1,648 research outputs found

    Image scoring in ad-hoc networks : an investigation on realistic settings

    Get PDF
    Encouraging cooperation in distributed Multi-Agent Systems (MAS) remains an open problem. Emergent application domains such as Mobile Ad-hoc Networks (MANETs) are characterised by constraints including sparse connectivity and a lack of direct interaction history. Image scoring, a simple model of reputation proposed by Nowak and Sigmund, exhibits low space and time complexity and promotes cooperation through indirect reciprocity, in which an agent can expect cooperation in the future without repeat interactions with the same partners. The low overheads of image scoring make it a promising technique for ad-hoc networking domains. However, the original investigation of Nowak and Sigmund is limited in that it (i) used a simple idealised setting, (ii) did not consider the effects of incomplete information on the mechanism’s efficacy, and (iii) did not consider the impact of the network topology connecting agents. We address these limitations by investigating more realistic values for the number of interactions agents engage in, and show that incomplete information can cause significant errors in decision making. As the proportion of incorrect decisions rises, the efficacy of image scoring falls and selfishness becomes more dominant. We evaluate image scoring on three different connection topologies: (i) completely connected, which closely approximates Nowak and Sigmund’s original setup, (ii) random, with each pair of nodes connected with a constant probability, and (iii) scale-free, which is known to model a number of real world environments including MANETs

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    A novel cross-layer framework for large scale emergency communications

    Get PDF
    This paper explores the problem of improving coverage and capacity of large-scale communication networks in disaster-struck areas. We propose a novel integrated dynamic cross-layer distributed energy aware emergency framework, E3F, that spans large geographical areas and variable time ranges. E3F enables adaptive storage, dynamic packet scheduling and utility driven forwarding that avoids congestion and energy depletion. Our extensive experiments with realistic traces show significantly improved energy efficiency and low overheads while maintaining high success ratios for both data dissemination and query answering

    Emergence in the security of protocols for mobile ad-hoc networks

    Get PDF
    This thesis is concerned with the study of secure wireless routing protocols, which have been deployed for the purpose of exchanging information in an adhoc networking enviromnent. A discrete event simulator is developed, utilising an adaptive systems modelling approach and emergence that aims to assess networking protocols in the presence of adversarial behaviour. The model is used in conjunction with the characteristics that routing protocols have and also a number of cryptographic primitives that can be deployed in order to safeguard the information being exchanged. It is shown that both adversarial behaviour, as well as protocol descriptions can be described in a way that allows for them to be treated as input on the machine level. Within the system, the output generated selects the fittest protocol design capable of withstanding one or more particular type of attacks. As a result, a number of new and improved protocol specifications are presented and benchmarked against conventional metrics, such as throughput, latency and delivery criteria. From this process, an architecture for designing wireless routing protocols based on a number of security criteria is presented, whereupon the decision of using particular characteristics in a specification has been passed onto the machine level

    An architectural framework for self-configuration and self-improvement at runtime

    Get PDF
    [no abstract

    GOSSIPKIT: A Unified Component Framework for Gossip

    Get PDF
    International audienceAlthough the principles of gossip protocols are relatively easy to grasp, their variety can make their design and evaluation highly time consuming. This problem is compounded by the lack of a unified programming framework for gossip, which means developers cannot easily reuse, compose, or adapt existing solutions to fit their needs, and have limited opportunities to share knowledge and ideas. In this paper, we consider how component frameworks, which have been widely applied to implement middleware solutions, can facilitate the development of gossip-based systems in a way that is both generic and simple. We show how such an approach can maximise code reuse, simplify the implementation of gossip protocols, and facilitate dynamic evolution and re-deployment

