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Abstract: Scan matching is an important task, solved in the context of many high-level problems
including pose estimation, indoor localization, simultaneous localization and mapping and others.
Methods that are accurate and adaptive and at the same time computationally efficient are required
to enable location-based services in autonomous mobile devices. Such devices usually have a
wide range of high-resolution sensors but only a limited processing power and constrained energy
supply. This work introduces a novel high-level scan matching strategy that uses a combination
of two advanced algorithms recently used in this field: cross-correlation and differential evolution.
The cross-correlation between two laser range scans is used as an efficient measure of scan alignment
and the differential evolution algorithm is used to search for the parameters of a transformation that
aligns the scans. The proposed method was experimentally validated and showed good ability to
match laser range scans taken shortly after each other and an excellent ability to match laser range
scans taken with longer time intervals between them.

Keywords: scan matching; indoor localization; differential evolution; cross-correlation; robotics

1. Introduction

The determination of the position of a moving object is an essential part of many complex
applications. While outdoor localization can be achieved with the help of global satellite networks
including the Global Positioning System (GPS) and the Global Navigation Satellite System (GLONASS),
an efficient indoor localization is still an open problem [1,2]. It can be defined as the process of
obtaining the location of a moving object in an indoor environment [2]. Indoor localization is an
enabling technology for a variety of location-based services that can be used in the context of advanced
manufacturing (Industry 4.0) [3], Internet of things [2], smart buildings [1], indoor (underground)
rescue operations [4,5] and many other applications.

Self-localization of an autonomous mobile robot or an unmanned aerial vehicle (UAV) [6], a special
type of indoor localization, is one of the great challenges of modern robotics [7,8]. It relies on an
independent measurement and analysis of sensor data that performed by the robot to estimate its own
position and motion trajectory in an unknown indoor environment. In contrast to other types of indoor
localization, it does not use any external signals, beacons or other information than is not sensed by
the robot itself [8]. Self-localization is associated with the problem of simultaneous localization and
mapping (SLAM). As SLAM, it requires approaches that are accurate, robust and computationally
efficient at the same time [8].

There are many methods of mobile robot indoor self-localization [2,7,9–11]. In general, they are
based on video signals analysis and computer vision, infrared and ultrasound sensors, laser range
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finders, sonar systems [7,12], radio-frequency identification (RFID), wireless network technologies
such as Wi-Fi, Bluetooth [10,11] and Zigbee [2], ultra-wideband (UWB), magnetic sensors and acoustic
signal analysis [2,10]. Indoor self-localization by light detection and ranging (LiDAR) relies on analysis
of a sequence of laser range scans. The scans capture the surroundings of the robot as a series of points
representing the intersections of the laser beam with nearby objects [7]. They generate sequences of 2-
or 3-dimensional point clouds that are mutually compared (matched) to approximate the trajectory
of the robot in the environment. In general, scan matching algorithms can be split into two major
groups. Point-based approaches process the entire point clouds, while feature-based techniques focus
on features extracted from the point clouds by various feature extraction algorithms. The features are
seen as landmarks and the changes in their (relative) locations are used to estimate the moves of the
robot [7].

Advanced methods that utilize artificial intelligence, machine learning and soft computing can be
used for different types of self-localization applications. For example, artificial neural networks and
support vector machines have been used to build indoor localization models based on the received
signal strength indicator (RSSI) [2]. In this work, a novel scan matching algorithm based on differential
evolution and modified cross-correlation is introduced. Cross-correlation is used to evaluate the
alignment of laser range scans, while differential evolution serves as an optimization method for the
approximation of the scan matching parameters.

The contributions of this work are twofold: (1) It shows that the differential evolution can be
used as an optimization mechanism in a point-based scan matching strategy; and (2) It demonstrates
that cross-correlation is a computationally efficient and at the same time robust point cloud alignment
measure. The extensive experimental evaluation of these novel concepts also demonstrates that the
scan matching procedure based on differential evolution and cross-correlation can be used for accurate
indoor localization of autonomous mobile devices.

