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Abstract—Although the principles of gossip protocols are relatively easy to grasp, their variety can make their design and evaluation

highly time consuming. This problem is compounded by the lack of a unified programming framework for gossip, which means devel-

opers cannot easily reuse, compose, or adapt existing solutions to fit their needs, and have limited opportunities to share knowledge

and ideas. In this paper, we consider how component frameworks, which have been widely applied to implement middleware solutions,

can facilitate the development of gossip-based systems in a way that is both generic and simple. We show how such an approach can

maximise code reuse, simplify the implementation of gossip protocols, and facilitate dynamic evolution and re-deployment.

Index Terms—distributed systems, components, frameworks, protocols

✦

1 INTRODUCTION

Gossip protocols1 have attracted a considerable amount of

attention over the last decade. Their natural robustness, scala-

bility, and self-stabilisation have made them particularly well

adapted to the needs of data-centres [2], [3], [4], wireless sen-

sor and mobile ad-hoc networks [5], [6], [7], and more recently

social networks [8], [9], both in fixed IP-based networks [4],

[2], [10], [11], [12] and wireless environments [5], [13], [14].

Gossip protocols use randomised communication to dis-

tribute information over a network in the same way a ru-

mour is gossiped amongst people. This causes most gossip

protocols to follow a bi-modal behaviour similar to that of

disease epidemics [2]: as soon as the probability of propa-

gation meets some minimum threshold, a gossiped message

will be received by all or almost all nodes with a very high

probability. This phenomenon makes gossip protocols highly

scalable, self-organising, and resilient to failures.

Although the principles of gossip protocols are relatively

easy to grasp, their variety—in terms of provided ser-

vices, targeted properties, and assumptions made on their

environment—can make their design, implementation, and

evaluation highly time consuming. In particular, the lack of

a unified programming framework for gossip protocols means

that developers cannot easily reuse, compose, and adapt exist-

ing solutions to fit their needs, which limits opportunities for

knowledge sharing and cross-pollination.

In this paper, we consider how component frameworks [15],

[16] can help address this gap. Component frameworks are

a modular programming approach that has been successfully

applied to many areas of distributed systems [17], [18], [19].

• F. Taı̈ani is currently with the University of Rennes 1 / IRISA (France);

S. Lin is with SAP Labs (China); G. S. Blair is with the University of

Lancaster (UK). F. Taı̈ani and S. Lin were with the University of Lancaster

(UK) while the work reported in this paper was conducted.

• A preliminary version of this paper was published in [1].

1. Also known as ‘epidemic’ protocols.

They allow developers to assemble systems from reusable soft-

ware components according to domain-specific rules. Software

components are encapsulated software entities that explicitly

expose their operational dependencies, typically in the form of

interfaces and receptacles (i.e. provided and required services).

They thus encourage a compositional approach to system con-

struction that fosters modularity, reuse, and configurability.

They also facilitate the development of dynamically adaptive

systems: the use of explicit interfaces and receptacles make it

simple to reason about dependencies, while dynamic bindings

provide a simple mechanism to update a system at runtime.

To demonstrate how component frameworks can support the

development of gossip-based systems, this paper introduces a

unified programming framework for gossip protocols called

GOSSIPKIT. GOSSIPKIT offers a component-based architec-

ture that promotes code reuse and simplifies the implemen-

tation of a wide range of gossip protocols. GOSSIPKIT also

allows multiple protocol instances to be dynamically loaded

and reconfigured, operate concurrently, and collaborate with

each other in order to achieve more sophisticated operations.

The contributions of this paper are threefold. First, after re-

viewing related work (Sec. 2), we present a survey of existing

gossip protocols, and identify a set of core design dimensions,

strategies, and patterns that underpin the design of most gossip

protocols (Sec. 3). Second, we propose GOSSIPKIT, a generic

component-based framework that captures those recurring el-

ements and seeks to unify the construction of gossip-based

systems (Sec. 4). Finally, we evaluate GOSSIPKIT and show

that it considerably simplifies the implementation of gossip

protocols, while fostering reuse, and providing the benefits

of component frameworks in terms of configurability and dy-

namic adaptation (Sec. 5). We end by offering some conclud-

ing remarks (Sec. 6).

2 RELATED WORK & PROBLEM STATEMENT

We first present the tenets of gossip protocols (Sec. 2.1), proto-

col kernels (Sec. 2.2), and component frameworks (Sec. 2.3).
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We then review earlier attempts to systematise the program-

ming of gossip protocols (Sec. 2.4), and finally discuss the

challenges inherent to the application of components to gossip

(Sec. 2.5).

2.1 Gossip protocols

Gossip protocols take inspiration from disease epidemics and

rumour dissemination to implement distributed computer al-

gorithms. Due to their wide variety [20], [8], [14], [21], [22],

[23], [24], [2], proposing a definitive definition of gossip pro-

tocols remains difficult. In this work we follow earlier authors

[25], [26] and consider that gossip protocols are round-based,

message-passing, decentralised computer algorithms, in which

(i) stateful nodes exchange information with a few other nodes

(compared to the overall size of the system) during every

round; and (ii) this exchange is probabilistic. Contrary to

some authors [25], [26], we do not assume that rounds are

necessarily periodic. They might in our model be triggered by

sporadic events. (We revisit this point in Sec. 3.)

The nature of the state stored on each node, the type of data

being exchanged, and the stochastic rules by which nodes in-

teract, all contribute to determining which service (e.g. broad-

cast, topology construction, system partitioning) is provided by

a protocol. For instance, a robust and highly scalable broadcast

algorithm can be obtained by having nodes store a history of

the messages seen so far (local state), and retransmit each new

message (exchanged data) to k randomly selected other nodes

(interaction rule) [27]. Conversely, a family of either peer

sampling [28], [20] or topology construction gossip protocols

[11], [8] can be constructed when each node uses a small list

of other nodes (the node’s view) as its local state, and updates

this list using its neighbours’ lists.

Gossip protocols offer four key advantages over more tra-

ditional systems: 1) they are particularly scalable; 2) they are

naturally robust to failures; 3) they are reasonably efficient;

and 4) they can often be configured to fit varying needs by

changing a few central parameters (e.g. fanout). As a result,

they have been applied to a wide range of problems such as

peer sampling [29], [20], wireless routing and broadcast [5],

[6], [7], reliable multicast [30], [23], database replication [3],

failure detection [24], and data aggregation [31].

Although the basic intuitions behind gossip protocols are

easy to grasp, the power and complexity of the approach comes

from the potentially infinite ways in which its constitutive

ingredients (local state, data exchange, and stochastic inter-

actions) can be combined. Individual protocols differ in how

they trigger exchanges (in periodic or reactive rounds); in the

type of state each node maintains (a measurement, a list of

neighbours, a dictionary); in the stochastic mechanisms that

drive data exchanges (biased, unbiased); in the information

that nodes exchange (their whole state, or part of it); and in

the mechanisms that nodes use to update their local state (e.g.

ranking, shuffling, concatenation). Some protocols might also

be composite: for instance a gossip-based broadcast protocol

might rely on a peer-sampling gossip protocol to build and

maintain a neighbourhood of other nodes [32], [33].

2.2 Protocol kernels

The approach we take in this paper to systematise the de-

velopment of gossip protocols builds on a long tradition of

protocol kernels, which seek to facilitate the development of a

large range of distributed protocols from fine-grained reusable

entities termed micro-protocols. Prominent examples include

Ensemble [34], Cactus [35] and Appia [36], and their prede-

cessors Isis [37], Horus [38] and Coyote [39]. In these environ-

ments, a distributed service (e.g. a leader-election protocol) is

viewed as a composition of several functional properties (e.g.

reliability, flow control, and ordering) encapsulated in micro-

protocols. Micro-protocols generally consist of a collection of

event handlers, whose interactions obey predefined rules (i.e.

layers, types) imposed by the kernel. Ensemble and Horus

for instance impose a purely layered architecture. Cactus by

contrast relies on a two-level composition model, with micro-

protocols freely bound using events to form (macro)-protocols,

which in turn may be layered to realise a full system.

2.3 Component frameworks

Micro-protocols can be seen as the forerunners of component

frameworks [15] applied to distributed protocols. Component

frameworks are a modular programming approach that al-

lows developers to assemble systems from reusable software

components. Software components extend the notion of ob-

ject orientation by introducing explicit dependencies between

provided and required interfaces [16]. Component frameworks

add rules and constraints on how software components might

be assembled in order to capture the domain knowledge of a

particular area [15]. As such, they encourage a compositional

approach to system construction that fosters modularity, reuse,

and configurability. They also facilitate the development of

dynamically adaptive systems: knowledge about provided and

required interfaces allows a reconfiguration engine to reason

about dependencies, while dynamic bindings provide a simple

mechanism to update a system at runtime.

These benefits have made components and component

frameworks a particularly popular approach to develop dis-

tributed platforms. They have been successfully applied both

in the industry (Enterprise Java Beans (EJB), the Service Com-

ponent Architecture (SCA), the CORBA Component Model

(CCM), .Net, and the OSGi Remote Services Specification),

and in middleware research, giving rise to lightweight compo-

nent technologies with reflective capabilities (OpenCom [40],

and Fractal [41]) and their associated middleware frameworks

(GridKit [17], RAPIDWare [18], FraSCAti [19]).

The work we present is particularly related to low-level

component frameworks developed for embedded systems. The

resulting frameworks are usually fine-grained, low-overhead,

compact (a few Kbytes) and highly configurable (with most

components typically optional). One well-known example is

nesC, the C-derived language underlying the TinyOS operating

systems for Wireless Sensor Networks [44]. Quite crucially,

nesC configurations are static and cannot change at run-time.

