294 research outputs found

    Performance measurements of Bluetooth 5 technique under interference

    Get PDF
    Abstract. This thesis focuses on experimental performance of the Bluetooth 5 technology and compares results with the previous version. Bluetooth technology, institute of electrical and electronics engineers (IEEE) Std. 802.15.4, and other techniques share the same unlicensed 2.4 GHz industrial, scientific, and medical (ISM) spectrum. Various technologies are operating in the same frequency band, and if the channel utilized by these technologies overlap, end in cross-technology interference (CTI). Measurements have been performed in indoor scenario and ZigBee nodes were used as an interference. Performance output of the Bluetooth 5 is compared to a previous release Bluetooth low energy (BLE) 4 which is currently one of the popular technologies in commercial wireless devices and expected to be even more widespread in the future. This new Bluetooth technology has featured increased data rate, low power consumption, longer range, higher broadcasting capacity, and improved coexistence with other wireless technologies operating in the same frequency band. The main goal of this work was to evaluate the experimental communication range and throughput of the BLE 5 coded version under interference. Nordic Semiconductor nRF52840 chipset has been used for measurements and result shows the practical communication range and throughput of BLE 5 coded version under interference. In this work, with error correction coding, one-third BLE link gain was achieved when considering packet error rate (PER) less than 10%. In addition, ZigBee interference was found to be very harmful for the Bluetooth communication when operating in the same frequency band

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Quality aspects of Internet telephony

    Get PDF
    Internet telephony has had a tremendous impact on how people communicate. Many now maintain contact using some form of Internet telephony. Therefore the motivation for this work has been to address the quality aspects of real-world Internet telephony for both fixed and wireless telecommunication. The focus has been on the quality aspects of voice communication, since poor quality leads often to user dissatisfaction. The scope of the work has been broad in order to address the main factors within IP-based voice communication. The first four chapters of this dissertation constitute the background material. The first chapter outlines where Internet telephony is deployed today. It also motivates the topics and techniques used in this research. The second chapter provides the background on Internet telephony including signalling, speech coding and voice Internetworking. The third chapter focuses solely on quality measures for packetised voice systems and finally the fourth chapter is devoted to the history of voice research. The appendix of this dissertation constitutes the research contributions. It includes an examination of the access network, focusing on how calls are multiplexed in wired and wireless systems. Subsequently in the wireless case, we consider how to handover calls from 802.11 networks to the cellular infrastructure. We then consider the Internet backbone where most of our work is devoted to measurements specifically for Internet telephony. The applications of these measurements have been estimating telephony arrival processes, measuring call quality, and quantifying the trend in Internet telephony quality over several years. We also consider the end systems, since they are responsible for reconstructing a voice stream given loss and delay constraints. Finally we estimate voice quality using the ITU proposal PESQ and the packet loss process. The main contribution of this work is a systematic examination of Internet telephony. We describe several methods to enable adaptable solutions for maintaining consistent voice quality. We have also found that relatively small technical changes can lead to substantial user quality improvements. A second contribution of this work is a suite of software tools designed to ascertain voice quality in IP networks. Some of these tools are in use within commercial systems today

