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Abstract In this paper, we propose a framework that
can efficiently combine features for robust tracking based
on fusing the outputs of multiple spatiogram trackers.
This is achieved without the exponential increase in stor-
age and processing that other multimodal tracking ap-
proaches suffer from. The framework allows the features
to be split arbitrarily between the trackers, as well as
providing the flexibility to add, remove or dynamically
weight features. We derive a mean-shift type algorithm
for the framework that allows efficient object tracking
with very low computational overhead. We especially tar-
get the fusion of thermal infrared and visible spectrum
features as the most useful features for automated sur-
veillance applications. Results are shown on multimodal
video sequences clearly illustrating the benefits of com-
bining multiple features using our framework.

Keywords Thermal infrared · visible spectrum ·
fusion · tracking · spatiogram

1 Introduction

In order for automated surveillance systems to become
useful in practice, persistence (24-7 operability) is a key
requirement. The use of thermal infrared cameras al-
lows this possibility, since they detect emitted radiation
rather than reflected rays and therefore do not require
a lighting source (such as the sun, or artificial lighting).
The main drawbacks of standard CCTV systems arise
from their reliance on reflected light: inability to oper-
ate at night, adverse effects due to shadows and lighting
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changes. Thermal infrared camera systems are resilient
to these effects and are therefore very useful in a security
context. However, they have their own problems: ther-
mal video has a lower signal-to-noise ratio than visible
spectrum video, the halo effect of ferroelectric sensors
causes an artificial ‘halo’ to appear around very hot or
cold objects [11], thermal video cannot detect objects
that are at the same temperature as the background and
it contains very little texture information that could be
used to distinguish objects. Combining the two modali-
ties would seem to be a rational approach to obtaining
optimum system performance and robustness. In rela-
tion to object tracking in particular, it is generally recog-
nised that tracking robustness cannot be obtained with
one modality (or feature) alone, and that increased ro-
bustness can be obtained by combining multiple modal-
ities (also known as multi-cue tracking) in such a way
that they can, together, compensate for their individual
weaknesses [26,16].

The contributions in this paper are as follows. Draw-
ing from our previous work on feature fusion [20], we
introduce a general feature combination framework for
tracking, similar to the framework of [16], that extends
the recently proposed spatiogram tracker [5] to efficiently
integrate multiple features. In addition, we provide a
derivation of a mean-shift procedure for our framework
to efficiently track objects in video sequences. We jus-
tify the validity of the framework by demonstrating ro-
bust tracking on multimodal (thermal infrared and vis-
ible spectrum) surveillance sequences. The framework
we propose allows the integration of multiple features,
or sources of information, without the exponential in-
crease in storage and processing that is associated with
histograms or spatiograms. Although we do not explic-
itly show experimental results on the topic of adaptively
choosing tracking features, our framework is flexible and
allows features to be added, removed or weighted dy-
namically during tracking and we provide formulations of
how feature weighting can be integrated into the frame-
work.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11308092?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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In the next section, we summarise related work in
the areas of tracking and the fusion of multiple sources
of tracking evidence. In section 3, we review histogram-
and spatiogram-based tracking, before detailing our pro-
posed tracking framework that uses a bank of parallel
spatiogram trackers. We derive a mean-shift procedure
for our framework, allowing fast and efficient tracking. In
section 4, we compare the results of combining multiple
features using our tracking framework to single feature
tracking approaches. We also demonstrate the efficiency
of our mean-shift procedure for object tracking and give
some ideas on future work. The paper is summarised in
section 5.

2 Related work

It is generally accepted that “no single visual cue will be
robust and general enough to deal successfully with the
wide variety of conditions occurring in real-world sce-
narios” [26]. Therefore, to create robust systems, mul-
tiple features (or cues) need to be used in such a way
that they can, together, compensate for their individual
weaknesses. The use of feature combination for track-
ing is an active research area and many approaches have
been proposed to combine the information from multi-
ple sources in order to provide more accurate and robust
detection and tracking. Probabilistic methods are com-
monly used to fuse information sources. In [18], Bayesian
probability theory is used to fuse the tracking informa-
tion available from a suite of cues to track a person in
3D space. A Bayesian tracking framework using par-
ticle filters is described in [21] for fusing colour cues
with stereo or motion information. A Bayesian multi-
object tracker is described in [25] that fuses binary in-
formation from foreground detection with colour track-
ing cues. Linear combinations of sources have also been
widely used to fuse information from multiple sources.
In [15], information from image segmentation is fused
with chamfer matching scores to robustly detect people
in cluttered images. Lim and Kriegman [17] use a lin-
ear combination of shape and appearance to track peo-
ple in an indoor environment. Both [15] and [17] use
fixed weighting for the data sources. In [24], the weight-
ings for each tracking cue (colour and edge histograms)
are adaptively updated using the Bhattacharyya coef-
ficients. Fumera and Roli [12] consider linear combina-
tions of classifiers and conclude that weighted average
combinations usually only provide a marginal improve-
ment over simple averaging, even with optimal weights.
Recently, in [3], Ensemble Tracking was introduced as a
general tracking framework to combine information from
multiple sources, where an ensemble of linear classifiers
are trained continuously to distinguish object and back-
ground pixels. Kruppa and Schiele [14] fuse information
from multiple object detection modules by determining
a configuration that maximises the mutual information