Successors to nesC, such as the LooCi component model [45]

or our own OpenCom [40] have sought to alleviate this lim-

itation, and allow for dynamic architectures on constrained
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Composable Fine Decomposition

Approach Nature By Assembly Granularity Unit Prototype

Kermarrec & Steen [10], [11] thread pattern threads

Eugster, Felber & Le Fessant [42] API X functions

B2 [25] component framework X component

GCP [43] annotation model X annotations X

TABLE 1: Existing approaches to gossip programming

devices (a TelosB mote for instance) [46].

These lightweight technologies use very few resources (less

than a few Kbytes per component in some instances), and

are thus well adapted to construct low-level system software.

Examples include wireless sensor networks [44], [46], [45],

environmental sensing [47] and embedded fault-tolerance [48].

The use of components in such systems provides in turn a

systematic approach to reason about their design, reuse, and

dependencies in a clear, principled, and intuitive manner [40].

2.4 Gossip programming

Commenting on the shared foundations of gossip protocols, a

number of authors have sought to propose general approaches

to their design [42], [10], composition [25], and implemen-

tation [43]. Table 1 provides an overview of these earlier

attempts, and compares them in terms of composability, gran-

ularity, level of decomposition, and whether they have been

implemented (prototype).

With one notable exception [43], all these approaches have,

to the best of our knowledge, remained purely conceptual.

Furthermore none of these approaches supports a model of

fine-grained elements that can be composed by assembly, as

we do: B2 [25] uses components, but considers individual

protocols as monolithic black boxes. GCP [43] and the model

of Eugster, Felber & Le Fessant [42] rely on a fine-grained

decomposition, but in a form (functions [42] or annotations

[43]), that does not lend itself to composition by assembly.

These two properties (fine granularity & composition by

assembly) are two key contributions of our work. By de-

composing protocols in fine-grained elements, we can deliver

high levels of reuse (Sec. 5.2). By providing composition by

assembly, we naturally support the dynamic reconfigurations

associated with component frameworks (Sec. 5.5). In the fol-

lowing, we revisit the approaches of Table 1 in the light of

these two properties, and contrast them with our approach.

Kermarrec and Steen [10] have observed that periodic pull-

push gossip protocols can be implemented using two concur-

rent threads (also used in [11]), one active and one passive.

The active thread periodically pushes the local state SP to a

randomly selected peer Q or pulls Q’s local state SQ. The

passive thread replies to push or pull messages from other

peers. This decomposition captures the distributed concurrency

inherent to message passing systems, and is thus more a pro-

gramming pattern than a programming model. It does not aim

in particular to provide any reusable software block.

Eugster, Felber and Le Fessant [42] have extended this

pattern and proposed a set of three fundamental pseudo code

Application Programming Interfaces (APIs) to capture the re-

curring design dimensions of gossip protocols in terms of ran-

domness, neighbourhood, and communication. Totalling seven

functions, these APIs are concise: The one for neighbour-

hood management for instance allows one to retrieve, add,

and remove a node’s neighbours. Remaining conceptual, this

approach requires developers to write traditional imperative

code, and so does not lend itself to the kind of composition

by assembly we advocate in this paper.

At a coarser level, Rivière, Baldoni, Li and Pereira [25] have

proposed a conceptual design framework for gossip based on

reusable building blocks (B2). Although purely conceptual,

these building blocks are closely related to software compo-

nents, and aim to capture the input and output of individual

gossip protocols. The B2 approach focuses however on the

composition of several protocols into a larger system, rather

than on the implementation of individual protocols, as we do.

Individual protocols are treated as monolithic black boxes, in

stark contrast to our work.

Finally, Princehouse and Birman [43] have developed a code

partitioning technique to help realise and analyse gossip based

systems. Their approach, termed Gossip Code Partitioning

(GCP), uses a high-level model of gossip interactions based on

a functional representation. This high-level model is then auto-

matically partitioned into code executing on individual nodes

using plain Java code, Java annotations, reflection, program

analysis (slicing) and byte-code rewriting. Like, GOSSIPKIT,

GCP [43] seeks to decompose gossip protocols into their fine-

grained constituting elements. It does not however focus on

composition by assembly, as we do. As a result it does not

by itself provide the kind of dynamic adaptation capabilities

associated with component frameworks.

2.5 Componentising gossip

The approaches we have just presented all fail to provide

a concrete set of fine-grained reusable entities which can

be assembled to produce a large range of gossip protocols.

Partitioning a family of algorithms (gossip protocols) into a

component framework is, however, inherently challenging, and

remains as much a craft as a science. Ideally the resulting

framework should be both simple, and generic. These two

aims unfortunately tend to oppose each other: A design that

is too simple might exclude protocols falling outside its main

design philosophy. Conversely, a highly generic framework

might incur much complexity, and require a large effort of

configuration to implement even simple instances.

In the rest of this paper, we aim to demonstrate how these

two aims (simplicity and genericity) can be reconciled in the
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case of gossip protocols by founding our work on a systematic

survey of a representative set of gossip protocols (Sec. 3),

before moving on to present our design in more detail (Sec. 4).

3 SURVEYING GOSSIP DESIGN CHOICES

Our survey covers a representative set of 33 gossip protocols

(Table 2). In the following, we document the common features

and variation points we have observed in this set in terms of

design dimensions (Sec. 3.1), and summarise our findings as

a set of common design patterns for gossip (Sec. 3.2).

3.1 Underlying design dimensions

Like many distributed algorithms, designing a gossip protocol

requires one to make decisions about both data (which data

to store, which data to exchange, in which data structures,

using which update strategies), and communication (when to

exchange data, in which direction, according to which stochas-

tic patterns) [10], [42]. In our survey, we found that the data

needs of most gossip protocols could be captured by a simple

and generic storage schema, without much need for further

decomposition. (We come back to this point in Section 4.4

when we discuss the detail of GOSSIPKIT.)

By contrast, we found that the communication of most gos-

sip protocols could be further decomposed along three sub-

dimensions mirroring the key stages of a gossip round: the

communication trigger, the style of randomisation, and the

direction of data-flow (6 middle columns of Table 2).

3.1.1 Communication Trigger

The Communication Trigger dimension captures how the

rounds of a gossip protocol are initiated. A gossip round is

a sequence of operations each node repeatedly executes as

part of the protocol. A round can be periodic [20] or reactive,

in which case it is triggered by external events [28], such as

a new sensor reading, or the reception of a gossip message.

Periodic rounds effectively avoid possible traffic congestion,

by distributing the sending times of individual nodes evenly

within the interval of a round. In contrast, reactive rounds

tend to propagate new information more rapidly, but generate

a large amount of network traffic within a short period, which

might cause congestion.

3.1.2 Style of Randomisation

The Style of Randomisation of a protocol captures the nature

of the stochastic rules that govern its communication. We have

found these rules to be either one-to-one or one-to-many.

With the one-to-one strategy, nodes explicitly select the

peers with which to interact during each round. This strategy

is predominant in fixed point-to-point networks. In this case, a

few peers are typically drawn uniformly among the population

of other peers (possibly relying on an appropriate peer sam-

pling service). This uniform approach tends to optimise the

convergence speed of the overall system to a stable state (e.g.

a target topology, a coverage of all nodes with a broadcast

message).

In some gossip protocols, however, the random selection of

peers is not uniform, but biased according to specific criteria.

For instance, directional gossip [49] takes into account the

topology of a wide area network, and selects with a higher

probability remote peers (e.g. nodes in different local net-

works) to accelerate the distribution of information. Simi-

larly, Probabilistic Multicast [21] conditions the propagation

of events on their properties to narrow-down the propagation

to interested nodes.

The one-to-many strategy is preferred in gossip protocols

operating in wireless environments such as Wireless Sensor

Networks (WSNs), and Mobile Ad Hoc Networks (MANETs).

Because one-hop wireless broadcasts tend to reach most nodes

within a broadcaster’s range, broadcast operations themselves

are made stochastic rather than the selection of recipients.

Furthermore, the decision to broadcast is usually based on

parameters that are closely associated with wireless networks,

e.g. node density, hop-count [5], energy [7] or traffic patterns

[6].

3.1.3 Direction of Data Flows

Gossip protocols finally rely on three basic styles of data flows:

push-pull, push, and pull. Push-pull propagates data both ways

when two nodes interact, thus fostering the rapid convergence

of the system to a desirable state. Push-pull can also be used

to disseminate digests of the available data (push), and only

trigger data transfer (pull) as needed. (See Sec. 3.2.3.)

In a push style gossip, each node sends its data to some ran-

dom peers but does not require any reply from these peers. As

a result, push style gossip uses only half as many messages per

round as push-pull exchanges, but requires longer to converge

when used for self-organisation (e.g. topology construction)

of aggregation [11], [8]. Push style gossip works well when

disseminating information, however, as there is in this case no

need for recipients to reply to senders.

Finally, in a pull style gossip, a node queries some random

peers for its data. Pulling ensures that data is only transferred

when needed. It helps reduce network traffic when the size of

the data to be gossiped is particularly large [67], [54], [64].

3.2 Key Patterns

The three design dimensions just presented, and the strategies

they call for, usually appear in four common combinations,

which we have termed gossip patterns (first column of Ta-

ble 2). In the following, we review each pattern, discussing

concrete illustrative examples as we go along.

