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ABSTRACT OF THE DISSERTATION

SPECTRUM SHARING, LATENCY, AND SECURITY IN 5G NETWORKS WITH

APPLICATION TO IOT AND SMART GRID

by
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Miami, Florida

Professor Arif I. Sarwat, Co-Major Professor

Professor Ismail Guvenc, Co-Major Professor

The surge of mobile devices, such as smart phones, and tables, demands additional capac-

ity. On the other hand, Internet-of-Things (IoT) and smart grid, which connects numerous

sensors, devices, and machines require ubiquitous connectivity and data security. Addi-

tionally, some use cases, such as automated manufacturing process, automated transporta-

tion, and smart grid, require latency as low as 1 ms, and reliability as high as 99.99%. To

enhance throughput and support massive connectivity, sharing of the unlicensed spectrum

(3.5 GHz, 5GHz, and mmWave) is a potential solution. On the other hand, to address the

latency, drastic changes in the network architecture is required. The fifth generation (5G)

cellular networks will embrace the spectrum sharing and network architecture modifica-

tions to address the throughput enhancement, massive connectivity, and low latency.

To utilize the unlicensed spectrum, we propose a fixed duty cycle based coexistence of

LTE and WiFi, in which the duty cycle of LTE transmission can be adjusted based on the

amount of data. In the second approach, a multi-arm bandit learning based coexistence

of LTE and WiFi has been developed. The duty cycle of transmission and down link

power are adapted through the exploration and exploitation. This approach improves the

aggregated capacity by 33%, along with cell edge and energy efficiency enhancement.
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We also investigate the performance of LTE and ZigBee coexistence using smart grid as

a scenario.

In case of low latency, we summarize the existing works into three domains in the

context of 5G networks: core, radio and caching networks. Along with this, fundamental

constraints for achieving low latency are identified followed by a general overview of

exemplary 5G networks. Besides that, a loop free, low latency and local-decision based

routing protocol is derived in the context of smart grid. This approach ensures low latency

and reliable data communication for stationary devices.

To address data security in wireless communication, we introduce a geo-location

based data encryption, along with node authentication by k-nearest neighbor algorithm.

In the second approach, node authentication by the support vector machine, along with

public-private key management, is proposed. Both approaches ensure data security with-

out increasing the packet overhead compared to the existing approaches.
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CHAPTER 1

Introduction

The fifth generation (5G) cellular network is the communication solution to meet the

wireless communication demands of beyond 2020. The goals of 5G networks will be to

achieve 1000 times throughput, 100 billion connections and close to zero delays compared

to current 4G LTE networks [6]. In particular, 5G will support latency/reliability-sensitive

services and massive machine type devices, along with regular personal mobile commu-

nication supporting large throughput. Therefore, the requirements of 5G networks can

be categorized into three broad factions: (1) Enhanced Mobile Broadband (eMBB), (2)

massive Machine Type Communication (mMTC), and (3) Ultra Reliable Low Latency

Communication (uRLLC). In case of eMBB, the peak data rate is 10-20 Gbps with spa-

tial uniform data rates of 100 Mbps at the end users. In mMTC communication, a large

number of smart devices, including utilities, manufacturing, health care, transportation,

and consumer goods, need a low data rate uplink-oriented connection for a sporadic small

packet transmission. A single cell may need to support up to 30,000 devices [7, 8]. In

the case of uRLLC, not only the latency but also the reliability aspect needs to be ad-

dressed. More specifically, end-to-end latency of 1 ms, along with reliability on the order

of 99.99%, is to be fulfilled. Moreover, the 5G will be an evolution of LTE complimenting

these features. An exemplary 5G network is illustrated in Fig. 1.1.

The 5G will play a critical role in the modern economy, affecting consumer, trans-

portation, health, power system, education, logistics, and other major industries. The

focus of 5G communication is to provide not only high-speed mobile Internet, but also

the ubiquitous connectivity for numerous sensors, devices, and machines forming the

Internet-of-Things (IoT). The IoT (as illustrated in Fig. 1.2), which connects anything to

any other things anytime and anywhere, introduces many new use cases, such as smart

transportation, virtual reality, tactile Internet and real-time control. These services put a
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Figure 1.1: An exemplary 5G network supporting enhanced mobile broadband, massive
machine type communication, and ultra reliable low latency communication.

new prerequisite of throughput, reliability, latency, and robustness on the network. Ad-

ditionally, services are foreseen to have intermittent, as well as always-on hyper connec-

tions, in machine-type communications (MTC) supporting various applications such as

connected vehicles, smart homes, smart meters, moving robots, and sensors working in

an efficient and scalable approach. Besides, various emerging technologies, such as aug-

mented reality, wearable devices, and full immersive experience (3D) are affecting the

life styles of human end users and placing new requirements in the next generation net-

works. These use cases of 5G drive the 5G specifications on different dimensions, such

as throughput, latency, network and device energy efficiency, reliability, connection den-

sity, mobility and traffic volume density. Current 4G telecommunication is not capable of

fulfilling the technical requirements for these services.
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Figure 1.2: IoT supporting numerous applications.

Within the scope of IoT, smart grid (as illustrated in Fig. 1.3) is a prominent example

of mMTC and uRLLC. Smart grid is the modern power system that utilizes bidirectional

communication among its numerous nodes of generation, transmission, and distribution

systems. In particular, metering infrastructure of smart grid that consists of millions of

smart meters uses wireless communication to send energy consumption data periodically

to its control center. Moreover, dynamic activation and deactivation of power suppliers,

such as photo-voltaic and windmills allow round-trip latency on the order of 100 ms.

Besides that, synchronous co-phasing of power suppliers (e.g., generators) has strict end-

to-end latency requirement on the order of 1 ms. Latency more than 1ms may have serious

consequence on the grid and devices in this case.
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Figure 1.3: Smart grid connecting a variety of nodes through information communication
technology.

1.1 Motivation and Purpose of Research

To enhance throughput and support massive connectivity in the 5G and its legacy LTE

networks, spectrum sharing is a powerful tool. For spectrum sharing, fair and effective

existence techniques are required. On the other hand, to support latency-critical services,

latency reduction approaches need to be developed. For this, drastic changes in the net-

work architecture, along with novel techniques, is to be conceived. Additionally, data

security in the wireless communication is a prime concern. In the following subsections,

we discuss the motivation of research on spectrum sharing and latency in detail.
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1.1.1 Spectrum Sharing

The surge of mobile devices, such as smart-phones and tablets, along with diverse IoT ap-

plications, requires additional capacity. In some surveys, it is found that the exponentially

increasing data is doubled approximately every year [9]. Moreover, the next generation

networks need to support 30,000 devices per cell. The 5G and its legacy LTE networks is

a powerful tool to fulfill this high data rate and massive connectivity complementing with

other technologies such as WiFi and ZigBee. However, to support the massive connectiv-

ity and high data rates, larger bandwidth is required [10, 11]. But the licensed spectrum

is limited, and expansive. Recently released 3.5 GHz, along with 5 GHz and mmWave,

opens a new window of expanding cellular network operations in these unlicensed bands.

These bands have a large amount of clean and free spectrum. However, cellular networks

need to share these spectrum with others cellular operators, as well as variant technolo-

gies, such as WiFi and ZigBee. In this regard, we need effective coexistence techniques

for fair and good neighborhood spectrum sharing.

In this dissertation, the following areas of spectrum sharing will be discussed and

analyzed in detail.

1. Coexistence of LTE and ZigBee

2. Coexistence of LTE and WiFi

Coexistence of LTE and ZigBee

To expand the operation of LTE and foresee 5G in the unlicensed bands, including 868

MHz, 915 MHz, 2.4 GHz, 3.5 GHz and 5 GHz, it needs to coexist harmoniously with

other technologies, such as ZigBee, WiFi, and Bluetooth. ZigBee, WiFi, and Bluetooth

are already operating in most of these unlicensed bands. Therefore, the effect of one’s

operation on others needs to be investigated before developing a fair and effective coexis-

tence technique. Simultaneous operation of WiFi, IEEE 802.15.4, and Bluetooth has been
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investigated in [12, 13]. In [14], coexisting operation of UWB, WiFi and ZigBee is stud-

ied. The coexistence of LTE and WiFi is studied in [15]. However, coexisting operation

of LTE and ZigBee in the same band has not been addressed.

The metering infrastructure of the smart grid, commonly named advance metering

infrastructure (AMI), is a remarkable example of IoT. In AMI, millions of meters use

the ZigBee network for meter-to-meter communication due to the self-organizing nature,

capable of supporting numerous devices, and unlicensed band operation. On the other

hand, the data collector or access point of AMI uses LTE networks to send collected data

to a long distant control center [16]. Therefore, the study of the coexistence of LTE and

ZigBee in a smart grid scenario caries a critical importance.

The purpose of this part of the research is to get insight into the interference effect on

physical (PHY) and medium access control (MAC) layer operating regimes. Also, it will

lead to developing effective and harmonious coexistence techniques.

Coexistence between LTE and WiFi

WiFi is the short range broad band communication operating in the unlicensed bands.

The touted feature of WiFi is low cost, high data rate, easy set up, and short end-to-

end delay. To have LTE coexist with WiFi in the same band, the main obstacle is the

dissimilarity of two technologies. WiFi uses collision sensed multiple access collision

avoidance (CSMA/CA) for channel access with a four-way handshaking [15]. On the

other hand, LTE utilizes centralized scheduling for its users. However, it does not use the

channel sensing mechanism before transmitting its packets. Therefore, the operation of

LTE will put continuous interference on WiFi, which may block WiFi transmission in the

typical case.
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The purpose of this part of the research is to develop holistic adaptive techniques for

fair and harmonious coexistence between 5G/LTE1 and WiFi. In particular, the adap-

tive approach will utilize underused spectrum without hampering the regular operation of

WiFi. Therefore, the approach will not only maintain the good neighborhood spectrum

sharing, but also improve the aggregate capacity, cell edge performance, and energy effi-

ciency. We also identify various use cases where LTE/WiFi coexistence can be applicable.

1.1.2 Latency

Latency is highly critical in several use cases, such as manufacturing industry, automated

transportation, power system, health care, augmented/virtual reality, robotics and telep-

resence, entertainment, culture and education. In some applications, latency on the order

of 1ms along with reliability of 99.99% is mandatory. In the current LTE systems, typical

latency is 100ms. Therefore, we need drastic changes in the cellular network to achieve

this low latency. The evolution of latency specification at the various generation of cellu-

lar networks is illustrated in Fig. 1.4.

500-1000 ms 200 ms 100 ms 1 ms

2G 3G 4G
5GGSM/GPRS

EDGE/CDMA
UMTS

CDMA2000
LTE

LTE-A

100 kb/s 384 kb/s-2 Mb/s 150-450 Mb/s 10 Gb/s

Figure 1.4: Latency specification at the different generations of cellular network.

To achieve low latency and high reliability, radical changes in the physical (PHY) and

medium access control (MAC) layers is required, along with the upper layers. In partic-

ular, enhancements in the radio and core networks, including shorter transmission time

1Since 5G is not fully standardized yet and it will be an evolution of LTE, coexistence technique
of LTE and WiFi will be applicable to 5G and WiFi coexistence.
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interval, small cell deployment, larger bandwidth utilization, new coding scheme, mas-

sive MIMO and introduction of new technologies, such as SDN, NFV and caching are

the several prominent proposed modifications in the 5G networks. SDN and NFV enables

dynamic management, and scaling of services and functions, where non access stratum

and access stratum are coupled by the intelligent protocol. For separate provisioning of

coverage and capacity, data plane and control could be split in the carrier frequency along

with network architecture. Special network functionality as a service (XaaS) will cater on

demand services, such as instantaneous resource pooling. Additionally, the introduction

of information-centric networks, such as caching and fog networks/mobile edge comput-

ing, can reduce end-to-end latency and network operation costs significantly, along with

throughput enhancement. The achievement of larger data rates and lower latency also

leads to higher energy efficiency and longer device battery life.

The purpose of this research is to summarize the existing works to achieve low latency

in the context of 5G networks. Along with this, fundamental constraints for achieving

low latency are to be identified followed by a general overview of exemplary 5G network.

Besides that, a loop free, low latency and local decision based routing protocol will be

derived for fast and reliable data communication.

1.1.3 Security

Security is a prime concern in the wireless communication. In a typical scenario of meter-

ing infrastructure of the smart grid, ZigBee/WiFi is used for meter-to-meter communica-

tion and LTE is used for sending collected data to the control center. In LTE/LTE-A, there

are five levels of security layers- (1) network access security, (2) network domain secu-

rity, (3) user domain security, (4) application domain security, and (5) non 3GPP domain

security [17]. Therefore, WiFi and ZigBee are not as much secured as LTE. Observing
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the energy usage patterns of meters, an adversary/thief can predict the presence of the

targeted consumers at home, which can be a threat to civil lives and privacy. Furthermore,

from the fine-grained energy consumption data, the home appliance companies receive

information about the life style patterns of consumers and the energy utilization of their

home appliances. Thus competing companies can use this valuable information in their

businesses. The consumers might want to alter the consumption data to reduce their elec-

tricity bill. The most crucial thing is that the opponent/hacker might jam or take over the

AMI network by sending a false signal to meters on an unsecured system, which may

cause a power outage in a wide area, as well as an imbalance in the demand generation

model.

The purpose of this research is to develop robust security schemes for metering in-

frastructure of the smart grid. It will include not only packet encryption, but also node-to-

node authentication. In this way, end-to-end data security will be ensured. Though, our

approaches will use metering infrastructure as a use case, it can be implementable to any

IoT applications.

1.2 Dissertation Contributions

The focus of this research is two important requirements for the next generation 5G net-

works: spectrum sharing and latency. Along with this, we address the security aspect of

wireless communication with application to smart grid and IoT. It is to be noted that some

of our approaches were validated using real world data. The research to be presented in

this dissertation resulted in several publications in IEEE and other reputed conferences

and journals [16,18–32]. The key contributions of this dissertation can be summarized as

follows.
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1. Spectrum sharing:

• The coexistence of LTE and ZigBee is studied in the 2.4 GHz band under a smart

grid scenario [19]. A time division duplexing (TDD)-LTE accompanied by ZigBee

transmission is simulated for FTP traffic model, along with different combination

of LTE down link (DL)/ uplink (UL) subframes. In the 10 ms subframe of LTE

transmission, ZigBee transmits only during the guard band (blank subframe) time.

The effect of LTE transmission on the throughput and signal-to-noise ratio (SINR)

of WiFi and vice-versa is investigated. It helps to understand the interference effect

on PHY/MAC operating regimes along with justification of using this coexistence

system for metering infrastructure of smart grid.

• The performance of duty cycle based coexistence of LTE and WiFi is studied in the

3.5 band under a smart grid scenario [16]. A time division duplex (TDD)-LTE with

various duty cycle, such as 60% and 80% duty cycle, is considered for the simulta-

neous operation with WiFi. In a 10ms transmission time interval, LTE transmits a

fixed percentage of duty cycle leaving rest of the time for WiFi transmission. The

throughput and signal to noise ratio (SINR) is studied for these variant duty cy-

cles. The simulation results show that coexisting operation of LTE and WiFi can

maintain harmonious and good neighborhood coexistence and therefore, can be a

potential communication solution for smart grid.

• A multi-arm bandit (MAB) based adaptive duty cycle selection of LTE transmission

is derived for coexisting with WiFi [21, 22]. MAB is a machine learning approach

being used for maximizing reward over a time horizon. It is similar to gambling pro-

cess where a gambler has a set of machines. Each time, the gambler pulls an arm

and gets some rewards. The goal is to pull arms sequentially in such a way that the

reward is maximized over the gambling time. However, there is a trade-off between
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exploration and exploration i.e., to pull an arm for an immediate highest reward and

long term accumulated maximum rewards. The adaptive down-link power control

is also incorporated with the adaptive duty cycle selection. Finally aggregated ca-

pacity, cell edge performance, and energy efficiency are studied. The simulation

results demonstrate that the aggregate capacity is improved by 33%, along with the

enhancement of cell edge throughput for various user and base station densities.

2. Latency:

• The emerging technologies for achieving low latency is summarized covering three

domains of 5G networks: (1) radio access network, (2) core network, and (3)

caching [23]. Following this, a general overview of 5G cellular network com-

posed of software defined network (SDN), network function virtualization (NFV),

caching, and mobile edge computing (MEC) is presented, which will show that

D2D, small cell access points, network cloud, and the Internet of Things can be

a part of 5G cellular network architecture. The architecture can support latency

critical services along with massive connectivity, and larger throughput. We also

present promising results from the field tests, trials and experiments followed by

open issues, challenges and future research directions.

• A compass algorithm based routing protocol is derived for a loop free, local deci-

sion, and low latency routing protocol [24]. For localization of the nodes, derivation

of received signal strength by maximum likelihood and particle swamp optimiza-

tion is proposed. The protocol is simulated under a smart grid scenario to inves-

tigate the latency, localization error, noise impact, scalability, and reliability. The

simulation results show that it is loop free. Moreover, it ensures faster data routing

along with less flooding, compared to conventional compass routing protocol.
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3. Security:

• A geo-location based key management scheme is developed for data encryption

with an application to smart grid [28, 30]. For localization of meters, received sig-

nal strength derivation using maximum likelihood and particle swamp optimization

is proposed. Packets are encrypted with the keys associated with the geo-location

and a random key index. For node-to-node authentication, k nearest neighbors

(kNN) algorithm is utilized. Finally, security strength of the approach is analyzed

using real world data of a local utility company. The results demonstrate that our

approach ensures data security by implementing two layer security without increas-

ing considerable packet overhead and complexity.

• Considering semi-trusted third party servers and untrustworthy/unreliable commu-

nication links, a two layer security schema is introduced with application to me-

tering infrastructure of smart grid [29, 32]. The first layer implements an efficient

novel encryption method for securing data exchange between meters and control

center with the help of two partially trusted simple servers. One server is respon-

sible for data encryption between the meter and control center/central database,

and the other server manages the random sequence of data transmission. In the

second layer, node-to-node authentication using one class support vector machine

algorithm is proposed. The security strength of the approach is analyzed using the

real world data, along with comparison to other schemes. This schema secures

data communication, and imposes a comprehensive privacy throughout the system

without considerably increasing the complexity of conventional key management

scheme.
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1.3 Organization of Dissertation

The remainder of this dissertation is organized as follows. Chapter II provides a literature

review of the topics relevant to the issues discussed in the Introduction. Study of coexis-

tence of LTE and ZigBee/WiFi has been presented in Chapter III. In Chapter IV, multi arm

bandit for spectrum sharing of LTE and WiFi has been analyzed. Solutions for latency re-

duction have been presented in Chapter V. Compass algorithm based routing protocol has

been presented in Chapter VI. In Chapters VII & VIII, machine learning based securing

schemes for data communications in smart grid have been presented. Finally, Chapter IX

lists the conclusion of this research work and also identifies some important directions for

future research.
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CHAPTER 2

Literature Review

In this chapter, we discuss about the state of art works on spectrum sharing, latency

and smart grid data security.

2.1 Spectrum Sharing

The surge in smart phones, tablets, mobile APs, wearables and Internet-of-Things (IoT)

has exponentially increased mobile data usage and wireless communication resulting in

a huge explosion of traffic demand on the licensed frequency bands [18]. Similarly, the

smart grid network has added more traffic to the existing channels which necessitate the

utilization of more frequency bands to increase the capacity of the operators to fulfill the

drastic demand of the traffic. Having large amounts of radio resources, the unlicensed

spectrum has recently been treated as excellent supplementary frequency bands that aug-

ment the throughput of wireless communications [33]. LTE is generally divided into

LTE-U and LTE-LAA when used in the unlicensed spectrum [34]. LTE-U was the early

deployment, which has a simple mechanism and does not require alterations to existing

LTE air interface protocols. It employs the LTE Release 10-12 aggregation protocol which

does not require the Listen Before Talk (LBT) algorithm [21]. It is only applicable in the

US, South Korea, India and China unlike the Europe and Japan where LBT is mandatory.

LAA is ratified by the 3rd Generation Partnership (3GPP) as Release 13 which only aims

on single global framework [35, 36].

2.1.1 Coexistence between LTE and WiFi

Huge difference between LTE and Wi-Fi pose great challenges in the design of an effec-

tive coexistence mechanism [34]. The above factors should be carefully studied to design
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a fair and efficient coexistence mechanism for LTE and Wi-Fi networks in unlicensed

band.

Coexistence without LBT

In countries where there is no regulatory requirement for LBT, careful designed co-

existence algorithm will guarantee a fair coexistence. Using the Release 10/11 LTE

PHY/MAC standards, three mechanisms can be implemented to safeguard that LTEs

coexistence in unlicensed band with Wi-Fi. Channel Selection permits smalls cells to

choose the clearest channel based on Wi-Fi and LTE analysis [23]. If clear channel is

found, LTEU will occupy with full duty circle for Secondary DL (SDL) transmission.

If no clean channel is available, Carrier-Sensing-Adaptive Transmission (CSAT) is used

to share the channel with Wi-Fi [17]. Depending on traffic demand, SDL carrier can be

opportunistically retrieved. If there is low load, SDL carrier should be turned off and for

higher load, channel selection should be executed again.

• Channel Selection:

In this mechanism, LTE-U small cells will scan the unlicensed band to search for

the cleanest unused channels for the SDL carrier transmission. Given that there

is an unused channel, the interference is avoided between the cells and its nearby

Wi-Fi devices and other LTE-U small cells. Operating channel is monitored on an

on-going basis by Channel Selection Algorithm. Measurements are usually com-

pleted at both the beginning power-up stage and later periodically at SDL operation

stage. This period is usually at 10s of seconds. When interference is detected in

the operating channel, LTE-U will attempt to switch to another clear channel with

less interference based on LTE Release 10/11 procedures [33, 35, 37]. The interfer-

ence level in a channel is measured by energy detection where initially the quantity
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of interference sources and types are unknown. LTE and Wi-Fi measurements are

engaged to augment interference detection.

In [38], Qualcomm presents an effective channel selection policy based on inter-

ference level. If the interference of the occupied channel exceeds a certain level,

LTE-U/LAA changes the channel with provided that the interference is measured

before and during the operation, and both at the equipment and network side. On

the other hand, in [39] adaptive bandwidth channel allocation offered by LTE and

Least Congested Channel Search(LCCS) has been suggested for channel selection.

• Carrier-Sensing-Adaptive Transmission (CSAT):

When no clean channel is available, LTE-U will be able to share the channel by

implementing adaptive duty cycle or CSAT algorithm. The aim of the CSAT al-

gorithm is to afford coexistence across different technologies in a Time Division

Multiplexing (TDM) mode [40]. In general, the coexistence methods in unlicensed

band are by using LBT or CSMA for Wi-Fi, which uses contention based access.

For CSMA or LBT, the medium should be sensed and accessed if it is clear in order

to implement TDM for coexistence. LTE-U radio continue measuring occupancy

on a channel and decide how many frames to transmit or how many to stay quiet

which is known as duty cycle. Duty cycle facilitate the interaction when LTE-U is

ON and Wi-Fi is in OFF state. The LTE-U, which is on secondary cell is occasion-

ally activated and de-activated using LTE MAC control elements.

In [41], blank subframe allocation by LTE has been proposed where LTE restrained

from transmitting and WiFi keeps on transmission. A similar technique has been

proposed in [42] where n of 5 sub-frames of LTE-U/LAA has been kept reserved for

WiFi transmission. Qualcom has proposed Carrier Sensing Adaptive Transmission

(CSAT) for LTE-U/LAA MAC scheduling in which a fraction of TDD duty is used
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for LTE-U transmission and the rest is used for other technologies. The cyclic

on/off ration can be adaptively adjusted by based on activity of WiFi during the off

period. In [43], Q-learning based duty cycle adjustment is presented to facilitate

the sharing of the channel as well as to increase the overall throughput.

• Opportunistic Supplementary Downlink (SDL):

This mechanism is dependent on traffic and load demand. If the DL traffic of the

small cell exceeds certain threshold and there exist active users within the unli-

censed band spectrum, the SDL carrier can be turned on for offloading. On the

other hand, when the primary carrier can easily manage the traffic demand and

there is no user within the unlicensed band coverage the SDL is turned off. Op-

portunistic SDL decreases the interference from continuous RS transmission from

LTE-U in unlicensed channel subsequently leading in noise reduction in and around

a shared channel [34, 44].

Coexistence Based on LBT Mechanism

For Europe, Japan and India markets that requires a regulation in the unlicensed spectrum

require a more robust equipment to periodically check for presence of other occupants

in the channel (listen) before transmitting (talk) in millisecond scale. Two LBT mech-

anisms are employed in LTE-LAA mandated by European Telecommunications Stan-

dards Institute (ETSI). One is Frame based Equipment (FBE) and Load based Equipment

(LBE) [45, 46].

• FBE-Based LBT Mechanism: In this [47–49], the equipment has a fixed frame

period, where CCA is executed. When the current operating channel is dimmed

to be clear, the equipment immediately can transmit for duration equivalent to the

channel occupancy time. Similarly, if the operating channel is busy, the equipment
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cannot transmit on the channel for the next fixed frame period. The channel oc-

cupancy time requirement is minimum 1ms and maximum 10ms and idle period

accounting 5 of channel occupancy time. FBE-based LBT is simple for the design

of reservation signal and requires less standardization.

• LBE-Based LBT Mechanism: In LBE [50,51], the equipment is required to define

whether the channel is clear or not. Unlike FBE, LBE is demand-driven and not

dependent on fixed time frame. In the case where the equipment discovers a clear

operating channel, it will instantly transmit. If not, an Extended CCA (ECCA)

is implemented, where the channel is observed for a period of random factor N

multiplied by the CCA time slot [37, 50, 51]. N is the quantity of clear slots so

that a total idle period should be observed before transmission. Its value is chosen

randomly from 1 to q, where q has a value from 4 to 32. When a CCA slot is idle,

the counter will be cut by one. The equipment can transmit even if the counter

reaches zero. In addition, the maximum channel occupancy time is calculated by

(13/32) *q ms. Therefore, the maximum channel occupancy time is 13 ms when q

equals to 32 which is the best coexistence parameter.

2.1.2 Coexistence between LTE and ZigBee

Coexistence between different communication standards have been studied before in the

literature [19]. In [12, 13], coexistence among IEEE 802.15.4, WiFi and Bluetooth has

been investigated. Interference suppression technique for coexistence has been presented

in [52, 53]. In [54], simultaneous operation of ultra-wideband (UWB) and WiMAX on

same frequency band has been proposed using spectrum sensing by detect-and-avoid

mechanisms. In [14], coexistence among UWB, WiFi and ZigBee have been studied.

In [55,56], coexistence of LTE and WiFi using different mechanism such as listen before
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talk (LBT), silent gap and common database have been proposed. However, for smart

grid applications, coexistence of ZigBee and LTE on the same frequency spectrum calls

for investigation.

For LTE and ZigBee to coexist in the same spectrum, the main challenge is that LTE

uses dynamic scheduling for user equipments (UEs) whereas ZigBee utilizes collision

sensed multiple access/ collision avoidance (CSMA/CA) mechanism for accessing net-

work. In case of simultaneous CSMA/CA and LTE operation, several techniques are

proposed such as carrier sensing and co-existence gap in transmission frame [41, 57].

In LBT mechanism of LTE operation, Request-to-Send (RTS) and Clear-to-Send (CTS)

messages are exchanged prior to LTE transmission [57]. In blank subframe allocation

technique [41], LTE will refrain from transmission in certain subframes. Both the tech-

niques have been proposed for coexistence of LTE and WiFi where LTE and WiFi trans-

mission power are greater than 20 dBm. On the other hand, ZigBee transmission power is

between -3 dBm to 10 dBm. Therefore, ZigBee will have less interference effect on LTE

while LTE will cause significant interference on ZigBee.

2.2 Latency

Low latency is a critical requirement in the next generation- 5G networks [23]. Appli-

cations in manufacturing, transportation, robotics and telepresence, virtual reality, health

care, gaming, smart grid, and educational purpose may require latency 1ms- 100ms. In

some case such virtual reality, tel-surgery, and machine tool operations, latency on the

order of 1ms is required. In this regard, drastic changes in the network architecture in-

cluding core and radio network has been proposed.

In RAN network, various enhancements in packet or frame structure, waveforms/multiple

access, modulation and coding, transmission, control channel, and symbol detection have
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been proposed to achieve low latency. In case of packet or frame structure, short TTI [58],

small packet transmission [59],subcarrier spacing [60], TDD optimization [61–64] are

proposed. For advances waveforms/multiple access, Filtered CP-OFDM, UFMC and

FBMC are proposed [65–67]. In case of modulation and coding Polar coding [68],

Turbo decoding with combined sliding window algorithm and cross parallel window [69],

IFFT design with butterfly operation [70], Sparse code multiple access [71], Balanced

truncation [72] are proposed techniques to achieve low latency. For transmitter adapta-

tion, Asymmetric window [73], Transmission power optimization [74], Path-switching

method and a packet-recovery method [75], and Diversity implementation [76] are the

recommended techniques. Scaled control channel design [77], Control channel sparse

encoding [78], Symbol-level frequency hopping and sequence-based sPUCCH [79], Ra-

dio bearer and S1 bearer management [80], and Outer-loop link adaptation [81] are pro-

posed approaches in control signaling. In case of symbol detection on the receiver side,

Linear MMSE [82], SM-MIMO detection scheme with ZF and MRC-ZF [83], Space-

time encoding and widely linear estimator [84], Compressed sensing [7, 85, 86], and

Low complexity receiver design [87] are the recommended approaches. In addition to

those approaches, carrier aggregation in mmWave [88–91], location ware communica-

tion [3, 92, 93], QoS/QoE reinforcement [94–103], and cloud RAN [104–108] are also

proposed in RAN.

To achieve low latency, new entities such as SDN, NFV , are MEC/fog network pro-

posed in the core network. SDN based architecture provides larger throughput, mas-

sive connectivity and low latency [109–123]. On the other hand, NFV eliminates the

hardware-software dependency and resources sharing of RAN [114, 116–118, 123–129].

MEC/Fog networks separate the data planes from control plane and bring the storage

and computation near to the users [34, 109, 118, 124, 126, 127] . In addition to core net-

work entities, various modifications in backhaul have been proposed in latency reduction
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process. In case of general backhaul, SDN and cache enable architecture [130], MAC-

in-MAC Ethernet based unified packet-based transport network [131], PON-based archi-

tecture with a tailored dynamic bandwidth allocation algorithm [132], Modified VLC

technology to set up an OW link [133] , and GTP tunnel optimization [109] are several

prominent approaches. On the other hand, mmWave based fronthaul and backhaul [134],

mmWave based backhaul frame structure [135], digitally-controlled phase-shifter net-

work for mmWave massive MIMO [136], framework supporting of in-band, point-to-

multipoint, non-Line-of-sight and mmWave backhaul [137], and Ultra dense wavelength

division multiplexing passive optical networks based backhaul [138, 139] are the several

solution for mmWave backhaul.

Caching is the very important tool to bring storage and computation near the users.

Additionally, it can help in separation of data plane from the control plane. For 5G net-

works, mainly four types of caching; (1) local caching, (2) device-to-device caching, (3)

small base station caching, and (4) Macro base station caching is proposed. Generally, the

file delivery can be divided into two parts: (1) Cache placement and (2) content delivery.

In case of cache impalement, it can be centralized or distributed based on network size,

design and requirement. In [140], a new scheme is proposed in small base station (SBS)

with large memory and weak backhaul link which ensures QoS at the user levels. In order

to reduce download delay, the authors investigates the cache placement matrix in [141].

It was shown that cache placement can be affected by backhaul prorogation delay. A dis-

tributed cache placement is proposed in [142] to reduce download delay with constraint

to BS storage capacity. Separate caching and delivery schemes aim to operate in central-

ized and distributed manner is proposed in [143]. In this approach, trade-off between the

spatial reuse and multi casting is manifested. In [144], cooperative content caching and

delivery is proposed which reduces content delivery delay compared to existing content

caching. To reduce the traffic of backhaul and download, a weighted optimization has
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been proposed in [145] considering caching memory and bandwidth constraint. In [146],

caching and forwarding strategies are proposed to improve latency experience in cache

enabled network. In [147], multi-cast and cooperation based caching approach hs been

proposed which reduces 13% latency compared to similar multi-cast caching. In [148],

content distribution strategy is presented in cooperated caching where different nodes

interact cooperatively in a centralized cloud server networks. Packet transmission is in-

vestigated in cache enable network along with RAN and wired backhaul in [149]. Follow-

ing this, peak and off-peak network performance is investigated along with and without

cached enable network.

2.3 Data Security in Smart Grid

In the recent years, security issues in AMI attracted a significant attention of different

communities (electrical engineers, computer science graduates, IT experts, etc.) due to

extensive use of wireless communication. In [150], a security scheme is proposed for

smart meter using digital signatures that a trusted third party might sign with a time stamp.

Additionally, data hashing using SHA-256 before performing the signature provides an

added layer of security. In [151], randomization of the AMI configuration is proposed to

make its behavior unpredictable to the hacker, whereas the behavior is predictable to the

control center. In [152, 153], authors introduced anonymization of data by randomizing

node identity using a TTP. But, communication overhead is increased due to the need

for the TTP to communicate with all nodes simultaneously. In [154, 155], homomorphic

encryption has been introduced. Though it requires minimal calculation at data retrieval,

it may be complicated for a large network.

