship between gesture clarity and gesture typing speed? Can we design an optimized
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layout similar to Qwerty in order to ease the learning process?

To answer these questions, we explore the layout optimization space related to gesture

typing by applying a rigorous mathematical optimization. Our research not only deepens

the understanding of the optimization space of gesture typing, but also contributes a set

of optimized layouts that significantly outperform Qwerty (in terms of both gesture clarity

and speed) and can immediately benefit mobile device users.

5.3 Optimization Metrics

Gesture Clarity

The gesture clarity metric is the most important metric in our optimization. The purpose of

this metric is to measure how unique the word gestures on a keyboard layout are. We based

the metric on the location channel in SHARK2 [Kristensson and Zhai 2004] and represent

each word’s gesture as its ideal trace, the polyline connecting the key centers of the word’s

letters. We define the nearest neighbor of a word w to be the word whose ideal trace is

closest to w’s ideal trace. This is the word that is most likely to be confused with w when

gesture typing, independent from the language model. The closer a word is to its nearest

neighbor, the more likely its gesture will be not be recognized properly. The gesture clarity

metric score for a given keyboard layout is simply the average distance (weighted by words’

frequencies) between each word and its nearest neighbor on that keyboard layout:

Clarity = ∑
w∈L

fwdw, where dw = min
x∈L−{w}

d(w,x) and ∑
w∈L

fw = 1. (5.1)
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L is a 40,000-word lexicon, fw is the frequency of w, and dw is the distance between

w and its nearest neighbor. We compute the distance between two ideal traces w and x via

proportional shape matching. Each gesture is sampled into N equidistant points, and the

distance is simply the average of the distance between corresponding points:

d(w,x) =
1
N

N

∑
i=1

∥wi − xi∥2. (5.2)

Time Complexity Refinements

Since the gesture clarity metric compares the gestures of every pair of words to find each

word’s nearest neighbor, its time complexity is O(N · |L|2). Here, L is the number of words

in the lexicon and N is the number of sample points in each word gesture. Its quadratic

time complexity with respect to L stands in stark contrast to the time complexities of earlier

optimization metrics which are exclusively linear with respect to L, making optimization

using it intractable. For our 40,000-word lexicon, there are nearly 800 million pairs of word

gestures to compare for each keyboard layout that we examine during the optimization

process.

We made two key algorithmic refinements to make the metric more tractable. First,

when searching for the nearest neighbor for each word, we only considered prospective

neighbors that started and ended with characters that were located within one key diago-

nal of the word’s starting and ending character, respectively. This is similar to the initial

template-pruning step employed in SHARK2 [Kristensson and Zhai 2004], where the dis-
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Figure 5.2: Word gesture neighbor sensitivity. The nearest neighbor that we find for a
word depends on how finely the word gestures are sampled. Here, we show the percentage
of nearest neighbors that are the same as when 100 sample points are used. The red dot
signifies 40 points, the amount we used.

tance threshold in this case is the diagonal length of a key. Second, we used a small number

of gesture sample points N to represent each word’s gesture. If N were too large, the com-

putation would be very expensive. If N were too small, word gestures (especially longer

ones) might not be represented properly, leading to incorrectly chosen nearest neighbors.

In order to see how small we could make N without affecting the integrity of our results,

we performed a small experiment. First, we found each word’s nearest neighbor on Qwerty

using very fine sampling (N = 100). Then, we repeated this step for smaller values of N

down to N = 20 and counted the number of nearest neighbors that were identical to the N

= 100 case. Figure 5.2 shows the results. When the number of sample points is reduced to

40, 96.9% of the nearest neighbors are the same as they were before. We used this value

for N in our algorithm.
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Gesture Speed

The gesture speed metric estimates how quickly users can gesture type on a keyboard lay-

out. We based this metric on the CLC model by Cao and Zhai [Cao and Zhai 2007]. The

model (which stands for “curves, line segments, and corners”) stems from human motor

control theory, and was designed to predict the amount of time it takes for a person to make

an arbitrary pen stroke gesture. To do this, the model partitions the gesture into segments,

where each segment is a curve (with a constant radius of curvature), a straight line, or a

corner (whose interior angle does not need to be 90◦). The time that it takes for a person to

gesture each type of segment is modeled with a different function. For line segments, the

time is modeled with a power function that echoes how people tend to gesture faster with

longer lines:

T (AB) = m · (
∥∥AB

∥∥
2)

n. (5.3)

Here, AB is a line segment, the output T is in milliseconds,
∥∥AB

∥∥
2 is the length of AB

in millimeters, and both m and n are constants, which were found to be 68.8 and 0.469

respectively in Cao and Zhai’s original formulation.

A polyline gesture is simply a collection of individual line segments. The time to

complete this type of gesture is modeled as simply the sum of the individual line segments’

functions:

T (P) = ∑
AB∈P

T (AB), (5.4)
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where P is the polyline and AB is a segment in the polyline. Although Cao and Zhai found

that the angles between polyline segments (that is, of a polyline’s corners) have an effect

on gesture entry time, the magnitude of the effect was small: less than 40 ms per corner

compared to 200–700 ms per segment. Hence, the model omits uses corners to delineate

segments but omits their 40 ms contribution.

As with the gesture clarity metric, each word in the lexicon is represented as its ideal

trace. To help compute the metric, we store a table of the weighted number of occurrences

of each bigram in our lexicon. The weighted number of occurrences o(i— j) of a bigram

i— j (for letters i and j) is calculated as follows:

o(i— j) = ∑
w∈L

fw · (# occurrences of i— j in w). (5.5)

Here, L is the lexicon, w is a word in the lexicon, and fw is the frequency of word w in L.

Each bigram is represented by a different line segment in the CLC model. Hence, to

estimate G, the average time it takes to complete a word gesture, we calculate the following:

G = ∑
i, j∈α

o(i— j) ·T (KiK j). (5.6)

Here, i and j are both letters in alphabet α , the set of lowercase letters from ‘a’ to ‘z.’

Ki and K j are the key centers of the i and j keys, respectively, KiK j is the line segment

connecting the key centers, and the function T is defined in Equation 5.4. Hence, G is

measured in milliseconds.

The last step is to convert the gesture duration G into words per minute (WPM), a
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measure of typing speed. Doing so gives us our gesture speed metric score:

Speed =
60,000

G
. (5.7)

60,000 represents the number of milliseconds in one minute. When calculating the

gesture typing speed of a keyboard layout, we do not consider the effects of the space bar,

capitalization, or the Shift key. One of the gesture typing’s advantages over touch typing, in

fact, is that spaces are automatically added between word gestures, eliminating the need for

one in approximately every 5.7 characters typed [Zhai and Kristensson 2003]. Moreover,

most of today’s gesture-typing systems apply capitalization and diacritics automatically.

We should also note that, because the CLC model omits the cost of gesturing corners

and the cost of traveling from the end of one gesture to the beginning of the next, the

calculated speeds generally overestimate the speeds at which users would actually type.

Rick [Rick 2010] proposed an alternative to the CLC model that is also based on Fitts’s

law, and although we ultimately chose to use the CLC model for our metric, we imple-

mented Rick’s model (without key taps for single-character words) to compare the models’

behaviors. We found that Rick’s model consistently output lower speed estimates than the

CLC model, but that they both followed the same overall trend. More specifically, the mean

(std. dev.) ratio between Rick’s model’s predicted speeds and the CLC model’s predicted

speeds for our final set of optimized layouts is 0.310 (0.004). After normalizing the metrics

as described on the next page, the mean (std. dev.) ratio becomes 0.995 (0.016).
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Qwerty Similarity

As has been thoroughly studied [Rick 2010; Yamada 1980; Zhai, Hunter, and Smith 2002],

the key obstacle to the widespread adoption of optimized layouts is the arduous process

of learning the new layouts. The Qwerty similarity metric measures how similar a given

keyboard layout is to Qwerty. By making a new layout more similar to Qwerty — and

hence less alien to longtime users of Qwerty — we hope to bridge the gap between the

short-term frustration of learning the new layout and the long-term benefits that the layout

provides.

The metric is based on the constraint that Bi, Smith, and Zhai [Bi, Smith, and Zhai

2010] used when creating the Quasi-Qwerty layout. In that optimization, which was for

typing speed only, keys were not allowed to move more than one slot away from their Qw-

erty locations. Dunlop and Levine [Dunlop and Levine 2012] later relaxed this constraint

in their multi-objective keyboard optimization by using the total squared Euclidean dis-

tance between keys’ positions and their Qwerty locations instead. Since a keyboard layout

is essentially a grid of keys, we use the total Manhattan distance between keys’ positions

and their Qwerty locations to measure Qwerty similarity. Like Dunlop and Levine’s metric,

this allows more freedom than the hard constraint used by Quasi-Qwerty. However, unlike

Dunlop and Levine’s metric, individual keys are not punished so severely if they move far

from their Qwerty locations. This allows us to consider layouts in which a few keys move

very far from their Qwerty locations.
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The Qwerty similarity metric for a given keyboard layout is computed as follows:

Qwerty Similarity = ∑
i∈α

(|kix −qix |+
∣∣kiy −qiy

∣∣), (5.8)

where i is a letter in alphabet α , the set of lowercase letters from ‘a’ to ‘z,’ and kix and qix are

the x-indices of the i key on the given keyboard layout and Qwerty, respectively. Unlike Ki

and K j in Equation 5.6, which are points whose coordinates are specified in millimeters, ki

and qi are unit-less ordered pairs of integers that represent the 2D index of key i’s slot in the

keyboard grid. In most of today’s touchscreen keyboard layouts, the second and third rows

are offset from the first row by half of a key width. Hence, in order to properly calculate

the Manhattan distance for this metric, we treat the second and third rows as if they are

shifted to the left by another half of a key width so that the second row is left-aligned with

the first row. The resulting representation of keyboard layouts is identical to the one used

for creating Quasi-Qwerty [Bi, Smith, and Zhai 2010]. The Qwerty similarity metric is the

only one that uses this modified keyboard representation.

5.4 Optimization Procedure

We frame the problem of designing a touchscreen keyboard for gesture typing as a multi-

objective optimization in which the three objectives are improving (1) gesture clarity, (2)

gesture speed, and (3) Qwerty similarity. There are multiple ways of judging how well

a layout meets these objectives. One way is to create a simple objective function that

somehow combines the objectives’ associated metric scores; for example, by summing the

scores in a linear combination. Such an approach, however, would force us to decide how
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much each metric should count for in deriving a single optimal layout, when in fact we

are more interested in understanding the behavior of each of the metrics and the inherent

tradeoffs between them.

As a result, although we still employ a simple objective function as part of our opti-

mization’s second phase, we use another approach called Pareto optimization for the opti-

mization at large. Pareto optimization has recently been used to optimize both keyboard

layouts [Bi, Smith, and Zhai 2012] and keyboard algorithms [Bi, Ouyang, and Zhai 2014].

In this approach, we calculate an optimal set of layouts called a Pareto optimal set or a

Pareto front. Each layout in the set is Pareto optimal, which means that none of its metric

scores can be improved without hurting the other scores. If a layout is not Pareto optimal,

then it is dominated, which means that there exists a Pareto optimal layout that is better

than it with respect to at least one metric and no worse than it with respect to the others. By

calculating the Pareto optimal set of keyboard layouts rather than a single keyboard layout,

we can analyze the tradeoffs inherent in choosing a keyboard layout and give researchers

the freedom to choose one that best meets their constraints.

Our optimization procedure is composed of three phases, described in detail in the

subsections below.

Phase 1: Metric Normalization

In the first phase, we perform a series of optimizations for each metric individually to esti-

mate the minimum and maximum possible raw values for each metric. We then normalize

each of the metric’s scores in a linear fashion so that the worst possible score is mapped
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to 0.0 and the best possible score is mapped to 1.0. Normalizing the scores allows us to

weight the metrics appropriately in Phase 2.

We use local neighborhood search to perform the optimizations. In order to more reli-

ably find the global extrema instead of local extrema, we incorporate a simulated annealing

process similar to the Metropolis random walk algorithm [Hastings 1970; Zhai, Hunter,

and Smith 2000]). Each optimization starts with a random keyboard layout using the same

footprint as Qwerty and runs for 2,000 iterations. At each iteration, we swap the locations

of two randomly chosen keys in the current layout to create a new candidate layout. If the

new layout is better than the current layout, we keep the new layout with 100% probability.

Otherwise, we only keep the new layout with a probability specified by a user-controlled

“temperature.” Higher temperatures increase this probability and allow us to escape from

local extrema.

In total, we performed 10–30 optimizations for each metric. We found that the range for

the raw gesture typing clarity metric scores was [0.256 key widths, 0.533 key widths], that

the range for the raw gesture typing speed metric scores was [50.601 WPM, 77.929 WPM],

and that the range for the raw Qwerty similarity metric scores was [0, 148]. Qwerty’s raw

scores for the three metrics are 2.390 mm, 62.652 WPM, and 0, respectively.

Phase 2: Pareto Front Initialization

In this phase, we generate an initial Pareto front of keyboard layouts by performing even

more local neighborhood searches. The searches are identical to the ones we perform

in Phase 1, except this time we seek to maximize the score from linear combinations of
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all three metric scores. We use twenty-two different weightings for the linear combina-

tions and perform roughly fifteen full 2,000-iteration local neighborhood searches for each

weighting. The purpose is to ensure that the Pareto front includes a broad range of Pareto

optimal keyboard layouts.

