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ABSTRACT 

UTILIZING RADIATION FOR SMART ROBOTIC APPLICATIONS USING 

VISIBLE, THERMAL, AND POLARIZATION IMAGES 

 

Ali H. Mahmoud 

 

July 14, 2014 

 

The domain of this research is the use of computer vision methodologies in 

utilizing radiation for smart robotic applications for driving assistance. Radiation can be 

emitted by an object, reflected or transmitted. Understanding the nature and the properties 

of the radiation forming an image is essential in interpreting the information in that image 

which can then be used by a machine e.g. a smart vehicle to make a decision and perform 

an action. Throughout this work, different types of images are used to help a robotic 

vehicle make a decision and perform a certain action. This work presents three smart 

robotic applications; the first one deals with polarization images, the second one deals 

with thermal images and the third one deals with visible images. Each type of these 

images is formed by light (radiation) but in a way different from other types where the 

information embedded in an image depends on the way it was formed and how the light 

was generated.  

For polarization imaging, a direct method utilizing shading and polarization for 

unambiguous shape recovery without the need for nonlinear optimization routines is



vi 

 

 proposed. The proposed method utilizes simultaneously polarization and shading to find 

the surface normals, thus eliminating the reconstruction ambiguity. This can be useful to 

help a smart vehicle gain knowledge about the terrain surface geometry. 

Regarding thermal imaging, an automatic method for constructing an annotated 

thermal imaging pedestrian dataset is proposed. This is done by transferring detections 

from registered visible images simultaneously captured at day-time where pedestrian 

detection is well developed in visible images. Histogram of Oriented Gradients (HOG) 

features are extracted from the constructed dataset and then fed to a discriminatively 

trained deformable part based classifier that can be used to detect pedestrians at night. 

The resulting classifier was tested for night driving assistance and succeeded in detecting 

pedestrians even in the situations where visible imaging pedestrian detectors failed 

because of low light or glare of oncoming traffic. 

For visible images, a new feature based on HOG is proposed to be used for 

pedestrian detection. The proposed feature was augmented to two state of the art 

pedestrian detectors; the discriminatively trained Deformable Part based models (DPM) 

and the Integral Channel Features (ICF) using fast feature pyramids. The proposed 

approach is based on computing the image mixed partial derivatives to be used to 

redefine the gradients of some pixels and to reweigh the vote at all pixels with respect to 

the original HOG. The approach was tested on the PASCAL2007, INRIA and Caltech 

datasets and showed to have an outstanding performance. 
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CHAPTER 1  

INTRODUCTION 

Electromagnetic radiation [1] includes what is commonly referred to as ‘light’, in 

addition to longer and shorter wavelengths. Light plays an important role in the process 

of image formation which is one of the basic processes in computer vision [2] which is 

the science and technology of making machines that see. Light (radiation) can be emitted 

by an object, reflected or transmitted. Understanding the nature and the properties of the 

light forming an image is essential in interpreting the information in that image which can 

then be used by a machine e.g. a smart robot to take a decision and perform an action. 

This work will try to make use of different types of images to help a robot make a 

decision and perform a certain action. It will deal mainly with polarization images, 

thermal images and visible images. Each type of these images is formed by light but in a 

way different from other types where the information embedded in an image depends on 

the way it was formed and how light was generated. 

A brief overview on optics which is essential to understand the process of image 

formation will be given in the next section of this chapter. This overview will cover 

geometrical optics and physical optics classically and modernly. Also some basics 

essential to understand the applications presented in this work will be discussed. Chapter 

2 will give a review on the literature related to this work. Chapter 3 will discuss how light 

is radiated by an object and how this radiation is affected when incident on another 
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object. It will give the basics of thermal images, polarization images and visible images. 

These different types of images will be involved in some robotic applications in chapters 

5, 6 and 7. The equipment used in this research including different robotic platforms and 

optical sensors will be discussed in chapter 4.  

Polarization imaging will be used to develop a method for unambiguous shape 

recovery in chapter 5. Knowing whether the reconstructed surface is concave or convex is 

an important issue in many robotic applications e.g. an autonomous robotic vehicle can 

be able to discriminate between a ditch (negative obstacle) and a hill (positive obstacle). 

Proper discrimination leads to a proper decision and a proper action that helps the robot 

to complete its mission safely. 

Chapter 6 proposes an automatic alternative for constructing an annotated thermal 

imaging pedestrian dataset by transferring detections from registered visible images 

simultaneously captured at day-time where pedestrian detection is well developed in 

visible images. Histogram of oriented gradients (HOG) is used for extracting features 

from images and discriminatively trained part based framework is used as the classifier. 

The proposed technique was implemented on the robotic vehicle ATRV2. 

Chapter 7 proposes a new feature based on HOG to be used with visible images 

for the purpose of pedestrian detection. The proposed feature is used with two state of the 

art pedestrian detectors; the discriminatively trained part based framework for pedestrian 

detection and the integral channel features based framework for pedestrian detection. The 

proposed method is based on computing the image mixed partial derivatives to be used to 

redefine the gradients of some pixels and to reweigh the vote at all pixels with respect to 

the original HOG. 
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Figure 1.1. Electromagnetic radiation spectrum [1]. 

Radio TV Microwave 
Millimetre 

wave Mid-infrared Near-infrared Visible 
Near-

ultraviolet 
Far-

ultraviolet X-ray   -ray 

Far-

infrared NMR ESR 

300 3 1 0.5 

25 2.5 0.77 

770 390 200 10 0.05 

   

   
   

1.1. Optics 

Optics is the branch of physics that deals with light which is important to 

understand the process of image formation. The word light will be used in this context to 

refer to any portion of the spectrum of the electromagnetic radiation (Figure 1.1) 

including the visible and invisible portions. Also the words light and radiation will be 

used interchangeably in this context. Optics can be divided into two categories; 

geometrical optics and physical optics (wave optics). 

In geometrical optics [3], light is considered as rays that propagate in straight 

lines and are related by Snell’s law at interfaces. Geometrical optics is useful in 

understanding optical instruments and image formation in a simple way provided that the 

dimensions of the instruments and the objects dealt with are much larger than the 

wavelength of the used light. This makes it possible to neglect the effect of diffraction 

that can only be explained through physical optics. 

 

 

Regarding physical optics, there are two views to model the light; the classical 

view and the modern view. Classically, light can be considered as electromagnetic waves 

that are propagating continuously [4]. This was mathematically described by James 

Maxwell through his popular equations known as Maxwell’s equations. The classical 
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electromagnetic view of light is used to understand many aspects about light polarization 

[5] and polarization imaging. For the modern view of physical optics (also known as 

Quantum Optics), light is considered to be formed of massless particles called photons 

(energy quanta). Energy is created and destroyed [4] in these photons non-continuously 

as opposed to the classical view of physical optics. Quantum optics was initiated by Max 

Planck [6] who discussed the blackbody radiation spectrum followed by Einstein who 

used what Planck reached to introduce the photon concept. Dealing with light as photons 

is useful in understanding the absorption and emission of atoms to light [4] which is 

important to understand thermal imaging. Also, quantum optics succeeded to explain 

some phenomena that classical physical optics failed to explain as the Ultra-violet 

catastrophe [3]. Schrodinger [4] stated that any particle is associated with a wave and 

from here dual nature (particle-wave nature) of photons arose. The wave nature of 

photons is clear as they prorogate in space, and the particle nature is clear during 

absorption and emission of photons by atoms [4]. 

1.1.1. Photons 

Sometimes it is useful to deal with light as discrete quantities of energy (quanta). 

The quantum of light is known as photon and has the following properties: 

 The relation between the photon wavelength   and its frequency   is given 

by: 

  =c,      (1.1) 

where   is the light speed (             ). 
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 A photon of frequency   and wavelength   has an energy   given as:  

      
 

 
,      (1.2) 

where   is the Planck’s constant.                     

 If   is the photon momentum, then:  

  
 

 
 

  

 
.     (1.3) 

 For a system having many photons under the same conditions, the photon 

energy is statistically described using Bose-Einstein distribution. 

1.1.1.1. Bose-Einstein distribution 

Statistical mechanics is the branch of physics that uses the probability theory to 

describe the behavior of many identical particles under the same conditions on the 

average. To do this, the energy   of a particle is described by its probability density 

function     . For photons,      is known as Bose-Einstein distribution and is given as 

[7]: 

     
 

 
 

    

,      (1.4) 

where K is the Boltzmann constant (                    ), and T is the temperature 

in Kelvins. From Equation (1.4), it is clear that        is the probability of having a 

photon with energy between   and     . When dealing with radiation, an important 

quantity is the number of photons per unit volume per unit solid angle for energy between 

  and      which can be found as:  
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       ,   (1.5) 

where         is the density of states per unit solid angle for energy between   and 

    . Equation (1.5) can be expressed in terms of wavelength   by substituting 

Equation (1.2) into Equation (1.5) which yields to: 

        
 

 
  

     

       ,      (1.6) 

where         is the number of photons per unit volume per unit solid angle with 

wavelengths between   and      and         is the density of states per unit solid 

angle for wavelengths between   and     . The density of sates will be discussed 

below in some details.  

1.1.1.2. Density of states 

In 1927, Heisenberg [8] stated his principle for the uncertainty relation between 

the position and the momentum of a particle as it is impossible to exactly determine both 

the position and the momentum of a particle simultaneously. In other words, the more 

precisely the momentum is determined, the less precisely the position is determined and 

vice versa. Accordingly, for a system of identical particles, the number of states available 

to be occupied by a particle per unit volume in an elemental volume in momentum space 

i.e. between   and      is given by [9, 10, 7]: 

        
    

    ,     (1.7) 

where   is the Planck’s constant and   is the particle momentum. In case of the particle is 

a photon, the photon momentum   is related to its wavelength   by: 
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,      (1.8) 

where   is the speed of light. From Equation (1.8),    is related to    by: 

    
 

    .       (1.9) 

The minus sign in Equation (1.9) will be ignored because it just accounts for 

direction when performing integration [11] and hence    will be rewritten as: 

   
 

    .     (1.10) 

Substituting Equation (1.8) and Equation (1.10) into Equation (1.7) gives the 

number of states per unit volume between    and      as: 

        
  

    .     (1.11) 

Equation (1.11) should be multiplied by 2 to account for the photon two 

independent planes of polarization [12, 7] leading to: 

        
  

    .     (1.12) 

Divide Equation (1.12) by    to gives the number of states per unit volume per 

unit solid angle for wavelengths between    and      as: 

        
 

    .     (1.13) 

The number of states per unit volume is sometimes referred to as the density of 

states and hence         is then called density of states per unit solid angle between    

and     . 
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Figure 1.2. (a)  Linear polarization. (b) Circular polarization. (c) Elliptical polarization. (d) 

Unpolarized [4]. 

 

(a) (b) 

(c) (d) 

1.1.2. Electromagnetic waves and polarization 

 

 

 

The electric field of an electromagnetic wave propagating in the   direction 

       can be represented by two orthogonal optical disturbances [4]         and 

         as: 
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                      ,     (1.14) 

where 

         ̂              ,    (1.15) 

 

         ̂                ,    (1.16) 

 

where   is the propagation vector in the direction of motion,   is the angular frequency 

and   is the phase shift between         and        . The polarization of the 

electromagnetic wave is a measure of the direction at which the electric field oscillates in 

space. 

If    , the orientation of the vector        is constant over time and        is 

considered linearly polarized as shown in Figure 1.2(a). If       and        , the 

orientation of the vector        is plotting a circle over time and        is considered 

circularly polarized as shown in Figure 1.2(b). A general case of circular and linear 

polarization is the elliptical polarization where the orientation of        plots an ellipse 

over time as shown in Figure 1.2(c). This occurs when     and        . If   varies 

randomly and rapidly [4] with time, this is the case of unpolarized electromagnetic wave 

e.g., natural light as shown in Figure 1.2(d). 

This research is mostly interested in linear polarization of light. Unpolarized light 

can be converted into linearly polarized light by using an optical component called linear 

polarizer. It is worth mentioning that liquid crystal displays (LCD) that most people use 

every day are based on linear polarizers [13, 14, 15, 16]. 
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1.2. Shape recovery using polarization imaging 

Recently, polarization imaging has been used for shape recovery of a surface.  

The recovered shape can be expressed in many ways among which are [17] the depth, the 

surface normal, or the surface normal zenith angle and the surface normal azimuth angle. 

Throughout this work, the surface shape is described using the zenith and azimuth angles 

representation. 

A polarization imaging camera is theoretically composed from an intensity charge-

coupled device (CCD) camera with a linear polarizer mounted in front of it. 

Theoretically, in order to obtain a polarization image, the CCD camera behind the 

polarizer should capture at least three intensity images that are spatially and temporally 

registered. Mathematical calculations are then done on these intensity images to compute 

the polarization image.  The computed polarization image is composed of three 

components; Intensity, Degree of polarization and Angle of polarization. If using three 

CCD intensity images to form a polarization image, these images should be captured 

when the polarizer is making angles 0
o
, 45

o
, and 90

o
 with respect to a given reference.   If 

  ,     and     are the intensities of the CCD images captured at angles  0
o
, 45

o
, and 90

o
 

respectively, the three components of the corresponding polarization image can be 

computed as follows [18]: 

  

{
 
 

 
           (

           

      
)                                      

        (
           

      
)                              

        (
           

      
)                                   

        (1.17) 

  
      

             
,      (1.18) 
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I=I0 + I90 ,             (1.19) 

where  ,   and I are the angle of polarization, degree of polarization and intensity 

respectively. 

When comparing the image resulting from a polarization camera (CCD camera coupled 

with a linear polarizer) with the image captured by a CCD intensity camera, it is clear 

that the polarization camera gives two more components which are   and  . It was found 

that   has a one-to-one relation with the zenith angle of a surface normal and   is related 

to the azimuth angle of a surface normal (not a one-to-one relation which gives 

ambiguity) [18]. And since   and   are related to the surface normal zenith angle and the 

surface normal azimuth angle, they could be used in shape recovery but up to an 

ambiguity resulting from  the non one-to one relation between the surface normal 

azimuth angle and  . An approach is proposed throughout this work to remove this 

ambiguity as discussed in detail in chapter 5. 

1.3. Pedestrian detection using visible and thermal images 

Pedestrian detection is an important problem in the design of driving assistance 

systems that can reduce accidents and save lives. Both visible and thermal cameras have 

been used to capture images to be used with pedestrian detectors where thermal cameras 

play an important role during night when visible light is lack. A night vision pedestrian 

detection approach using thermal cameras is proposed in chapter 6.   

The performance of any pedestrian detector is determined mainly by the detector 

learning algorithm and the used feature representation [19].  Throughout this work the 

feature representation problem was tackled. A new feature is proposed in chapter 7. This 
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feature is tested using the learning algorithms of two state of the art pedestrian detectors; 

the discriminatively trained Deformable Part based model (DPM) [20] and the Integral 

Channel Features (ICF) [19] using fast feature pyramids [21]. The proposed approach 

was tested on three publically available visible imaging pedestrian datasets. The 

performance of the approach was evaluated using Precision-Recall [20] curves which are 

described in this chapter. 

1.3.1. Thermal Imaging versus Visible Imaging for Pedestrians 

The concept of thermal imaging arose theoretically from studying the 

phenomenon of Blackbody radiation [22]. A blackbody at a temperature   above 0 K 

continuously absorbs and then diffusely reemits photons (light quanta) of all possible 

wavelengths   (  ranges from 0 to ∞). It was found that the number of photons emitted 

per unit wavelength at a certain wavelength is dependent on the temperature  . This is 

clear in Planck’s law which gives the radiation spectral intensity of a blackbody at 

temperature [23]. And from Wien displacement law [24], the dominant emitted 

wavelength is in the visible light range for an extremely high temperature body 

(thousands of kelvins). For instance a blackbody at a temperature  =5800 K, emits 

radiation that peaks at wavelength   =0.499µm. This is why the sun whose surface is at a 

temperature  =5800 K radiates dominantly green radiation. As the body temperature gets 

lower, the dominant wavelength moves towards the infrared regions which can be near-

infrared (NIR), short-wavelength infrared (SWIR), mid-wavelength infrared (MWIR), 

and long-wavelength infrared (LWIR).  For instance a blackbody at a temperature  =310 

K, emits radiation that peaks at wavelength   =9.345µm.  This is why the radiation from 

a pedestrian whose temperature  =310 K peaks in the LWIR region.  
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For a real case (non-blackbody), beside the phenomenon of temperature based 

emission of photons, there is also reflection of photons incident from an external visible 

light source. Since the emitted photons carry information about the body temperature, 

succeeding in separating that portion of photons from the reflected portion gives the 

temperature of the body. Fortunately, at low temperature (few hundreds of kelvins), the 

dominant wavelength of the emitted photons lies in the infrared region, thus they are 

band separated from the reflected visible photons. Based on this, thermal infrared 

cameras can give the temperature of a body. 