In [156], an Identity-Based Signcryption (IBS) with zero configuration encryption and

authentication has been proposed for an end-to-end communication solution. In [157],
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a node-to-node encryption with its own secret key has been proposed. But for a large

network, the packet overhead might be increased for both IBS and node-to-node authen-

tication. In [158], DiffieHellman key protocol based message authentication is proposed

in addition to Hash based message authentication. This approach provides higher scal-

ability, lower memory utilization and less delay for decryption. In [159], authentication

between smart meter and utility server along with low overhead key management has

been proposed. The mutual authentication consists of four steps whereas the key man-

agement is founded on ID based public/private key pair model with lower transmission

overhead for key refreshment. Four broad countermeasures to thwart attacks on smart

meters have been proposed in [160]: (1) authentication and strong encryption of com-

munication that deals with HAN and NAN and buses within smart meters, (2) secure key

management which form the critical backbone to a secure AMI, (3) securing the firmware

to avoid being manipulated by the attackers or mistakenly by authorized personnel, and

(4) security-driven firmware development cycle that conducts frequent walkthroughs and

security assessments.

In [161], event driven asset centric key management is proposed where key man-

agement (i.e. key generation, refreshment, revocation, etc.) is orchestrated automatically

based on events from assets or nodes. In [162], public key management has been proposed

for smart grid based on elliptic curve public key cryptography and Needham Schrouder

symmetric key authentication. Even though, scalability and simplicity are two advan-

tages of this approach, it does not come with experimental proof. In [163], symmetric

key establishment mechanism is proposed based on X.1035 standard which reduces data

delivery time up to 75%. In [164], group key management with three-tier network model

is proposed which requires moderate key storage. To distribute the keys and manage the

network, a wireless sensor network based Public Key Management Infrastructure (PKI)

has been proposed in [165, 166]. However, it requires to generate a large numbers of
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unique keys for a large networks. In [167], a Key Management System (KMS) has been

introduced based on DLMS/COSEM standard providing two main information security

features: data access security and data transport security. Since DLMS/COSEM is an

open standard and allows a number of variations in the protocol implementation, it might

increase the complexity in the client side. In [168], information centric KMS has been

proposed. But, large number of unique key generation and communication overheads due

to unicast, multicast and broadcast might be an issue for large networks. In [169], a two

layer security scheme for meter to Data Concentrator (DC) and DC to control center has

been proposed. For the meter to DC, IEC 62056 based encryption method, and for DC

to the control center, the public KMS has been proposed. But here in each time step,

encryption and decryption need to be performed twice.
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CHAPTER 3

LTE and ZigBee/WiFi Coexistence

To have LTE coexist with ZigBee/WiFi in the same spectrum, the main challenge

is that LTE uses dynamic scheduling for user equipments (UEs), whereas ZigBee/WiFi

utilizes collision sensed multiple access/collision avoidance (CSMA/CA) mechanism for

accessing network [16, 19]. Unlike ZigBee/WiFi, LTE does not implement the carrier

sensing before transmitting the packets. Therefore, in a typical scenario of coexistence,

the ZigBee/WiFi transmission is most likely to be blocked by LTE transmission. To facil-

itate coexistence between LTE and WiFi, mainly three types of techniques is found in the

literature: (1) Dynamic channel selection, (2) Listen Before Talk (LBT), and (3) Coexis-

tence gaps. However, for LTE and ZigBee coexistence, there is no significant work found

in the literature.

In this chapter, we study two types of coexistence- (1) LTE and ZigBee, and (2) LTE

and WiFi. At first, we present a general overview of LTE, ZigBee, WiFi and metering

infrastructure of smart grid. Following this, we present the performance of coexistences

of LTE and ZigBee, and LTE and WiFi using a smart grid scenario.

3.1 Overview of LTE Systems

LTE is a standard for high speed wireless communication to meet the rapid increase of

mobile data usage in the future. The standard is developed by the 3rd Generation Partner-

ship Project (3GPP) and is an upgrade from 3G standards for significantly reducing data

transfer latency and increasing capacity of data transfer. The PHY layer of LTE includes

the DL and UL features. The requirements of this layer are high peak transmission rates,

spectral efficiency and multiple channel bandwidths. Therefore, in order to meet these

requirements, Orthogonal Frequency Division Multiplex (OFDM) technology is used due

to its robustness against fading and interference. To further improve the performance of
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Figure 3.1: 10 ms radio frame of LTE [2].

this standard, multiple antenna techniques are used, which are responsible for increasing

channel capacity and increasing the robustness of transmitted signals. The MAC layer, on

the other hand, provides an interface between logical channels and physical channels. It

is responsible for transport format of the frames, in addition to scheduling techniques and

error correction using HARQ.

The LTE DL transmission consists of user-plane and control plane data in the pro-

tocol stack multiplexed with physical layer signaling to support the data transmission,

facilitated by the Orthogonal Frequency Division Multiple Access (OFDMA). The trans-

mission resource is structured in 3 dimensions- time, frequency, and space. In time do-

main, the largest radio frame is 10 ms, subdivided into ten 1 ms subframes as illustrated

in Fig. 3.1 . Each subframe is further split into two 0.5 ms slots, which is termed as a

resource block (RB).

On the other hand, UL utilizes Discrete Fourier transform-Spread OFDM (DFT-S-

OFDM). Before transmitting, the signal is frequency-shifted by half a sub carrier fre-

quency in order to overcome the distortion caused by the d.c. subcarrier being concen-

trated in a single RB.

For LAA of LTE in unlicensed band, two approaches were proposed. In the early

deployment stage of LAA in USA, Korea, China and India, adaptive duty cycle- carrier

sensed adaptive transmission (CSAT) [170] was considered whereas in Europe listen be-
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fore talk (LBT) [171] was used. For fair sharing of spectrum, recently 3GPP Rel. 13

LAA proposes active LTE transmission time 1-10 ms based on load which is similar to

CSAT [172].

3.2 Overview of ZigBee Systems

ZigBee is a low-cost, low-power, short-range, low-data rate and energy-efficient wireless

technology, and it suits good to be used for applications that involve wireless M2M com-

munications. It gained ratification from IEEE 802.15.4 in 2003. It consists of 16 channels

in the 2.4 GHz ISM band worldwide, 10 channels in the 915 MHz band in North America,

and one channel in the 868 MHz band in Europe (see Table 3.1). Its operational range

is 30-90 m and it can simultaneously support up to 64000 nodes. In the protocol stack,

MAC and PHY layers are defined by IEEE 802.15.4 whereas the upper network layers

are defined by ZigBee.

The routing protocol is designed to be supported by both ZigBee alliance and IEEE

802.15.4. ZigBee interprets the software command of applications and passes new com-

mand to the MAC layer. IEEE 802.15.4 can work on both peer to peer and star networks.

A typical example of ZigBee superframe structure has been illustrated in Fig. 3.2 where

aBaseSuperframeDuration= 5.36 ms and duty cycle is between 10% − 100%. The

superframe is divided into inactive portion and active portion, and the latter is further

subdivided into contention access period and contention free period. By specifying a duty

cycle, we can decide the active transmission time (as for example, at 18% duty cycle, the

transmission duration is 1 ms).

IEEE 802.15.4 works at three different frequency bands. The first band is 868 MHz

which supports a data rate of 20 Kbps and uses the BPSK modulation technique. The

second band is 915 MHz and supports a maximum data rate of 40 Kbps modulated by
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BPSK. The global 2.4 GHz band supports 250 Kbps data rate and is modulated by offset

quadrature phase-shift keying (OQPSK).

Table 3.1: IEEE 802.15.4 FREQUENCY NOMENCLATURE.
Band Number of

Channels
Channel Num-
ber

Channel Cen-
ter Frequency

Channel
Spacing

868 MHz 1 k = 0 868.3 MHz 0

915 MHz 10 k = 1, 2, 3...10 906 + 2(k − 1)
MHz

2 MHz

2.5 GHz 16 k = 11, 12...26 2405+5(k− 1)
MHz

5 MHz

The MAC and PHY layers are based on the CSMA/CA algorithm along with slot-

ted binary exponential backoff (to reduce collision during simultaneous data transfers by

multiple channels). It supports two kinds of channel access modalities- beacon enabled

slotted CSMA/CA and simple unslotted CSMA/CA without beacon.

ZigBee utilizes CSMA/CA [173] mechanism to access the network. When a packet

comes to a node, the MAC layer initiates two variables- the number of backoff tries and

the exponential backoff with a minimum value of 3. The MAC layer generates a random

Figure 3.2: A typical example of superframe of ZigBee.
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value within the range [0, 2BE - 1] and sets the delay accordingly. When BE=0, the MAC

senses the channel. If the channel is found idle, packet is transmitted. Otherwise, the

value of BE and NB is increased by 1. If the value of NB is less than the maximum

number of Backoff (NBmax), the whole process is repeated for the transmission of the

packet. If otherwise, the transmission is discarded.

In the 10 RBs of 10 ms LTE subframe, ZigBee will transmit only during the 2 guard

band period (blank RBs). On the other hand, during the remaining 8 RBs, ZigBee will

cease transmission due to CSMA/CA mechanism.

3.3 Overview of WiFi Systems

WiFi technology is used for wireless local area networking with devices following the

IEEE 802.11 standards. The wireless technologies that come under the WiFi technology

umbrella include 802.11n (300Mbps), 802.11b (11Mbps), 802.11g (54Mbps), 802.11a

(54Mbps). The most essential aspect of WiFi technology is that it supports diversified

range of electronic devices. The WiFi technology is generally referred as a higher layer

protocol with IP protocol acting as the dominant one facilitating communication using

internet without any protocol translator.

Communication using the WiFi technology is suitable mostly for application with

reduced data rate requirement or conditions with low interference. The MAC layer of the

WiFi system controls the common channel access of multiple WiFi stations. This control

mechanism is fulfilled by using carrier sense channel access with collision avoidance

technique (CSMA/CA) technique. In this technique, the STAs can transmit packets during

the idle state of channel otherwise transmission is ceased. A better understanding about

channel accessing using WiFi can be obtained by studying the various approaches of clear

assessment techniques (CCA) of WiFi [15].
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One of the CCA techniques for channel access that we have used in this paper is

Enhanced Distribution Channel Access (EDCA). The EDCA technique is similar to the

DCF technique used in WiFi and has compatibility with four access categories. These

are voice, video, best effort and background. In DCF, at the beginning of transmission, a

station waits a DIFS before counting down. In EDCA, the station waits for an arbitrated

interframe space (AIFS) where AIFS has to be equal to or greater than DIFS. The STAs

will cease transmission of packets for arbitrary period during the AIFS time period even

if channel is in idle state. This arbitrary wait time for the STAs is decided using the

contention window parameters (CWmin, CWmax) [15], [174].

3.4 Overview of Metering Infrastructure of Smartgrid

Smart grid is the evolution from one-directional power system to modern bi-directional

power system which employs innovative communication and distribution to deliver elec-

tricity to consumer with enhanced monitoring, control and efficiency [175]. A proclaimed

feature of the smart grid is the usage of bidirectional communication for interacting

among its entities.

In the arena of smart grid, AMI is the distribution level building block consists of a

network of smart meters. AMI is responsible for collecting and sending consumption data

from smart meter periodically using wireless communication. It consists of various com-

ponents which have diverse applications. An example of AMI communication scenario

that encompasses communication among home appliances and the control center is shown

in Fig. 3.3, which consists of a home area network (HAN), smart meters, neighborhood

area network (NAN), and control center.

The network by which home appliances (such as stove, microwave, dishwasher etc)

are connected to a meter is termed as the HAN. The most common communication stan-
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Figure 3.3: AMI communication architecture encompassing Home Area Network (HAN),
Neighbor Area Network (NAN), data concentrator, and control center.

dard used for HAN is Bluetooth and WiFi. The energy consumed by home appliances is

encapsulated as a consumption unit which is measured, stored and sent by smart meter.

Smart meter is a solid state device responsible for measuring, storing and sending

energy consumption data to the back office of the energy service provider. A smart meter

sends data every 10 - 30 minutes based on energy service provider’s choice. The meter

is connected to a network named as the NAN. The popular communication standard for

NAN is Zigbee and WiFi. In our study, we use ZigBee for investigation.

The meters are connected among themselves through a mesh connected network. The

network may be wired (PLC) or wireless such as LTE, WiFi, ZigBee. The head end of

the NAN is the data concentrator or gateway which is connected to a back office by a

dedicated wired or wireless connection (optic fiber, cellular network, etc.).

The control center receives consumption data and prepares bills for the consumers.

The fine grained data can be used to forecast and optimize the electrical power generation
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and distribution. Controlling and monitoring is also performed from remote locations

depending on the usage and load requirement.

Since ZigBee is currently used in many utility companies for NAN communication,

we will study its coexistence performance in the rest of the paper.

3.5 LTE-ZigBee Coexistence

In this study, we investigate the coexistence of LTE and ZigBee in the unlicensed 2.4 GHz

ISM band for AMI communication and usual H2H communication [19]. We consider

time division duplexing (TDD)-LTE and ZigBee for simulation on multi layer network

layout. In the 10 ms subframe of LTE transmission, ZigBee will transmit during the guard

band (blank subframe) time. We evaluate the performance under different LTE traffic

arrival rates defined by 3GPP through the FTP traffic model [176] as well as different

combination of down link (DL)/ uplink (UL) subframes. The simulation results yield

insights about interference effect on each other in the PHY/MAC operating regimes and

will help to develop effective coexistence mechanism between LTE and ZigBee.

3.5.1 System Model for LTE-ZigBee Coexistence

To evaluate the coexistence performance of LAA based LTE and ZigBee networks, a

suburban building block topology (Manhattan grid) [177] has been considered as shown

in Fig. 3.4. In the topology, there are 30 × 9 blocks in which each block contains 5 × 5

buildings. Groups of 5 blocks are each served by an STA (ZigBee access point) whereas

each 15 block building is served by an eNB. In each building, there are M UEs (LTE

subscriber) and a smart meter (ZigBee device) which are uniformly distributed. Each

UE/ZigBee device communicates with corresponding eNB or STA. Since a smart meter

sends its data to the corresponding STA by hop-to-hop communication, and the STA may
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Figure 3.4: (a) Mean square error for different number of nodes and noise variances. (b)
Mean square error for different number of nodes and path loss exponent.

also send the data to control center by LTE, its location has been considered to be near an

eNB. In each case of 10 ms LTE sub frame transmission, two blank slot (Guard band,0.5

ms each) has been kept for ZigBee/WiFi transmission and the corresponding ZigBee duty

cycle is 18% (i.e. 1 ms). Since LTE and ZigBee are transmitting simultaneously on

the same 2.4 GHz spectrum, high power LTE and low power ZigBee transmission cause

interference on each other from other cells. To assess the performance, Shannon capacity

of both technologies are simulated under interference from each other. For this, PHY

layer has been abstracted at the granularity level of a transmission frame of ZigBee and

LTE.

The number of received bits (NB) at a ZigBee/LTE node (i) over a frame duration is

given by
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Figure 3.5: LTE TDD subframe structure for two different configurations.

NB(i) = B log2 (1 + SINR(i))T, (3.1)

where B is the bandwidth, SINR is the signal to interference plus noise ratio and T is

the single symbol duration.

Capacity of the ZigBee/LTE node is given by

C =

∑N
i=1NB(i)

NT
, (3.2)

where N is the number of ZigBee/LTE symbols transmitted in one second.

Two configurations of LTE (as shown in Fig. 3.5) have been employed to obtain an

insight into the effect of interference on ZigBee performance owing to the fact that both

DL and UL uses different transmission power. The UL fractional power control in LTE is

given by the following equation

PUL = P0 + αPL + 10 log10R, (3.3)

where P0 is the base power level, PL is the path loss from BS to UE, α is the path loss

compensation factor, and R is the number of RBs allocated for UL transmission of the

specific LTE UE.

Since in case of ZigBee, the packet size from smart meter is fixed, a non-Poisson full

buffer model has been used. On the hand, for LTE, a non full buffer traffic model has
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Table 3.2: LTE MAC/PHY PARAMETERS.
Parameter Value
Transmission Scheme OFDM
Central Frequency 2405 MHz
Bandwidth 5 MHz
DL Tx Power 20 dBm
UL Tx Power PL Based TPC
Frame Duration 10 ms
Scheduling Round Robin
P0 -106 dBm
TTI 1 ms
Pathloss model Urban micro (UMi)
Traffic Model FTP Traffic Model-2 [176]

been considered as given in 3GPP FTP traffic model-2 [176]. For traffic arrival rate λL in

the LTE transmission, the distribution function of delay between two packets (d) is given

by

f(d) = λLe
λLd. (3.4)

For path loss and shadowing parameters, urban micro (UMi) model has been considered

in our simulation.

3.5.2 Simulation Results

We used TDD-LTE system with FTP traffic model for simulation in Matlab environment.

In case of each building, M = 1.24 UEs on the average have been uniformly randomly

dropped into the building. Therefore, each block has 31 LTE subscribers. For LTE con-

figuration 1, we used all subframes as UL and in configuration 2, we used all subframes

as DL in a 10 ms radio frame duration. In all case, during guard band period (G) of LTE

transmission, ZigBee will transmit. The parameters used for the simulation are illustrated

in Table 3.2 and Table 3.3.
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Table 3.3: ZIGBEE MAC/PHY PARAMETERS.
Parameter Value
Transmission Scheme O-OFDM
Central Frequency 2405 MHz
Bandwidth 5 MHz
DL/UL Tx Power 10 dBm
AC Best Effort
MAC Protocol EDCA
Slot Time 5.36 ms
CCA-CS Threshold -82 dBm
CCA-ED Threshold -62 dBm
macMaxFrame Retries 3
macMaxCSMA Backoffs 4
macMin BE 5
macMax BE 3
Unit Backoff Period 3e-10 seconds
Frame Length 808 bits
CW size 8
Noise Figure 6 [2]
Traffic Model FTP Traffic Model - 2 [176]

From Fig. 3.6, we found that without ZigBee, the aggregate capacity of LTE DL is 48

Mbps, and with ZigBee, its capacity reduces to 32 Mbps and 28 Mbps on traffic arrival

rate λL = 1.8 and λL = 2.5, respectively. On the other hand, with the LTE transmission,

ZigBee capacity reduces from 220 Kbps to 40 Kbps at λL = 1.8 and 20 Kbps at λL = 2.5,

as shown in Fig. 3.7.

For all LTE UL transmission in a 10 ms radio frame, the Shannon capacity of ZigBee

is increased significantly compared to all DL LTE transmission in a 10 ms radio frame,

which is reflected in Fig. 3.8. The reason behind this is that the UE uses less power for

UL transmission which creates less interference in bit reception at ZigBee node. Contrary

to ZigBee, for all LTE DL transmission in a 10 ms radio frame, aggregated capacity of

LTE DL is more than all LTE UL transmission while ZigBee transmission is also taking

place simultaneously. This is illustrated in Fig. 3.9.
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In Fig. 3.10, it is shown that ZigBee has limited interference effect on LTE SINR

distribution. For interference caused by ZigBee, the median SINR of LTE is downgraded

by 5 dB. On the other hand, LTE DL interference has degraded the ZigBee SINR by over

20 dB, which is illustrated in SINR CDFs Fig. 3.11. This significant SINR downfall

causes momentous capacity reduction in ZigBee.

Figure 3.6: LTE DL capacity without ZigBee, and with ZigBee transmission at different
traffic rates.

Figure 3.7: ZigBee capacity without LTE, and with LTE DL transmission at different
traffic rates.
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Figure 3.8: ZigBee capacity with all LTE DL or all LTE UL traffic in a 10 ms radio frame
at different α, and at λL = 1.5.

Figure 3.9: LTE capacity with all LTE DL or all LTE UL traffic in a 10 ms radio frame at
different α, and at λL = 1.5.
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Figure 3.10: SINR distribution of LTE without ZigBee transmission, and with DL ZigBee
transmission.

Figure 3.11: SINR distribution of ZigBee without LTE transmission, and with LTE DL
transmission.
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3.6 LTE and WiFi Coexistence

In this study, we investigate the coexistence of LTE and WiFi with application to smart

grid [16]. In our frame work, smart meters use WiFi to transmit data to data collec-

tor/Access point (AP). Data collector collects data from a cluster of meters and send the

data to control center using LTE. Based on this scenario, we study the performance of

coexisted LTE and WiFi in the 3.5 GHz band for AMI communication and usual mobile

human-to-human (H2H) communication. We consider a duty cycle based time division

duplexing (TDD)-LTE and WiFi for system level simulation on a collocated network lay-

out. LTE system transmits a fixed duty cycle of a period, and on the other hand, WiFi

transmits for the rest of the period. The simulation results demonstrate good neighboring

coexistence between LTE and WiFi without significantly hampering each other’s per-

formance. Since large amount of clean and free bandwidth is available in CBRS band,

coexisted LTE-WiFi based AMI in the CBRS band can be a promising solution for smart

grid.

3.6.1 System Model for LTE-WiFi Coexistence

WiFi

LTE

Smart meter

Mobile phone

Cells WiFi/LTE integrated
antenna

MDMS

Figure 3.12: Cell layout for AMI of smart grid.
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access point; EPC= Evolved packet core; APP= application; UDP= user datagram proto-
col; TCP= transmission control protocol; LLC= logic link control; IP= Internet protocol;
PHY= physical; MAC= medium access control; GTP= GPRS tunneling protocol; RLC=
radio link control; PDPC= packet Data Convergence Protocol)

Let us consider, a collocated LTE-U and WiFi network scenario where LTE-U and WiFi

coexists in the 3.5 GHz band as illustrated in Fig. 3.12. In our proposed framework, smart

meters use WiFi and APs of smart meters use LTE-U for transferring data. Additionally,

collocated WiFi AP and LTE BS are integrated. The data of a cluster of meters is collected

by a WiFi AP, and then forwarded to integrated LTE BS. Finally LTE BS transmits data

to MDMS. The protocol mapping of various entities of WiFi system and LTE network is

illustrated in Fig. 3.13. The PHY layer of smart meter is connected with the PHY layer

of WiFi AP. On the other hand, The IP layers of WiFi AP and LTE BS are connected in

our model. The communication among LTE BS, EPC and MDMS are based on standard

LTE system architecture [178].

Let us consider, the sets of WiFi APs (i.e. data collector), LTE-U BS, WiFi STAs (i.e.

smart meter) and LTE-U UE (i.e. MDMS and other UEs) are given by Sw, Sl, U i
w and

U j
l respectively. The transmission power of WiFi AP i, LTE BS j, meter/WiFi STA l and

LTE-U UE/MDMS m are pir, p
j
r, p

l
r and pmr .
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The channel gain values from WiFi STA/meter x to WiFi AP j, from LTE UE a to

WiFi AP j, from LTE-U BS i to WiFi AP j and LTE-U BS b(i 6= b) to WiFi j are hxj,r,

haj,r, h
i
j,r and hbj,r respectively.

The signal-to-noise (SINR) of WiFi AP j during the data reception from meter/WiFi

STA x on the resource block r is

SINRx
j,r =

hxj,rp
j
r∑

haj,rp
a
r +

∑
hij,rp

i
r +

∑
hbj,rp

b
r + σ2

, (3.5)

where σ2 is noise variance. The good SINR value ensures high throughput and low SINR

results in reduced throughput performance.

The number of successful received bits at WiFi AP j from the WiFi STA x, NB is

Nx
B = BT

∑
log2(1 + SINRx

j,r), (3.6)

where B is the bandwidth and T is the transmission time such that T=
∑
r. The number

of received bit depends on SINR value.

The up link (UL) capacity of WiFi STA/meter x is

Cx =
Nx
B

Ttx + Twait
, (3.7)

where Ttx and Twait are the transmission and wait time of WiFi, respectively.

For both LTE and WiFi traffic arrival rate λ, the distribution function of delay between

two packets (d) is

f(d) = λeλd. (3.8)

The higher the value of λ, the more is the number of packet on queue for transmission.
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3.6.2 Simulation Results

To evaluate the performance, a collocated 7 cell architecture is considered as shown in Fig.

3.12. We used the Matlab based simulator which was build based on 3GPP standard and

was used in [15,18]. In each cell, for each integrated WiFi AP/LTE-U BS, 10 smart meters

(WiFi STAs) and 10 LTE UEs are drooped at random locations. It is noted that one of 10

LTE UEs is to be considered as MDMS. The traffic arrival rates for LTE-U and WiFi are

considered as λLTE = λWiFi = 2.5. The PHY and MAC layers of LTE and IEEE 802.11n

(WiFi) are implemented in the simulation environment. In each transmission time interval

(TTI), only one UE is scheduled for the DL transmission and the SINR information is sent

to the corresponding BS.

Also based on the number of LTE-U UEs waiting and requesting for the UL transmis-

sion during one subframe, bandwidth is equally shared among themselves. The simulation

parameter for LTE simulation has been summarized in TABLE 3.4. The parameter value

were selected based on 3GPP LTE standard [179].

For WiFi, channel access mechanism CSMA/CA with clear channel assessment as-

sessment (CCA) and enhanced distributed channel access (EDCA) is implemented. WiFi

STAs having packets on queue competes for channel access. However, transmission or

Table 3.4: LTE MAC/PHY PARAMETERS.
Parameter Value
Frequency band 3.5 GHz
Bandwidth 20 MHz
Down link transmission (Tx) Power 20 dBm
LTE-U UE velocity 0 ms
Uplink transmission (Tx) Power PL Based TPC
Duration of frame 10 ms
Scheduling Round Robin
P0 -106 dBm
TTI 1 ms
Packet arrival rate (λ) 2.5
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reception is started only after reception of beacon. The WiFi STA sends packets when it

sense that the channel is idle. Otherwise, the transmission is ceased and the next trans-

mission will be attempted after a random back off period. The WiFi parameter in our

simulation are summarized in the TABLE 3.5. The parameter value were selected based

on study presented in [15, 180, 181].

A physical (PHY) layer abstraction is utilized for shannon capacity calculations of

WiFi and LTE-U at the 4µs granularity of WiFi OFDM symbol period of obtaining the

number of successfully received bits. FTP Traffic Model-2 [176] is commonly employed

for either WiFi and LTE-U. In our simulation, we used 60% and 80% duty cycle of 50 ms

transmission time for LTE. Therefore, WiFi will transmit 40% and 20% duty cycle of the

50 ms period.

The throughput performance of coexisted LTE and WiFi in the smart grid scenario

is illustrated in Fig. 3.14, and 3.15. Referred to Fig. 3.14, for 60% duty cycle of LTE-

U, the capacity of LTE is 36.3 Mbps and the capacity of WiFi is 36.1 Mpbs. If we

Table 3.5: WIFI MAC/PHY PARAMETERS.
Parameter Value
Frequency band 3.5 GHz
Bandwidth 20 MHz
Downlink/Uplink transmission (Tx) power 23 dBm
WiFi STA/meter velocity 0 ms
Access category Best Effort
MAC protocol EDCA
Threshold of CCA sensing -82 dBm
Threshold of CCA Energy detection -65 dBm
Number of service bits in PPDU 16 bits
Number of tail bits in PPDU 12 bits
Contention window size U (0, 31)
Noise figure 6
Beacon interval 100 ms
Beacon OFDM symbol detection threshold 10 dB
Beacon error ratio threshold 15
Packet arrival rate (λ) 2.5
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Figure 3.14: Throughput performance of coexisted LTE/WiFi system at 60% duty cycle.
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Figure 3.15: Throughput performance of coexisted LTE/WiFi system at 80% duty cycle.
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increase the duty cycle of LTE-U to 80%, the LTE capacity is improved to 38.6 Mbps

while the capacity of WiFi is decreased to 31.2 Mbps. This is illustrated in Fig. 3.15. The

throughput degrade in WiFi is due to the increased transmission back-off on extended

transmission time of LTE.

-60 -40 -20 0 20 40 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SINR

C
D

F
LTE  DL
LTE  UL
WiFi DL
WiFi UL

Figure 3.16: SINR distribution of coexisted LTE/WiFi system at 60% duty cycle.

As illustrated in Fig. 3.16, for 60% duty cycle of LTE, the SINR distribution of WiFi

is better than that of LTE. However, for 80% duty cycle of LTE, SINR distribution of LTE

is improved sightly whereas the SINR distribution of WiFi remained almost same. This

is reflected in Fig. 3.17.

The justification of using 60% and 80% duty for LTE is that LTE will be used not

only for meter data communication to MDMS, but also it will be used for human-to-

human communication (i.e. personal mobile communication). Therefore, we provide

more access to LTE transmission. However, more time (i.e. duty cycle) can be allocated

for WiFi transmission based on the number of smart meters.
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Figure 3.17: SINR distribution of coexisted LTE/WiFi system at 80% duty cycle.

3.7 Conclusion

We study the coexistence of ZigBee and LTE on a multi-layer network. From simulation

results, we found that ZigBee capacity is more affected by simultaneous operation of

LTE, than LTE capacity being affected by ZigBee transmission. However, by changing

the configuration of LTE transmission (DL/UL) and UL power control parameter, we

can improve the performance of ZigBee significantly. Since both the ZigBee and WiFi

uses CSMA/CA for accessing same channel, SINR of LTE is affected by any of the two.

According to US Department of Energy (DOE), the recommended data rate for AMI is

10-100 Kbps/node. Therefore the coexistence of LTE and ZigBee on unlicensed 2.4 GHz

band fulfills the requirement for smart meter communication.

In case of LTE and WiFi coexistence, LTE transmits for a fixed duty cycle of a period,

whereas WiFi transmits in the rest of the period. However, the duty cycle can be manipu-
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lated based on the number of smart meters. The promising simulation results demonstrate

that good neighborhood spectrum sharing can be possible without harming each other’s

performance. Moreover, the 3.5 GHz band has large clean and free bandwidth for data

communication. Therefore, 3.5 GHz band sharing by LTE and WiFi can be a promising

candidate communication architecture for metering infrastructure of smart grid.
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CHAPTER 4

Coexistence of LTE-U and WiFi: A Multi-Armed Bandit Approach

The Third-Generation Partnership Project (3GPP) standardization group has been re-

cently working on standardizing the licensed-assisted access (LAA) technology in the 5

GHz spectrum [21, 22, 182, 183]. The main goal is to develop a global single framework

of LAA of LTE in the unlicensed bands, where operation of LTE will not critically affect

the performance of WiFi networks in the same carrier. In the initial phase, only downlink

(DL) operation LTE-A (LTE Advanced) Carrier Aggregation (CA) in the unlicensed band

was considered, while deferring the simultaneous operation of DL and uplink (UL) to the

next phase.

Another option for the operation of LTE in the unlicensed spectrum is through a pre-

standard approach, referred to LTE-U, where LTE base stations leave transmission gaps

for facilitating coexistence with WiFi networks. Development of LTE-U technology is

led by the industry consortium known as the LTE-U Forum. LTE-U mainly focuses on

the operation of unlicensed LTE in the regions (e.g. USA, China) where listen before talk

(LBT) is not mandatory. LTE-U defines the operation of primary cell in a licensed band

with one or two secondary cells (SCells), each 20 MHz in the 5 GHz unlicensed band:

U-NII-1 and/or U-NII-3 bands, spanning 5150-5250 MHz and 5725-5825 MHz, respec-

tively. However both the LTE-U and LAA need licensed band for control plane. Similar

to the 5 GHz band, CBRS band can be utilized for LTE-U operation in the absence of IA

users such as radar signal.

In this chapter, we introduce a reinforcement learning (MAB) based adaptive duty

cycle section for the coexistence between LTE-U and WiFi [21, 22]. Multi-Armed Ban-

dit (MAB) is a machine learning technique designed to maximize the long-term rewards

through learning provided that each agent is rewarded after pulling an arm. Basically
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MAB [184, 185] problem resembles a gambler (agent) with a finite number of slot ma-

chines in which the gambler wants to maximum his rewards over a time horizon. Upon

pulling an arm, a reward is attained with prior unknown distribution. The goal is to pull

arms sequentially so that the accumulated rewards over the gambling period is maximized.

However, the problem involves the exploration versus exploitation trade-off, i.e., taking

actions to yield immediate higher reward on one hand and taking actions that would give

rewards in the future, on the other hand.

In our technique, we use a multi arm bandit (MAB) algorithm for selecting appropri-

ate duty cycle. Using a 3GPP compliant Time Division Duplex (TDD)-LTE and Beacon

enabled IEEE 802 systems in the 3.5 GHz band, we simulate and evaluate the coexis-

tence performance for different percentage of transmission gaps. We found a significant

throughput improvement for both systems ensuring harmonious coexistence. The objec-

tives, subsequently the gains, of this study are not limited to throughput enhancements.

The benefits that are achieved in different dimensions with the aid of MAB scheme and

the other supporting techniques like PC can be summarized as:

1) Proper coexistence is achieved due to the dynamic exploring and exploitation by MAB.

So our technique is adaptive.

2) The aggregate capacity is improved. Due to the application of MAB algorithm, optimal

or suboptimal solutions are achieved.

3) Using DL PC higher capacity values are achieved under dense UE and STA configura-

tions.

4) Higher energy efficiency is also achieved with PC, which always attempts to reduce

the transmission power while increasing the energy efficiency.

5) With the use of learning algorithm, a high degree of efficiency is achieved.

To the best of our knowledge, our work is the first study that introduces MAB for improv-

ing the coexistence of LTE and WiFi in the unlicensed bands.
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4.1 System Model and Problem Formulation

To evaluate the coexistence performance of LTE-U with WiFi in the unlicensed band, a

collocated LTE-U and WiFi network scenario is considered. The sets of LTE-U BSs, WiFi

APs, LTE-U UEs for BS i and WiFi STAs for AP w are given by BL, BW,QiL andQwW, re-

spectively. QL =
{
Q1

L,Q2
L, . . . ,QiL, . . . ,Q

|BL|
L

}
andQW =

{
Q1

W,Q2
W, . . . ,QwW, . . . ,Q

|BW|
W

}
represent the sets of all UEs and STAs. For LTE-U, TDD-LTE is considered. For syn-

chronization of WiFi STAs with the corresponding APs, a periodic beacon transmission

is used as in [43].