The Pareto front starts out empty at the very beginning of this phase, but we update it

with each new candidate keyboard layout that we encounter during the searches (at each

iteration of each search). To update the front, we compare the candidate layout with the

layouts already on the front. Then, we add the candidate layout to the front if it is Pareto

optimal, potentially displacing layouts already on the front that are now dominated by

the candidate layout. The candidate layout is added whether it is ultimately kept in the

particular local neighborhood search or not. This approach is similar to the one that Bi

et al. [Bi, Ouyang, and Zhai 2014] used to optimize keyboard correction and completion

algorithms.

Phase 3: Pareto Front Expansion

In the last phase, we perform roughly 200 passes over the Pareto front to help “fill out”

the front by finding Pareto optimal layouts that are similar to those already on the front.

In each pass, we swap two keys in each layout on the front to generate a set of candidate

layouts, then update the front with any candidate layouts that are Pareto optimal. This

phase is similar to the optimization used by Dunlop and Levine [Dunlop and Levine 2012].

However, by including Phase 2, we can ensure that all possible solutions are reachable

without the need to swap more than two keys at a time.

103



Optimization Parameters

We based our optimization’s keyboard representation on dimensions of the Nexus 5 [LG

USA 2018] Android keyboard. Since most of today’s touchscreen keyboards have very

similar profiles, our results should be applicable to any touchscreen keyboard. Each key is

represented by its entire touch-sensitive area, with boundaries placed between the center

points of neighboring keys, and is 109 × 165 px (6.22 × 9.42 mm) in size.

Our lexicon consists of 40,000 words. Before starting the optimization, we converted

words with diacritics to their Anglicized forms (“naïve” to “naive,” for example), removed

all punctuation marks from words (such as “can’t”), and made all words completely low-

ercase. Since gesture typing systems automatically handle diacritics, capitalization, and

punctuation marks within words, this should not hurt the integrity of our optimization.

Optimization Runtime

Due to the complexity and scope of our work, it took four machines (with 32 threads apiece)

running continuously over the course of nearly three weeks to obtain the results presented

below.

5.5 Optimized Keyboard Layouts

Figure 5.3 shows the final Pareto front of keyboard layouts optimized for gesture typing.

Overall, the front is composed of 1,725 keyboard layouts chosen from the 900,000+ can-

didate layouts that we examined in all. No single layout on the front is better than all of

the others — each layout is better than the others in some way, and the tradeoffs that are
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Figure 5.3: 3D Pareto front of keyboard layouts optimized for gesture typing. The keyboard
layouts with lighter colors are farther from the origin.

inherent in choosing a suitable layout from the front are reflected in the front’s convex

shape.

More specifically, the front can be viewed as a three-dimensional design space of per-

formance goals that one can choose from for different usage scenarios. Layouts with high

gesture clarity scores, gesture speed scores, and Qwerty similarity scores are more apt to

exhibit lower error rates, expert-level gesture entry times, and initial gesture entry times

(respectively) than those with low scores. However, since each layout on the front repre-

sents a compromise between these three goals, the choice of layout for a particular user

or usage scenario depends on the relative importance of each goal. For example, a fast

but less accurate user may prefer a layout biased towards clarity, while a user who gesture

types very accurately may prefer a layout biased toward speed. Nevertheless, if we know

105



(a) GK-C (b) GK-S

Figure 5.4: Single-optimized keyboard layouts. (a) Our GK-C keyboard (“Gesture
Keyboard—Clarity”) is optimized for gesture typing clarity only. (b) Our GK-S keyboard
(“Gesture Keyboard—Speed”) is optimized for gesture typing speed only.

nothing about users’ preferences or wish to choose a layout that can best accommodate a

wide variety of preferences, it is reasonable to use one that is in the middle of the convex

surface (serving each goal on a roughly equal basis) as Dunlop and Levine did [Dunlop and

Levine 2012].

We will now highlight layouts optimized for each of the three metrics as well as layouts

that serve roughly equal combinations of metrics. These layouts may serve as useful refer-

ences to researchers and designers and will help us test the effectiveness of our optimization

and its associated metrics in the user study.

Single-Optimized Keyboard Layouts

Figure 5.4(a) shows GK-C (“Gesture Keyboard—Clarity”), the layout optimized exclu-

sively for gesture typing clarity. Figure 4(b) shows GK-S, which was optimized exclusively

for speed. The layout optimized for Qwerty similarity is simply Qwerty itself, and is shown

in Figure 5.1(a).
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Figure 5.5: 2D Pareto front for gesture typing clarity and gesture typing speed. GK-D, our
double-optimized layout, is the point on the front nearest the 45◦ line. Note that Qwerty is
far worse in both dimensions than GK-D, and that GK-T (which accommodates yet another
dimension) is only slightly worse on these two dimensions than GK-D.

Double-Optimized Keyboard Layout

Figure 5.1(b) shows GK-D (where the ‘D’ stands for “double-optimized”). This keyboard

offers a roughly equal compromise between gesture typing clarity and gesture typing speed

without regard to learnability (Qwerty similarity). To find this layout, we projected the

three-dimensional Pareto front onto the clarity–speed plane to derive a 2D Pareto front

between clarity and speed, then chose the layout on the 2D front that was closest to the 45◦

line. Figure 5.5 shows the 2D Pareto front and GK-D.

Triple-Optimized Keyboard Layout

Figure 5.1(c) shows GK-T, where the ‘T’ stands for “triple optimized.” This keyboard

offers a roughly equal compromise between all three metrics: gesture typing clarity, gesture

107



typing speed, and Qwerty similarity. It is the one on the three-dimensional Pareto front that

is closest to the 45◦ line through the space. As Figure 5.5 illustrates, it is possible to

accommodate the extra dimension of Qwerty similarity without a big sacrifice to clarity

and speed.

Discussion

Table 5.1 shows the metric scores for our optimized layouts as well as previous optimized

layouts. Together, these optimized layouts give us a good understanding of what is possible

in the optimization space for gesture typing.

First, we can improve gesture clarity by 38.8% by optimizing for clarity alone: GK-C’s

raw metric score is 0.543 key widths while Qwerty’s is 0.391 key widths. Likewise, we also

see that we can improve gesture speed by 24.4% by optimizing for speed alone (resulting

in GK-S).

Second, the 2D Pareto front for gesture clarity and gesture speed (Figure 5.5) shows

that these two metrics conflict with each other. It forms a roughly -45◦ line, indicating that

optimizing for one leads to the decrease in the other. As GK-C and GK-S illustrate, the

clarity metric tends to arrange common letters far apart in a radial fashion while the speed

metric clusters common letters close together.

However, despite the conflict, it is possible to arrange common letters close together

while keeping word gestures relatively distinct, achieving large improvements in both clar-

ity and speed. In GK-D (our double-optimized keyboard), letters in common n-grams such

as “the,” “and,” and “ing” are arranged together while the n-grams themselves are spaced
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apart. This arrangement offers a 17.9% improvement in gesture clarity and a 13.0% im-

provement in gesture speed over Qwerty.

Third, accommodating Qwerty similarity (as GK-T does) does little harm to gesture

clarity or gesture speed. GK-T’s gesture clarity is only 0.01 key widths lower than GK-

D’s, and GK-T’s predicted speed is only 1 WPM lower than GK-D’s. Meanwhile, GK-T’s

Manhattan distance from Qwerty is just 42 key slots, while GK-D’s is 102 key slots.

Comparison with Previous Optimized Layouts

The key difference between our proposed keyboard layouts and previous optimized layouts

is that our layouts are optimized for multiple gesture typing factors while previous layouts

are predominantly optimized for tapping speed. As Table 1 shows, previous layouts such

as Sath Trapezoidal [Dunlop and Levine 2012], Square ATOMIK [Zhai, Hunter, and Smith

2002], and Square OSK [Rick 2010] have high gesture speed scores but low gesture clarity

scores.

5.6 User Study

Since the main focus of this work is to computationally discover the optimization space for

gesture typing, the conclusions that we have made so far are based on theoretical metrics.

Of the three metrics that we established, only one — gesture speed — is based on a model

that directly predicts its respective performance goal, which in its case is words per minute.

The others, gesture clarity and Qwerty similarity, do not directly measure their performance

goals: error rate and learnability, respectively. Hence, we performed an empirical study to
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give us a sense of how the metric scores correspond to real performance and whether the

optimization itself is effective.

Experimental Setup

In the study, participants gesture typed a set of 22 words with each keyboard layout using a

Nexus 5 [LG USA 2018] smartphone in portrait mode. As in Bi et al. [Bi, Smith, and Zhai

2012], participants had to gesture each word seven times in succession. We instructed the

participants to gesture as quickly as possible and ignore any errors, which, for us, achieved

two goals. First, it allowed us to stress test the keyboard’s gesture decoder by providing it

very sloppy gestures; the resulting data is also more differentiable in evaluating accuracy.

Second, it simulated a type of expert input behavior: entering words first and coming back

to fix mistakes later.

Our study was a within-subject design that tested three keyboard layouts: Qwerty (our

baseline), GK-D (the roughly equal compromise for clarity and speed only), and GK-T

(the roughly equal compromise for clarity, speed, and Qwerty similarity). To conduct the

experiment, we created Android implementations of GK-D and GK-T based on the An-

droid [Android Open Source Project 2018] keyboard, and developed an Android applica-

tion (Figure 5.6) to collect users’ gesture typing data.

All participants started with Qwerty but used the other two layouts in alternating order.

The first three words served as a warm-up phase to familiarize participants with the task

(we did not collect their data), and the other 19 words are from the list proposed by Zhai

and Kristensson [Zhai and Kristensson 2008]: “the and you that is in of know not they
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Figure 5.6: Gesture typing user study application. The layout shown is GK-T.

get have were are bit quick fox jumps lazy.” These words cover all letters of the English

alphabet and approximate both letter frequencies and digraph frequencies in English. They

were divided into groups of four or five with short breaks in between.

To measure gesture typing accuracy, we compare each committed word with the respec-

tive requested word using a strict binary string equality comparison. The committed word

is the word that appears after the participant lifts his or her finger from the screen and the

keyboard algorithm applies any word corrections that it sees fit. To measure gesture entry

times, we recorded either (1) the length of time from when a word was presented on the

screen to when the word was committed (for the first repetition of a word), or (2) the length

of time between when the last word was committed to when the current word is committed

(for subsequent repetitions of a word).

The entry times for the first repetitions of words offer a rough (but by no means perfect)

perspective of our keyboards’ learnability, while the entry times for latter repetitions of the

word are a rough estimate of expert-level entry times. The rationale for the latter is that by
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Figure 5.7: Error rates across 14 participants for Qwerty, GK-D, and GK-T. GK-D’s and
GK-T’s average error rate is 52% and 31% less than Qwerty’s, respectively. Error bars
indicate standard errors.

repeating the same word in a row, users will reach a stage where the input behavior is mostly

governed by motor control ability, which reflects expert input behavior. However, this is

only a limited proxy for the study of the complex learning process and expert-level typing

performance at scale, which may require a longitudinal logging study of real keyboard use,

notwithstanding privacy and other challenges associated with such methods.

A total of 14 volunteers (9 female, 5 male) participated in the experiment. Three were

age 18–25, nine were 26–35, and two were 36–45. Eight of them primarily use Android

smartphones and the rest iPhones. Thirteen were at least somewhat familiar with gesture

typing, and five were at least somewhat familiar with alternative keyboard layouts. All of

them were right-handed. Each experiment lasted less than an hour.
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Experimental Results

Error Rate

Figure 5.7 shows participants’ overall error rates with each layout and how those error

rates changed as participants made successive repetitions of each word. The mean (std.

dev.) error rate for Qwerty, GK-D, and GK-T were 26.4% (7.2%), 12.6% (6.6%), and

16.6% (6.2%), respectively. This means that the error rates for GK-D and GK-T were 52%

and 37% less than Qwerty, respectively. The keyboard layout has a significant main effect

on the overall error rate (F2,26 = 35.46, p < 0.001). Pairwise mean comparison over all rep-

etitions showed that the differences were significant (p < 0.01) for every pair of keyboards

except GK-D vs. GK-T. For Repetitions 2–6, however, the difference is significant (p <

0.01) for every pair of keyboards.

Initial Gesture Entry Time

Figure 5.8 shows how long, on average, it took participants to gesture words per repetition

× layout. We noticed that participants often planned out their gestures in the first repetition,

but resorted to motor memory in later repetitions. The mean (std. dev.) initial entry time

was 2,655 ms (502 ms), 5,870 ms (1,190 ms), and 5,468 ms (1,140 ms) for Qwerty, GK-D,

and GK-T, respectively. The keyboard layout has a significant main effect on the initial en-

try time (F2,26 = 75.26, p < 0.001). Pairwise mean comparison showed that the differences

were significant (p < 0.01) for each pair of keyboards except GK-D vs. GK-T.
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Figure 5.8: Gesture entry times across 14 participants for Qwerty, GK-D, and GK-T. Error
bars indicate standard errors. (a) The initial entry time (Repetition 1) using GK-D and GK-
T is over twice as long as it is using Qwerty. (b) For Repetitions 3–7 (approximating expert
usage), the average entry time for GK-D and GK-T are 12.5% and 6.0% faster respectively
than they are for Qwerty.

Expert-Level Gesture Entry Time

Figure 5.8(b) shows the expert-level entry time (Repetitions 3–7) in detail. The mean (std.

dev.) entry time in this case is 1,315 ms (300 ms) for Qwerty, 1,150 ms (333 ms) for GK-

D, and 1,237 ms (310 ms) for GK-T. The keyboard layout has a significant main effect on

the expert-level entry time (F2,26 = 12.46, p < 0.001). The expert-level entry time for GK-

D and GK-T is 12.5% and 6.0% faster than that for Qwerty. Pairwise mean comparison

showed the differences were significant (p < 0.01) for each pair of keyboards except GK-D

vs. GK-T.