Thus, a human subject can be considered as a source of two band separated 

optical signals, one in the visible region of the electromagnetic spectrum and the other in 

the infrared region.  The visible signal can be captured by a visible camera while the 

infrared signal can be captured by a LWIR thermal camera.  

1.3.2. Discriminatively trained deformable part based models (DPM) 

DPM described by Felzenszwalb et al. [20] is an object detection system that uses 

multiscale deformable part models. DPM is based on pictorial structures [25] which 

consider an object as a collection of parts arranged in a deformable configuration. This 

deformable configuration specifies the connection between parts. The DPM object 

detection system has two major stages; the training stage in which a model is built and 

the detection stage in which the built model is used to detect objects. To build a DPM 

model, Felzenszwalb et al. [20] used only boxes bounding the objects (e.g. human) in the 

set of the training images. This means that the parts locations of an object are hidden 

which they treated as latent variables. The obtained model contains information mainly 
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about a root filter and part filters. The root filter defines the entire object while the root 

filters have higher resolution and deal with the object parts. 

A filter (either root filter or part filter) is a rectangular array of weight vectors that 

are used to compute the response or the score of the filter given the feature pyramids of 

an image. The feature pyramid of an image is an arrangement of a finite number of 

rectangular arrays called feature maps; each computed at a different image scale. For a 

certain scale, [20] used a variation of the Histogram of Oriented Gradients (HOG) 

features [26] to compute the feature map at that scale.   

For a certain subwindow of the feature pyramid, the response of a filter is defined 

as [20] the dot product of the filter and that subwindow. Let   defines a filter of size 

   ,   defines a feature pyramid. For a subwindow of size     located at the  -th 

level of  , if       denotes the position of the top-left corner of the subwindow, the 

feature map at that subwindow will be denoted by         .  if          is a vector 

obtained by concatenating the features vectors corresponding to         , then the 

response          of the filter   at that subwindow is given as [20]: 

                     ,    (1.20) 

where     is the dot product operator. Placing a root filter at a certain location in the 

feature pyramid defines a detection window taking into account that the corresponding 

part filters are put down to the root filter by an octave i.e. at double resolution [20]. The 

score corresponding to that detection window is found based on the previous equation.  

If the object of interest e.g. pedestrian is to be specified using   parts, the 

corresponding DPM model should contain       terms which are               and 
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 .    is the root filter,     through    are the part models and   is a bias term [20].  For 

the  -th part, the corresponding part model    consists of three terms which are the  -th 

root filter   , the anchor position    of the  -th part with respect to the root filter and    

which is the deformation cost of all possible placements of the  -th part relative to its 

anchor position. Using the information embedded in the model, the               

corresponding to a certain detection is window is given as [20]: 

              

               ∑                
 
                     ,              (1.21) 

 

where           represents the displacement of the  -th part with respect to its anchor 

position and is given as [20]: 

                               .     (1.22) 

            are the deformation features given as: 

                        
     

  .    (1.23) 

In order to allow for spatial uncertainty [20], the computed responses of the part filter are 

transformed which modifies the               to: 

 

                             ∑                                
   

                                   (1.24) 

 

The subwindows whose               are above a certain threshold are selected as true 

positive detections.  Figure 1.3 shows a block diagram of a DPM detector at one scale 

given the input image and the model. 
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Figure 1.3. DPM detector a one image scale. 

 

 

 

So far the DPM model and DPM detection have been discussed but what about the DPM 

training? The training stage requires having an image dataset that contains annotations for 

the bounding boxes of the object class of interest. Images containing other classes can be 

considered as negatives. The first step in the training is to apply Support Vector Machine 

(SVM) [27] on the positive and negative samples to obtain an initial model that is capable 

of discriminating between positives and negatives. A detector containing the initial model 

is then applied on the positive part of the dataset. The resulting detections are warped and 

then some iterations of SVM are applied on these warped images in which the positions 

of the root filters are kept latent (hidden) as discussed in details in [20]. The output of 

these iterations are new bounding boxes that maximizes the performance of the model 

according to the PASCAL criteria [33]. After that part filters are then initially placed 

either along the center axis of the root filter or symmetrically around the axis in a manner 
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that maximizes the energy in each root filter.  Latent SVM [20] is then used iteratively to 

enhance the initial filters to obtain a better model.   

1.3.3. Integral Channel Features (ICF) using fast feature pyramids 

Dollar et al. [19] investigated using integral channel features (ICF) and Adaboost 

classifiers [28] for pedestrian detection. In ICF, multiple registered channels are extracted 

from the input image using either linear or nonlinear transformations. Features are then 

extracted from these channel using integral images [29]. 

If having a gray scale input image, a simple example for a channel is the image 

itself while if having an RGB color input image, the channels can be simply the R, G and 

B channels. More complicated channel examples are histogram of oriented gradients, 

normalized gradient magnitude, and LUV color channels. For a certain channel, the first-

order channel feature is defined as the sum of pixel inside a rectangular region [19], while 

higher order channel features are computed by performing some operations (e.g. 

difference) on multiple first-order channel features.  It was found in [19] that a detector in 

which more than a channel are combined can outperform detectors that use individual 

channels. For example combining histogram of oriented gradients, normalized gradient 

magnitude, and LUV outperformed using histogram of oriented gradients alone. 

For the pedestrian detector to handle different image scales, a feature pyramid is 

computed at a finite number of scales. Typically 4 to 12 scales per octave are used [21]. 

This multi-scaling can be computationally expensive. Dollar et al. [21] discussed a 

modification to the system described in [19] to speed up the computation as they used 

fast feature pyramids instead of regular feature pyramids used in [19]. Fast feature 
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pyramids are based on computing features at a number of scales lower than that of a 

typical feature pyramid and then using extrapolation to estimate the features at other 

scales. Performing extrapolation is faster than computing features at every scale while 

almost preserving the same performance.    

In this work, the fast feature pyramid ICF based pedestrian detector presented in 

[21] with channels of histogram of oriented gradients, normalized gradient magnitude, 

and LUV will be used to illustrate the performance of a feature proposed in this work. 

1.3.4. Popular pedestrian datasets 

In this section, a brief overview will be given on the most popular publically 

available pedestrian datasets that were used throughout this work.  

1.3.4.1 INRIA Person Dataset 

INRIA person dataset contains 1804 64×128 images of cropped humans. It was 

collected as part of work on detection of upright people in images and video [26]. The 

dataset contains image from GRAZ01 dataset, personal digital image collected over a 

long period of time and few Google images. Marking in the images is only for upright 

persons with height >100 pixels. 

1.3.4.2. Caltech Pedestrian Dataset 

The Caltech Pedestrian Dataset [30, 31] consists of approximately 10 hours of 

30Hz video taken from a vehicle driving through regular traffic in an urban environment 

at a resolution of 640x480. Annotation was done to about 250,000 frames (in 137 

approximately minute long segments) resulting in a total of 350,000 bounding boxes and 
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2300 unique pedestrians annotations. The annotation includes temporal correspondence 

between bounding boxes and detailed occlusion labels. 

1.3.4.3. The PASCAL Visual Object Classes (VOC) Challenge 

Everingham et al. [32, 33] introduced the PASCAL visual object classes (VOC) 

challenge which is a benchmark in visual object category recognition and detection. This 

challenge was organized annually starting from 2005. The challenge consists of a 

publicly available dataset of images and annotation, together with standardized 

evaluation software; and an annual competition and workshop. A new dataset with 

ground truth annotation was released each year since 2006. The datasets contains several 

annotated classes among which is the ‘person’ class. This work will focus on using the 

VOC2007 dataset [32], since the annotations for both the train set and the test set are 

publically available.    

1.3.5. Performance evaluation using Precision-Recall curves 

The performance of a detector will be evaluated using precision-recall curves which are 

denoted in some of the literature as receiver operating curves (ROC). Available 

pedestrian datasets contain images and annotation bounding boxes which represent the 

ground truth for a detection system [20]. When testing a detector, the input to the system 

is some images and the output is a set of bounding boxes with corresponding scores [20]. 

These score can be thresholded at different values to plot the precision-recall curve where 

          
  

     
      (1.25) 

         
  

     
      (1.26) 
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where    is the number of true positives (correct detections),    is the number of false 

positives (unexpected detections), and    is the number of false negatives (missing 

detections). At a certain threshold, the precision represents the fraction of the bounding 

boxes that are correct detections while the recall  represents the fraction of the pedestrians 

in the image that are detected correctly.  

Throughout this work, a PASCAL measure has been used to determine the detection rates 

[33]. If there is an overlap between a detected bounding box and the ground truth 

bounding box and this overlap is more than 50%, this will be considered as a correct 

detection, otherwise it is a false positive detection. For a certain ground truth bounding 

box, if there are more than one overlapping detection bounding boxes, only one of them 

is counted. A system is scored by the average precision AP of its precision-recall curve 

across a test set [20]. 

 

Figure 1.4. State of the art precision-recall curves for Caltech pedestrian dataset. 
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Figure 1.4 gives the precision-recall curves of the state of the art pedestrian detectors [19, 

21] for the Caltech pedestrian dataset for which the performance is evaluated every 30
th

 

frame. Figure 1.5 gives the precision-recall curves of the state of the art pedestrian 

detectors for the INRIA dataset respectively. The higher the curve, the better the 

performance. 

 

Figure 1.5. State of the art precision-recall curves for INRIA dataset. 
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CHAPTER 2  

LITERATURE REVIEW 

This chapter gives a review on the literature related to the proposed work. It 

focuses mainly on shape recovery from polarization, and pedestrian detection for driving 

assistance. 

2.1. Shape recovery from polarization 

Light plays an important role in the process of image formation, as an image can 

be formed when light is reflected from an object in space into an image sensor. In the 

process of image formation, the object 3D shape is converted into 2D information. The 

3D shape information of the object is carried by the light wave propagating from the 

object to the image sensor, and hence the properties associated with the light can be 

exploited to recover the 3D shape of the object after the process of image formation. 

From the prospective of wave propagation, light can be viewed as an electromagnetic 

wave that is characterized by several properties among which are intensity, spectrum, and 

polarization. The intensity is a measure of the magnitude of the oscillating electric field 

associated with the light, the spectrum is the frequency range over which the electric field 

oscillates, and the polarization is a measure of the direction at which the electric field 

oscillates in space. Recently, the intensity, spectrum, and polarization properties are 

being used to develop polarization cameras that are capable not only of measuring the 

spectrum and magnitude of the electric field associated with the light, but also its 
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direction in space. While the intensity and the spectrum can give information about the 

materials, polarization can give information about surface shape, conductivity, refractive 

indices, and roughness [34]. Polarization imaging has been used for many applications in 

machine vision [ 35], remote sensing [34], biomedical imaging  [36], industrial control  

[37] and mud detection [ 38].  

Of concern in this chapter are reported methods for shape recovery based on 

polarization. Polarization imaging for shape recovery of textureless specular surfaces was 

proposed in [39]. It was also used to determine the shape for a transparent object [40]. 

Atkinson and Hancock [18] exploited polarization by surface reflection, using images of 

smooth objects, to recover surface normals and, hence, height. They focused on dielectric 

surfaces which diffusely polarize light transmitted from the dielectric body into the air. 

They modeled the diffuse polarization of the reflection process using a transmitted 

radiance sinusoid curve and the Fresnel transmission theory. Degree of diffuse 

polarization was used to estimate the zenith of the surface normals. The azimuth was 

estimated using the phase of diffuse polarization but up to the ambiguity. Disambiguation 

was done using zenith angle ranking. The same authors [41] used diffuse polarization in 

conjunction with shading from two views to estimate the shape. The surface normals 

were calculated from diffuse polarization for each view independently. The results were 

fed into a shading algorithm to be enhanced. In [42], the authors used multi-spectral 

polarization images from a single view to get a robust estimate for the surface normal 

azimuth in the presence of noise.  Along the same line, a method for simultaneous 

estimation of surface orientation and index of refraction from the spectral variation of the 

phase of polarization was proposed in [43].  
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This research proposed a direct method for shape recovery from shading and 

polarization [45]. The observation underpinning the proposed method is that shading 

information provides one equation on the surface normal (equivalent to two unknowns) at 

each image pixel. Thus in total, there are twice as many unknowns as the number of 

equations. However polarization information can double the set of available equations 

without increasing the number of unknowns, thus rendering the shape recovery problem 

from both polarization and shading well-posed.   

The proposed method utilizes the two sources of information, shading and 

polarization, for shape recovery. A few methods in literature [41, 42] share the same 

objective with the proposed method. However the proposed method is novel in several 

aspects. First, it relies on one view and one spectral imaging band, while other methods 

try to make use of multiple spectrum bands [42, 43]. As such, the proposed method is 

considered simpler and needs less expensive imaging setup. Second, the proposed 

method utilizes simultaneously polarization and shading to find the surface normal, while 

earlier method [42] uses separately polarization information to estimate the azimuth angle 

of the normal, and shading to find the zenith angle. However relying only on polarization 

[18, 42, 43] to obtain the azimuth angle results in an ambiguity in the estimation. To 

disambiguate the azimuth angle, earlier methods either assumed always convexity on the 

surface under observation [42, 43] or resorted to a zenith angle ranking procedure [18] 

which often work only on simple cases. The proposed method solves this ambiguity by 

making use of the complementary shading and polarization information to estimate the 

azimuth angle. It is well-know also that traditional shape from shading (SFS) suffers from 

a convex/concave ambiguity [17, 44], which was shown to be resolved if the attenuation 
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of the illumination due to distance is taken into consideration [46].  Due to the use of 

polarization information as well, the proposed method can resolve the convex/concave 

ambiguity of the shading component without having to complicate the illumination 

model. Thus the method is shown to successfully recover the shape of convex and 

concave surfaces using the simpler classical assumption of a single distant light source. 

2.2. Pedestrian detection for driving assistance 

The United States Department of Transportation - Federal Highway 

Administration (FHWA) [47] reported that each year, pedestrian fatalities comprise about 

12 percent of all traffic fatalities and there are approximately 4,000 pedestrian deaths. 

Moreover, 59,000 pedestrians are injured in roadway crashes. This addresses the problem 

of pedestrian detection as an important problem in the design of driving assistance 

systems to achieve a livable community provides safe and convenient transportation 

choices to all citizens [47]. This section provides a brief survey on the related works to 

this problem. 

Yanwu Xu et al. [48] defined the problem detecting sudden pedestrian crossing. 

They proposed a video-based driving assistance framework that detects crossing 

pedestrians before they fully enter the camera view. Their framework consists of three 

levels; a local level followed by a frame level followed by a video level. In the local 

level, they used sparse sliding window sampling with a local binary pattern (LBP) 

difference based motion filter to detect the regions that might contain pedestrians. The 

output of the local level is then fed for more verification into the frame level which uses a 

pair of generic pedestrian detectors trained with half-sized pedestrian samples. The output 
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of the frame level is then fed to the third level to perform appearance and motion based 

spatiotemporal refinement in order to reduce the false positives. 