between the models. In [28], Torresan et al. describe a
surveillance system that fuses standard visible spectrum
and thermal infrared video using background modelling
and rule-based blob linking to detect and track pedes-
trians. In [11], the benefits of fusing colour and thermal
infrared information are demonstrated using a contour
based approach where binary contour fragments from
each modality are fused for person detection. In [26],
the democratic integration scheme is evaluated, where
the weights of different visual cues are adapted dynami-
cally and the probability densities of individual cues are
linearly combined to give the fused PDF. In [16], a gen-
eral framework is proposed to combine multiple tracking
algorithms given the assumptions that each tracker out-
puts a probability density function (PDF) and that the
features used by all trackers are conditionally indepen-
dent. In their framework, the PDFs of each tracker are
multiplied to determine the PDF of the combined tracker
(assuming a uniform prior). Their work is most similar
to ours and our previously reported work on evaluating
feature combination strategies for tracking [20] supports
such an approach.

Regardless of the approach used for feature combi-
nation, object properties must be modelled in individ-
ual modalities and many approaches have been proposed
to do this for accurate object localisation in subsequent
video frames. In fixed camera scenarios, a background
model can be estimated [27] and subtracted so that mov-
ing objects are modelled as foreground blobs [28]. Image
templates have also been used as object models [19]. Ac-
tive contours, or snakes, have frequently been used to
track the boundary of an object [1]. Object appearance
models have also been used for tracking [20,30].

Feature histograms have been shown to be robust
and efficient for object modelling for use in surveillance
tracking, as they capture stable object properties that
are resilient to changes in object pose due to local ob-
ject motion (e.g. walking) and small changes in per-
spective. As such, we have adopted a histogram-like ap-
proach to modelling object properties. In their seminal
work, Comaniciu et al. [9] derive a mean-shift formula-
tion for histogram tracking allowing real-time tracking
that requires only a few iterations per frame to con-
verge on the correct target. Adaptation to scale changes
is performed by examining windows that are 10% larger
and smaller than the current size. Collins [6] improves
upon this scale selection heuristic, deriving a two-stage
mean-shift procedure that interleaves spatial and scale
mode-seeking using differential scale-space filters. In [31],
scale adaptation is formulated as an EM-based approach.
A method to perform very fast exhaustive histogram
matching to locate the tracked object position is pro-
posed in [22], where integral histograms are computed
using dynamic programming. However, this method re-
quires a large amount of memory. Birchfield and Ran-
garajan [5] generalise the histogram formulation by in-
troducing spatial histograms, or spatiograms, that are
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histograms with higher-order moments. Like histograms,
spatiograms allow comparisons between image regions
without explicitly computing any explicit geometric trans-
formation between them. However, unlike histograms,
spatiograms retain some information about the geometry
of object feature distributions, allowing them to remain
more tightly locked onto their targets and less likely to
be distracted.

In the context of combining object features, the main
drawback of using histograms or spatiograms is that their
memory requirements (and hence their computational
load) increase exponentially as more features are added
and they do not scale well to higher dimensions [3]. For
example, an RGB colour histogram with 32 bins per
channel requires a total of 323 = 32768 bins. If an extra
channel, such as thermal infrared, is added, this increases
to 324 = 1048576, which increases the memory require-
ments and decreases the tracking speed due to increased
computation. There is also the issue of the curse of di-
mensionality [4] which states that it is more difficult to
accurately estimate feature distributions for higher di-
mensional spaces, since exponentially more samples are
required. It has also been shown that the Bhattacharyya
coefficient, often used in tracking to measure similarity
between histogram distributions, is not very discrimina-
tive in higher dimensions [29]. To overcome these diffi-
culties, tracking can be achieved by splitting the feature-
set over several histogram trackers and combining their
outputs. For example, instead of using a K dimensional
histogram, K one-dimensional histograms could be used
and their outputs combined, which is equivalent to us-
ing K separate trackers. This substantially reduces the
memory and computational requirements, and also al-
lows the use of parallel processing to further speed up
tracking. Unfortunately in the case of histograms, it is
not theoretically justifiable to separate features in this
way, as the assumption of independence does not hold.
We overcome this by using 2nd-order spatiograms [5] in-
stead, since the inclusion of spatial information makes
the independence assumption more valid.

For these reasons, we have adopted spatiograms as
the tracking mechanism within our framework, thereby
leveraging the benefits of a histogram-like approach whilst
avoiding the inherent drawbacks.