The remainder of this article is structured in the following way. The problem of localization
is summarized and related work is reviewed in Section 2. The algorithms used in this work
(scan matching, cross-correlation and differential evolution) are described in Section 3. The proposed
approach is detailed in Section 4 and experimentally evaluated in Section 5. The results of conducted
experiments are discussed in Section 6 and the article is concluded in Section 7 which also outlines
future research directions.

2. Related Work

Although indoor localization has been addressed by a plethora of methods and algorithms with
various properties, it still remains an open problem. Tightly linked to mapping of (unknown) indoor
environments, it is an essential element of the compound problem of simultaneous localization and
mapping (SLAM) [13,14]. Different types of localization and SLAM algorithms have been developed
for various types of environments [15]. Accurate SLAM algorithms have been proposed for large
outdoor areas [16] and limited indoor spaces [17]. Monte Carlo localization (MCL) is a popular family
of localization methods [9,18,19] that use, among others, particle and Kalman filters [20]. At the
starting point of the MCL process, a pool of random positions and angles is created. When the robot
moves through an environment, the algorithm updates all positions in the pool according to a robot
motion model. The expected robot surrounding is compared to data from a sensor (e.g., the LiDAR)
surveying the actual environment and the positions that correspond to the real data most are rewarded.
The disadvantage of the MCL method is the necessity for robot movement and the need for additional
sensors (e.g., odometers) that are required by the motion model [21].

Another family of promising SLAM approaches is based on the use of event cameras [22].
Event cameras produce sequences of video frames and, additionally, information about brightness
changes on the pixel level. The advantages of event cameras include very high dynamic range,
absence of motion blur and only a small latency (in the order of microseconds [23]). An overview of
SLAM algorithms that use event cameras is provided, for example, in [24].
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Localization is also one of the major challenges of UAVs. They require information about precise
location in to order to avoid obstacles [25] and for trajectory planning [26]. UAVs can, in general,
implement similar localization approaches as mobile robots. However, the localization methods need
to be adjusted to address the specifics of aerial movement such as 3D SLAM. A comprehensive review
of localization strategies for UAVs can be found in [6].

Scan matching [27,28] is a group of popular high-level localization/SLAM methods that process
laser range scans of an environment [29]. They align two laser range scans of the (usually unknown)
environment in order to detect the change of the location and orientation of a moving object [30].
Scan matching algorithms can be classified as point-based and feature-based. Point-based methods
process laser range scans point-by-point whereas feature-base methods extract higher-level features
such as lines, corners and so forth, and align these features. Feature-based methods extract distinctive
features before matching itself and thus decrease the amount of data that needs to be processed. As a
result, their scan matching phase has lower computational costs but they suffer from lower robustness
and worse accuracy in rich and well-structured environments.

Iterative closest point (ICP) is a typical representative of point-based scan matching algorithms [31].
ICP is a seminal method that has a number of modifications [32,33]. A representative of feature-based
scan matching strategies is the complete line segment (CLS) method [34]. It looks for flat areas in point
clouds, extracts lines and detects complete and incomplete line segments. It expects that a complete line
segment in an environment has a specific constant length from any point of view. Other feature-based
scan matching strategies include the anchor point relationships (APR) algorithm [35] that detects
specific anchors, plane extraction approaches [36] and keypoint and keyline extraction [37].

Nature-inspired methods, such as evolutionary computation, have been used in the area of mobile
robot localization as well. In [38], the differential evolution algorithm was used in conjunction with
the traditional normal distribution transform (NDT) algorithm [39]. Another work used differential
evolution as part of a feature-based scan matching algorithm that extracted lines, planes and spheres
from laser range scans [40]. Other nature-inspired methods such as the harmonic search algorithm
were used for differential scan matching as well [41].