Olmeda et al. [49] proposed a pedestrian detection system based on discrete 

features in infrared images. They detected the region of interest by searching for 

descriptors based on the histogram of the phase congruency orientation which is matched 

with defined regions of the body of a pedestrian. The detected region of interest is then 

classified whether to be a pedestrian or a non-pedestrian using a support vector machine 

(SVM) classifier. Olmeda et al. [49] then compared their approach to the standard HOG 

algorithm presented in [26]. 

Kidono et al. [50] proposed a pedestrian recognition system by the fusion between 

high definition LIDAR and a single camera. They extracted the pedestrian candidates 

from the two sensors in parallel by SVM classifiers. They used the object information 

provided by LIDAR efficiently to reduce the computational burden and the number of 

false positives in the vision-based detection. 

Itoh et al. [51] discussed a driver assistance system that informs the driver of the 

desired steering direction to avoid a collision with a pedestrian in case of emergency. 

Yun Luo et al. [52] presented a review on pedestrian detection using active night vision 

sensors operating in the near infrared region of the electromagnetic spectrum and passive 

night vision sensors operating in the far infrared region of the electromagnetic spectrum. 

They then proposed a technique to enhance the pedestrian detection systems that use 

active sensors operating in the near infrared region of the electromagnetic spectrum. 
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Their technique involves using laser illumination and a camera equipped with a narrow 

bandpass filter to remove the excess ambient illumination. 

Liang Zhao et al. [53] presented an algorithm for detecting pedestrians in a 

cluttered scene from a pair of moving cameras. They used stereo-based segmentation and 

neural network-based recognition as foreground objects were first detected through 

foreground/background segmentation based on stereo vision. Each object is then 

classified as pedestrian or non-pedestrian by a trained neural network. Inumaru et al. [54] 

proposed a method for pedestrian detection using a stereo video a voting using Gaussian 

distribution. They represented the detected object region by HOG features and it was 

classified if the region contains a human by SVM. 

Jayasumana et al. [55] introduced a family of provably positive definite kernels 

on the Riemannian manifold of Symmetric Positive Definite (SPD) matrices that could be 

used to design Riemannian extensions of existing kernel-based algorithms, such as SVM 

and kernel k-means. They used their Riemannian kernel with kernel SVM Multiple 

Kernel Learning (MKL) for pedestrian detection and tested it on the INRIA person 

dataset. 

Bar-Hillel et al. [56] introduced an approach for learning part-based object 

detection through feature synthesis (FS). They empirically evaluated their method on the 

INRIA dataset, the Caltech pedestrian dataset and a dataset of children images with 

difficult poses. 

Levi et al. [57] presented a part-based object detection algorithm with hundreds of 

parts performing real-time detection which is an accelerated version of the FS method 
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[56]. Their algorithm uses a coarse-to-fine strategy where a coarse part-based detector 

that is used to eliminate most image regions is followed by a fine detector to detect the 

object in the remaining regions. To speed up the coarse level, they developed an 

approximate nearest neighbor search algorithm, termed “KD-Ferns”, which compares 

each image location to only a subset of the model parts. They evaluated their method on 

the INRIA dataset and the Caltech pedestrian benchmark which showed to maintain 

almost the same accuracy performance of the original FS at a speed increase of more than 

four times. 

Suard et al. [58] presented a method for pedestrian detection using stereo infrared 

images. They used HOG features combined with SVM to build their classifier. Chang et 

al. [59] also presented a method for pedestrian detection using infrared thermal images. 

They used HOG features representation combined with adaboost to perform the 

detection. Their approach contains some preprocessing techniques as foreground-

background subtraction, morphology, and aspect ratio filtering. 

Ouyang and Wang [60] proposed a probabilistic framework for detecting 

pedestrians that appear in a group. Single pedestrian detection was performed by the aid 

of multi-pedestrian detection. Multi-pedestrian detection learning was done using 

discriminatively trained deformable part models presented in [20] where each single 

pedestrian is considered as a part. Their framework models the configuration relationship 

between multi-pedestrian detection and single-pedestrian detectors. They validated their 

approach using the Caltech, TUD-Brussels and ETH datasets. 
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Commercially, pedestrian detection systems have been involved in the vehicle 

industry. BMW [61] uses night vision with dynamic light spot to detect pedestrians in the 

dark and selectively illuminates them. As soon as unlit pedestrians on a collision course 

are detected by the remote infrared sensors, the system directs two separately controllable 

high-performance light spots onto them without any unpleasant dazzling effect. The light 

very effectively warns drivers and pedestrians of a potentially hazardous situation. On the 

other hand, Mercedes-Benz Night View Assist PLUS [62] uses invisible infrared beams 

and a special camera, to provide real-time view of the dark road ahead. It can point out 

and even shine the headlamps toward pedestrians it detects. 

Recently, several approaches for pedestrian detection have been investigated 

using discriminatively trained part based models [20]. In these approaches, an object 

detection system is achieved using mixtures of multi-scale deformable part models that 

are discriminatively trained using support vector machines (SVM) requiring only the 

knowledge of the box bounding the object in the image. Felzenszwalb et al.  [20] 

investigated using the histogram of oriented gradients (HOG) features introduced by 

Dalal and Triggs [26]. The basic idea behind the HOG is that the object local appearance 

and shape can be described using the distribution of the local intensity gradients or edge 

directions without the need to precisely know the position of the corresponding gradient 

or edge [26]. 

Ren and Ramanan [63] replaced the HOG feature in the framework of [26] by 

histograms of sparse codes (HSC). In their approach, they formed local histograms by 

computing sparse codes with dictionaries learned using K-SVD which outperformed the 

HOG based approach.     
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Jun et al. [64] introduced the local gradient patterns feature (LGP) and the binary 

histogram of oriented gradients feature (BHOG). The LGP makes the local intensity 

variations along the edge components robust by assigning one if the gradient of a 

neighboring pixel is the average of the gradients of the eight neighborhood pixels and 

zero otherwise. For the BHOG, one is assigned if the values of the histogram bin is 

greater than the average value of the total histogram binsand zero otherwise. They used 

their approach for human detection using the INRIA [26] and the Caltech [30, 31] human 

databases. 

Dollar et al. [19] proposed using integral channel features and Adboost classifiers 

[28] for detecting pedestrians. Their detector involved using a feature pyramid to handle 

different image scales which can be computationally expensive. In [21, 65] Dollar et al. 

discussed using fast feature pyramid that uses extrapolation instead of conventional 

feature pyramid to decrease the computational cost. Benenson et al. [66] reverted the 

pedestrian detector discussed in [65] to avoid resizing the input images at multiple scales. 
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CHAPTER 3  

RADIATION: EMISSION AND REFLECTION 

The surface of any object at a temperature above 0 K emits radiation. The emitted 

radiation carries information about the object temperature and its surface properties. The 

theory behind that emission of radiation started by studying the radiation of a blackbody 

(ideal body that does not exist in nature) then was developed to include non-blackbodies 

(real surfaces) e.g. the sun, human being, light bulbs, terrain surfaces, etc.  If the radiation 

emitted by a body is incident on a surface and reflected, the properties of the reflected 

radiation e.g. polarization is affected by the surface and when analyzed can give 

information about the surface e.g. its shape. 

3.1. Blackbody radiation 

A blackbody at a temperature   above 0
 
K continuously absorbs and then 

diffusely reemits photons (light quanta) of all possible wavelengths (  ranges from 0 to 

∞). It was found that the number of photons emitted per unit wavelength at a certain 

wavelength is dependent on the temperature   of the body. This is quantitatively clear in 

Planck’s law for blackbody radiation [23].  

3.1.1. Planck’s Law 

Planck’s law gives the blackbody radiation spectral intensity               [23] 

which is defined as the emitted power in the direction       at wavelength   per unit 
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Figure 3.1. Geometry used to derive Planck’s law. 

 

wavelength per unit solid angle per unit area of the body surface projected in the 

direction of emission when the blackbody is at a temperature  , where   and   are the 

zenith and azimuth angles of the spherical coordinates system respectively. Since a 

blackbody emits diffusely,               will be independent of the direction       . 

Planck’s law will be derived below. 

For a blackbody with an elemental surface area    as shown in Figure 3.1, 

           is the projection of a    in the direction      . Hence, from the 

definition of the blackbody spectral intensity, the power η emitted from     into a solid 

angle    for wavelengths between   and      at a temperature   is: 

                        .    (3.1) 

 

 

 

 

Imagine having an infinitesimal cuboid volume of height    above    . A photon 

traverses that infinitesimal with the speed of light   and thus the time it takes is 
  

 
 

Seconds [67]. Hence, the energy enclosed by the infinitesimal volume is  
  

 
 and thus the 

energy per unit volume between   and      is:  

 
  

 
 

 

     
  

 

    
 =                  

 

 
    (3.2) 
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Dividing Equation (3.2) by    gives the energy per unit volume per unit solid 

angle as                 
 

 
 which can be evaluated by multiplying          (Equation 

(1.6)) by the energy of 1 photon at wavelength   (Equation (1.2)) as follows: 

                
 

 
=         

 

 
.    (3.3) 

Substituting Equation (1.6) into Equation (3.3) and rearranging gives: 

              =
   

  
  

     

     .    (3.4) 

Substituting Equation (1.13) into Equation (3.4) gives: 

                =
    

  

 

 
  

     

.     (3.5) 

Equation (3.5) is known as Planck’s law which gives the emitted power in the 

direction       at wavelength   per unit wavelength per unit solid angle per unit area of 

the body surface projected in the direction of emission when the blackbody is at a 

temperature  . To find the quantity given in Equation (3.5) but per unit area of the body 

surface instead of per unit area of the body surface projected in the direction of emission, 

Equation (3.5) should be multiplied by 
   

  
       which gives:  

                                   
    

  

 

 
  

     

    ,   (3.6) 

where               is the emitted power in the direction       at wavelength   per unit 

wavelength per unit solid angle per unit area of the body surface when the blackbody is at 
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a temperature  .               is known as  the directional spectral emissive power for 

the blackbody [23]. 

3.1.2. Wien’s displacement law 

If the blackbody radiation spectral intensity               is plotted versus 

wavelength λ for various temperatures  , it can be observed that the peak of 

               moves to the right when the temperature   of the body is decreased. This 

means that as the temperature decreases, the wavelength at which the peak occurs 

increases. This is clear when comparing                    in Figure 3.2 with 

                  in Figure 3.3. At  = 6000 K, the peak occurred in the visible region 

of the electromagnetic spectrum while at  = 200 K, the peak occurred in the infrared 

region of the electromagnetic spectrum. From this, it is concluded that at relatively low 

temperatures, the blackbody radiation is concentrated in the infrared region while at 

relatively high temperatures, the radiation is concentrated in the visible region. A good 

example for this is the comparison between the sun and the human if they are roughly 

considered, for now, as blackbodies. The sun whose temperature is around 5800 K peaks 

at 0.5 µm which is in the green visible part of the electromagnetic spectrum [11]. On the 

other hand, a human whose temperature is around 310 K peaks at 9.345 µm which is in 

the infrared region of the electromagnetic spectrum. Wien [11] related the wavelength of 

the peak      to the temperature of the blackbody   in his displacement law. Wien’s 

displacement law states that the product of the wavelength at which the peak of 

              occurs and the temperature   is a universal constant equal to       

     m K as follows: 
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                                          m K.    (3.7) 

Another observation is that the peak of the blackbody radiation spectral intensity 

              moves downwards when decreasing the blackbody temperature. This 

means that the radiation power emitted from blackbodies of high temperature is higher 

than that emitted from blackbodies at low temperatures. This is clear when comparing the 

radiation power emitted from the sun to that emitted from a human if they are roughly 

considered again, for now, as blackbodies. 

3.1.3. Stefan-Boltzmann law 

So far, this chapter derived the blackbody radiation spectral intensity 

              and directional spectral emissive power               but the total power 

emitted by the blackbody at all wavelengths and all directions per unit area of its surface 

was not computed. In order to do this, consider the hemisphere shown in Figure 3.1 

around the blackbody elemental area   . The power emitted per unit surface area in the 

direction       in a solid angle    for wavelengths between   and      is given as:  

                       .     (3.8) 

Substituting for               by its value from Equation (3.6) and for    by the 

elemental solid angle in the spherical coordinates system which is          gives: 

    
    

  

 

 
  

     

              .       (3.9) 

The radiation power per unit area of the source surface emitted in a hemisphere is 

found by integrating Equation (3.9) for      
 

 
 ,          and          as: 
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   ∫ ∫ ∫
    

  

 

 
  

     

              
 

 
   

  

   

 

   
.   (3.10) 

 

 

Simplifying Equation (3.10) gives: 

Figure 3.2. Planck’s law at low temperatures. 

 

Figure 3.3. Planck’s law at high temperatures. 
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        ∫
 

  

 

 
  

     

  
 

   
.    (3.11) 

Now define    as: 

   ∫
 

  

 

 
  

     

  
 

   
.    (3.12) 

To solve for   , a dummy variable s is used such that: 

  
  

   
.     (3.13) 

From Equation (3.13), 

  
  

   
,      (3.14) 

and        
  

  

 

    .        (3.15)  

Also         corresponds to        . 

The minus sign in Equation (3.15) can be used to change the direction of 

integration, thus substituting Equation (3.14) and Equation (3.15) into Equation (3.12) 

gives: 

   ∫
      

    

 

   

 

    

  

      .    (3.16) 

Simplifying Equation (3.16) gives: 

   
    

    ∫
  

    
  

 

   
.    (3.17) 

From integration tables, ∫
  

    
  

 

   
 

  

  
. Substituting into Equation (3.17) gives: 

   
      

      .     (3.18) 
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Substituting Equation (3.12) and Equation (3.18) into Equation (3.11) gives: 

   
       

      .     (3.19) 

Now define   
       

                         , hence 

      .     (3.20) 

  is known as Stephan-Boltzmann constant and Equation (3.20) is known as 

Stephan-Boltzmann law for blackbody radiation which indicates that the power of the 

radiation emitted in a hemisphere from a blackbody at a temperature   per unit area of 

the body surface is proportional to   . Stephan-Boltzmann law is illustrated in Figure 3.4 

as     is plotted versus   for           Kelvins. 

 

 

 

 

 

 

Figure 3.4.  Stephan-Boltzmann law for blackbody radiation. 

3.1.4. Thermal imaging of a blackbody 

The temperature dependence of the emitted radiation as clear in Equation (3.5), 

and Equation (3.20) helped in arising the concept of thermal imaging and thermal 

cameras. 
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In thermal camera, an element of a plane sensor records the radiation power 

emitted by a blackbody as seen by the sensor element over a certain limited band of 

wavelengths. 

 

Figure 3.5. Geometry used for image formation. 

Assume that the camera sensor is band limited over           and    is the 

elemental area of the sensor element surface. Moreover,   is the line joining the centers 

of    and    which is the elemental surface area of the blackbody. The normal to    

makes an angle   with   while the normal to    makes an angle   with    Also    is the 

solid angle subtended by    as seen by    [68] where 

   
      

  .      (3.21) 

The power intercepted by    between   and      due to    is  
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                                    .    (3.22) 

The total power seen by the camera sensor element over its bandwidth is found by 

integrating   over the whole blackbody surface,   over the sensor element and λ over 

        as: 

                  ∫ ∫ ∫                    
      

      
        

  

    
.  (3.23) 

In the previous equation, the camera sensor was treated ideally as a blackbody 

with a limited absorption bandwidth and lens usage effect was not discussed. Also the 

transmittance of the atmosphere through which the radiation is transmitted from the 

object to be imaged to the camera sensor is assumed to be unity. In other words, it is 

assumed that no radiation is absorbed or reflected by the atmosphere.  

From Equation (3.23), it is clear that a camera sensor element gets light from all 

points it sees from the blackbody surface. However, practically each sensor element is 

required to record only the signal coming from a specific single point (very small area) 

on the blackbody surface. In order to do this, a lens is placed between the blackbody to be 

imaged and the camera sensor. Equation (3.23) can still be used with lens but taking into 

account that   is the surface area of a very small region on the blackbody surface (single 

point). 