3.2.1 Pattern P1: Punctual Dissemination

Punctual Dissemination combines a reactive trigger with a

push data flow to propagate information on fixed networks,

either alone or in combination with other types of gossip mech-

anisms. The protocol is triggered either when a node has new

information to send, or when it receives a new message from

another peer. When this happens, the receiver immediately re-

sends the message to some randomly selected nodes.

Example: SCAMP [28] is a peer-membership protocol that

uses punctual dissemination to balance the network connec-

tivity so that each node maintains a view of log(N) evenly

distributed random nodes. On receipt of a join request from
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Protocol Examples

P1:
Punctual
Dissemination

︷
︸
︸
︷

X X X
SCAMP [28], Directional Gossip [49], PlumTree [50], Unstructured
Epidemic Multicast [51], Spatial Gossip [22]

P2:
Continuous
Dissemination

︷
︸
︸

︷

a. Forward X X X

G-SDP [52], G-FDS [24], RDG [14], GSGC [53], NEEM [54], [55],
Gravitational Gossip [56], Hierarchical Gossip [27], lpcast [30], Prob-
abilistic Multicast (multicast) [21]

b. Polling X X X
Anonymous Gossip [57], RDG [14], Probabilistic Multicast (mem-
bership) [21]

c. Pairwise X X X X

Cyclon [58], HyParView (passive views) [59], RPS [20], Topol-
ogy Construction (T-Man [11], Vicinity [8], T-Chord [60], T-Simple
(Sec. 5.1)), Averaging [12], Ordered Slicing [4], Newscast [61],
Araneola [62], Anti Entropy (push/pull) [2]

P3:
Lazy
Dissemination ︷

︸
︸

︷

a. Continuous X X X X
Bimodal Multicast (Anti Entropy) [23], NEEM [54], [55], lpcast
[30], TAG [63]

b. Punctual X X X X K-Walker [64], PlumTree [50], Unstructured Epidemic Multicast [51]

P4: Broadcast

︷
︸
︸
︷ a. Explicit X X X Smart Gossip [65], Polarized Gossip [66], Gossip1,2,3 [5]

b. Sleep based X X X GSP [6], T-GSP [7]

TABLE 2: Gossip design dimensions, strategies & patterns

node i, a SCAMP node n forwards the request to all the nodes

in its view. On receipt of a forwarded request, a node j adds

node i to its view with probability p, and otherwise forwards

i’s join request to a random node in its view. This propagation

mechanism helps in turn balance the random graph every time

a node joins the network.

3.2.2 Pattern P2: Continuous Dissemination

The Continuous Dissemination pattern combines a periodic

trigger with one-to-one randomisation, and comes in three sub-

patterns depending on the direction of data flow: Forward,

Polling, and Pairwise. During each round, each node selects a

number of random peers, and then disseminates its information

to these peers (i.e. push), requests information from them (i.e.

pull), or both (i.e. push-pull). Gossip algorithms based on this

pattern are often used to achieve convergence of some global

properties (e.g. to achieve a particularly topology [11], [8],

[62] or partitioning [4]) or to aggregate data (e.g. averaging)

on fixed networks [12].

Example: The averaging [12] protocol uses periodic pair-

wise (pull-push) exchanges to estimate the average of a value

held by each node, e.g. a temperature. In every round, each

node n selects a random peer i, to which it sends its current

value, while i does the same. n and i then update their value

to be the average of vn and vi. As the protocol progresses,

the values stored on individual nodes gradually converge to a

global average.

Similarly, Araneola [62] uses this pattern to construct a

balanced random overlay in which all nodes maintain the same

out- and in-degree. Araneola combines a periodic trigger with

a local condition on the state of nodes: nodes only gossip when

their degree diverges from the target value (k or k + 1).

3.2.3 Pattern P3: Lazy Dissemination

The Lazy Dissemination pattern uses the same push-pull strat-

egy as the sub-pattern Pairwise of Continuous Dissemination,

but employs the push and pull exchanges for two different and

complementary aims. In this pattern, nodes do not send their

data directly to other nodes, but disseminate instead digests

of the data they hold to some randomly selected peers in

each gossip round. When receiving a digest, a node queries

the actual data if it is interested in the advertised content.

Lazy Dissemination is often used to recover lost messages

and implement reliable multi-cast protocols, and appears in

both periodic and reactive protocol (Continuous and Punctual

sub-patterns respectively).

Example: The Anti-Entropy protocol of Bimodal Multicast

(also known as pbcast) [23] uses lazy dissemination to repair

message losses in unreliable multicast systems.

3.2.4 Pattern P4: Broadcast

The fourth and final pattern, Broadcast, is similar to Punctual

Dissemination (Pattern P1), but uses one-to-many randomisa-

tion to propagate information in a mobile or wireless sensor

network (MANETs and WSNs). In the first sub-pattern (Ex-

plicit), a node i re-broadcasts new incoming messages to all

nodes in its range with a certain probability. This probability

might itself be dependent on contextual parameters (number

of neighbours, observed retransmissions) [5], [65].

In a second sub-pattern (Sleep-based), a node uses sleep as

a probabilistic communication control, rather than explicitly

deciding on each broadcast. More precisely, only nodes that

are awake forward messages in this pattern, while nodes enter

sleep randomly for a give period T with a probability p. T

and p might be fixed or themselves depend on additional con-

textual parameters. This pattern is primarily used in energy-

constrained networks to save energy.
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Fig. 1: GOSSIPKIT’s architecture

Example: Gossip2 [5] is a wireless broadcast protocol de-

signed for MANETs. The gossip decision of Gossip2 is based

on four parameters: p1, k, p2, and n. To prevent messages

from dying early, Gossip2 forwards requests with probability

1 during their first k hops. Then, nodes that have more than

n neighbours gossip with a default probability p1. To improve

the delivery rate in sparse networks, nodes that have less than

n neighbours gossip with a boosted probability p2 > p1.

3.3 Summary

The four patterns just presented (Sec. 3.2) capture the recurring

combinations in which the design dimensions and strategies

discussed in Section 3.1 are routinely combined in the 33

protocols we have analysed. These patterns highlight both the

diversity of existing gossip protocols, and the recurring overlap

between the mechanisms they use. This double observation

hints at the potential benefits of component frameworks for the

realisation of gossip protocols in a manner that is both generic

and simple. These are the topics we turn to in the next section,

where we present GOSSIPKIT, the component framework we

have developed based on the analysis just presented.

4 A COMPONENT FRAMEWORK FOR GOSSIP

Genericity and simplicity are traditionally at odds in com-

ponent frameworks (Sec. 2). To achieve both properties in

GOSSIPKIT, we made two design choices: that of fine-grained

components, to maximise the potential reusability of individual

component implementations, and that of a rich event-based

interaction model, to simplify component interactions, while

maintaining some structure in our handling of events.

4.1 GOSSIPKIT’s architecture

GOSSIPKIT involves seven component roles2 that work to-

gether to realise the steps of a gossip round. To realise a

concrete protocol, each of these roles must be instantiated

with a component implementation either taken from a pool of

components or specifically realised for this protocol (more on

this below). In Figure 1, these roles are shown as rectangles,

and their interactions as arrows. Arrow directions indicate

which component initiates an interaction, and arrow labels

show in which sequence these interactions typically occur.

2. When the distinction is clear in the following, we use the word compo-

nent to mean both component instance and component role.

Component roles are shaded according to the design dimension

they address, namely Data (Sec. 3.1), Communication Trigger

(Sec. 3.1.1), Style of Randomisation (Sec. 3.1.2), and Direction

of Data Flows (Sec. 3.1.3). The last three dimensions underpin

the analysis we presented in Section 3, and correspond to the

middle columns of Table 2.

In terms of roles, the Gossip component orchestrates the

execution of each round. The Periodic Trigger component is op-

tional and when present periodically triggers rounds and back-

ground work. The Peer Selection and Decision components,

both also optional, implement respectively the one-to-one and

one-to-many randomisation strategies of Table 2. Finally the

State component stores the node’s local state (which we detail

further in Section 4.4), and the State Process components

provide the state update mechanisms required by individual

protocols.

Which component implementations are selected to fulfil the

above roles determine which strategies (Table 2) a protocol

uses. There is however no one-to-one relationship between

component implementations and strategies: For instance, the

default component library of GOSSIPKIT provides one sin-

gle generic implementation of the Gossip role, which can be

configured to implement different data flows (Sec. 4.4.2), but

three implementations of the Peer Selection role.

In the following we detail the sequence of interactions cap-

tured by GOSSIPKIT’s architecture (labels a1 to l in the figure),

before presenting our event-based interaction model (Sec. 4.3),

and finally discussing the workings of the State and Gossip

components in more detail (Sec. 4.4).

4.2 Sequence of interaction

In GOSSIPKIT, a gossip round might be triggered periodically

(a1), as in RPS [20], or started in reaction to an application

event (a2) or to an incoming gossip message (a3), as in reactive

routing protocols [5], [68] (Sec. 3.1.1). The rest of the gossip

round is then orchestrated by the Gossip component. First, a

decision might be made whether to gossip at all (b), typically

in wireless networks to support the one-to-many randomisation

strategy (Sec. 3.1.2). This decision might be purely stochas-

tic, or take into account additional inputs such as the current

state (e.g. the number of neighbours [29], label g) or current

networking conditions (e.g. traffic [6], label k).