Discussion

The results from the user study lead to several findings, although we again stress that they

are limited by the fact that our experiment was conducted in a single session. First, key-

boards optimized for gesture clarity are more accurate than those without. The error rates
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for GK-D and GK-T are 52% and 37% less than Qwerty, respectively.

Second, including both gesture typing clarity and gesture typing speed in the optimiza-

tion process results in layouts that outperform Qwerty in terms of both accuracy and expert

typing speed. Both GK-D and GK-T significantly outperform Qwerty in both of these met-

rics. Third, considering the Qwerty similarity metric has only minor effects on accuracy

and speed. The differences we observed between the expert-level entry times for GK-D and

GK-T were not statistically significant. Finally, the Qwerty similarity metric is not very ef-

fective in improving learnability. Though the mean initial entry time for GK-T was lower

than that of GK-D, we did not observe a statistically significant difference between the

two. This is likely due to the relative leniency of the Qwerty similarity metric compared

to Quasi-Qwerty’s hard constraint [Bi, Smith, and Zhai 2010] and Dunlop and Levine’s

squared distance metric [Dunlop and Levine 2012].

The findings also give us a better sense of how a layout’s gesture clarity and Qwerty

similarity scores correspond to real performance. Recall that the gesture speed scores are

based on an empirically derived model. For example, the gesture clarity score increase from

0.489 in Qwerty to 0.743 in GK-D (an increase by 0.254 — see Table 5.1) corresponds to

a decrease in the mean error rate from 26.4% to 12.6%. Yet, the Qwerty similarity score

increase from 0.324 to 0.716 does not improve learnability as we have defined it, while the

increase from 0.716 to 1.000 drastically does.

Still, we do not know the exact relationship between these two metrics’ scores and

the corresponding real-world performance measures. Conversely, the problem of finding

metrics that empirically model gesture typing error rate and keyboard learnability remains

to be solved. In the case of learnability, Quasi-Qwerty’s constraint improves it [Bi, Smith,
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and Zhai 2010] but cannot be used as a continuous model, and squared distance has not

yet been shown to model it in its various degrees. Determining those relationships requires

empirically testing many more layouts using a variety of values for each metric score, and

remains promising future work.

5.7 Discussion

The present work, for the first time, defines a multidimensional optimization space for

gesture typing — comprising gesture clarity, gesture speed, and Qwerty similarity — and

systematically explores that space. In the process, we contribute a set of optimized layouts

such as GK-D (optimized for both gesture clarity and gesture speed) and GK-T (optimized

for gesture clarity, gesture speed, and Qwerty similarity) that can immediately benefit users.

Though limited, our empirical study of these layouts led to the following findings.

First, optimizing the layouts for gesture clarity drastically improves gesture typing ac-

curacy. By incorporating gesture clarity as an optimization dimension, GK-D and GK-T

reduced error rates by 52% and 37% over Qwerty, respectively. Second, gesture clarity

and gesture speed conflict with each other, but despite the conflict, incorporating both in

the optimization process leads to superior performance over Qwerty with respect to both

metrics. GK-D and GK-T, for example, improved expert-level entry times by 12.5% and

6.0% over Qwerty, respectively. Third, Qwerty similarity as we have defined it has only

a minor conflict with gesture clarity and gesture speed, but is not effective in improving

learnability.

We discuss future areas of gesture typing research in Section 7.2.
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Chapter 6

The RAD: Making Racing Games Equivalently Accessible
to People Who Are Blind

As we have mentioned in the Introduction and in the previous chapter, personalization

is one of the keys to reducing input overhead. This is especially true in the case of ac-

cessibility, since by definition we must personalize computers for each user’s particular

circumstance to make them accessible. For users with disabilities, personalization can also

significantly reduce output overhead. In this section, we develop a user interface that helps

make our world — and in particular our intangible virtual world — accessible to people

who are blind, allowing them to control a real-time system with an efficiency very similar

to that of people who are sighted.

This contribution differs from this dissertation’s previous contributions in an important

way. While the previous contributions were dedicated to making the process of providing

inputs to computers more seamless and invisible, this contribution focuses on achieving

parity with respect to a computer’s outputs; namely, the display (or feedback) that a com-

puter responds with. Doing so is challenging because computers must sacrifice much of

their display expressiveness or “throughput” in order to accommodate disabilities such as

blindness.

This chapter’s focus will be on a challenging domain: making racing games equally

accessible to people who are blind. Exploring video games allows us to address an impor-
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tant instance of the throughput expressiveness parity problem. Since video games are very

much visual experiences, we must somehow give players who are blind an equivalent ex-

perience, including the ability to make the same moment-to-moment decisions as sighted

players make. Moreover, we must do so using a much less expressive mode of output or

channel: in our case, audio. The reason that we focus on racing games in particular is that

they are very time-sensitive, requiring players to make racing decisions in real time.

The Need for Equivalently Accessible Games

Accessibility alone is not enough to make the world a fair place for people with disabilities.

Even with assistive technologies, if people with disabilities cannot experience the world in

the same manner as anyone else [Steinfeld and Maisel 2012; WBDG Accessible Commit-

tee, Maisel, and Ranahan 2017], or even as productively as anyone else [Hedgpeth, Black

Jr., and Panchanathan 2006], the world will not yet be fair — or as we will say, equivalently

accessible.

Imagine a wheelchair ramp leading to an entrance of a public library. Technically, the

ramp would make the library accessible to people using wheelchairs. But if that ramp

makes such a circuitous route on its way up that only people who need it would ever want

to use it, the ramp would not make accessing the library efficient or fair [WBDG Accessible

Committee, Maisel, and Ranahan 2017]. Worse, suppose that the ramp leads to a separate,

less handsome entrance to the library or, even worse, to a different building altogether: a

smaller, adjacent library that only has the digest versions of books from the main library.

These facilities would clearly not be fair for people using wheelchairs.
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Figure 6.1: Study participant P8 — who is congenitally blind — playing our racing game
prototype using the racing auditory display (RAD). The RAD outputs spatialized sound
and works with a standard pair of headphones. Using the RAD, players who are blind
can play the same types of racing games that sighted players can play with an efficiency
and sense of control that are similar to what sighted players have. Our supplemental video
shows P8 using the RAD with the RAD’s audio included.

This situation, however, is similar to what video games are like for people who are

blind. Most blind-accessible games today are either loaded with competing sources of

information that players must sift through [Atkinson and Gucukoglu 2004; GMA Games

2005; Shultz 2015; Westin 2004], slowing down the efficiency of play, or are very sim-

plified versions of games that sighted players would play [Allman, Dhillon, Landau, and

Kurniawan 2009; audiogames archive 2015; Kim and Ricaurte 2011; Miller, Parecki, and

Douglas 2007; Morelli, Foley, and Folmer 2010; Shultz 2014a; Yuan and Folmer 2008],

to the extent that the player may be doing nothing more than following orders from the

game [Allman, Dhillon, Landau, and Kurniawan 2009; Kim and Ricaurte 2011; Miller,

Parecki, and Douglas 2007; Shultz 2014a; Yuan and Folmer 2008]. These games are tech-

nically accessible to players who are blind, but they are far from the same game that sighted
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Figure 6.2: The intention–efficiency tradeoff. When designing blind-accessible games,
game designers must choose between sacrificing each game’s complexity — and by exten-
sion the player’s intention or sense of control within the game — and the game’s efficiency
of play. Moreover, sophisticated actions such as cutting corners in racing games are diffi-
cult to incorporate even in intention-preserving games, so many do not feel fully authentic
to play compared to what sighted players would play. Our goal is to overcome this tradeoff
to help racing games become equivalently accessible to people who are blind.

players would play, and so are not equivalently accessible.

The Intention–Efficiency Tradeoff

The reason that blind-accessible games struggle to deliver the same experiences as games

for sighted players is that there is a fundamental conflict between preserving the game’s

complexity and preserving the game’s pace when designing a blind-accessible version of a

game. Preserving the former allows players to have the same sense of control that sighted

players have when playing existing games, while preserving the latter keeps the action

continuous and in real-time.

Figure 6.2 illustrates this tradeoff, with the sense of control that the game affords to
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the player on the vertical axis and the game’s efficiency (pace) on the horizontal axis. For

a game to be equivalently accessible to people who are blind, it should offer both, as the

green dot at the top-right of the figure indicates. In practice, however, designers must

sacrifice one of the two, causing existing blind-accessible games to fall into two distinct

groups: what we call efficiency-preserving games and intention-preserving games.

Efficiency-preserving games, indicated by the blue dashed circle in Figure 6.2, are ones

that sacrifice the sense of control that they afford players to keep their gameplay moving at

a continuous pace. These include games such as Blind Hero [Yuan and Folmer 2008], Rock

Vibe [Allman, Dhillon, Landau, and Kurniawan 2009], and Blindfold Racer [Shultz 2014a].

They are often simplified versions of games that sighted players would play and often boil

down the gameplay to a simple test of reaction speed. In Blind Hero and Rock Vibe, for

example, players do not get to prepare for upcoming beats like sighted players would when

playing Guitar Hero or Rock Band, which these games were based on. Rather, players are

tasked with pressing buttons as soon as they feel corresponding vibration cues.

Intention-preserving games, indicated by the red dashed circle in Figure 6.2, are ones

that sacrifice their efficiency of play to maintain more of their complexity and, by extension,

give players a greater sense of control. These include Terraformers [Westin 2004] and

Blindfold Color Crush [Shultz 2015]. They are often cumbersome to play because they

force players to navigate menus and process many audio cues just to understand what the

current situation in the game is at any given time. Moreover, although they preserve much

of their complexity and sense of control, they cannot preserve it all: complex actions such

as cutting corners and performing head shots remain out of reach.
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Chapter Contributions

In this chapter, we present the racing auditory display (RAD), an audio-based user inter-

face with the goal of overcoming the intention–efficiency tradeoff to help racing games

become equivalently accessible to people who are blind. The RAD comprises two novel

sonification techniques: the sound slider for understanding a car’s speed and trajectory on

a racetrack and the turn indicator system for alerting players of the direction, sharpness,

length, and timing of upcoming turns. Figure 6.1 shows a participant who is congenitally

blind playing a racing game with the RAD.

We conducted two user studies to investigate whether the RAD allows players who are

blind to play racing games at the same pace and with the same level of control as sighted

players can. In the first study, we found that players preferred to play a racing game using

the RAD over that of Mach 1 [audiogames archive 2015], a popular blind-accessible racing

game. In the second study, we found that the RAD makes it possible for a gamer who is

blind to race as well on a complex racetrack as casual sighted players do. When that gamer

raced using the RAD, there was no significant difference between his lap times or driving

paths compared to those of casual players racing with sight.

6.1 Intention And Its Role in Racing Games

Here, we introduce the concept of intention to describe what we mean by sense of control

more precisely, and will illustrate how this concept applies to racing games. This concept

can be used to examine whether a game gives players a high sense of control and, if not,

how it can be changed to do so.
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Intention is the process of “allowing and encouraging players to do things [within

games] intentionally” [Church 1999a; Church 1999b; Church 2006]. More specifically,

it is the process of “making an implementable plan of one’s own creation in response

to the current situation in the game world and one’s understanding of the game play op-

tions” [Church 1999a; Church 1999b; Church 2006]. By breaking this definition down into

parts, we can see that for a game to support intention, it must help the player perform the

following three activities:

1. Understand the current situation in the game.

2. Understand what game play options are currently available.

3. Make an implementable plan of their own creation.

These activities are analogous to the three components of Yuan et al.’s game interaction

model [Yuan, Folmer, and Harris 2011]. When we say that a game affords players a high

sense of control, we mean that the game supports intention, which more precisely means

that the game supports the player in performing each of the three activities listed above.

For a blind-accessible video game to be equivalently accessible to people who are blind,

it must support these three elements of intention without sacrificing the game’s pace —

overcoming the tradeoff in Figure 6.2 — and without simplifying the gameplay.

To support the first activity, racing games must help players understand all aspects of

their current situation that are relevant to racing: their vehicle’s position and orientation

on the racetrack, a general sense of its current speed, the nature of any upcoming turns,

etc. The game does not need to help players understand aspects of the current situation

that are not relevant to racing, such as their vehicle’s paint color or even its precise speed
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in mph/kph. (In fact, many games such as the Grand Theft Auto series and most of the

Mario Kart series do not show players their vehicle’s speed.) To support the third activity,

racing games should make it possible for players to form strategies such as cutting corners

or positioning themselves to better handle an upcoming turn.

6.2 The Racing Auditory Display (RAD)

In this section we introduce the racing auditory display (RAD), a user interface whose goal

is to help racing games become equivalently accessible to people who are blind. The RAD

was designed with the principle that it should not just tell players what to do but rather give

them enough relevant information to form a plan of action themselves.

The RAD comprises two novel sonification techniques: the sound slider and the turn

indicator system. The sound slider helps the player understand their car’s speed and trajec-

tory on a racetrack while the turn indicator system alerts players of the direction, sharpness,

length, and timing of upcoming turns well in advance of the actual turns. Together, the

techniques allow players to understand aspects about the race and perform a wide variety

of actions that are not possible to understand and perform in current blind-accessible racing

games.

The RAD’s Sound Slider

The RAD’s sound slider is a novel mechanism for displaying a value within a range using

spatialized (3D) sound. It is analogous to a traditional user interface slider, where the

slider’s track is a line segment in the 3D soundscape and the slider’s handle is replaced
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with a virtual speaker (sound emitter). The position of the speaker on the virtual track

represents the slider’s displayed value, where one end of the track represents the slider’s

minimum value, the other its maximum value, and positions in between intermediate values.

