
Emergent Distribution of Operating System

Services in Wireless Ad Hoc Networks

Peter Janacik and Tales Heimfarth

Heinz Nixdorf Institute, University of Paderborn
Fuerstenallee 11, 33102 Paderborn, Germany

{pjanacik, tales}@uni-paderborn.de

Abstract. Despite the advances in wireless, energy-constrained ad hoc
networks, there are still many challenges given the limited capabilities
of the current hardware. Therefore, our aim is to develop a lightweight,
yet powerful operating system (OS) for these networks. We reject the
brute force method of provisioning all necessary OS services at each
node of the system. Instead, our approach aims to distribute the set of
requested OS services over the network to reduce and balance load, im-
prove quality of service, increase fairness and predictability. To limit the
burden imposed on the network by the service distribution mechanism,
only a subset of nodes, the coordinators, chosen by an underlying state-
of-the-art topology control, are concerned with this task. Coordinators
observe the state of nodes and OS services within their one-hop vicinity,
i.e. their decision area, incorporating different aspects, such as energy,
utilisation, or available resources in their decisions. Although each co-
ordinator acquires information and triggers migrations of service states
only locally within its decision area, a global-level result emerges, as de-
cision areas naturally overlap. In this manner, an increased amount of
work load e.g. in one decision area “floats” to the surrounding decision
areas attracted by better conditions. In ns-2 simulations we demonstrate
that the mechanism of emergence, which produces many fascinating re-
sults in natural systems, can successfully be applied in artificial systems
to considerably increase the efficiency and quality of OS service distri-
bution.

1 Introduction

Given current hardware limitations of wireless nodes, e.g. commercial off-the-
shelf sensor nodes (see [1]), there are severe restrictions on the software executed
on them. For the same reason, operating systems (OS) for this type of nodes,
like TinyOS [2], do not provide the means to handle more complex applica-
tions. To cope with these challenges, we use the paradigm of OS service distri-
bution within our lightweight, distributed operating system NanoOS [3]. The
OS consists of different services such as scheduling, synchronisation, time, etc.
Traditional OS offer the set of all needed services at every node of the system
resulting in excessive resource waste. Moreover, this limits the possible number

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15780779?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

200 Peter Janacik and Tales Heimfarth

of OS services utilised at one node at the same time. In contrast, our approach
distributes the set of needed OS services over different nodes leading to a lower
per-node load, a greater amount of possible service types, and the option of
load adjustment. In particular, a distribution service observes the network and
initiates migrations of OS service states (associated with service requestors)
to achieve the following aims: load balancing, i.e. the uniform distribution of
load over available nodes and services, fairness, i.e. the equal treatment of
service requestors, quality of service, i.e. short answering times, and predictabil-

ity of service quality. Providing these properties is a global -level aim, which is
achieved solely from numerous interactions among lower -level components, i.e.
the nodes. Moreover, the rules specifying these interactions are executed using
only local, i.e. one-hop, information without reference to the global pattern (or
aim). The emergent property (as defined in [4]) of our system is of utter im-
portance in the scenario of volatile, energy-constrained networks: it translates
to a highly increased amount of robustness, resilience, and a considerably lower
communication overhead.

To lower the burden imposed on the network, our approach makes a sub-
set of nodes, the coordinators, responsible for service distribution. This set is
chosen dynamically by an underlying state-of-the-art topology control (such as
[5, 6, 7]), so that each node has at least one coordinator in one-hop distance. Co-
ordinators run a distribution service that is responsible for observing the state
of the system within their one-hop neighbourhood, i.e. their decision area, and
for deciding on the migration of OS service states. As already discussed above,
at first glance, the mechanism for service distribution is local. But given the
natural overlap of decision areas, there is also an inter-decision area migration.
This way, load can “float” to neighbouring areas, so that a global-level result
emerges. Using ns-2 [8] simulations, we demonstrate the considerable improve-
ments in terms of the above-defined aims provided by our approach. We are
aware that reducing the distance between OS service requestors and providers,
efficient service discovery, or failure handling are also crucial in wireless, energy-
constrained ad hoc networks. These topics are however beyond the scope of this
document and will therefore be addressed in other publications.

This paper is organised as follows: Section 2 presents the state-of-the-art,
while Section 3 subsequently describes the proposed emergent distribution of
OS services. Section 4 then presents the results of our simulations. Finally,
Section 5 ends this paper with brief concluding remarks.