    Game theory for cooperation in multi-access edge computing

    Get PDF
    Cooperative strategies amongst network players can improve network performance and spectrum utilization in future networking environments. Game Theory is very suitable for these emerging scenarios, since it models high-complex interactions among distributed decision makers. It also finds the more convenient management policies for the diverse players (e.g., content providers, cloud providers, edge providers, brokers, network providers, or users). These management policies optimize the performance of the overall network infrastructure with a fair utilization of their resources. This chapter discusses relevant theoretical models that enable cooperation amongst the players in distinct ways through, namely, pricing or reputation. In addition, the authors highlight open problems, such as the lack of proper models for dynamic and incomplete information scenarios. These upcoming scenarios are associated to computing and storage at the network edge, as well as, the deployment of large-scale IoT systems. The chapter finalizes by discussing a business model for future networks.info:eu-repo/semantics/acceptedVersio

    Description and composition of bio-inspired design patterns: a complete overview

    Get PDF
    In the last decade, bio-inspired self-organising mechanisms have been applied to different domains, achieving results beyond traditional approaches. However, researchers usually use these mechanisms in an ad-hoc manner. In this way, their interpretation, definition, boundary (i.e. when one mechanism stops, and when another starts), and implementation typically vary in the existing literature, thus preventing these mechanisms from being applied clearly and systematically to solve recurrent problems. To ease engineering of artificial bio-inspired systems, this paper describes a catalogue of bio-inspired mechanisms in terms of modular and reusable design patterns organised into different layers. This catalogue uniformly frames and classifies a variety of different patterns. Additionally, this paper places the design patterns inside existing self-organising methodologies and hints for selecting and using a design patter

    Emergent distribution of operating system services in wireless ad hoc networks

    Get PDF
    Despite the advances in wireless, energy-constrained ad hoc networks, there are still many challenges given the limited capabilities of the current hardware. Therefore, our aim is to develop a lightweight, yet powerful operating system (OS) for these networks. We reject the brute force method of provisioning all necessary OS services at each node of the system. Instead, our approach aims to distribute the set of requested OS services over the network to reduce and balance load, improve quality of service, increase fairness and predictability. To limit the burden imposed on the network by the service distribution mechanism, only a subset of nodes, the coordinators, chosen by an underlying stateof- the-art topology control, are concerned with this task. Coordinators observe the state of nodes and OS services within their one-hop vicinity, i.e. their decision area, incorporating different aspects, such as energy, utilisation, or available resources in their decisions. Although each coordinator acquires information and triggers migrations of service states only locally within its decision area, a global-level result emerges, as decision areas naturally overlap. In this manner, an increased amount of work load e.g. in one decision area “floats” to the surrounding decision areas attracted by better conditions. In ns-2 simulations we demonstrate that the mechanism of emergence, which produces many fascinating results in natural systems, can successfully be applied in artificial systems to considerably increase the efficiency and quality of OS service distribution.1st IFIP International Conference on Biologically Inspired Cooperative Computing - Robotics and Sensor NetworksRed de Universidades con Carreras en Informática (RedUNCI

    Distributed and Centralized Task Allocation: When and Where to Use Them

    No full text
    Self-organisation is frequently advocated as the solution for managing large, dynamic systems. Distributed algorithms are implicitly designed for infinitely large problems, while small systems are regarded as being controllable using traditional, centralised approaches. Many real-world systems, however, do not fit conveniently into these "small" or "large" categories, resulting in a range of cases where the optimal solution is ambiguous. This difficulty is exacerbated by enthusiasts of either approach constructing problems that suit their preferred control architecture. We address this ambiguity by building an abstract model of task allocation in a community of specialised agents. We are inspired by the problem of work distribution in distributed satellite systems, but the model is also relevant to the resource allocation problems in distributed robotics, autonomic computing and wireless sensor networks. We compare the behaviour of a self-organising, market-based task allocation strategy to a classical approach that uses a central controller with global knowledge. The objective is not to prove one mechanism inherently superior to the other; instead we are interested in the regions of problem space where each of them dominates. Simulation is used to explore the trade-off between energy consumption and robustness in a system of intermediate size, with fixed communication costs and varying rates of component failure. We identify boundaries between regions in the parameter space where one or the other architecture will be favoured. This allows us to derive guidelines for system designers, thus contributing to the development of a disciplined approach to controlling distributed systems using self-organising mechanisms
    • 

    corecore