The slider’s value is for display only: the speaker cannot be manually manipulated by the

user like a traditional user interface slider’s handle can.

Figure 6.3 shows the specific sound slider configuration that we propose for blind-

accessible racing games. The slider’s track is a virtual horizontal bar of width w placed

a distance d in front of the player’s face in the soundscape. In our prototype racing game,

w is 65 m and d is 12 m. The speaker emits the sound of the player’s car’s engine and slides

left and right along the bar as the sound slider updates its value.

We explained the concept of the sound slider to our studies’ participants as follows. We

asked them to imagine being behind the car that they were controlling, so they could hear

the sound of the car’s engine right in front of their face. The car’s sound will move left or

right as the car becomes more at risk of hitting the track’s left or right edges, respectively.

When they steer, they control the car’s sound directly, so if they hear the car’s sound move

far toward the left, they will want to steer right to bring the sound back toward the center.

If the player is in a turn and not turning nearly as sharply as they need to, perhaps

because they are going too fast, the sound slider will emit a tire screeching sound adapted

from [audible-edge 2009] from the same position as the car’s engine sound. This acts to

warn the player that they must slow down by hitting the brake or letting go of the accelerator

to properly complete the turn.
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Figure 2. Overview of sound slider.
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Computing the Slider Value
Figure 2 illustrates how our sound slider system computes the
slider value to display to the player. Given the car’s current
position, orientation, and speed on the race track, it computes
the trajectories that the car would follow if the player was
to steer fully to the left or fully to the right. It models these
trajectories as circular arcs. We will denote them as

>
CL and

>
CR, respectively. The radii of the arcs are modeled as being
directly proportional to the car’s current speed, where the
constant of proportionality represents how sharply the car
turns. Through manual tuning, we found the value of the
constant in our prototype racing game to be very close to 1.6.
It is very important to set this value to be as accurately as
possible.

Next, the system computes the respective points at which
the trajectories intersect the track’s edges, then computes the
respective arc lengths l

>
CL and l

>
CR from the car’s position

to these points of intersection. l
>
CL and l

>
CR represent the

distances the car would travel before hitting an edge were the
player to steer fully to the left or right, respectively.

Finally, the system sets the slider value to the following quan-
tity, which we call the time-to-impact ratio:
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where zero represents the leftmost position on the slider and
one represents the rightmost position on the slider. There are a
few special cases, however, in which the system sets the slider
value to something different. If both trajectories hit the track’s
left edge (which means that the player is driving toward the
left edge) or the player’s car is currently off the track on the
left side, system will set the slider value to zero. Likewise, in
the case of the track’s right edge, the system will set the slider
value to one.

From Raw Position to Relative Risk
The algorithm described above represents a new approach for
letting players know where they are situated on a racetrack.
Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right edges if the player wanted to. This
distinction is what makes the sound slider intuitive for players
to understand even with the complex vehicle physics, steering
behaviors, and track geometries that are present in modern
racing games. Recall that the other games used very simplified
models for vehicle handling and track designs.

Figure 3 illustrates the benefit of using our approach over the
car’s lateral position on the track. The car’s lateral position
is the same in Figures 3(a) and (b), but due to the nature
of the tracks in these figures the player has an equal risk of
hitting the track’s left and right edges in Figure 3(a) but not
in Figure 3(b): in that figure the player should steer to the left
and would otherwise soon hit the track’s right edge. Likewise,
the car’s lateral position is the same in Figures 3(c) and (d),
but due to the difference in the cars’ headings with respect to
the tracks’, the player is more at risk of hitting the left edge
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Figure 2. RAD’s sound slider. (a) Sample car pose with the car’s trajecto-
ries if the player was to steer fully left or right drawn. (b) Overhead view
of corresponding rendered spatialized (3D) soundscape. RAD’s sound
slider is a speaker emitting the car’s engine noise whose lateral position
in the soundscape tracks the ratio of the trajectories’ lengths. In this
case, the player will hear the car’s engine right in front of their face
but slightly to the left. The ratio represents the player’s relative risk of
hitting either edge of the track.

If the player is in a turn and not turning nearly as sharply
as they need to, perhaps because they are going too fast, the
sound slider will emit a tire screeching sound adapted from [4]
from the same position as the car’s engine sound. This acts to
warn the player that they must slow down by hitting the brake
or letting go of the accelerator to properly complete the turn.

Computing the Slider Value
Figure 2 illustrates how RAD computes the sound slider value
to display to the player. Given the car’s current position,
orientation, and speed on the race track, RAD computes the
trajectories that the car would follow if the player was to steer
fully to the left or fully to the right. It models these trajectories
as circular arcs which we denote as

>
CL and

>
CR, respectively.

The radii of the arcs are modeled as being directly proportional
to the car’s current speed, where the constant of proportionality
represents how sharply the car turns. Through manual tuning,
we found the value of the constant in our prototype racing
game to be very close to 1.6.

Next, RAD finds the points at which the trajectories intersect
the track’s edges, then it computes the respective arc lengths
l
>
CL and l

>
CR from the car’s position to these points. l

>
CL

and l
>
CR represent the distances the car would travel before

hitting an edge were the player to steer fully to the left or right,
respectively. Finally, RAD sets the sound slider value to the
following quantity, which we call the time-to-impact ratio:
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The sound slider’s leftmost and rightmost positions are repre-
sented by zero and one respectively. There are a few special
cases, however, in which the system sets the slider value to
something different. If both trajectories hit the track’s left

(a) (b) (c) (d)
Figure 3. Four car poses and their corresponding sound slider values.
Though the car’s lateral position is the same between (a) and (b) and
between (c) and (d), the corresponding sound slider values are very dif-
ferent. This is because the left and right trajectories’ lengths — and
therefore the relative risks of hitting the left and right sides of the track
— are very different in each pair of cases.

edge (which means that the player is driving toward the left
edge), or if the player’s car is currently off the track on the
left side, system will set the slider value to zero. Likewise, in
the case of the track’s right edge, the system will set the slider
value to one.

From Lateral Position to Relative Risk
The algorithm described above represents a new approach for
letting players know where they are situated on a racetrack.
Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right sides if the player wanted to. This
distinction is what makes the sound slider intuitive for players
to understand even with the complex vehicle physics, steering
behaviors, and track geometries that are present in modern
racing games.

Figure 3 illustrates the benefit of updating the auditory display
using our trajectory-based approach over the car’s lateral po-
sition alone. The car’s lateral position is the same between
Figures 3(a) and (b) and between Figures 3(c) and (d), but
the player’s relative risks of hitting the track’s left and right
sides is very different between each pair. In Figure 3(b), for
example, the player is much more at risk of hitting the track’s
right side than they are in Figure 3(a) due to the sharp left turn
in Figure 3(b), and the player should be aware of this.

As another example, the car’s heading in Figure 3(c) puts the
car more at risk of hitting the track’s left edge than its right
edge, while its heading in Figure 3(d) does the opposite. The
player should be aware of this as well. The sound slider’s
trajectory-based approach communicates these risks.

Overcoming the Intention–Efficiency Tradeoff
We argue that the sound slider’s trajectory-based approach
to computing its displayed value allows RAD to overcome
the intention–efficiency tradeoff that plagues other blind-
accessible racing game interfaces (Figure 1). The reason is
that this approach distills many pieces of information — the
car’s lateral position on the track, its heading with respect to
the track’s, its speed, the track’s width, whether the track is
about to immediately turn, and more — into a single measure
that is no less relevant to the process of racing than all of that
information put together.
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becomes more at risk of hitting the track’s left or right edges,
respectively. When they steer, they control the car’s sound
directly, so if they hear the car’s sound move far toward the left,
they will want to steer right to bring the sound back toward
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If the player is in a turn and not turning nearly as sharply
as they need to, perhaps because they are going too fast, the
sound slider will emit a tire screeching sound adapted from [4]
from the same position as the car’s engine sound. This acts to
warn the player that they must slow down by hitting the brake
or letting go of the accelerator to properly complete the turn.

Computing the Slider Value
Figure 2 illustrates how our sound slider system computes the
slider value to display to the player. Given the car’s current
position, orientation, and speed on the race track, it computes
the trajectories that the car would follow if the player was
to steer fully to the left or fully to the right. It models these
trajectories as circular arcs. We will denote them as

>
CL and
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CR, respectively. The radii of the arcs are modeled as being
directly proportional to the car’s current speed, where the
constant of proportionality represents how sharply the car
turns. Through manual tuning, we found the value of the
constant in our prototype racing game to be very close to 1.6.
It is very important to set this value to be as accurately as
possible.

Next, the system computes the respective points at which
the trajectories intersect the track’s edges, then computes the
respective arc lengths l
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CR represent the
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Finally, the system sets the slider value to the following quan-
tity, which we call the time-to-impact ratio:
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where zero represents the leftmost position on the slider and
one represents the rightmost position on the slider. There are a
few special cases, however, in which the system sets the slider
value to something different. If both trajectories hit the track’s
left edge (which means that the player is driving toward the
left edge) or the player’s car is currently off the track on the
left side, system will set the slider value to zero. Likewise, in
the case of the track’s right edge, the system will set the slider
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From Raw Position to Relative Risk
The algorithm described above represents a new approach for
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Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right edges if the player wanted to. This
distinction is what makes the sound slider intuitive for players
to understand even with the complex vehicle physics, steering
behaviors, and track geometries that are present in modern
racing games. Recall that the other games used very simplified
models for vehicle handling and track designs.

Figure 3 illustrates the benefit of using our approach over the
car’s lateral position on the track. The car’s lateral position
is the same in Figures 3(a) and (b), but due to the nature
of the tracks in these figures the player has an equal risk of
hitting the track’s left and right edges in Figure 3(a) but not
in Figure 3(b): in that figure the player should steer to the left
and would otherwise soon hit the track’s right edge. Likewise,
the car’s lateral position is the same in Figures 3(c) and (d),
but due to the difference in the cars’ headings with respect to
the tracks’, the player is more at risk of hitting the left edge
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value to something different. If both trajectories hit the track’s
left edge (which means that the player is driving toward the
left edge) or the player’s car is currently off the track on the
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The algorithm described above represents a new approach for
letting players know where they are situated on a racetrack.
Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right edges if the player wanted to. This
distinction is what makes the sound slider intuitive for players
to understand even with the complex vehicle physics, steering
behaviors, and track geometries that are present in modern
racing games. Recall that the other games used very simplified
models for vehicle handling and track designs.

Figure 3 illustrates the benefit of using our approach over the
car’s lateral position on the track. The car’s lateral position
is the same in Figures 3(a) and (b), but due to the nature
of the tracks in these figures the player has an equal risk of
hitting the track’s left and right edges in Figure 3(a) but not
in Figure 3(b): in that figure the player should steer to the left
and would otherwise soon hit the track’s right edge. Likewise,
the car’s lateral position is the same in Figures 3(c) and (d),
but due to the difference in the cars’ headings with respect to
the tracks’, the player is more at risk of hitting the left edge

Figure 2. Overview of sound slider.

the sound of the car’s engine right in front of their face. The
car’s sound will move toward the left or the right as the car
becomes more at risk of hitting the track’s left or right edges,
respectively. When they steer, they control the car’s sound
directly, so if they hear the car’s sound move far toward the left,
they will want to steer right to bring the sound back toward
the center.

If the player is in a turn and not turning nearly as sharply
as they need to, perhaps because they are going too fast, the
sound slider will emit a tire screeching sound adapted from [4]
from the same position as the car’s engine sound. This acts to
warn the player that they must slow down by hitting the brake
or letting go of the accelerator to properly complete the turn.

Computing the Slider Value
Figure 2 illustrates how our sound slider system computes the
slider value to display to the player. Given the car’s current
position, orientation, and speed on the race track, it computes
the trajectories that the car would follow if the player was
to steer fully to the left or fully to the right. It models these
trajectories as circular arcs. We will denote them as

>
CL and

>
CR, respectively. The radii of the arcs are modeled as being
directly proportional to the car’s current speed, where the
constant of proportionality represents how sharply the car
turns. Through manual tuning, we found the value of the
constant in our prototype racing game to be very close to 1.6.
It is very important to set this value to be as accurately as
possible.

Next, the system computes the respective points at which
the trajectories intersect the track’s edges, then computes the
respective arc lengths l

>
CL and l

>
CR from the car’s position

to these points of intersection. l
>
CL and l

>
CR represent the

distances the car would travel before hitting an edge were the
player to steer fully to the left or right, respectively.

Finally, the system sets the slider value to the following quan-
tity, which we call the time-to-impact ratio:

Figure 3. Four driving scenarios.

Slider Display Value =
l
>
CL

l
>
CL+ l

>
CR

, (1)

where zero represents the leftmost position on the slider and
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the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
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distinction is what makes the sound slider intuitive for players
to understand even with the complex vehicle physics, steering
behaviors, and track geometries that are present in modern
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the car’s lateral position is the same in Figures 3(c) and (d),
but due to the difference in the cars’ headings with respect to
the tracks’, the player is more at risk of hitting the left edge

Figure 2. Overview of sound slider.

the sound of the car’s engine right in front of their face. The
car’s sound will move toward the left or the right as the car
becomes more at risk of hitting the track’s left or right edges,
respectively. When they steer, they control the car’s sound
directly, so if they hear the car’s sound move far toward the left,
they will want to steer right to bring the sound back toward
the center.