3 Proposed Framework

Before describing our proposed framework, we briefly re-
view the use of histograms and spatiograms, in the con-
text of object tracking. We do this in order to keep this
paper self-contained, since key variables and terminology
are used in our derivation of a mean-shift procedure for
our tracking framework in subsection 3.4, which is a key
contribution of this paper.

3.1 Histograms

Simple feature histograms have frequently been used to
model objects for tracking [10,22]. A histogram is a nor-
malised count of the number of times a feature falls into
a specified range of values. The normalised count of bin
b for the target object can be computed as follows:

n
′
b = C

N∑

i=1

k(||xi||2)δib (1)

where N is the number of pixels, δib = 1 if the ith pixel
falls in the bth bin and δib = 0 otherwise, C is a nor-
malising constant that ensures the nb values sum to one,
xi = [x, y]T is the spatial position of the ith pixel, k is
a smoothing kernel, adding weight to pixels closer to the
centre, hence reducing the effect of background pixels.
Epanechnikov or Gaussian kernels are commonly used
[10].

To evaluate a matching candidate of size h, contain-
ing Nh pixels, at location y, its histogram is computed
as follows, with Ch performing a similar normalisation
function to C:

nb(y) = Ch

Nh∑

i=1

k(||(xi − y)/h||2)δib (2)

A target and candidate histogram with B bins each can
be compared using the Bhattacharyya coefficient [10]:

ρ(y) =
B∑

b=1

√
nb(y)n′b (3)

3.2 Spatiograms

Spatiograms [5] are a generalisation of the common his-
togram and contain the exact same information as his-
tograms but also include additional spatial information
for each bin. Specifically, 2nd-order spatiograms include
the spatial mean and covariance of each bin. These are
computed as follows:

µb(y) =
1∑Nh

j=1 δjb

Nh∑

i=1

(xi − y)δib (4)

Σb(y) =
1∑Nh

j=1 δjb

Nh∑

i=1

(xi−µb(y))T (xi−µb(y))δib (5)

where, as before, Nh is the number of pixels in the re-
gion, y is the position of the region centre and xi is the
spatial position of the ith pixel. The spatial distribution
of each bin b is modelled as a Gaussian with the mean
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Fig. 1 Bank of Spatiograms

and covariance given above. In order to ensure that each
Σb is invertible, they are assumed to be diagonal, and a
minimum variance value is set to one pixel. A more for-
mal description of the spatiogram family of descriptors
can be found in [5].

To compare two spatiograms, the following Bhatta-
charyya-like similarity measure is the one used in the
original work [5] and also used in the experiments de-
scribed in this paper:

ρ(y) =
B∑

b=1

ψb(y)
√

nb(y)n′b (6)

where ψb(y) is the spatial similarity measure, given by:

ψb(y) = ηexp

{
−1

2
(µb(y)− µ

′
b)

T Σ̂−1
b (y)(µb(y)− µ

′
b)

}

(7)

where Σ̂−1
b (y) = (Σ−1

b (y)+(Σ
′
b)
−1), so that the distance

between the spatial means is normalised to the average
of the two Mahalanobis distances and η is the Gaussian
normalisation constant. This measure gives high similar-
ity scores to spatiograms whose histogram bins counts
are similar and whose spatial means are aligned.

3.3 Spatiogram Bank Framework

In [5], the spatiogram is proposed as a more accurate
model for object tracking than histograms. We propose
to make spatiogram tracking more efficient and suitable
for multimodal data fusion by splitting the features over
multiple separate spatiograms. The tracking framework
we propose is illustrated in figure 1, where the pixel-
based features used to track the target are split over N
spatiogram model trackers. All trackers evaluate a se-
ries of potential object position hypotheses and return
a similarity score for each one. The combined score for
each hypothesis is computed by multiplying the simi-
larity scores from each tracker. Formally, the combined

R

G

R

G

(a) (b) (c)

Fig. 2 (a) Synthetic images, (b) their associated joint his-
tograms shown in log scale that clearly allow the images to be
distinguished, and (c) the partial histograms of their red and
green bands (both images have identical partial histograms
therefore cannot be distinguished if the features are assumed
to be independent).

(a)

(b)

(c)

Fig. 3 Example object model images generated from spa-
tiogram models: (a) Original images, object model images
generated by: (b) Full YUV Spatiogram, (c) Partial YUV
Spatiograms.

score is written:

ρ(y) =
K∏

k=1

ρ(k)(y) (8)

where ρ(k)(y) is the similarity score, returned by the kth

spatiogram tracker, between the model and the candi-
date at position y. We adopt this tracking framework for
object feature fusion for a number of reasons.