2 State-of-the-Art

Current ad hoc or sensor network node hardware imposes severe restrictions
on the software executed on top of it. Therefore, TinyOS [2] e.g. tries to solve
this problem with its extremely small footprint. But since all components of a
TinyOS instance have to fit into one node, its functionality is severely limited, so
that it cannot cope with more complex applications. The MagnetOS approach

Emergent Distribution of OS Services in Wireless Ad Hoc Networks 201

[9], as another example, is very different from most OS: its aim is to offer
a single-system image of a unified Java virtual machine (JVM) across nodes.
Migration of objects in MagnetOS is carried out over one or multiple hops in
the direction of the greatest communication, reducing the distance between call-
initiators and -receivers. Our work, however, has different aims: improving load
balancing, fairness, quality of service, and predictability. In the related field of
dynamic distributed scheduling algorithms, there has also been research on the
reduction of communication cost and load balancing. However, such approaches
like [10, 11] were developed for static networks of UNIX workstations and are not
suited for mobile, volatile, resource- and energy-constrained networks. Further,
they impose the burden of service distribution on all workstations in a network.

3 Emergent Distribution of OS Services

After providing an outline of our approach in the introduction and reviewing the
state-of-the-art, this section describes the system components and how division
of labour between nodes is employed. Subsequently, the main part of this section
concentrates on migration source and target determination.

3.1 System Components

We assume a wireless network consisting of resource- and energy-constrained,
mobile hardware nodes. Our OS, composed of services, and applications, com-
posed of tasks, run on top of it. In addition to the functionality of traditional OS,
our OS provides an uniform system call environment across the mobile nodes
and further services like a distribution service, observing the system state and
initiating migrations, or distributed event, memory, and synchronisation ser-
vices. As depicted in Figure 2 (a), OS services and application tasks are subtypes
of the abstract processing entity. An OS service maintains states associated with
each of its requestors, which are sharing it and may reside on different, remote
nodes. Services may act as both, service requestors and providers, while tasks
only act as requestors.

3.2 Division of Labour between Nodes

In order to reduce the burden imposed on the network by the mechanism of
service distribution and to enable the fusion of relevant system data, we assign
the task of service distribution only to a subset of nodes, called coordinators.
This subset, created by a state-of-the-art topology control (such as [5, 7] or our
work from [6]), should consist of a low number of nodes, while ensuring that
each node has at least one coordinator in one-hop communication distance (as
depicted in Figure 1 (a)). Further, this implies that the number of coordinators
scales with the density and number of nodes. The idea of our work is that each
coordinator runs a distribution service that monitors the coordinator’s decision

202 Peter Janacik and Tales Heimfarth

Fig. 1. Division of labour between nodes. (a) Different node types. (b) Decision areas
of coordinators and distribution service placement.

area, which contains all non-coordinators in one-hop distance. Figure 1 (b)
shows the overlapping decision areas of coordinators 1 and 2. We assume the
amount of overlap to be a tuneable parameter of topology control. Coordinator
status changes take place as reaction to changes of the environment (e.g. node
density), but also over time, so that nodes “take turns” being coordinators
balancing the burden of service distribution.

3.3 State Migration Source and Target Determination

Migration, initiated by the distribution service, consists of the migration of
states, which are associated with the requestors of services, between existing
OS services, but also the migration of states to newly-started OS services. Fig-
ure 2 (b) illustrates a typical scenario, where migration is applied. The OS
service running at node 4 is overburdened, as indicated by the service request
queue length. At the same time, the OS services at nodes 3 and 5 are almost idle
increasing the overall execution overhead. To improve the configuration, some
OS service states from the service at node 4 would be migrated to the service
at node 6. The services at nodes 3 and 5 would be fused, on the other hand, by
migrating all states from one to the other service. To be more concrete, the mi-
gration decision policy (intuitively speaking) has the following main operational
goals: First, prevent too long service request queues; second, disburden services
at nodes, whose remaining energy level is considerably below the average en-
ergy level of nodes in the decision area of the coordinator; moreover, avoid the
execution of services with very short queues, since these do not justify the asso-
ciated overhead and hold resources which may prevent the start of new services.
To enable migration decisions, every distribution service is provided with the
information utilised in the descriptions below from all nodes and services in its
coordinator’s decision area (by underlying protocols).