If the decision is positive, a subset of neighbours is selected

for communication from the list of neighbours (the node’s

view) stored in the State component (c & d, optional for

wireless radio broadcast); a gossip message is constructed;

and finally the message is disseminated (f). How the message

is constructed depends on the type of protocol. In a periodic

gossip pattern, the key data is typically maintained by the

gossip protocol itself (e.g. a list of neighbours [11], [20],

or database updates [2]), and the content of the message is

extracted from the node’s State component (e). By contrast,

reactive protocols often receive their data (e.g. a message to be

broadcast [5], [14], [13]) from some external source together

with the protocol’s trigger (a2).

On receiving a gossip message (a3), a node might directly

update its internal state (e.g. merging neighbourhood lists [20],
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Fig. 2: Composite realisation of Decision components [5]

[8], [11]) using the message’s content (h and j), possibly on

the condition of a probabilistic decision (i). If the protocol is

reactive (Sec. 3.1.1), the received message might also trigger

another round of gossip. Alternatively, in case of pull style

gossip (Sec. 3.1.3), the received message might cause the re-

cipient to respond directly to the sender (f) using information

stored in the State component (e). (We return to this latter

aspect in Section 4.4 when we discuss nested events.) Finally,

interleaved with gossip rounds, a protocol might also perform

regular updates on the local node state (label l), for instance

to keep track of time, or perform out-of-band bookkeeping

operations such as garbage collection, or data optimisation.

To increase opportunities for reuse, each of the roles shown

in Figure 1 can be implemented as a composite component,

made of smaller components. In practice, we have found this

possibility useful for two component roles: Peer Selection and

Decision. Many gossip protocols [11], [8] use a peer-sampling

service to select peers to gossip to, and this peer-sampling

service is itself realised as a gossip protocol (e.g. RPS [20]).

We capture this situation in our framework by recursively

instantiating the Peer Selection role as a gossip protocol that

itself follows the architecture of Figure 1.

Similarly, some gossip-protocols use composite criteria to

decide whether to gossip. In such case, we assemble their De-

cision component from a set of smaller components. Figure 2

shows for example how the Decision component of a family

of gossip-based ad-hoc routing protocols [5] can be realised

from three basic micro-components [1].

4.3 Rich and uniform event interactions

The sequence of interactions we have just described is imple-

mented in GOSSIPKIT using events, following in that respect

the choice of earlier configurable communication platforms

[35], [34], [39]. GOSSIPKIT uses rich events that carry a num-

ber of contextual parameters (e.g. protocol ID, event source,

data payload). These rich events also provide two key features:

First, the same event mechanism is used for both local and re-

mote interactions, i.e. whether the involved components reside

within the same address space, or on different machines. This

allows for a uniform interaction model that naturally captures

the distributed nature of gossip protocols. Second, events can

be nested into compound events, to express complex event

sequences at different levels of abstraction. (We return to this

latter mechanism in Section 4.4.)

Concretely, GOSSIPKIT events take the form of a structured

Attribute Description

Event Type Type of event

Event Source Component that raised the event.

Protocol ID protocol instance in which the event was raised

Sending Node Identifier of the node that sends the event

Receiving Node The node a remote event is sent to. Left blank
when using wireless broadcasts.

Nested Events An optional list of nested events

Payload The data carried by the event

TABLE 3: Key Attributes of a GOSSIPKIT event

data type (implemented as a plain Java class with appropriate

attributes, which is serialised when sent over the network). The

key attributes of an event are shown in Table 3. Event Type

encodes the type of the event, and is the primary means by

which events are subscribed to and dispatched to the proper

component instance. Protocol ID uniquely identifies the pro-

tocol instance in which the event was raised. This attribute

allows developers to isolate event flows in the case of co-

existing protocols. Protocol ID also allows for protocol com-

position, by allowing co-existing protocol instances to interact,

as happens for instance when a peer-sampling mechanism is

used within a higher-level gossip protocol [11], [58], [8], [33].

Remote events are supported through the Receiving Node at-

tribute, which indicates on which remote node an event should

be delivered in a point-to-point network. (This attribute simply

remains blank for one-hop broadcasts.) All network messages

are implemented as remote events. When a remote interaction

is required, a remote event is raised by the Gossip component,

and then passed on to the protocol’s Network component,

which implements the appropriate transport mechanism.

As in earlier event-driven systems [39], [35], GOSSIPKIT

events are able to carry data (Payload), both from the sender to

the handler (as in traditional event systems), but also back from

the handler to the receiver (as a method invocation would).

This second capability is only available to local events, in

which case the sending components is blocked until an answer

is received. It is supported by the Sending Node and Event

Source attributes, which identify the component that raised an

event, and allow data to be returned to the event’s originator.

This capability is used for instance when the Gossip compo-

nent retrieves gossiping data from the State component, or

when the State component invokes the State Process compo-

nent to update its data content.

To fulfill their function, each component role of Figure 1

reacts to a set of prescribed event types in well-defined ways.

These prescribed events form the event interface of a compo-

nent role. In total, GOSSIPKIT uses 11 event types to realise

the interfaces of Figure 1. The richest event interface is that

of the State component role, which responds to 6 types of

event (see below), while most other roles (e.g. State Process

or Decision) only respond to one event. The Gossip role is a

special case. This is because, although it only responds to two
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events (⋆Gossip3 and ⋆Forward events), Gossip relies heavily

on nested events to propose a rich set of potential behaviours,

an approach we describe in more detail below.

4.4 The State and Gossip components

In the following we present the interfaces of two key compo-

nent roles—that of State and Gossip—to illustrate how events

contribute to the genericity and simplicity of our framework.

4.4.1 The State component

To fulfill its role as a node’s local data store, a State component

responds to ⋆Get, ⋆Add, ⋆Contains, and ⋆Remove events that

act on a table made of rows and columns. State also sup-

ports ⋆CompareAndRequest and ⋆StateCompression events.
⋆CompareAndRequest is akin to a diff operator which is used

for pull-based incremental updates as in the Bimodal Gossip

protocol [23]. Finally, ⋆StateCompression requests the State

component to compress its state (e.g. as in peer-sampling or

topology construction algorithms [11], [20], [58], [8]), and

delegates the operation to the State Process role.

This set of six events, and the underlying row-and-column

data model they support, can accommodate a large variety

of protocols, simply by configuring the number of rows and

columns and the type of data stored in each cell of the State

component’s table.

4.4.2 The Gossip component & nested events

The Gossip component orchestrates the execution of gossip

rounds by raising events as appropriate for a particular protocol

(labels b, c, e, f in Fig. 1). The Gossip component further

serves as the entry point into a protocol, either via the Periodic

Trigger component for periodic protocols, or directly when

activated from an external entity. Because of this centrality,

each protocol might potentially require its own tailor-made

version of the Gossip component, causing fragmentation in

GOSSIPKIT’s code base and reducing opportunities for reuse.

We have found that such a fragmentation can be avoided by

factoring out some of the Gossip component’s behaviour into

the events it consumes. This factorisation relies on an optional

set of nested event templates (nested events for short) included

in ⋆Gossip or ⋆Forward events. These nested events indicate

how Gossip should react to an incoming event, and can be seen

as a very basic form of scripting, by which simple event flows

are factored out of the Gossip component’s code, and moved to

the description of interactions occurring within the framework.

Because nested events can be sent on the network, this also

offers a simple case of code mobility, through which nodes

might influence each other’s behaviour to realise distributed

interaction patterns.

Note that nested events do raise the issue of forged messages

sent by malicious nodes. Such messages could disrupt a proto-

col by causing the Gossip component to perform unintended

interactions. This danger is however inherent to distributed

systems and does in fact exists even with plain distributed

events. Although we do not discuss it for lack of space, this

3. In the following, we start events names with a star (⋆) to distinguish
them from component types.

Network

Transport Layer

State

[B,C,D]

Reply
Gossip

Network

1. *Gossip0< 

       *Add{PeerID},
*Gossip<

           *Add{PeerID}>
     >

3. *Add1{[A,B,C]}

    *Gossip1<

        *Add{PeerID}>

5. *Gossip1<

       *Add{PeerID}
    >

7. *Add2{[B,C,D]}

4. *Add1{[A,B,C]}

Node A Node B

State

[A,B,C]

8. *Add2{[B,C,D]}

2. *Get1{PeerID}

6. *Get2{PeerID}Periodic
Trigger

Push
Gossip

Fig. 3: Using nested events to realise a push-pull interaction

issue would obviously require appropriate protection (using

for instance cryptographic signatures) in a production envi-

ronment.

To illustrate this mechanism in more detail, Figure 3 shows

how nested events can be used to perform a periodic push-

pull exchange between two nodes A and B. On this figure,

event instances are noted with indices (⋆Gossip0), to dis-

tinguish them from event types (⋆Gossip). The data carried

by events is shown in curly brackets, e.g. ⋆Get1{PeerID},

and nested events are noted within angular brackets, e.g.
⋆Gossip1<⋆Add{PeerID}>.

A nested event tells a Gossip component which event should

be gossiped on the network. For instance, a Gossip component

receiving an event ⋆Gossipk<⋆A,⋆B,⋆C> should instantiate

three events: ⋆Ax,⋆Bw,⋆Cz, and propagate them to neighbour-

ing nodes. Nested events are specified as templates at this

stage, meaning they can refer to fields or columns of a node’s

state by name. When a nested event is instantiated, those

fields and columns names are expanded by replacing them

with the actual content of the local node’s state. For instance,

on receiving ⋆Gossip1<⋆Add{PeerID}>, a Gossip component

will first retrieve the PeerID column of its local state (e.g.

[B,C,D]), and instantiate an ⋆Add event with the actual data:
⋆Add2{[B,C,D]} (interactions 5, 6, and 7 in Figure 3), before

propagating ⋆Add2 on the network.