If the player is in a turn and not turning nearly as sharply
as they need to, perhaps because they are going too fast, the
sound slider will emit a tire screeching sound adapted from [4]
from the same position as the car’s engine sound. This acts to
warn the player that they must slow down by hitting the brake
or letting go of the accelerator to properly complete the turn.

Computing the Slider Value
Figure 2 illustrates how our sound slider system computes the
slider value to display to the player. Given the car’s current
position, orientation, and speed on the race track, it computes
the trajectories that the car would follow if the player was
to steer fully to the left or fully to the right. It models these
trajectories as circular arcs. We will denote them as

>
CL and

>
CR, respectively. The radii of the arcs are modeled as being
directly proportional to the car’s current speed, where the
constant of proportionality represents how sharply the car
turns. Through manual tuning, we found the value of the
constant in our prototype racing game to be very close to 1.6.
It is very important to set this value to be as accurately as
possible.

Next, the system computes the respective points at which
the trajectories intersect the track’s edges, then computes the
respective arc lengths l

>
CL and l

>
CR from the car’s position

to these points of intersection. l
>
CL and l

>
CR represent the

distances the car would travel before hitting an edge were the
player to steer fully to the left or right, respectively.

Finally, the system sets the slider value to the following quan-
tity, which we call the time-to-impact ratio:

Figure 3. Four driving scenarios.

Slider Display Value =
l
>
CL

l
>
CL+ l

>
CR

, (1)

where zero represents the leftmost position on the slider and
one represents the rightmost position on the slider. There are a
few special cases, however, in which the system sets the slider
value to something different. If both trajectories hit the track’s
left edge (which means that the player is driving toward the
left edge) or the player’s car is currently off the track on the
left side, system will set the slider value to zero. Likewise, in
the case of the track’s right edge, the system will set the slider
value to one.

From Raw Position to Relative Risk
The algorithm described above represents a new approach for
letting players know where they are situated on a racetrack.
Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right edges if the player wanted to. This
distinction is what makes the sound slider intuitive for players
to understand even with the complex vehicle physics, steering
behaviors, and track geometries that are present in modern
racing games. Recall that the other games used very simplified
models for vehicle handling and track designs.

Figure 3 illustrates the benefit of using our approach over the
car’s lateral position on the track. The car’s lateral position
is the same in Figures 3(a) and (b), but due to the nature
of the tracks in these figures the player has an equal risk of
hitting the track’s left and right edges in Figure 3(a) but not
in Figure 3(b): in that figure the player should steer to the left
and would otherwise soon hit the track’s right edge. Likewise,
the car’s lateral position is the same in Figures 3(c) and (d),
but due to the difference in the cars’ headings with respect to
the tracks’, the player is more at risk of hitting the left edge

Figure 2. Overview of sound slider.

the sound of the car’s engine right in front of their face. The
car’s sound will move toward the left or the right as the car
becomes more at risk of hitting the track’s left or right edges,
respectively. When they steer, they control the car’s sound
directly, so if they hear the car’s sound move far toward the left,
they will want to steer right to bring the sound back toward
the center.

If the player is in a turn and not turning nearly as sharply
as they need to, perhaps because they are going too fast, the
sound slider will emit a tire screeching sound adapted from [4]
from the same position as the car’s engine sound. This acts to
warn the player that they must slow down by hitting the brake
or letting go of the accelerator to properly complete the turn.

Computing the Slider Value
Figure 2 illustrates how our sound slider system computes the
slider value to display to the player. Given the car’s current
position, orientation, and speed on the race track, it computes
the trajectories that the car would follow if the player was
to steer fully to the left or fully to the right. It models these
trajectories as circular arcs. We will denote them as

>
CL and

>
CR, respectively. The radii of the arcs are modeled as being
directly proportional to the car’s current speed, where the
constant of proportionality represents how sharply the car
turns. Through manual tuning, we found the value of the
constant in our prototype racing game to be very close to 1.6.
It is very important to set this value to be as accurately as
possible.

Next, the system computes the respective points at which
the trajectories intersect the track’s edges, then computes the
respective arc lengths l

>
CL and l

>
CR from the car’s position

to these points of intersection. l
>
CL and l

>
CR represent the

distances the car would travel before hitting an edge were the
player to steer fully to the left or right, respectively.

Finally, the system sets the slider value to the following quan-
tity, which we call the time-to-impact ratio:

Figure 3. Four driving scenarios.

Slider Display Value =
l
>
CL

l
>
CL+ l

>
CR

, (1)
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one represents the rightmost position on the slider. There are a
few special cases, however, in which the system sets the slider
value to something different. If both trajectories hit the track’s
left edge (which means that the player is driving toward the
left edge) or the player’s car is currently off the track on the
left side, system will set the slider value to zero. Likewise, in
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The algorithm described above represents a new approach for
letting players know where they are situated on a racetrack.
Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right edges if the player wanted to. This
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but due to the difference in the cars’ headings with respect to
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Figure 2. RAD’s sound slider. (a) Sample car pose with the car’s trajecto-
ries if the player was to steer fully left or right drawn. (b) Overhead view
of corresponding rendered spatialized (3D) soundscape. RAD’s sound
slider is a speaker emitting the car’s engine noise whose lateral position
in the soundscape tracks the ratio of the trajectories’ lengths. In this
case, the player will hear the car’s engine right in front of their face
but slightly to the left. The ratio represents the player’s relative risk of
hitting either edge of the track.

If the player is in a turn and not turning nearly as sharply
as they need to, perhaps because they are going too fast, the
sound slider will emit a tire screeching sound adapted from [4]
from the same position as the car’s engine sound. This acts to
warn the player that they must slow down by hitting the brake
or letting go of the accelerator to properly complete the turn.

Computing the Slider Value
Figure 2 illustrates how RAD computes the sound slider value
to display to the player. Given the car’s current position,
orientation, and speed on the race track, RAD computes the
trajectories that the car would follow if the player was to steer
fully to the left or fully to the right. It models these trajectories
as circular arcs which we denote as

>
CL and

>
CR, respectively.

The radii of the arcs are modeled as being directly proportional
to the car’s current speed, where the constant of proportionality
represents how sharply the car turns. Through manual tuning,
we found the value of the constant in our prototype racing
game to be very close to 1.6.

Next, RAD finds the points at which the trajectories intersect
the track’s edges, then it computes the respective arc lengths
l
>
CL and l

>
CR from the car’s position to these points. l

>
CL

and l
>
CR represent the distances the car would travel before

hitting an edge were the player to steer fully to the left or right,
respectively. Finally, RAD sets the sound slider value to the
following quantity, which we call the time-to-impact ratio:
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The sound slider’s leftmost and rightmost positions are repre-
sented by zero and one respectively. There are a few special
cases, however, in which the system sets the slider value to
something different. If both trajectories hit the track’s left

(a) (b) (c) (d)
Figure 3. Four car poses and their corresponding sound slider values.
Though the car’s lateral position is the same between (a) and (b) and
between (c) and (d), the corresponding sound slider values are very dif-
ferent. This is because the left and right trajectories’ lengths — and
therefore the relative risks of hitting the left and right sides of the track
— are very different in each pair of cases.

edge (which means that the player is driving toward the left
edge), or if the player’s car is currently off the track on the
left side, system will set the slider value to zero. Likewise, in
the case of the track’s right edge, the system will set the slider
value to one.

From Lateral Position to Relative Risk
The algorithm described above represents a new approach for
letting players know where they are situated on a racetrack.
Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right sides if the player wanted to. This
distinction is what makes the sound slider intuitive for players
to understand even with the complex vehicle physics, steering
behaviors, and track geometries that are present in modern
racing games.

Figure 3 illustrates the benefit of updating the auditory display
using our trajectory-based approach over the car’s lateral po-
sition alone. The car’s lateral position is the same between
Figures 3(a) and (b) and between Figures 3(c) and (d), but
the player’s relative risks of hitting the track’s left and right
sides is very different between each pair. In Figure 3(b), for
example, the player is much more at risk of hitting the track’s
right side than they are in Figure 3(a) due to the sharp left turn
in Figure 3(b), and the player should be aware of this.

As another example, the car’s heading in Figure 3(c) puts the
car more at risk of hitting the track’s left edge than its right
edge, while its heading in Figure 3(d) does the opposite. The
player should be aware of this as well. The sound slider’s
trajectory-based approach communicates these risks.

Overcoming the Intention–Efficiency Tradeoff
We argue that the sound slider’s trajectory-based approach
to computing its displayed value allows RAD to overcome
the intention–efficiency tradeoff that plagues other blind-
accessible racing game interfaces (Figure 1). The reason is
that this approach distills many pieces of information — the
car’s lateral position on the track, its heading with respect to
the track’s, its speed, the track’s width, whether the track is
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left edge (which means that the player is driving toward the
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The algorithm described above represents a new approach for
letting players know where they are situated on a racetrack.
Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right edges if the player wanted to. This
distinction is what makes the sound slider intuitive for players
to understand even with the complex vehicle physics, steering
behaviors, and track geometries that are present in modern
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Figure 3 illustrates the benefit of using our approach over the
car’s lateral position on the track. The car’s lateral position
is the same in Figures 3(a) and (b), but due to the nature
of the tracks in these figures the player has an equal risk of
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in Figure 3(b): in that figure the player should steer to the left
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the car’s lateral position is the same in Figures 3(c) and (d),
but due to the difference in the cars’ headings with respect to
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behaviors, and track geometries that are present in modern
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Figure 2. RAD’s sound slider. (a) Sample car pose with the car’s trajecto-
ries if the player was to steer fully left or right drawn. (b) Overhead view
of corresponding rendered spatialized (3D) soundscape. RAD’s sound
slider is a speaker emitting the car’s engine noise whose lateral position
in the soundscape tracks the ratio of the trajectories’ lengths. In this
case, the player will hear the car’s engine right in front of their face
but slightly to the left. The ratio represents the player’s relative risk of
hitting either edge of the track.

If the player is in a turn and not turning nearly as sharply
as they need to, perhaps because they are going too fast, the
sound slider will emit a tire screeching sound adapted from [4]
from the same position as the car’s engine sound. This acts to
warn the player that they must slow down by hitting the brake
or letting go of the accelerator to properly complete the turn.

Computing the Slider Value
Figure 2 illustrates how RAD computes the sound slider value
to display to the player. Given the car’s current position,
orientation, and speed on the race track, RAD computes the
trajectories that the car would follow if the player was to steer
fully to the left or fully to the right. It models these trajectories
as circular arcs which we denote as

>
CL and

>
CR, respectively.

The radii of the arcs are modeled as being directly proportional
to the car’s current speed, where the constant of proportionality
represents how sharply the car turns. Through manual tuning,
we found the value of the constant in our prototype racing
game to be very close to 1.6.

Next, RAD finds the points at which the trajectories intersect
the track’s edges, then it computes the respective arc lengths
l
>
CL and l

>
CR from the car’s position to these points. l

>
CL

and l
>
CR represent the distances the car would travel before

hitting an edge were the player to steer fully to the left or right,
respectively. Finally, RAD sets the sound slider value to the
following quantity, which we call the time-to-impact ratio:

Slider Display Value =
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>
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CL+ l
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The sound slider’s leftmost and rightmost positions are repre-
sented by zero and one respectively. There are a few special
cases, however, in which the system sets the slider value to
something different. If both trajectories hit the track’s left

(a) (b) (c) (d)
Figure 3. Four car poses and their corresponding sound slider values.
Though the car’s lateral position is the same between (a) and (b) and
between (c) and (d), the corresponding sound slider values are very dif-
ferent. This is because the left and right trajectories’ lengths — and
therefore the relative risks of hitting the left and right sides of the track
— are very different in each pair of cases.

edge (which means that the player is driving toward the left
edge), or if the player’s car is currently off the track on the
left side, system will set the slider value to zero. Likewise, in
the case of the track’s right edge, the system will set the slider
value to one.

From Lateral Position to Relative Risk
The algorithm described above represents a new approach for
letting players know where they are situated on a racetrack.
Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right sides if the player wanted to. This
distinction is what makes the sound slider intuitive for players
to understand even with the complex vehicle physics, steering
behaviors, and track geometries that are present in modern
racing games.

Figure 3 illustrates the benefit of updating the auditory display
using our trajectory-based approach over the car’s lateral po-
sition alone. The car’s lateral position is the same between
Figures 3(a) and (b) and between Figures 3(c) and (d), but
the player’s relative risks of hitting the track’s left and right
sides is very different between each pair. In Figure 3(b), for
example, the player is much more at risk of hitting the track’s
right side than they are in Figure 3(a) due to the sharp left turn
in Figure 3(b), and the player should be aware of this.

As another example, the car’s heading in Figure 3(c) puts the
car more at risk of hitting the track’s left edge than its right
edge, while its heading in Figure 3(d) does the opposite. The
player should be aware of this as well. The sound slider’s
trajectory-based approach communicates these risks.

Overcoming the Intention–Efficiency Tradeoff
We argue that the sound slider’s trajectory-based approach
to computing its displayed value allows RAD to overcome
the intention–efficiency tradeoff that plagues other blind-
accessible racing game interfaces (Figure 1). The reason is
that this approach distills many pieces of information — the
car’s lateral position on the track, its heading with respect to
the track’s, its speed, the track’s width, whether the track is
about to immediately turn, and more — into a single measure
that is no less relevant to the process of racing than all of that
information put together.