In our model, we assume the utilisation of a service to be indicated by the
average length of its queue for pending service requests in terms of processing
time needed. For the sake of simplicity, we will only refer to it as (service

Emergent Distribution of OS Services in Wireless Ad Hoc Networks 203

Fig. 2. Processing entities. (a) Relationship between processing entity and its sub-
classes. (b) Distribution of processing entities over the network, illustrating a problem
scenario. Key: DS—distribution service

request) queue length below. In order to enable decisions based on the degree of
utilisation, our approach distinguishes the following categories of service request
queue lengths (see also Figure 2 (b)):

Short: Low utilisation
Open: Fair utilisation
Closed: Fair or slightly higher utilisation, rejecting new requestors
Long: Critically high utilisation, rejecting new requestors

There are different priority classes to characterise the severity of the problem
at the migration source (according to the policy described above): (1) Long
queue; (2) queue open or closed and energy low at hosting node; (3) queue
short. For an additional, more fine granular ranking within priority classes, we
use the following OS service fitness metric that rates the service incorporating
the hosting node, e.g. whether the service load is appropriate and the host’s
resources are not exhausted: Mservice fitness = ωCPU ·MCPU +ωmem ·Mmem +
ωql ·Mql + ωE ·ME . It uses metrics taking into account CPU and memory util-

isation1 M{CPU,mem} = avail {CPU,mem}
max {CPU,mem} describing the proportion of available

to maximum resources, the queue length metric Mql = 1 − min(ql
qllong min

, 1)

reflecting the relation of the actual queue length to the minimum long queue
length, and the energy metric

ME =

{

1 if Ehost ≥ Eavrg decision area

1 −
Eavrg decision area−Ehost

Eavrg decision area
else

describing the proportion of remaining energy at the host to the average amount
of remaining energy at nodes in the decision area. ωCPU , ωmem, ωql, and ωE are

1 Different members of sets exclude each other in the following formula.

204 Peter Janacik and Tales Heimfarth

weights for the corresponding metrics, such that ωCPU + ωmem + ωql + ωE = 1.
They can be adjusted in order to reflect characteristics of a certain hardware
type, e.g. ωmem can be increased if memory is the more valuable resource.
Moreover, the above functions use avail {CPU,mem}, reflecting the amount
of available CPU and memory resources, max {CPU,mem}, describing the
maximum available corresponding resources at a node. qllong min represents the
minimum queue length for the “long” category and ql the actual service request
queue length. Eavrg decision area contains the average of remaining energy levels
in the decision area, whereas Ehost describes the remaining energy level of the
service host.

The service in the highest priority class with the lowest Mservice fitness

ranking is chosen first as migration source. In order to reduce interference of
overlapping decision areas, only a distribution service at a coordinator, which
is connected to a non-coordinator with the best link from all links connecting it
to surrounding coordinators, may choose a service from such a non-coordinator
as migration source.

Finding a migration target works similar to the migration source finding
process, but using the following priority classes: (1) Open queue and sufficient
energy at hosting node; (2) short queue; (3) no service running at hosting node.
Priority class 3 is only an option, if the queue length of the migration source
is above the minimum long queue length, so that near-idle services are not mi-
grated unnecessarily. The decision process proceeds similar to finding a source,
except that the whole decision area is taken into account. The service in the
highest priority class with the highest Mservice fitness ranking is chosen first
as migration target. After migration initiation, migration source and target are
locked, excluding them from the migration process for a specified period of time
in order increase the stability of the system.

4 Results

We implemented our emergent distribution of OS services and a reference ap-
proach using C++ and the ns-2 network simulator [8]. For lower layers, we
used our topology control [6] and ant colony-based routing [12]. The reference
approach employs a greedy, demand-based OS service placement without ser-
vice migration and topology control, in conjunction with ad hoc on-demand
distance vector (AODV) [8] routing from ns-2. To simulate running processing
entities (PE), we specified a set of PE types. For each PE type, a recurring
sequence of behaviour items is defined. Each behaviour item includes informa-
tion on its execution duration, CPU, memory, and OS service requirement (a
service type or none), as well as, the processing time needed by the required OS
service. The assignment of application task instances to PE types and nodes
was randomised.