Firstly, the increase in memory and processing re-
quirements is linear with respect to the number of fea-
tures used (unlike the exponential increase associated
with typical histograms and spatiograms) and it does
not suffer from the curse of dimensionality in accurately
estimating feature distributions. The framework allows
features to be arbitrarily divided between the K track-
ers. In our experiments, we use one tracker per feature,
but one could combine an RGB spatiogram tracker with
an infrared brightness tracker, for example. Unlike tem-
plate matching, spatiograms trackers do not impose rigid
spatial constraints. Instead, the small amount of stored
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spatial information allows more general object deforma-
tions. Also, the tracking framework we use can incorpo-
rate a mean-shift approach to object localisation, allow-
ing rapid object tracking.

Secondly, this framework draws on our previous work
in evaluating various fusion schemes for object tracking
[20], where we found that multiplying similarity scores
outperformed simple addition, weighted sums and non-
linear score fusion schemes, such as min and max. If we
consider the similarity metric as a probability, multiply-
ing scores is equivalent to assuming the features used by
the trackers are independent. The metric we used to com-
pare spatiograms is very similar to the Bhattacharyya
coefficient, which itself is closely related to the proba-
bility of Bayes error [2]. In [16], Leichter et al. propose
a general framework for tracker fusion by computing a
combined probability density function (PDF) by mul-
tiplying the PDFs of all trackers (assuming a uniform
prior) and our framework can be interpreted as conform-
ing to this general framework. If all spatiogram trackers
in our framework perform an exhaustive search in a local
search window by computing similarity scores for each
location, these scores can be multiplied by a constant
without affecting the final combined tracking result. If
we choose the constant so that the scores are normalised
to sum to one, then we essentially have a PDF which
is then multiplied to produce the final combined PDF,
hence the similarity to Leichter’s framework.

Thirdly, by separating the features as we do, instead
of integrating them into one tracker, we provide a flexible
architecture for feature addition, removal or weighting,
allowing the combined tracker to adapt under different
circumstances. This has been shown to benefit tracking
in changing environments [3][7]. In terms of the limited
spatial information we store, modelling of each feature
bin as a Gaussian as we do may seem restrictive, but
in fact captures some more general spatial distribution
properties, as discussed below.

3.3.1 Independence of spatiograms

The images in figure 2(a) are significantly different and
can clearly be distinguished by their joint red-green his-
tograms, shown in (b). The drawback of joint distrib-
utions, as mentioned earlier, is that they require expo-
nentially more memory as more features are added, as
well as suffering from the curse of dimensionality. Us-
ing partial histograms as an approximation for the joint-
histogram is not a valid solution, since both images have
identical partial distributions in both the red and green
bands, therefore cannot be distinguished if the features
are separated (see figure 2(c)). Instead of using partial
histograms for tracking, we argue that the use of partial
spatiograms is more valid for this propose.

In appendix A.2, we derive the model generated when
partial spatiograms are used to approximate joint spa-
tiograms. This model can be used to verify our hypoth-

esis. Although it is possible to artificially create pixel
regions that are not well approximated by partial spa-
tiograms, we found that with real data our tracker per-
formed well in experiments. It even out-performed track-
ing using the joint spatiogram, possibly due to the dif-
ficulty in estimating high-dimensional distributions. Ad-
ditionally, we evaluated the validity of spatiogram inde-
pendence using the derived model and 4517 rectangular
pixel regions from images in datasets such as OTCBVS,
PETS2001 and VACE, as well as our own data. We found
that when we compared n̄, the approximation of the joint
histogram, generated by partial spatiograms to that pro-
duced by partial histograms, partial spatiograms were
more accurate in 95% of tests. The average increase in
histogram comparison score, with 16 bins per channel,
was 0.1596.

Figure 3 shows examples of images generated by sam-
pling the PDFs of the spatiograms extracted from real
and synthetic data, using 16 bins per colour component.
The validity of the independence assumption for spa-
tiograms is clear from comparing rows (b) and (c), since
there is only a minor difference between using the joint-
feature spatiogram and using separate spatiograms. As
can be seen from the image generated from the walk-
ing person spatiograms (middle column), the distribu-
tion of the background (bright) pixels is not Gaussian.
In fact, the distribution of a particular feature (or joint
feature) can be expressed as a Gaussian distribution di-
vided by a mixture of Gaussians, which therefore cap-
tures more general spatial distribution properties (See
Appendix A.1).

3.4 Mean-shift using Spatiogram Banks

The mean-shift derivation presented here is motivated
by and follows the general procedure presented in [5].
Unlike in [5], however, where the mean-shift procedure
was derived for a single (possibly high-dimensional) spa-
tiogram, here we derive the procedure for a bank of (low-
dimensional) spatiograms and this is a key novelty with
respect to our work. As such, we present our derivation
in detail in this section.

Mean-shift [8] is an iterative kernel-based procedure
to locate the local mode in a distribution. It has been
successfully used in many tracking applications [9,31,7]
to efficiently locate objects in subsequent frames under
the assumption that the object overlaps itself in consec-
utive frames. For fast-moving objects and low frame-rate
video, where this assumption may not be valid, multiple
kernels can be used [23].