5

Figure 6.3: The RAD’s sound slider. (a) Sample car pose showing what the car’s trajec-
tories would be if the player were to steer fully left or fully right. (b) Overhead view of
corresponding rendered spatialized (3D) soundscape. The RAD’s sound slider is a speaker
emitting the car’s engine noise whose lateral position in the soundscape tracks the ratio of
the trajectories’ lengths. The ratio represents the player’s relative risk of hitting either edge
of the track. In this case, the player will hear the car’s engine right in front of their face but
slightly to the left.

Computing the Slider Value

Figure 6.3 illustrates how the RAD computes the sound slider value to display to the player.

Given the car’s current position, orientation, and speed on the race track, the RAD com-

putes the trajectories that the car would follow if the player was to steer fully to the left or

right. It models these trajectories as circular arcs which we denote as
>
CL and

>
CR, respec-

tively. The radii of the arcs are modeled as being directly proportional to the car’s current

speed, where the constant of proportionality represents how sharply the car turns. Through

manual tuning, we found its value in our prototype game to be roughly 1.6.

Next, the RAD finds the points at which the trajectories intersect the track’s edges, then

it computes the respective arc lengths l
>
CL and l

>
CR from the car’s position to these points.

l
>
CL and l

>
CR represent the distances the car would travel before hitting an edge were the
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player to steer fully to the left or right, respectively. Finally, the RAD sets the sound slider

value to the following quantity, which we call the time-to-impact ratio:

Slider Display Value =
l
>
CL

l
>
CL+ l

>
CR

. (6.1)

The sound slider’s leftmost and rightmost positions are represented by zero and one

respectively. The system will set the slider value to something different than the time-to-

impact ratio in two cases. The first case is when both trajectories hit the track’s left edge

— which means that the player is driving toward the left edge — or when the player’s car

is currently off the track on the left side. The second is the analogous case for the track’s

right edge. In these cases, the system will set the slider value to zero and one, respectively.

From Lateral Position to Relative Risk

The algorithm described above represents a new approach for letting players know where

they are situated on a racetrack. Unlike the stereo pan values in Blindfold Racer, Mach 1,

and the Top Speed series, the sound slider’s display value is not a direct reflection of the

car’s lateral position on the track. Rather, it is a function of the car’s relative risk of hitting

the track’s left or right sides if the player wanted to. This distinction is what makes the

sound slider intuitive even with the complex vehicle physics, steering behaviors, and track

geometries that are present in modern racing games.

Figure 6.4 illustrates the benefit of updating the auditory display using our trajectory-

based approach over the car’s lateral position alone. The car’s lateral position is the same

between Figures 6.4(a) and (b) and between Figures 6.4(c) and (d), but the player’s relative
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(a) (b) (c) (d)

Figure 6.4: Four car poses and their corresponding sound slider values. Though the car’s
lateral position is the same between (a) and (b) and between (c) and (d), the corresponding
sound slider values are very different. This is because the left and right trajectories’ lengths
— and therefore the relative risks of hitting the left and right sides of the track — are very
different in each pair of cases.

risks of hitting the track’s left and right sides is very different between each pair. In Fig-

ure 6.4(b), for example, the player is much more at risk of hitting the track’s right side than

they are in Figure 6.4(a) due to the sharp left turn in Figure 6.4(b), and the player should

be aware of this.

As another example, the car’s heading in Figure 6.4(c) puts the car more at risk of

hitting the track’s left edge than its right edge, while its heading in Figure 6.4(d) does the

opposite. The player should be aware of this as well. The sound slider’s trajectory-based

approach communicates these risks.

Overcoming the Intention–Efficiency Tradeoff

We argue that the RAD’s trajectory-based approach to computing its sound slider’s dis-

played value allows it to overcome the intention–efficiency tradeoff that plagues other

blind-accessible racing game interfaces (Figure 6.2).

The reason is that this approach distills many pieces of information — the car’s lateral

position on the track, its heading with respect to the track’s, its speed, the track’s width,
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whether the track is about to immediately turn, and more — into a single measure that we

hope is as relevant to the process of racing as all of that information put together. Moreover,

it does so in a way that gives players the freedom to decide how risky they would like to

race: whether they should cut corners by being close to hitting the track’s inside edge or

stay closer to the track’s center. Sucu and Folmer’s haptic driving interface, by comparison,

eliminates intention by simply telling players which way they should steer at any given

time.

We liken this process of distilling the many pieces of information to that of dimension-

ality reduction in machine learning and statistics. Dimensionality reduction is important

in these fields because it boosts classification speed and removes redundancies in the rep-

resentations of features. In the RAD’s sound slider’s case, the process reduces the amount

of information that must be conveyed to the player while preserving its meaning and rele-

vancy.

The RAD’s Turn Indicator System

The RAD’s turn indicator system uses spatialized (3D) sound cues to alert players of the

direction, sharpness, and timing of upcoming turns and the length of in-progress turns. It

works by playing a series of four beeps that trigger when the player’s car crosses four

corresponding and equally spaced distance markers placed ahead of the turn. The last beep

is a continuous sound that begins playing just as the turn begins and continues sounding

until the player completes the turn. Left and right turns are indicated by beeps emitted

from the left and right ends of the sound slider’s track, respectively. Overlapping turns are
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indicated by overlapping sets of beeps.

By using four beeps to indicate turns, the player is given enough time to recognize the

beeps’ rhythm and anticipate the timing of the last beep, which marks the beginning of

the turn. The player can then time their steering accordingly, cutting the corner if they

wish by starting to steer a little before the last beep begins sounding. The distance markers

triggering the four beeps are spaced 20 m apart, giving the player 1.7 s of advance notice of

the turn when they are driving at the maximum speed of 35 m/s (approximately 75 mph).

The beep sounds themselves are modified recordings of a distant engine hum, adapted

from [CosmicD 2007]. Low pitched beeps indicate soft turns, moderately pitched beeps

indicate moderate turns, and high-pitched beeps indicate sharp turns. We defined soft turns

as those which turn less than 0.3° per meter of track and sharp turns as those which turn

more than 1° per meter of track. When a turn changes sharpness partway through, as in

Turns 7a and 7b in Figure 6.6, the system treats each part as a separate turn and alerts the

player accordingly.

In addition to playing the beeps, the system announces each upcoming turn’s number,

where Turn 1 is the track’s first turn, Turn 2 the second, and so on. The number is an-

nounced at the same time as the first beep, and the goal is to help players learn the track

over time as sighted players do.

Supported Actions

The RAD’s sound slider and turn indicator system work together to support the following

actions:
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Understand the car’s current speed: The sound slider’s car engine sound will increase

in pitch as the engine revs up, giving the player a general sense of the car’s current

speed.

Align the car with the track’s heading: If the player’s car is not aligned with the track’s

heading, the car engine sound will begin moving left or right on the sound slider. The

player can align their car with the track’s heading by steering until the engine sound

stops moving.

Learn the track’s layout: The turn indicator’s turn number announcements help the

player remember specific turns and sequences of turns.

Profile upcoming turns: The direction, sharpness, timing, and length of upcoming turns

are indicated by the turn indicator beeps’ left vs. right location in the soundscape, the

beeps’ pitch, the beeps’ rhythm, and the fourth beep’s duration, respectively.

Cut corners: By steering into a turn just before the turn indicator’s fourth beep, the player

can cut corners. The player can maintain an inside position during the turn by steer-

ing such that the engine sound moves toward the inside of the turn on the sound slider

(and away from the slider’s center).

Choose an early or late apex: By steering into a turn just before or after the turn indi-

cator’s fourth beep, the player can choose between taking an earlier apex or a later

apex [Seas 2012].

Position the car for an optimal turning path: By steering the car in a way that moves

the engine sound to a desired position on the sound slider ahead of a turn, the player

can position the car for a more optimal driving path.

Know when braking is needed to complete a turn: The sound slider emits a tire
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Figure 6.5: Racing game prototype implemented in Unity.

screeching sound when the player is going too fast in a turn to turn sharply enough.

6.3 Racing Game Prototype

As a proof of concept, we developed a racing game using the Unity game engine (version

5.4.2) [Unity Technologies 2016] and implemented the RAD in that racing game. Our

prototype, shown in Figure 6.5, is an extension of TurnTheGameOn’s Racing Game Tem-

plate [O’Donnell 2015]. It features full 3D graphics and uses realistic vehicle physics from

the Edy’s Vehicle Physics package [García 2015].

Our game is played with a Sony DUALSHOCK 4 (PlayStation 4 controller) [Sony In-

teractive Entertainment 2013] and a standard pair of headphones. The controls are mapped

similarly to other PlayStation 4 racing games: the left analog stick controls steering, R2

(the right analog trigger) is gas/acceleration, L2 (the left analog trigger) is brake and re-

verse, and R1 (the right shoulder button) is the handbrake. In case of a crash, participants
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Figure 6.6: Circuit diagram for the racetrack used in our RAD user studies. This track is
difficult and much more complex than ones in previous blind-accessible games, featuring
a wide variety of turns.

could press the Triangle button to reset their car to the center of the track.

To generate spatialized (3D) sound, we enabled the simple demo spatializer provided

by Unity’s Audio Spatializer SDK [Unity Technologies 2017]. The spatializer applies a

direct head-related transfer function (HRTF) that is based on a data set generated from a

KEMAR dummy-head [Gardner and Martin 1995].

The Racetrack

Figure 6.6 shows the track that we used for our user studies. The track was developed

internally at Unity [Unity Technologies 2015] and is much more complex than ones in

previous blind-accessible games. It features a wide variety of turns: soft, moderate, and

sharp turns; a long straightaway; a series of hairpin turns (Turns 9–11) that require players

to slow down; a 270° turn (Turn 16); several short kinks in the track (Turns 8, 13, 14, &

17); several series of esses (Turns 1–5 & 19–20); long and gradual turns (Turns 5b & 7a);

and turns that vary in sharpness as they progress (Turns 5, 7 & 17). The track is 3,641 m
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long, 19 m wide, and has 20 turns in total.

6.4 Study 1: The RAD vs. Other Interfaces

We performed a study with both blind users and sighted users wearing blindfolds to com-

pare the RAD with Mach 1’s interface [audiogames archive 2015] and Sucu and Folmer’s

haptic steering interface [Sucu and Folmer 2014]. These interfaces represent a broad range

of design alternatives.

Our study had three goals. First, we wanted to determine how well the average person

would perform with each of these user interfaces with a short amount of training. Second,

we wanted to see how users would rank the three interfaces by order of preference. Third,

we wanted to observe how well each interface helped players anticipate upcoming turns.

Study 1 Participants

Our study included fifteen participants. Three of them — P4, P8, and P11 — were blind

their entire lives and the rest were sighted but blindfolded. Seven were age 16–25 and the

rest were age 26–35; four were female and the rest were male. Our study was approved by

our institution’s Institutional Review Board, and parents were present with minors.

We recruited P4, P8, and P11 through Helen Keller Services for the Blind. P4 had no

prior experience with racing games, while P8 and P11 had played just one audio racing

game each years prior: Top Speed and Blindfold Racer, respectively. P8, however, de-

scribed himself as a gamer and had played other types of audio games before, namely an

RPG [Driftwood Audio Entertainment 2010] and a first-person shooter [Kaldobsky 2011].
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Six of the twelve sighted participants had at least a moderate amount of experience playing

video games, and the rest had very little experience. Of those with moderate experience,

three would describe themselves as gamers.

We should note that participants who are sighted but blindfolded are generally not suit-

able proxies for participants who are blind. Silverman et al. [Silverman, Gwinn, and Van

Boven 2015] found, for example, that sighted but blindfolded participants can be biased

by the initial challenge of becoming blind, therefore judging the capability of people who

are blind as much less than it actually is. As a result, and as is good practice [Sears and

Hanson 2012], we will present the results from these two groups of participants separately.

Study 1 Procedure

In the study, participants raced using each of the three user interfaces in a counterbalanced

order while we observed them. Participants controlled their car using a Sony DUAL-

SHOCK 4 (PlayStation 4 controller) [Sony Interactive Entertainment 2013] and wore a

pair of AmazonBasics on-ear headphones [Amazon.com, Inc. 2014]. All sighted partici-

pants wore blindfolds and could not see us loading the track, nor could they see what they

were doing in the games. We told the participants that our team developed all three of the

user interfaces. Each session lasted approximately two hours.

For both the haptic steering interface and the RAD, we had participants play our proto-

type racing game in which we implemented both. For Mach 1’s interface, however, we had

participants play Mach 1 itself. We did this because Mach 1 uses simplified models rather

than realistic designs for its tracks and steering system, and its user interface was designed
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with the simplified models in mind. Since we loaded Mach 1 into a level before the study

began, the participants were not aware that they were playing a previously published game.

Like other modern game controllers, the DUALSHOCK 4’s rumble motors are differ-

ent in size, with the left motor being significantly larger than the right motor. Since the

haptic steering interface requires identical rumble motors for the user’s left and right hands,

however, we replaced our DUALSHOCK 4’s left motor with one identical to the right mo-

tor. We clamped the motors’ vibration intensity to 50% of its normal maximum to make it

easier for players to distinguish between the motors.

We began each user interface trial by training each participant with hands-on instruction

for 15–20 minutes on how to use the interface. We created two training tracks in our

prototype — a square track with rounded corners and a figure eight track — to help the

participants relate the interfaces’ feedback with easily understandable shapes. We told

participants to play with each interface until they understood how they worked.