The simulations further employed a 914 MHz Lucent WaveLAN DSSS radio,
the two-ray ground reflection model, 80 joules initial energy per node and an

Emergent Distribution of OS Services in Wireless Ad Hoc Networks 205

Fig. 3. Performance (a) and energy results (b). Key: G—grid, R—RPGM, FI—failure
injection

802.11b MAC protocol, provided by ns-2. To cover static and dynamic scenarios
we used two settings: (1) A grid, 44 nodes, 3 x 15 arrangement, horizontal and
vertical distance of d = 25 m between nodes, 1000 s simulation time; (2) a
reference point group mobility (RPGM) model [13], 64 nodes, 4 x 16 groups,
logical group centres movement 2–8 m/s based on random walk model [8], 850
x 850 m area, 900 s simulation time. In order to simulate volatile and failure-
prone networks, we injected failures during simulation. Our failure injection

(FI) model employs k failure points (FP) f1,...,k. At the start of a run, FP
probabilities pf 1,...,k are set randomly between pmin and pmax. Next, each node
makes a probabilistic decision based on pf1,...,k

, whether to fail at FP f1,...,k.
Each FP fi is associated with a failure time tfi

in ascending temporal order, so
that for some i ∈ 1, . . . , k, tfi

< tfi+1
applies. Failing at an FP fi means for a

node that its network interface is out of order between tfi
and tfi+1

. A failure
at the last FP (i = k) persists until the end of the simulation. We used two FP
(k = 2) and failure times (tf1,2

) at 333 and 667 seconds of simulation time. The
minimum FP probability (pmin) was set to 0, the maximum (pmax), to 0.5.

The presented figures were obtained using the following settings: 100 runs,
reference and emergent approach, grid and RPGM topology, with and without
FI; lower and upper bounds of confidence intervals, with probability of error
α = 0.05, to indicate the significance of the presented results (marks for not
applicable or too narrow intervals for a reasonable visualisation are omitted).

4.1 Performance and Energy Consumption

Figure 3 (a) depicts the processing speed of both approaches. The emergent
approach outperforms the reference approach by a clear margin, which is also
an indication for a higher quality of service. The energy consumed by both
approaches is depicted in Figure 3 (b). Again, the emergent approach clearly
outperforms its reference counterpart. FI does not influence energy consump-
tion considerably, possibly, since the failed nodes do not actively participate

206 Peter Janacik and Tales Heimfarth

Fig. 4. Load balancing, fairness, quality of service, predictability (a–c) and migration
behaviour (d) results. Key: G—grid, R—RPGM, FI—failure injection

in communication, thus saving the corresponding amount of energy. Further,
the figure clearly demonstrates that the variance of energy consumption of the
emergent approach is intelligibly lower, which is also an indicator for a higher
predictability.

4.2 Load Balancing, Fairness, Quality of Service, Predictability

Quality of service depends on service request queue lengths in general, whereas
load balancing, fairness, and predictability depend on the uniform distribu-
tion of queue lengths throughout the system. Therefore, our next studies are
focused on these indicators. Figure 4 (a) depicts the number of long service
request queues (i.e. “which are in the long category”) per node in each of the
runs. Measurements were taken at service reply issuing. Evidently, the number
of long queues in the reference approach is several times higher. Nevertheless,
some RPGM FI runs for the reference approach exhibit a very low number of
long queue lengths. This is supposedly owed to the reference approach, starting
a high number of services that are utilised only to a minimum extent, which
increases overhead and prevents new services from being started. In contrast to

Emergent Distribution of OS Services in Wireless Ad Hoc Networks 207

the reference approach, the figures for the emergent approach appear to stay
constantly low with only little variance, indicating good quality of service and
a high predictability. Further, the high amount of long queues in the reference
approach hints at the lack of fairness: some service requestors are served signif-
icantly slower than others, which greatly affects, and leads to high variances of
service requestors’ own processing speeds.

Looking at average queue lengths in Figure 4 (b), the conclusions are similar,
but the averages of both approaches are more close-by. This could be explained
as above by reference service distribution starting a high number of little-utilised
services. Emergent service distribution, in contrast, attempts to avoid running
near-idle services in order to minimise overhead and provide enough room for
the start of new services. This is, however, to its disadvantage in this particular
metric. The results for service response times in Figure 4 (c) additionally take
into account communication delays and are very similar to the figures in (a).