Using these mechanisms, the pull-push interaction between

A and B in Figure 3 starts when A’s Gossip component re-

ceives a ⋆Gossip0 event with two nested events: ⋆Add{PeerID}

and ⋆Gossip<Add{PeerID}> (interaction 1 on Figure 3). On

receiving this event, A’s Gossip component selects a random

peer (B, selection not shown) and instantiates both nested

events: ⋆Add1{[A,B,C]} and ⋆Gossip1 <Add{PeerID}>. ⋆Add1

is expanded in this process by retrieving the PeerID’s from A’s

state (⋆Get1{PeerID}, interaction 2). The two nested events

are then triggered on the selected peer B as remote events

(interaction 3). The same process repeats itself when node B

receives ⋆Gossip1<Add{PeerID}> (interactions 5, 6, and 7),

except this time B’s Gossip component is configured to only

send events back to A (“Reply” Gossip).

The use of nested components and a simple set of options

(for instance to distinguish between a “Push” and “Reply”

gossiping behaviour in Figure 3), allows us to provide a single
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1 <component name="State" id="State_sample">

2 <parameter name="Columns" type="List" value="[NodeID, Profile]" />

3 <parameter name="Size" type="int" value="5" />

4 <parameter name="PrimaryKey" type="String" value="NodeID" />

5 </component>

Fig. 4: An excerpt from the GOSSIPKIT configuration file for RPS [20]

Pre-defined

Role components

Gossip 1

State 1

PeriodicTrigger 1

Network 3

Peer Selection 2

State Process 5

TABLE 4: Predefined components per GOSSIPKIT role

generic implementation of the Gossip component role in GOS-

SIPKIT. This implementation can then be instantiated multiple

times within the same node with different options and nested

events to implement a large range of distributed interaction

patterns. (For instance, on Figure 3, node B would also possess

its own “Push Gossip” instance, which is not shown, to trigger

pull-push interactions like A does.) We provide more examples

of this strategy in Section 5 when we evaluate GOSSIPKIT.

4.5 Implementation details and use

We have implemented GOSSIPKIT in Java using OPENCOM,

a lightweight and reflective component engine developed at

Lancaster [17], [69]4. OPENCOM components take the form

of plain Java objects endowed with specialised Java inter-

faces to support their dynamic manipulation: creation, binding,

unbinding, destruction, and introspection. This manipulation

occurs through a component runtime (a singleton object) that

provides operations such as createInstance(), deleteInstance(),

connect(), and disconnect().

To use GOSSIPKIT, a developer first loads and instantiates

a GOSSIPKIT configuration into a singleton object called Gos-

sipKit (itself an OpenCom component). This configuration de-

scribes which components to instantiate, and how they should

be bound together. To realise such a configuration, GOSSIPKIT

comes with 13 predefined component implementations that re-

alise the roles of Fig. 1. (The breakdown of these components

is shown in Table 4.) This set of predefined components can be

extended with new components to realise new protocols. This

happens by creating a Java class that implements the required

GOSSIPKIT and OPENCOM interfaces and adding it to a Java

package reserved for this purpose.

Figure 4 shows an excerpt of a GOSSIPKIT configuration

(in XML, slightly simplified for readability) for RPS [20]. This

excerpt declares a State component instance, which uses the

generic state implementation (Sec. 4.4). Lines 2 to 4 describe

the type of state to be maintained: Here a list of NodeIDs,

4. http://sourceforge.net/projects/gridkit/files/OpenCOM/

each associated with some profile information (line 2).

The design of GOSSIPKIT is not tied explicitly to XML.

Other mark-up languages (e.g. JSON, or YAML) could be

used for a more compact representation. In addition, and al-

though we do not discuss this aspect in this paper for space

reasons, GOSSIPKIT can also be programmed using a tailor-

made domain specific language (DSL) called WHISPERS that

reifies the underlying family of behaviours captured by the

framework [70], [71].

5 EVALUATION

Our evaluation of GOSSIPKIT is both qualitative and quantita-

tive. We first assess the genericity of GOSSIPKIT in terms of

configurability and reuse in Section 5.2. We then use software

and performance metrics to measure GOSSIPKIT’s simplic-

ity (Sec. 5.3), and run-time overheads (Sec. 5.4). We finally

demonstrate GOSSIPKIT’s reconfigurability, to illustrate one of

the direct benefits of using components to implement gossip-

based systems (Sec. 5.5).

5.1 Evaluation approach

To provide concrete experimental data, we implemented a rep-

resentative set of eight gossip protocols both with GOSSIPKIT,

and directly in Java. These eight protocols (Gossip[1&2] [5],

SCAMP [28], RPS [20], Anti Entropy (as found in the Bi-

modal Multicast protocol) [23], Averaging [12], Ordered Slic-

ing [4], and T-Simple) are shown in bold in Table 2. T-Simple

is a basic case of topology construction which is derived from

T-Man [11]: T-Simple works like T-Man except that nodes

select the peers with which they communicate uniformly at

random (using a peer sampling service), rather than in the

current T-Man view as T-Man does. These protocols cover the

key patterns introduced in Section 3, and involve each of the

six alternative strategies (reactive/periodic, push/pull, one-to-

one/one-to-many) that underlie these patterns.

5.2 Configurability and reuse

A well-designed component framework should be config-

urable, and allow developers to realise different instances

of the target domain by rearranging the framework’s default

components, with a minimal amount of specific code. As a

collateral bonus, a configurable framework implies that the

same code is reused across multiple protocols. This reuse is

beneficial because it saves development efforts, and fosters

software quality (by exposing the same code to different con-

texts, and raising the pay-off of each bug correction).

Figure 5 and Table 5 illustrate the configurability and reuse

of GOSSIPKIT when applied to the 8 protocols used in this



c©IEEE 2014 — TRANSACTIONS ON SOFTWARE ENGINEERING (TSE) — Authors’ Version 10

External
Application

Gossip
(forward)

One hop radio broadcast

Decision1Decision2 State

Reused

a
b1

b2,d3 c1

c2

d1

d2

Specific

(a) Gossip1,2

c2

b2

External
App

Gossip
(forward)

TCP

a

Decision1

Decision2

State

Random
Peer Selection
(select c peers)

Random
Peer Selection

(select all)

Data
Merge

Reused

b1

c1

b3

d e1

f1

e2

Composed 
Peer Selection

f2

Specific

(b) SCAMP

a

Periodic
Trigger

Gossip
(Push)

TCP

Random
Peer Selection
(select c peers)

Reused

Gossip
(Reply)

Random
State Compress

b1
b2

b3

b4

c1

c2

c3

d1

d2
State

(c) RPS

a

Periodic
Trigger

Gossip
(Push)

TCP

State

Membership
Protocol (RPS)

Reused

DiffProcess

b1

b2

b3

d1

d2

d3

c1,e

c2

Gossip
(Request)

c3

c4

Specific

Decision
(limit)

Gossip
(Reply)

External protocol

(d) Anti Entropy (BM)

c1

c2

Periodic
Trigger

Gossip
(Push)

TCP

State

Membership
Protocol (RPS)

Reused Specific

Gossip
(Reply)

State
Process

a

b1

b2

b5

c3

d1

d2

Decision
(synchronisation)

Data
Merge

External State
(RPS state)

b3

b4

External protocol

(e) Averaging, Ordered Slicing, T-Simple (with Data Merge)

Fig. 5: Example configurations of GOSSIPKIT

evaluation. Figure 5 shows how GOSSIPKIT’s architecture is

instantiated for each of these protocols, highlighting which

components are reused (without any modification), and which

must be specifically developed (by sub-classing a default tem-

plate class). Table 5 tabulates for each protocol the amount of

component code shared with at least another protocol against

component code unique to this particular protocol.

As can be seen, GOSSIPKIT is both highly configurable and

reusable, allowing the realisation of a diverse set of protocols

by simply rearranging the configuration of existing compo-

nents. The required amount of specialisation ranges from none

for simple protocols (RPS, Fig. 5c), to three components out

of eight for more complex examples (Averaging, and Ordered

Slicing Fig. 5e). The two component implementations most

often reused are those of Gossip and State which we have

discussed in Section 4.4. By contrast, all Decision Compo-

nents are customised, as they often capture design decisions

that are unique to the protocol at hand. Components that are

specifically developed for one protocol can be saved in the

repository for later reuse in other protocols. This allows for a

growing pool of components to be built, which can potentially

be rearranged to create new protocols with novel capabilities.

Similarly, and although the study only covers 8 protocols,

the reuse rate (the proportion of reused component code)

ranges from 100% (RPS) to 78.7% (T-Simple), and remains

particularly high, with a weighted average of 88.1%. This

reuse would likely increase if additional protocols were added,

as more commonalities would show up.
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5.3 Simplicity

The configurability and reusability of a framework might come

at the cost of a higher complexity, with much effort needed

to select, specialise, and integrate components into a working

solution [72]. To evaluate GOSSIPKIT’s effect in this respect,

we compared for each protocol the size of its GOSSIPKIT

configuration (XML) against that of its original monolithic

Java implementation (Table 6).

If one assumes, as is reasonable to believe here for XML

and Java, that programming efforts are roughly proportional

to code size, GOSSIPKIT allows for a much more direct con-

struction of protocols than plain Java (by a factor of five).

5.4 Run-time overheads

Compared with a direct implementation in a language like

Java, components inevitably add overheads, in terms of exe-

cution time and memory usage. This is because the explicit

bindings that connect components, and the events used in

their interactions incur additional steps in the execution of

a GOSSIPKIT protocol instance.