To initiate the iterative mean-shift scheme using our
tracking framework, each tracker is first given an ob-
ject position hypothesis, which is generally equal to its
position in the previous frame or a prediction of its cur-
rent location, based on a velocity estimate for example.
Using the similarity measures returned by each tracker,



6 Ciarán Ó Conaire et al.

along with the pixel features and spatiogram models,
mean-shift performs gradient ascent on the similarity
surface and computes a new object position hypothesis.
This procedure is iterated until convergence. We begin
by describing the combined similarity measure ρ(y), as
the product of all K individual tracker similarities, first
examining a simple two tracker system where ρ(y) =
ρ(1)(y)ρ(2)(y) and generalising later to handle K track-
ers. So assuming K = 2, we perform a Taylor series ex-
pansion around ρ(y) at y0, and obtain

ρ(y) ≈ ρ(y0) +[n(1)(y)− n(1)(y0)]T ∂ρ
∂n(1) (y0)

+[n(2)(y)− n(2)(y0)]T ∂ρ
∂n(2) (y0)

+[µ(1)(y)− µ(1)(y0)]T ∂ρ
∂µ(1) (y0)

+[µ(2)(y)− µ(2)(y0)]T ∂ρ
∂µ(2) (y0)

where the superscript notation refers to the tracker num-
ber (for example, µ(2) refers to the bin spatial means of
the features used by tracker 2). Using the fact that the
tracker scores are independent with respect to the para-
meters of other trackers, we obtain

∂ρ

∂n(1)
= ρ(2)(y)

∂ρ(1)

∂n(1)
,

∂ρ

∂µ(1)
= ρ(2)(y)

∂ρ(1)

∂µ(1)

∂ρ

∂n(2)
= ρ(1)(y)

∂ρ(2)

∂n(2)
,

∂ρ

∂µ(2)
= ρ(1)(y)

∂ρ(2)

∂µ(2)

Inserting into the previous equation for ρ(y)

ρ(y) ≈ ρ(y0) +

ρ(2)(y0){([n(1)(y)− n(1)(y0)]T ∂ρ(1)

∂n(1) (y0) +

[µ(1)(y)− µ(1)(y0)]T ∂ρ(1)

∂µ(1) (y0)}+

ρ(1)(y0){([n(2)(y)− n(2)(y0)]T ∂ρ(2)

∂n(2) (y0) +

[µ(2)(y)− µ(2)(y0)]T ∂ρ(2)

∂µ(2) (y0)}

Simplifying, and generalising to K trackers, we obtain

ρ(y) ≈ ρ(y0) +
∑K

k=1
ρ(y0)

ρ(k)(y0)
{([n(k)(y)− n(k)(y0)]T ∂ρ(k)

∂n(k) (y0) +

[µ(k)(y)− µ(k)(y0)]T ∂ρ(k)

∂µ(k) (y0)}

We can simplify this expression by defining two new vari-
ables:

Γ (k)
n = [n(k)(y)− n(k)(y0)]T

∂ρ(k)

∂n(k)
(y0)

Γ (k)
µ = [µ(k)(y)− µ(k)(y0)]T

∂ρ(k)

∂µ(k)
(y0)

Inserting them into the previous expression:

ρ(y) ≈ ρ(y0) +
K∑

k=1

ρ(y0)
ρ(k)(y0)

{
Γ (k)

n + Γ (k)
µ

}
(9)

Taking the derivative of (9) with respect to y and setting
this equal to zero, yields:

K∑

k=1

ρ(y0)
ρ(k)(y0)

∂Γ
(k)
n

∂y
= −

K∑

k=1

ρ(y0)
ρ(k)(y0)

∂Γ
(k)
µ

∂y

where

∂Γ
(k)
n

∂y
= −

N∑

i=1

α
(k)
i g

(
‖y0 − xi

h
‖2

)
(y − xi)

∂Γ
(k)
µ

∂y
= −

B∑

b=1

v
(k)
b

where g(x) = −dk(x)/dx is the negative derivative of
the kernel profile, which is constant if the Epanechnikov
kernel (referred to in section 3.1) is used. α

(k)
i and v

(k)
b

are given by:

α
(k)
i =

Ch

h2

B∑

b=1

ψ
(k)
b (y0)

√√√√ n
′(k)
b

n
(k)
b (y0)

δib (10)

ν
(k)
b = ψ

(k)
b (y0)

√
n
′(k)
b n

(k)
b (y0)(Σ̂

(k)
b (y0))−1(µ

′(k)
b −µ

(k)
b (y0))

(11)

The values α
(k)
i can be interpreted as pixel weights that

vote strongly when the bin-count of the bin they fall into
is lower than the target bin-count, encouraging move-
ment towards areas similar to the target histogram. The
ν

(k)
b values are vectors that encourage the tracker to

move so that bin spatial centres align with the target’s
spatial means. By moving all the terms that do not in-
volve y to the right-hand side of the equation, the mean-
shifted position, y, can be written as

y =
∑N

i=1 Aig(
∥∥y0−xi

h

∥∥2
)xi −

∑B
b=1 Vb∑N

i=1 Aig(
∥∥y0−xi

h

∥∥2
)