4.3 Reaction Behaviour and Stability of Migration

Figure 4 (d) depicts the migration activity in a grid topology. Migration times
encountered are sorted into buckets of 10 seconds. All runs exhibit an initial
peak, reflecting initial optimisations. Without FI, migration settles down there-
after, yielding a highly stable solution for the rest of the simulation. If however
the need for optimisations is brought about by FI at 333 and 667 seconds, mi-
gration reacts swiftly shortly after the occurrences, settling down subsequently
leading to a stable solution.

5 Conclusion

Within the scope of our efforts to create a lightweight, yet powerful operating
system (OS) for wireless, energy-constrained nodes, this paper introduces an
efficient method for the distribution of OS services. Our approach only imposes
load on a selected subset of nodes, the coordinators. They observe the state of
the system locally within their decision areas. Given the natural overlap of these
areas, when one decision area suffers e.g. under high load, this load “floats” to
the surrounding areas attracted by better conditions. Therefore, although each
coordinator acquires information and triggers migrations of service states only
locally, there is an emergent global result.

Given the restrictions of current hardware, an efficient distribution method
is crucial for our OS. Even more, we strive to provide an OS behaviour that
is rather associated with OS which exhibit a much larger footprint: load bal-
ancing, fairness, and predictability, combined with a high quality of service.
Using ns-2 simulations we show that our approach reduces energy consumption
by a significant amount compared to a reference system. Further, quality of
service is increased by more than 80 % in most cases, while load balancing is
improved by 200 to 400 % exhibiting a low deviation from the average values.

208 Peter Janacik and Tales Heimfarth

This in particular results in considerably improved fairness and predictability.
The state obtained by the proposed mechanism is characterised by stability and
swift adjustment to changes in the environment at the global level, emerging
from execution of solely local actions based on local information. Concludingly,
the observations give yet another piece of evidence that emergence as a mecha-
nism often encountered in nature can be transferred to computer systems while
preserving its inherent character.

References

1. The Scientist and Engineer’s Guide to TinyOS Programming. http://ttdp.org
/tpg/html/book/book1.htm, accessed January 7, 2006.

2. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J. Pister. System
architecture directions for networked sensors. In Proc. of ACM ASPLOS, pages
93–104, Cambridge, MA, November 2000.

3. F. J. Rammig, M. Goetz, T. Heimfarth, P. Janacik, and S. Oberthuer. Real-
time operating systems for self-coordinating embedded systems. In Proc. of IEEE
ISORC, Gyeongju, Korea, April 2006. Accepted for publication.

4. S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz, and
E. Bonabeau. Self-Organization in Biological Systems. Princeton Studies in Com-
plexity. Princeton University Press, first edition, 2003.

5. A. Cerpa and D. Estrin. ASCENT: Adaptive self-configuring sensor networks
topologies. IEEE TMC, 3(3):272–285, 2004.

6. P. Janacik, T. Heimfarth, and F. Rammig. Emergent topology control based on
division of labour in ants. In Proc. of IEEE AINA, Vienna, Austria, April 2006.

7. F. Ye, G. Zhong, J. Cheng, S. Lu, and L. Zhang. PEAS: A robust energy con-
serving protocol for long-lived sensor networks. In Proc. of IEEE ICDCS, pages
28–37, Providence, RI, May 2003.

8. The network simulator. http://www.isi.edu/nsnam/ns/, accessed July 8, 2005.
9. R. Barr, J. C. Bicket, D. S. Dantas, B. Du, T. W. D. Kim, B. Zhou, and E. Gün

Sirer. On the need for system-level support for ad hoc and sensor networks. ACM
SIGOPS OS Review, 36(2):1–5, April 2002.

10. H.-U. Heiss and M. Schmitz. Decentralized dynamic load balancing: The particles
approach. Information Sciences, May 1995.

11. C. Lang, M. Trehel, and P. Baptiste. A distributed placement algorithm based
on process initiative and on a limited travel. In Proc. of PDPTA, 1999.

12. P. Janacik, O. Kao, and U. Rerrer. An approach combining routing and resource
sharing in wireless ad hoc networks using swarm-intelligence. In Proc. of the
ACM/IEEE MSWiM, pages 31–40. CTi Press, 2004.

13. X. Hong, M. Gerla, G. Pei, and C.-C. Chiang. A group mobility model for ad hoc
wireless networks. In Proc. of ACM/IEEE MSWiM, August 1999.