So far, blackbodies have been discussed. However a blackbody does not exist 

practically in nature. Non-blackbody contains other aspects that should be taken into 

account. Non-blackbodies will be discussed below and compared to blackbodies. 
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3.2. Radiation from real surfaces 

Practically, the behavior of a surface of a real body (non-blackbody) deviates to 

some extent from that of a blackbody [23]. A real body absorbs and reemits radiation 

over a limited band of wavelength as opposed to a blackbody that absorbs and reemits 

radiation over all possible wavelengths (        ).  Moreover, for a real body, the 

absorption and the emission of radiation can be dependent on the direction of radiation 

incidence or emission [23] which is a non-diffuse behavior as opposed to a blackbody 

whose absorption and emission of radiation is diffuse. Also since the surface of a real 

body does not absorb the entire radiation incident upon it, it reflects back some of the 

radiation as opposed to a blackbody surface which reflects nothing. As a result, a real 

body emits radiation less than that emitted by a blackbody of the same temperature. This 

can be quantitatively described using spectral directional emissivity. 

3.2.1. Spectral directional emissivity  

The spectral directional emissivity                 of a real surface (non-

blackbody) is defined as the ratio of its radiation spectral intensity in the direction       

at wavelength   and temperature   to radiation spectral intensity of a blackbody at the 

same temperature and wavelength. Thus the spectral directional emissivity 

                of a non-blackbody can be written as [68]: 

                
              

             
,    (3.24) 

where                is the non-blackbody radiation spectral intensity which is defined 

as the radiation emitted power in the direction       at wavelength   per unit wavelength 

per unit solid angle per unit area of the body surface projected in the direction of 
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emission when that non-blackbody is at a temperature  . For a certain wavelength    and 

a certain direction         at temperature  ,                    takes a value between 0 

and 1. 

 If the spectral directional emissivity                 of a certain surface is 

independent of the direction      , then that surface is called a diffuse surface. Also for 

a certain surface for a certain direction        , if                   is independent of 

the wavelength  , then the surface is known as a gray surface in the direction         

[23]. If                   is independent of both the wavelength  , and the direction 

     , then the surface is a gray diffuse surface. To illustrate the effect of emissivity, the 

radiation spectral intensity                for gray diffuse surfaces with different 

emissivity values at temperature               is plotted in Figure 3.6.  

 

Figure 3.6. Radiation spectral intensity                for gray diffuse surfaces with different 

emissivity values at temperature T=300 Kelvins. 
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This chapter defined the directional spectral emissive power for the blackbody 

              in Equation (3.6). Now, it will define the directional spectral emissive 

power of a real surface                as the emitted power in the direction       at 

wavelength   per unit wavelength per unit solid angle per unit area of the body surface 

when the body is at a temperature T.                is related to                by:  

                                 .   (3.25) 

Substituting Equation (3.24) into Equation (3.25) gives: 

                                               .  (3.26) 

Substituting Equation (3.5) into Equation (3.26) gives: 

                              
    

  

 

 
  

     

    .  (3.27) 

3.2.2. Stefan-Boltzmann law for real surfaces 

As done for a blackbody, it is intended to find the total power emitted in a 

hemisphere by a non-blackbody at all wavelengths and all directions per unit area of its 

surface. This quantity will be denoted as    . In order to do this, consider a hemisphere 

around the non-blackbody elemental area   . The power emitted per unit surface area in 

the direction       in a solid angle    for wavelengths between   and      is:  

                         .    (3.28) 

Now substituting for                by its value from Equation (3.27) and for 

   by the elemental solid angle in the spherical coordinates system which is          

gives: 
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              .  (3.29) 

The radiation power per unit area of the source surface emitted in a hemisphere is 

found by integrating Equation (3.29) over     
 

 
  ,          and          as: 

    ∫ ∫ ∫                
    

  

 

 
  

     

              
 

 
   

  

   

 

   
. (3.30) 

To be able to compare     for a non-blackbody to    for a blackbody,     and    

will be related by: 

            ,    (3.31) 

where        is the total emissivity of the non-blackbody over all wavelengths and all 

directions.        can be found by comparing Equation (3.30) and Equation (3.31) as: 

 

       

∫ ∫ ∫                
    

  
 

 

  
     

              

 
 
   

  
   

 
   

  
.  (3.32) 

Substituting Equation (3.20) into Equation (3.32) gives: 

       

∫ ∫ ∫                
    

  
 

 

  
     

              

 
 
   

  
   

 
   

   ,  (3.33) 

where        gives the ratio of the radiation power emitted by a non-blackbody in a 

hemisphere at all wavelengths and temperature   per unit area of the body surface to that 

emitted by a blackbody at the same temperature. Substituting Equation (3.20) into 

Equation(3.31) gives the Stefan-Boltzmann law for a real surface (non-blackbody 

surface) as: 
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             .     (3.34) 

Stefan-Boltzmann law is plotted for different values of        in Figure 3.7. 

 

Figure 3.7. Stefan-Boltzmann law for surfaces with different emissivity       . 

3.2.3. Thermal imaging of a non-blackbody 

Assume that the sensor of the thermal camera used to image a real surface is band 

limited over wavelengths          , Equation (3.23) can be modified for a non-

blackbody to be: 

                   ∫ ∫ ∫                     
      

      
        

  

    
, (3.35) 

where                    is the total power seen by the camera sensor element over 

its bandwidth (          ). 

Substituting Equation (3.27) into Equation (3.35) gives: 
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                   ∫ ∫ ∫                
    

  

 

 
  

     

          
      

      
        

  

    
. (3.36) 

Practically, the object to be imaged can be considered gray over the camera 

bandwidth (          ), and diffuse over the solid angle subtended by the camera 

sensor element, and thus                 can be considered constant. Now define 

                for           and under diffuse emission assumed in the equation as 

         
, then 

                            
∫ ∫ ∫

    

  

 

 
  

     

          
      

      
        

  

    
. (3.37) 

Comparing Equation (3.23) and Equation (3.37), 

                            
                 .   (3.38) 

In the previous equation,          
 for a specific material for a specific camera 

band           can be found from emissivity tables.  

Based on Equation (3.38), two objects made of different materials can be 

distinguished at the same temperature using their          
. 

3.3. Reflection and absorption of radiation 

For the surface of a real body (non-blackbody), when radiation is incident upon it, 

it can be reflected, absorbed or transmitted through the body. The reflected fraction is 

called reflectivity  , the absorbed fraction is called absorptivity  , and the transmitted 

fraction is called the transmissivity  . The reflectivity, the absorptivity, and the 

transmissivity are related by [23] 

       .     (3.39) 
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For opaque bodies, the transmissivity   is zero, thus Equation (3.39) is reduced to:  

         .      (3.40) 

At thermal equilibrium where the body is maintained at constant temperature, all 

of the absorbed part will be reemitted in the same in the same direction it was absorbed at 

     . This makes the directional spectral emissivity                 equal to the 

directional spectral absorptivity                . This is given by Kirchhoff’s law as 

[68]: 

                               .    (3.41) 

From Equation (3.41), it is clear that dealing with emissivity is the same as 

dealing with absorptivity if the body is at thermal equilibrium. Since the previous 

sections discussed emissivity and the emitted part of radiation in details, the next section 

will focus on the reflected part of the radiation. Throughout this context, it will be dealt 

with the reflected radiation classically either as rays in describing shape from shading or 

as electromagnetic waves in understanding the concept of polarization imaging that will 

be used in object shape recovery.  

3.4. Intensity images and shape from shading 

Considering the classical geometric optical model, a simple image formation 

model is the lambertian model [17]. In the lambertian image formation model, the grey 

level intensity of each pixel of the image depends on the light source direction and the 

surface normal at that pixel. Also in lambertain image formation model, the surface is 

assumed to reflect light in all direction (diffuse). According to these common 

assumptions, the image intensity at any point is given by:  
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      ,         (3.42) 

where   is the surface albedo, N is the surface normal, and L is the light source direction. 

The surface normal can be written in terms of the surface zenith angle   and azimuth 

angle   as N=[         ,          ,     ]
T
, while the light source direction is written as 

L=[  ,   ,   ]
T
. Substituting into (3.42) gives:  

                                   .   (3.43) 

Shape from shading aims at recovering an object shape from the gradual variation 

of the shading in the image [17]. The recovered shape can be expressed in many ways 

among which are [17] the depth       , the surface normal (        ), or       , where 

  is the surface normal zenith angle and   is the surface normal azimuth angle. 

Shading information provides one equation for the surface normal (equivalent to 

two unknowns) at each image pixel. Thus in total, there are twice as many unknowns as 

the number of equations. This can cause ambiguity in the recovered shape. However 

polarization information can double the set of available equations without increasing the 

number of unknowns, thus rendering the shape recovery problem from both polarization 

and shading well-posed. The basics of polarization imaging are discussed briefly in the 

following section considering the electromagnetic nature of radiation. 

3.5. Polarization imaging 

The primary physical quantities associated with an optical field (electromagnetic 

wave) are the intensity, wavelength, coherence, and polarization. Conventional 

panchromatic cameras measure the intensity of optical radiation over some wave band of 

interest. Spectral imagers measure the intensity in a number of wave bands, which can 
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range from one or two (three is common for a color camera) through multispectral 

systems that measure of the order of 10 spectral channels to hyperspectral systems that 

may measure 300 spectral channels or more. Spectral sensors tend to give information 

about the distribution of material components in a scene. Polarimetry seeks to measure 

information about the vector nature of the optical field across a scene. While spectral 

information can help in understanding materials, polarization information can help in 

understanding surface features, shape, shading, and roughness. Polarization provides 

information that is largely uncorrelated with spectral and intensity images, and thus has 

the potential to enhance many fields of optical metrology. The elementary definitions and 

equations for polarization imaging can be found in [34]. [34] also discusses different 

types of polarimeters (1D, 2D, 3D, Full-Stokes, and active imaging polarimeters). [34] 

also compares different architectures for imaging polarimeters (Rotating element, 

Division of amplitude, Division of aperture, and Division of focal plane).  

3.5.1. Describing the polarization state of the illuminating light and the objects in 

the scene 

Polarization is a general descriptor of light and contains information about 

reflecting objects that traditional intensity-based sensors ignore. All the possible states of 

polarization can be represented in one vector known as the Stokes vector   [69], named 

after George Gabriel Stokes, who introduced it in 1852. The Stokes vector is a shorthand 

notation that describes the polarization of light through four components [69]. An object 

in a scene can be described by a Mueller matrix. The Mueller matrix is a 4 × 4 matrix 

with real-valued elements. The Mueller matrix   for a polarization altering device is 

defined as the matrix which transforms an incident Stokes vector    into the exiting 
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(reflected, transmitted, or scattered) Stokes vector  . Each element of the incident     is 

related to the four elements of   by the elements of M [70] as: 

  =M  .     (3.44) 

Thus, Stokes vectors describe the light and Mueller matrices describe the scene. 

Moreover, knowing the incident and reflected light Stokes vectors at each point (pixel) in 

a scene, the Muller matrix at that pixel can be estimated and analyzed to get information 

about that pixel. If    and    represent the electric field component of the light reflected 

form a scene in the x and y directions respectively, then the Stokes vector S is given as 

[69]: 

  [

  

  

  

  

]  

[
 
 
 
 
  |  |

  |  |
 

 

 |  |
  |  |

 
 

        
  

         
  ]

 
 
 
 
 

,    (3.45) 

where     is the time averaging operator [5]. 

   is the difference between the left and right circular polarization components which is 

not being of interest of this context. This context will focus only on   ,    and    which 

represent the linear Linear Stokes parameters and can be measured experimentally using 

a rotating linear polarizer mounted in front of a CCD camera as [69]: 

   [

  

  

  

]  [

      

      

        

],     (3.46) 

where   ,    ,     and      are respectively the intensities received by the CCD sensor for 

polarizer orientation of 0
o
, 45

o
, 90

o
 and 135

o
. 
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These angles are measured with respect to a given reference. An alternative way to 

represent polarization information in a scene is by using a polarization image         

where    is the intensity,   is the degree of linear polarization and   is the angle of 

polarization (φ).           are related to   ,    and    by [69] 

    ,      (3.47) 

  
√  

    
 

  
 ,                (3.48) 

       
 

 
         

   

  
 .     (3.49) 

Atkinson and Hancock [18] used    ,    , and     only to calculate           as:  

    

  I=I0 + I90 .       (3.50) 
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        (3.51) 

                                  
      

             
.      (3.52) 

3.5.2. When is polarimetric imaging preferable to classical intensity imaging for 

target detection? 

In target detection applications, the relevant efficiency criterion is contrast (or 

discrimination ability) between a target and a background. [71] assumed that the scene 

consists of two regions with different Mueller matrices; the target region and the 
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background region. They discussed the settings of the polarimetric imager for which the 

scene appears with maximal contrast. They investigated four settings; purely polarized 

illumumination/purely polarized imaging, purely polarized illumination/ intensity 

imaging, purely unpolarized illumination/ purely polarized imaging, and  purely 

unpolarized illumination/ intensity imaging. They reached the conclusion that it is always 

preferable to purely polarize the illumination, or not to polarize it at all. There is never 

interest in partially polarizing it. Similarly, for each type of illumination, there is a 

“turning point” at which polarization imaging becomes preferable to intensity imaging. 

Interestingly, this turning point is “sharp,” in the sense that there is no interest of having a 

“partially” polarized imager; it must be totally depolarized (i.e., intensity imaging), or 

totally polarized. Also they found that the optimal setup depends on the scene (Mueller 

matrices) and on the noise perturbing the scene. Also it is worth mentioning that [72] 

defined the contrast between regions with different polarimetric properties under coherent 

illumination (such as Laser). They showed that the performances of maximum likelihood-

based detection and segmentation algorithms are bijective functions of this contrast 

parameter which makes it possible to characterize the performance of such algorithms by 

simply specifying the value of the contrast parameter. [73] presented a polarization 

reflectance model known as the Fresnel reflectance model. Their reflectance model 

accurately predicts the magnitudes of polarization components of reflected light. They 

demonstrated the capabilities of their model to segment material surfaces according to 

varying levels of relative electrical conductivity, in particular distinguishing dielectrics 

which are nonconducting and metals which are highly conductive. They discussed 

polarization based methods that can provide cues for distinguishing different intensity-
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edge types arising from intrinsic light-dark or color variations, intensity edges caused by 

specularities, and intensity edges caused by occluding contours where the viewing 

direction becomes nearly orthogonal to surface normals. Analysis of reflected 

polarization components was also shown to enable the separation of diffuse and specular 

components of reflection, unobscuring intrinsic surface detail saturated by specular glare. 

Finally they addressed polarization based methods used for constraining surface normals. 

3.5.3. Shape from diffuse polarization 

If the zenith and azimuth angles previously described are estimated, shape 

recovery can be done. The degree of linear polarization   [18] is one-to-one related to 

zenith angle for diffuse surfaces by  

  
(   

 

  
)
 

     

     
  (   

 

  
)
 

           √  
       

,        (3.53) 

where    is the refractive index. If   is found from Equation (3.52), the zenith angle   

can be directly found from Equation (3.53). For the azimuth angle  , it is related to the 

angle of polarization   [18] but up to the ambiguity as: 

                        (3.54) 

This work presented a method for removing the ambiguity in   [45]. Knowing   and  , 

shape recovery can be done. This will be discussed in detail in chapter 5.
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Figure 4.1. ATRV2. 

 

CHAPTER 4  

EQUIPMENT 

This chapter discusses the equipment involved in the proposed research. The 

equipment used contains mainly two robotic vehicles (ATRV2 and ATRVmini), a 

polarization camera (SALSA), and a thermal camera (FLIR SC655). 

4.1. ATRV2 

 

 

 

 

 

 

 

The ATRV2 shown in Figure 4.1 is a Linux based robotic vehicle platform 

equipped with a stereo pair of cameras and pan-tilt units which can be used for object 

detection and depth estimation. The ATRV2 is equipped with other depth estimation 

devices such as a LADAR and a Kinect which could enhance the shape recovery if based 

only on stereo vision. In addition to the depth estimation devices, the ATRV2 is equipped 
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also with an electronic compass and a crossbow IMU400CC-200 modules 

(accelerometers and gyroscopes) that give estimates for the yaw, pitch and roll of the 

robotic vehicle which can be used to compensate for any errors arising from the system. 