We followed the three trials with a survey asking participants to rank the three inter-

faces from their most to least favorite, rate how well each interface helped them anticipate

upcoming turns on a 20-point Likert scale in which higher values were better, and offer

feedback justifying their ratings. Participants’ feedback was extensive. To analyze it, we

first transcribed it in full, then — via a series of repeated readings — wrote topic labels

for each piece describing what it was talking about. We then tallied positive and negative

opinions for each identified topic. We report these numbers along with the quotes that were

most descriptive and representative of overall opinions.
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Study 1 Results: Participants Who Are Blind

User Interface Ranking

P4 ranked the user interfaces from best to worst as Mach 1’s interface, the RAD, and Sucu

and Folmer’s interface, in that order. Both P8 and P11 ranked them as the RAD, Sucu and

Folmer’s interface, and Mach 1’s interface, in that order.

Awareness of Upcoming Turns

On a 20-point Likert scale in which higher values are better, P4 rated their ability to antici-

pate upcoming turns using the RAD, Sucu and Folmer’s interface, and Mach 1’s interface

as 8, 11, and 15, respectively. P8’s ratings were 18, 11, and 7, respectively, while P11’s

were 5, 10, and 12, respectively. The difference is sharp between P8 and the others. Both

P4 and P11 had very little experience playing video games while P8 considers himself a

gamer. Although P11 rated the RAD lowest and Mach 1’s interface highest on this scale,

she ranked the RAD as the best of the three interfaces overall and Mach 1’s interface the

worst of the three.

Driving Performance in Our Prototype Game

Of the participants who are blind, only P8 was able to complete a full lap, and he did so

with each of the three user interfaces. P8, the only self-described gamer among the three,

completed our track (Figure 6.6) with zero major collisions on his first try with both Sucu

and Folmer’s interface and the RAD.

Neither P4 nor P11 could complete a full lap using any of the user interfaces, though
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all three participants completed our square and figure eight training tracks using both the

RAD and Sucu and Folmer’s interface. Recall that there were no training tracks for Mach

1. We should note that our track (Figure 6.6) resembles what one would find in a real video

game and is very challenging compared to ones in existing blind-accessible racing games.

Sucu and Folmer, for example, tested a basic oval and still found many crashes [Sucu and

Folmer 2013; Sucu and Folmer 2014].

Qualitative Feedback: Mach 1’s Interface

P4 rated Mach 1’s user interface as his favorite because it was the only one to explicitly

read out the car’s lateral position and because he felt that he “had [more] time to think and

react” to its cues compared to the other interfaces. This is likely because Mach 1 does not

provide continuous feedback about the car’s positioning as the other interfaces do; rather,

it reads the information whenever a particular button is pressed.

Both P8 and P11 found Mach 1’s interface to be the worst of the three, with P11 saying

that it was “the hardest” and “hard to use properly.” P8 said that while “it had pretty

much [all of the game elements that] [he] would expect from a racing game,” it was “very

difficult [to use because] there are so many things going on” at the same time, including

many “sounds that are not relevant.” He also said that it “was difficult [ . . . ] knowing when

you are in the turn and when you are out of the turn” because the steadily increasing sound

effect volume that it employs to indicate the beginnings of turns was not precise.

139



Qualitative Feedback: Haptic Steering Interface

P4 considered Sucu and Folmer’s haptic steering interface to be the worst of the three

“mainly due to not being able to see upcoming turns.” P8 and P11 ranked the haptic steering

interface in between their most and least favorite, with P11 saying that she “did not get to

think about how to attack the turn[s]” and that “[using] it would have been easier if there

was a warning in advance, when you should start turning.” Still, P11 felt that while the

lateral positioning feedback “wasn’t exact[ly precise], it was to the point that I [...] could

kind of tell if the car wasn’t in the center.”

P8 said that the vibrations “didn’t give much [of an] indication of how sharp [each]

turn was,” preventing him from making strategies such as, “I shouldn’t turn too much here

to avoid colliding with the [inside] wall.” He felt that “the experience would be better,

perhaps, by “mak[ing] the game controller vibrate more or less” in intensity depending

on the sharpness of the turn. Sucu and Folmer, however, found users’ performance with

continuous vibration feedback to be worse than with binary (on/off) feedback [Sucu and

Folmer 2013; Sucu and Folmer 2014].

Qualitative Feedback: Racing Auditory Display (RAD)

P4 ranked the RAD in between his most and least favorite, saying “it is definitely better

than the vibration method” (Sucu and Folmer’s interface) but that he “still had a hard time”

because it was “confusing to parse between the two types of sounds” (the sound slider

and the turn indicator system). Both P8 and P11 considered the RAD to be their favorite

interface, with P8 saying that it was “very, very logically built up [ . . . ] because it gave
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Figure 6.7: Participants’ user interface rankings. The dot patterns indicate rankings from
participants who are blind. Most disliked Mach 1’s interface, and eight of fifteen preferred
the RAD’s the most.

[him] an indication of how sharp the turns were [and] for how long [he was] in [each] turn.”

P8 felt that distinguishing between soft, moderate, and sharp turns “worked very well

with the tonality of the sound.” P11, on the other hand, said that while she “got the concept,

it was [ . . . ] harder to put the concept into use,” finding the RAD “difficult to [learn] but

very entertaining” to play with. She remarked that with the RAD “the feeling of the game

is fast-paced,” adding, “Yes, you have the time [to plan], but sometimes you might not be

able to [pull it off].” P8 said that he liked how the RAD did not “constantly sa[y] ‘Do this,

do that,”’ and followed up by saying, “After the training was done, I had the possibility

of doing whatever I wanted to.” These last two comments suggest that the RAD supports

intention.
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Study 1 Results: Sighted but Blindfolded Participants

User Interface Ranking

Figure 6.7 shows how participants ranked each interface from most to least favorite.

Sighted participants’ rankings are those without the dot patterns. Six sighted participants

chose the RAD as their preferred interface, five chose the haptic steering interface, and one

chose Mach 1’s interface. Ten out of twelve sighted participants liked Mach 1’s interface

the least.

Awareness of Upcoming Turns

An ANOVA showed that the user interface has a significant main effect on the sighted par-

ticipants’ awareness of upcoming turns (F2,22 = 4.83, p = 0.02). Pairwise mean comparison

showed that the only significant difference was between the RAD and Mach 1’s interface

(p < 0.05). The mean (std. dev) ratings for this metric for the RAD, the haptic steering

interface, and Mach 1’s interface are 13.0 (4.9), 8.8 (6.5), and 6.8 (5.5), respectively. This

suggests that the RAD does a better job communicating the nature of upcoming turns for

sighted players than Mach 1’s sound effects of increasing volume.

Driving Performance in Our Prototype Game

Ten out of twelve sighted participants were able to complete the track in Figure 6.6, five

of which after crashing and resetting themselves many times. Their performance seemed

to depend on their prior experience with video games: participants tended to perform well

with both interfaces or poorly with both interfaces. All seven sighted participants with
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at least moderate video game experience completed the track, two of whom after crash-

ing many times. By contrast, only three of the five participants with limited video game

experience completed the track, all of whom after crashing many times.

These results suggest that both the RAD and the haptic steering interface make it pos-

sible for gamers to play racing games without sight, but neither can make a non-gamer

proficient at playing racing games.

Qualitative Feedback: Mach 1’s Interface

Of the three interfaces, sighted participants liked Mach 1’s the least in general. Though

many mentioned that “it was relatively easier to understand [their] horizontal location with

[this interface’s spoken] numeric value[s]” (P2) than with the other interfaces’ feedback,

four lamented that “having numbers read to [them] took extra brain power [to process,

making] it much more difficult for [them] to move forward quickly” (P5). All said that it

“took [them] a while to sort out all the sounds that were going on” (P15) and that there was

“too much auditory information for too long a period” (P9).

Ten felt that determining the position and length of turns was “very difficult” (P2) and

that they could not determine the turns’ sharpness at all because “the sound leading up to the

thump which indicates [when] turn[s begin and end were] more confusing and disorienting

than anything” (P13). A different set of ten felt that a “[big] difficulty was to determine

the difference between the probe number [(lateral position)] and the speed of the vehicle”

(P10).
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Qualitative Feedback: Haptic Steering Interface

Ten sighted participants felt that this interface’s vibrations were “easier to [learn and] focus

on [compared to] the [other interfaces’] multiple sounds” (P10), but five felt that “turning

and preparing for turns was completely out of [their] control” (P5) because “the only inter-

action [they] had was immediately responding to the vibrations” (P5), “conforming to the

rumble indicators” (P14), or as P13 put it, “just [ . . . ] bouncing around from wall to wall

trying to stay in the center.” P5 added that she “had no idea when a turn was coming up,

how sharp or long it would be, [or] whether or not it was actually a turn [she] was dealing

with or simply trying to straighten [her]self out on a straightaway after a turn.”

Some liked how “the rumble [being] binary [made it] really clear [to know] when you

are ‘good’ or ‘bad”’ (P13) but six bemoaned the resulting lack of intention (though not us-

ing that word). Three mentioned that they would prefer having differing levels of vibration

so they could tell “exactly how far [ . . . ] from the middle of the road” (P6) they are or “how

sharp the turn was” (P1, P3). As mentioned earlier, however, Sucu and Folmer found that

users crashed much more with such a system than with binary vibration feedback [Sucu

and Folmer 2013; Sucu and Folmer 2014]. We implemented a version of the user interface

in which the vibration intensity varied based on how far the car is from the track’s center

line and found, via small-scale testing, this to be true as well.

Qualitative Feedback: Racing Auditory Display (RAD)

Eight sighted participants felt that the RAD’s turn indicator system made them “well aware

of the upcoming turns with their position and sharpness” (P3). Two of them, however, men-
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tioned that the system was “sometimes confusing when [turns were] very short. . . ” — in

which case the fourth turn indicator beep would be very short — “. . . and/or followed imme-

diately by another turn” (P1) — in which case the RAD would output multiple overlapping

sets of beeps.

Four participants found the RAD difficult to use while two found it very natural. In

particular, eight participants found it difficult to distinguish between the sound slider’s

engine sound and the turn indicators, with P5 mentioning that “as a full-sighted person

[she is] not used to using every single sound as an informational cue and usually do[es]n’t

pay attention to such noises as engine volume.” P2 and P5 sometimes found the RAD’s

sound slider “difficult to understand” (P2, P5) because “the location of the engine sound

(left vs. right vs. middle) [can] change incredibly fast” as they enter sharp turns.

Seven participants mentioned that they were “almost always aware of which side of the

track [they are] on” (P3) when using the RAD, with P3 adding, “[ . . . ] compared to both

[of] the other methods where I was quite clueless.” Seven participants felt that the RAD

made them “fe[el] the most like [they were] racing” (P13) compared to the other interfaces.

P9 found the RAD “fun and definitely the most immersive” of the three interfaces, and that

with the RAD he “could actually visualize the car and its location.”

6.5 Study 2: Field Test With Gamer Who Is Blind

Our second study tests whether the RAD makes it possible for a player who is blind to

race better than Sucu and Folmer’s haptic steering interface does, and whether their racing

performance can match that of a sighted player’s.
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Study 2 Procedure

In this study, we had participant P8 from our first study — our only participant that is

both blind and considers himself a gamer — drive thirteen laps around the racetrack in

Figure 6.6 using Sucu and Folmer’s haptic steering interface and fourteen laps using the

RAD. We recorded his lap times, full driving paths, and gameplay video of him racing as

he played. The car starts at the beginning of the long straightaway in Figure 6.6 so that it

can reach full speed by the start of the first lap. Our supplemental video shows P8’s third

lap ever on this track.

We then had eight sighted players (three female, five male) drive one to three laps

around the track using sight as we recorded their lap times and driving paths. We used just

one to three laps here because we found in a pilot study that sighted players’ lap times did

not improve over the course of driving 14 laps. The same was true for P8: his average lap

time for his first three laps was 0.3 s faster than for his last three.

Study 2 Results

Figure 6.8 compares lap times for the three conditions: P8 using the haptic steering inter-

face, P8 using the RAD, and sighted players using vision. The mean (std. dev) lap times

are 128.2 s (8.2 s), 117.0 s (3.7 s), and 111.7 s (3.5 s), respectively. An ANOVA showed that

the user interface has a significant main effect on the mean lap times (F2,32 = 23.38, p <

0.0001). Pairwise mean comparison showed that the differences were significant between

every pair of interfaces (p < 0.01) except the RAD vs. sighted players using vision. This

suggests that the RAD allowed P8 to race significantly better than the haptic steering inter-
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Figure 6.8: Mean lap times of P8 — a gamer who is blind — using Sucu and Folmer’s hap-
tic steering interface [Sucu and Folmer 2014], P8 using the RAD, and sighted players using
vision. The error bars indicate standard deviations. With the RAD, P8 races significantly
better than he does using the haptic steering interface and comparably to casual players
racing with sight.

face did — saving an average of 11.2 s per lap — and comparably to that of players using

sight. Only one of the sighted players, however, described themselves as a gamer.

Figure 6.9 compares typical driving paths from P8 using the haptic steering interface

and the RAD, respectively. The haptic steering interface causes P8 to oscillate around the

track’s center line for the entire lap, which is this interface’s usual behavior since it works

by vibrating the player’s controller when their heading is too far away from that of a center

target point [Sucu and Folmer 2014]. By contrast, P8 drives in a much smoother path using

the RAD. In Figure 6.9(b), for example, we see that P8 carves a nearly straight path through

Turns 19 and 20 (which form an ess turn sequence) when using the RAD but follows the

track’s center line when using the haptic steering interface.

The mean (std. dev) driving path lengths are 3,639 m (74 m), 3,557 m (40 m), and

3,469 m (71 m) for the three respective conditions: P8 using the haptic steering interface,

P8 using the RAD, and sighted players using vision. An ANOVA showed that the user in-

terface has a significant main effect on the driving path length (F2,32 = 19.21, p < 0.0001).

