6,157 research outputs found

    Active SLAM for autonomous underwater exploration

    Get PDF
    Exploration of a complex underwater environment without an a priori map is beyond the state of the art for autonomous underwater vehicles (AUVs). Despite several efforts regarding simultaneous localization and mapping (SLAM) and view planning, there is no exploration framework, tailored to underwater vehicles, that faces exploration combining mapping, active localization, and view planning in a unified way. We propose an exploration framework, based on an active SLAM strategy, that combines three main elements: a view planner, an iterative closest point algorithm (ICP)-based pose-graph SLAM algorithm, and an action selection mechanism that makes use of the joint map and state entropy reduction. To demonstrate the benefits of the active SLAM strategy, several tests were conducted with the Girona 500 AUV, both in simulation and in the real world. The article shows how the proposed framework makes it possible to plan exploratory trajectories that keep the vehicle’s uncertainty bounded; thus, creating more consistent maps.Peer ReviewedPostprint (published version

    Lazy localization using the Frozen-Time Smoother

    Get PDF
    We present a new algorithm for solving the global localization problem called Frozen-Time Smoother (FTS). Time is 'frozen', in the sense that the belief always refers to the same time instant, instead of following a moving target, like Monte Carlo Localization does. This algorithm works in the case in which global localization is formulated as a smoothing problem, and a precise estimate of the incremental motion of the robot is usually available. These assumptions correspond to the case when global localization is used to solve the loop closing problem in SLAM. We compare FTS to two Monte Carlo methods designed with the same assumptions. The experiments suggest that a naive implementation of the FTS is more efficient than an extremely optimized equivalent Monte Carlo solution. Moreover, the FTS has an intrinsic laziness: it does not need frequent updates (scans can be integrated once every many meters) and it can process data in arbitrary order. The source code and datasets are available for download

    Benchmarking Particle Filter Algorithms for Efficient Velodyne-Based Vehicle Localization

    Get PDF
    Keeping a vehicle well-localized within a prebuilt-map is at the core of any autonomous vehicle navigation system. In this work, we show that both standard SIR sampling and rejection-based optimal sampling are suitable for efficient (10 to 20 ms) real-time pose tracking without feature detection that is using raw point clouds from a 3D LiDAR. Motivated by the large amount of information captured by these sensors, we perform a systematic statistical analysis of how many points are actually required to reach an optimal ratio between efficiency and positioning accuracy. Furthermore, initialization from adverse conditions, e.g., poor GPS signal in urban canyons, we also identify the optimal particle filter settings required to ensure convergence. Our findings include that a decimation factor between 100 and 200 on incoming point clouds provides a large savings in computational cost with a negligible loss in localization accuracy for a VLP-16 scanner. Furthermore, an initial density of ∼2 particles/m 2 is required to achieve 100% convergence success for large-scale (∼100,000 m 2 ), outdoor global localization without any additional hint from GPS or magnetic field sensors. All implementations have been released as open-source software

    Efficiently learning metric and topological maps with autonomous service robots

    Get PDF
    Models of the environment are needed for a wide range of robotic applications, from search and rescue to automated vacuum cleaning. Learning maps has therefore been a major research focus in the robotics community over the last decades. In general, one distinguishes between metric and topological maps. Metric maps model the environment based on grids or geometric representations whereas topological maps model the structure of the environment using a graph. The contribution of this paper is an approach that learns a metric as well as a topological map based on laser range data obtained with a mobile robot. Our approach consists of two steps. First, the robot solves the simultaneous localization and mapping problem using an efficient probabilistic filtering technique. In a second step, it acquires semantic information about the environment using machine learning techniques. This semantic information allows the robot to distinguish between different types of places like, e. g., corridors or rooms. This enables the robot to construct annotated metric as well as topological maps of the environment. All techniques have been implemented and thoroughly tested using real mobile robot in a variety of environments

    Scan matching by cross-correlation and differential evolution

    Get PDF
    Scan matching is an important task, solved in the context of many high-level problems including pose estimation, indoor localization, simultaneous localization and mapping and others. Methods that are accurate and adaptive and at the same time computationally efficient are required to enable location-based services in autonomous mobile devices. Such devices usually have a wide range of high-resolution sensors but only a limited processing power and constrained energy supply. This work introduces a novel high-level scan matching strategy that uses a combination of two advanced algorithms recently used in this field: cross-correlation and differential evolution. The cross-correlation between two laser range scans is used as an efficient measure of scan alignment and the differential evolution algorithm is used to search for the parameters of a transformation that aligns the scans. The proposed method was experimentally validated and showed good ability to match laser range scans taken shortly after each other and an excellent ability to match laser range scans taken with longer time intervals between them.Web of Science88art. no. 85

    Long-term experiments with an adaptive spherical view representation for navigation in changing environments

    Get PDF
    Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In this work, we introduce a method to update the reference views in a hybrid metric-topological map so that a mobile robot can continue to localize itself in a changing environment. The updating mechanism, based on the multi-store model of human memory, incorporates a spherical metric representation of the observed visual features for each node in the map, which enables the robot to estimate its heading and navigate using multi-view geometry, as well as representing the local 3D geometry of the environment. A series of experiments demonstrate the persistence performance of the proposed system in real changing environments, including analysis of the long-term stability

    Multiple Integrated Navigation Sensors for Improving Occupancy Grid FastSLAM

    Get PDF
    An autonomous vehicle must accurately observe its location within the environment to interact with objects and accomplish its mission. When its environment is unknown, the vehicle must construct a map detailing its surroundings while using it to maintain an accurate location. Such a vehicle is faced with the circularly defined Simultaneous Localization and Mapping (SLAM) problem. However difficult, SLAM is a critical component of autonomous vehicle exploration with applications to search and rescue. To current knowledge, this research presents the first SLAM solution to integrate stereo cameras, inertial measurements, and vehicle odometry into a Multiple Integrated Navigation Sensor (MINS) path. The implementation combines the MINS path with LIDAR to observe and map the environment using the FastSLAM algorithm. In real-world tests, a mobile ground vehicle equipped with these sensors completed a 140 meter loop around indoor hallways. This SLAM solution produces a path that closes the loop and remains within 1 meter of truth, reducing the error 92% from an image-inertial navigation system and 79% from odometry FastSLAM

    Towards autonomous localization and mapping of AUVs: a survey

    Get PDF
    Purpose The main purpose of this paper is to investigate two key elements of localization and mapping of Autonomous Underwater Vehicle (AUV), i.e. to overview various sensors and algorithms used for underwater localization and mapping, and to make suggestions for future research. Design/methodology/approach The authors first review various sensors and algorithms used for AUVs in the terms of basic working principle, characters, their advantages and disadvantages. The statistical analysis is carried out by studying 35 AUV platforms according to the application circumstances of sensors and algorithms. Findings As real-world applications have different requirements and specifications, it is necessary to select the most appropriate one by balancing various factors such as accuracy, cost, size, etc. Although highly accurate localization and mapping in an underwater environment is very difficult, more and more accurate and robust navigation solutions will be achieved with the development of both sensors and algorithms. Research limitations/implications This paper provides an overview of the state of art underwater localisation and mapping algorithms and systems. No experiments are conducted for verification. Practical implications The paper will give readers a clear guideline to find suitable underwater localisation and mapping algorithms and systems for their practical applications in hand. Social implications There is a wide range of audiences who will benefit from reading this comprehensive survey of autonomous localisation and mapping of UAVs. Originality/value The paper will provide useful information and suggestions to research students, engineers and scientists who work in the field of autonomous underwater vehicles
    corecore