Furthermore, the ATRV2 is equipped with a wireless communications system that 

enables it to communicate with other robotic platforms. The drivers and interfaces to all 

modules of the ATRV2 were written in c/c++ making it easy to be integrated with 

available robotic development packages. The software and the hardware of the ATRV2 

were upgraded during this work. The features and upgraded status of the ATRV2 will be 

discussed briefly below. 

4.1.1. Features 

• 4-Wheel drive (4 motors) 

• 1.5 m/sec 

• Skid steering 

• Climbs hills up to 35 degrees 

• Payload: 220 lbs. 

• 4-6 hour battery 

• 12 sonar sensors 

• Laser range detector (LADAR) 

• Two 2.4 GHz Quad core Pc’s 

• GPS 

• Stereo imaging 

• Wireless Ethernet enabled 

• 4 emergency stop buttons 
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4.1.2. Internal Structure 

Figure 4.2 is a top-view block diagram for the ATRV2 when the upper cover is 

open. The figure shows that the ATRV contains two Pcs; alaa PC, and chuck PC. Most of 

the upgrade was done on those PCs. The upgrade involves the hardware and the software.   

4.1.2.1. Hardware Configuration for alaa PC 

 The mainboard is a BIOSTAR TA890GXE. 

 8 GB (4x2GB modules) of DDR3 1333MHz CORSAIR memory are installed. 

 The CPU is an AMD Athlon X4 610e with 2.4 GHz True Quad-Core design and 

2.0 MB total cache. 

 A 640 GB Western Digital Hard Drive is installed. The drive is SATA/64 MB 

cache. 

 A serial RJ-12 card is installed in PCI A slot. This card provides 8 ports of 

numbers ttyR0-ttyR7 (up to down). 

Figure 4.2. Top-view schematic diagram for the ATRV2 when the upper cover is open. 
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 Another RJ-12 card is installed in PCI B slot. This card provides 8 ports of 

numbers ttyR8-ttyR15 (up to down). 

 A SICK LMS200 laser module is connected to port ttyR8 

 A PTU-D46 Pan-Tilt controller module is connected to port ttyR9. This module 

was made by Directed Perception. It serves the ATRV2 left camera. 

 Another PTU-D46 Pan-Tilt controller module is connected to port ttyR10. It 

serves the ATRV2 right camera. 

 A G12 GPS OEM board is connected to port ttyR11. (Now GPS port A connected 

to ttyR6 and port B to ttyR7) 

 A Crossbow IMU400CC-200 module is connected to port ttyR12. 

 A doubletalk module is connected to port ttyR13. 

 An electronic compass is connected to port ttyR14. 

 The ATRV2 rflex is connected to port ttyR15. 

4.1.2.2. Hardware Configuration for chuck PC 

 The mainboard is a BIOSTAR TA890GXE. 

 8 GB (4x2GB modules) of DDR3 1333MHz CORSAIR memory are installed. 

 The CPU is an AMD Athlon X4 610e with 2.4 GHz True Quad-Core design and 

2.0 MB total cache. 

 A 640 GB Western Digital Hard Drive is installed. The drive is SATA/64 MB 

cache. 

 A Bt878 video capture card is installed in PCI A slot. This card is made by 

Brooktree Corporation. 

 Another Bt878 video capture card is installed in PCI B slot.  
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 A SONY XC-555 CCD color video camera module is connected to terminal B of 

the Bt878 video capture card installed in PCI A slot. 

 Another SONY XC-555 CCD color video camera module is connected to 

terminal B of the Bt878 video capture card installed in PCI B slot. 

4.1.2.3. Software Configuration for alaa PC 

The packages installed on alaa PC are: 

 Mandriva 2010.2 64 bits as the operating system. 

 Player 3.0.1 

 Stage 3.2.2 

 Opencv 2.3.0 [74] 

4.1.2.4. Software Configuration for chuck PC 

The packages installed on chuck PC are: 

 Mandriva 2010.2 64 bits as the operating system. 

 Player 3.0.1 

 Stage 3.2.2 

 Opencv 2.3.0 

4.2. ATRVmini 

The ATRVmini shown in Figure 4.3 is a Linux based robotic vehicle platform 

equipped with a camera and a zoom-pan-tilt unit which can be used for object detection. 

The ATRVmini is equipped also with an electronic compass and a crossbow IMU400CC-

200 modules (accelerometers and gyroscopes) that give estimates for the yaw, pitch and 

roll of the robotic vehicle which can be used to compensate for any errors arising from 
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the system. Furthermore, the ATRVmini is equipped with a wireless communications 

system that enables it to communicate with other robotic platforms. The drivers and 

interfaces to all modules of the ATRVmini were written in c/c++ making it easy to be 

integrated with available robotic development packages. The software and the hardware 

of the ATRVmini was upgraded at the CVIP laboratory. The features and upgraded status 

of the ATRVmini will be discussed briefly below. 

4.2.1. Features 

• 4-Wheel drive (4 motors) 

• 1.5 m/sec 

• Skid steering 

• 3-6 hour battery 

• 16 sonar sensors 

• Laser range detector 

• Quad-core 1.6 GHz processor 

Figure 4.3. ATRVmini. 
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• Wireless Ethernet enabled 

• Pan/ Tilt/ Zoom unit 

• 2 emergency stop buttons 

• USB speakers 

4.2.2. Software Configuration for ATRVmini PC 

The packages installed on ATRVmini PC are: 

 Mandriva 2010.2 64 bits as the operating system. 

 Player 3.0.1 

 Stage 3.2.2 

 Opencv 2.3.0 

4.3. SALSA polarization camera 

The primary physical quantities associated with light when dealt with classically 

as an electromagnetic wave are the intensity, wavelength, coherence, and polarization. 

Conventional panchromatic cameras measure the intensity of optical radiation over some 

wave band of interest. Spectral imagers measure the intensity in a number of wave bands, 

which can range from one or two (three is common for a color camera) through 

multispectral systems that measure of the order of 10 spectral channels to hyperspectral 

systems that may measure 300 spectral channels or more. Spectral sensors tend to give 

information about the distribution of material components in a scene. Polarimetry seeks 

to measure information about the vector nature of the optical field across a scene. While 

the spectral information can explain materials, polarization information can explain 

surface features, shape, shading, and roughness. Polarization tends to provide information 



61 

 

that is largely uncorrelated with spectral and intensity images, and thus has the potential 

to enhance many fields of optical metrology. The elementary definitions and equations 

for polarization imaging can be found in [34]. [34] also discusses different types of 

polarimeters (1D, 2D, 3D, Full-Stokes, and active imaging polarimeters). [34] also 

compares different architectures for imaging polarimeters (Rotating element, Division of 

amplitude, Division of aperture, and Division of focal plane).  To get a 3D linear Stokes 

imaging polarimeter, a motorized rotating linear polarizer can be mounted in front of a 

CCD camera that captures four images with the polarizer oriented at -45º, 0º, 45º and 90º 

measured from a given reference angle. Combining these four images gives the 

polarization image provided that these images are temporally and spatially registered. 

Sometimes, the movement of the linear polarizer can cause the images to be unregistered.     

Bossa Nova Tech [75] used a liquid crystal modulator in their SALSA linear 

Stokes (3D) polarization camera (Figure 4.4) to rotate the polarization direction instead 

of using a rotating polarizer. This makes the captured four images spatially registered. 

Figure 4.4. Salsa polarization camera. 
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Later on it developed full-Stokes polarization camera that is capable of giving 

information about the circular polarization aspect. However in the experiments done 

throughout this work, its  SALSA linear Stokes polarization camera was used. The 

SALSA camera has the following specifications [75]: 

 Video format: Digital IEEE-1394, 12 bits monochrome, 782 582 pixels. 

 Acquisition interface: IEEE-1394. 

 Synchronization interface: USB. 

 Camera size:            . 

 Lenses: Standard Nikon F mount lenses. 

 Frame rate at maximum resolution and 12 bits mode: 8.75 polarization image/sec. 

 Frame rate at 320 240  resolution and 12 bits mode: 28 polarization image/sec. 

 Spectral range: 520-550 nm. 

4.4. FLIR LWIR SC655 thermal camera 

The concept of thermal imaging arose from studying the phenomenon of 

Blackbody radiation [22]. As discussed before, a blackbody at a temperature   above 0 K 

continuously absorbs and then diffusely reemits photons (light quanta) of all possible 

wavelengths   (  ranges from 0 to ∞). It was found that the number of photons emitted 

per unit wavelength at a certain wavelength is dependent on  . This is clear in Planck’s 

law which gives the radiation spectral intensity of a blackbody at temperature [23]. And 

from Wien displacement law [24], the dominant emitted wavelength is in the visible light 

range for an extremely high temperature body (thousands of kelvins). As the body 
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temperature gets lower, the dominant wavelength moves towards the infrared regions 

(NIR, SWIR, MWIR, LWIR).   

For a non-blackbody, beside the phenomenon of temperature based emission of 

photons, there is also reflection of photons incident from an external visible light source. 

Since the emitted photons carry information about the body temperature, succeeding in 

separating that portion of photons from the reflected portion gives the temperature of the 

body. Fortunately, at low temperature (few hundreds of kelvins), the dominant 

wavelength of the emitted photons lies in the infrared region, thus they are band 

separated from the reflected visible photons. Based on this, thermal infrared cameras can 

give the temperature of a body. 

In this work, an SC655 LWIR thermal camera developed by FLIR [76] will be 

used. The FLIR LWIR SC655 thermal camera is shown in Figure 4.5 and has the 

following specifications [76]: 

 Resolution: 640 480 pixels. 

 Frame rate: Up to 200 frame/sec. 

Figure 4.5. FLIR SC655 thermal camera. 

 



64 

 

 Spectral range: 7.5-14.0  m. 

 Dynamic range: 14 bit 

 Temperature range: -20°C to 150°C 

 Acquisition interface: Gigabit Ethernet and USB. 

 Thermal sensitivity: 50 mK. 

 Lens: 41.3 mm focal lens 
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CHAPTER 5  

UNAMBIGUOUS SHAPE FROM POLARIZATION AND SHADING 

Polarization imaging can give information about surface shape. It has been used 

for shape recovery, but with convex/concave reconstruction ambiguity. In this chapter, a 

direct method utilizing shading and polarization for shape recovery without the need for 

nonlinear optimization routines is presented. The proposed method utilizes 

simultaneously polarization and shading to find the surface normal, thus eliminating the 

reconstruction ambiguity. The albedo of the surface is also estimated in an EM-like 

fashion. Several experiments on synthetic and real datasets are reported to evaluate the 

proposed method. The method consistently outperforms a well-known method based on 

polarization information alone. 

5.1. Introduction 

Light plays an important role in the process of image formation, as an image is 

formed when light is reflected from an object in space into an image sensor. In the 

process of image formation, the object 3D shape is converted into 2D information. The 

3D shape information of the object is carried by the light wave propagating from the 

object to the image sensor, and hence the properties associated with the light to recover 

the 3D shape of the object can be exploited after the process of image formation. From 

the prospective of wave propagation, light is an electromagnetic wave that is 

characterized by several properties among which are intensity, spectrum, and 
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polarization. The intensity is a measure of the magnitude of the oscillating electric field 

associated with the light, the spectrum is the frequency range over which the electric field 

oscillates, and the polarization is a measure of the direction at which the electric field 

oscillates in space. Recently, the intensity, spectrum, and polarization properties are 

being used to develop polarization cameras that are capable not only of measuring the 

spectrum and magnitude of the electric field associated with the light, but also its 

direction in space. While the intensity and the spectrum can give information about the 

materials, polarization can give information about surface shape, conductivity, refractive 

indices, and roughness [34]. Polarization imaging has been used for many applications in 

machine vision [ 35], remote sensing [34], biomedical imaging  [36] and industrial 

control  [37].  

Of concern in this chapter are reported methods for shape recovery based on 

polarization. Polarization imaging for shape recovery of textureless specular surfaces was 

proposed in [39]. It was also used to determine the shape for a transparent object [40]. 

Atkinson and Hancock [18] exploited polarization by surface reflection, using images of 

smooth objects, to recover surface normals and, hence, height. They focused on dielectric 

surfaces which diffusely polarize light transmitted from the dielectric body into the air. 

They modeled the diffuse polarization of the reflection process using a transmitted 

radiance sinusoid curve and the Fresnel transmission theory. Degree of diffuse 

polarization was used to estimate the zenith of the surface normals. The azimuth was 

estimated using the phase of diffuse polarization but up to the ambiguity. Disambiguation 

was done using zenith angle ranking. The same authors [41] used diffuse polarization in 

conjunction with shading from two views to estimate the shape. The surface normals 
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were calculated from diffuse polarization for each view independently. The results were 

fed into a shading algorithm to be enhanced. In [42], the authors used multi-spectral 

polarization images from a single view to get a robust estimate for the surface normal 

azimuth in the presence of noise.  Along the same line, a method for simultaneous 

estimation of surface orientation and index of refraction from the spectral variation of the 

phase of polarization was proposed in [43].  

The observation underpinning this chapter is that shading information provides 

one equation on the surface normal (equivalent to two unknowns) at each image pixel. 

Thus in total, there are twice as many unknowns as the number of equations. However 

polarization information can double the set of available equations without increasing the 

number of unknowns, thus rendering the shape recovery problem from both polarization 

and shading well-posed.   

In this chapter, a method utilizing the two sources of information, shading and 

polarization, is proposed for shape recovery. A few methods in literature [41, 42] share 

the same objective with the proposed method. However the proposed method is novel in 

several aspects. First, the proposed method relies on one view and one spectral imaging 

band, while other methods make use of multiple spectrum bands [42, 43]. As such, the 

proposed method is considered simpler and needs less expensive imaging setup. Second, 

the proposed method utilizes simultaneously polarization and shading to find the surface 

normal, while earlier method [42] uses separately polarization information to estimate the 

azimuth angle of the normal, and shading to find the zenith angle. However relying only 

on polarization [18, 42, 43] to obtain the azimuth angle results in an ambiguity in the 

estimation. To disambiguate the azimuth angle, earlier methods either assumed always 
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convexity on the surface under observation [42, 43] or resorted to a zenith angle ranking 

procedure [18] which often work only on simple cases. The proposed method solves this 

ambiguity by making use of the complementary shading and polarization information to 

estimate the azimuth angle. It is well-know also that traditional shape from shading (SFS) 

suffers from a convex/concave ambiguity [17, 44], which was shown to be resolved if the 

attenuation of the illumination due to distance is taken into consideration [46].  Due to the 

use of polarization information as well, the proposed method can resolve the 

convex/concave ambiguity of the shading component without having to complicate the 

illumination model. Thus the method is shown to successfully recover the shape of 

convex and concave surfaces using the simpler classical assumption of a single distant 

light source. Moreover, the proposed method uses fast and direct computation without the 

need for nonlinear optimization, which may lead to a local minimum unless a good 

initialization is provided. 

Another important characteristic of the proposed method is that the albedo of the 

surface is also estimated within the same framework. Once the surface normal are 

estimated from the polarization and shading information using an initial estimate [77] of 

the surface albedo, a better least-mean-square estimate for the albedo is readily found. 

The new revised albedo estimate is then used to compute the surface normals. This 

process may be iterated until stability is reached. Viewed in this way the proposed 

algorithm has a feature reminiscent of the EM algorithm. The surface normals may be 

regarded as hidden or missing data that must be recovered from the observed image 

brightness and polarization. In the expectation-step, the surface albedo is computed. The 
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maximization step is concerned with finding the revised surface normal directions that 

minimize the image brightness and polarization error. 

The rest of this chapter is organized as follows. Section 5.2 derives the surface 

normals from the image shading and polarization information. Section 5.3 explains how 

the surface albedo is estimated within a complete algorithm for shape recovery with 

Albedo estimation. Several experimental results on synthetic and real data are reported in 

Section 5.4. 