    Reliable Packet Streams with Multipath Network Coding

    Get PDF
    With increasing computational capabilities and advances in robotics, technology is at the verge of the next industrial revolution. An growing number of tasks can be performed by artificial intelligence and agile robots. This impacts almost every part of the economy, including agriculture, transportation, industrial manufacturing and even social interactions. In all applications of automated machines, communication is a critical component to enable cooperation between machines and exchange of sensor and control signals. The mobility and scale at which these automated machines are deployed also challenges todays communication systems. These complex cyber-physical systems consisting of up to hundreds of mobile machines require highly reliable connectivity to operate safely and efficiently. Current automation systems use wired communication to guarantee low latency connectivity. But wired connections cannot be used to connect mobile robots and are also problematic to deploy at scale. Therefore, wireless connectivity is a necessity. On the other hand, it is subject to many external influences and cannot reach the same level of reliability as the wired communication systems. This thesis aims to address this problem by proposing methods to combine multiple unreliable wireless connections to a stable channel. The foundation for this work is Caterpillar Random Linear Network Coding (CRLNC), a new variant of network code designed to achieve low latency. CRLNC performs similar to block codes in recovery of lost packets, but with a significantly decreased latency. CRLNC with Feedback (CRLNC-FB) integrates a Selective-Repeat ARQ (SR-ARQ) to optimize the tradeoff between delay and throughput of reliable communication. The proposed protocol allows to slightly increase the overhead to reduce the packet delay at the receiver. With CRLNC, delay can be reduced by more than 50 % with only a 10 % reduction in throughput. Finally, CRLNC is combined with a statistical multipath scheduler to optimize the reliability and service availability in wireless network with multiple unreliable paths. This multipath CRLNC scheme improves the reliability of a fixed-rate packet stream by 10 % in a system model based on real-world measurements of LTE and WiFi. All the proposed protocols have been implemented in the software library NCKernel. With NCKernel, these protocols could be evaluated in simulated and emulated networks, and were also deployed in several real-world testbeds and demonstrators.:Abstract 2 Acknowledgements 6 1 Introduction 7 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Use Cases and Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Opportunities of Multipath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 State of the Art of Multipath Communication 19 2.1 Physical Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Data Link Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Network Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4 Transport Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.5 Application Layer and Session Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.6 Research Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 NCKernel: Network Coding Protocol Framework 27 3.1 Theory that matters! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.1 Socket Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.2 En-/Re-/Decoder API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.3 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.4 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.5 Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.5 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4 Low-Latency Network Coding 35 4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2 Random Linear Network Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.3 Low Latency Network Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.4 CRLNC: Caterpillar Random Linear Network Coding . . . . . . . . . . . . . . . . . . 38 4.4.1 Encoding and Packet Format . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.4.2 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.4.3 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.5.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.5.2 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.5.3 Packet Loss Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.5.4 Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.5.5 Window Size Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5 Delay-Throughput Tradeoff 55 5.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.2 Network Coding with ARQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.3 CRLNC-FB: CRLNC with Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.3.1 Encoding and Packet Format . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3.2 Decoding and Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3.3 Retransmissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.4.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.4.2 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.4.3 Systematic Retransmissions . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.4.4 Coded Packet Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.4.5 Comparison with other Protocols . . . . . . . . . . . . . . . . . . . . . . . . 67 5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6 Multipath for Reliable Low-Latency Packet Streams 73 6.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.3.1 Traffic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.3.2 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.3.3 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3.4 Reliability Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.4 Multipath CRLNC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.4.1 Window Size for Heterogeneous Paths . . . . . . . . . . . . . . . . . . . . . 77 6.4.2 Packet Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.5.1 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.5.2 Preliminary Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 7 Conclusion 94 7.1 Results and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 7.2 Future Research Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Acronyms 99 Publications 101 Bibliography 10

    Adaptive multimedia streaming control algorithm in wireless LANs and 4G networks

    Get PDF
    E-learning has become an important service offered over the Internet. Lately many users are accessing learning content via wireless networks and using mobile devices. Most content is rich media-based and often puts significant pressure on the existing wireless networks in order to support high quality of delivery. In this context, offering a solution for improving user quality of experience when multimedia content is delivered over wireless networks is already a challenging task. Additionally, to support this for mobile e-learning over wireless LANs becomes even more difficult. If we want to increase the end-used perceived quality, we have to take into account the users’ individual set of characteristics. The fact that users have subjective opinions on the quality of a multimedia application can be used to increase their QoE by setting a minimum quality threshold below which the connection is considered to be undesired. Like this, the use of precious radio resources can be optimized in order to simultaneously satisfy an increased number of users. In this thesis a new user-oriented adaptive algorithm based on QOAS was designed and developed in order to address the user satisfaction problem. Simulations have been carried out with different adaptation schemes to compare the performances and benefits of the DQOAS mechanism. The simulation results are showing that using a dynamic stream granularity with a minimum threshold for the transmission rate, improves the overall quality of the multimedia delivery process, increasing the total number of satisfied users and the link utilization The good results obtained by the algorithm in IEEE 802.11 wireless environment, motivated the research about the utility of the newly proposed algorithm in another wireless environment, LTE. The study shows that DQOAS algorithm can obtain good results in terms of application perceived quality, when the considered application generates multiple streams. These results can be improved by using a new QoS parameters mapping scheme able to modify the streams’ priority and thus allowing the algorithms decisions to not be overridden by the systems’ scheduler