4.1.1 Interference on DL and UL Transmissions

Interference caused to an LTE-U UE and an LTE-U BS during DL and UL transmissions

are shown in Fig. 4.1. A TDD frame structure similar to that in [186, Fig. 6.2] is consid-

ered for all the BSs and UEs with synchronous operation. As shown in Fig. 4.1(a), in the

simultaneous operation of an LTE-U within a WiFi coverage area, the DL LTE-U radio

link experiences interference from other LTE-U DL and WiFi UL transmission. As the

same time, WiFi UL suffers from near LTE-U transmission. During an UL transmission

subframe, shown in Fig. 4.1(b), LTE-U BS is interfered by the UL transmission of LTE-U

UEs, as well as the DL transmissions of WiFi. Similarly, WiFi DL transmission is inter-

fered by other LTE-U ULs where the DL received signal of a WiFi STA is interfered by

other LTE-U UL transmissions. In the coexistence scenarios with high density of WiFi

users, WiFi transmissions get delayed degrading their capacity performance due to the use

of carrier sense multiple access with collision avoidance (CSMA/CA) mechanism [187].

This is an additional degradation other than the performance reduction experienced due
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to LTE-U transmissions operated on the same spectrum and this is valid only for WiFi

APs and STAs.

4.1.2 Duty Cycle of LTE-U

In the case of designing a duty cycle for LTE-U, multiple LTE TDD frames are considered.

For that purpose, five consecutive LTE frames [186, Fig. 6.2(a)] are used to construct a

duty cycle.

Similar to [43], the LTE-U transmission ON/OFF condition is used to define a duty

cycle which is shown in Fig. 4.2 (e.g., 40% duty cycle: during the first two consecutive

LTE-U frames, transmission is turned on and it is turned off during the following three

frames). One out of these two configurations is used by the UEs and BS in an LTE cell

during a duty cycle period. According to this structure, a constant UL:DL duty cycle

value is maintained.

4.1.3 Capacity Calculation and Power Control

For any BS i ∈ QL, there are N i resource blocks (RBs) for the DL. For a given UE u

associated to BS i, niu RBs are allocated whereN i =
∑|Qi

L|
u=1 n

i
u. pis,r, p

b
s,r, p

a
s,r and pqs,r are

transmit power values associated with RB r and the transmit power index s from the LTE-

U BS i, LTE-U BS b (i 6= b), WiFi AP a and WiFi STA q. The ith BS is considered as the

desired BS where the BSs indexed by b are the interference generating BSs. For any AP,

UE or STA total transmit power is equally distributed among all RBs. However in every

BS, the total transmit power is dynamically changed for every duty cycle according to

MAB algorithm. The hiu,r, h
b
u,r, h

a
u,r and hqu,r are the channel gain values from BS i to UE

u, from BS b to UE u, from AP a to UE u and from WiFi STA q to UE u, respectively. All

channel gain values are calculated considering path losses and shadowing. In that case,
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Figure 4.1: DL and UL interference scenarios for LTE-U/WiFi transmissions.

interference generated to UE u from BSs, APs and STAs are given by IuBS, IuAP and IuSTA,

respectively. Since a synchronized transmission is considered, there is no interference

from the UL transmission of LTE-U UEs. Noise variance is denoted by σ2. The Signal-

to-Interference-plus-Noise Ratio (SINR) expression for UE u served by BS i on RB r at

time interval k is given as
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SINRi
u,r [k] =

pish
i
u,r∑

b∈BL\i

pbsh
b
u,r︸ ︷︷ ︸

IuBS

+
∑
a∈BW

pash
a
u,r︸ ︷︷ ︸

IuAP

+
∑
q∈QW

pqsh
q
u,r︸ ︷︷ ︸

IuSTA

+σ2
, (4.1)

where b, i ∈ BL.

The amount of successfully transmitted data bitsNB from the ith LTE-U BS during TOFDM

time interval k within an active DL subframe/s of a duty cycle is given by

N i
B =

K i∑
k

∑
u∈Qi

L

Ru∑
r

W i
u,r log2

(
1 + SINRi

u,r [k]
)
TOFDM, (4.2)

TOFDM is the orthogonal frequency division multiplexing (OFDM) symbol duration,

T iTx = K iTOFDM and K i is the total number of transmit TOFDM time intervals for the con-

sidered duty cycle. The total allocated bandwidth for RB r for UE u served by BS i is

W i
u,r. The average capacity over a duty cycle period is used as a performance measure in

this study as in [43]. The DL capacity Ci of LTE-U BS i is given as

Ci =
N i

B

T iTx + T iWait
, (4.3)

where T iWait is the waiting time due to silent subframe allocation.
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The capacity Ci in (4.3) is used as a performance measure for each LTE-U BS. Since

the transmit power of one BS contributes to the interference power of the other BS, neigh-

boring BSs are coupled in terms of interference. The goal of every BS is to maximize Ci

while minimizing the DL transmit power pis,∀i ∈ BL. By minimizing the transmit power

values pis and pbs, the goal is to achieve a comparatively higher energy efficiency than the

case of constant DL transmit power. In the same time a reduction in interference is also

expected while guaranteeing a minimum capacity. Moreover, Pmin ≤ pbs ≤ Pmax where

Pmin and Pmax are the minimum and maximum transmit power constraints, respectively.

The minimum capacity corresponding to a given action is denoted by Cmin
j . The objective

is to maximize the average capacity while minimizing the transmit power, which can be

written as: 1]

maximize

|BL|∑
i=1

Ci

|BL|
(4.4)

minimize pis ∀i ∈ BL (4.5)

subject to
{
pis, p

b
s

}
≤ Pmax,∀i, b ∈ BL, i 6= b, s ∈ S (4.6){

pis, p
b
s

}
≥ Pmin,∀i, b ∈ BL, i 6= b, s ∈ S (4.7)

Ci > Cmin
j ,∀i ∈ BL,∀j ∈ J. (4.8)

In the case of energy efficiency, several parameter configurations are considered for

(4.8) as

Ci
pis

>
Cmin
j

pis
, or

Ci
pis

>
Cmin
j

Pmin
, or

Ci
pis

>
Cmin
j

Pmax
. (4.9)

Due to the same denominator, Ci

pis
>

Cmin
j

pis
is simplified to (4.8), which can be used as

a proportional measure of energy efficiency. The problem is reformulated defining a new

objective to maximize energy efficiency as follows:
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maximize

|BL|∑
i=1

Ci
pis

|BL|
(4.10)

subject to (4.6), (4.7) and (4.9).

4.2 MAB Techniques for LTE-U WiFi Coexistence

In a MAB problem, an agent selects an action (also known as arm) and observes the

corresponding reward. The rewards for given action/arms are random variables with un-

known distribution. The goal of MAB is to design action selection strategies to maximize

accumulate rewards over a given time horizon. However, the strategies need to achieve

a trade-off between exploration (selection of sub-optimal actions to learn their average

rewards) and exploitation (selection of actions which have provided maximum rewards

so far).

In order to dynamically optimize LTE-U transmission parameters, (i.e., duty cycle

and transmit power), a variant of MAB learning techniques, called Thomson sampling

[188, 189] algorithm is applied. The scenario is formulated as a multi-agent problem

G =
{
BL, {Ai}{i∈BL} , {Ci}{i∈BL}

}
, considering the BSs as players whereAi is the action

set for player i. During the entire process, each BS needs to strike a balance between

exploration and exploitation, where there are M exploration and L exploitation steps,

indexed with m, 1 ≤ m ≤M , and l, 1 ≤ l ≤ L, respectively.

• Agents: LTE-U BSs, BL.

• Action: The action set of agent i,Ai is defined asAi =
{
dij, p

i
s

}
j∈J,s∈S .

{
dij, p

i
s

}
is

the pair of duty cycle and transmit power elements. Configurations of duty cycles

are used as part of the action space D where D is common for all players. A given
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BS i selects dij , d
i
j ∈ D according to the Algorithm 1 where J = {1, 2, . . . , |D|},

j ∈ J and J ∈ Z+. Probability spaces of positive integers are denoted by Z+. The

set of first elements of the action vector Di =
{
di1, d

i
2, . . . , d

i
|D|

}
of BS i is asso-

ciated with the duty cycles as {20%, 40%, . . . , 80%}, respectively. The transmit

power values set P is represented as S = {1, 2, . . . , |P|}, s ∈ S and S ∈ Z+. pis is

the transmit power of player i where Pi =
{
pi1, p

i
2, . . . , p

i
|P|

}
. For each action Ai,

there a distribution Beta
(
αij, β

i
j

)
,∀j ∈ J where αij and βij are the shape parameter.

However, in the case of power control (PC), if Ci > Cmin
j , s is decreased by one

(s← s− 1) reducing the transmit power pis by one level for the next step m+ 1

and vice versa. Further, when Ci > Cmin
j a reward is achieved. As well as, for

Ci > Cmin
j , αij is incremented; otherwise βij is incremented.

• Decision function: The DL capacity of a BS i, Ci is used as the utility function.

In order to select a duty cycle, a decision function based on the policy UCB1 [190]

is used where the accumulated rewards achieved due to values given by Ci are

exploited. The decision value for the duty cycle dij related to the exploration step

m of BS i, vi,m
(
dij
)

is given in (4.11) while dik based on the decision is given in

(4.12),

vi,m
(
dij
)

= x̄i,m
(
dij
)

+

√
2 ln (m+ |Di|)
ni,m

(
dij
) , (4.11)

dik = arg max
dij∈Di

(
vi,m

(
dij
))
, (4.12)

where x̄i,m
(
dij
)

=
Ri(dij)
ni,m(dij)

. The argument of the maximum value is given by arg max (·).

x̄i,m
(
dij
)
, Ri

(
dij
)

and ni,m
(
dij
)

are the average reward obtained from dij during the

exploration step m, total rewards gained form the same dij and the total number of

times dij has been played, respectively. Selection of s is totally independent from

the decision function.
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Algorithm 1 Multi Arm Bandit (Thomson Sampling)
1: Initialization:
2: Set the minimum capacity values Cmin

j , ∀j ∈ J , Exploration steps M , Beta (1, 1), αij and βij
where ∀j : j ∈ J . Select dij ,∀j ∈ J , update s, ni,0

(
dij

)
, vi,0

(
dij

)
and accumulated hypoth-

esis / reward Ri
(
dij

)
based on Ci > Cmin

j

3: if αij(m) = βij(m), ∀(l,m) ∈M then
4: Exploration:
5: for m = 1, 2, 3, ...,M do
6: Select dij , d

i
j ∈ Di, j ∈ {U (1, |Di|) ∩ J} and update s, (4.8)

7: Execute
{
dij , p

i
s

}
, observe Ci and update ni,m

(
dij

)
8: if Ci > Cmin

j then

9: Reward, Ri
(
dij

)
= Ri

(
dij

)
+ 1

10: Update s (s← s− 1) and vi,m
(
dij

)
, (4.11)

11: Update αij(m) = αij(m) + 1
12: else
13: Reward, Ri

(
dij

)
= Ri

(
dij

)
+ 0

14: Update s (s← s+ 1) and vi,m
(
dij

)
, (4.11)

15: Update βij(m) = βij(m) + 1
16: end if
17: if Ri

(
dij

)
= Ri

(
dia
)
, dij , d

i
a ∈ Di, j 6= a,∀j, a ∈ J then

18: Select dik, dik ∈ Di, k ∈ {U (1, |Di|) ∩ J}
19: else
20: Select dik, (4.12)
21: end if
22: Exploitation:
23: for l = 1, 2, 3, ..., L do
24: Execute the action Ai =

{
dik, p

i
s

}
25: end for
26: end for
27: end if

The multi-agent learning problem is addressed using a MAB approach. In the contex-

tual MAB problem handled by the Thomson sampling algorithm [188], current and previ-

ous information (i.e., history) are used for the selection of an arm or (i.e., action). Initially

dij,∀j ∈ J are played once with pis = pi|P|. Based on the accumulated reward Ri

(
dij
)
, the

parameters s, ni,0
(
dij
)

and vi,0
(
dij
)

are updated. In the learning process, the accumulated

reward is used to play the role of the accumulated hypothesis defined in [191]. Subse-
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quently, agents balance between M exploration and L exploitations steps. During the ex-

ploration steps, dij is selected randomly where dij , d
i
j ∈ Di, j ∈ {U (1, |Di|) ∩ J} where

a uniform distribution with the minimum and maximum values x1 and x2 are given by

U (x1, x2). s is decided based on the last available values of (4.8). Subsequently the same

set of parameters is updated. At the end of each exploration step, based on (4.8) and the

accumulated rewards an action is selected. Then the same action is repeatedly played for

all the L exploitation steps of that particular exploration step as explained in Algorithm 1.

4.3 Simulation Results

For LTE-U, TDD-LTE is considered and it is assumed that all LTE-U UEs are synchro-

nized in both time and frequency domain as in [43] with the serving BSs. A beacon is

transmitted periodically for the purpose of synchronization of WiFi STAs with the corre-

sponding APs. To evaluate the performance, an architecture containing two independently

operated layers of cellular deployments is considered as shown in Fig. 4.3. Hexagonal

cells with omni directional antennas are assumed. LTE-U layer encompasses |BL| = 7

BSs and |QL| UEs where the WiFi layer includes |BW| = 7 APs and |QW| WiFi STAs.

In each cell, for each AP/BS, STAs/UEs are dropped at random locations. All of them

are assumed to be uniformly distributed within the cells of their serving BSs having a

mobility speed of 3 km/h and a random walk mobility model. We consider a non-full

buffer traffic for both WiFi and LTE networks, where the packet arrivals at the transmitter

queues follow a Poisson distribution. The traffic arrival rates for LTE-U and WiFi are

λLTE = λWiFi = 2.5 packet/second.

The LTE and WiFi IEEE 802.11n medium access control (MAC) and physical (PHY)

layers are modeled in which a PHY layer abstraction is used for Shannon capacity calcu-

lations of WiFi and LTE-U. The time granularity of each WiFi OFDM symbol duration is
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Figure 4.3: Cellular coverage layout used in LTE-U and WiFi coexistence simulations.

4 µs, which we use to periodically capture the number of successfully received bits [43].

For both technologies wireless channel is modeled according to [192], when the systems

are operated in the 3.5 GHz band. Indoor Hotspot (InH) scenario is considered with path

loss and shadowing parameters. FTP Traffic Model-2 [192] is employed for either WiFi

and LTE-U with a noise spectral power density of -95 dBm/Hz.

In each transmission time interval (TTI), DL SINR is reported to the correspond-

ing BS. Based on the number of LTE-U UEs waiting and requesting UL transmission

during one sub frame, bandwidth is equally shared among themselves. The simulation

parameters for LTE-U transmissions are summarized in TABLE 4.1. TDD configuration

1 [186, Fig. 6.2(a)] is used for the LTE-U frames having a 50 ms total duty cycle pe-

riod. Minimum required capacity level Cmin
j is 10 Mbps and the set of power levels is

Pi =
{
pi1, p

i
2, . . . , p

i
|P|

}
= {8, 13, 18, 23} dBm.

For WiFi, CSMA/CA with enhanced distributed channel access (EDCA) and clear

channel assessment (CCA) has been implemented. All WiFi STAs with traffic in their
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Table 4.1: LTE MAC/PHY PARAMETERS.
Parameter Value
Frequency 3.5 GHz
Transmission Scheme OFDM
Bandwidth 20 MHz
DL Tx Power 23 dBm
UL Tx Power PL Based TPC
Frame Duration 10 ms
Scheduling Round Robin
UL Base Power Level P0 -106 dBm
TTI 1 ms

queue will compete for channel access after receiving a beacon transmission. Without

reception of a signal beacon, transmission or reception will not be initiated. The WiFi STA

will sense the channel and will transmit if it is idle. Otherwise transmission will be backed

off and the next transmission will be initiated after a backoff time. Random backoff

time mechanism is used for this study. All the parameters for the WiFi transmission are

summarized in TABLE 4.2.

Table 4.2: WIFI MAC/PHY PARAMETERS.
Parameter Value
Frequency 3.5 GHz
Transmission Scheme OFDM
Bandwidth 20 MHz
DL/UL Tx Power 23 dBm
Access category Best Effort
MAC protocol EDCA
CCA Channel sensing threshold -82 dBm
CCA Energy detection threshold -62 dBm
No of service bits in PPDU 16 bits
No of tail bits in PPDU 12 bits
Backoff type Fixed contention window
Contention window size U (0, 31)
Noise figure 6 [186]
Beacon interval 100 ms
Beacon OFDM symbol detection threshold 10 dB
Beacon error ratio threshold 15
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4.3.1 Aggregate Capacity with MAB

Compared to fixed DCP scenarios, with the use of MAB algorithm, overall capacities are

increased. Performance of Epoch-Greedy algorithm with and without PC is presented in

the same figure. No significant influence could be observed for LTE-U throughputs due

to PC. Even though it is not quantified, both interference caused by LTE-U BSs and the

energy consumption at the BSs are reduced due to PC mechanism. When there is a PC

mechanism, a degradation in performance particularly in the WiFi activities also can be

seen. Capacity reduction of WiFi is caused by the behavior of LTE-U transmissions and

CSMA/CS technique. As given by Fig. 4.4, in all the cases a severe performance degra-

dation of LTE-U could be seen in the presence of WiFi transmissions, when compared to

the case with only LTE-U transmission. In other words, a very high sensitivity for inter-

ference is shown by LTE-U. The same behavior is shown by WiFi as well where there is a

considerable throughput reduction compared to the scenario with no LTE-U transmission.
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Figure 4.4: LTE-U and WiFi UL/DL capacities.
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The aggregate capacity performance of LTE-U UEs and WiFi STAs under different

densities is given in Fig. 4.5. There is a capacity improvement with reductions of users

in both services. Comparatively high sensitivity could be seen when the density of STAs

are changed. When the densities are reduced, particularly the STAs, a significant increase

in capacity is achieved under reduced interference conditions. However this reduction is

further contributed by the CSMA/CS mechanism as well.

Aggregate capacity of stand-alone WiFi, coexisting LTE-U (80% duty cycle) and WiFi

(with no MAB algorithm), and MAB based coexistence of LTE-U and WiFi are presented

in Fig. 4.6. The aggregate number of WiFi APs and LTE BSs in all scenarios are kept

constant. For the WiFi only deployment, we replace all the LTE BSs in Fig. 4.3 with WiFi

APs. It is notable that with the use of MAB, the overall capacity is increased significantly

from stand-alone WiFi operation and simultaneous operation of LTE-U and WiFi (without

MAB). Also we found that with the increase of inter site distance (ISD) in Fig. 4.3, the

capacity deceases. This is because of higher serving area per APs/STA within the ISDs.
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The WiFi throughput performance with and without MAB algorithm is shown in

Fig. 4.7, where it is noted that MAB algorithm improves the WiFi throughput over the

two other scenarios. Moreover, with the increase of ISD, capacity degrades for all cases.

The effect of LTE packet arrival rate on aggregate capacity is shown in Fig. 4.8. We

found that the aggregate throughput of coexisting LTE and WiFi networks is maximized

for λL = 2.5, but then it decreases for larger values of λL due to increased interference

levels. Also for full buffer LTE traffic (λL = 0), the coexisting system with MAB has

degraded performance compared to coexisting system without MAB.
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Figure 4.6: Aggregate capacity of coexisting WiFi and LTE-U (80% duty cycle), MAB
based coexisting LTE-U and WiFi, and stand-alone WiFi system for different ISDs.

Impact of energy detection threshold on aggregate capacity is shown in Fig. 4.9. It

is observed that -62 dBm threshold provides best performance for all scenarios. Sensing

threshold less than -62 dBm makes WiFi to back off from transmission in the presence

of LTE transmission, and results in lower aggregate capacity. On the other hand, sensing
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threshold more than -62 dBm allows WiFi to transmit in the presence of LTE operation,

which reduces aggregate capacity due to higher interference.

MAB

LTE WiFi

20 MHz

10 MHz 10 MHz

Scenario 1

Scenario 2

Figure 4.10: Scenario with two cases.

For Fig. 4.11, we consider a scenario with two cases as described in Fig. 4.10. In

scenario 1, we consider simultaneous operation of LTE-U and WiFi using MAB on 20

MHz bandwidth. On the other hand, in scenario 2, stand-alone LTE (i.e. 100% duty cycle)

and WiFi are operating on separate 10 MHz bandwidth. We find that the overall capacity

using MAB is improved significantly when compared with the aggregate capacity of two
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stand-alone systems. This reflects how the spectral efficiency can be improved using

MAB, and motivates sharing of wireless spectrum among LTE and WiFi networks, rather

than deploying them separately.

The impact of LTE-U UEs and WiFi STAs density on aggregate capacity is given in

Fig. 4.12. We find that the aggregate capacity improves for the reductions of users in

both services. Comparatively high sensitivity could be seen when the density of STAs

are changed. When the densities are reduced, particularly the STAs, a significant increase

in capacity is achieved under reduced interference conditions. However this reduction is

further contributed by the CSMA/CA mechanism as well. Also it is notable that capacity

decreases with the increase of ISD.
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4.3.2 Cell Edge Performance

In Fig. 4.13, 5th percentile LTE throughput for different user densities of STAs is repre-

sented. We found that with the increase of STAs, 5th percentile UE throughput reduces

due to more interference caused by STAs. However, with the increment of UEs, the effect

of STA density reduces. This means for higher density of UEs and STAs, fewer LTE users

will experience higher capacity.

4.3.3 Energy Efficiency Performance

Aggregate capacity of |QiL| = 10 and |QwW| = 10 is presented in Fig. 4.14 for different

power control techniques. Four parameter settings are used for PC. In the fist instance,

no PC is considered. In the second case, PC is used by replacing the parameters in Step

7 of the Algorithm I with Ci

pis
>

Cmin
j

Pmin
where Pmin = 8 dBm. For the third and forth cases,
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parameters are replaced with Ci

pis
>

Cmin
j

Pmax
and Ci > Cmin

j where Pmax = 23 dBm. The set of

power levels is defined as Pi =
{
pi1, p

i
2, . . . , p

i
|P|

}
= {8, 11, 14, 17, 20, 23} dBm where

Pmin = 8 dBm and Pmax = 23 dBm. So, in the second and third cases a given level of

energy efficiency is aimed at. In the last case, according to the explanation given for

(4.9), the level is dynamically adjusted. It is noted that the best and worst performances

are found for Pmax and Pmin. For MAB with PC, optimum result is found.

In Fig. 4.15, different number of UEs are considered to evaluate energy efficiency

performance. For all the densities, the least efficiency is achieved with no PC. In the

most dense scenario, the best efficiency can be observed under the second configura-

tion,
Cmin

j

Pmin
[see (9)]. As it is expected with the reduction of densities, energy efficiency

is increased. However after a certain average energy efficiency level, no significant im-

provements could be observed.
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4.4 Conclusion

In this chapter, a MAB based dynamic duty cycle selection method was proposed to fa-

cilitate spectrum sharing between WiFi and LTE-U in the same unlicensed band. Per-

formance of the proposed algorithm was further enhanced by using a DL PC technique.

Subsequently, the proposed concept was extended to optimize energy efficiency. Con-

siderable gains in overall throughputs could be achieved via the proposed MAB while

ensuring a minimum capacity for LTE-U based services in the same band. Significant

gains in terms of energy efficiency could be achieved where it is observed that the gains

under different parameter settings with PC is much higher than those of with no PC. Our

future work includes extending our framework to scenarios with IA and PAL users in the

same spectrum.
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CHAPTER 5

Low Latency Towards 5G: RAN, Core Network and Caching Solutions

The focus of next generation mobile communication is to provide seamless communi-

cation for machines and devices building the Internet-of-Things (IoT) along with personal

communication [23]. New applications such as tactile Internet1, high-resolution video

streaming, tele-medicine, tele-surgery, smart transportation, and real-time control dictate

new specifications for throughput, reliability, end-to-end (E2E) latency, and network ro-

bustness [6]. Additionally, intermittent or always-on type connectivity is required for

machine-type communication (MTC) serving diverse applications including sensing and

monitoring, autonomous cars, smart homes, moving robots and manufacturing industries.

Several emerging technologies including wearable devices, virtual/augmented reality,

and full immersive experience (3D) are shaping the demeanor of human end users, and

they have special requirements for user satisfaction. Therefore, these use cases of the next

generation network push the specifications of 5G in multiple aspects such as data rate,

latency, reliability, device/network energy efficiency, traffic volume density, mobility, and

connection density. Current fourth generation (4G) networks are not capable of fulfilling

all the technical requirements for these services.

Fifth generation (5G) cellular network is the wireless access solution to fulfill the

wireless broadband communication specifications of 2020 and beyond [194, 195]. In

ITU, 5G ITU-R working group is working for development of 5G under the term IMT-

2020 [196]. The vision of this work is to achieve one thousand times throughput improve-

ment, 100 billion connections, and close to zero latency [6, 194]. In particular, 5G will

support enhanced mobile broadband (MBB) with end-user data rates of 100 Mbps in the

uniform spatial distribution with peak data rates of 10-20 Gbps [194,195]. Based on con-

1A network or network of networks for remotely accessing, perceiving, manipulating or con-
trolling real or virtual objects or processes in perceived real time by humans or machines [193].
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sensus, 5G will not only provide personal mobile service, but also massive machine type

communications (MTC), and latency/reliability critical services. In mission critical com-

munication (MCC)/ultra reliable low latency communication (uRLLC2), both the latency

and reliability issues need to be addressed [197–199]. In many cases, the corresponding

E2E latency as low as 1 ms needs to be met with reliability as high as 99.99% [62].

To achieve low latency for MCC, drastic changes in the network architecture need to

be performed. Since the delay is contributed by radio access network (RAN) and core

network along with backhaul between RAN and core network, new network topology

involving software define network (SDN), network virtualized function (NFV), and mo-

bile edge computing (MEC)/caching can be employed to reduce the latency significantly.

This can happen due to the capability of seamless operation and independence from hard-

ware functionality provided by these entities. Moreover, new physical air interface with

small time interval transmission, small size packets, new waveforms, new modulation and

coding schemes are the areas of investigation for attaining low latency. In addition, opti-

mization of radio resource allocation, massive MIMO, carrier aggregation in millimeter

wave, and priority of data transmission need to be addressed. All in all, a robust integra-

tion with existing LTE is necessary for 5G networks that will enable industries to deploy

5G quickly and efficiently when it is standardized and available. In summary, 5G wire-

less access should be an evolution of LTE complemented with revolutionary architecture

designs and radio technologies.

In this chapter, we present a comprehensive survey of latency reduction solutions

particularly in the context of 5G wireless technology [23]. We first present the sources

and fundamental constraints for achieving low latency in a cellular network. We also

overview an exemplary 5G network architecture with compliance to IMT-2020 vision.

2uRLLC allows E2E latency of less than 1 ms on all layers with packet error rates of 10−5 to
10−9.
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Finally, we provide an extensive review of proposed solutions for achieving low latency

towards 5G. The goal of our study is to bring all existing solutions on the same page

along with future research directions. We divide the existing solutions into three parts:

(1) RAN solutions; (2) Core network solutions; (3) Caching solutions. However, detailed

comparison of these solutions are beyond the scope of this work.

5.1 Low Latency Services in 5G

Latency is highly critical in some applications such as automated industrial production,

control/robotics, transportation, health-care, entertainment, virtual realty, education, and

culture. In particular, IoT is quickly becoming a reality which connects anything to any

other thing anytime, and anywhere. Smart wearable devices (smart watches, glasses,

bracelets, and fit bit), smart home appliances (smart meters, fridges, televisions, ther-

mostat), sensors, autonomous cars, cognitive mobile devices (drones, robots, etc.) are

connected to always-on hyper-connected world to enhance our life style [31, 200, 201].

Even though operators are supporting these IoT applications through existing 3G/LTE,

some applications require much more stringent requirements from underlying networks

such as low latency, high reliability [202, 203], and security [204, 205]. In some cases,

we need latency as low as 1 ms with packet loss rate no larger than 10−2. Several latency

critical services which need to be supported by 5G are described as follows.

• Factory Automation: Factory automation includes real-time control of machine

and system for quick production lines and limited human involvement. In these

cases, the production lines might be numerous and contiguous. This is highly chal-

lenging in terms of latency and reliability. Therefore, the E2E latency requirement

for factory automation applications is between 0.25 ms to 10 ms with a packet loss

rate of 10−9 [200, 206]. In factory automation, the latency is measured as E2E in

which the sensors measuring data are at one end and transmit the data for processing
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to the other end for programmable logic controller (PLC). The proposed values for

the latency are based on the KoI (Koordinierte Industriekommunikation) project, in

which a detailed questionnaire-based survey is conducted to collect the information

from an extensive range of factory automation processes [207].

• Intelligent Transportation Systems: Autonomous driving and optimization of

road traffic requires ultra reliable low latency communication. According to intel-

ligent transportation systems (ITS), different cases including autonomous driving,

road safety, and traffic efficiency services have different requirements [200, 208].

Autonomous vehicles require coordination among themselves for actions such as

platooning and overtaking [209]. For automated vehicle overtaking, maximum E2E

latency of 10 ms is allowed for each message exchange. For video integrated ap-

plications such as see-through-vehicle application described in [210] requires to

transmit raw video which allows maximum delay of 50 ms [211]. Road safety in-

cludes warnings about collisions or dangerous situations. Traffic efficiency services

control traffic flow using the information of the status of traffic lights and local traf-

fic situations. For these purposes, latency of 10 ms to 100 ms with packet loss rate

of 10−3 to 10−5 is required.

• Robotics and Telepresence: In the near future, remote controlled robots will have

applications in diverse sectors such as construction and maintenance in dangerous

areas. A prerequisite for the utilization of robots and telepresence applications is

remote-control with real-time synchronous visual-haptic feedback. In this case,

system response times should be less than a few milliseconds including network

delays [200, 212, 213]. Communication infrastructure capable of proving this level

of real-time capacity, high reliability/availability, and mobility support is to be ad-

dressed in 5G networks.

75



Table 5.1: TYPICAL LATENCY AND DATA RATE REQUIREMENTS FOR DIFFERENT

MISSION CRITICAL SERVICES.
Use case Latency Data rate Remarks
Factory Automa-
tion

0.25-
10 ms [200]

1 Mbps [214]
– Generally factory automation ap-

plications require small data rates
for motion and remote control.

– Applications such as machine
tools operation may allow la-
tency as low as 0.25 ms.

Intelligent Trans-
port Systems
(ITS)

10-
100 ms [200]

10-
700 Mbps [215] – Road safety of ITS requires la-

tency on the order of 10 ms.

– Applications such as virtual mir-
rors require data rates on the or-
der of 700 Mbps.

Robotics and
Telepresence

1 ms [216] 100 Mbps [217]
– Touching an object by a palm

may require latency down to 1
ms.

– VR haptic feedback requires data
rates on the order of 100 Mbps.

Virtual Reality
(VR)

1 ms [212] 1 Gbps [217]
– Hi-resolution 360

◦ VR requires
high rates on the order of 1 Gbps
while allowing latency of 1 ms.

Health care 1-
10 ms [213]

100 Mbps [217]
– Tele-diagnosis, tele-surgery and

tele-rehabilitation may require
latency on the order of 1 ms with
data rate of 100 Mbps.

Serious Gaming 1 ms [212] 1 Gbps [217]
– Immersive entertainment and hu-

mans interaction with the high-
quality visualization may require
latency of 1 ms and data rates of
1 Gbps for high performance.
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Table 5.1: TYPICAL LATENCY AND DATA RATE REQUIREMENTS FOR DIFFERENT

MISSION CRITICAL SERVICES.
Use case Latency Data rate Remarks
Smart Grid 1-

20 ms [200,
212]

10-
1500 Kbps [218] – Dynamic activation and deac-

tivation in smart grid requires
latency on the order of 1 ms.

– Cases such as wide area
situational awareness require
date rates on the order of
1500 Kbps.

Education and
Culture

5-
10 ms [212]

1 Gbps [217]
– Tactile Internet enabled multi

modal human-machine inter-
face may require latency as
low as 5 ms.

– Hi-resolution 360
◦ and haptic

VR may require data rates as
high as 1 Gbps.

• Virtual Reality (VR): Several applications such as micro-assembly and tele-surgery

require very high levels of sensitivity and precision for object manipulations. VR

technology accommodates such services where several users interact via physically

coupled VR simulations in a shared haptic environment. Current networked com-

munication does not allow sufficient low latency for stable, seamless coordination

of users. Typical update rates of display for haptic information and physical simula-

tion are in the order of 1000 Hz which allows round trip latency of 1 ms. Consistent

local view of VR can be maintained for all users if and only if the latency of around

1 ms is achieved [212, 213, 219].

• Augmented Reality (AR): In AR technology, the augmentation of information into

the user’s field of view enables applications such as driver-assistance systems, im-

proved maintenance, city/museum guides, telemedicine, remote education, and as-
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sistive technologies for police and firefighters [212]. However, insufficient compu-

tational capability of mobile devices and latency of current cellular network hinder

the applications. In this case, latency as low as a few milliseconds is required.

• Health care: Tele-diagnosis, tele-surgery and tele-rehabilitation are a few notable

healthcare applications of low latency tactile Internet. These allow for remote

physical examination even by palpation, remote surgery by robots, and checking

of patients’ status remotely. For these purposes, sophisticated control approaches

with round trip latency of 1-10 ms and high reliability data transmission is manda-

tory [212, 213].

• Serious Gaming: The purpose of serious gaming is not limited to entertainment.

Such games include problem-solving challenges, and goal-oriented motivation which

can have applications in different areas such as education, training, simulation, and

health. Network latency of more than 30-50 ms results in a significant degrade in

game-quality and game experience ratings. Ideally, a round trip time (RTT) on the

order of 1 ms is recommended for perceivable human’s interaction with the high-

quality visualization [212].

