Object detection, as of one the most fundamental and challenging problems in
computer vision, has received great attention in recent years. Its development
in the past two decades can be regarded as an epitome of computer vision
history. If we think of today's object detection as a technical aesthetics
under the power of deep learning, then turning back the clock 20 years we would
witness the wisdom of cold weapon era. This paper extensively reviews 400+
papers of object detection in the light of its technical evolution, spanning
over a quarter-century's time (from the 1990s to 2019). A number of topics have
been covered in this paper, including the milestone detectors in history,
detection datasets, metrics, fundamental building blocks of the detection
system, speed up techniques, and the recent state of the art detection methods.
This paper also reviews some important detection applications, such as
pedestrian detection, face detection, text detection, etc, and makes an in-deep
analysis of their challenges as well as technical improvements in recent years.Comment: This work has been submitted to the IEEE TPAMI for possible
publicatio