5.4.1 Execution time overhead

Figure 6 compares the average execution times of GOSSIPKIT

and plain Java. These times correspond to the duration of

one gossip round, measured locally, and do not include any

network costs. These times were obtained on a Windows XP

SP2 computer with 512 Kbytes of RAM and one 1.73 GHz

mono-core processor, using the Java 1.6 SE from Oracle/SUN.

Measurements were repeated 50 times and averaged.

These results show that all GOSSIPKIT implementations run

substantially slower than direct Java versions. We speculate

that the difference is mainly caused by the OPENCOM runtime,

and more specifically by its heavy use of the Java reflective

API. However, the overhead incurred (0.5 ms on average)

remains much smaller than the typical network latency of

wide-area networks (from tens to hundreds of milliseconds),

and comparable to that of local-area networks (a fraction of

millisecond). These overheads could have an effect on reac-

tive protocols running in a local-area set-up, with stringent

execution bounds. In general however, these values remain

acceptable, in particular if one considers the low specs of the

machine we have used, and the fact that most gossip protocols

run at periods of a few seconds to a few minutes, i.e. several

orders of magnitude higher that the observed overheads.



c©IEEE 2014 — TRANSACTIONS ON SOFTWARE ENGINEERING (TSE) — Authors’ Version 11

Reused Specific Reuse Reused Specific

Protocol (LoC) (LoC) Rate Comp. Comp.

Gossip1 [5] 626 134 82.3% 3 2

Gossip2 [5] 626 138 81.9% 3 2

SCAMP [28] 888 120 88.1% 6 2

RPS [20] 1221 0 100% 7 0

Anti Entropy (BM) [23] 1349 56 96.0% 7 1

Averaging [12] 1102 152 87.9% 6 2

Ordered Slicing [4] 1102 178 86.1% 6 2

T-Simple (Sec. 5.1) 1144 309 78.7% 6 2

Average 1007 136 88.1% 5.5 1.63

TABLE 5: Reused achieved by GOSSIPKIT

GOSSIPKIT Java Effort

Protocol (XML LoC) (LoC) Ratio

Gossip1 39 277 14.1%

Gossip2 39 279 14.0%

SCAMP 88 463 19.0%

RPS 81 439 18.5%

Anti Entropy (BM) 100 544 18.4%

Averaging 85 466 18.2%

Ordered Slicing 85 471 18.0%

T-Simple 93 491 18.9%

Average 76.3 424 18.0%

TABLE 6: Implementation effort vs. Java

5.4.2 Memory footprint

One of the aims of GOSSIPKIT is to support gossip protocols

across a wide range of networks and devices. This implies

that its memory requirements should be reasonable. Table 7

reports the static memory footprint of some of the key parts

of GOSSIPKIT (measured as the size of the compiled Java

classes). The table distinguishes between the GOSSIPKIT run-

time, which provides the execution context for GOSSIPKIT

components (mainly the framework proper and its event en-

gine), and key GOSSIPKIT components. Table 8 shows how

these numbers translate into the static memory footprint of the

eight protocols of this evaluation. On average, each protocol

consumes less than 31Kbytes of static memory. This overhead

is comparable to similar component-based platforms that target

mobile devices (e.g. ReMMoC [73], MANETKit [74]), which

typically consume about 30 - 100 Kbytes of memory.

Turning now to dynamic overheads, Table 9 presents the dy-

namic memory consumed by GOSSIPKIT for our eight gossip

protocols, compared with the memory usage of the monolithic

versions implemented in Java (measured with JProfiler
TM

5).

Overall, GOSSIPKIT consumes on average 35.3% more

memory than pure Java. Memory usage remains however under

14,000 Kbytes for all eight protocols. On further analysis,

using HPROF [75] and the tool ProfVis [76], this substan-

tial overhead seems to be predominantly caused by the many

intermediate meta-data (HashMaps, Lists) created to handle

reflective calls in OPENCOM, process events in GOSSIPKIT,

and store protocol data. Most of the code uses verbose struc-

tures such as String and Integer objects for such information,

and could probably be further optimised. This is however

comparable to the memory consumption observed in other

frameworks based on OPENCOM [47], [74], and acceptable for

modern mobile devices, and high-end embedded computers5.

5.5 Reconfigurability

In addition to reuse and compactness, GOSSIPKIT also brings

the traditional advantages associated with component frame-

works, such as the ability to reason about configurations, and

the mechanisms to reconfigure a running deployment. To il-

lustrate this last point, we present a simple scenario of dy-

namic reconfiguration with GOSSIPKIT. The scenario involves

5. E.g. a 58× 17× 4.2mm DuoVero Gumstix board with 1GB of RAM.

Runtime Static Memory (Bytes)

GOSSIPKIT Framework 8,692

Generic Interfaces 3,216

Event Handler 3,810

Event Handler Registry 5,276

Component Static Memory (Bytes)

Gossip Component 6,861

State Component 6,612

Random Peer Selection Comp. 4,216

TCP Network Component 5,425

TABLE 7: Static memory footprint (compiled bytecode)

three GOSSIPKIT instances and two sequential reconfigura-

tions (Figure 7). The target system is made of 100 nodes de-

ployed in a 10 × 10 grid, and uses the Jist/SWANS simulator6

to simulate a fixed network, with gossip rounds set to last 5s,

network latencies varying uniformly between 50 and 100ms.

This experiment uses a simple mechanism for distributed

reconfigurations that leverages the periodicity of RPS and T-

Simple (presented in Sec. 5.1): One node is selected as a

reconfiguration driver and generates a reconfiguration script

which details the set of component-based operations to be

performed (loading and unloading components, unbinding and

binding events). Reconfiguration scripts are piggybacked on

the message of currently running gossip protocols in order to

reach all nodes.

Initially all nodes run the RPS protocol [32] to maintain a

random graph for peer sampling (Figure 7a). The first recon-

figuration consists in launching an implementation of T-Simple

to construct a ring topology. Because T-Simple relies on RPS

to sample peers, the reconfiguration instantiates T-Simple on

top of the running RPS. The reconfiguration script is triggered

on node 0, propagates through the network, and eventually

converges to a ring topology (Figures 7b and 7c). Once a

ring topology has been constructed, a second reconfiguration

is triggered to use a second implementation of T-Simple to

build a grid topology (Figures 7d and 7e).

This experiment demonstrates GOSSIPKIT’s ability to sup-

port reconfigurations at different levels of granularity. The first

reconfiguration is coarse-grained: it deploys an entirely new

protocol (i.e. T-Simple for constructing a ring topology) atop

6. http://jist.ece.cornell.edu/
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Protocol Bytes
S

im
p

le
Gossip1 19,885

Gossip2 20,532

SCAMP 25,923

RPS 29,941

C
o

m
p

o
si

te Anti Entropy (BM) 34,162

Averaging 36,209

Ordered Slicing 36,398

T-Simple 41,529

Average 30,572

TABLE 8: Byte code size of the eight gos-

sip protocols. The byte code size of the

four composite protocols includes the size

of RPS.

Java GOSSIPKIT

Protocol (Kbytes) (Kbytes) Overhead

S
im

p
le

Gossip1 8,832 12,968 46.8%

Gossip2 8,864 12,976 46.3%

SCAMP 10,012 13,308 32.9%

RPS 10,016 13,316 32.9%

C
o

m
p

o
si

te Anti Entropy (BM) 10,120 13,376 33.5%

Averaging 10,136 13,380 32.0%

Ordered Slicing 10,128 13,486 33.2%

T-Simple 10,540 13,572 28.8%

Average 9,831 13,298 35.3%

TABLE 9: Dynamic memory usage of the eight gossip protocols. The mea-

surements of the two gossip protocols that run on wireless ad hoc networks,

Gossip1 and Gossip2, do not include the Jist/SWANS simulator.

(a) RPS alone (b) 5th round: RPS +
T-Simple[ring]

(c) 11th round: RPS +
T-Simple[ring]

(d) 20th round: RPS +
T-Simple[grid]

(e) 23th round: RPS +
T-Simple[grid]

Fig. 7: Reconfiguration: dynamic deployment of T-Simple[ring], followed by a reconfiguration into T-Simple[grid]

Reconfiguration Type CPU Overhead (µs)

Single component (Figures 7d-7e) 2,036

Entire protocol (Figures 7a-7c) 13,811

TABLE 10: The time used for reconfiguration
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Fig. 8: End-to-end reconfiguration overhead (T-Simple[ring])

RPS, instantiating 8 new components and 10 new bindings.

The second one is fine-grained, and only involves the State

Process component of T-Simple and two bindings.

The local reconfiguration times (without networking costs)

for the two reconfigurations in the above scenario are shown

in Table 10. The end-to-end overhead of the first reconfigu-

ration (the dynamic deployment of T-Simple[ring]) compared

to a static deployment of RPS and T-Simple[ring] is shown

on Fig. 8 for various network sizes. All measures are aver-

aged over 50 runs. These numbers demonstrate the ability of

GOSSIPKIT to support a substantial reconfiguration (here the

dynamic deployment of T-Simple) under low local overhead

(less than 14 ms). The end-to-end overheads of Fig. 8 further

show the small incidence of the local reconfiguration time

(14ms) on the overall system performance, which is mainly

driven by the duration of individual rounds (5s).