• Smart Grid: The smart grid has strict requirements of reliability and latency [30,

220–222]. The dynamic control allows only 100 ms of E2E latency for switching

suppliers (PV, windmill, etc.) on or off. However, in case of a synchronous co-

phasing of power suppliers (i.e. generators), an E2E delay of not more than 1 ms

is needed [194, 212]. Latency more that 1 ms which is equivalent to a phase shift

of about 18◦ (50 Hertz AC network) or 21.6◦ (60 Hertz AC network), may have

serious consequence in smart grid and devices.

• Education and Culture: Low latency tactile Internet will facilitate remote learn-

ing/education by haptic overlay of teacher and students. For these identical multi-
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modal human-machine interfaces, round trip latency of 5-10 ms is allowed for per-

ceivable visual, auditory, and haptic interaction [212, 213]. Besides that, tactile

Internet will allow to play musical instruments from remote locations. In such

scenarios, supporting network latency lower than few milliseconds becomes cru-

cial [212].

Based on the applications and use case scenarios above, latency critical services in 5G

networks demand an E2E delay of 1 ms to 100 ms. The latency requirements along with

estimated data rates for various 5G services are summarized in Table 5.1. Some use cases

such as VR and online gaming may require round trip latency on the order of 1 ms with

data rates as high as 1 Gbps. On the other hand, use cases such as factory automation and

smart grid require lower data rates on order of 1 Mbps with demanding latency of 1 ms.

For required data rates on the order of 1 Gbps, [217] reports that bandwidth of 40 MHz is

sufficient at 20 node density per square kilometer. For data rates of few Mbps, bandwidth

of 20 MHz and lower can be sufficient for most scenarios. This means spectral efficiency

supported by 5G is 50 bps/Hz while LTE-A can support upto 30 bps/Hz [223]. For lower

bandwidth, spectrum below 6 GHz can be utilized while for high bandwidth requirement,

mmWave can be an attractive choice [217].

In the next section, the major sources of latency in a cellular network are discussed.

5.2 Sources of Latency in a Cellular Network

In the LTE system, the latency can be divided into two major parts: (1) user plane (U-

plane) latency and (2) control plane (C-plane) latency. The U-plane latency is measured

by one directional transmit time of a packet to become available in the IP layer between

evolved UMTS terrestrial radio access network (E-UTRAN) edge/UE and UE/E-UTRAN

node [224]. On the other hand, C-plane latency can be defined as the transition time of a
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UE to switch from idle state to active state. At the idle state, an UE is not connected with

radio resource control (RRC). After the RRC connection is being setup, the UE switches

from idle state into connected state and then enters into active state after moving into

dedicated mode. Since the application performance is dependent mainly on the U-plane

latency, U-plane is the main focus of interest for low latency communication.

In the U-plane, the delay of a packet transmission in a cellular network can be con-

tributed by the RAN, backhaul, core network, and data center/Internet. As referred in Fig.

5.1, the total one way transmission time [109] of current LTE system can be written as

T = TRadio + TBackhaul + TCore + TTransport (5.1)

where

• TRadio is the packet transmission time between eNB and UEs and is mainly due to

physical layer communication. It is contributed by eNBs, UEs and environment. It

consists of time to transmit, processing time at eNB/UE, retransmissions, and prop-

agation delay. Processing delay at the eNB involves channel coding, rate match-

ing, scrambling, cyclic redundancy check (CRC) attachment, precoding, modula-

Internet/
Cloud

SDNVirtualized
server

TRadio TBackhaul Tcore TTransport

User
eNB

Evolved packet
core (EPC)

SGSN/MME

Figure 5.1: Latency contribution in E2E delay of a packet transmission.
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tion mapper, layer mapper, resource element mapper, and OFDM signal generation.

On the other hand, uplink processing at UE involves CRC attachment, code block

segmentation, code block concatenation, channel coding, rate matching, data and

control multiplexing, and channel interleaver. Propagation delay depends on obsta-

cles (i.e. building, trees, hills etc.) on the way of propagation and the total distance

traveled by the RF signal;

• TBackhaul is the time for building connections between eNB and the core network

(i.e. EPC). Generally, the core network and eNB are connected by copper wires or

microwave or optical fibers. In general, microwave involves lower latency while

optic fibers come with comparatively higher latency. However, spectrum limitation

may curb the capacity of microwave [225];

• TCore is the processing time taken by the core network. It is contributed by var-

ious core network entities such as mobility management entity (MME), serving

GPRS support node (SGSN), and SDN/NFV. The processing steps of core network

includes NAS security, EPS bearer control, idle state mobility handling, mobility

anchoring, UE IP address allocation, and packet filtering;

• TTransport is the delay to data communication between the core network and Inter-

net/cloud. Generally, distance between the core network and the server, bandwidth,

and communication protocol affect this latency;

The E2E delay, TE2E is then approximately given by 2×T . The TRadio is the sum of

transmit time, propagation latency, processing time (channel estimation, encoding

and decoding time for first time), and retransmission time (due to packet loss). In

particular, the TRadio for a scheduled user [226, 227] can be expressed as:

TRadio = tQ + tFA + ttx + tbsp + tmpt (5.2)
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where

– tQ is the queuing delay which depends on the number of users that will be

multiplexed on same resources;

– tFA is the delay due to frame alignment which depends on the frame struc-

ture and duplexing modes (i.e., frequency division duplexing (FDD) and time

division duplexing (TDD));

– ttx is the time for transmission processing, and payload transmission which

uses at least one TTI depending on radio channel condition, payload size,

available resources, transmission errors and retransmission;

– tbsp is the processing delay at the base station;

– tmpt is the processing delay of user terminal. Both the base station and user

terminal delay depend on the capabilities of base station and user terminal

(i.e., UE), respectively.

In compliance with ITU, TRadio should not be more than 0.5 ms for low latency

communication [228]. In this regard, radio transmission time should be designed

to be on the order of hundreds of microseconds while the current configuration in

4G is 1 ms. For this, enhancement in various areas of RAN such as packet/frame

structure, modulation and coding schemes, new waveform designs, transmission

techniques, and symbol detection need to be carried out. In order to reduce the

delay in TBackhaul, approaches such as advanced backhaul techniques, caching/fog

enabled networks, and intelligent integration of AS and NAS can provide potential

solutions. For TCore, new core network consists of SDN, NFV, and various intelli-

gent approaches can reduce the delay significantly. For TTransport, MEC/fog enabled

Internet/cloud/caching can provide reduced latency.
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In the following section, we discuss the constraints and approaches for achieving

low latency.

5.3 Constraints and Approaches for Achieving Low Latency

There are major fundamental trade-offs between capacity, coverage, latency, reli-

ability, and spectral efficiency in a wireless network. Due to these fundamental

limits, if one metric is optimized for improvement, this may results in degradation

of another metric. In the LTE system, the radio frame is 10 ms with the smallest

TTI being 1 ms. This fixed frame structure depends on the modulation and cod-

ing schemes for adaptation of the transmission rate with constant control overhead.

Since latency is associated with control overhead (cyclic prefix, transmission mode,

and pilot symbols) which occupies a major portion of transmission time of a packet

(approximately 0.3-0.4 ms per packet transmission), it is not wise to consider a

packet with radio transmission time less than 1 ms. If we design a packet with time

to transmit of 0.5 ms, more than 60% of the resources will be used by control over-

head [109]. Moreover, retransmission per packet transmission takes around 8 ms,

and removal of retransmission will affect packet error significantly. As a result, we

need radical modifications and enhancements in packet/frame structure and trans-

mission strategy. In this regard:

– First, a novel radio frame reinforced by limited control overhead and smaller

transmission time is necessary to be designed. For reduction of control over-

head, procedures for user scheduling, resource allocation, and channel train-

ing can be eliminated or merged.
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– Second, packet error probability for first transmission should be reduced with

new waveforms and transmission techniques reducing the retransmission de-

lay.

– Third, since latency critical data needs to be dispatched immediately, tech-

niques for priority of data over normal data need to be identified.

– Fourth, synchronization and orthogonality are the indispensable aspects of

OFDM that are major barriers for achieving low latency. Even though asyn-

chronous mode of communication is more favorable over synchronized op-

eration in terms of latency, it requires additional spectrum and power re-

sources [229].

– Fifth, since the latency for data transmission also depends on the delay be-

tween the core network and the BS, caching networks can be used to reduce

latency by storing the popular data at the network edge.

5G low latency
communication

Core network CachingRAN

Frame/Packet
structure

Waveform/
Multiple Access

Modulation and
coding

Transmitter
adaptation

Control signaling

SDN

NFV

MEC

Fog network

Caching placement

Content delivery

General
backhauling

mmWave
backhauling

Symbol detection

mmWave

Location aware
communication

QoS/QoE
differentiation

CRAN and others

Centralized caching

Distributed caching

Figure 5.2: Categories of different solutions for achieving low latency in 5G.
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Researchers proposed various techniques/approaches for achieving low latency in 5G.

As summarized in Fig. 5.2, we divided the existing solutions into three major categories:

(1) RAN solutions, (2) core network solutions, and (3) caching solutions. The RAN

solutions include new/modified frame or packet structure, waveform designs, multiple

access techniques, modulation and coding schemes, transmission schemes, control chan-

nels enhancements, low latency symbol detection, mmWave aggregation, cloud RAN,

reinforcing QoS and QoE, energy-aware latency minimization, and location aware com-

munication techniques. On the other hand, new entities such as SDN, NFV, MEC and

fog network along with new backhaul based solutions have been proposed for the core

network. The solutions of caching can be subdivided into caching placement, content

delivery, centralized caching, and distributed caching, while backhaul solutions can be

divided into general and mmWave backhaul. In the following sections, these solutions

are described in further details.

5.4 RAN Solutions for Low Latency

To achieve low latency, various enhancements in the RAN have been proposed. Refer-

ring to Table 5.2, RAN solutions/enhancements include frame/packet structure, advanced

multiple access techniques/waveform designs, modulation and coding scheme, diversity

and antenna gain, control channel, symbol detection, energy-aware latency minimiza-

tion, carrier aggregation in mmWave, reinforcing QoS and QoE, cloud RAN and location

aware communication. In what follows, the detailed overview for each of these solutions

is presented.
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Table 5.2: OVERVIEW OF TECHNIQUES IN RAN FOR LOW LATENCY.

Case Reference Approach Summary
[58, 59] Small packets/short

TTI
Transmission of small scale data is investigated for
packet loss rate of 10−9 and latency as low as 1 ms.

[60] Subcarrier spacing Subcarrier spacing is enlarged to shorten the OFDM
symbol duration, and the number of OFDM symbols
is proposed to keep unchanged in each subframe.

Frame
/Packet
structure

[61–64] Flexible OFDMA
based TDD sub-
frame

TDD numerology is optimized for dense deploy-
ment with smaller cell sizes and larger bandwidth
in the higher carrier frequencies.

[230] Modification of
physical subframe

Different control and data part patterns for consec-
utive subframes, TX and RX control parts are pro-
posed to be separated from each other, and from the
data symbols with a GP, leading to total number of
3 GPs per subframe.

[226, 231–
233]

Numerology, flexi-
ble sub frame and
resource allocation

Numerology and subframe structure are defined
considering diverse carrier frequencies and band-
widths to envision 5G including low latency. Cyclic
prefix, FFT size, subcarrier spacing, and sampling
frequency were expressed as the function of carrier
frequency.

Advanced
multiple
access
/Wave-
form

[65], [66],
[67]

Filtered CP-
OFDM, UFMC
and FBMC

UFMC outperforms over OFDM by about 10% in
case of both large and small packets. FBMC demon-
strates better performance in case of transmitting
long sequences; however, it suffers during the trans-
mission of short bursts/frames.

[1, 68] Polar coding Based on simulation and field test, polar coding
has been proposed for 5G, outperforming over turbo
coding in case of small packet transmission.

[69] Turbo decoding
with combined
sliding window al-
gorithm and cross
parallel window
(CPW) algorithm

A highly-parallel architecture for the latency sen-
sitive turbo decoding is proposed combining two
parallel algorithms: the traditional sliding window
algorithm and cross parallel window (CPW) algo-
rithm.

[70] New IFFT design
with butterfly oper-
ation

Input signal of IFFT processor corresponding to
guard band are assigned as null revealing the exis-
tence of numerous zeros (i.e., 0). If the sequence
of OFDM symbol data which enter the IFFT is ad-
justed, the memory depth can be reduced from 1024
to 176.

Modulation
and cod-
ing

[71] Sparse code multi-
ple access (SCMA)

A dynamic shrunk square searching (DSSS) algo-
rithm is proposed, which cuts off unnecessary com-
munication control port (CCP) calculation along
with utilization of both the noise characteristic and
state space structure.
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Table 5.2: OVERVIEW OF TECHNIQUES IN RAN FOR LOW LATENCY (CONTINUED).
Case Refer-

ence
Approach Summary

[234] Priority to latency
critical data

A latency reduction approach by introducing TDM of
higher priority ultra-low latency data over other less
time critical services is proposed which maps higher
priority user data during the beginning of a subframe
followed by the normal data.

[72] Balanced trunca-
tion

Balanced truncation is applied for the model reduction
in the linear systems that are being coupled over arbi-
trary graphs under communication latency constraints.

[235] Finite block length
bounds and coding

Recent advances in finite-block length information the-
ory are utilized in order to demonstrate optimal design
for wireless systems under strict constraints such as low
latency and high reliability.

[73] Asymmetric win-
dow

Asymmetric window is proposed instead of well-known
symmetric windows for reduction of cyclic prefix by
30%. This technique suppresses OOB emission but
makes the system more susceptible to channel induced
ISI and ICI.

[74] Transmission
power optimization

Transmission power is optimized by steepest descent al-
gorithm considering transmission delay, error probabil-
ity and queuing delay.

Transmitter
adapta-
tion

[75] Path-switching
method and a
packet-recovery
method

Low latency packet transport system with a quick path-
switching method and a packet-recovery method are
introduced for a multi-radio-access technology (multi-
RAT) environment.

[214] Diversity Diversity could be employed through various ap-
proaches such as spatial diversity, time diversity, and
frequency diversity.

[78] Control channel
sparse encoding
(CCSE)

CCSE is introduced in order to provide the control in-
formation using non-orthogonal spreading sequences.

[77] Scaled control
channel design

A scaled-LTE frame structure is proposed assuming the
scaling factor to be 5 with a dedicated UL CCHs for all
sporadic-traffic users in each transmission time interval
with possible smallest SR size.

[79] Symbol-level fre-
quency hopping
and sequence-
based sPUCCH

A sequence-based sPUCCH (SS-PUCCH) incorporat-
ing two SC-FDMA symbols is introduced in order to
meet a strict latency requirement. Symbol-level fre-
quency hopping technique is employed to achieve fre-
quency diversity gain and reliability enhancement.

Control
signaling

[80] Radio bearer and
S1 bearer manage-
ment

Establishment of radio bearer and S1 bearer in parallel
are proposed where eNB and mobility management ele-
ment (MME) manages and controls radio bearer and S1
bearer, respectively. The eNB sends only single control
signal in order to configure radio bearers such as SRB1,
SRB2 and DRBs, that decreases the signaling interac-
tion rounds between the UE and the eNBs.
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Table 5.2: OVERVIEW OF TECHNIQUES IN RAN FOR LOW LATENCY (CONTINUED).

Case Reference Approach Summary
[81] Outer-loop link

adaptation (OLLA)
scheme

The proposed scheme controls the size of the com-
pensation in the estimated SINR based on the time
elapsed after a UE transits from an idle state to an
active state, which helps to reduce latency for small
packet applications.

[83] SM-MIMO detec-
tion scheme with
ZF and MRC-ZF

A low-complexity and low latency massive SM-
MIMO detection scheme is introduced and validated
using SDR platforms. The low complexity detection
scheme is proposed with a combination of ZF and
MRC-ZF.

[82] Linear MMSE A linear MMSE receiver is presented for low latency
wireless communications using ultra-small packets.

Symbol
detection

[84] Space-time encod-
ing and widely lin-
ear estimator

Space-time encoding is introduced within a GFDM
block for maintaining overall low latency in the sys-
tem. On the other hand, a widely linear estimator is
used to decode the GFDM block at the receiver end,
which yields significant improvements in gain over
earlier works.

[7, 85, 86] Compressed sens-
ing

Compressed sensing has been proposed to be effec-
tive in reducing latency of networked control sys-
tems if the state vector can be assumed to be sparse
in some representation.

[87] Low complexity re-
ceiver design

A low complexity receiver is designed and using
this, the performance of an SCMA system is veri-
fied via simulations and real-time prototyping. This
approach triples the whole system throughput while
maintaining low latency similar to flexible orthogo-
nal transmissions.

mmWave [88–91] mmWave based air
interface

Physical layer air interface is proposed using
mmWave aggregation. Large bandwidth along with
various approaches such as small frame structure,
mmWave backhaul and beamforming can help to
achieve low latency.

Location
aware
commu-
nication

[3, 92, 93] Location informa-
tion

Issues and research challenges of 5G are discussed
followed by the conclusion that 5G networks can ex-
ploit the location information and accomplish per-
formance gains in terms of throughput and latency.

QoS/QoE
Differen-
tiation

[94–103] Parameter manipu-
lation

Differentiation of constraints on QoS and QoE can
maintain low latency in 5G services including ultra
high definition and 3D video content, real time gam-
ing, and neurosurgery.

Cloud
RAN
(CRAN)

[104–108] Cloud architecture
based RAN

CRANs combine baseband processing units of a
group of base stations into a central server while re-
taining radio front end at the cell sides. Proper opti-
mization of resources can ensure low latency along
with capital expenditure reduction.
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Figure 5.3: Physical air interface (a) Conventional LTE radio frame, (b) Exemplary 5G
radio frame with flexible time and frequency division for low latency [3] (GB: guard band;
LLC: low latency communication).
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5.4.1 Frame/packet structure

In the RAN solutions, modification in the physical air interface has been considered as an

attractive choice. In particular, most of the proposed solutions are on the physical (PHY)

and medium access control (MAC) layers.

In LTE cellular network, the duration of a radio frame is 10 ms. Each frame is par-

titioned into 10 subframes of size 1 ms which is further divided into 0.5 ms units that

are referred as a resource block (RB). Each RB spans 0.5 ms (6 or 7 OFDM symbols)

in time domain and 180 KHz (12 consecutive subcarriers, each of which 15 KHz) in

frequency domain. Based on this, the subcarrier spacing ∆f is 15 KHz, the OFDM

symbol duration TOFDM is 1
∆f

= 66.67µs, the FFT size is 2048, the sampling rate fs is

∆f ×NFFT = 33.72 MHz and the sampling interval Ts is 1/fs.

To reduce TTI for achieving low latency, the subcarrier spacing ∆f can be changed

to 30 KHz [60]. This results the corresponding OFDM symbol duration TOFDM to be

33.33 µs and the FFT sizeNFFT to become 1024 while sampling rate fs is kept 30.72 MHz

similar to LTE systems. The frame duration Ts=10 ms can be divided into 40 subframes

in which each subframe duration Tsf is 0.25 ms and contains 6 or 7 symbols. Two types

of cyclix prefixs (CPs) can be employed in this configuration with durations

Tcp1 = 5/64×NIFFT × Ts ≈ 2.604 µs, (5.3)

Tcp2 = 4/64×NIFFT × Ts ≈ 2.083 µs. (5.4)

A conventional LTE radio frame with equal sized RB and an exemplary 5G physical air

frame are illustrated in Fig. 8.10(a) and Fig. 8.10(b), respectively.

In [58], an extensive analysis of the theoretical principles that regulates the transmis-

sion of small-scale packets with low latency and high reliability is presented with metrics

to assess their performance. The authors emphasize control overhead optimization for
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short packet transmission. In [226], a flexible 5G radio frame structure is introduced in

which the TTI size is configurable in accordance with the requirement of specific ser-

vices. At low offered load, 0.25 ms TTI is an attractive choice for achieving low latency

due to low control overhead. However, for more load, control overhead increases which

affects reliability and packet recovery mechanism resulting in increased latency. This

study argues to employ user scheduling with different TTI sizes in the future 5G net-

works. In [59], the authors try to improve the outage capacity of URLLC and satisfy the

low latency requirement of 5G using an efficient HARQ implementation with shortened

transmission TTI and RTT. Moreover, some simulations are conducted in order to provide

insights on the fundamental trade-off between the outage capacity, system bandwidth, and

the latency requirement for URLLC.

In [231], the numerology and subframe structure are defined considering diverse car-

rier frequencies and bandwidths for low latency 5G networks. Cyclic prefix, FFT size,

subcarrier spacing, and sampling frequency were expressed as a function of the carrier

frequency. In [64], software defined radio (SDR) platform based 5G system implemen-

tation with strict latency requirement is presented. The scalability of the proposed radio

frame structure is validated with E2E latency less than 1 ms. In [60], the proposed subcar-

rier spacing is enlarged to shorten the OFDM symbol duration, and the number of OFDM

symbols in each subframe is kept unchanged in the new frame structure for TDD down-

link. The subcarrier spacing is changed to 30 KHz resulting the corresponding OFDM

symbol duration T = 33.33 µs. The fast Fourier transform (FFT) size N is 1024, while

the sampling rate fs is kept same as 30.72 MHz. The frame duration Ts is still 10 ms with

40 subframes.

In [230], in order to have fully flexible allocations of different control and data RB in

the consecutive subframes, TX and RX control RBs are proposed to be separated from

each other and also from the data RB by guard periods (GPs). This leads to total number
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of 3 GPs per subframe which separates them. Assuming symmetrical TX and RX control

parts with Nctrl s symbols in each and defining that same subcarrier spacing is used for

control and data planes, with Ndata s being the number of data symbols and Tsymbol being

the length of an OFDM symbol, the subframe length Tsf can be determined as

Tsf = (2Nctrl s +Ndata s(Tsymbol + TCP)) + 2TGP. (5.5)

In [61], the fundamental limits and enablers for low air interface latency are discussed

with a proposed flexible OFDM based TDD physical subframe structure optimized for

5G local area (LA) environment. Furthermore, dense deployment with smaller cell sizes

and larger bandwidth in the higher carrier frequencies are argued as notable enablers for

air interface latency reduction. In [62], a new configurable 5G TDD frame design is

presented, which allows flexible scheduling (resource allocation) for wide area scenarios.

The radical trade-offs between capacity, coverage, and latency are discussed further with

the goal of deriving a 5G air interface solution capable of providing low latency, high

reliability, massive connectivity, and enhanced throughput. Since achieving low latency

comes at cost of lower spectral efficiency, the proposed solution of the study includes

control mechanisms for user requirement, i.e. whether the link should be optimized for

low latency or high throughput.

A 5G flexible frame structure in order to facilitate users with highly diversified service

requirements is proposed in [63]. Although, in-resource physical layer control signaling

is the basis of this proposed radio frame, it allows the corresponding data transmission

based on individual user requirements. For this, it incorporates adaptable multiplexing

of users on a shared channel with dynamic adjustment of the TTI in accordance with

the service requirements per link. This facilitates optimization of the fundamental trade-

offs between latency, spectral efficiency, and reliability for each link and service flow.

In [232], a scheme that reserves resources for re-transmission for a group of ultra reliable
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low latency communication UEs is presented. The optimum dimensioning of groups

and block error rate (BLER) target can reduce the probability of contention for the shared

retransmission resources. Moreover, the unused resources can be utilized for non-grouped

UEs resulting in overall efficiency enhancement.

In [233], fundamental trade-offs among three KPIs (reliability, latency, and through-

put) in a 4G network is characterized, and an analytical framework is derived. In cases

where the theory can not be extended via mathematical formulations due to complexity of

scenario in hand, some guidelines are provided to make the problem tractable. In order to

improve the aforementioned trade-offs between these KPIs in future 5G systems different

candidate techniques are proposed.

The above approaches of frame/packet structure to achieve low latency at the RAN

level are tabulated in Table 5.3.

Table 5.3: PHY AND MAC LAYER BASED RADIO INTERFACE SOLUTIONS FOR LOW

LATENCY.
References Approach/Area PHY layer MAC layer

[226] Short TTI " "

[58, 231] Numerology and sub frame structure "

[60] Subcarrier "

[61] Flexible subframe "

[64] Flexible subframe implementation
with SDR platform

" "

[230] Allocation of control and data RB " "

[62] Radio frame and scheduling " "

[63] Flexible TTI and multiplexing " "

[59] Efficient HARQ implementation with
shortened transmission TTI and RTT

"

[232] Reservation of resources "

[233] Calculating the fundamental trade-offs
among three KPIs

" "
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Figure 5.4: Slot placment in GFDM, OFDM and SCFDM.

5.4.2 Advanced Multiple Access Techniques/Waveform

Different kinds of candidate multiple access (MA) techniques and waveforms includ-

ing orthogonal, non orthogonal and asynchronous access have been proposed for low la-

tency communication [65–67, 229]. Since synchronization and orthogonality (integral to

OFDM) is a hindrance for achieving low latency, asynchronized non orthogonal multiple

access techniques have been discussed in [229]. Reduction of symbol duration to 67 µs

is not a promising solution in critical time budgeting. In this regard, interleave division

multiple access (IDMA) has been introduced in [236, 237] for generating signal layers.

The IDMA is a variant of the CDMA technique which uses specific interleaving for user

segregation in lieu of using a spread sequence to the individual user. Here, channel cod-

ing, forward error correction coding and spreading are combined into a single block by a

low rate encoder. The spreading can not be considered as a distinct and special task. In-
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terleaving usually utilizes a simpler iterative multiuser identification approach. However,

this approach needs further rigorous investigation.

Table 5.4: PROPOSED MULTIPLE ACCESS TECHNIQUES FOR 5G.

Cases IDMA [236, 237] SCMA [238] GFDM [84, 239]

Fundamental
concept/features

• Specific inter-
leaving

• User segrega-
tion

• Iterative mul-
tiuser identifi-
cation

• Multiple
dimen-
sional code
word

• QAM
spreading
combina-
tion

• Block frame
consists of
time slots and
subcarriers

• Non-
orthogonal

• FFT/IFFT im-
plementation

Low complexity " "
Flexibility (in
case of covering
CP-OFDM and
SC-FDE)

"

Low latency " "

In order to supply synchronization and orthogonality, sparse code multiple access

(SCMA) and non orthogonal multiple access (NOMA) have been presented in [238] for

5G scenarios. In SCMA, symbol mapping and spreading are combined together, and the

mapping of multi dimensional codeword over incoming bits is performed directly from

SCMA codebook. SCMA is comparatively simpler and has superior performance over

low density version of CDMA. Another modulation technique that aims to reduce latency

is referred as the generalized frequency division multiplexing (GFDM) is introduced in

[84, 239]. The flexibility of covering both the cyclic prefix OFDM (CP-OFDM) and

single carrier frequency domain equalization (SC-FDE), and block structure of GFDM

help to achieve low latency. A typical mapping structure of GFDM, OFDM and SC-FDM
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is illustrated in Fig. 5.4. The overall comparison among IDMA, SCMA and GFDM is

presented in Table 5.4.

Filter bank multi carrier (FBMC) has been a strong candidate waveform for 5G [194,

240]. FBMC demonstrates better performance in case of transmitting long sequences;

however, it suffers during the transmission of short bursts/frames. For usage of cyclic

prefix, wide frequency guards and more required coordination, OFDM may be inefficient

in case of low latency communication [239]. Universal filtered multi-carrier (UFMC)

[239, 241] is upgraded version of FBMC which offsets the disadvantage of FBMC. It

outperforms OFDM by about 10% in cases of time frequency efficiency, inter carrier in-

terference (ICI) and transmissions of long or short packets. Additionally, UFMC preforms

better than FBMC in the case of very short packets while demonstrating similar perfor-

mance for long sequences. These make UFMC as the one of the best choices for next

generation low latency communication.

In case of UFMC, the time domain transmit vector [241] for a user is superposition

of sub-band wise filtered components. The time domain transmit vector for a particular

multi-carrier symbol of user k with filter length L and FFT length N is

Xk
(N+L−1)×1

=
B∑
i=1

Fik
(N+L−1)×N

Vik
N×ni

Sik
ni×1

, (5.6)

where

• S is the complex QAM symbol vector;

• V is the transformed time domain vector by IDFT matrix; In this case, the rele-

vant columns of the inverse Fourier matrix are incorporated in accordance with the

respective subband position within entire available band;

• i is the index of each subband of B;
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Table 5.5: WAVEFORM CONTENDER FOR 5G.
Cases OFDM FBMC [194,240] UFMC

[239, 241]

Filtering
Generalized
filtering to all
subcarriers of
entire band

Filtering to each
subcarriers

Generalized fil-
tering to a group
of consecutive
subcarriers

Requirement of co-
ordination

Higher Lower Lower

Time-frequency effi-
ciency (due to CP
and guard band)

0.84 1 1

ICI (in case of lower
degree of synchro-
nization with UEs
and eNBs)

Higher Lower Lower

Performance Performs well
for large pack-
ets with well
coordination

Performs well
for large pack-
ets with less
coordination

Performs well
for short pack-
ets with less
coordination

• F is a Toeplitz matrix. It is comprised of filter impulse response, and performs the

linear convolution.

The symbol duration of (N + L − 1) samples is determined by the filter length and

FFT size. Filtering per block per subcarrier allows spectrally broad filters in pass band and

shorter in time domain compared to FBMC. The reduced time yields shortened OFDM

CP. The filter ramp up and ramp down in shorten time domain ensures symbol shaping in

a way that allows protection against ISI and robustness for multiple access users. Further-

more, being orthogonal with respect to complex plain, complex modulation symbol can

be transmitted without further complication.

Another advantage of UMFC is the ability of using different subcarrier spacings or

filter times for users in different subbands. If a user uses FFT size N1 and filter length

L1, and another user uses filter length and FFT size of N2 and L2 respectively, then
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UFMC symbol duration can be designed such that N1 + L1 − 1 = N2 + L2 − 1. This

makes UFMC a remarkable adaptive modulation scheme with capability to be tailored

easily under various characteristics of communications, including delay/Doppler spread

variations in the radio channel and user QoS needs. The comparative discussion among

OFDM, FBMC and UMFC is presented in Table 5.5.

5.4.3 Modulation and Channel Coding

Although use of small packets is a potential approach for achieving low latency, appro-

priate modulation and coding is required for small packet transmission for acceptable

reliability. In the literature, mainly three types of coding schemes are proposed for 5G.

As presented in [1], low-density parity-check (LDPC) and polar codes outperform turbo

codes in terms of small packets while for medium and large packets, the opposite is true.

While small packet is a requirement for low latency, other aspects such as implemen-

Table 5.6: COMPARISON AMONG CHANNEL CODING SCHEMES FOR LOW LA-
TENCY [1].

Cases Turbo coding
[69]

LDPC-
PEG [1]

Convolutional
coding [1]

Polar
codes [68]

Algorithm com-
plexity for coding
1/3 of 40 bits with
respect to turbo
codes

100% 98% 66.7% 1.5%

Algorithm com-
plexity for cod-
ing 1/3 of 200
bits with respect
to turbo codes

100% 98% 66.7% 110.7 %

Performance in
short packets

" "

Performance in
medium packets

" "
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tation complexity, performance in practical test, and flexibility need to be investigated.

In [68], polar code has been tested in field for 5G considering various scenarios: air in-

terface, frame structure, settings for large and small packets, OFDM, and filtered OFDM

(f-OFDM) waveforms. In all cases, polar code performed better than turbo codes which

makes it a candidate channel coding scheme for 5G. The comparison among the schemes

are illustrated in Table 5.6.

In [69], a highly-parallel architecture for the latency sensitive turbo decoding is pro-

posed by combining two parallel algorithms: the traditional sliding window algorithm

and cross parallel window (CPW) algorithm. New IFFT design with butterfly operation

is proposed in [70], which reduces IFFT output data delay through the reduction of IFFT

memory size and butterfly operation (e.g. addition/subtraction). Input signal of the IFFT

processor corresponding to guard band is assigned as zero (i.e. ‘0’) revealing the exis-

tence of numerous zeros. If the sequence of OFDM symbol data which enter the IFFT is

adjusted, the memory depth can be reduced from 1024 to 176.

A dynamic shrunk square searching (DSSS) algorithm is proposed in [71], which cuts

off unnecessary communication control port (CCP) calculation by utilizing both the noise

characteristic and state space structure. In this way, it can maintain close to optimal de-

coding performance in terms of the block error rate (BLER). This results in reduction

of delay in communication. In [234], a latency reduction approach by introducing time

division multiplexing (TDM) of higher priority ultra-low latency data over other less time

critical services is proposed, which maps higher priority user data during the beginning

of a subframe followed by the normal data. In [72], balanced truncation is applied for

the model reduction in the linear systems that are being coupled over arbitrary graphs

under communication latency constraints. In [235], recent advances in finite-block length

information theory are utilized in order to demonstrate optimal design for wireless sys-

tems under strict constraints such as low latency and high reliability. For a given set of
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constraints such as bandwidth, latency, and reliability the bounds for the number of the

bits that can be transmitted for an OFDM system is derived.

5.4.4 Transmitter Adaptation

A representative set of approaches for reducing latency using transmission side processing

are tabulated in Table 5.7, which will be overviewed in the rest of this subsection.

In [73], an asymmetric window is proposed instead of well-known symmetric win-

dows for reduction of cyclic prefix by 30%, and hence reducing latency due to reduced

overhead. This technique suppresses out of bound (OOB) emission but makes the sys-

tem more susceptible to channel induced inter symbol interference (ISI) and inter carrier

interference (ICI). Transmission power optimization by the steepest descent algorithm

considering transmission delay, error probability and queuing delay is proposed in [74].