(12)

where Ai and Vb are defined as:

Ai =
K∑

k=1

α
(k)
i ρ(y0)/ρ(k)(y0) (13)
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Vb =
K∑

k=1

ν
(k)
b ρ(y0)/ρ(k)(y0) (14)

The combined mean-shift algorithm for multiple spa-
tiogram trackers thus derived is used as follows: Given
a starting image position y0 near where the object is lo-
cated, equation (12) is used to compute the next mean-
shifted position, which should move towards the true ob-
ject position. The new position y replaces y0 in the equa-
tion and the procedure is iterated until convergence i.e.
until y and y0 are within the same pixel. To use equa-
tion (12), we first compute the similarity scores for each
tracker using (6), then compute the combined score us-
ing (8). Using (10), the values of α

(k)
i are computed for

each ith pixel and kth tracker. With (11), the 2-d vec-
tor values of v

(k)
b are computed for each bth bin and kth

tracker. Finally, Ai and Vb are computed and inserted
into the mean-shift equation.

4 Results

We show three sets of experiments in this chapter. First
we demonstrate how multimodal tracking significantly
outperforms tracking using any one single feature. Sec-
ondly, we illustrate the efficiency of our derived mean-
shift procedure for tracking. Thirdly, we show quanti-
tative tracking results comparing our tracking frame-
work to standard histogram- and template-based track-
ing methods.

In our first experiment, we compare the use of single
features against our combined framework for tracking.
Figure 4 shows the tracking results for two multimodal
video sequences. The data used is aligned visible spec-
trum and thermal infrared video, with each pixel rep-
resented by its colour components and infrared bright-
ness. In our experiments, five features were used: Y, U,
V, thermal brightness and edge orientation, with 8 bins
per feature. We used an exhaustive search in a 11 × 11
window around the previous object location, and var-
ied the scale by +/-10%, choosing the scale that re-
turned the largest similarity score, as in [9] and [5]. The
spatiogram models for the object are extracted in the
first frame and remain fixed for the duration of the ex-
periment. Rows (c) and (h) show the luminance-based
tracker and (d) and (i) are the infrared-based tracker.
Results for the other three features are omitted for clar-
ity of presentation, but were always less effective than ei-
ther luminance or infrared. Our combined tracker, using
all five features, is shown in (e) and (j). In the first diffi-
cult tracking sequence, taken from the OTCBVS bench-
mark dataset [11], we attempt to track a woman in dark
clothing through occlusion and distraction by crowds.
In frame 812, the luminance tracker fails as the woman
walks into an area under shadow. In frame 1009, the

infrared tracker fails and locks onto a passing person.
There is little to distinguish people in infrared since,
due to the camera pixel saturation, hot bodies appear
bright white. The infrared tracker settles on a street-
light until another person passes who it begins to track
in frame 1230. Our combined tracker tracks the person
throughout the entire sequence, despite severe occlusion
and background distraction. The second sequence in fig-
ure 4 was captured with our own multimodal camera rig
[20] and shows similar results in tracking a cyclist. Both
the luminance and infrared tracker fail when the cyclist
turns the corner. The luminance tracker locks onto an-
other bicycle in the bike-rack, while the infrared tracker
locks onto another person who is standing in the bike-
rack. Our combined tracker, however, successfully tracks
the cyclist for the entire duration of the sequence. Both
sequences in figure 4 show that combining features out-
performs any single feature in tracking.

Our second experiment, shown in figure 5 illustrates
tracking results using the mean-shift procedure we de-
rived for the bank of spatiograms. In both sequences, we
used 32 bins per feature and initialised the mean-shift
kernel at the location where the object was found in the
previous frame, then performed mean-shift tracking us-
ing the derived procedure at three different scales (the
current object size and +/-10%). The scale that gave the
largest similarity score was selected as the correct scale.
YUV colour features were used in both experiments and
infrared brightness was also used in the second sequence.
In the first sequence, which is taken from the PETS2001
video dataset, the tracking of a blue car with a mov-
ing background is shown during a rapid change in scale.
In the second sequence, which is a multimodal sequence
(infrared band is not shown), we show the tracking of
a book over a complex background. As the book is at
room temperature, the thermal features only add noise
to the tracker but it still successfully keeps a lock on
the target. The sequences required, on average, 7.68 and
10.95 iterations per frame, respectively, to converge. This
is about 40 times faster than an exhaustive search in
a 11 × 11 × 3 local scale window. Using standard his-
togram or spatiogram mean-shift tracking would require
over 340 times as many bins (323 instead of 3×32). In our
interpreted MATLAB implementation, the mean track-
ing speed (over 36 different tracking tests) is just over
9 frames/second, which includes reading bitmap images
from hard-drive. We envisage that an optimised version
would run comfortably in realtime.