6 CONCLUSION

In this paper we have presented GOSSIPKIT, a modular and

generic component framework for the realisation of gossip-

based systems. GOSSIPKIT’s architecture is grounded in a

principled survey of a large set of existing gossip protocols,

covering both fixed and wireless networks. This survey has

led us to propose a set of three design dimensions, and four

recurring design patterns underlying most gossip-based proto-

cols. GOSSIPKIT embodies those dimensions and patterns in a

concrete reusable architecture that is both simple and generic.

GOSSIPKIT lies in the direct continuation of the many

works conducted at Lancaster on fine-grained structures—that

is component-based architectures—in a variety of distributed

systems areas: protocol stacks, router software, overlays. GOS-

SIPKIT demonstrates that a fined-grained structural decompo-

sition is also applicable to distributed probabilistic systems,

and opens up a number of interesting questions regarding the

adaptation and composition of gossip-based systems.

For instance, component architectures—coarse grained and

fine grained—have been acknowledged to support cross-layer

optimisation well. However, whereas this is an area that is

well recognised in the literature, there are fewer examples of

real exploitation. Some of the structures we have proposed for

GOSSIPKIT would seem particularly promising in this area,

for example to automatically reason about synergies and con-

flicts between gossip-based systems coexisting within the same

infrastructure [33]. Moving beyond gossip protocols, we have

also started to work on emergent middleware and dynamic

interoperability [77], and it would be interesting to translate

this work to the dynamic interoperability of gossip protocols.

Finally, we see a broader opportunity to investigate how op-

portunistic mechanisms such as gossip can be integrated into
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larger and more complex distributed systems—thus feeding

into an understanding of systems-of-systems.
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M. Monod, and V. Quéma, “Heterogeneous gossiping,” in Proc. of the

Int. Middleware Conf. (Middleware’09), November 2009.
[68] X. Hou and D. Tipper, “Gossip-based sleep protocol (gsp) for energy

efficient routing in wireless ad hoc networks,” in The 2004 IEEE Wireless

Comm. and Netw. Conf. (WCNC 2004), vol. 3, 2004, pp. 1305–1310.
[69] M. Clarke, G. S. Blair, G. Coulson, and N. Parlavantzas, “An efficient

component model for the construction of adaptive middleware,” in Proc.

of the IFIP/ACM Int. Conf. on Distributed Systems Platforms (Middle-

ware’01). Springer, 2001, pp. 160–178.

[70] S. Lin, “Transparent componentisation: A hybrid approach to support the
development of contemporary distributed systems,” Ph.D. dissertation,
Lancaster University, UK, Sep. 2010.

[71] S. Lin, F. Taı̈ani, M. Bertier, G. Blair, and A.-M. Kermarrec, “Trans-
parent componentisation: high-level (re)configurable programming for
evolving distributed systems,” in Proc. of the 2011 ACM Symp. on

Applied Comp. (SAC’11). ACM, 2011, pp. 203–208.
[72] C. W. Krueger, “Software reuse,” ACM Comput. Surv., vol. 24, no. 2,

pp. 131–183, Jun. 1992.
[73] P. Grace, G. S. Blair, and S. Samuel, “Remmoc: A reflective middle-

ware to support mobile client interoperability,” in Proc. of Int. Symp. of

Distributed Objects and Applications, October 2003, pp. 1170–1187.
[74] R. Ramdhany, P. Grace, G. Coulson, and D. Hutchison, “Manetkit: Sup-

porting the dynamic deployment and reconfiguration of ad-hoc routing
protocols,” in IFIP/ACM/USENIX 10th Int. Middleware Conf., 2009.

[75] Oracle, “Hprof: A heap/cpu profiling tool,” http://docs.oracle.com/-
javase/7/docs/technotes/samples/hprof.html, accessed 24 June 2013.

[76] S. Lin, F. Taı̈ani, T. C. Ormerod, and L. J. Ball, “Towards anomaly
comprehension: using structural compression to navigate profiling call-
trees,” in Proc. of the 5th Int. Symp. on Soft. visualization (SOFTVIS’10).
ACM, 2010, pp. 103–112.

[77] G. S. Blair, A. Bennaceur, N. Georgantas, P. Grace, V. Issarny, V. Nund-
loll, and M. Paolucci, “The role of ontologies in emergent middleware:
supporting interoperability in complex distributed systems,” in Proc. of

the 12th ACM/IFIP/USENIX Int. Conf. on Middleware (Middleware’11).
Springer, 2011, pp. 410–430.

François Taı̈ani is a Professor at Université de
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APPENDIX

DESCRIPTION OF THE PROTOCOLS ANALYSED

The following list briefly describes the protocols analysed in

Sec. 3 of the paper. For space reasons, some important aspects

of the works presented might be left out. These details can be

found in the relevant publications.

Anonymous Gossip [57] provides a repair mechanism for

unreliable multicast protocols designed for MANETs,

such as MAODV. Nodes advertise the messages they have

missed (pull interaction), and receive copies buffered by

other nodes. One key contribution of the protocol consists

in allowing nodes to advertise digests of the messages

they have missed without knowing which nodes these

digests will reach (hence “anonymous” gossip), a desir-

able property in MANETs in which group membership

is costly to maintain.

Anti Entropy [2] was originally proposed to propagate

database updates in large systems. It works in two phases:

First, an efficient unreliable broadcast (e.g. UDP broad-

cast) propagates updates to as many nodes as possible.

Then, running in the background, a periodic gossip al-

gorithm repairs the nodes that have missed the original

broadcast. To do this, nodes send the content of their

database to another randomly chosen node, and recover

lost updates using typically a pull or push-pull approach.

The original anti-entropy protocol has subsequently led

to several variants (e.g. in Bimodal Multicast [23]—the

one we implement in our evaluation).

Araneola [62] uses Pattern P2 (“Continuous Dissemination”)

to construct a balanced random overlay in which all nodes

maintain almost the same target degree (k or k+1). Ara-

neola combines a periodic trigger with a local condition

on the state of nodes: nodes only gossip when their degree

diverges from the target value. This can be analysed as a

form a guarded periodic gossip.

Averaging [12] uses periodic pairwise (pull-push) exchanges

to average a value held by each node (e.g. a sensor

reading). In each round, a node n exchanges its current

value vn with a randomly selected peer i. n and i then

update their value to be the average of vn and vi. As the

protocol progresses, the values stored on individual nodes

gradually converge to a global average.

Bimodal Multicast [23] (also known as pbcast) uses an opti-

mised anti entropy protocol (inspired from [2]) to repair

potential message losses caused by an unreliable mul-

ticast service (possibly itself implemented as a gossip

protocol). To detect losses, nodes periodically disseminate

digests of the messages they have received so far. When a

node detects it has missed a message, it requests the miss-

ing message from the digest’s originator. The protocol

further includes a number of optimisations (e.g. dropping

late requests, limiting re-transmissions occurring in one

single round) to improve its robustness.

Cyclon [58] provides a peer-sampling service by periodically

shuffling the neighbourhood lists of individual nodes.

Each node p maintains a list of c neighbours (known

as a cache), and swaps during each round a randomly

selected sub-list of ℓ < c neighbours with a “well-chosen”

neighbour q. To deliver good connectivity and freshness

guarantees, q is selected to be the oldest neighbour entry

(in rounds) in p’s cache.

Directional Gossip [49] is a gossip-based multicast protocol

that takes into account the topology of a wide-area net-

work, and selects with a higher probability remote peers

(e.g. nodes in different local networks) to accelerate the

distribution of information.

G-FDS [24] is a gossip-based failure detection protocol based

on heartbeats. Each node maintains a list of known other

nodes, along with a heartbeat counter, and the last time

this counter was increased for each known nodes. Period-

ically a node p increments its own heartbeat counter, and

sends its list to a node q randomly chosen from its view.

q merges p’s list into its own by keeping the maximum

heartbeat for each node. A node whose heartbeat has not

increased for more than a threshold Tfail period is consid-

ered failed. The protocol also contains an optimisation to

take into account the underlying topology of the network,

by weighting the selection of nodes according to the sub-

net they belong to.

G-SDP [52] provides a service discovery service for

MANETs based on heterogeneous ontologies. Each node

periodically gossips the ontology concepts it knows of to

a set of random neighbours. A node receiving a new set of

concepts matches these concepts to its local ontology, and

stores the new concepts. Concepts keep propagating until

they reach a time-to-live value (expressed as a maximum

number of hops), at which point they are deleted from

a node’s local view. The dissemination algorithm uses a

peer-sampling service similar to RPS.

GSGC [53] (Gossip Style Garbage Collection) is a distributed

garbage collection protocol for reliable multicast algo-

rithms. Most reliable multicast algorithms require node

to keep copies of messages, which must be garbage-

collected once a message has been received by all nodes

in the system. GSGC provides a gossip-based solution to

this problem that runs in two phases: In a first phase,

each node p disseminates a vector Rp of the highest

message id Rp[j] it has received from node j, so that

p has also received all messages from j before mRp[j].

As the vector Rp propagates, it gets merged with that of

other nodes using a minimum operator, and keeping track

of which nodes have contributed to it. Once a node detects

the vector is complete (all nodes have contributed), the

second phase is launched, and the resulting Rstable vector

disseminated to all nodes.

GSP [6] (Gossip-based Sleep Protocol) is a broadcast proto-

col for wireless sensor networks (WSN), in which each

node decides to enter its sleep mode for a fixed length of

time with probability p, or to stay awake for a random

time interval. Only nodes that are awake re-broadcast

incoming messages, insuring the propagation of messages

in the network while saving energy.