In [75], low latency packet transport system with a quick path-switching and a packet-

recovery method is introduced for a multi-radio-access technology (multi-RAT) environ-

ment. In [214], use of diversity gain is proposed as a solution for capacity enhancement

and latency reduction. Diversity could be achieved through various approaches such as

spatial diversity, time diversity, and frequency diversity.

In [242], a mmWave based switched architecture system is proposed where control

signals use low-resolution digital beamforming (to enable multiplexing of small control

packets) with analog beamforming in the data plane (to enable higher order modulation).

This reduces the overhead significantly due to the control signaling which results in more

resources for data transmission. This technique leads to reduction of round trip latency in

the physical layer.

Recent advancements in full duplex (FD) communication comes forward with feature

of doubling the capacity, improving the feedback, and latency mechanism meanwhile
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Table 5.7: OVERVIEW OF SOLUTIONS IN TRANSMITTER ADAPTATION FOR LOW LA-
TENCY.
Reference Techniques Merits Demerits
[73] Asymmetric win-

dow
Reduces cyclic prefix by
30% and maintains good
OOB suppression along
with latency reduction.

It assumes that spectral
mask will be stricter in
5G networks.

[74] Transmission
power optimiza-
tion

Queuing delay is con-
sidered in optimization
along with transmission
delay and packet error.

No uniform cross layer
information exchange
format is provided.
Besides that, cross layer
signaling may result
extra overhead in the
nodes.

[75] Path-switching
and packet-
recovery method

Provides fast switching
and recovery method in
multi-RAT environment.

It depends on availabil-
ity of good channel for
path switch, and packet
recovery may affect the
resiliency.

[214] Diversity gain Option of various diver-
sity gains such as space,
time and spatial gain
for low latency transmis-
sion.

Gain depends on vari-
ous aspects such as beam
forming, beam training
and antenna array.

[242] Beam forming us-
ing mmWave

Design and analysis of
MAC layer under realis-
tic conditions.

Proper channel model in
mmWave is under devel-
opment.

[243–248]
Full duplex com-
munication in
same channel

Improves throughput, re-
duces latency and up-
holds PHY layer secu-
rity.

Crosstalk between the
transmitter (Tx) and the
receiver (Rx), internal
interference, fading, and
path loss.
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upholding steady physical layer security [243–248]. Various proposed techniques of 5G

networks such as massive MIMO and beamforming technology providing reduced spatial

domain interference can be contributive for FD realization [244]. Besides that intelligent

scheduling of throughput/delay critical packets along with proper rate adaption and power

assignment can results in capacity gain and reduction of latency. However, this field needs

to be extensively investigated for studying capacity and latency trade offs.

5.4.5 Control Signaling

When the packet size is reduced as envisioned in 5G systems, control overhead takes the

major portion of the packet. Addressing this, various approaches are proposed in order to

reduce the control channel overhead. The potential solutions targeting the control channel

enhancements to achieve low latency are illustrated in Table 5.8.

In [78], control channel sparse encoding (CCSE) is introduced with vision to trans-

mit the control information by means of non-orthogonal spreading sequences. A scaled-

LTE frame structure is proposed in [77] assuming the scaling factor to be 5 with dedi-

cated UL control channels (CCHs) for all sporadic-traffic users in each TTI with possible

smallest scheduling request (SR) size. In [249], short TTI based uplink frame has been

proposed for achieving E2E latency no longer than 1 ms. In the proposed scheme, sub-

slot consisting of 2 symbols has been proposed for uplink data and control channel. A

sequence-based sPUCCH (SS-PUCCH) incorporating two single carrier-frequency divi-

sion multiple access (SC-FDMA) symbols is introduced in [79] in order to meet a strict

latency requirement. Symbol-level frequency hopping technique is employed to achieve

frequency diversity gain and reliability enhancement.

In the proposed procedure of [80], establishment of radio bearer and S1 bearer in

parallel are proposed where eNB and mobility management element (MME) manages
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Table 5.8: OVERVIEW OF SOLUTIONS IN CONTROL SIGNALING FOR LOW LATENCY.
References Techniques Merits Demerits
[78] Control channel

sparse encoding
(CCSE)

Uses non-orthogonal
spreading sequences.

Needs field test for fur-
ther validation.

[77] Dedicated UL CCHs Provides CCH for spo-
radic packets with small
size scheduling request
(SR).

Requires dedicated CCH
in each TTI and well
designed scheduling re-
quest (SR) detector at
BS. Also considered sce-
nario with UL and DL
signal space of 10 and
40 bits, spatial diversity
of 16, and bandwidth
10 MHz may not be al-
ways feasible.

[249] Sub slotted data and
control channel

Two symbols are used
in each subslot which is
compatible with current
LTE.

Reliability issue is not
addressed.

[79] SS-PUCCH consists
of SC-FDMA sym-
bol

More robust to chan-
nel fading compared to
reference signal based
PUCCH. Symbol level
frequency hoping har-
nesses frequency diver-
sity gain with enhanced
reliability.

Need to be validated by
field test.

[80] Radio bearer and S1
bearer management

Control overhead and la-
tency are decreased for
both light and heavy traf-
fic. It ensures 100% ac-
cessibility of all UEs.

The technique is more
suitable for very large
traffic networks such as
vehicle networks.

[81] Outer-loop link
adaptation

Besides reduction of la-
tency for small packets,
it can boost throughput
just after changing from
idle state to connected
state.

Needs field test for fur-
ther validation.

[250] Slotted TTI based
radio resource man-
agement

It can be implemented as
an extension of LTE-A.

Validation through simu-
lation and field test is not
presented.
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Table 5.8: OVERVIEW OF SOLUTIONS IN CONTROL SIGNALING FOR LOW LATENCY

(CONTINUED).

References Techniques Merits Demerits
[251] Adaptive radio link

control (RLC)
Besides latency re-
duction, it improves
throughput and reduces
processing power.

Control and data plane
need to be separated.

[252] SDN based control
plane optimization

Using bandwidth rebat-
ing strategy, balance be-
tween cost and perfor-
mance is maintained.

For large number of
players (vehicles), the
game can be compli-
cated. Also real world
field test is required for
performance evaluation.

[253] SDN based X2 sig-
naling management

It reduces signaling
overhead and handover
latency.

The approach has been
investigated for only
femtocells.

[254] Inter BS data for-
warding and make-
over-handover

This technique reduces
X2 communication, pro-
cessing and reconfigura-
tion delays.

Cases such as packet
loss, handover failure,
scenario with poor com-
munication link are not
considered for perfor-
mance evaluation.

[255] Optical connected
splitters with dy-
namic bandwidth
allocation allocation
and tailored MAC
protocol

It ensures X2 latency
less than 1 ms.

Needs field test for fur-
ther validation.
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and controls radio bearer and S1 bearer, respectively. The eNB sends only single control

signal in order to configure radio bearers such as SRB1, SRB2 and DRBs, that decreases

the signaling interaction rounds between the UE and the eNBs. In [81], a new outer-

loop link adaptation (OLLA) scheme is proposed. The scheme controls the size of the

compensation in the estimated SINR based on the time elapsed after a UE transits from

an idle state to an active state, which helps to reduce latency for small packet applications.

The study [250] proposed a slotted TTI based radio resource management for LTE-A and

5G in order to achieve low latency. The approach can serve low latency services utilizing

short TTI and enhance download control channel (ePDCCH).

The study [251] proposed a novel mechanism that introduces an adaptive radio link

control (RLC) mode which dynamically alternates between unacknowledgment mode

(UM) and acknowledgment mode (AM) according to the real-time analysis of radio con-

ditions. This technique reduces system latency and processing power, and improves

throughput using UM. On the other hand, it improves data reliability by activating AM

during the degraded radio conditions. In [252], SDN based control plane optimizing

strategy is presented to balance the latency requirement of vehicular ad hoc network

(VANET), and the cost on radio networks. The interaction between vehicles and con-

troller is formulated and analyzed as a two-stage Stackelberg game followed by optimal

rebating strategy, which provides reduced latency compared to other control plane struc-

tures.

In [253], SDN-based local mobility management with X2 forwarding is proposed

where total handover signaling is minimized by reduction of inter node signaling ex-

changes and X2 signaling forwarded to centralized SDN system. This approach can re-

duce handover latency while reducing of signal overhead. In [254], QoS, CQI and other

parameter based data utilization is proposed among eNBs to reduce X2 latency, process-

ing and reconfiguration delays. Additionally, make-before-handover is proposed for low

105



Modulation

Precoding

Symbol 

estimation

Channel 

estimation

Demodulation

Received bits at 

UE1

Symbol 

estimation

Channel 

estimation

Demodulation

Received bits at 

UE2

Bits for UE1

Bits for UE2

eNB Transmitter

UE receiver

Propagation 

channel

Modulation

Figure 5.5: Transmission and symbol detection in cellular network.

latency 5G services for no data interruption. In order to meet stringent latency in X2 inter-

face, enhanced passive optical network (PON) based radio network is proposed in [255],

where the splitters are connected thorough optical connections. Following this, dynamic

bandwidth allocation algorithm and tailored MAC protocol are introduced for achieving

less than 1 ms latency over X2 interface.

5.4.6 Symbol Detection

As illustrated in Fig. 5.5, symbol detection encompasses various processes such as chan-

nel estimation and decoding, which can all contribute into the overall latency. The related

literature in the symbol detection side for latency reduction are tabulated in Table 5.9.

In [83], a low-complexity and low-latency massive SM-MIMO detection scheme is

introduced and validated using SDR platforms. The low complexity detection scheme is
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Table 5.9: OVERVIEW OF SOLUTIONS IN SYMBOL DETECTION FOR LOW LATENCY.
Reference Technique/ Ap-

proach
Merits Demerits

[83] SM-MIMO detec-
tion with ZF and
MRC-ZF

Significant improvement
of SINR and latency
is achieved compared to
other schemes. Also
the method is validated
in live environment de-
signed by SDR platform.

Availability of large
number of antennas is
assumed.

[82] Linear MMSE re-
ceiver

Reduces latency along
with throughput gain im-
provement.

It is not clear how much
latency can be reduced in
this scheme.

[84] Space-time encod-
ing and widely
linear estimator

Significant improve-
ments in terms of
symbol error rate and
latency over earlier
works.

Complexity at receiver
side is increased.

[7, 85, 86] Compressed sensing CS algorithm exhibits
reduced complexity and
increases reliability. It
is compatible with the
current LTE systems as
well, and requires less
measurement (resource)
to decode control in-
formation. It provides
sub-Nyquist sampling
method for reconstruc-
tion of sparse signal
efficiently in a linear
system.

It is challenging to de-
sign CS and sparse re-
covery system consider-
ing diverse wireless con-
ditions and input condi-
tions.

[87] Low complexity re-
ceiver in SCMA sys-
tem.

The prototype triples ca-
pacity while maintaining
low latency.

More suitable for MTC.
Needs field test for fur-
ther validation.
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proposed with a combination of zero forcing (ZF) and maximum-ratio-combining-zero-

forcing (MRC-ZF). In [82], a linear minimum mean square error (MMSE) receiver is pre-

sented for low latency wireless communications using ultra-small packets. The estimation

of receiver filter using the received samples is proposed during the data transmission pe-

riod in lieu of interference training period. Additionally, soft decision-directed channel

estimation is argued using the data symbols for re-estimation of the channels. In [84],

space-time encoding is introduced within a GFDM block in order to achieve transmit

diversity for overall low latency in the system. On the other hand, a widely linear es-

timator is used to decode the GFDM block at the receiver end, which yields significant

improvements in terms of symbol error rate and latency over earlier works.

In [7,85,86], compressed sensing is proposed for latency reduction in networked con-

trol systems if the state vector can be modeled as sparse in some representation domain.

In [87], a low complexity receiver design is proposed and the superiority of an SCMA

system is verified via simulations. In addition, it is demonstrated with a real-time pro-

totype that the whole system throughput triples while maintaining low latency similar to

flexible orthogonal transmissions.

5.4.7 mmWave Communications

Carrier aggregation using the mmWave spectrum is widely considered to be a promis-

ing candidate technology for 5G, capable of providing massive bandwidth and ultra low

latency. The mmWave technology is especially critical for VR/AR type of applications

which require high throughput and low latency. The works in mmWave spectrum for

achieving low latency is summarized in Table 5.10.

In [88], a new frame design for mmWave MAC layer is introduced which provides

several improvements including adaptable and smaller transmission intervals, dynamic
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Table 5.10: OVERVIEW OF SOLUTIONS IN MMWAVE COMMUNICATIONS FOR LOW

LATENCY.
Refer
-ences

Techniques PHY
layer

MAC
layer

NET
layer

[88] mmWave based MAC layer frame struc-
ture

"

[89] Low latency core network architecture,
flexible MAC layer, and congestion con-
trol

" "

[90] mmWave based physical layer air inter-
face with basic numerology and logical
channel arrangement

"

[91] Low latency frame structure with beam
tracking

"

locations for control signals, and the capability of directional multiplexing for control

signals (dynamic HARQ placement). It addresses ultra low latency along with the multi-

ple users, short bursty traffic and beam forming architecture constraints. The study [89]

focuses on three critical higher-layer design areas: low latency core network architecture,

flexible MAC layer, and congestion control. Possible solutions to achieve improvements

in these critical design areas are short symbol periods, flexible TTI, low-power digital

beam forming for control, and low latency mmWave MAC, which can all be considered

for data channel, downlink control channel, and uplink control channel.

In [90], in order to decrease the latency of the system, two different physical layer nu-

merologies are proposed. The first approach is applicable for indoor or line of sight (LOS)

communications, and the second one is suitable for non line of sight (NLOS) communica-

tions. This is justified by some channel measurements experiments in 28−73 GHz range.

In [91], a 5G mmWPoC system is employed to evaluate the throughput functionality in

field tests at up to 20 km/h mobile speed in an outdoor LOS environment. Additionally,

some improvements for a frame design is obtained which decrease the latency in the field

tests. In the experiments, it is observed that the new slotted frame design can decrease
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the RTT to 3 ms for 70% − 80% of the cases in experiments, alongside the observed

throughput up to 1 Gbps.

5.4.8 Location-Aware Communications for 5G Networks

Location knowledge (in particular, the communication link distance) can be considered

as a criterion of received power, interference level, and link quality in a wireless network.

Therefore, overhead and delays can be reduced with location-aware resource allocation

techniques because of the possibility of channel quality prediction beyond traditional time

scales. The literature on location-aware communications regarding low latency are tabu-

lated in Table 5.11.

Table 5.11: LOCATION-AWARE COMMUNICATIONS FOR LOW LATENCY.
References Techniques Merits Demerits
[93] Location infor-

mation utilization
in protocol stack

Latency, scalability and
robustness can be im-
proved.

Location accuracy, spa-
tial channel modeling,
balancing trade-off
between location in-
formation and channel
quality metric are
challenging.

[3] Physical layer
parameters de-
sign using FFT,
frame duration
and local area
(LA) physical
channel

Improves spectral and
energy efficiency along
latency reduction.

Needs field test for fur-
ther validation.

[92] Utilization of
channel quality
and traffic statis-
tics from small
cell

Coexistence capability
with overlay LTE-A
network, sleeping
modes, contention
based data channel,
channel quality indi-
cator and interference
statistics.

The technique is more
feasible for small cells.
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In [93], several approaches are presented for monolithic location aware 5G devices in

order to identify corresponding signal processing challenges, and describe how location

data should be employed across the protocol stack from a big picture perspective. More-

over, this work also presents several open challenges and research directions that should

be solved before 5G technologies employ mmWave to achieve the performance gains in

terms of latency, connectivity and throughput. In [3], 5G flexible TDD is proposed for

local area (5GETLA) radio interface with FFT size of 256 and 512, and short frame struc-

ture to achieve latency lower than 1 ms. The packets of size of less than 50 kbits can be

transmitted with E2E latency of 0.25 ms. The main focus in designing physical layer

parameters is on FFT, frame duration and physical channel (LA).

In [92], a novel numerology and radio interface architecture is presented for local area

system by flexible TDD, and frame design. The proposed framework ensures coexis-

tence with overlay LTE-A network, sleeping modes, contention based data channel, and

channel quality indicator and interference statistics. Here, the channel quality and traffic

statistics are accumulated from the small cells which can help to gain high throughput

and low latency. Especially, in order to reduce the latency, the delay due to packets

containing critical data for the higher layer protocols, for instance transmission control

protocol (TCP) acknowledgment (ACK) packets, must be optimized. To do so, one pos-

sible approach is to carry out the retransmissions as quick as possible compared to the

higher layer timers. Moreover, capability of data transmission to a contention based data

channel (CBDCH) can play a key role here. As a result, by introducing CBDCH in small

cells that are not highly loaded, the average latency of small packets transmission can be

decreased considerably.
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5.4.9 QoS/QoE Differentiation

Differentiation of constraints on QoS and QoE can maintain low latency in 5G services

including ultra high definition and 3D video content, real time gaming, and neurosurgery.

The related literature on QoS and QoE control for low latency services are tabulated in

Table 5.12.

Table 5.12: LITERATURE OVERVIEW RELATED TO QOS/QOE DIFFERENTIATION.

Reference Techniques/Approaches QoS QoE
[94] mmWave utilization with beam tracking " "

[95] SDN and cloud technology " "

[96] QoS-aware multimedia scheduling "

[97] Client based QoS monitoring architecture "

[98] Colored conflict graph "

[99] QoS architecture with heterogeneous statis-
tical delay bound

"

[100] Dynamic energy efficient bandwidth alloca-
tion scheme

"

[101] Predictive model based on Internet video
download

"

[102] Routing using proximity information "

[103] Predictive model based on empirical obser-
vations

"

Abundance of mmWave bandwidth and extensive use of beamforming techniques in

5G will allow high QoS and QoE overcoming the resource and sharing constraints [94].

However, current transmission protocols and technologies cannot be employed simply for

addressing technical issues in 5G. The mapping of diverse services including latency crit-

ical service to the optimal frequency, SDN and cloud technologies can ensure to achieve

the best QoS and QoE, as discussed in [95]. In [96], a QoS-aware multimedia scheduling

approach is proposed using propagation analysis and proper countermeasure methods to

meet the QoS requirements in the mmWave communications. Mean opinion score (MOS)
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which is a criterion for user satisfaction can be employed for functionality evaluation of

the newly presented QoS approach and well-known distortion driven scheduling in differ-

ent frequency ranges.

Client based QoS monitoring architecture is proposed in [97] to address the issue of

QoS monitoring from server point of view. Different criteria such as bandwidth, error rate

and signal strength are proposed with the well-known RTT delay for maintaining desir-

able QoS. A colored conflict graph is introduced in [98] to capture multiple interference

and QoS aware approaches in order to take the advantage of beamforming antennas. In

this case, reduction in call blocking and handoff failure helps to have a better QoS for

multi class traffic. Each device can be sensitive to time based on its application. This

can be considered as an issue for QoS provisioning. To address this, a novel QoS ar-

chitecture is presented in [99] with heterogeneous statistical delay bound over a wireless

coupling channel. The authors presented the dynamic energy efficient bandwidth alloca-

tion schemes in [100], which improve system quality significantly and maintain QoS.

Previous QoS criteria which consist of packet loss rate, network latency, peak signal-

to-noise ratio (SNR) and RTT are not sufficient for streaming media on Internet, and there-

fore, users’ perceived satisfaction (i.e. QoE) needs to be addressed [101, 194]. Higher

QoS may not ensure the satisfactory QoE. Different routing approaches of video streams

in the mobile network operators scenario is discussed in [102] for substantial refinement

in QoE considering bit rate streams, low jitter, reduced startup delay and smoother play-

back. A predictive model from empirical observations is presented in [103] to address

interdependency formulated as a machine learning problem. Apart from that, a predictive

model of user QoE for Internet video is proposed in [101].
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5.4.10 CRAN and Other Aspects

Cloud radio access network (CRAN) (as illustrated in Fig. 5.6) is introduced for 5G

in order to reduce the capital expenditure (CAPEX) and simplify the network manage-

ment [256]. CRANs combine baseband processing units of a group of base stations into

a central server retaining radio front end at the cell sides. However, this requires con-

nection links with delay of 250 µs to support 5G low latency services. In order to meet

strict latency requirements in CRAN, two optimization techniques including (i) fine-tuned

real-time kernel for processing latency and (ii) docker with data plane development kit

(DPDK) for networking latency have been proposed in [104]. The experimental results

clearly demonstrate the effectiveness of the approaches for latency optimization. In [105],

split of PHY and MAC layer in a CRAN with Ethernet fronthaul is proposed, and veri-

fied through experimental test followed by latency interpretation. It is found that latency

for packets of size 70 and 982 bytes is 107.32 µs and 128.18 µs confirming 20% latency

increase from small to large packet. The promising results affirm that latency critical

services in 5G can be supported by CRAN. In [106], it is demonstrated that based on

experimental results from Wi-Fi and 4G LTE networks, offloading the traffic to cloudlets

outperforms the response times by 51% in comparison to cloud offloading.

The CRAN can utilize backhaul information to redistribute users for QoE maximiza-

tion and adaptation of temporal backhaul constraints. Corresponding to this, authors

in [107] proposed a centralized optimization scheme to control the cell range extension

offset so as to minimize the average network packet delay. In [108], a CRAN on the basis

of the optical network (PON) architecture is presented which is called virtualized-CRAN

(V-CRAN). The proposed scheme can dynamically affiliate each radio unit (RU) to a dig-

ital unit (DU) which results in coordination of multiple RUs with their corresponing DU.

Moreover, definition of virtualized BS (V-BS) is brought up which is able to mutually

send shared signals from several RUs to a user. V-CRAN can reduce latency for joint
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Figure 5.6: Cloud-RAN architecture in 5G networks.
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transmission due to the following reasons. First, it can provide more than enough band-

width for data transmission between RUs and DU. Furthermore, for each DU, a dedicated

hardware/software is assigned that can be utilized by joint transmission controller in order

to provide data and signaling for RUs. The last but not least, in order to handle the load

distribution between DUs, the virtualized PON can connect a DU directly via a linecard.

Though mmWave will be the major contributor in attaining 5G goals, spectrum be-

low 6 GHz is always the primary choice due to less attenuation, supporting long dis-

tance, and antenna compatibility. Moreover, conventional cellular networks are usually

deployed within the expensive licensed bands and they use reliable core networks that

are optimized to provide low-volume delay-sensitive services such as voice. However,

with appearance of high-volume delay-insensitive resource-hungry applications includ-

ing multimedia downloads, such conventional networks may not be cost-effective any-

more [257,258]. Such concerns can be tackled or at least partially addressed by spectrum

sharing in 5G network improving spectrum and energy efficiency along with QoS/QoE

control [16, 18, 181, 259, 260]. In [261], in order to exploit the TV white space for D2D

communications underlying existing cellular infrastructure, a framework is proposed. A

location-specific TV white space database is proposed in which D2D service can be pro-

vided using a look-up table for the D2D link so that it can determine its maximum per-

mitted emission power in the unlicensed digital TV band to avoid interference. In [262],

a QoE driven dynamic and intelligent spectrum assignment scheme is proposed which

can support both cell and device level spectrum allocation. This technique enhances not

only the spectrum utilization, but also can maintain desired QoE including latency aspect.

The optimization problem of network sum rate and access rate with resource allocation

and QoS constraints in D2D communication is presented in [263]. To solve this, a fast

heuristic algorithm is proposed to reduce computational complexity resulting desired QoS

such as latency. In [264], a game theory and interference graph based optimization prob-
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Figure 5.7: Simplified example architectures for core network (a) Architecture of SDN
[4], and (b) Architecture of NFV [5] (APP: application; ODL: opendaylight platform;
ONOS: open network operating system; DFE: dyna forming engineering; OSS: opera-
tions support systems; BSS: base station subsystem; EMS: element management system;
NFVO: NFV orchestrator; VNFM: virtual network function manager; VIM: virtualized
infrastructure manager).

lem considering user scheduling, power allocation and spectrum access is presented with

an aim to maximize user satisfaction across the network. Two algorithms including spa-

tial adaptive play iterative (SAPI) learning are proposed to achieve Nash equilibrium.

In [265], a multi agents based cognitive radio framework is proposed for effective uti-

lization of spectrum and meet the goals of 5G including latency. Here, sensing capability

of secondary users (SU) is replaced by spectrum agents (SA) where the user can switch

between SU mode and SA mode based on available spectrum information.

Before starting the packet transmission in data applications, a tolerable initial delay

can be considered. Thus, this short delay can be employed to decrease the energy required

to operate the small cell base stations (SBSs). With the goal of average power consump-

tion reduction of SBSs, when the load is low, under-utilized SBSs can be are switched

off. As a result, the users and the network can be able to save energy by postponing trans-

missions. By doing so, the users have time to wait for an SBS with better link quality.
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It can be observed that sleeping mode operation for energy efficiency improvements in

SBSs will also introduce a source of latency. In [266], the energy-efficiency versus delay

trade-off is investigated and optimality conditions for UEs transmit power is derived. By

postponing the access of the users, energy efficiency of the system can be improved. The

optimal threshold distance is derived in order to minimize the average distance between

a user and an SBS. Simulation results demonstrate that the energy consumption of SBS

can be reduced by about 35% if some of the SBSs are switched off.

In [267], authors introduced an energy efficient, low-complexity technique for load-

based sleep mode optimization in densely deployed 5G small cell networks. By defining

a new analytic model, the distribution of the traffic load of a small cell is characterized

using Gamma distribution. It is shown that the network throughput can be improved

significantly while some amount of energy is saved by taking the benefit of the initial

delay. In [268], impact of average sleeping time of BS and association radius on the mean

delay in an UDN is investigated using a M/G/1/N queuing model. An explicit equation

of delay is derived and the effect of average sleeping time and association radius on the

mean delay is analyzed.

In [269], the remote PHY (R-PHY) and the remote PHYMAC (R-PHYMAC) based

modular broadcast cable network is proposed for the access network. In this architecture,

R-PHYMAC can achieve lower mean upstream packet delay compared to R-PHY for

bursty traffic and long distance over 100 miles. In [270], a virtual converged cable access

platform (CCAP) system and procedure is proposed for hybrid fiber coaxial (HFC) cable

network. In this method, a new digital optical configuration is introduced to receive data

packets with capability to convert them into RF waveforms. This method improves space

and power requirements while enhancing operational flexibility. In [271], a novel remote

FFT (R-FFT) module is proposed which can perform physical layer processing of FFT

module towards RF transmission. This module reduces fronthaul bit-rate requirement for
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CRAN while providing solution for unified data over cable service interface specification

(DOCSIS) and LTE service over HFC cable network.

5.5 Core Network Solutions for low latency

To meet the vision of 5G encompassing ultra low latency in addition to enhancements in

the RAN, drastic changes are also proposed in the core network. The new core network

includes some new entities such as SDN, MEC, and NFV as well as new backhaul tech-

niques [138, 272, 273]. These enhancements aim to reduce the processing time, bypass

several protocol layers, and ensure seamless operation. The core network solutions for

low latency are reviewed in further detail in the rest of this section.

5.5.1 Core Network Entities

The SDN and NFV are assumed to be the main candidates for the design of 5G core

network [274]. Based on this, in this section, we mainly focus on the role of SDN and

NFV technologies in latency reduction in 5G core network. Exemplary architectures of

SDN and NFV of the 5G core network are illustrated in Fig. 5.7. The existing literature

on the core network entities that can facilitate to achieve low latency are summarized in

Table 5.13.

The EPC which is developed by 3GPP for the LTE cellular network has some limita-

tions which affect the latency of the overall system. One concern is that the control plane

and the data plane in the EPC are not fully separated. There is a level of coupling be-

tween Serving Gateway (SGW) and Packet Data Network Gateway (PGW). Decoupling

of control plane and data plane seems necessary because they have different network QoS

criteria to be met. In particular, the control plane needs low latency to process signal-

ing messages, while the data plane requires high throughput to process the data. Thus,

119



Table 5.13: OVERVIEW OF TECHNIQUES IN CORE NETWORK FOR LOW LATENCY.

Case Reference Approach Summary
[109],

[110–113],
[114–123]

SDN-based ar-
chitecture

The architecture of 5G is pro-
posed based on SDN with 5G
vision to meet large throughput,
massive connectivity and low la-
tency.

Core Net-
work Ar-
chitecture

[114, 116–118,
123–129]

NFV-based ar-
chitecture

NFV invalidates the dependency
on hardware platform and makes
easy deployment of EPC func-
tions as well as the sharing of
resources in the RAN. This can
reduce the E2E latency with im-
proved throughput performance.

[34,109,118,124,
126, 127]

MEC/fog-
based network

MEC/fog provides computation
and storage near user end and
also separates the data plan from
control plan. These reduces the
latency .

in order to design such planes efficiently, it is preferable to decouple them completely.

Based on the literature, SDN and NFV can be employed in EPC architecture in order

to decouple data plane and control plane and have a seamless operation of core network

functions [272, 275].

After modification of NFV based EPC in which the whole network elements are im-

plemented using softwares running on Virtual Machines (VM), control plane and user

plane can be separated by employing SDN in EPC. An SDN controller can act as an inter-

face between the decoupled planes. In addition to several advantages of SDN/NFV-based

user plane and control plane separation, including independent scalability, flexibility of

flow distribution, and better user mobility management, such a decoupling can have con-

siderable effect on reducing the latency as well. This plane decoupling can facilitate the

mobile edge computing technology which decreases the latency. However, adding an
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SDN controller to the network can be another source of the latency for the system. On the

other hand, the scalability of SDN controller can be addressed by deploying several con-

trollers. Thus, there is a trade off here between the scalability of controllers and latency

increase which should be considered in the design process for specific applications [115].

Another limitation is that the data plane of the LTE EPC is implemented in a cen-

tralized manner. Even the users that need to communicate locally have to transmit their

traffic in a hierarchal system ending with few number of centralized PGWs which in-

creases the E2E latency. Although centralized implementation of network can facilitate

the management and monitoring the network by operators, it increases the E2E latency

which can not meet the applications requiring low latency including autonomous driving,

smart-grid or automated factory. Thus, this kind of implementation leads to inefficient

system performance and high latency which can not meet the 5G vision [34].

Recently, by emergence of the new technologies such as cloud computing, fog net-

works, mobile edge computing, NFV and SDN, the implementation of the network can

be more distributed [116, 117]. By employing such technologies, the CAPEX and OPEX

of the network can be reduced considerably. Moreover, by bringing the elements of core

network closer to the users, the E2E delay can be decreased significantly. In [118], au-

thors proposed SDN/NFV-based MEC networks algorithms that can enable the data plane

to create a distributed MEC by placement of network functions at a distributed manner.

They demonstrated that the proposed scheme can reduce the redundant data center capac-

ity around 75%, and meet the 5G latency requirement along with considerable backhaul

link bandwidth reduction.

Mobility management in core network based on SDN can potentially introduce some

delays. In [119], the main contributers for processing delays in an SDN-based mobility

management system is discussed. By implementing two proactive and reactive solutions

for mobility management using Mininet and OpenFlow, it is observed that with high prob-
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ability (almost 95%) in the proactive mobility management system, the overall processing

latency is around the median value. By visualizing all of EPC entities as decentralized

VMs in different locations, in [128], a carrier cloud architecture is introduced. To im-

prove the E2E latency of the users, the concept of Follow-Me-Cloud is presented. The

main point of this concept is that all parts of the network can keep track of the movement

of the user which results in seamless connectivity and lower E2E latency. In [120], [121],

the authors proposed a decentralized scheme for control plane called SoftMow which is

a hierarchical reconfigurable network-wide control plane. The proposed control plane in-

cludes geographically distributed controllers where each controller is responsible to serve

the network in its particular location. The number of the levels in this hierarchical scheme

can be designed based on the available latency budgets.

In [109], authors presented an LTE compliant architecture to decrease delay for com-

bination of fog networks, MEC and SDN in which the architecture is supposed to take the

advantage of NFV in the evolved packet core (EPC) functions. Following this, optimiza-

tion of general packet radio service (GPRS) tunneling protocol (GTP) is introduced for

supporting low latency services. GTP tunnels management is accomplished by a novel el-

ement between the eNB and the mobile network interface with the Internet. In [110,111],

SDN is proposed along with some changes in the existing 4G architecture for moving

forward towards 5G. The changes include reduction of number of serving gateways (S-

GW) and elimination of some protocol layers. In SDN based system, virtualization is

possible, and routes can be optimized. This will allow handling of QoS by setting spe-

cific rules in the switches along the data path. Network coding integrated with SDN is

proposed in [112] for low latency and reduced packet-retransmission. Network coding

can work as network router and can be integrated with SDN, which provides seamless

network operation and reduction in latency.
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The NFV is proposed as a major entity of 5G core network in [114, 124–127]. NFV

removes the dependency on the hardware platform and makes flexible deployment of EPC

functions as well as sharing of resources in RAN. This can reduce the E2E latency with

improved throughput performance. SDN and NFV based 5G architecture with enhanced

programmability of the network fabric, decoupled network functionalities from hardware,

separated control plane from data plane, and centralized network intelligence in the net-

work controller is presented in [114]. In [124], an information centric scheme is presented

in order to integrate the wireless network virtualization with information centric network

(ICN). In this architecture, key components such as wireless network infrastructure, ra-

dio spectrum resource, virtual resources (including content-level slicing, network-level

slicing, and flow-level slicing), and information centric wireless virtualization controller

have been introduced which can support low latency services.

An NFV-based EPC is introduced in [276] which is an EPC as a service to ease mobile

core network (EASE). In this scheme, the elements of the EPC are visualized using VMs.