In our third set of experiments, we show in table 1
some quantitative tracking results comparing our track-
ing framework to histogram- and template-based track-
ing methods. We used 6 sequences taken from the pub-
lic OTCBVS database, PETS’01, PETS’03 and our own
multimodal collection (marked DCU in the table). All
sequences (except the PETS sequences) include an in-
frared channel, along with the RGB channels. Ground-
truth was generated by manual annotation of bounding
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(a)

First frame (visible spectrum)

(c)

(d)

Luminance tracker

Infrared tracker

(b)

First frame (infrared spectrum)

(e)

Combined tracker

(f)

First frame (visible spectrum)

(h)

(i)

Luminance tracker

Infrared tracker

(g)

First frame (infrared spectrum)

(j)

Combined tracker

Fig. 4 Tracking results using single features versus combined tracking: pedestrian and cyclist tracking. The left column
shows the initial frame position of all trackers for two sequences (visible spectrum and thermal images shown in each case).
The smaller images to the right show zoomed versions of the object tracked in subsequent frames of each sequence: (c),(h):
Luminance-based spatiogram tracking. (d),(i): Infrared brightness spatiogram tracking. (e),(j): Combined tracking.
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Frame 1590

Frame 1635

Frame 1750

Frame 1680

Frame 1790

Frame 1695

Frame 1845

Frame 1710

Frame 1900

Frame 880

Frame 900

Frame 990

Frame 930

Frame 1010

Frame 940

Frame 1080

Frame 980

Frame 1160

Fig. 5 Illustrative tracking results using the combined mean-shift procedure for our combined tracker using Y, U and V
features (first sequence) and YUV and infrared features (second sequence).

Source Type Temp Hist Hist Spat Spat

Bank Bank

DCU person 100.0 29.1 29.0 29.1 100.0
PETS’01 vehicle 100.0 100.0 100.0 100.0 100.0
DCU person 5.3 90.9 100.0 72.6 100.0
PETS’03 person 67.5 69.5 100.0 100.0 100.0
DCU person 42.4 100.0 100.0 100.0 100.0
OTCBVS person 100.0 97.5 100.0 51.2 100.0

Table 1 Table above indicates the percentage of frames
in which the object was successfully tracked for a va-
riety of sequences. These results can be viewed at
http://www.eeng.dcu.ie/˜oconaire/mva07

boxes on the objects to be tracked. Tracking was judged
to have failed if the tracker’s bounding box no longer in-
cluded any part of the object. The figures indicated are
the percentage of frames of successful tracking before
failure. Histogram tracking (‘Hist’ column) was based
on [9] using exhaustive search. The bank of histograms
tracker (‘Hist bank’ column) used the same approach
but multiplied the matching scores of each channel. For
template tracking (‘Temp’ column) we used the stan-
dard sum-of-squared difference method [19]. The tracker
in the ‘Spat’ column is a tracker using the full joint-
spatiogram. Object models were fixed at the start of the
sequence and were not updated. We chose histogram and

template tracking as they represent the two extremes of
modelling feature spatial distribution. Histograms con-
tain no spatial information and, at the other extreme,
templates encode rigid spatial information. Spatiogram
banks (‘Spat bank’ column), encoding a small amount
of coarse spatial information, did best in our trials. The
hist-bank tracker, although achieving a high success rate,
often shrank in scale and tracked only part of the object.
Video sequences are available online at
http://www.eeng.dcu.ie/˜oconaire/mva07

Discussion Mean-shift is much faster than exhaustive
search as it only evaluates a small number of position
hypoteses. However, when the target peak is narrow in
the similarity surface, mean-shift can slide off the target.
Exhaustive search in a local window is more likely to
find the correct peak. We have shown that our method
can perform well using either technique but found the
exhaustive search to be more reliable and recommend
its usage when speed is not a major factor.

In our experiments all features were treated equally,
but dynamic feature weighting could be useful when the
object and background have similar features. As a tracked
object moves through various backgrounds and lighting
conditions, different features become more or less use-
ful for tracking [3,7] and therefore, tracking robustness
could be increased by weighting them accordingly. As
an indication towards future work, we provide here two
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different formulations that could be used to compute
the combined score for a hypothesis, given appropriate
weights for each tracker. Determining how these weights
are computed is left for future work.

If we can determine, for the ith tracker, the proba-
bility of it providing poor tracking information (i.e. the
probability of sensor error), λi, then the combined score
can be computed as follows:

ρ(y) = ΠK
i=1(λi + (1− λi)ρ(i)(y)) (15)

This method is similar to the method used in [13] to
compensate for poor tracking data and caters for track-
ing failure in scenarios where one tracker might return a
score of zero, thereby indicating that the correct hypoth-
esis is not used. If instead we have a set of weights, wi,
for each tracker, the following weighting method could
be used:

ρ(y) = ΠK
i=1ρ

(i)(y)wi (16)

If we take the log of this equation, we see that it is similar
to the weighted sum used in democratic integration [26]
to fuse multiple cues.