T-GSP [7] extends GSP by requiring nodes to stay awake

when they are carrying frequent network traffic, thus

reducing the probability of breaking active communica-
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tions. In [7], the authors show that gossip-based sleep

protocols can conserve battery power on WSN nodes

25% longer while maintaining the same delivery rate and

transmission latency compared to non-gossip solutions

such as DSR.

Gossip1,2,3 [5] is a family of three broadcast protocols for

routing requests in wireless networks (WSNs, MANETs),

that use increasingly elaborate decision schemes to decide

whether to re-transmit a route request. In its basic version,

Gossip1, all nodes re-transmit a received request with a

base probability p1, except during the first k hops of the

request, when they re-transmit with a probability of 1.

Gossip2 extends Gossip1 by using a boosted probability

p2 > p1 after the first k hops if a node has less than

n neighbours. Finally, Gossip3 extends Gossip1 by using

a counting mechanism for nodes that originally decides

not to re-broadcast a request: If these nodes hear less than

m re-transmissions of the original message within some

time-out period, they re-broadcast the request.

Gravitational Gossip [56] is a gossip-based multicast pro-

tocol that uses non-uniform gossiping probabilities. In

each round, node ni has a probability Ii × Sj to send

a message to node nj , where Ii is the infectivity of ni

and Sj the susceptibility of nj . Nodes are organised in

“strata”, or sub-sets of nodes that have the same infectivity

and susceptibility, so that nodes in stratum (or rating)

r ∈ [0, 1] have a probability r (or almost r) of receiving

updates before these updates time out. The infectivity and

susceptibility of each stratum is chosen using an analytic

mathematical model of the infection mechanism of up-

dates.

Hierarchical Gossip [27] is a multicast protocol that prefer-

ably selects nodes close in the network topology to re-

duce network load across domain boundaries. To this

aim, the protocol uses a leaf-box hierarchy (a tree-like

structure constructed using a hash function on nodes)

that maps individual network domains to continuous leaf-

boxes. Nodes then gossip with decreasing probabilities to

the levels of the hierarchy, which correspond to nodes that

are potentially increasingly further in terms of network

domain.

HyParView [59] provides a peer-membership protocol for

application-level multicast services based on flooding.

HyParView addresses the problem of periodic peer-

membership protocols such as Cyclon [58], or SCAMP

[28] that have long update cycles, and cannot react fast

enough in case of large-scale node failures. In HyParView

each node maintains two partial views of the system: a

small-scale active symmetric view, that is managed reac-

tively (i.e. is updated immediately when nodes leave or

join), and a larger-scale passive and asymmetric view, that

is maintained by periodic random-walk shuffles. When a

node in the active view is detected as failed (using TCP’s

in-built failure detection mechanism), it is replaced by a

node from the passive view, thus providing a fast reaction

to failures.

NEEM [54], [55] (Network Friendly Epidemic Multicast)

aims to provide semantic-based congestion control in

gossip-based multicast protocols. It enriches a gossip-

based multicast protocol with a specialised buffer man-

agement technique applicable to connection-oriented

point-to-point transport protocols such as TCP. NEEM

exploits the congestion control of TCP, while discarding

those messages that are the least critical for the applica-

tion. Discarded messages are advertised to other nodes

to stop their propagation. NEEM also implements a lazy

dissemination mechanism to recover lost messages [55].

Newscast [61] provides both a membership and information

dissemination protocol using a periodic gossip mecha-

nism. Each node maintains a cache of time-stamped news

items and information about other peers, and periodically

exchanges this whole list with a randomly selected peer,

keeping only the c most recent entries of the resulting

merged list.

K-Walker [64] is a gossip-based resource discovery. A node

requesting a resource randomly disseminates a request to

other nodes. The request is propagated until the request

expires or an appropriate node is found. This pull-based

request dissemination mechanism is enriched with infor-

mation regarding the resources available at the visited

nodes, that is piggy-backed on the requests, and cached

by receiving nodes. This cached information is in turn

used to bias the dissemination of subsequent requests

towards nodes likely to be able to fulfill them.

lpcast [30] (lightweight probabilistic broadcast) proposes a

reliable broadcast protocol that uses digests to recover

missing messages. One of lpcast’s key contributions is

a smart garbage collection technique that tends to keep

message copies in node buffers based on their usefulness

for future rounds, rather than delete them randomly. lpcast

uses two heuristics to purge message buffers: age-based

purging is used for event notifications, while frequency

based purging is used for node subscriptions.

Ordered Slicing [4] provides a partitioning protocol in which

the resulting groups are ordered according to a particular

measurable property (e.g. bandwidth, workload) of the

nodes. Ordered Slicing uses a swap function on pairs

of attribute values to order nodes. These pairs are made

of two numbers: one of is the property of interest, with

the other one is a uniformly distributed random number.

The protocol converges to a situation where the order of

the random numbers reflects the order of the property of

interest, while eliminating any skew that might exist in the

distribution of this property. These random numbers can

then be used to partition the system in slices proportional

to the system’s overall size.

PlumTree [50] (Push-Lazy-Push Multicast Tree) constructs a

broadcast tree within a gossip overlay. Messages are pri-

marily propagated on the broadcast tree using a punctual

dissemination pattern (eager push). When a failure oc-

curs, however, a lazy dissemination approach is used to

recover lost messages and reconstruct the broadcast tree.

Polarized Gossip [66] uses gossip to discover routing path

in MANETs. Polarized Gossip uses varying probabilities

when re-transmitting messages that depends on the geo-

graphical distance from the current node to the message’s
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destination and the distance from the previous hop to the

destination. These distances are in turned estimated using

periodic one-hop beacons, and a very simple model of the

nodes’ likely mobility behaviour.

Probabilistic Multicast [21] is a gossip-based multicast pro-

tocols that limits the propagation of events to nodes po-

tentially interested in these events, rather than to all nodes

in the system. To this aim, nodes are organised in a set

of spanning trees using address prefixes, with Boolean

predicates embedded into the trees to capture collective

node subscriptions. These predicates condition the propa-

gation of events to sub-trees that contain interested nodes

using a continuous forward dissemination (periodic push),

while the tree is maintained using a continuous polling

mechanism (periodic pull).

RDG [14] (Route Driven Gossip) extends the routing primi-

tives provided by an on-demand ad-hoc routing protocol

(e.g. DSR) to provide a gossip-based reliable multicast

service in wireless networks (WSNs, MANETs). The gos-

sip protocol uses point-to-point links constructed by the

reactive routing protocol to disseminate information. The

protocol predominantly uses the periodic dissemination

pattern, extended with a pull mechanism for packets de-

tected as missing.

RPS [20] (Random Push-pull Blind Peer Selection) is one

of the configurations of the family of peer sampling

protocols proposed in [20]. In this configuration, nodes

periodically exchange their partial view with a random

neighbour, and keep a random fixed-size subset of the

merged views.

SCAMP [28] is a peer-membership protocol that uses punc-

tual dissemination to balance the network connectivity

so that each node maintains a view of log(N) evenly

distributed random nodes. On receipt of a join request

from node i, a SCAMP node n forwards the request to all

the nodes in its view. On receipt of a forwarded request,

a node j adds node i to its view with probability p, and

otherwise forwards i’s join request to a random node in its

view. This propagation mechanism helps in turn balance

the random graph every time a node joins the network.

Smart Gossip [65] provides a wireless broadcast service

based on Gossip. Rather than using a single set of param-

eters for the entire network (as the Gossip1,2,3 family of

protocols does [5]), Smart Gossip adapts the probability

of gossiping of each node based on the importance of this

node for the whole network. To this aim Smart Gossip

nodes progressively learns the local topological properties

of the network by overhearing ongoing broadcasts, and

deducing local propagation paths between nodes. Nodes

that are identified as hubs on these paths end up broad-

casting with a higher probability after an adaptive learn-

ing phase.

Spatial Gossip [22] is a broadcast protocol for a (potentially

infinite) set of nodes with positions in R
D, so that the

probability that a node x contacts a node y decreases

polynomially in the distance between x and y. This type

of protocol can be analysed formally and shown to ex-

hibit (probabilistic) propagation times in the logarithm

of the distance between the source of a message and its

receivers.

T-Chord [60] uses T-Man to bootstrap the overlay needed to

run the Chord DHT (Distributed Hash Table). Chord com-

bines a ring overlay, with a set of finger links that create

the logarithmic routing structure exploited by the DHT.

T-Chord constructs the Chord ring using an appropriate

distance function, and exploits the list of nodes visited by

T-Man to approximate the finger links needed by Chord.

T-Man [11] is a gossip-based topology construction protocol.

T-Man assumes that each node has a position in a metric

space E , and construct an overlay so that each node n

becomes connected to (at least) the k nodes closest to

n in E . To achieve this result, each node periodically

exchange its top m neighbours with a neighbour chosen

among its ψ closest neighbours.

TAG [63] (Tree-Assisted Gossiping) combines a standard tree

overlay with a bidirectional gossip overlay to disseminate

a video stream over numerous nodes. The gossip overlay

is constructed by taking into account the joining time of

nodes, and hence the part of the stream they should be

receiving, along with the size of their buffer, to maximise

the chance of overlap between gossiping nodes. The data

exchange proper uses digests and pull operations.

Unstructured Epidemic Multicast [51] proposes a frame-

work to combine an eager and a lazy push approach

(punctual and lazy dissemination in our terminology) to

multicast messages in a way that approximates structured

multicast-protocols. The key idea consists in preferably

selecting “good” nodes (according to some metric, e.g.

bandwidth, latency, etc.) to eagerly propagate gossip mes-

sages, while falling back onto a lazy dissemination ap-

proach for other nodes.