5.2. Surface Normal from Polarization and Shading 

In this section, information from both polarization and shading is used for a direct 

method to estimate surface normals. This is motivated by the following observation.  For 

an NxN image, there are 2N
2
 unknowns (account for two angles of the surface normal per 

pixel). Shading information provides N
2
 equations, which makes shape recovery from 

only shading information ill-posed. However, polarization can provide additional N
2
 

equations, which increases the total number of available equations to 2N
2
 (enough to 

solve for all unknowns).  

In the setting for this problem, a polarization imaging camera that is composed 

from an intensity CCD camera with a linear polarizer mounted in front of it is considered. 

For a given pixel at any polarizer orientation    measured with respect to a given 

reference, the intensity of the reflected light reaching the camera sensor    
 follows the 

transmitted radiance sinusoid given by [18, 42] 

   
 

         

 
 

         

 
   (      ),   (5.1) 
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where      and      are the maximum and minimum intensities of the light reaching the 

camera sensor while rotating the polarizer in front of the CCD camera, respectively, with 

  being the azimuth angle of the normal to the surface of the object reflecting light onto 

the camera. Assuming diffuse reflection where the light penetrates the object and is 

refracted at the object-air interface back towards the camera, a polarization image can be 

formed of three components, the intensity I, the degree of diffuse polarization  , and the 

angle of polarization  , all of which can be found in terms of    
at    equal to 0

o
, 45

o
, 

and 90
o
  using the following equations [18]:  

  

{
 
 

 
           (

           

      
)                                      

        (
           

      
)                              

        (
           

      
)                                   

        (5.2) 

I=I0 + I90 .       (5.3) 
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The degree of diffuse polarization   was found [18] in terms of the zenith of the 

surface normal and the refractive index    of the object material as:  

                 
(   
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)
 

           √  
       

       (5.5) 

where   is the zenith angle of the object surface normal. The refractive index falls 

between 1.3 and 1.6 for most dielectrics, and its exact value is not a critical requirement 

for shape recovery [18]. However its exact value for a specific material can be found 

from some available lookup tables or measured experimentally [18]. 



71 

 

Knowing I0, I45, and I90, the degree of diffuse polarization   can be calculated. 

And from (5.5), since the relationship between the degree of diffuse polarization and the 

surface normal zenith is one to one, the surface normal zenith   can be directly estimated.  

For the surface normal azimuth  , it can be estimated from the angle of polarization   

[18] 

                        (5.6) 

However this introduces ambiguity in the estimation. To resolve this, the information in 

the shading component is used. The model used for forming the image I is assumed to be 

the Lambertian model as Lambertian surfaces have diffuse reflectance only. Moreover, 

the orthographic projection is also considered. According to these common assumptions, 

the image intensity at any point is given by:  

      ,         (5.7) 

where   is the surface albedo, N is the surface normal, and L is the light source direction. 

The surface normal can be written in terms of the surface zenith angle   and azimuth 

angle   as N=[         ,          ,     ]
T
, while the light source direction is written as 

L=[  ,   ,   ]
T
. Substituting into (5.7) gives  

                                   .   (5.8) 

Assuming that the light source direction is known, there is some known estimate 

for the surface albedo  , and if   is obtained from (5.5), then the last equation becomes 

having only one unknown, the azimuth angle  . Equation (5.8) can be written in the form 

               ,        (5.9) 
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where           ,                         Solving (5.9) gives two possible 

solutions,    and     

           
    √        

      .    (5.10) 

 This equation has real solutions only when         . 

Thus there are two candidates for   from the shading information, Equation 

(5.10), and two candidates provided by the phase of polarization, Equation (5.6). These 

multiple possible solutions give rise to the ambiguity found in previous approaches [18, 

42, 43] in recovering the surface normals.  In order to resolve this ambiguity, the two 

sources of information are exploited. The common solution, or the best approximation 

solution for (5.6) and (5.10), is sought as follows. Define the sets    {     }  and 

   {        }. Let    denotes either of those groups.  Define the distance of a 

number   to the set     as                    
|     | where     is the j-th 

member of    and    is the set size. Hence, the problem can be formulated as finding 

the real number   which minimizes  

∑         ∑            
|     |

 
   

 
   .     (5.11) 

To solve this problem, a simple practical solution [78] is adopted. The function 

        is piecewise linear and changes its shape only at    and             . Thus to 

find the global minimum of the sum ∑         
   , it is sufficient to evaluate it at all 

    and              and to pick out   at which the minimum value occurs. Thus by 

using this approach, the best estimate of the azimuth angle   can be found without 

iterative numerical methods. 
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Another important component in the proposed method is imposing smoothness 

prior on the recovered surface normal. Indexing the surface normals according to their 

pixel locations, suppose that      {      |          } is the set of surface normals in 

the neighborhood      of the pixel      . To ensure the smoothness of the recovered 

surface, the normal at each pixel is set to the average normal over the neighborhood. That 

is, 

 ̂      
 

|    |
∑                 

     (5.12) 

Instead of using the averaging operation to impose smoothness, one can also use 

the median of the normals over the neighborhood      of the pixel. 

Having estimated the zenith and the azimuth of the surface normal for all points, 

the surface shape can be obtained using the shapelets algorithm [79]. 

5.3. Complete Shape Recovery Algorithm 

The previous section assumed that there is a known estimate of the surface 

albedo. This is important to make use of Equation (5.8). In this section, an iterative EM-

like algorithm is introduced to generalize the method described in Section 5.2 to be used 

in case of unknown albedo. Initially, a rough estimate for the albedo   can be found using 

[77, 80] 

   
√                

 
,    (5.13) 

where     is the average of the given image intensity. The initial estimate of the 

albedo   is then fed into the method described in Section 5.2 to find an estimate of the 
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zenith angle   and azimuth angle   of the surface normal at each point. Then the surface 

normals are subject to the smoothing step (5.12). Since the initial albedo estimate is often 

not very accurate, the recovered surface normals will not be precise either. However from 

the obtained normals, one can seek a better estimate of the surface albedo that minimize 

the image brightness error 

               ̂         ∑               .    (5.14) 

The solution can be obtained by setting the derivative of (5.14) with respect to   

to zero, yielding  

      ̂  
∑            

∑           
.      (5.15) 

This new revised albedo estimate is then used to compute the surface normals as 

described in Section 2. This process may be iterated until no further significant change in 

the estimated albedo or the surface normal is attained. In the experimentations, 

convergence is typically reached in a few (2-6) iterations. Viewed in this way, this 

procedure proceeds in an EM algorithm fashion. The surface normals may be regarded as 

hidden or missing data that must be recovered from the observed image brightness and 

polarization. In the expectation-step, the surface albedo is computed. The maximization 

step is concerned with finding the revised surface normal directions that minimize the 

shading and polarization error. From the final found surface normals, the surface shape 

using the shapelets algorithm [79]. Algorithm 5.1 summaries the complete shape 

recovery algorithm from shading and polarization information. 

It is important to stress that the method assumes that the light source direction is 

known. This can be realized during the data acquisition procedure. Alternatively, 
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Input: Intensity image I, degree of diffuse polarization  , the angle of 

polarization   , and light source direction L. 

1. Find an initial estimate for the albedo   using (5.13). 

2. Repeat 
 

2.1 Find the surface normals at each point as described in Section 5.2. 

2.2 Smooth the obtained surface normals using (5.12). 

2.3 Revise the albedo estimate using (5.15) 

 

Until almost no change in the albedo estimate and the surface normals 

3. Find the surface shape using the shapelets algorithm [79]. 

 

especially when working with already-captured datasets, it can be estimated using one of 

the well-documented methods for determining it automatically [77, 81, 82]. 

Algorithm 5.1: A Complete Algorithm for Shape Recovery with Albedo 

Estimation 

 

 

 

 

 

 

 

 

5.4. Experimental Results 

The performance of the proposed method is evaluated using simulations and real 

data. The former is used to assess the method accuracy versus various noise levels and for 

comparison with other methods. The real data experiments are used to demonstrate the 

method practical utility. The proposed approach is compared with the method of 

Atkinson and Hancock [18] which relies on polarization information. Other approaches 

that use both polarization and shading [41, 42] or other related methods [43] use multiple 
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spectrum bands [41, 42] or multiple views  [43] are thus not compared with as the 

proposed approach uses only one spectrum band and one view.  

5.4.1. Simulations 

This section begins by showing the results for applying the proposed method on a 

synthetically generated polarization image for a vase. The 3D height Z of the vase is 

generated using the equation [83]   

       √         ,     (5.16) 

where                                  ,                       

  

From the height map, the polarization images are generated. Then the images are 

corrupted with zero-mean Gaussian noise with varying standard deviation σ from 0 to 10 

in steps of 1. Figure 5.1(a-c) shows the synthetically generated vase images (intensity, 

phase of polarization, and degree of diffuse polarization,) at noise standard deviation σ 

=0. Figure 5.1(d) shows the ground truth 3D surface. At noise standard deviation σ =0, a 

very good reconstructed surface using the proposed method is shown in Figure 5.1(e) 

while the surface reconstructed using Atkinson and Hancock [18] is shown in Figure 

5.1(f). At noise standard deviation σ =5, the generated polarization image components are 

shown in Figure 5.2(a-c). The reconstructed surface using the proposed method is shown 

in Figure 5.2(d) while the surface reconstructed using Atkinson and Hancock [18] is 

shown in Figure 5.2(e). It is clear that the proposed method is closer to the true surface 

shape than Atkinson and Hancock [18], where their method suffers due to noise. 
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The evolution of the albedo estimate versus number of iterations of the solution 

using the proposed method is shown for noise standard deviation σ =0 in Figure 5.3(a), 

and for noise standard deviation σ =5 in Figure 5.3(b). At noise standard deviation σ =0, 

the albedo estimator converges to the ground truth value after 2 iterations while it 

converges closer to the ground truth value after 3 iterations at noise standard deviation σ 

=5. The evolution curves of the average root mean square error (RMSE) of the estimated 

azimuth angle, and the estimated zenith angle versus number of iterations at noise 

standard deviation σ =0  are shown in Figure 5.3(c-d), and at noise standard deviation σ 

=5 are shown in Figure 5.3(e-f). It is clear that after two iterations, the average RMSE 

reaches a steady state value that is much lower than the initial state.  

Figure 5.4 compares the accuracy of the proposed method to Atkinson and 

Hancock method [18] quantitatively by evaluating the average RMSE in the estimated 

azimuth and zenith angles for each method versus noise. It is clear that the proposed 

method gives significantly lower error than [18]. For example at noise standard deviation  

σ=7, the average RMSE in the estimated azimuth for the proposed method was 0.6073 

while for [18] was 1.143. Also the average RMSE in the estimated zenith for the 

proposed method was 0.1021 while for [18] was 0.1282. From the values in Figure 5.4, it 

is clear that the zenith angles are recovered more accurately than the azimuth angles. 

Figure 5.5(a-c) shows the synthetically generated images of a volcano (intensity, 

phase of polarization, and degree of diffuse polarization,) at noise standard deviation σ 

=0. Figure 5.5(d) shows the ground truth 3D surface. This surface is used because it 

includes convex and concave parts. At noise standard deviation σ =0, the reconstructed 

surface using the proposed method is shown in Figure 5.5(e) while the surface 



78 

 

              (a)                                          (b)                                           (c) 

        (d)                                           (e)                                       (f) 

              (d)                                                       (e) 

      (a)                                         (b)                                          (c) 

reconstructed using Atkinson and Hancock [18] is shown in Figure 5.5(f). At noise 

standard deviation σ =10, the generated polarization image components are shown in 

Figure 5.6(a-c). The reconstructed surface using the proposed method is shown in Figure 

5.6(d) while the surface reconstructed using Atkinson and Hancock [18] is shown in 

Figure 5.6(e).  

 

Figure 5.1. Vase Experiment at noise σ = 0: (a) Intensity, (b) Angle of polarization, (c) Degree of 

polarization, (d) Ground truth surface, (e) Reconstructed surface using proposed method. (f) 

Reconstructed surface using Atkinson and Hancock [18] method. 

 

 

 

 

 

 

Figure 5.2. Vase Experiment at noise σ = 5: (a) Intensity, (b) Angle of polarization, (c) Degree of 

polarization, (d) Reconstructed surface using proposed method. (e) Reconstructed surface using 

Atkinson and Hancock [18] method. 
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It is clear that the proposed method is more accurate than that of Atkinson and 

Hancock [18]. Although the curvature of the volcano surface changes between concavity 

and convexity, the proposed method succeeded to well discriminate between the concave 

and convex regions. In contrast, the method in [18] has troubles to resolve this ambiguity. 

For the volcano surface, Figure 5.7 compares the accuracy of the proposed 

method to Atkinson and Hancock method [18] quantitatively by evaluating the average 

RMSE in the estimated azimuth and zenith angles for each method versus noise. It is 

clear that the proposed method gives lower error than [18]. For example at noise standard 

deviation σ=5, the average RMSE in the estimated azimuth for the proposed method was 

0.3792 while for [18] was 1.312. Also the average RMSE in the estimated zenith for the 

proposed method was 0.04482 while for [18] was 0.05365. 

The evolution of the albedo estimate versus number of iterations of the solution 

using the proposed method is shown for noise standard deviation σ =0 in Figure 5.8(a) 

and noise standard deviation σ =10 in Figure 5.8(b). At noise standard deviation σ =0, the 

albedo estimator converges to the ground truth value after 4 iterations while it converges 

to a value not far away from the ground truth value after 5 iterations at noise standard 

deviation σ =10.  

The evolution curves of the average root mean square error (RMSE) of the 

estimated azimuth angle, and the estimated zenith angle versus number of iterations at 

noise standard deviation σ =0  are shown in Figure 5.8(c-d), and at noise standard 

deviation σ =10 are shown in Figure 5.8(e-f). It is clear that after 4 iterations, the average 

RMSE reaches a steady state value that is much lower than initial state.  
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Figure 5.3. Vase Experiment: (a) Albedo reaches steady state after 2 iterations at noise σ=0, (b) 

Albedo reaches steady state after 3 iterations at noise σ =5, (c) Average RMSE for the estimated 

azimuth vs. number of iterations at noise σ=0 , (d) Average RMSE for the estimated zenith vs. 

number of iterations at noise σ=0, (e) Average RMSE for the estimated azimuth vs. number of 

iterations at noise σ=5 , (f) Average RMSE for the estimated zenith vs. number of iterations at noise 

σ=5. 
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Figure 5.4. Evaluation curves for Vase Experiment: (a) Comparing the azimuth average RMSE of 

proposed method and Atkinson and Hancock vs. noise σ [18] method, (b) Comparing the zenith 

average RMSE of proposed method and Atkinson and Hancock vs. noise σ [18] method. 

 

 

 

 

 

 

 

 

Figure 5.5. Volcano Experiment at noise σ = 0: (a) Intensity, (b) Angle of polarization, (c) Degree of 

polarization, (d) Ground truth surface, (e) Reconstructed surface using proposed method. (f) 

Reconstructed surface using Atkinson and Hancock [18] method. 

 

Proposed Proposed 
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Figure 5.6. Volcano Experiment at noise σ = 10: (a) Intensity, (b) Angle of polarization, (c) Degree of 

polarization, (d) Reconstructed surface using proposed method. (e) Reconstructed surface using 

Atkinson and Hancock [18] method. 

 

Figure 5.7. Evaluation curves for Volcano Experiment: (a) Comparing the azimuth average RMSE of 

proposed method and Atkinson and Hancock [18] method vs. noise σ, (b) Comparing the zenith 

average RMSE of proposed method and Atkinson and Hancock [18] method vs. noise σ. 
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Figure 5.8. Volcano Experiment: (a) Albedo reaches steady state after 4 iterations at noise σ=0, (b) 

Albedo reaches steady state after 5 iterations at noise σ =10, (c) Average RMSE for the estimated 

azimuth vs. number of iterations at noise σ=0 , (d) Average RMSE for the estimated zenith vs. 

number of iterations at noise σ=0, (e) Average RMSE for the estimated azimuth vs number of 

iterations at noise σ=10 , (f) Average RMSE for the estimated zenith vs. number of iterations at noise 

σ=10. 
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Figure 5.9.  Convex hemisphere Experiment at noise σ = 0: (a) Intensity, (b) Angle of polarization, (c) 

Degree of polarization, (d) Ground truth surface, (e) Reconstructed surface using proposed method. 