5 Conclusion

The main contributions of this paper are: (i) the intro-
duction of a general pixel feature-based tracking frame-
work that extends spatiogram tracking to efficiently com-
bine multiple features, (ii) justifying the validity of this
framework and demonstrating robust tracking on multi-
modal surveillance sequences and (iii) deriving a mean-
shift procedure for this framework that allows multiple
feature combination but with very low computational
overhead.

Future work will investigate how spatiogram mod-
els should be updated during tracking, to account for
changes in object appearance, while avoiding the prob-
lem of model drift [19]. We will also examine how features
should automatically be weighted to minimise background
distraction, and we have already made some suggestions
in our discussion at the end of section 4 on how these
weights could be integrated into our framework. Extend-
ing the mean-shift derivation to cater more robustly for
changes in scale using 2nd order moments [29] or scale-
space methods [6] is also targeted as future work.
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APPENDIX

A .

A.1 Spatial distribution probabilities

Histograms and spatiograms imply probability distributions
of feature values. In the case of the histogram, there is no
spatial dependency, so p(x, b) = p(b) = nb. For spatiograms,
we have p(x, b) = p(b)p(x|b) = nbφb(x). Given a particular
location, x, we can compute the probability of occurrence for
each feature bin:

p(b|x) =
p(x|b)p(b)

p(x)

=
nbφb(x)PB
i=1 niφi(x)

Since φb(x) and each φi(x) are all Gaussians, this shows
that the actual spatial distribution of feature value v is a
Gaussian divided by a sum of Gaussians. This distribution
can be multimodal and is therefore far more flexible than a
simple Gaussian distribution.

A.2 Fusion of multiple spatiogram models

When we use partial histograms to approximate the full joint-
histogram distribution, in the two-band case we get na,b =

p(a, b) = p1(a)p2(b) = n
(1)
a n

(2)
b . We now derive the approxi-

mation that is used when partial spatiograms are used instead
of the full joint-spatiogram. We examine the case where each
pixel has two features (hue and saturation, for example) and
it can easily be generalised to multiple features. For a partic-
ular location, x, the spatial distribution of pixels that belong
to bin a of feature z1 and b of feature z2 is given by:

p(a, b|x) = p(a|x)p(b|x) (17)

=

�
p1(x|a)p1(a)

p1(x)

��
p2(x|b)p2(b)

p2(x)

�
(18)

=
p1(a)p2(b)p1(x|a)p2(x|b)hR

B1
p1(x|i)p1(i)

i hR
B2

p2(x|j)p2(j)
i (19)

=
n

(1)
a n

(2)
b φ

(1)
a (x)φ

(2)
b (x)hPB1

i=1 φ
(1)
i (x)n

(1)
i

i hPB2
j=1 φ

(2)
j (x)n

(2)
j

i (20)

where p1 and p2 refer to the probabilities obtained from the
spatiogram model of the first and second feature (z1 and z2).
This expression can be simplified by noting that the product
of two normalised Gaussians, with means q and r, and co-
variances, Q and R, is a normalised Gaussian multiplied by
a constant term:

N(x; q, Q)N(x; r, R) = zN(x; c, C) (21)

with

C = (Q−1 + R−1)−1 (22)

c = C(Q−1q + R−1r) (23)

and the constant term, z, given by:

z = N(q; r, Q+R) =
1

(2π)m/2|Q + R|1/2
e(−

1
2 (q−r)T (Q+R)−1(q−r))

(24)

where m is the number of dimensions (2 in this case). Now
equation (20) can be rewritten as a Gaussian divided by a
weighted sum of Gaussians, since all the φ terms are Gaus-
sians. If we write:

φ(1)
a (x)φ

(2)
b (x) = za,bφa,b(x) (25)

And let

z′a,b =
za,bn

(1)
i n

(2)
jPB1

i=1

PB2
j=1 zi,jn

(1)
i n

(2)
j

(26)

Then we can rewrite equation (20) as

p(a, b|x) =
n

(1)
a n

(2)
b za,bφa,b(x)PB1

i=1

hPB2
j=1 n

(1)
i n

(2)
j zi,jφi,j(x)

i
=

z′a,bφa,b(x)PB1
i=1

hPB2
j=1 z′i,jφi,j(x)

i
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Firstly, this shows that the spatial distribution of features, in
the case of fusion multiple spatiograms, is a Gaussian divided
by a weighted sum of B Gaussians, B = B1B2, as it is for a
single spatiogram. Therefore, the approximation of the joint-
distribution obtained by using partial spatiograms is itself
a spatiogram. Secondly, this spatiogram is given by n̄a,b =
z′a,b, with µ̄a,b and Σ̄a,b given by equations (23) and (22).
It is similar to the histogram approximation, but adds more
weight to joint-feature bins whose partials have significant
overlap in their spatial layout.