    Spectrum Sharing, Latency, and Security in 5G Networks with Application to IoT and Smart Grid

    Get PDF
    The surge of mobile devices, such as smartphones, and tables, demands additional capacity. On the other hand, Internet-of-Things (IoT) and smart grid, which connects numerous sensors, devices, and machines require ubiquitous connectivity and data security. Additionally, some use cases, such as automated manufacturing process, automated transportation, and smart grid, require latency as low as 1 ms, and reliability as high as 99.99\%. To enhance throughput and support massive connectivity, sharing of the unlicensed spectrum (3.5 GHz, 5GHz, and mmWave) is a potential solution. On the other hand, to address the latency, drastic changes in the network architecture is required. The fifth generation (5G) cellular networks will embrace the spectrum sharing and network architecture modifications to address the throughput enhancement, massive connectivity, and low latency. To utilize the unlicensed spectrum, we propose a fixed duty cycle based coexistence of LTE and WiFi, in which the duty cycle of LTE transmission can be adjusted based on the amount of data. In the second approach, a multi-arm bandit learning based coexistence of LTE and WiFi has been developed. The duty cycle of transmission and downlink power are adapted through the exploration and exploitation. This approach improves the aggregated capacity by 33\%, along with cell edge and energy efficiency enhancement. We also investigate the performance of LTE and ZigBee coexistence using smart grid as a scenario. In case of low latency, we summarize the existing works into three domains in the context of 5G networks: core, radio and caching networks. Along with this, fundamental constraints for achieving low latency are identified followed by a general overview of exemplary 5G networks. Besides that, a loop-free, low latency and local-decision based routing protocol is derived in the context of smart grid. This approach ensures low latency and reliable data communication for stationary devices. To address data security in wireless communication, we introduce a geo-location based data encryption, along with node authentication by k-nearest neighbor algorithm. In the second approach, node authentication by the support vector machine, along with public-private key management, is proposed. Both approaches ensure data security without increasing the packet overhead compared to the existing approaches

    Average Load Distance (ALD) radio communication model for wireless sensor networks

    Get PDF
    The lifetime of network is one of the most critical issues that have to be considered in the application of wireless sensor networks. The network nodes are battery powered and remain operational as long as they can transmit the sensed data to the processing (sink) node. The main energy consumption of sensor node can be attributed to the task of data transmission to sink node or cluster head. Hence, conserving energy in transmitting data shall maximize functional life of the wireless networks. In this paper we proposed a computationally efficient Average Load Distance (ALD) communication model for forwarding data from sensor to the cluster head. Experiment results indicate that the proposed model can be up to 88% more efficient over direct mode of communication, in respect of per-round maximum energy consumption. An application study shows that ALD can save up to 89% of wireless sensor networks operational cost when compared to direct mode transmission

    Quality-Oriented Mobility Management for Multimedia Content Delivery to Mobile Users

    Get PDF
    The heterogeneous wireless networking environment determined by the latest developments in wireless access technologies promises a high level of communication resources for mobile computational devices. Although the communication resources provided, especially referring to bandwidth, enable multimedia streaming to mobile users, maintaining a high user perceived quality is still a challenging task. The main factors which affect quality in multimedia streaming over wireless networks are mainly the error-prone nature of the wireless channels and the user mobility. These factors determine a high level of dynamics of wireless communication resources, namely variations in throughput and packet loss as well as network availability and delays in delivering the data packets. Under these conditions maintaining a high level of quality, as perceived by the user, requires a quality oriented mobility management scheme. Consequently we propose the Smooth Adaptive Soft-Handover Algorithm, a novel quality oriented handover management scheme which unlike other similar solutions, smoothly transfer the data traffic from one network to another using multiple simultaneous connections. To estimate the capacity of each connection the novel Quality of Multimedia Streaming (QMS) metric is proposed. The QMS metric aims at offering maximum flexibility and efficiency allowing the applications to fine tune the behavior of the handover algorithm. The current simulation-based performance evaluation clearly shows the better performance of the proposed Smooth Adaptive Soft-Handover Algorithm as compared with other handover solutions. The evaluation was performed in various scenarios including multiple mobile hosts performing handover simultaneously, wireless networks with variable overlapping areas, and various network congestion levels
    corecore