Pairwise mean comparison showed that the differences were significant between every pair
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Figure 6.9: Sample driving paths of P8 — a gamer who is blind — using the RAD and
using Sucu and Folmer’s haptic steering interface [Sucu and Folmer 2014]. We compare
the paths for (a) the entire circuit, (b) an ess turn, (c) a near-straight section, and (d) a
hairpin turn. P8 oscillates constantly with the haptic steering interface but drives more
smoothly when using the RAD. He is also able to cut the corners in (b) using the RAD.
Our supplemental video shows P8’s third lap with the RAD’s audio included.
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of interfaces (p < 0.05 for the haptic steering interface vs. the RAD and p < 0.01 otherwise).

This shows that P8 can perform shorter laps with the RAD than with the haptic steering in-

terface (mainly by reducing oscillations), though not quite as short as laps made by players

driving with sight.

6.6 Human–Computer Interaction (HCI) Implications

Though games especially benefit from intention, our work has broader implications within

HCI. First, our definition of a sound slider is generic: a virtual speaker that indicates a

value within a range by its position on a 3D line segment in the soundscape. For blind

users, sound sliders can substitute for traditional UI sliders; brightness, temperature, or

pressure gauges; progress bars; and any other display that displays a value within a range.

They can also help users perform steering tasks in the classical sense [Accot and Zhai 1997]

by representing a tunnel’s width.

Furthermore, the RAD can be used in place of AudioGPS [Holland, Morse, and Geden-

ryd 2002] and SWAN [Wilson, Walker, Lindsay, Cambias, and Dellaert 2007] for pedes-

trian navigation tasks. AudioGPS and SWAN tell users know which way to walk, but the

RAD can tell users how wide the path or bridge is, how much “wiggle room” they have,

and whether they are in the middle or toward one side, helping them avoid oncoming foot

traffic.
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6.7 Discussion

This chapter offers a vision of how video games can go beyond just being blind-accessible

to being equivalently accessible to people who are blind, allowing them to play with a

similar sense of control (intention) and efficiency as sighted players can. To this end, we

introduce the racing auditory display (RAD) to help racing games become equivalently ac-

cessible to people who are blind. It comprises two novel sonification techniques: the sound

slider for understanding a car’s speed and trajectory on a racetrack and the turn indica-

tor system for alerting players of the direction, sharpness, length, and timing of upcoming

turns.

Through a pair of empirical studies, we found that players preferred the RAD’s interface

over that of Mach 1, a popular blind-accessible racing game, and at times “felt like [they]

had as much information as if [they] could see the track” (P1). We demonstrated that the

RAD makes it possible for a gamer who is blind to race comparably to casual players using

sight.

In Section 7.2, we describe the limitations of this chapter’s user studies, the limitations

of the RAD itself, and what we believe to be promising future work for user interfaces such

as the RAD.
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Chapter 7

Conclusions, Limitations, and Future Work

7.1 Summary of Contributions

In this dissertation, we described the concept of unmediated interaction as an interaction

modality that we should strive for when designing computing devices to reduce or eliminate

the burden of using those devices. We identified two instances of that burden: the overhead

that users must undergo to provide input to the device, which we called input overhead,

and the overhead that users must undergo to interpret output from the device, which we

called output overhead. We argued that by eliminating input and output overhead from our

interaction with devices, we can make it seem like those devices are not even there and

that we are accomplishing computing tasks using our own abilities or powers rather than

intermediate devices.

We then, in the bulk of this dissertation, introduced three computational methods for

reducing input overhead and one for reducing output overhead. The methods cover a broad

range of domains and intersect several fields including machine learning, computer vision,

optimization, acoustics, and game design.

First, in Chapter 3 we show how we can make it possible to eliminate the need for user

inputs altogether via input data mining using input words. Namely, we show how prob-
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abilistic topic models such as latent Dirichlet allocation and the player–gameplay action

model, the latter of which we develop, can help us draw insights about video game players

and the levels that they are playing — insights that can be used as a basis for recognizing

players and personalizing their experience, all without their explicit input.

Next, in Chapter 4 we introduced gaze locking, a novel interaction modality for provid-

ing basic input in a nearly instantaneous way. Gaze locking is the notion of sensing eye

contact directly from an image using a standard camera or existing images such as ones on

the Web. By simplifying the continuous gaze tracking problem into the binary gaze locking

problem, our gaze locking detector can exploit the special appearance of direct eye gaze,

allowing devices to sense eye contact with over 90% accuracy at distances of up to 18 m.

This in turn allows people to interact with computers, devices, and other objects just by

looking at them.

In Chapter 5 we investigated how to make typing on small devices faster and less error-

prone than it is when using the standard Qwerty keyboard. This work addresses instances

in which users must provide devices with complex input and in which simply looking at

the devices would not be enough to specify that input. Specifically, we explored how to

modify Qwerty to make word gestures that are used for gesture typing shorter and more

distinct, and how to do so in a way that prevents users from having to learn how to type all

over again. By performing a rigorous optimization procedure using three metrics that we

develop, we discovered keyboard layouts that are not too different from Qwerty and that

can reduce error rates by 52% over Qwerty.

Last, in Chapter 6 we investigated the problem of reducing output overhead to make

racing games accessible to people who are blind. We introduced the racing auditory display

152



(RAD), an audio system that works with a standard pair of headphones and that makes it

possible for people who are blind to play the same types of racing games as sighted players

can with a similar speed and sense of control to what sighted players have. The RAD

works by using computation on the current game state to present players who are blind

with stimuli that allows them to make the same moment-to-moment decisions that sighted

players make while they race. We found that We also found that the RAD allows an avid

gamer who is blind to race as well on a complex racetrack as casual sighted players can,

without a significant difference between lap times or driving paths.

Together, we hope that these systems open the door to even more efforts in unmediated

interaction, with the goal of making computers less like devices that we use and more like

abilities or powers that we have.

7.2 Limitations and Future Work

I will close by offering my thoughts on each of my contributions’ limitations, where I see

each of my contributions potentially going next, and what I feel needs to happen to continue

the path toward unmediated interaction.

Input Mining

Our methods for understanding and describing gameplay have several important limita-

tions, however. First, our method is unlikely to produce meaningful results for genres in

which the player does not have precise control of the game’s character — genres such as

point-and-click games and RPGs. We also do not show how to form input words from
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analog input. Second, it is difficult to assign semantic meaning to some of the discov-

ered gameplay types, and the number of output gameplay types K must be chosen a priori.

Third, although Figures 3.7 and 3.14 can be used to recommend levels with gameplay that

is similar to levels that players like, we do not evaluate players’ perceptions of such recom-

mendations. More importantly, the PGA model is but a first step towards removing factors

that confound our understanding of the gameplay types present in a game. Our player

recognition system’s accuracy suggests that we controlled for the effect of a player’s play

style, but there are still other factors that affect the controller inputs entered by the player.

One such factor is the current game state: in Super Mario Bros. 3, for example, pressing

the B button rapidly makes Mario throw fireballs, but that is only possible if Mario touched

a Fire Flower. Modeling event logs alongside controller inputs to include such factors is

promising future work.

We should also be clear that when we say that our methods can be used to recommend

stages to players based on ones that they liked before, we do not mean to suggest that there

is no value in variety or that players will always prefer stages with similar gameplay over

stages with different gameplay. Variety is important in games and the concept of game

flow stems directly from this fact. Our methods are meant to serve as a new tool that game

developers can use to verify that their game levels feature the desired type of gameplay

without needing to hold formal playtests with live players.

Finally, our treatment of gameplay is limited to the types of action present in a game,

and a full understanding of gameplay would only be possible if we also measured what

players are feeling in response to the game’s output. Such a move points back to Fig-

ure 3.1, in which every node and edge represents a signal that gives a unique perspective
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of the experiences that players have with games. Future game analytics systems may ana-

lyze several or all of these signals in tandem to better understand and quantify what those

experiences are.

Gaze Locking

There is great potential for future work in gaze locking using embedded cameras. Our

sample detector consists of fairly simple mathematical operations, so future efforts could

create a “gaze locker”—a camera module with a system-on-chip for gaze locking. This

gaze locker would be small, cheap, and computationally efficient. Systems-on-chip already

exist in cameras for applications such as exposure compensation and image compression.

Moreover, our gaze locking approach is passive and, as a result, energy-efficient. Hence,

gaze lockers may even be able to employ energy-harvesting techniques like RFID tags do.

We could also use gaze lockers to aid people who are blind and deaf by sensing when others

are looking at them. Furthermore, if we place gaze lockers in many objects, they would

collectively form a cloud that serves as a ubiquitous gaze tracker that is accurate over

distance. For all of these reasons, we believe gaze lockers could be the perfect platform for

bringing gaze-based interactive systems into everyday use in the future.

Gesture Typing

Although the nature, size, and complexity of multidimensional gesture typing optimization

have surpassed its precedents in the literature [Bi, Smith, and Zhai 2010; Dunlop and

Levine 2012; Lewis, Kennedy, and LaLomia 1999; Rick 2010], many questions beyond the
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scope of this work require further research. These include further, larger, and longitudinal

empirical studies of the multiple optimality dimensions. Further empirical investigation

may redefine some or all of the optimality dimensions identified in this work in order to

advance the gesture typing paradigm toward new shorthand writing systems that tolerate

user errors, require minimal visual attention and motor effort, and remain easy to learn.

The RAD

Both our user studies and the RAD itself have several limitations that we would like to

describe. First, our study included just four self-described gamers and three people who

are blind, so our results cannot be assumed to apply to everyone from these groups. A

more thorough follow-up study targeting gamers who are blind would be needed for this.

Second, the RAD relies on 3D sound spatialization. Not everyone can hear spatialized

sounds correctly with off-the-shelf head-related transfer functions (HRTFs). Future games

could allow players to load an HRTF from a profile so they can hear spatialized sound

clearly in many different games.

Last, the RAD is not as effective with non-gamers and does not teach them “video game

literacy” such as how video game vehicle handling works, nor is it effective at helping play-

ers recover from crashes or from driving off the track. A future version of the RAD could

include a Mach 1-style probing feature for helping players learn the game mechanics and

recover from crashes. We also think it would be feasible to extend the RAD to incorporate

other racing game elements such as opponent vehicles, boosts, item pickups, and shortcuts.

We hope that just as user interface toolkits provide tools such as scrollbars, sliders,
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menus, and radio buttons that “just work” when software is published, game engines will

one day include building blocks such as walls and track pieces that will “just work” with

user interfaces such as the RAD or AudioGPS [Holland, Morse, and Gedenryd 2002] when

games are published to make all games blind-friendly.

Privacy Implications

I would like to conclude with a note about privacy. The techniques that we are proposing

for facilitating unmediated interaction, such as equipping devices with cameras for sensing

eye contact and observing users’ raw inputs as they use devices, have privacy implications

that we would like to address. Hence, I am interested in developing imaging and/or vision

approaches for sensing attention that can provably protect users’ privacy, meaning for ex-

ample that a gaze locking sensor can detect gaze locking and nothing more. A promising

technique for doing so is to use a camera design with many fewer pixels than conventional

cameras; it is possible, for example, to perform object tracking using just four pixels [Pooj,

Grossberg, Belhumeur, and Nayar 2018], so it may be possible to sense attention using a

small number as well.

Giving users privacy while continuously observing their raw inputs is a more difficult

challenge. My belief is that most users do not object to having their usage tracked by a

piece of software for the purpose of assisting the user within that software, but are instead

wary of software exporting that information to a central server or a third party. Hence, my

interest is in keeping usage information local — on a user’s person — and that information

could physically follow them throughout the day as they use different devices.
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Towards Unmediated Interaction

I have so far divided efforts in facilitating unmediated interaction into those that have aim to

reduce input overhead and those that aim to reduce output overhead, and I feel that doing so

is useful for describing future efforts in this space as well. Moreover, the three different ap-

proaches that I have identified for reducing input overhead — namely, eliminating the need

for user inputs altogether, making the process of providing basic inputs near-instantaneous,

and making the process of typing complex inputs less laborious — reveal some ideas that I

feel are particularly promising.

Take, for example, the approach of eliminating the need for user inputs altogether. In

this dissertation, we focused only on input mining for doing so, and just a particular brand

of input mining as well, but of course there are many other techniques that we can use for

doing so. One exciting idea is to incorporate a brain–computer interface to help predict

what users may be thinking of doing or acting upon next. Even a very rough prediction

can help cull a number of unlikely interactions considerably. Another idea is to develop

methods for devices to share information with each other to help each other predict what

users will do next. Text mining and crowdsourcing researchers have already developed

models for predicting which fine-grained actions are likely to follow from others that have

been observed [Fast, McGrath, Rajpurkar, and Bernstein 2016], so the tools for acting upon

this type of information already exist.

Regarding the goal of making basic inputs nearly instantaneous, there are many new

input modalities that we can create to go beyond gaze locking. One of the limitations of

gaze locking, for example, is that it can only facilitate binary interactions: either the user
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is looking at the camera or they are not. Gaze-based interfaces would be much more useful

if they were capable of recognizing other canonical commands such as “Up,” “Down,”

“Left,” “Right,” and “Back.” Hence, a future technique may combine eye contact with a

basic gesture as part of a universal grammar for interacting with devices.

New interaction techniques could also be used to make typing less laborious for cases

in which complex input must be specified. For example, Vulcan is a word gesture keyboard

that works with users’ fingers in mid-air [Markussen, Jakobsen, and Hornbæk 2014] — a

new technique could take this a step further by allowing users to control faraway devices

by gesturing words on the palms or the backs of their hands.
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