In [123], a simple implementation for EPCaaS is proposed in which one of the drawbacks

is the increment in the latency between the EPC and virtual network function compo-

nents. To address such an issue, in [129], the main idea is to partition the virtual network

functions into several subsets/groups based on their interaction and workload in order to

reduce the network latency. It should be noted that employing the decentralized control

plane and having it closer to the users at the network edge can be helpful for applications

with high mobility and low latency. However, it can introduce some issues related to poli-

cies and charging enforcements. In [126], authors presented the optimization problem

of composing, computing and networking virtual functions to select those nodes along

the path that minimizes the overall latency (i.e., network and processing latency). The

optimization problem is formulated as a resource constrained shortest path problem on an

auxiliary layered graph followed by initial evaluation.
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In [277], the authors proposed a detailed approach to implement the big data empow-

ered self organizing network (SON) in 5G. The procedure to employ the data based on

machine learning and data analytics is demonstrated in order to create E2E visibility of

the network for implementation of a more efficient SON. This approach can meet the

stringent 5G requirements such as low latency. In [122], the smart gateway (Sm-GW) is

employed for scheduling the uplink transmissions of the eNBs. Based on simulations, it

is demonstrated that the Sm-GW scheduling can allocate the data rate in uplink transmis-

sion to the eNBs in a fair manner along with reducing packet delays. Traffic of heavily

loaded eNBs can make the buffer of the queue of a Sm-GW full which results extra la-

tency. This situation happens due to the massive number of connected eNBs to a single

Sm-GW. However, by using effective scheduling, connection with Sm-GW can be dis-

tributed among eNBs while maintaining QoS. The proposed core network entities for 5G

vision are summarized in Table 5.14.

Table 5.14: PROPOSED CORE NETWORK ENTITIES FOR 5G VISIONS.
Reference SDN NFV MEC Fog networks SON

[115,119],
[120–122]

"

[109] " " "

[110–113]
"

[114],
[116, 117,
123]

" "

[118] " " "

[124,128] " "

[125,129] "

[126] " "

[127] " "

[277] "
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5.5.2 Backhaul Solutions

Backhaul between base stations and the core network carries the signaling and data from

the core and the Internet. Due to the enormous number of small cells and macro cell base

stations supporting 1000x capacity, massive connectivity and latency critical services in

5G, the capacity of backhaul is a bottleneck for achieving low latency. At current sce-

nario, microwave, copper and optical fiber links are used for backhaul connections based

on availability and requirements. 5G backhaul requires higher capacity, lower latency,

synchronization, security, and resiliency [278]. Referring to Table 5.15, we divide exist-

ing backhaul solutions into 2 parts: (1) General backhaul and (2) mmWave backhaul. The

solutions are described as follows.

General backhaul

General backhaul includes a dynamic GPRS tunneling protocol (GTP) termination mech-

anism that combines cloud based GTP with a quick GTP tunnel proposed in [113]. Based

on the user request or other factors, the system can change its mode from a cloud-based

GTP tunnel to the quick GTP tunnel. In [109], a 5G vision compliant architecture is pre-

sented to reduce latency combining with the fog network, MEC and SDN. The optimiza-

tion of GTP tunnels is accomplished by a novel element acting as an intermediate node

between eNB and the mobile network interface accompanied with the Internet. In [133],

modified VLC technology is used to set up an optical window (OW) link for low-cost

backhaul of small cells to achieve a latency of 10 ms. Moreover, using a next genera-

tion baseband chipset, E2E latency below 2 ms can be achieved. An efficient PON-based

architecture is proposed in [132] that offers ultra-short latency for handovers by enhanc-

ing connectivity between neighboring cells. Additionally, the authors propose a tailored

dynamic bandwidth allocation algorithm for a fast handover between eNBs, which are

associated to the same or diverse optical network units.
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Table 5.15: OVERVIEW OF LITERATURE IN BACKHAUL SOLUTIONS TO ACHIEVE LOW

LATENCY.
Category Reference Approach/Techniques
General
back-
haul

[113] A dynamic GTP termination scheme combining cloud
based GTP with a quick GTP tunnel with a dedicated
hardware.

[109] GTP tunnel optimization by a new component in 5G
complaint network consists of fog networks, MEC and
SDN.

[133] Modified VLC technology to set up an OW link for low-
cost back hauling of small cells.

[132] PON-based architecture with a tailored dynamic band-
width allocation algorithm.

[131] MAC-in-MAC Ethernet based unified packet-based
transport network.

[279] The first architecture is based on over provision transport
network whereas the second one is based on dynamic
sharing, SDN and NFV controllers.

[130] SDN and cache enable architecture for limited backhaul
secererio.

mmWave
back-
haul

[134] mmWave for fronthaul and backhaul, and split of control
and user plane.

[136] A digitally-controlled phase-shifter network based hy-
brid precoding/combining scheme for mmWave massive
MIMO.

[137] A framework supporting of in-band, point-to-multipoint,
non-Line-of-sight and mmWave backhaul.

[135] A mmWave based backhaul frame structure in 3 - 10
GHz carrier frequencies.

[138,139] Ultra dense wavelength division multiplexing (UD-
WDM) passive optical networks (PONs) based backhaul
solution for mmWave networks.
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In transport networks, latency requirement plays a key role. For instance, the main

requirement for machine type communications is the latency that should be kept as low

as possible. Therefore, efficient design of 5G transport networks is critical. In [131], a

detailed perspective of the 5G crosshaul design is proposed in order to introduce the key

goal of transporting the backhaul and fronthaul traffic in a unified packet-based transport

network based on MAC-in-MAC Ethernet. Moreover, the SDN/NFV-based 5G-crosshaul

control plane architecture is investigated which decouples the logically centralized con-

trol plane and data plane. This can contribute in latency reduction aspect. In [279], two

candidate technologies for 5G transport networks are presented. One of them is based

on the over-provisioning of transport resources while the second architecture is based on

dynamic resource sharing and NFV/SDN-based controller to handle the latency require-

ments.

In [130], SDN and cache enabled heterogeneous network is proposed where C-plane

and U-plane are split. The caches of macro and small cells are overlayed and cooperated

in a limited backhaul scenario while ensuring seamless user experiences for coverage, low

latency, energy efficiency and throughput. In [279], two candidate technologies for 5G

transport networks is presented to handle the latency requirements in which one of them

is based on the over-provisioning of transport resources, while the second architecture is

based on dynamic resource sharing and NFV and SDN-based controller. In [130], SDN

and cache enabled erogenous network is proposed where C-plane and U-plane are spitted.

The caches of macro and small cells are overlayed and cooperated in a limited backhaul

scenario while ensuring seam user experiences such as coverage, energy efficiency and

throughput.
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mmWave Backhaul

In addition to the presented solutions for backhaul, mmWave employment in backhaul can

be considered as a promising solution for latency reduction. In order to have the enhanced

user experience, the BSs should be in touch with core network and all other BSs via a low

latency backhaul [280]. In [134], the authors proposed a scheme that employed mmWave

links as backhaul, fronthaul and access in which a new separation method between control

and user plane is proposed for 5G cellular network. A reasonable split among control and

user plane improve the user QoS by providing ubiquitous high data rates in mmWave SBS

coverage.

In [136], to implement an ultra-dense network (UDN) for the future 5G network and

providing high data rates, the need of a reliable, gigahertz bandwidth, and economical

backhaul is emphasized. Since mmWave can be easily integrated with massive MIMO

to improve link reliability, and can provide sufficient data rate for wireless backhaul, it

is a promising candidate for such a scenario. Considering a massive MIMO scenario, a

hybrid precoding approach is considered, in which each BS can cover several SBSs with

multiple streams for each SBS at the same time. In [137], the authors proposed a solution

framework for supporting an in-band, point to multi-point, NLOS, mmWave backhaul

in order to provide a cost-effective and low latency solution for wireless backhaul. It is

shown that an in-band wireless backhaul for inter BS coordination is feasible while the

cell access capacities are not affected considerably.

In [135], a frame design for mmWave communications is proposed for 5G SBS net-

work radio interface in 3-10 GHz. For both of LOS and NLOS scenarios different frame

designs are proposed, which have a frame duration of 0.1 ms and 0.05 ms, respectively, to

achieve low latency. The proposed LOS structure can be assumed as a suitable solution

for short distance indoor wireless access or in-band backhaul. In order to obtain high ca-

pacity and low latency backhauling, the EU research project 5G STEP-FWD introduced
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a novel design that deploys ultra dense wavelength division multiplexing (UDWDM)

passive optical networks (PONs) as the backhaul of mmWave networks. The proposed

scheme is based on the ultra-narrow wavelength spacing of the UDWDM technology to

provide seamless connectivity for dense small-cell networks [139, 281].

5.6 Caching Solutions for Low Latency

In addition to the shortage of the radio spectrum, the insufficient capacity of backhaul

links can be considered as a bottleneck for low latency communication. The long delay

can be due to the requests of too many users in peak-traffic hours. Thus, latency reduc-

tion is crucial for users QoS and QoE in the 5G networks. Caching and in a more general

category, information centric networking, can be assumed as one of the promising can-

didate technologies to design a paradigm shift for latency reduction in next generation

communication systems [282, 283].

In this section, referring to Table 5.16, we present a detailed overview of caching

concepts for cellular network followed by fundamental limits and existing solutions.

5.6.1 Caching for cellular network

Let us consider, a scenario that a user requests content from a content library F =

{f1, f2, ......, fk}, where k is the number of files. The files are sorted with popularity

where f1 and fk are the most and least popular files, respectively. The popularity of a

requested file l can be written [304] as

φl =
l−γ∑k
i=1 l

−γ
, (5.7)
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Table 5.16: OVERVIEW OF LITERATURE IN CACHING.
Aspect Reference Summary
Content
caching

[140–142, 145,
146, 284–298]

Filling of appropriate data is investigated by
diverse techniques employing time intervals in
which the network is not congested.

Content deliv-
ery

[145, 146, 284–
301]

Content delivery to requested users is presented
by different approaches for reduction of latency.

Centralized
caching

[140, 141, 145,
284, 286, 288–
294, 296–300]

Various centralized caching is investigated with
assumption that a coordinator with access to al-
most all the information about the storage ca-
pacities of different BSs, the connectivity of the
users and BSs, and etc.

Distributed
caching

[142, 146, 285,
287, 295, 298,
301]

Various aspects of distributed caching has been
investigated in order to minimize the commu-
nication overhead among SBSs and the central
scheduler.

Latency-
Storage
trade-off

[288–293, 302,
303]

Fundamental trade off between storage and la-
tency is investigated in radio networks comple-
mented with cache-enabled nodes.

where l ∈ {1, 2, ..., k} and γ is the parameter for uneven distribution of popularity in F

which follows Zipf distribution. For N eNBs B = {BS1,BS2, .......,BSN} with each eNB

having capacity C, the probability of caching of file fl by an eNB can be obtained as

PBl = 1− e−ρσπR2

, (5.8)

where ρ is the spatial density of eNBs following a Poisson point process [305–307], and

σ is the probability that file fl is cached within B. Then, the total probability of getting

content from the eNB can be written as

PB =
N∑
i=1

φiP
B
i . (5.9)
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The probability of getting the content as in (5.9) is directly associated with the la-

tency of downloading it, and hence, effective caching strategies can help in significantly

reducing latency in 5G networks

Local caching D2D  caching SBS caching MBS  caching

User 1 User 2 User 1 User 2 User 1 User 2 User 1 User 2

SBS

MBS MBS

SBS

MBS

SBS SBS

Figure 5.8: Different types of caching in 5G.

The proposed caching schemes for mobile networks can be divided into 4 categories:

(1) Local caching, (2) Device to device (D2D) caching, (3) SBS caching, and (4) Macro

base station (MBS) caching. Each of these caching types can reduce the latency by pro-

viding the requested content for the users using a way other than bringing it from the core

network using backhaul links. In fact, each user starts from the nearest source to look

for its desiered content and proceed until finding it in any of the proposed sources. The

different types of caching for cellular network are illustrated in Fig. 5.8 followed by the

summarized descriptions presented in Table 5.17.

5.6.2 Fundamental Latency-storage trade-off in Caching

There are several fundamental limits for caching in mobile networks including latency

versus storage, memory versus rate [294], memory versus CSIT [295], storage versus

maximum link load [296], and caching capacity versus delivery rate [297]. As defined

in Table 5.18, from an information theoretic point of view, authors employed the metrics

such as normalized delivery time (NDT), fractional delivery time (FDT), and delivery

time per bit (DTB) for investigation of the latency storage trade-off in caching networks.
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Table 5.17: DIFFERENT TYPES OF CACHING SCHEMES FOR THE CELLULAR NET-
WORK.

Cases Reference Description

Local
caching

[308]
When a UE wants to access a content, it first
checks in itself. Once the content is confirmed
in the local caching storage, it is accessed by the
UE without any delay.

D2D
caching

[304]

If the requested content is not found locally, user
will seek it within the range of it’s D2D commu-
nication. If it is found in nearby devices, it is
delivered to the requester UE by D2D communi-
cation.

SBS
caching

[309]
If the requested content is available in the local
SBS, the content is delivered to the UE by the
local SBS.

MBS
caching

[304]
If the content is not found in local caching stor-
age, nearby devices or SBS caching, the content
is delivered by MBS caching.

In most of these works [142, 146, 285, 287, 295, 298, 301], for a given scenario, an upper

bound or lower bound for the considered metric is derived in order to get useful insights

of this trade-off. The summary of latency storage trade-off works is presented in Table

5.19.

The authors in [288] investigated the storage latency trade-off using a new metric

called NDT. This metric measures the worst-case latency that can happen in a cache-

Table 5.18: DEFINITION OF METRICS USED FOR LATENCY EVALUATION IN CACHING

SCHEMES.
Cases Reference Definition

NDT [288]
Defined as asymptotic delivery delay per bit in the high-
power, long-blocklength case.

DTB [293]
Defined as the ratio between the duration of transmission
in channel to the file size in bits for the very large file size
regime.

FDT [292]
Defined as the worst-case delivery latency for the real load
at a rate described by the DoF of the channel.
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Table 5.19: SUMMARY OF THE WORKS ON LATENCY-STORAGE TRADE-OFF IN THE

CACHING.

Ref. Used met-
ric

Description

[288] NDT Lower bound for NDT is derived for a general cache-
enabled network for both perfect and imperfect CSI.

[289] NDT The trade-off between NDT and front-haul and caching
resources is characterized and optimal caching front-haul
transmission is obtained.

[290] FDT For a 3 × 3 wireless interference network the storage-
latency trade-off is investigated while all transmitters and
receivers are equipped with caches.

[292] FDT For a scenario with a 3 × 3 MIMO system in which the
nodes are enabled with several antennas, the trade off be-
tween storage and latency is investigated.

[293] DTB DTB is used to characterize the system performance as a
function of cache storage and capacity of backhaul links
connected to SBS.

[302] NDT The trade-off between storage and latency for a distributed
caching scenario in fog radio access networks is character-
ized.

[303] NDT Cloud-based compressed precoding and edge-based inter-
ference management introduced as two major techniques
for optimal performance of cloud and caching resources in
different cases.

[310] NDT Considering heterogeneous timeliness requests depending
on application, the fundamental trade-off between the de-
livery latencies of different users requests is characterized
using NDT.

[311] NDT Upper and lower bounds for minimum delivery latency as
a function of cache and fronthaul resources is obtained
over fronthaul and wireless link in a F-RAN with a wire-
less multicast fronthaul.

[312] NDT Assuming an F-RAN when pipelined fronthaul edge trans-
mission is used, lower and upper bounds on the NDT is
presented.

[313] NDT Assuming both content placement and delivery phases in
one time slot, it is shown that the proposed approach out-
performs the offline caching.
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aided wireless network divided by that of an ideal system with unlimited caching capa-

bility. Considering a general cache-aided wireless network, the lower bound for NDT is

presented in terms of the ratio of the existing file memory at the edge node and the total

size of files for both perfect channel state information (CSI) and imperfect CSI.

Authors in [289] employed NDT as well in order to characterize the trade-off be-

tween NDT and fronthaul/caching resources. Using this information-theoretic analysis of

fog radio access networks, optimal caching front-haul transmission is obtained. In [290],

the latency storage trade-off in a 3× 3 wireless interference network is investigated while

all transmitters and receivers are equipped with caches. Another metric called (FDT) is

proposed in order to characterize the trade-off between latency and storage. This infor-

mation theoretic performance metric is actually a refined version of the metric originally

proposed in [288]. The FDT can reflect the load reduction as well. In a similar work [291]

the well-known DoF metric is used which does not reflect the load reduction. Moreover,

the proposed approach in [291] just considers the one-shot linear processing, but interfer-

ence alignment scheme in [288] may require infinite symbol extension.

In [291], an optimization problem is designed to minimize the number of required

communication blocks for content delivery. Then, a lower bound is proposed on the value

of the objective function. Using the same metric, the authors in [292] investigated the

fundamental trade-off for a cache-enabled MIMO system. Considering a scenario with a

3 × 3 MIMO system in which the nodes are enabled with several antennas, the trade off

between storage and latency is investigated. In addition to FDT and showing its optimality

for some ranges of cache size, the model can consider the effect of real traffic load at a

rate specified by the DoF of the channel.

In [293], a cellular network is considered with multiple SBSs with limited cache ca-

pacity in which there is interference among them. Here, another information theoretic

metric based on delivery latency is defined as well in order to characterize the system
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performance as a function of SBS cache memory and capacity of backhaul links con-

nected to SBS. Using this metric which is called DTB, the trade off between latency and

system resources is investigated. In [302], using NDT trade-off between storage and la-

tency a distributed caching scenario in fog radio access networks is characterized. In the

presented approach, a coded delivery scheme is proposed to minimize the latency for de-

livering user demands for two edge-nodes and arbitrary number of users. It is shown that

using decentralized placement, the presented delivery approach can obtain a considerable

performance improvement in comparison to the derived lower bound.

In [303], again NDT is employed to characterize the fundamental trade off between

delivery latency and system architecture. Considering NDT as the criterion for latency

evaluation of the system, some bounds on its value are proposed. In the light of such

bounds, useful insights on the latency and storage trade off are obtained. It is demon-

strated that in order to obtain the lowest delivery latency, cloud-based compressed pre-

coding and edge-based interference management should be considered as two major

techniques for optimal performance of cloud and caching resources in different cases.

In [310], for a fog radio access network, the heterogeneous timeliness requests depending

on application is considered while in the existing works the assumption is that all requests

have identical latency for all files in the content library. The fundamental trade-off be-

tween the delivery latencies of different users’ requests is characterized using NDT. The

minimization of the average delivery latency as a function of the content popularity profile

remains as a future research direction.

In [311], the total delivery latency over fronthaul and wireless link in a fog radio

access network with a wireless multicast fronthaul is investigated. Again using NDT, the

optimal delivery latency based on cache storage and fronthaul resources is formulated

and upper and lower bounds are obtained. It is shown that in contrast to the receiver-side

caching, coded multi-casting can not help in decreasing the NDT when two users and two
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edge nodes (ENs) are available. In [312], for a F-RAN, the NDT is used to characterize the

performance of a fog radio access network when pipelined fronthaul edge transmission is

used.

In [313], a F-RAN system is considered in which ENs are cache-enabled with limited

storage. On the contrary to the existing works that focused on offline caching where both

caching phases are considered separately, the proposed method can integrate both of them

in each time slot. The performance is characterized using NDT and compared to that of

optimal offline caching schemes. It is shown that the proposed approach outperforms the

offline caching.

5.6.3 Existing Caching Solutions for 5G

In general, the file delivery service in mobile networks can be classified into two parts:

cache placement, and content delivery [314]. In cache placement, the cached content on

the BSs is determined, which is usually based on the amounts of requests from users.

Cache placement can be done using a centralized or distributed approach. In central-

ized approach, a coordinator is assumed with access to almost all the information about

the memory size of BSs, the connectivity of the users, and the BSs. However, in some

scenarios that there is no central controller, these schemes can not be applicable and a

distributed cache placement is required [142]. In each of the caching phases whether cen-

tralized or distributed, the design can reduce the delivery time of the requested content

and latency of the system.

There are some efforts in the literature on investigation of different challenges raised

up in centralized cache placement problems. In [140], the cache placement problem was

investigated in a scenario including SBSs, called helpers with weak backhaul links but

large memory size. In experimental evaluation, it is shown that the proposed scheme can
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achieve a considerable performance improvement for the users at reasonable QoS lev-

els. In [141], authors aim at minimizing the average download delay of wireless caching

networks with respect to caching placement matrix. It is demonstrated that the backhaul

propagation delay can affect the caching placement.

In some scenarios, it is more desirable to design the caching problems in a distributed

approach. In [142], a distributed cache placement approach is proposed in order to min-

imize the average download delay while some constraint for BSs storage capacities are

met. The formulated optimization problem which is NP-hard is solved using a belief

propagation based distributed algorithm with low complexity. This optimization problem

makes sense because there is a trade-off between latency and storage capacity in caching

networks. The comparison between the performance of the proposed distributed scheme

with that of the centralized algorithm in [140] is presented as well. In [285], a decentral-

ized content placement caching scheme is presented. Although there is no coordination,

the proposed scheme can attain a rate as good as the optimal centralized scheme proposed

in [140]. In [143], two caching and delivery schemes are considered. The first one oper-

ates in a centralized manner, while the second one is based on decentralized caching. For

both cases, the trade-off between coded multi-casting and spatial reuse is reflected by the

code length.

In addition to the aforementioned literature, in [144], content caching, and content

delivery schemes are proposed considering cooperation to address the explosive enhance-

ments of demand for mobile network applications. Defining the objective as minimizing

the average downloading latency, it is demonstrated that the proposed content assignment

and delivery policy scheme has a better performance in comparison to the previous known

content caching schemes in terms of average downloading latency. A weighted optimiza-

tion problem is formulated in [145] to minimize the traffic of backhaul and downlink

while the constraints for cache memory size and bandwidth limitation for D2D communi-
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cation is considered. It is shown in [301] that if latency awareness is considered in caching

management, it is an effective approach to reduce the delivery time of latency sensitive

applications, and the global delivery time of users. In the proposed model, two main ad-

vantages is claimed. First, it not only has a better performance in term of delivery time at

the end-user, but also affects the link load reduction. Second, a faster convergence with

respect to probabilistic caching is achieved. In [146], the effect of joint latency awareness

and forwarding is investigated in a cache-enabled network. Authors proposed a scheme

which is based on caching and forwarding strategies in order to improve E2E experienced

latency by the UEs while there is no coordination among them.

In [286], a cooperative content caching approach between BSs in cache-enabled multi-

cell network is considered. Due to the trade-off between storage and latency, cooperative

caching optimization problem is designed in order to minimize the average delay while a

constraint on the finite cache size at BSs is met. It is shown that cooperation among cells

can considerably reduce delay in comparison to that of non-cooperative case. Moreover,

the gains of the proposed scheme will be increased in more diverse and heavier load

traffics. In [287], the aim of the work is to minimize the data transmission delay for the

P2P caching system while considering the effect of cache size, all mobiles in a cell are

considered as several P2P caching groups. Then, the problem is formulated as a stochastic

optimization problem and solved using Markov decision process (MDP) to obtain the

optimal solution.

In [147], a cooperative multicast-aware caching strategy is proposed for the BSs to

decrease the average latency of content delivery in 5G cellular networks. The proposed

scheme is carefully designed in order to take into account the benefit of multicast and

cooperation while in the existing caching schemes, the popular content simply is brought

close to the users. The optimization problem is formulated in order to minimize average

latency for all the content requests. It is demonstrated that via various trace-driven sim-
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ulations that the proposed cooperative multicast-aware caching scheme can provide up

to 13% decrease in the average content-access latency in comparison to multicast-aware

caching scheme with the same total cache capacity.

In [148], the authors presented a cooperative caching architecture in which multiple

locally cache-enabled nodes of cloudlets interact cooperatively in a decentralized cloud

service networks. By proposing a content distribution strategy, the problem is formu-

lated so that the mean total content delivery delay for all users in the proposed scheme

is minimized. It is confirmed that the approach can enhance the cache hit rate, and also

reduce the the content delivery latency in comparison to existing solutions. In [149], the

E2E packet transmission in a cache-enabled network is modeled in which both the wired

backhaul and the RAN are jointly considered. The performances of both the on-peak

and the off-peak network are investigated while both the wired backhaul and the RAN

are considered. The E2E average packet latency is elaborated with the change of the re-

quest rate. It is shown that the average packet latency reduces in comparison to that of

the system without caching ability due to the traffic offloading of the wired backhaul via

caching.

5.7 Field Tests, Trials and Experiments

In this section, we present some representative field tests, trials and experiments for 5G

low latency. The related literature is summarized in Table 5.20, where each of the indi-

vidual references will be described in further detail below.

The study [315] presents SDR based hardware platform to verify the concept of 5G.

This facilitates initial proof-of-concepts (PoC) of novel 5G air interface and other con-

cepts by extending hardware-in-the-loop (HIL) experiments to small laboratory experi-

ments and finally trials of outdoor tests. Such an SDR based hardware can demonstrate
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Table 5.20: PLATFORM AND PERFORMANCE ON FIELD TESTS, TRIALS AND EXPERI-
MENTS.

Refer
ence

Evaluation
method-
ology

SDR DSP mm
Wave

Conven
-tional/
Propri-
etary
LTE

Remarks

[315] " Trials of 5G concepts along
with a novel air interface

[316] " 4 test cases and 15 KPIs is
proposed.

[317] " mmWave aggregation
[64] " RTT latency of 1 or 2 ms

is achieved. Moreover, to
achieve latency on the order
of couple of hundreds mi-
croseconds over air interface,
cross later approach is recom-
mended.

[318] " Low latency VANET
[319] " DSP round-trip latency less

than 2µs is achieved for
channel aggregation and de-
aggregation for 48 20 MHz
LTE signals.

[83] " 20 times latency reduction in
comparison to existing works

[91] " Minimum latency 3 ms
[64] " Latency ≤ 1 or 2 ms
[87] "

[320] " Latency ≤ 17 ms
[60] " HARQ RTT ≤ 1.5 ms
[321] " RTT latency ≤ 1 ms
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high-capacity, low latency and coverage capabilities of LTE-A solutions. In [316], eval-

uation methodology including some novel test environments and certain new key perfor-

mance indicators are discussed in order to evaluate 5G network. Here, four candidate test

environments such as indoor isolated environment and high speed train environment, and

fifteen key performance indicators such as latency, throughput, network energy efficiency

and device connection density are emphasized for performance evaluation.

In [317], 5G system operating at 15 GHz is presented followed by some experimen-

tal results. Here 0.2 ms subframe (14 OFDM symbols) is used for throughput, latency

and other performance evaluation. The hardware implementation results of digital sig-

nal processing (DSP) and SDR based 5G system for low latency is presented in [64]. In

this study, both the short TTI (sTTI) frame structures and wider subcarrier spacings are

implemented in DSP platform. Based on the configurations of the system, RTT latency

as low as 1 ms can be achieved. However, for achieving latency on the order of a few

µs, optimization in between controllers and processing machines needs to be performed

by cross-layer fashion. Additionally, the tail latency is argued to be considered in strict

latency requirements assessment while maintaining required reliability.

An SDR based test bed is presented in [318] for cooperative automated driving with

some experimental results from lab measurements. It implements flexible air interface

consisting of re-configurable frame structure with fast-feedback, new pulse shaped OFDM

(P-OFDM) waveform, low latency multiple-access scheme and robust hybrid synchro-

nization, which ensure low latency high reliable communication. Results of the experi-

mental trials are presented in [319], which utilizes DSP techniques for channel aggrega-

tion and de-aggregation, adjacent channel leakage ratio reduction, frequency-domain win-

dowing, and synchronous transmission of I/Q waveforms and code words used in control

and management function. In the proposed experiment, transmission of 48 chunks of 20

MHz LTE signals using a common public radio interface of capacity 59 Gb/s can achieve
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RTT DSP latency of less than 2 µs and mean error-vector magnitude of about 2.5% after

fronthaul fiber communication. This mobile fronthaul technique shows the path towards

ultra low latency integrated fiber/wireless access networks.

In [83], a multi-terminal massive SM-MIMO system is evaluated considering real-

istic scenarios. The authors developed a massive SM-MIMO OFDM system prototype

utilizing multiple off-the-shelf SDR modules which serve as IoT terminals. Two lin-

ear detection schemes with diverse complexity levels were tested for detection instead

of maximum likelihood detection (MLD) schemes. It demonstrates the similar real-time

SINR performance of the MLD techniques along with 20 times latency reduction over

existing works. The promising results urge the utilization of massive SM-MIMO sys-

tems for latency reduction and reliability enhancement in IoT transmissions. In [91], the

performance of a lower latency frame structure was evaluated in field tests using a 5G

mmWave proof-of-concept (PoC) system. It was found that the slot interleaving frame

structure can achieve RTT latency of 3 ms in the 70− 80% of the trial course. Addition-

ally, beam tracking and throughput performance were evaluated in field tests at a speed

up to 20 km/h on LOS outdoor environment. It was confirmed that mmWave system can

obtain throughput of 1 Gbps in the 38% of the trial time at 20 km/h speed.

In [87], a low complexity receiver design was introduced followed by verification of

superiority of an SCMA system via simulations and real-time prototyping. It can pro-

vide up to 300% overloading that triples the whole system throughput while still enjoying

the link performance close to orthogonal transmissions. In [320], the concept of MEC

was introduced first time for 5G followed by promising field tests. The MEC was tested

and analyzed on various cases including local breakout and network E2E latency. It was

concluded that MEC can support low latency services of not lower than 17 ms. It also

urged that stricter requirement of latency needs to be investigated from the new radio

technologies or D2D communication. In [60], a lab trial is presented to study the feasi-
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bility of ultra-low latency for 5G. It is shown that 1.5 ms HARQ RTT for TDD down-

link in a lab trial is achievable when using the available test equipment in the literature

while a novel frame structure and the associated signaling procedure is employed. The

proposed scheme has 5 times better latency performance in comparison to the existing

LTE-Advanced standard.

In [321], a novel frame structure is tested using a proprietary quasi-static system sim-

ulator for ultra-dense 5G outdoor RANs. In this regard, a frame structure is designed in

order to facilitate low latency and multiuser spatial multiplexing on radio interface along

with small-scale packet transmission and mobility support. It is found that performance

of the introduced 5G network is better than that of LTE in case of air interface latency.

In particular, considering UL scheduling requests in the RTT latency, the proposed frame

structure can achieve latency as low as 0.8365 ms which is reduced by a factor of 5 in

comparison to that of LTE. This satisfies 5G latency requirement (i.e.,1 ms latency).

5.8 Open Issues, Challenges and Future Research Directions

While there are some existing proposals to reduce latency to 1 ms, there are several open

issues and challenges for future research. The area of exploration includes RAN, core

network, backhauling, caching and resource management. Also, the existing techniques

need to be validated in field tests and should evolve from current LTE systems. In the

following section, we discuss some of the open issues and challenges which needed to be

explored and addressed by researchers from both academia and industry.

5.8.1 RAN Issues

As discussed in Section IV, most of the fundamental constraints for achieving low latency

requires modification in PHY and MAC layer which are at RAN level. Even though
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several promising solutions are proposed to date, we believe that the following issues at

RAN level need to be investigated further.

• For achieving low latency in 5G networks, mmWave is a promising technology

which brings massive new spectrum for communications in the 3-300 GHz band.

However, mmWave is dependent on diverse aspects such as transmitter/receiver lo-

cation and environmental topology [194, 322]. Moreover, channel modeling with

delay spread, path loss, NLOS beam forming, and angular spread need to be inves-

tigated in indoor and outdoor environment which are still evolving [323]. Addition-

ally, more in-depth knowledge of physics behind mmWave regarding aspects such

as Doppler, propagation, atmospheric absorption, reflection, refraction, attenuation,

and multi-path should be developed for utilization of mmWave.

• In conventional packet transmission, distortion and thermal noise induced by prop-

agation channel get averaged due to large size of packet [58]. However, in case of

small size packet, such averaging is not possible. Thus, proper channel modeling

followed by simulations and field tests for small packet in diverse carrier bands

need be investigated.

• The challenge of admission control in RAN for spectral and energy efficiency with

latency constraint is not well explored [324]. CRAN/HRAN provides spectral and

energy efficiency while aspects such as caching can ensure low latency [256]. Re-

searchers can work for performance bounds regarding this issue.

• Orthogonality and synchronization is a major drawback of OFDM modulation for

achieving low latency. On the other hand, orthogonality and synchronization are

very important for data readability. Recently, different non-orthogonal and asyn-

chronous multiple access schemes such as SCMA, IDMA and GFDM, FBMC and

UFMC have been proposed. However, more effective access techniques and wave-
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forms which require less coordination, ensure robustness in disperse channel, and

provide high spectral efficiency is a potential research area [194, 325].

• Low complexity antenna, beam steering large antenna array and efficient symbol

detection such as compressed sensing is conducive for low latency communication.

For this, heuristic beam forming design at BS level, beam training protocols, and

weight calculation and reliable error correction technique need to be studied [194,

326]. On the other hand, at the receiver level, low complexity sensing techniques

and receiver design should be the focus of the future research.

• One of the major challenges is that latency critical packets are to be multiplexed

with other packets. There are solutions such as instant access for latency critical

packets ceasing transmission of other packets, and reservation of resources for la-

tency critical services [198]. We believe that these issues are not well-explored and

calls for further study.

• Even though the main objective of CRAN is to reduce costs and to enhance en-

ergy and spectral efficiency, it might be combined with heterogeneous networks

termed as H-RAN. However, it is very challenging to design 5G network with large

CRAN/HRAN [256]. In this case, various trade-offs including energy efficiency

versus latency can be investigated.

5.8.2 Core Network Issues

In the core network, several new entities such as SDN and NFV have been introduced for

supporting large capacity, massive connectivity and low latency with seamless operation.