(f) Reconstructed surface using Atkinson and Hancock [18] method. 

 

Figure 5.10. Convex hemisphere Experiment at noise σ = 5: (a) Intensity, (b) Angle of polarization, 

(c) Degree of polarization, (d) Reconstructed surface using proposed method. (e) Reconstructed 

surface using Atkinson and Hancock [18] method. 

(c) (b) (a) 

(d) (e) (f) 
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Figure 5.11. Concave hemisphere Experiment at noise σ = 0: (a) Intensity, (b) Angle of polarization, 

(c) Degree of polarization, (d) Ground truth surface, (e) Reconstructed surface using proposed 

method. (f) Reconstructed surface using Atkinson and Hancock [18] method. 

  

 

 

 

 

 

 

 

Figure 5.12. Concave hemisphere Experiment at noise σ = 5: (a) Intensity, (b) Angle of polarization, 

(c) Degree of polarization, (d) Reconstructed surface using proposed method. (e) Reconstructed 

surface using Atkinson and Hancock [18] method. 

(a) (b) (c) 

(d) (e) (f) 

(c) (a) (b) 
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Figure 5.13. Mountains Experiment at noise σ = 0: (a) Intensity, (b) Angle of polarization, (c) Degree 

of polarization, (d) Ground truth surface, (e) Reconstructed surface using proposed method. (f) 

Reconstructed surface using Atkinson and Hancock [18] method. 

 

Figure 5.14. Mountainss Experiment at noise σ = 5: (a) Intensity, (b) Angle of polarization, (c) Degree 

of polarization, (d) Reconstructed surface using proposed method. (e) Reconstructed surface using 

Atkinson and Hancock [18] method. 
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Figure 5.9 through Figure 5.14 illustrates the proposed approach for three more 

synthetic surfaces; a convex hemisphere, a concave hemisphere and synthetic mountains. 

5.4.2. Real Data 

The proposed method was applied on a polarization image taken for a face mask 

made of plastic using the SALSA polarization camera under short term loan agreement.  

The polarization image and the reconstructed surface using the proposed method 

for the face mask are shown in Figure 5.15.  The reconstructed surface is fairly good. It is 

not perfect though since some of the image parts contain specular reflection which 

violates the model of diffuse polarization that is used in this chapter. However, the 

polarized component of the polarization image can be used to segment parts with 

specularity as specular reflection highly polarize light which opposes diffuse reflection 

that is low polarized.  

 

 

Figure 5.15. Plastic face mask experiment: (a) Intensity, (b) Phase of polarization, (c) Degree of 

diffuse polarization, (d) Reconstructed surface using the proposed method, (e) Reconstructed surface 

using Atkinson and Hancock [18] method.

  (a)                                        (b)                                     (c) 

 (d) (e) 
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CHAPTER 6  

AUTOMATIC ANNOTATION FOR THERMAL IMAGING 

PEDESTRIAN DATASETS FOR NIGHT DRIVING ASSISTANCE 

Pedestrian detection is an important concern in the design of driving assistance 

systems that can reduce accidents and save lives. Annotated pedestrian datasets are 

essential for training a classifier that can be used for pedestrian detection. Many 

annotated visible pedestrian datasets are publically available. Similar annotated thermal 

datasets which are essential for training night pedestrian detectors are rare. Since manual 

annotation for large datasets is time consuming, in this chapter an automatic alternative 

for constructing an annotated thermal imaging pedestrian dataset is proposed [85]. This is 

done by transferring detections from registered visible images simultaneously captured at 

day-time where pedestrian detection is well developed in visible images. Histogram of 

Oriented Gradients (HOG) features are extracted from the constructed dataset and then 

fed to a discriminatively trained deformable part based classifier. The resulting classifier 

was tested for night driving assistance and succeeded to detect pedestrians even in the 

situations where visible imaging pedestrian detectors failed because of low light or glare 

of oncoming traffic. 

6.1. Introduction 

Visible images have been used successfully for pedestrian detection during day-

time, but during night-time it suffers from the low light of night scenes and the glare from 

headlights of the oncoming traffic. On the other hand, thermal images can solve these 
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Figure 6.1. An illustrative example of night problems. The upper sequence shows a pedestrian 

crossing the street using thermal images. The lower sequence shows the same scene using 

visible images where the pedestrian is very difficult to detect because of both the glare from the 

headlights of oncoming traffic and the low light of the night scene.     

night vision problems as illustrated in Figure 6.1. Although the literature contains many 

annotated visible pedestrian datasets, it lacks annotated thermal datasets which is a 

necessary but time consuming component for training a classifier. The proposed system 

captures simultaneous visible and thermal images then registers them so that day-time 

visible images can be used to automatically annotate the thermal images. The proposed 

approach used discriminatively trained deformable part models presented in [20] to detect 

pedestrians in the day-time visible images and then transferred the bounding boxes to the 

corresponding thermal images and constructed from that an annotated pedestrian thermal 

dataset. This dataset was used to train a discriminatively trained part based models 

classifier using HOG features [26]. For the discriminatively trained part based framework 

[20], an object detection system is achieved using mixtures of multi-scale deformable 

part models that are discriminatively trained using support vector machines (SVM) 

requiring only the knowledge of the box bounding the object in the image. The obtained 
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classifier is used to detect pedestrians in night thermal images when visible images fail. 

One advantage of this framework is that it makes use of the well-developed datasets of 

visible images to easily build similar thermal datasets. 

6.2. System Description 

This chapter proposes a driving assistance system that uses visible and thermal 

images to detect pedestrians in order to alert the driver in case of emergency. The system 

registers both visible and thermal images so that the pedestrian is approximately in the 

same location in both images. This allowed using detections from visible images taken 

during day-time to automatically annotate corresponding thermal images; which are then 

used to train a classifier for pedestrian detection on thermal images that can be used at 

night when visible detector is not reliable. This section describes how the two images are 

registered and then describes the HOG features extraction from the thermal images to 

train a discriminatively trained part based models classifier [20] that can detect 

pedestrians in thermal images.  

6.2.1. Registration of Visible and Thermal Images  

In the setup, the visible and thermal cameras are aligned horizontally and 

mounted on a vehicle close to each other as shown in Figure 6.2. The field of view of the 

visible camera is larger than the field of view of the thermal camera, which results in the 

scene of the thermal image being completely contained in the visible image. Spatial 

registration of the visible image (target) is needed in order to be aligned with the thermal 

image (reference). To do this rigid registration, similarity transformation which can 

include rotation, scaling and translation is used.  
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Figure 6.2. Setup used for data collection. A thermal camera and a visible camera are mounted 

on a vehicle as illustrated on the left part of the image. The right part of the image zooms on 

the cameras.  

(

b) 
(

c) 

To calculate the transformation, a calibration step is used. It needs to be done only 

once after the system is installed where two control points are manually selected in the 

visible image with the corresponding points being also selected in the thermal image as 

shown in Figure 6.3. After that, all the visible images are directly transformed using the 

computed transformation to be registered with the corresponding thermal images. This 

results in the pedestrians locations to be approximately the same in both images. 

6.2.2. Feature Extraction 

For the training stage of the thermal imaging classifier, the features are extracted 

using the Histogram of Oriented Gradients (HOG) presented by Dalal and Triggs [26] 

where the basic idea behind the HOG is that the object local appearance and shape can be 

described using the distribution of the local intensity gradients or edge directions without 

the need to precisely know the position of the corresponding gradient or edge. Positive 

and negative samples are automatically generated as described earlier and then resized to 

80x40 pixels. Each resized sample is then divided into non-overlapping cells of size 8x8  
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Figure 6.3. Registration of visible and thermal images: (a) Captured thermal image 

(reference). (b) Captured visible image (target). (c) Marking 2 control points manually in 

the thermal image. (d) Marking the corresponding points in the visible image. (e) and (f) 

illustrates the output of the registration process.   

     (a)                                     (b)             

           

(

b) 
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c) 

    (c)                                    (d)            
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Figure 6.4. HOG features extraction (a) 80x40 positive sample. (b) An iconic representation of 

HOG features of (a). (c) and (d) same as (b) and (a) but for a negative sample.  

 

(a) (b) (c) (d) 

pixels resulting in 10x5 cells. For each cell, the gradient orientation histograms are 

computed by quantizing each pixel into one of undirected bins according to the gradient 

magnitude. After that, neighborhood normalization is performed for each cell over 2x2 

cell blocks using four different normalization factors from the four blocks that contain the 

cell. These 4 histogram vectors are then concatenated to make a feature vector of 

dimension 36 per cell. For the case of 10x5 cells, the final feature vector length will be 

1800. The system used the VLFeat implementation of the HOG features which is written 

in C for efficiency [84]. These features were extracted from a dataset of positive and 

negative samples to train a discriminatively trained part based models classifier [20] as 

illustrated in Figure 6.4. In a test image, to detect pedestrians with different sizes HOG 

features are computed on sliding windows over a standard image pyramid. 
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 Figure 6.5. Automatic pedestrian annotation in thermal day-time image. (a) Pedestrian detection in 

visible images (b) Corresponding bounding boxes on thermal images (c) Cropped pedestrians from 

thermal images resized to 80x40 pixels to be used for training. 

(a) 

(

b) 
(

c) 

(c) (b) 

6.3. Experimental Results 

In the experiments, thermal images were captured by the FLIR LWIR thermal 

camera described in chapter 4. This thermal camera was mounted on a vehicle along with 

a visible camera that captures images at a resolution also of 640×480. Both the thermal 

and visible cameras are capable of capturing simultaneous frames that can be simply 

registered in the proposed approach.  

 

In order to obtain thermal data for training a classifier to be used for driving 

assistance at night, simultaneous thermal and visible images were captured while driving 

the vehicle during the day-time. A day-time visible image is clear enough to easily detect 

whether a pedestrian exists in the image or not. The obtained images were captured at 

different seasons of the year with different weather conditions to make the detector robust 



95 

 

at different weather conditions. The day-time visible and thermal images are spatially 

registered as described above. The visible images are fed into an off shelf visible 

pedestrian detector [20] in order to find the bounding boxes for the detected pedestrians. 

These bounding boxes are automatically applied to the registered thermal images as 

shown in Figure 6.5. The contents of these bounding boxes are considered the positive 

samples of the classifier where the negative samples were cropped from thermal images 

that do not contain pedestrians. In the experiments 1000 positive samples and 2000 

negative samples were used for training purpose. The obtained samples are then resized 

to 80x40 for which the HOG features are extracted. The computed HOG features are then 

fed to train discriminatively trained part based models classifier. The training was done 

for different postures. This is well handled using the discriminatively trained deformable 

part based framework. The obtained classifier is ready now to be used at night.  

It is worth mentioning that the pedestrian’s height appears smaller in the thermal 

images as its distance from the camera increases depending on the camera focal length. 

Using image pyramids handles detection at different distances. The FLIR thermal camera 

that was used has a focal length of 41.3 mm for which 1 m height at a distance of 10 m 

from the camera corresponds to about 240 pixels in the image.   

As mentioned previously, visible cameras can suffer from the low light of night 

scenes and the glare from headlights of the oncoming traffic. The visible camera can be 

saturated by an intensive light source which makes it difficult to extract information from 

it as shown in Figure 6.6(a) for instance. Although the information is messed up in the 

visible image, it is still clear in the thermal image that is captured at a different spectral 

band as shown in Figure 6.6(b) where the pedestrian existing in the image is correctly 
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Figure 6.6. Night problems of visible image due to headlight glare. (a) A pedestrian is completely 

hidden by the glare in the visible image. (b) Corresponding thermal image with the pedestrian 

detected correctly using the obtained system. 

(a) 

(

a) 

(b) 

detected. The human eye of the driver is similar in the spectral properties to a visible 

camera so it is likely that the driver sitting behind the wheel will face the same problem 

as the visible camera which might affect the safety of the pedestrians in case of not using 

a night vision driving assistance system. Sample results for the obtained thermal imaging 

pedestrian detector at different weather conditions are shown in Figure 6.7 where 

rectangular bounding boxes are drawn around the detected pedestrians. The first image 

row was captured in warm weather while the second row in hot weather. The third image 

row was captured during cold weather where the left image was captured during a snow 

event and the right image was captured after a rain event. It was noticed during the 

experiments that the performance of the detector increases as the temperature difference 

between the pedestrians and the background increases. 

 

 

 

 

 

 

 

In order to numerically evaluate the performance of the proposed automatic 

annotation method, the training is repeated but this time with manual annotation for the 

thermal images; hence the automatically annotated trained detector can be compared with 
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the manually annotated trained detector. When testing a detector, the input to the system 

is a group of images and the output is a set of bounding boxes with corresponding scores 

[20]. Scores can be thresholded at different values to plot the precision-recall curve where 

              
  

     
.      (6.1) 

                                      
  

     
       (6.2) 

where    is the number of true positives (correct detections),    is the number of false 

positives (unexpected detections), and    is the number of false negatives (missing 

detections). At a certain threshold, the precision represents the fraction of the bounding 

boxes that are correct detections while the recall  represents the fraction of the pedestrians 

in the image that are detected correctly.  

Throughout this work, a PASCAL measure has been used to determine the 

detection rates [33]. If there is an overlap between a detected bounding box and the 

ground truth bounding box and this overlap is more than 50%, this is considered a correct 

detection, otherwise it is a false positive detection. For a certain ground truth bounding 

box, if there are more than one overlapping detection bounding boxes, only one of them 

is counted. Figure 6.8 shows the precision-recall curves comparing the proposed 

automatic annotation method with the manual annotation method (used as a reference to 

compare with). Although the curve of the proposed method is lower than that of the 

manual annotation method by an average precision AP=0.988%, the results of both 

methods are very close which indicates that automatic annotation can almost achieve the 

performance of the manual annotation while being less time consuming. Moreover, the 

experiment was repeated using a Support Vector Machine (SVM) classifier with HOG 
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 Figure 6.7. Some results for the obtained thermal imaging pedestrian 

detector at different weather conditions. 

features in a manner similar to that used in [58] in order to compare the performance of 

SVM classifiers with discriminatively trained part based models classifiers. The 

precision-recall curve of the discriminatively trained part based approach is higher than 

that of the SVM approach by an average precision AP=3.8730% as shown in Figure 6.9. 

Thus the part based approach outperformed the SVM approach. 

A FLIR LWIR thermal camera has been mounted on the previously mentioned 

robotic vehicle; the ATRV2 as shown in Figure 6.10. The achieved night vision 

pedestrian detector was implemented on the ATRV2. Recall that the ATRV2 is a Linux 

based robotic vehicle platform equipped with cameras for night and two 2.4 GHz Quad 

core computers for processing. 
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 Figure 6.8. Precision-recall curves comparing automatic annotation 

(proposed work) with manual annotation (reference). 

0 0.2 0.4 0.6 0.8 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

c
is

io
n

 

 

Part based classifier

SVM classifier

Figure 6.9. Precision-recall curves comparing the performance of an SVM 

classifier with discriminatively trained part based models classifier, both 

using the proposed automatic annotation method. 
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Figure 6.10. The ATRV2 with the FLIR LWIR thermal camera mounted on 

it. 
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CHAPTER 7 

 MIXED PARTIAL DERIVATIVE BASED HISTOGRAM OF ORIENTED 

GRADIENTS FOR PEDESTRIAN DETECTION 

The Histogram of Oriented Gradients (HOG) has proved to be a robust feature 

when used with pedestrian detectors. This chapter proposes a new feature based on HOG 

to be used with the discriminatively trained part based framework for pedestrian detection 

[87] and the integral channel features based framework for pedestrian detection. The 

proposed method is based on computing the image mixed partial derivatives to be used to 

redefine the gradients of some pixels and to reweigh the vote at all pixels with respect to 

the original HOG. The proposed approach was tested on the PASCAL2007, INRIA and 

Caltech person datasets and proved to have an outstanding performance. 

