3,508 research outputs found

    Long-Term Occupancy Analysis using Graph-Based Optimisation in Thermal Imagery

    Get PDF
    This paper presents a robust occupancy analysis system for thermal imaging. Reliable detection of people is very hard in crowded scenes, due to occlusions and segmentation problems. We therefore propose a framework that optimises the occupancy analysis over long periods by including in-formation on the transition in occupancy, when people enter or leave the monitored area. In stable periods, with no ac-tivity close to the borders, people are detected and counted which contributes to a weighted histogram. When activity close to the border is detected, local tracking is applied in order to identify a crossing. After a full sequence, the num-ber of people during all periods are estimated using a prob-abilistic graph search optimisation. The system is tested on a total of 51,000 frames, captured in sports arenas. The mean error for a 30-minute period containing 3-13 people is 4.44 %, which is a half of the error percentage optained by detection only, and better than the results of comparable work. The framework is also tested on a public available dataset from an outdoor scene, which proves the generality of the method. 1

    Thermal Cameras and Applications:A Survey

    Get PDF

    Pedestrian Validation in Infrared Images by Means of Active Contours and Neural Networks

    Get PDF
    This paper presents two different modules for the validation of human shape presence in far-infrared images. These modules are part of a more complex system aimed at the detection of pedestrians by means of the simultaneous use of two stereo vision systems in both far-infrared and daylight domains. The first module detects the presence of a human shape in a list of areas of attention using active contours to detect the object shape and evaluating the results by means of a neural network. The second validation subsystem directly exploits a neural network for each area of attention in the far-infrared images and produces a list of votes

    Thermo-visual feature fusion for object tracking using multiple spatiogram trackers

    Get PDF
    In this paper, we propose a framework that can efficiently combine features for robust tracking based on fusing the outputs of multiple spatiogram trackers. This is achieved without the exponential increase in storage and processing that other multimodal tracking approaches suffer from. The framework allows the features to be split arbitrarily between the trackers, as well as providing the flexibility to add, remove or dynamically weight features. We derive a mean-shift type algorithm for the framework that allows efficient object tracking with very low computational overhead. We especially target the fusion of thermal infrared and visible spectrum features as the most useful features for automated surveillance applications. Results are shown on multimodal video sequences clearly illustrating the benefits of combining multiple features using our framework

    Utilizing radiation for smart robotic applications using visible, thermal, and polarization images.

    Get PDF
    The domain of this research is the use of computer vision methodologies in utilizing radiation for smart robotic applications for driving assistance. Radiation can be emitted by an object, reflected or transmitted. Understanding the nature and the properties of the radiation forming an image is essential in interpreting the information in that image which can then be used by a machine e.g. a smart vehicle to make a decision and perform an action. Throughout this work, different types of images are used to help a robotic vehicle make a decision and perform a certain action. This work presents three smart robotic applications; the first one deals with polarization images, the second one deals with thermal images and the third one deals with visible images. Each type of these images is formed by light (radiation) but in a way different from other types where the information embedded in an image depends on the way it was formed and how the light was generated. For polarization imaging, a direct method utilizing shading and polarization for unambiguous shape recovery without the need for nonlinear optimization routines is proposed. The proposed method utilizes simultaneously polarization and shading to find the surface normals, thus eliminating the reconstruction ambiguity. This can be useful to help a smart vehicle gain knowledge about the terrain surface geometry. Regarding thermal imaging, an automatic method for constructing an annotated thermal imaging pedestrian dataset is proposed. This is done by transferring detections from registered visible images simultaneously captured at day-time where pedestrian detection is well developed in visible images. Histogram of Oriented Gradients (HOG) features are extracted from the constructed dataset and then fed to a discriminatively trained deformable part based classifier that can be used to detect pedestrians at night. The resulting classifier was tested for night driving assistance and succeeded in detecting pedestrians even in the situations where visible imaging pedestrian detectors failed because of low light or glare of oncoming traffic. For visible images, a new feature based on HOG is proposed to be used for pedestrian detection. The proposed feature was augmented to two state of the art pedestrian detectors; the discriminatively trained Deformable Part based models (DPM) and the Integral Channel Features (ICF) using fast feature pyramids. The proposed approach is based on computing the image mixed partial derivatives to be used to redefine the gradients of some pixels and to reweigh the vote at all pixels with respect to the original HOG. The approach was tested on the PASCAL2007, INRIA and Caltech datasets and showed to have an outstanding performance

    Object Detection in 20 Years: A Survey

    Full text link
    Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.Comment: This work has been submitted to the IEEE TPAMI for possible publicatio

    An evaluation of the pedestrian classification in a multi-domain multi-modality setup

    Get PDF
    The objective of this article is to study the problem of pedestrian classification across different light spectrum domains (visible and far-infrared (FIR)) and modalities (intensity, depth and motion). In recent years, there has been a number of approaches for classifying and detecting pedestrians in both FIR and visible images, but the methods are difficult to compare, because either the datasets are not publicly available or they do not offer a comparison between the two domains. Our two primary contributions are the following: (1) we propose a public dataset, named RIFIR , containing both FIR and visible images collected in an urban environment from a moving vehicle during daytime; and (2) we compare the state-of-the-art features in a multi-modality setup: intensity, depth and flow, in far-infrared over visible domains. The experiments show that features families, intensity self-similarity (ISS), local binary patterns (LBP), local gradient patterns (LGP) and histogram of oriented gradients (HOG), computed from FIR and visible domains are highly complementary, but their relative performance varies across different modalities. In our experiments, the FIR domain has proven superior to the visible one for the task of pedestrian classification, but the overall best results are obtained by a multi-domain multi-modality multi-feature fusion
    corecore