Since these entities are not part of the legacy LTE system, extensive works need to be

carried out for the standardization and development in the context of 5G. Some of the

issues necessitating research in the core network level are as follows.
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• The main challenge of SDN/NFV-based core network design is the management

and orchestration of these heterogeneous resources [327]. Effective resource allo-

cation and implementation of functions in this heterogeneous environment while

also maintaining low latency is an area of emerging research need.

• Most of the surveyed works are based on Open Flow protocols and their extension

integrating control plane and user plane without a detailed implementation plane.

Moreover, the scalability of the user plane is not considered while taking mainly

control plane into consideration [272]. Researchers have a great opportunity to

explore regarding the standardization and scalability of these core network entities.

• To boost spectral/energy efficiency and reduce latency utilizing CRAN and coordi-

nated multi point (CoMP), mmWave is an attractive choice for front/back hauling

because of its low implementation cost and unavailability of fiber everywhere [278].

However, research in mmWave regarding front/back hauling is a popular area of in-

vestigation. Dynamic, intelligent and adaptive techniques need to be developed

with optimized utilization of the heterogeneous back hauling networks while cater-

ing low latency.

• Even though MEC is envisioned to reduce individual computation, inclusion of the

caching in MEC can further boost users’ QoE. The caching enabled MEC will pro-

vide content delivery and memory support for memory hungry applications such as

VR, and online gaming along with BS level caching [34]. Researchers are encour-

aged to study various trade-offs such as capacity versus latency, storage versus link

load, and memory versus rate.
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5.8.3 Caching Issues

Edge caching can be a critical tool for latency reduction along spectral and energy ef-

ficiency improvement. Recently, this issue attracted huge attention from researchers in

both academia and industry resulting in many different approaches. However, we believe

there are still extensive research problems open and need further exploration.

• Even though several exciting works have been carried out for content placement and

content delivery time, further studies could be done regarding the latency aspects

such as how latency is impacted by caching size and location, and wireless channel

parameters [328].

• Assuming that content delivery and content placement are the main two phases of

wireless caching, network architecture including caching storage size, placement,

and cooperation for caching are potential areas for further study [329,330]. Besides

that, the protocol design for caching redundancy and intra cache communication

can be investigated with latency constraint [330]. In this regard, performance limits

and bounds of caching can be studied for getting insights on optimum performance.

• The BS makes a tunnel between UE and EPC for content request. However, the

contents are packeted through GTP tunnel which creates difficulty in content-aware

or object-orientated caching [331]. Proper protocol designs can address such prob-

lems.

• In low user density areas, caching capacity may be in surplus for serving UE, while

in urban areas, the situation may be opposite. Intelligent and co-operative resource

allocation and caching strategies can ensure proper hit ratio along with low latency

content delivery [330]. In this regard, relatively few works are available in the

literature, and can be further investigated.
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• Mobility is an important issue in latency critical applications such as AR. The

movement and trajectory boost the location and performance information for lo-

cal caching which handle the current user’s experience. The movement of users

among cells will incur interference and pilot contamination along with complica-

tion in system configurations and user-server association policies. Moreover, fre-

quent handover will introduce latency degrading user’s experience [332]. Thus,

handover in diverse caching scenarios with focus on low latency can be a potential

area of research.

5.9 Conclusion

Along with very large capacity, massive connection density, and ultra high reliability,

5G networks will need to support ultra low latency. The low latency will enable new

services such as VR/AR, tele-medicine and tele-surgery; in some cases, latency not more

than 1 ms is critical. To achieve this low latency, drastic changes in multiple network

domains need to be addressed. In this chapter, an extensive survey on different approaches

in order to achieve low latency in 5G networks is presented. Different approaches are

reviewed in the domain of RAN, core network and caching for achieving low latency.

In the domain of RAN techniques, we have studied short frame/packets, new waveform

designs, multiple access techniques, modulation and coding schemes, control channel

approaches, symbol detection methods, transmission techniques, mmWave aggregation,

cloud RAN, reinforcing QoS and QoE, and location aware communication as different

aspects of facilitating low latency.

On the other hand, SDN, NFV and MEC/fog network architectures along with high

speed backhaul are reviewed in the literature for core network with vision to meet the

low latency requirements of 5G. The new core network will provide diverse advantages
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such as distributed network functionality, independence of software platform from hard-

ware platform, and separation of data plane from software plane, which will all help in

latency reduction. In caching, distributed and centralized caching with various trade-offs,

cache placement and content delivery have been proposed for latency reduction in con-

tent download. Following this, promising results from field tests, trials and experiments

have also been presented here. However, more practical and efficient techniques in the

presence of existing solutions need to be investigated before the standardization of 5G.

In this regard, we discussed the open issues, challenges and future research directions

for researchers. The authors believe that this survey will serve as a valuable resource for

latency reduction for the emerging 5G cellular networks and beyond.
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CHAPTER 6

RSS based Loop-free and Low Latency Compass Routing Protocol

Localized routing decision, loop freedom, minimization of hop count, single path

routing, minimization of communication overhead, scalability and delivery rates are the

metrics of communication protocol [24,333]. To meet these requirements, in this chapter,

we propose compass routing technique [334] for data transfer among smart meters and

other components of the AMI [24]. Compass routing was first introduced by Kranakis et

al. [334], in which the source node sends message to neighboring nodes, measuring the

angle with respect to the destination node.

Though compass routing is not inherently loop free, we used a modified algorithm in

the context of AMI which not only avoids looping but also minimizes flooding rate and

ensures faster delivery [24]. The touted feature of this routing protocol is that it uses the

position information of smart meters derived from its radio signal. Though precise loca-

tion information can be obtained from hard coded GPS installed inside meter, GPS may

not work inside the buildings and in some geographically remote places (like forests). So

our communication solution for the AMI is acceptable from a global perspective. The ef-

fectiveness of the proposed method has been investigated on stationary node environment

and an encouraging result was found.

6.1 Localization and Routing Techniques

6.1.1 Localization of Smart Meter

As refereed to Fig. 6.1, let us consider an unknown positioned (new) meter at a location

(x, y) accompanied by partially dispersed known position meters (anchor meters) at lo-

cations (xl, yl), where 1 ≤ l ≤ n. The received signal strength at location (xl, yl) can be
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Figure 6.1: Locating the new meter by known position meter (Anchor).

denoted by ψl

ψl = c− 10γ log(dl) + wl, (6.1)

where c is an unknown constant that depends on transmitted power, frequency etc, and

γ is the path loss constant. For a lossy environment, the typical value of γ is 4-6. In

our model, γ = 2.93 has been used considering residential area. The parameter dl is the

euclidean distance between the known and unknown position meter defined as follows:

dl =
√

(x− xl)2 + (y − yl)2, (6.2)

and wl is the zero mean random Gaussian noise with standard deviation σl. The value

of σl ranges from 6 to 12 dB.

Let us define, the θ and ψ as θ = [x, y, z]T and ψ = [ψ1, ψ2, ......., ψn]T .

The likelihood function of θ for a given RSS measurement ψ, f(θ|ψ) is given by

f(θ|ψ) = c1 exp

{
−

n∑
l=1

{ψl − c+ 10γ log(dl)}2

2σ2
l

}
, (6.3)

where c1 is a constant.

The Maximum Likelihood (ML) estimate of θ, denoted by θ̂, can be found from the

following equation
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θ̂ = arg max f(θ|ψ)

= arg min

{
−

n∑
l=1

{ψl − c+ 10γ log(dl)}2

2σl2

}
,

(6.4)

The above equation is an optimization problem. Various optimization techniques such

as differential evolution, dynamic relaxation and particle swarp optimization (PSO) can

be used to solved equation 6.4. In our problem, we used PSO to solve the non-linear

optimization problem. Finally, the ML estimator yields the location (x, y) and reference

power z of the unknown positioned meter

(x, y, z) = {θ̂(1), θ̂(2), θ̂(3)}. (6.5)

Optimization Technique- Deterministic Particle Swarm Optimization (D-PSO): The

PSO is initialized with a group (population) of random solution of particles. Each particle

has two states- its current position x and velocity v. Each particle has the ability to

memorize its own best position experienced, pbest , and best position swarm experienced,

gbest. At each iteration, the position and velocity are updated according to formula 6.6

and 6.7 [3]:

vt+1
j = wvtj + c1r1(pbesttj − xtj) + c2r2(gbesttj − xtj) (6.6)

xt+1
j = xtj + vt+1

j (6.7)

where w ≥ 0 is an inertia weight co-efficient, c1 > 0 and c2 > 0 are the acceleration

coefficients, and r1 and r2 are the diagonal matrices whose components are generated

from random number in the region [0, 1].
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xtj ∈ RN is the position of jth particle in N dimensional space t iteration.

vtj ∈ RN is the position of jth particle in N dimensional space t iteration.

pbesttj called the best personal position information, indicates the best value of evalu-

ation function of jth particle in t iteration. It is defined as

pbesttj = min
t
f(xτj ), τ ≤ t (6.8)

gbesttj ∈ RN also called as the best global position information, indicates the best

value of evaluation function of jth particle in swarm in t iteration. It is defined as

gbesttj = min
τ
pbesttj = min

τ
f(xτj , τ ≤ t) (6.9)

The particles will fly in the swarm in an N dimensional space to have best co-ordinate

positions backed by best current (personal) value of evaluation function.

6.1.2 Compass Routing

In compass routing, the source or intermediate node A(x1, y1) sends a message to the next

node based on location information. If the node B(x2, y2), F(x3, y3), and L(x4, y4) are

in the transmission range of A, A will calculate angles as θ1, θ2 and θ3, respectively of

AF, AL and AB with references to AD, where D is the destination node. The angle is

calculated based on formula of Eqn. 6.10:

θ1 = tan−1(
y2 − y1

x2 − x1

) (6.10)

At the same time, node A calculates the distance of B, F, L from D by equation (6.11):

d =
√

(x− x1)2 + (y − y1)2 (6.11)

Based on θ = min θ1, θ2, θ3, node B is selected.
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At the same time, the distance from destination-dFD, dLD, and dBD is measured. For

d = min{dFD, dLD, dBD}, and θ = min{θ1, θ2, θ3}, the corresponding node is selected. If

the node following θ = min{θ1, θ2, θ3} and d = min{dFD, dLD, dBD} is not same, the node

with minimum distance d is selected irrespective value of minimum angle θ. Based on

angle and distance, node B (Fig. 6.2) is selected. Now node B acts as the source node and

it forwards a message to the next node. In this way, the routing path ABCED is selected

and the message is transmitted from the source to destination as shown in Fig. 6.2.

1

2
A

B C

E

D

F

G

H

I
J

K

3
L

Figure 6.2: Routing diagram.

However, the main drawback of compass algorithm is that it is not loop free. Here

in the Fig. 6.3, the message will be forwarded repeatedly in path A-B-C-E-F-A. So, the

message is in loop.

D

A

B

C
E

F

Figure 6.3: Loop in routing path.
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To avoid this loop effect, the node which initiated the message looping, we define it

as concave node. In the Fig. 6.3, node A is a concave node. We assume, in our algorithm,

each message contains the source and destination ID. If a node is concave node, it will

return back the message to its sender. We propose that when a node sends back a message,

it will return also with the ID of the concave node. Next time, when the sender will send

the message, it will send it in the alternate way omitting that path.

6.2 Simulation Result

To evaluate the performance of localization of meters, we use rectangle, hexagon and

octagon shaped area of interests (AOIs) (approximate dimensions of 10x10m each). Each

edge represents a node (in meters) and the emitter (in unknown node/meter) is the center

of the AOI. The estimation of the position of the unknown emitter node (meter) through

equation (6.3) is the optimization problem which is defined by equation (6.4). In our

simulation, we used Deterministic Particle Swarm Optimization (D-PSO) method. Since,

in our optimization problem, the space is 2 dimensional, we used parameters

Figure 6.4: The error from exact position for different number of nodes.
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Fig. 6.4 shows that the increase of node (in meters) number will decrease the error

from exact node position.

In path loss model of radio signal, random noise is added which varies by standard

deviation .

Figure 6.5: The relation between error and variance.

In the Fig. 6.5, the error curve is drawn as a function of variance for different number

of nodes. As the variance of the noise increases, the error also goes up.

In the second part of our simulation, in a 10x10m box, we put 20 random nodes. It is

observed that an increase in the degree of connectivity will decrease the number of hop

as demonstrated in Fig. 6.6.

Now we use CSMA/CA algorithm to transmit data from the source to destination [335–

337]. We used the following parameters: 500bit packets, 915MHz frequency and single

hop based Markov Chain model for evaluating the performance. It is found in Fig. 6.7

that increasing the node number in the path of communication will decrease the reliability

(probability of successful transmission).

Now we vary the packet size. We observe that with the increase of packet size, the

reliability also decreases as shown in Fig. 6.7.
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Figure 6.6: Degree of connectivity versus hop count.

Figure 6.7: Reliability of nodes (meters) at different packet size.
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6.3 Conclusion

In compass routing, the position of a smart meter is derived from the electromagnetic

signal of neighboring meters. Though the pinpointing the position of a meter comes with

error due to various obstacles (trees, buildings etc.), fading etc. occurs, the approximate

position is sufficient for routing decision. Besides, in our routing protocol, the source or

intermediate node (meter) sends packet to a specific neighboring node. So there is less

flooding rate. Furthermore, for choosing only one node in the course of communication,

unnecessary routing of data to the neighboring nodes is omitted resulting in a faster data

transmission. Besides, to avoid the concave node, the corresponding path is dropped and

its information is also updated in the corresponding neighboring nodes.

In the Smart Grid, a voluminous number of smart meters will cover huge geographical

area replacing conventional meters. So RSS based compass routing protocol can be a

potential candidate for AMI due to its localized routing decision, less flooding rate and

faster data transmission, as well as omitting the need of hard coded location information

or GPS inside the meter.
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CHAPTER 7

Key Management and Authentication based Data Security for Smart Grid

The main obstacle for implementing AMI security scheme is the limited memory

and low computational ability of the smart meters which necessitates a lightweight but

robust security scheme [338–340]. In the literature, the key management-based encryp-

tion method has been accepted as a prominent security scheme for the smart grid, which

includes a Trusted Third Party (TTP) [165, 168, 341, 342]. In almost all cases of TTP

management systems, it is assumed that the TTP is fully trusted. However, the TTP itself,

meters, and communication links among the TTP and meters also could be compromised.

Based on the semi-trusted servers and untrustworthy/unreliable communication links,

in this chapter, we present a novel two-layer security scheme. The first layer boosts the

security of the transmitted data between the Smart Meter (SM) node and the control cen-

ter/Metering Data Management Service (MDMS) by data encryption as well as random-

ized packet transmission. As mentioned in our early work [343], the scheme consists of

two independent servers. The master server manages the public-private key to secure the

data packet communication between every smart meter and MDMS. On the other hand,

the auxiliary server manages the transmitted sequence of the data packet (considering the

public key sent by the master server). The private key associated with the public key

and generated random sequence are used to retrieve the data at the MDMS. This paper

extends [343] by using Received Signal Strength (RSS) and One Class Support Vector

Machine (OCSVM) techniques for node-to-node authentications. OCSVM is used to de-

tect malicious packets from unknown sources considering data transmission history like

transmission frequency, data packet size, and distance between sender and receiver. RSS

algorithm is used for localization of meters using the received signal strength from neigh-

bor meters.
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Figure 7.1: AMI architecture consisting of a cluster of mesh/hybrid connected meters,
data concentrator, and control center.

7.1 Architecture of the Proposed Secured AMI

The proposed AMI is similar to a typical AMI which is a web-like network with millions

of meters except it has two extra servers as shown in Fig. 7.1. Two mechanisms are pro-

posed for the encryption of each data packet and authenticate the communication among

meters.

A detailed description of the components of proposed AMI is provided here.

• Smart meter: It is a solid state device responsible for collecting, storing and sending

data to MDMS using wireless communication in a fixed interval time less than 1

hour.
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• Home Area Network (HAN): All home appliances are connected to a smart meter

by a network, forming HAN.

• Neighborhood Area Network (NAN): The meters are connected to each other through

a mesh or hierarchical or hybrid wireless network termed as NAN. In our architec-

ture, we assume that NAN utilizes ZigBee protocol.

• Data Collector/concentrator: The head end of the NAN is the data concentrator or

gateway which collects data from NAN and forwards those to MDMS by a dedi-

cated wired or wireless connection (optical fiber, a cellular network, etc.).

• Metering Data Management Service (MDMS) /control center: The MDMS receives

the consumption data from the AMI network, and calculates bills based on them.

Having fine-grained collected data, MDMS also monitors, manages, and optimizes

power generation and electricity distribution in the grid.

• Master server: Master server generates a pair of public key and private key for a SM

for each session. The Master server unicasts the public key for encryption. On the

other hand, the private key is sent to Auxiliary server and MDMS for decryption.

In the proposed architecture, the connection between the Master server and NAN is

via untrusted wireless communication whereas the Master and Auxiliary server are

connected to MDMS by reliable communication (such as optical fiber, GPRS).

• Auxiliary server: Before the encryption of data with the public key sent by the

master server, the smart meter generates a random sequence. This random sequence

is sent as encrypted by public key to the Auxiliary server. That server receives

random sequence and authenticates it by the private key of the smart meter before

forwarding it to MDMS for final decryption.

Since in our model, a cluster of meters is supported by a Master and an Auxiliary

server, our scheme can be scalable by prudent design of clusters.
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7.1.1 Basic Notifications and Definitions

The notifications and definitions used in the presented algorithm and data flow scheme

are stated in Table 7.1.

Table 7.1: SYMBOL NOTATION.
Notation Description

SMi Smart meter node i
TTPM Master server
TTPA Auxiliary server
AE i Asymmetric encryption scheme for meter i
Ki Randomized key generation algorithm for meter i
pki Public key for meter i
ski Secret/private key for meter i
Mi Cleartext message/data of meter i
Ci Ciphertext message/data of meter i
E({u, v}, w) Encrypt the clear text u and v with the key w
D({y}, q) Deterministically decrypt cipher text y with the key q
t Time stamp instance
zti Message packet size for node i at time t
n Number of packet segments for a given meter i at time t
(c1, c2, · · · , cn) ∈ Ci Segmented packets of cipher-text for meter i
(r1, r2, · · · , rn) ∈ Rt Random sequences at time instant t
(p1, p2, · · · , pn) ∈ P Probability of jth packet transmission
AP Data concentrator/Access Point
γ Path loss component
δl Variance of random noise
SM Set of all smart meters
Lx Set of ZigBee connections, where x ∈ [1, 3]
Reqi Key request message sent by SMi to TTPM
N Number of smart meter nodes, i.e. i ∈ [1, N ]
PSO Particle Swarm Optimization
OCSVM One class support Vector Machine

Let, SM = {SMi}Ni=1 denotes the set of participating smart meters connected as a

network in our system. Also, let graph G = (SM ∪ {AP}, L1 ∪ L2 ∪ L3) represents the

network topology of smart meters where:

• AP represents the data concentrator,
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• L1 denotes the set of ZigBee connections connecting neighboring smart meters

together,

• L2 represents the set of ZigBee connections connecting the data collector AP to a

few nearby smart meters (see Fig. 1 for illustration)

• L3 is untrusted communication links (such as ZigBee, WiMax etc.) between the

Master sever TTPM /Auxiliary sever TTPA and every smart meter in SM,

• Both the TTPM and TTPA are connected to MDMS via a dedicated network. Ad-

ditionally, they are connected by a trusted connection.

It is worth mentioning that each SM has a unique ID which is stored in the data packet,

TTPM and TTPA. TTPM and MDMS exchange the corresponding private key based

on this ID. They both stored the corresponding private keys of the SM in their internal

databases to retrieve at the time of packet arrival for decryption purpose.

For a node-to-node authentication of data packets, a built-in machine learning algo-

rithm is proposed to run in each smart meter. The proposed algorithm explores all the

incoming data packets in real time and identifies whether it is reliable or spiteful based

on the three features of the packet including 1) the distance of the packet sender which is

estimated by RSS-based localization algorithm, 2) time intervals that a packet is received

in destination, and 3) packet size. Based on the decision of the algorithm, the packet is

accepted and forwarded to the next SM in the grid, otherwise the packet will be discarded.

Fig. 7.2 illustrates the mechanism.

7.2 RSS Algorithm, OCSVM and Entropy of a Data Packet

As mentioned earlier, packet data is circulated among the meters in the path reaching the

destination AP . To point out the malicious packet data from an unauthorized source, the

163



Figure 7.2: Training and application of OCSVM model in smart meters

content of the data packet should be screened carefully before delivery and dispatch to

the next node in the grid. One class classification, or concept learning in the absence of

counter examples, has the potential to tackle these kinds of problems. Among different

implementations of the Support Vector Machine (SVM), one class classification algorithm

(OCSVM) is selected in this paper and the performance compared with another anomaly

detection algorithm: Isolation Forest [344, 345]. Appropriate features of the packet data

should be extracted and fed into the OCSVM for training and later on for testing the new

packet. Location (i.e. distance) of the sender, which is an informative feature for detecting

the unauthorized source, is not directly defined in the data packet. To extract this feature,

RSS algorithm is utilized. RSS can pinpoint the location of neighboring meters based

on the received electromagnetic signals. Other features of the data packet such as packet

size, and transmission frequency are relatively simple to capture or infer. In the following

part, the RSS and OCSVM algorithm are discussed in details.

1Unless or otherwise specified, node and meter are same thing in the rest of the study.
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7.2.1 Received Signal Strength (RSS) based localization

Let us consider, an unknown positioned meter at a location (x, y) accompanied by par-

tially dispersed known position meters at locations (xl, yl), where 1 ≤ l ≤ n. The re-

ceived signal strength at location (xl, yl) from the unknown position meter can be denoted

by ψl [30, 346, 347]

ψl = c− 10γ log(dl) + wl, (7.1)

where c is an unknown constant that depends on transmission power, frequency, etc., and

γ is the path loss exponent. Path loss exponent defines the decay rate of electromagnetic

signal. In our model, γ = 2.93 has been used considering residential area. The parameter

dl is the euclidean distance between the known and unknown position meter defined as

follows:

dl =
√

(x− xl)2 + (y − yl)2, (7.2)

and wl is the zero mean random Gaussian noise with standard deviation σl. The value of

σl ranges from 6 to 12 dBm.

Let us define, the θ and ψ as θ = [x, y, z]T and ψ = [ψ1, ψ2, ......., ψn]T , where z is

the reference transmission power.

The likelihood function of θ for a given RSS measurement ψ, f(θ|ψ) is given by

f(θ|ψ) = c1 exp

{
−

n∑
l=1

{ψl − c+ 10γ log(dl)}2

2σ2
l

}
, (7.3)

where c1 is a constant.
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The Maximum Likelihood (ML) estimate of θ, denoted by θ̂, can be found from the

following equation

θ̂ = arg max f(θ|ψ)

= arg min

{
−

n∑
l=1

{ψl − c+ 10γ log(dl)}2

2σl2

}
,

(7.4)

The above equation is an optimization problem. Various optimization techniques such as

differential evolution, dynamic relaxation, and Particle Swarm Optimization (PSO) can

be used to solve equation 7.4. In the current problem, PSO is used to solve the non-linear

optimization problem. Finally, the ML estimator yields the location (x, y) and reference

power z of the unknown positioned meter

(x, y, z) = {θ̂(1), θ̂(2), θ̂(3)}. (7.5)

Now the distance between any two meters SMi and SMj is

dij =
√

(xi − xj)2 + (yi − yj)2. (7.6)

where (xi, yi) and (xj, yj) are derived positions of meter SMi and SMj respectively.

The distance dij is used as a feature in OCSVM algorithm.

Since GPS doesn’t work in some places such as inside the multi-stored building, hilly

areas, forests, etc., we used RSS based localization over GPS. GPS may reveal exact

position of meters/consumers. On the other hand, RSS technique will build a local map

for meters.

7.2.2 OCSVM algorithm

One class classifier is inspired by the SVM classifier [348], [349]. One class classifica-

tion problem is formulated to find a hyperplane that separates the desired fraction of the

training patterns from the origin of the feature space.
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OCSVM maps the input vector to feature dimension according to the kernel function,

and separates it from the origin with maximum margin.

Let us consider, a set of training data I = (i1, i2, ....., in) ∈ I, and Ω be the feature

map I −→ H such that the dot product ofH is computed by kernel k

k(i, i′) =< Ω(i),Ω(i′) >H (7.7)

The regular family for the data set

Cm
w,ρ = {i|fw,ρ(i) > 0} (7.8)

where fw,ρ(i) = sgn(< w,Φ(i) > −ρ) and (w, ρ) is the vector to offset parameteriz-

ing a hyperplane in the feature space associated with kernel.

fw,ρ is estimated by minimizing regularization

Rreg[fmw,ρ(·)] = Remp[fmw,ρ(·)] +
1

2
||fmw,ρ(·)||H (7.9)

It penalizes the outliers by employing slack variables ξ in the objective function and

controls carefully the trade off between empirical risk and regularizes the penalty.

The quadratic programming minimization function

min
w,ξi,ρ

1

2
‖w‖2 +

1

vn

∑
i=1

nξi − ρ (7.10)

such that (w · Φ(xi)) ≥ ρ− ξi,

and ξi ≥ 0, i = 1, 2, 3, ...., n.
(7.11)

where Φ is the kernel function for mapping, ξi is the slack variables, v ∈ (0, 1] is a prior

fixed constant, and ρ is the decision value that determines whether a given point falls

within the estimated high density region. Then the resultant decision function fmw,p(x)

takes the form
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f(x) = sgn(w∗TΦ(x)− ρ∗) (7.12)

where ρ∗ and w∗ are the values of w and ρ solving from the equation (10).

In OCSVM, v characterizes the solution instead of c (smoothness operation) [350]:

• It determines an upper bound on the fraction of outliers.

• It is the lower bound on the number of training examples used as support vector.

7.2.3 Entropy of a data packet

Entropy is a metric for analyzing the robustness of an encryption methodology [351]. In

other word, entropy demonstrates the feasibility degree of capturing the lock by chance.

The more certain about a value, the smaller is the entropy value.

The entropy for a sequence S

H(S) =
∑

x P (S = x) log2 P (S = x)

where P (S = x) is the probability of taking S a value x.

If the size of a random variable or packet generated by a meter is n bit, then the

entropy and security strength of the data packet are n and 2n, respectively. The higher the

entropy, the harder the decryption process. For analyzing the performance of the proposed

encryption schema, this metric is selected.
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7.3 Privacy Scheme implementation and Data Traffic Flow

In this section, the privacy scheme implementation and the data flow process are described

in details to clarify how each layer of the schema affects the grid security. In the data flow

architecture, the following assumptions exist:

• The Master and Auxiliary servers are independent and semi-trusted. However, the

servers might physically be one but virtually divided into two servers.

• The wireless communication links between servers and meters are not fully reliable.

• The meters have limited memory and computational ability.

• The control center/MDMS has the adequate computational ability.

• The meters keep the records of the position of neighboring meters, the frequency of

transmission, packet size, and node identity. The frequency of transmission, node

identity, and packet size are extracted from the packet header. The node position is

derived from electromagnetic signals using RSS based localization as explained in

previous section IV(A).

• Every meter transmits data at a constant transmission power.

• The data packet size is constant for every meter, and is 128 KB in the studied grid.

• When a new meter is installed, it starts to record the position of the neighbor meters,

frequency of data transmissions, node identity, and packet size.

• The communication links among Master and Auxiliary servers and MDMS are fully

trusted.

7.3.1 Attack Model

A simplified attack model for the system model shown in Fig. 7.1 is discussed here.

Man-in-the-Middle (MITM) and replay are two of the most common attacks conducted
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in the AMI. While MITM leverages the vulnerabilities in the communication medium to

intercept, swap, corrupt or steal sensitive data, the replay attacks simply capture a copy of

legitimate information and replay it in the future, posing to be the same legitimate user.

To this end, it is assumed in this paper that the attacks can happen only in L1, L2 or L3,

but not between TTPM , TTPA and MDMS.

A critical assumption of this attack model is that the attacker’s targets are solely on

the communication channel between the devices, but not the devices themselves. It is as-

sumed that the smart meter nodes, TTPM , AP , TTPA and MDMS are not compromised

by the attacker, but only the links L1, L2 or L3 are. The incentive for the attacker could

be offsetting energy consumption to achieve lower bills, stealing sensitive information to

monitor energy consumption profile and through that spy on consumer behavior, or cor-

rupting encrypted data packets in L1 or L2. The proposed encryption scheme relies on the

strength of the secret key sk, hence falling under the category of Public Key Encryption

(PKI).

7.3.2 Data Traffic Flow

The data flow among the meters, servers, and MDMS (as shown in Fig. 7.3) is explained

below in details.

STEP 1: Initialization

SMi sends a request Reqi for a public key pki to the Master Server TTPM . The Mas-

ter server generates a public key-private key pair, (pki, ski), upon receiving the request.

While pki is unicasted to SMi for data encryption, ski is sent to the Auxiliary server

TTPA and MDMS. Key generation by asymmetric algorithm:
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Figure 7.3: Data flow among various components of AMI.

AE i = (Ki, Ei,Di), i ∈ [1, n] (7.13)

Ki −→ (pki, ski), i ∈ [1, n] (7.14)

STEP 2: Encryption

The SMi generates a random sequence (Rt
i) for timestamp instance t. It encrypts both the

sequence and the timestamp using pki to generate a ciphertext, Si, and sends it to TTPA.

This server receives Si and decodes it using ski. It then performs two steps to validate the

sequence. To guard against the replay attacks, TTPA ensures if the timestamp instance t

it received is within a stipulated limit predefined for ”freshness” of data. If it is within that

limit, it considers the request, else it rejects the packet. To ensure whether the sequence

was sent by a legitimate SMi, the server re-encrypts the sequence it decoded along with

the timestamp instance t using the pki it received from TTPM . It compares the ciphertext
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it created with the one it initially received. A discrepancy between the two ciphertexts

prompts TTPA to reject the packet. A match indicates the packet is indeed legitimate.

In this way, data transmitted from SMi is verified. After that, TTPA sends the sequence

Rt
i to MDMS. At the same time, SMi encrypts its consumption data by the following

method:

Ci ←− E({Mi, t}, pki) (7.15)

STEP 3: Data transmission

The encrypted data Ci is segmented into n packets of equal size, zti .

(c1, c2, c3, · · · , cn)←− Ci (7.16)

Then, the packets are ordered based on sequence Rt
i for transmission.

The transmitting algorithm is explained in Algorithm 2:

STEP 4: Hop to hop data aggregation and forwarding At first, meter SMi is veri-

fied by SMi+1 using the node ID that is perceived from packet header. Afterwards, based

on previous data receiving records including sender node’s distance (dxy), the frequency

of data received (fj) and packet size (zj)- the node SMi+1 verifies source node SMi and

forwards data to the next node SMi+2. OCSVM algorithm is used to authenticate in this

process. The data aggregation and forwarding algorithm pseudo code is tabulated in Al-

gorithm 3:

STEP 5: Data retrieval

The MDMS receives the randomized and encrypted packets and decodes them by the

secret key pki and random sequence Rt
i.

Reordering the data:

(c1, c2, c3, · · · , cn)
Rt

i←−(c3, c1, c4 · · · , cn) (7.17)
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Algorithm 2 Transmitting algorithm
1: Initialization:
2: Get ith meter’s data packet Ci, i ∈ {1, 2, ..., N} and random sequence Rt

i = {rj},
j = {1, 2, 3, · · · , n}, ∀t ∈ T and |Rt

i|∈ N
3: if Rt−1

i = Rt
i then

4: Go to step 2
5: else
6: Proceed to next step
7: end if
8: Segment packet C = {cj} ←− Ci, j = {1, 2, 3, · · · , n} and |C|= |Rt

i|
9: Set index set JC=l, l = 1, 2, 3, · · · , n where f : l −→ C is the particular enumeration

of C
10: Update f−1(cj) = rj , j = {1, 2, 3, · · · , n}.
11: Calculate transmission probability, P = {pj} where pj = 1

rj
= 1

f−1(cj)
, j =

{1, 2, 3, · · · , n}.
12: Set index set KP = {k}, k = 1, 2, 3, ...n where g : k −→ P is the particular

enumeration of P
13: Sort index l = f−1(cj) = g−1(max

pj∈P
pj)

14: Transmit packet f(l) indexed packet
15: Update C = C − {f(l)}
16: if C 6= Φ then
17: Go to step 9
18: else
19: End process
20: end if
21: End
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Algorithm 3 Data aggregation and forwarding
1: Training:
2: For any two meters {SMx, SMy} ∈ SM and time instant l, get regular data I lxy =

(dlxy, f
l
x, z

l
x), x ∈ {1, 2, · · · , N}, y ∈ {1, 2, · · · , N}

3: For data set I lxy, define a family/boundary Cm
x through (8)

4: Meter/Packet authentication:
5: For time instant t, get relative distance dti(i+1) between source meter SMi and data

receiving meter SMi+1 through (6)
6: Calculate data transmission frequency f ti and packet size zti for packet from meter i
7: For new data I ti(i+1) = (dti(i+1), f

t
i , z

t
i), get decision by (12)

8: if I ti(i+1) ∈ Cm
i then

9: The data is within the boundary, forward to next meter SMi+2

10: else
11: Reject data from source SMi which is flagged by algorithm as anomaly
12: end if
13: End

Message unification:

Ci←−(c1, c2, c3, · · · , cn) (7.18)

Decryption:

{Mi, t} ←− D(Ci, ski) (7.19)

7.4 Simulation Results and Performance Analysis

In this section, we present the performance of RSS and OCSVM in our proposed AMI

architecture. We also discuss about the security strength of our scheme and compare the

performance of the OCSVM algorithm with another state of the art anomaly detection

algorithm named Isolation Forest.