7.1. Introduction 

Recently, several approaches for pedestrian detection e.g. discriminatively trained 

deformable part based models (DPM) [20] and integral channel features (ICF) [19, 21] 

have been investigating HOG introduced by Dalal and Triggs [26] for feature description. 

For the DPM approach introduced by Felzenszwalb et al. [20], an object detection system 

is achieved using mixtures of multi-scale deformable part models that are 

discriminatively trained using support vector machines (SVM) requiring only the  

knowledge of the box bounding the object in the image. Ren and Ramanan [63] replaced 

the HOG feature in the framework of [20] by histograms of sparse codes (HSC). In their 

approach, they formed local histograms by computing sparse codes with dictionaries 
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learned using K-SVD which outperformed the HOG based approach. Prioletti et al. [86] 

presented a two-stage pedestrian detection system. Their system used a Haar cascade 

classifier to extract candidate which are then fed into a part-based HOG classifier [20] to 

lower the number of false positives.     

Dollar et al. [19] investigated using integral channel features (ICF) and Adaboost 

classifiers [28] for pedestrian detection. In ICF, multiple registered channels are extracted 

from the input image using either linear or nonlinear transformations. Features are then 

extracted from these channel using integral images [29]. Dollar et al. [21] then discussed 

a modification to the system described in [19] to speed up the computation as they used 

fast feature pyramids instead of regular feature pyramids used in [19]. Combining 

histogram of oriented gradients, normalized gradient magnitude, and LUV channels gave 

good performance [21]. 

Jun et al. [64] introduced the local gradient patterns feature (LGP) and the binary 

histogram of oriented gradients feature (BHOG). The LGP makes the local intensity 

variations along the edge components robust by assigning one if the gradient of a 

neighboring pixel is greater than the average of the gradients of the eight neighborhood 

pixels and zero otherwise. For the BHOG, one is assigned if the value of the histogram 

bin is greater than the average value of the total histogram bins and zero otherwise. They 

used their approach for human detection using the INRIA [26] and the Caltech [30, 31] 

human databases. 

This chapter proposes a new feature based on HOG to be used for human 

detection. The proposed feature is based on computing the image mixed partial 

derivatives to be used to redefine the gradients of some pixels and to reweigh the vote at 
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all pixels with respect to the original HOG. The mixed partial derivative can be 

interpreted as the rate of change of the slope in the   direction while moving into the   

direction or vice versa which carries information different than that of the derivative in a 

single direction as   or  . 

7.2. Histogram of oriented gradients (HOG) 

HOG was presented by Dalal and Triggs [26]. This chapter will focus only on 

their rectangular version of the HOG. The rectangular HOG was based on locally 

calculating normalized histograms of image intensity gradient orientations, as the local 

object shape and appearance can be well characterized using these histograms without 

need to precisely know the position of the image intensity gradients. To extract the HOG 

from a window of a colored RGB image, the gradients in the   and   directions are 

calculated for each color channel separately with the best performance achieved when 

using 1-D          masks for gradient computation [26]. The resulting gradients are 

used to compute the gradient orientation and magnitude for each color separately at all 

pixels and then selecting the values at the color channel corresponding to the highest 

gradient magnitude at a certain pixel to be fed to the next stage of the HOG computation. 

In the next step, the image window is divided into smaller square patches called cells 

[26]. An orientation histogram is computed for each cell as follows.  

Consider a certain cell; each pixel contributes a weighted vote for a gradient 

orientation histogram depending on the orientation of the corresponding gradient. The 

orientation bins of the histogram are either evenly spaced over 0-180 (for unsigned 

gradients HOG) or 0-360 (for signed gradients HOG). The vote at a certain pixel is a 

function of the gradient magnitude where the best results are achieved when taking the 
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vote equal to the gradient magnitude at the pixel under consideration [26]. After that, a 

normalization process is done [26] by grouping cells into larger overlapping blocks where 

each block is normalized separately. Using 9 histogram orientation bins spaced over 0-

180 worked well for human detection [26]. 

Felzenszwalb et al. [20] implemented the HOG features by combining unsigned 

gradient HOG (9 bins spaced over 0
o
-180

o
) and signed gradient HOG (18 bins spaced 

over 0
o
-360

o
) in a single feature vector. This leads to a 31-dimensional vector, 27 of them 

corresponds to these orientations and the remaining 4 captures the overall gradient energy 

in the four neighboring blocks. This work will use the HOG implemented by [20] as a 

reference and will build on it. 

7.3. Mixed partial derivative based HOG (proposed work) 

The proposed method is based on computing the mixed partial derivative of the 

image window under consideration where the resulting values are used to redefine the   

and   components of the gradient of some pixels and to reweigh the vote at all pixels 

with respect to the original HOG [20, 26].  

Let         denote the image intensity at pixel       for color channel  , where 

  {     } taking into account that  ,  , and   refers to the red, green and blue color 

channels respectively. Although there are many ways to compute the gradients, using 1-D 

         masks works best as suggested in [26]. Thus for pixel       of color channel   

as shown in Figure 1, the gradient in the   direction    
      and the gradient in the   

direction    
      are calculated as follows [26]: 

   
             .    (7.1) 
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             .    (7.2) 

 

 

 

 

 

Figure 7.1. 8-connected neighborhood pixels for        . 

The mixed partial derivative for pixel       of color channel            is 

computed as: 

    
                             (7.3) 

Although using 1-D [-1,0,1] masks for computing gradients in the  , and   

directions works best [26], it was found through this work that recomputing the gradient 

values at some pixels using pixel values of the neighbors added some improvement. The 

pixels  at which the   and   gradients to be recomputed are based on their original   and 

  gradients and their mixed partial derivatives. It was clear that some pixels have low 

values for the absolute values of both the   and   components of the gradient although 

they have a high value of the mixed partial derivative. As an extreme example, at a given 

pixel (x,y),    
         

        while       
       . This gives unspecificity 

when calculating  
   

     

   
     

  to compute the corresponding gradient orientation. 
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(7.4) 

(7.5) 

To remove this unspecificity at this pixel, the   and   components of the gradient 

are recomputed using the intensity values at the neighbor pixels. It was found through 

this work that this recomputation improves the performance not only for the extreme case 

when     
         

        , but also when |   
     |     and |   

     |     

while |    
     |     , where    ,    and     are positive thresholding values. The 

recomputation is done as follows: 

   
      

{
 
 

 
 

 

   
      

{
 
 

 
 

 

For each pixel       for color channel  , the gradient magnitude         and the 

gradient orientation         are calculated as follows: 

        √   
          

      .     (7.6) 

              
        

        
 ,     (7.7) 

where atan() is the inverse tangent function. The resulting gradient magnitude and the 

corresponding mixed partial derivative are used to calculate a voting function         for 

channel   at pixel       as follows: 
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     |          |   

     |     
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     |      |   
     |          |   

     |     
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(7.8)         {
       |    

     |
 
           |    

     |      

                              

 

where   is a non-negative constant. For each pixel      ,   corresponding to the highest 

        is picked to be used for an orientation histogram computation. In the following 

discussion,        will denote the value of the largest         at pixel       resulting in 

having a vote array that has number of columns and rows equal to that of the original 

image window. After computing       , the vote array is divided into smaller square 

patches called cells [26]. The size of a cell will be denoted by      . 

The next step is to compute the histogram for each cell. Consider a certain cell; 

each pixel contributes a weighted vote         for a gradient orientation histogram 

depending on the orientation of the corresponding gradient. The orientation bins of the 

histogram are once evenly spaced over 0
o
-180

o
 using 9 bins and once evenly spaced over 

0
o
-360

o
 using 18 bins and the resulting values are combined in a manner similar to that 

presented in [20], where the feature vector of each cell is normalized in neighboring 

square blocks of four cells [26]. In practice, this leads to a 31-dimensional final feature 

vector.   

7.4. Experimental results 

In the first part of the experimental results, the proposed feature was augmented to 

the DPM framework [20] and the performance was compared to the original feature used 

by [20]. The performance of the proposed method is evaluated on the PASCAL2007 [32], 

INRIA [26] and Caltech [30, 31] publically available person datasets using 

discriminatively trained part based framework with two components [20]. The cell size 
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      is taken as     pixels. These pedestrian datasets contain images and annotation 

bounding boxes which represent the ground truth for a detection system [20]. When 

testing a detector, the input to the system is some images and the output is a set of 

bounding boxes with corresponding scores [20]. These scores can be thresholded at 

different values to plot the precision-recall curve where 

          
  

     
.     (7.9) 

                                      
  

     
      (7.10) 

where    is the number of true positives (correct detections),    is the number of false 

positives (unexpected detections), and    is the number of false negatives (missing 

detections). At a certain threshold, the precision represents the fraction of the bounding 

boxes that are correct detections while the recall  represents the fraction of the pedestrians 

in the image that are detected correctly.  

Throughout this work, a PASCAL measure has been used to determine the 

detection rates [33]. If there is an overlap between a detected bounding box and the 

ground truth bounding box and this overlap is more than 50%, this will be considered as a 

correct detection, otherwise it is a false positive detection. For a certain ground truth 

bounding box, if there are more than one overlapping detection bounding boxes, only one 

of them is counted. 

Several values of the thresholding constants in Equation (7.4) and Equation (7.5) 

were tried and some values that gave good results were selected. The selected values are 
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      ,       , and        . Moreover several values for   in Equation (7.8) were 

tried. Good results were obtained when choosing        . 

Figure 7.2 shows the precision-recall curves comparing the proposed method with 

[20] using the PASCAL2007 person dataset. The curve of the proposed method is higher 

by an average precision AP=0.8109% which means better performance. Figure 7.3 shows 

the precision-recall curves comparing the proposed method with [20] using the INRIA 

person dataset. The curve of the proposed method is higher by an average precision 

AP=0.0582% which means better performance. Figure 7.4 shows the precision-recall 

curves comparing the proposed method with [20] using the Caltech person dataset. Half 

of the Caltech dataset was used for training and the other half for testing using a skip of 3 

while considering pedestrian of height ≥100 pixels. The curve of the proposed method is 

higher by an average precision AP=0.8190% which means better performance. For the 

three datasets, the proposed approach results outperform [20].   

The proposed method was implemented on the two robotic vehicles mentioned in 

chapter 4; the ATRV2 and the ATRVmini. Figure 7.5 shows sample detections obtained 

by the implemented system.  

Figure 7.6 shows an inclined image form the PASCAL2007 person dataset. The 

proposed method succeeded to have an overlap with the ground truth more than 50% and 

thus was considered as a correct detection while focusing on the subject more than [20]. 

Since inclined images could be captured by a vehicle moving on an inclined surface, 

succeeding in detecting pedestrians in these inclined images can be valuable to alert the 

driver and save lives.  
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Figure 7.2. Precision-recall curves for PASCAL2007 person dataset using DPM. 

 

 

 

 

 

 

 

Figure 7.3. Precision-recall curves for INRIA person dataset using DPM. 
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Figure 7.4. Precision-recall curves for Caltech person dataset using DPM. 

 

 

 

 

 

 

 

 

Figure 7.5. Sample detections of the proposed method. 
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Figure 7.6. Inclined image from the PASCAL2007 person dataset: (a) Bounding box showing the 

ground truth. (b) Bounding box showing the detection obtained by Felzenszwalb et al. [20]. (c) 

Bounding box showing the detection obtained by the proposed method which has an overlap with the 

ground truth more than 50%. 

 

 

 

 

 

 

 

Figure 7.7. Precision-recall curves for Caltech person dataset using ICF. 

In the second part of the experimental results, the proposed feature was tested 

with another pedestrian detection framework which is the fast feature pyramid ICF based 

pedestrian detector presented in [21]. The experiment was performed twice: (1) once 

(a)                                   (b)                                            (c) 
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using channels of Felzenszwalb et al. histogram of oriented gradients [20] (reference to 

compare with), normalized gradient magnitude, and LUV and (2) once using mixed 

partial derivative based histogram of oriented gradients (proposed), normalized gradient 

magnitude, and LUV. To speed up the computation, the unsigned gradient parts of the 

feature vectors were only considered. Caltech pedestrian dataset was used in the 

evaluation. Half of the Caltech dataset was used for training and the other half for testing 

using a skip of 3 while considering pedestrian of height ≥100 pixels. PASCAL measure 

has been used to determine the detection rates [33]. Figure 7.7 shows the precision-recall 

curves comparing the proposed method with the reference method. The curve of the 

proposed method is higher by an average precision AP=1.8117% which indicates a better 

performance.  
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CHAPTER 8 

 CONCLUSIONS AND FUTURE WORK 

Electromagnetic radiation contains lots of information that can be used by a 

machine e.g. a smart robot to make a decision and perform an action. Several types of 

images can be formed from radiation e.g. polarization images, thermal images and visible 

images. This work made use of these three types of images to aid a robotic vehicle in the 

collection of information from a scene for the purpose of driving assistance.   

In chapter 5, a method utilizing shading and polarization for shape recovery was 

proposed. The proposed method is novel in several aspects. Compared to some multiple 

spectrum bands-based methods [42, 43] and multi-view approaches [41], only one view 

and one spectral imaging band is utilized. As such, the proposed method is considered 

simpler and needs less expensive imaging setup. Second, the proposed method utilizes 

simultaneously polarization and shading to find the surface normal. As such, the 

proposed method is able to resolve the inherent ambiguity in estimating the azimuth 

angle from only the polarization information. The method also resolves the 

convex/concave ambiguity of the traditional SFS methods without having to complicate 

the illumination model. Another important characteristic of the proposed method is that 

the albedo of the surface is also estimated in an EM-like fashion.  

The experimental results have shown that the proposed method successfully 

recovered the surface normals at various noise levels. The method consistently 
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outperformed a well-known method based on polarization information [18], and the 

experiments clearly demonstrated that the method converges quickly in a few iterations.   

Knowing whether the reconstructed surface is concave or convex is an important 

issue in many robotic applications e.g. an autonomous robotic vehicle can be able to 

discriminate between a ditch (negative obstacle) and a hill (positive obstacle). Proper 

discrimination leads to a proper decision and a proper action that helps the robot to 

complete its mission safely. The proposed approach assumes uniform albedo for the 

surface under consideration. For the future, the work may be extended to handle non-

uniform albedo surfaces. 

In chapter 6, the problem of night vision pedestrian detection was tackled which is 

important in the design of driving assistance systems to achieve a livable community. An 

annotated thermal imaging pedestrian dataset was automatically constructed using an 

available visible imaging pedestrian detector. This was done by registering the visible 

and thermal images such that pedestrians are approximately in the same place in both of 

them. The constructed dataset was obtained at day-time where the HOG [26] features 

were extracted for positive and negative samples and then used to train a discriminatively 

trained part based models classifier [20]. This system was mounted on a robotic vehicle 

and tested at night-time. The classifier showed good results in detecting pedestrians even 

in difficult situations as in the case of very low light or the presence of glare from 

oncoming traffic that can cause image saturation with visible imaging pedestrian 

detectors. For the future work, it is proposed to investigate using the proposed approach 

with pedestrian detection frameworks other than the discriminatively trained deformable 

part based models. Also the occlusion problem of pedestrians could be studied. 
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In chapter 7, a new feature based on HOG was proposed to be used with the 

discriminatively trained deformable part based framework for pedestrian detection [20] 

and the integral channel features framework for pedestrian detection [21]. The proposed 

feature is based on computing the image mixed partial derivatives to be used to redefine 

the gradients of some pixels and to reweigh the vote at all pixels with respect to the 

original HOG. The mixed partial derivative can be interpreted as the rate of change of the 

slope in the   direction while moving into the   direction or vice versa which carries 

information different than that of the derivative in a single direction as   or  . 

The proposed system was tested on three publically available pedestrian datasets 

and the performance in all cases showed to be equivalent or better than existing 

approaches. For the future work, it is proposed to investigate using the discussed 

approach with other pedestrian detection frameworks.  
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