7.4.1 Performance of Proposed Algorithm

To get insights into the localization of meters, we consider, Manhattan grid building topol-

ogy [352] in which the distance between two meters (i.e. house) is 30m. We consider an
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Figure 7.4: Meter positions in Manhattan grid.

area of interest (AOI) of 30m× 30m where a new meter is located at (1,−1) position

surrounded by known position meters as illustrated in Fig. 7.4. For optimization problem

in localization, PSO [353] was used whereas residential path loss model was considered

for path loss calculation. The transmission power of each meter is 10 dBm, and iteration

number and population size of PSO are 100 and 30 respectively. The simulation results of

position and power of an unknown positioned meter surrounded by 4 known positioned

meters and environment with path loss constant 3 are tabulated in Table 7.2.

Table 7.2: MEAN SQUARE ERROR (MSE) IN LOCALIZATION FOR DIFFERENT NOISE

VARIANCES
Noise Variance X Y Reference Power MSE

2 -3.3059 -2.2506 10.0005 4.4839
4 -2.8715 -0.2784 9.9997 3.9324
6 7.3873 -1.9575 9.9841 6.4586
8 -4.8517 -5.9137 10.0175 7.6411
10 0.1728 -8.5027 9.9789 7.5482
12 2.3678 -8.8504 9.9818 7.9687
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Figure 7.5: (a) Mean square error for different number of nodes and noise variances. (b)
Mean square error for different number of nodes and path loss exponent.
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With an increase in the number of neighboring meters, the Mean Square Error (MSE)

from the exact position of the meter decreases. This means that for the more number of

neighboring meters, localization error for a meter will be lower. On the other hand, for

the increase of noise variance, MSE also increases. This implies that localization error for

a meter is higher for the increased interference or noise. These are illustrated in Fig. 7.5a.

For the increase of both neighboring meters and path loss exponent, the MSE decreases

from the exact position of meter which is reflected in Fig. 7.5b. Path loss exponent (de-

caying rate of signal) is associated with the obstacle in the path of electromagnetic signal

propagation. Therefore, for the presence of buildings, walls, trees, etc., the error in deter-

mining the location of meters will be lower. Furthermore, since the meters are mounted

on a stationary wall/pole, and the environment surrounding meters is stable, the calculated

error for a meter by RSS based localization method will be almost constant.

In the second part of the simulation, OCSVM is implemented in python using scikit-

learn library [354]. While no public dataset in the topic is available and obtaining the

real data is not possible, we generated a synthesized dataset simulating only the actual

behavior of the normal data packets due to unknown structure of the malicious packets.

The structure of the normal packets and their transmission behavior simulated based on

the defined standard of the network with a small variation. Regarding the current net-

work standard, each packet data was generated with the following information: meter’s

position, the frequency of transmission, and the packet size. Some real world data trans-

ferring from two smart meters in an AMI network of a local utility company is illustrated

in Table 7.3.
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Table 7.3: SMART METER REAL WORLD DATA SAMPLE

Device-Name Read-Start-Time Usage-Unit Meter ID Coordinate
G0034501624 5/1/2013 0:00 1:00 0.3218 kWh 98747434 8668675880
G0034501624 5/1/2013 1:00 2:00 0.2757 kWh 98747434 8668675880
G0034501624 5/1/2013 2:00 3:00 0.3561 kWh 98747434 8668675880
G0034501637 5/1/2013 0:00 1:00 0.4587 kWh 98747434 8728604300
G0034501637 5/1/2013 1:00 2:00 0.4101 kWh 98747434 8728604300
G0034501637 5/1/2013 2:00 3:00 0.1346 kWh 98747434 8728604300

Based on the real world utility data (referred to Table 7.3), we defined data transmis-

sion frequency equal to one hour. The distance between two meters is assumed to be 30m

considering Manhattan Grid. The packet size is directly estimated upon the delivery of

packet, and the standard packet size is considered 128KB based on the network topology.

The training data is generated with 3 degrees of standard deviation from normal distribu-

tion of meter distance, data transmission frequency, and data packet size where the mean

of meter distance, data transmission frequency, and packet size are 30m, one hour, and

128KB, respectively.

The OCSVM model was trained on the 70% of the data and the model was tuned on

the validation set, 10% of the remaining data, with an exhaustive grid search, resulting in

the RBF (Guassian) kernel with ν and γ both equal to 0.01. The model was tested by the

rest of the data. The mapped decision boundaries of the OCSVM with the best parameter

settings is shown in Fig. 7.6. Red lines show the decision boundaries and yellow dots

are the packets from unauthorized sources. The training error2, false positive rate3 and

2The training error is the ratio between the number of normal data that falls outside of the
boundary erroneously and total number of data.

3The false positive rate is the ratio between the number of negative events wrongly categorized
as positive (false positives) and the total number of actual negative events (regardless of classifi-
cation).
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Figure 7.6: Anomaly Detection with a) One Class SVM and b) Isolation Forest Algo-
rithms
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Figure 7.7: Confusion Matrix for a) One Class SVM, and b) Isolation Forest

false negative rate4 of OCSVM are 4/200, 3/20, and 2/20, respectively. On the other

hand, the training error, false positive rate and false negative rate for Isolation Forest

are 16/200, 6/20, and 1/20, respectively. Therefore, it can be conceived that OCSVM

can discriminate the authorized and unauthorized (malicious) packets almost precisely in

comparison to it’s counterpart Isolation Forest algorithm.

To evaluate the model’s performance, confusion matrix and receiver operating charac-

teristic (ROC) curve [355,356] are provided. The statistics of true positive, false positive,

true negative and false negative of OCSVM and Isolation Forest are illustrated in Fig. 7.7.

Referred to the figure, the overall accuracy of OCSVM is (37+18
60

)× 100 = 91.6%. On the

other hand, the accuracy of Isolation Forest is (34+19
60

)× 100 = 88.33%.

Receiver Operator Characteristic (ROC) curve plots the percentage of normal samples

labeled as abnormal versus the percentage of true positives. ROC for this experiment with

different tweaked parameters is shown in Fig. 7.8. It is noted that the area under the curve

slightly changes based on the different hyper parameter setting, and for γ = 0.01 and

4The false negative rate is the ratio between the number of positive events wrongly categorized
as false (false positives) and the total number of actual negative events (regardless of classification)
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ν = 0.01, the maximum area of 0.95 is achieved; therefore the aforementioned parameters

are selected as the best setting for the model.
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Figure 7.8: ROC curve for OCSVM with different parameter settings. (Nu=ν; Gamma=γ)

7.4.2 Security Strength Analysis

Let us assume, a meter generates a consumption unit packet of size 128KB (1024× 103

bit) which is divided into 4000 blocks with each block size of 256 bit. If each block

is encrypted by 256 bit public/asymmetric key and transmitted according to a random

sequence, then the entropy of each block is 256. The security strength of the data block

is 2256.

Furthermore, the security strength of a 256 bit public key is 2256/2.

So, for 4000 random sequenced packets and 256 bit public key,

Total security strength of the 128KB meter data = 4000 ∗ (2256 + 2256/2)

Hence, a hacker needs maximum 4000 × (2256 + 2256/2) number of iterations (tries)

to decrypt a message, which is impractical.
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7.5 Conclusion

In our security scheme, a two-level security method has been proposed with data en-

cryption and node authentication. In the data encryption level, encryption by asymmetric

keys and randomization of data packets have been proposed. In the conventional key

management system, only data encryption is used. On the other hand, in our scheme,

randomization of packets along with data encryption ensures enhanced data security. An-

other contribution of our scheme is the introduction of node-to-node authentication by

OCSVM, which utilizes three features- frequency of data reception from a specific meter,

packet size, and meter position. The information of data frequency and packet size is

easily extractable from the packet header. On the other hand, for derivation of meter’s

position RSS is used, and it is almost constant due to the stationary position of the meters.

For TTP-to-smart meter communication, we use a bi-directional communication simi-

lar to meter data communication of conventional AMI network. Since the communication

between meters and servers happens once per every session of sending the meter data to

the control center, it doesn’t hamper the normal meter data flow from meter to control

center. Furthermore, since a random sequence along with the asymmetric key is used to

retrieve data in the control center, it also helps to verify data flow from a specific smart

meter. Additionally, being a cluster of meters is served by a TTP (a Master and an Auxil-

iary server), prudent design of clusters can make our approach scalable easily.
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CHAPTER 8

A Machine Learning and Geo-location based Data Security Scheme for Smart Grid

The main hindrance of implementing security schemes in advance metering infras-

tructure (AMI) is the limited memory and computational capability of smart meters [30].

Additionally, AMI is a huge network comprised of thousands of meters. This requires

AMI to have light but robust security scheme. In geo-location based encryption scheme

[357,358], for localization global positioning system (GPS) was proposed. However, GPS

does not work well in some places such as inside the multi-stored building, hilly places

as well as coordinate derived by GPS will expose the exact location of consumer house.

In this chapter, we present a key management based security scheme utilizing the lo-

cation of meters, derived from Received Signal Strength (RSS) of radio signal [30]. The

localization of meters by RSS method will create a local positioning map different from

geographic coordinate system, in which every meter has its own coordinate. For data en-

cryption, secret keys mapped with the coordinate points of the meters and a random index

was proposed in our technique. The keys are distributed among the meters periodically

by a trusted third party (TTP) of the key management system. Furthermore, we intro-

duce k-Nearest Neighbors (kNN) algorithm for meter authentication during the transport

of data packets. kNN algorithm is a technique used to predict class labels of unknown

data [359–361]. kNN classifier is simple, efficient and easy to implement. It is one of

the most widely used algorithms in pattern evaluation, text characterization, diagnosis of

cancer and many more. In a real world scenario, there are many data sets with little or no

prior knowledge about its distribution. kNN is amongst the best choice for classification

with data set with little or no prior knowledge. For these reasons, the combination of

data encryption by secret key and node authentication using kNN algorithm provides a

potential solution for AMI.
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8.1 Challenges Faced by AMI Meters

Like any other systems, the AMI needs to fulfill four primary requirements of security viz.

confidentiality, integrity, availability, and accountability (non-repudiation). Confidential-

ity implies that data must be accessible only to the authorized users and all unauthorized

attempt must be denied. Since fine grained consumption data of a smart meter conveys

consumers’ lifestyle patterns, habits and energy usage, they must be concealed. Integrity

requires reflecting authentic data correctly without any modification, addition or deletion.

Since the hackers as well as the consumers might want to alter the consumption data,

integrity is a vital issue in the AMI data.

Availability means that the data must be available on demand at all times for autho-

rized users of the system. Availability follows the concept of authorization which in turn

implies the data in the system can be used only by users who are allowed to have access.

This involves the concept of access controls wherein not all users have the same degree

of freedom and control over the data set of the system. There are restrictions to using

specific aspects of data which ensures not everything can be accessed by everyone. Avail-

ability takes this one step further by ensuring the accessible data must not be denied to

the user by the system at any point of time. Since the adversaries might want to jam the

network thereby preventing the system from making the data available, or much worse,

incapacitating the system’s feature to make the data available, the AMI must comply with

this requirement. Accountability (non repudiation) means that an entity doing a specific

job must not deny it to do that. In AMI, accountability ensures timely responses to the

command and control, and integrity of billing profile etc.

End-user privacy is another challenge of AMI data security. Smart meters are essen-

tially small banks of customer usage snapshots, when aggregated together over a period

of time provides an immense wealth of information that if put to the wrong use might
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compromise the privacy of customers. Smart meters provide data which is usually gran-

ular or fine-grained, and high-frequency type of energy measurements whose illegitimate

analysis results in or may result in the invasion of privacy, near real-time surveillance,

and behavioral profiling. When the analysis is coupled with an even more threatening

hazard such as manipulation of the analyzed data, the attackers get to open a window to

observe how many people are at home and at what times, to determine people’s sleeping

and eating routines, appliance usage patterns, and home vacancy patterns.

Taking it one step further, hackers become capable of wirelessly updating smart meter

firmware and remotely disconnect a user or a large section of users. Attackers, armed with

different consumer patterns, can stage efficient electricity thefts and frauds, running up

bogus charges or swift an electrical appliance to malfunction, shutdown or surge, causing

physical damage to life and property.

The AMI meters are inherently susceptible to buffer overflows and the seven state ma-

chine flaws as illustrated in [362]. Attacks that exploit its hardware vulnerabilities, such

as bus sniffing, clock speed and power glitch are also prevalent [363–366]. An attacker

can create abnormal operating conditions by varying the time and voltage levels crucial

to the meter performance, consequently gaining access to previously inaccessible parts of

the system. Exposing the chip’s surface to lasers, micro-probing to inject false signals,

capturing or intercepting data and manipulating registers are some of the more advanced

methods employed to compromise the meter’s integrity in a physical as well as cyber

fashion. In the recent times, differential power analysis and other similar techniques have

been successfully used to extract the secret keys and circumvent the embedded IC secu-

rity mechanisms altogether, as shown in [367]. So all these issues need to be addressed in

the data security of AMI.
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Figure 8.1: Proposed AMI architecture consists of HAN, NAN, Trusted Third Party
(TTP), Data concentrator and Control center.

8.2 Architecture of AMI

Millions of smart meters are engineered to communicate with the local utility service

provider (SP)/control center using AMI network. The bidirectional networks can be a

mesh or a heretical or a hybrid. Periodic collection, storing and transmission of enor-

mous volumes of data packets via the regional access points (APs) form the primary

workhorses of AMI. The data packets are transmitted through a gateway or data concen-

trator, as shown in Fig. 8.1, which then relays the packets eventually to the control center.

Each component of the AMI performs its own application. From a broader perspective,

the AMI encompasses everything from home appliances to the control center, forming a
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comprehensive network. The following are different sub-components of the AMI archi-

tecture.

• Home appliance: Machines that are employed by consumers for performing every-

day chores and activities and those of which consume electric power come under

this category. Some examples are washing machines, driers, microwave ovens, and

air conditioner. The energy consumed by these machines is calculated per unit of

the smart grid system. The unit consumption data is then relayed to the smart meter

that measures, calibrates and collects the information reported by these appliances.

• Smart meter: They form the backbone of the AMI, being responsible for collect-

ing the consumption unit data from consumers before dispatching the data to the

SP. The meters are designed to use the channel in periodic intervals of time by

sending short bursts of information. The small network formed between the home

appliances and the meter corresponding to that household is termed as Home Area

Network (HAN). The smart meters measure, collect and store data before sending

the same in the form of encrypted packets.

• Neighborhood Area Network (NAN): Beyond HAN, there is a broader network that

is made up of various smart meters within a locality and their corresponding APs.

These meters communicate among themselves through a mesh/hierarchical/hybrid

connected wired (PLC) /wireless (WiFi, ZigBee, GPRS etc.) network termed as

NAN.

• Trusted third party (TTP): The entity administrates security scheme is known as

TTP. In our scheme, TTP authenticates meter and conveys the random key index to

the control center. Additionally TTP updates the codebook containing encryption

keys mapped with meters’ coordinate periodically.
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• Control center/Back office/Command and Control Center (CCC) : The CCC is con-

nected to the NAN by a wired or wireless connection such as fiber optic or cellular

network. A bill is issued for the consumer based on the data received by the data

center over the period of one month. Each day, the utility receives the data in 15-60

minutes intervals. This data is also used in the optimization of the electric power

generation and distribution. Additionally, it also helps in control and monitoring of

the load from a remote location.

8.3 Localization Algorithm and Node Authentication Technique

In our proposed scheme, we use RSS technique for localization of meters and kNN algo-

rithm for meter (node) authentication. In the rest of this section, the two algorithms have

been explained in further detail.

8.3.1 Localization of Smart Meter by RSS method

Let us assume, there are n partially dispersed known position meters at positions (xi, yi)

where i = 1, 2, ...., n and a new meter is at at (x, y) as shown in Fig. 8.2. If the received

signal strength of new meter at (xi, yi) is 0i, then it follows the model [368]:

0i = c− 10γ log10(di) + wi (8.1)

where c denotes a constant dependent on the transmitted signal power, frequency etc.

γ > 0 is the path loss constant. The generic value of γ is 4-6 from which a value of

2.93 has been used here considering the residential area.

di defined as the Euclidean distance among new meter and other meters is given by
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Node 1 (x1,y1) Node 2  (x2,y2)

Node 3 (x3,y3)

Node 4  (x4,y4)

Node n  (xn,yn)

Figure 8.2: Localization of new meter (unknown positioned meter).

di =
√

(x− xi)2 + (y − yi)2 (8.2)

wi is the zero mean Random Gaussian Noise with standard deviation σi . The typical

value of σ is 6 to 12 dB.

We define the θ and 0 as

θ = [x, y, z]T and 0 = [01,02, ........0n]T

The Likelihood function of θ given an RSS measurement 0i , f(θ/0) can be written

as

f(θ/0) = c1 exp(−
n∑
i=1

0i − c+ 10γ log10(di)

2σ2
i

) (8.3)

where c1 is a constant.

The Maximum Likelihood Estimation of θ denoted by θ̂ is

θ̂ = arg max f(θ/0)

= arg min{
n∑
l=1

0i − c+ 10γ log(di)

2σi2
}

(8.4)

The ML estimation of a new meter’s location (x, y) based on the RSS measurement

0i, can be written then as:
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(xr, yr) = {θ̂(1)), θ̂(2)} (8.5)

The position determination by above RSS technique will create a local coordinate

system for HAN, different from the geographical coordinate system.

8.3.2 Meter Authentication by kNN Algorithm

kNN algorithm was proposed by T.M. Cover and P.E. Hart, where k denotes the number

of nearest neighbors that are helpful to predict the class of the test sample [361].

Let us consider, a set of meter M = {mi}, i = {1, 2, ...N} with attribute atl(xmi
), l =

1, 2, .....L,mi ∈ M at instance t. We define Ct
mi

and ctmi
as the class variable and class

value respectively. The standard Euclidean distance between instance t and t+ 1 is

d(xtmi
, xt+1

mi
) =

√√√√ L∑
l=1

(atl(xmi
)− at+1

l (xmi
))2 (8.6)

When the value of attributes are nominal, the variation of standard Euclidean distance

can be written as

d(xtmi
, xt+1

mi
) =

L∑
l=1

δ(atl(xmi
)− at+1

l (xmi
))

subject to δ(atl(xmi
), at+1

l (xmi
)) =


0, if atl(xmi

) = at+1
l (xmi

)

1, otherwise

(8.7)

The most common class value of xtmi
at instant t

ctmi
(xmi

) = arg max
∑

cmi∈Cmi

δ(ctmi
, c(xt+1

mi
)) (8.8)

where xt+1
mi

is the kNN neighbors of xtmi
and

190



δ(ctmi
, c(xt+1

mi
)) =


1 if ctmi

= c(xt+1
mi

)

0, otherwise

(8.9)

Since kNN is lazy algorithm and keeps training data for classification, we build a

inductive learning classification model at training time to improve its efficiency as shown

in [360]. Later, this model is used for classification. An authenticate set of data is used for

training. For each meter mi, parameter - distance between source meter mj and meter mi

(d), packet size (s) and data transmission frequency (f ) are used as data for classification.

In the description of algorithm we use terminology ”tuple” as data set consists of d, s, f .

SM_i TTP
Control Center 

(CCC)

Select a random key index 

Encrypt node ID by random 

key index

Send encrypted key index

Send key index

Encrypt data by the key associated with SM_i’s co-ordinate 

point and key index

Send encrypted data

SM_ j SM_ k

Authenticate meter SM_i  by 

node ID

Authenticate meter SM_i  by  Algorithm I (kNN 

Algorithm)

Forward encrypted data

Authenticate meter SM_ j  by Algorithm I 

(kNN Algorithm)

Forward encrypted data

Decrypt data with key associated SM_i’s 

coordinate and key index

Figure 8.3: Encryption and data transmission process among various components of AMI.

191



Algorithm 4 kNN algorithm
1: For each data tuple ψi ∈ Ψ, i = {1, 2, 3, ....., n}, 2 dimensional vector space ψi =<
Wi1,Wi2, ......,Win >

2: Training:
3: Set ”ungrouped” tag to all data tuples
4: Calculate euclidean distance Edi =

∑∑
(xl − xk) among elements of ψi where

xl, xk ∈ ψi
5: Build a representative model Ω =< cls(ψi), sim(ψi), num(ψi) > where cls repre-

sents class level, sim represents similarity and num of elements
6: Classification:
7: For new data tuple ψk, calculate representative parameter Ωk =<
cls(ψk), sim(ψk), num(ψk) >

8: if representative parameter Ωk belong to Model Ω then
9: New data belongs to same group

10: else
11: New data belongs to different group
12: end if
13: End

Also we use Euclidean distance for measure of similarity. The algorithm is described in

pseudo code in Algorithm 4.

The use of kNN algorithm along with RSS technique will allow data/packet receive

from authenticate neighbor meters. So, this will ensure node to node authentication inter-

cepting malicious packets.

8.4 Encryption Process

A detailed description of the entire encryption and data flow process in the AMI is pro-

vided in this section. As shown in Fig. 8.3, there is an involvement of a TTP which will

perform the authentication of the different smart meters using their node IDs. Once the

TTP authenticates a particular smart meter (mi), it sends the key index to the CCC. At

the same time, the encrypted data is sent to the CCC via an intermediary nodes (other

smart meters). Finally when the encrypted packet reaches the CCC, the destination will
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decrypt the message using the key associated with the random key index and meter (mi)’s

coordinate- latitude and longitude. Before we proceed to the steps of encryption and data

flow, the assumptions are outlined below.

Assumptions:

• The meter has a limited memory and computational capability.

• The control center has sufficient computational capability.

• Every meter holds records of the location of its neighboring meters.

• Every meter transmits data at a constant power.

• There is a codebook that has an encryption key associated with each coordinate

point of the geo location as shown Fig. 8.4.

• The TTP updates the codebook associated with geo-location /co-ordinate point pe-

riodically.

The following are the different steps during the message encoding, transmission and

decoding processes:

Initialization:

The meter which is ready to send information, identified as the source meter mi, per-

forms an initiation process for every session (typically once in every fifteen minutes ).

This process involves the selection of a random key index. This key index is then en-

crypted by node ID and sent to the TTP. The TTP has a codebook that also contains

information of all smart meters. Hence, it uses the codebook to identify the node by its

ID, decrypt the key index and send it to the CCC.
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Figure 8.4: Mapping of encryption key based on coordinate point.

Data Encryption:

In the next step, the source meter encrypts the consumption data which is plaintext,

with an encryption key associated with its own coordinate points (latitude and longitude)

and the key index.

Encryption:

ki ⊕mi −→ Ci (8.10)

Data forwarding and authentication:

This encrypted message is forwarded to its peers since relaying is the only way the

packets can reach the CCC eventually, considering that each meter has very low trans-
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mission power. Now, any neighboring meter (mj) receiving the encrypted packet from a

source meter (mi) determines its authentication by Algorithm 5. Once authenticated, the

corresponding packets are forwarded to the next neighboring meters.

Algorithm 5 Transmitting algorithm
1: Derive the position of neighbor meter mi by RSS method
2: Calculate the distance between source meter mj and neighboring meter mi, Ri,j ,

where mi,mj ∈M
3: Get s and f from packet header
4: Run kNN algorithm (Algorithm 4)
5: if New data belongs to same group then
6: Forward data to the next meter mk, where mk ∈M
7: else
8: Discard the data and report to CCC
9: end if

10: End

Decryption:

The CCC receives the encrypted data and decrypts the same with the help of the key

associated with the source meter’s location and the key index it received from the TTP.

Decryption:

Ci
ki−→mi (8.11)

8.5 Simulation Results

Rectangle, hexagon and octagonal shapes are employed to evaluate the performance of

the proposed localization algorithm. These shapes comprise what is known as the Area of

Interest (AOI) with an approximate dimension of 10x10m, as depicted in Fig. 8.5. Each

edge represents a known position meter (node), and the emitter (i.e. unknown positioned

meter/node) is the center of the AOI. The estimation of position of the unknown posi-

tioned meter through Eq.(1) 8.5 is the optimization problem. In our simulation, we use

the Particle Swarm Optimization (PSO) for that optimization.
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Rectangular 

shape
Hexagon shape Octagon shape

Figure 8.5: Different shapes of AOI.

Figure 8.6: Number of nodes vs Mean Square Error.
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In Fig. 8.6, we observe that with an increase of the number of the nodes, the mean

square error from the exact position will decrease. At the same time, with an increase of

the path loss constant, the mean square error will decrease as illustrated in Fig. 8.7. In the

path loss model of radio signals, random noise is added which varies by standard devia-

tion. In the Fig. 8.8, the surface diagram is drawn as a function of variance and number

of nodes. As the variance of the noise increases, the error also hikes correspondingly.

Figure 8.7: Path loss vs Mean Square Error.

Figure 8.8: Variance vs Mean Square Error.
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Let the number of neighbor meters k = 4, Fig. 8.9a presents a data set of size 100

and the predicted result of the data set derived by the kNN algorithm. Compared with

the original data set and the predicted result, Fig. 8.9b shows the error histogram between

these two data sets. Similarly, Fig. 8.10a presents a data set of size 200 and the predicted

result derived by the kNN algorithm. Fig. 8.10b shows the statistics of the error distribu-

tion between original and predicted data set. It is noted that the error is well distributed

for both data set of 100 and 200. Performance of kNN algorithm for different data size

and neighbors (k) is shown in Fig. 8.11. We found that with the increment of size of

data and decrement of k, the mean square error between original data and predicted data

increases quite precisely.

Since the position of a smart meter is fixed due to mounted on specific wall or pole

and the environment surrounding the meters are also stable, the calculated error in local-

ization method of an unknown/new positioned meter at neighbor meters by RSS method

will be almost constant. Also smart meters send the consumption data periodically at a

specific interval defined by the utility company, and the data packet size is constant. For

these reasons, a meter can authenticate the source meter by kNN algorithm using data of

sending frequency, packet size and distance between two meters.

Since the position of a smart meter is fixed due to mounted on specific wall or pole

and the environment surrounding the meters are also stable, the calculated error in local-

ization method of an unknown/new positioned meter at neighbor meters by RSS method

will be almost constant. Also smart meters send the consumption data periodically at a

specific interval defined by the utility company, and the data packet size is constant. For

these reasons, a meter can authenticate the source meter by kNN algorithm using data of

sending frequency, packet size and distance between two meters.
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(a)

(b)

Figure 8.9: Performance of kNN algorithm for data set of size 100. a) Comparison of
data value and their prediction by kNN algorithm. (b) Histogram of error distribution.
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(a)

(b)

Figure 8.10: Performance of kNN algorithm for data set of size 200. a) Comparison of
data value and their prediction by kNN algorithm. (b) Histogram of error distribution.
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Figure 8.11: The relation of error between number of neighbors and data size.

8.6 Security Strength Analysis

The security strength of a data packet can be measured by Entropy. The value of Entropy

reflects the uncertainty of a random variable. The more certain about a value is, the

smaller the entropy value.

The entropy for a sequence S [369]

H(s) =
∑

S P (S = x) log2 P (S = x)

where P (S = x) is the probability of taking S value over x.

Let us consider, a smart meter sends a data packet of 128 bit encrypted by 128 bit

symmetric key to control center. For a 8 bit random key index, the security strength of

the random sequence is 28. On the other hand, for a 128 bit symmetric key algorithm, the

security strength is 2128.

So, for a 8 bit random key index and 128 bit symmetric key,

The security strength of the packet= 28 + 2128
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So, if a hacker wants to decrypt a data packet of 128 bit, he needs (28 + 2128) number

of tries to decrypt the message unless he is lucky. This is impractical.

8.7 Conclusion

In this chapter, we propose a two level security scheme consisting of data packet en-

cryption and node authentication. For packet encryption, we use an encryption key cor-

responding to the meter’s location and random key index. The codebook relating the

encryption code to its geographical location could be updated periodically in a secured

way by the TTP. Since the same code book is used for all smart meters, it invalidates the

need for using different keys for different meters/nodes each time. Also the inclusion of a

random key index increases the uncertainty in packet encryption. In case of node to node

authentication, we use kNN classifier which is simple and robust.

The positioning map of meters in HAN is a local map different from geographical

coordinate system. So exposing the coordinates will not reveal the exact location of a

consumer’s house. Besides, the position of smart meters determined by RSS method

is nearly constant due to the constant power transmission and stable positions of meters.

This ensures the stability and security of the smart grid system without giving opportunity

to the potential hackers to manipulate the data.
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CHAPTER 9

Conclusion and Future Works

9.1 Concluding Remarks

The 5G cellular networks are to be met the demands of wireless communications of 2020

and beyond. The goals of 5G are not only to provide high speed mobile Internet, but also

to support massive connectivity and ultra reliable low latency communication. It will play

a critical role in diverse sectors such as industry and manufacturing, transportation, health

care, virtual/augmented reality, robotics, smart grid, gaming, and education, along with

voice communication. In case of massive connectivity and high throughput requirement,

sharing of underutilized free spectrum is a viable solution. On the other hand, to support

ultra reliable low latency communication, drastic changes in the core and radio network

are required, along with new technologies, such as caching, and fog networks/mobile edge

computing. Additionally, data security is a prime concern in wireless communication.

In this research, several spectrum sharing techniques, low latency solutions, and data

security schemes have been studied with application to smart grid and IoT.

In chapter 2, we present the related works on spectrum sharing, latency, and smart

grid security. In case of spectrum sharing, works on coexistence of LTE-ZigBee and

LTE-WiFi has been included. For latency, a brief state-of-art work on latency has been

discussed. We also present some relevant works on smart grid security.

In chapter 3, we study the coexistence of LTE and ZigBee/WiFi using smart grid as

a deployment scenario. We use conventional 10 ms transmission time interval for both

LTE and ZigBee/WiFi. It is found that the performance of ZigBee is more affected by

LTE than that of LTE by ZigBee in a simultaneous operation. However, uplink power

control and manipulating UL/DL configuration of LTE can improve overall performance.

For LTE and WiFi coexistence, a fixed duty cycle transmission is introduced. Therefore,
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LTE uses different duty cycles, such as 60%, and 80% of transmission time based on its

queued data, and WiFi transmits on the rest of the time. It improves the overall efficiency

of spectrum. If smart meters utilize WiFi/ZigBee and access point uses LTE for long

range communication, coexistence of LTE and WiFi in 2.4/3.5 GHz is definitely a poten-

tial communication solution for smart grid. However, interference contributed by other

sources such as cellular networks, and public radio communication need to be considered

for further study.

In chapter 4, a multi arm bandit (MAB) based duty cycle selection is proposed for

the LTE and WiFi coexistence. We investigate the performance in the 3.5 GHz band.

Simulation results demonstrate that the aggregated throughput is improved by 33% while

maintaining a minimum throughput of LTE. Along with the duty cycle, we incorporate

DL link power control which optimizes transmit power. This approach enhances energy

efficiency and cell edge performance along with aggregated throughput improvement.

However, balancing between the exploration and exploitation is the matter of challenge.

In chapter 5, we summarize the existing works related to latency reduction from the lit-

erature. In particular, we divide the solutions in three major divisions: (1) radio network,

(2) core network, and (3) caching. We also provide a general overview of 5G network in-

cluding software defined radio, network function visualization, and caching/mobile edge

computing. Following this, we provide future directions for achieving low latency. How-

ever, more practical and efficient techniques in the presence of existing solutions need to

be investigated before the standardization of 5G.

In chapter 6, we present a compass algorithm based locally decided and loop free rout-

ing protocol for stationary nodes. We propose received signal strength for localization of

stationary nodes by maximum likelihood and particle swamp optimization. We simulated

our approach for a scenario of metering infrastructure of smart grid. The simulation re-

sult demonstrates that our routing protocol reduces hop count resulting in reduction of
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latency. But, localization error in the localization method will limit performance of the

routing protocol.

In chapter 7, we present a geo-location and machine learning based data encryption

method for smart grid applications. The meter is encrypted by a key associated with me-

ter’s position and a random key index. The position of meter is derived using received

signal strength method solved by maximum likelihood and particle swamp optimization.

Along with the data encryption, we propose k nearest neighbors algorithm for packet/node

authentication. We also evaluate the security strength of our proposed approach. How-

ever, compromised nodes, impersonation attack, and interruption in electromagnetic com-

munication are not considered our approach.

In chapter 8, we propose a two layer data security method for packet encryption and

node authentication with an application to smart grid. In the encryption layer, data en-

cryption by asymmetric keys and randomization of data packets have been proposed. For

node-to-node authentication, one class support vector machine is proposed which utilizes

three features- frequency of data reception from a specific meter, packet size, and meter

position. We also compare our scheme with state-of-art approach isolation forest. How-

ever, impersonation attack, compromised nodes, and electromagnetic signal interruption

will affect our approach.

9.2 Future Works

The topics reported in this dissertation addressed some issues of the spectrum sharing,

massive connectivity, latency, and data security of wireless communication with appli-

cation to IoT and smart grid. However, there are many open issues, and challenges that

need to be explored. The following issues are the several research directions for further

exploration:
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• There are abundant mmWave spectrum in 30-300 GHz band which can be shared.

However, mmWave has some limitations such as low penetration, and small range.

In this regards, the coexistence of LTE and WiFi/ZigBee in mmWave can be inves-

tigated for effective techniques.

• The unlicensed spectrum will be shared not only by variant technologies such as,

LTE-WiFi and LTE-ZigBee, but also same technology LTE-LTE. Therefore, sce-

narios including inter technology and diverse technologies can be also an area of

exploration.

• For latency reduction in PHY and MAC layer, various learning techniques can be

used while maintaining the desired QoS (latency and reliability). In this case, dif-

ferent algorithms can be explored.

• Caching is an important tool to meet the goals of 5G networks. For content delivery,

cache placement and hit ratio improvement, exploration can be made with diverse

and holistic machine learning techniques.

• For the derivation of routing protocol, we considered only stationary nodes. We

look forward to studying our technique in the mobile nodes.
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