This work proposes a novel scan matching algorithm based on a combination of two recently
introduced approaches. The cross-correlation approach [42,43] is adopted for the assessment of laser
range scans’ similarity and the differential evolution is used for the search of accurate laser range scan
transformation parameters [44]. The evaluation of the proposed scan matching strategy is performed
in a series of simulation experiments with the help of a software framework introduced in [45].

3. Background

This section provides the background of the presented work. It outlines the simulation-based
design strategy it adopts, relevant scan matching methods such as the iterative closest point algorithm,
the fundamentals of the cross-correlation principle and the optimization process implemented by the
differential evolution.

3.1. Experimental Setup and Embedded Data Processing

The aim of this work is the design of a localization algorithm suitable for an autonomous
mobile vehicle, for example a wheeled mini robot for exploration, surveillance and rescue operations.
Hardware architecture of such vehicle was described, for example, in [46]. The mechanical construction
of the vehicle was based on the RC Baja 5B SS chassis and it was equipped with all necessary electronic
devices that allowed the control of its movement. The vehicle was also equipped with the SICK LMS
100 LiDAR and a set of odometry sensors.

A novel algorithm for a specific system or device ought to be validated in terms of correctness,
accuracy, reliability and robustness. In order to allow rapid prototyping and evaluation of various
approaches, a model-based development using a software simulation of particular system components
(i.e., Software in the Loop) was adopted to validate the scan matching algorithm. The simulation
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framework provides information about the true position and orientation of the device, simulates its
movement in a pre-defined indoor environment and produces simulated LiDAR and odometry data.
The structure of the environment is defined by a floor plan. The target processor is an Advanced
RISC Machine (ARM) Cortex-M microcontroller expected to run the scan matching algorithm and to
compute the estimated position and orientation of the device in the real device. This top–level design
strategy is visually illustrated in Figure 1.

Figure 1. An outline of the simulation-based design.

An ARM Cortex-M processor supports different functionality depending on its version. Table 1
describes the basic features of several recent ARM Cortex-M versions (M0+, M3, M4 and M7) [47].
In general, the proposed approach makes use of summation, multiplication and division operations
that can be implemented as integer or floating-point operations.
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Table 1. Overview of various ARM Cortex-M features useful for computational localization.

ARM Cortex-M Version M0+ M3 M4 M7

Architecture CPU architecture Von Neumann Harvard Harvard Harvard
Pipeline stages 2 3 3 6

Integer operations
MULT 32 bit Fast/Slow Fast Fast Fast
DIV 32 bit No Yes Yes Yes
DSP No No Yes Yes

Floating-point operations FPU single precision No No Optional Optional
FPU double precision No No No Optional

The performance of a processor can be assessed from three different perspectives. An ARM
Cortex-M processor can implement the von Neumann or the Harvard architecture. The Harvard
architecture has a separate instruction bus connected to an internal cross-bar bus. It supports hardware
parallelism by allowing simultaneous access to instructions and data. The second important property
of the implemented architecture is the number of stages in the instruction pipeline. A higher number
of pipeline stages can accelerate instruction execution and increase the computational power of
a processor. For integer operations, the processor implements an add instruction as a standard
functionality of an arithmetic logic unit (ALU). However, multiply, divide and digital signal processing
(DSP) instructions are optional. ARM Cortex-M family processors can be equipped with slow
(32 cycles) or fast (1 cycle) multiply instructions, 32-bit divide instructions and digital signal processing
instructions (e.g., a multiply–accumulate operation) useful for input signal filtering. If the executed
algorithm uses floating-point data types, then the presence of a floating-point unit (FPU) is highly
recommended due to the long processing times without this mathematical co-processor. An FPU
can be realized in the processor core as a single (32-bit) or a double (64-bit) precision version of a
mathematical co-processor.

The selection of a suitable processor core version depends not only on data-type implementation
but there are several important algorithm parameters including the resolution of input data, grid map
cell size and the type and configuration of the optimization procedure.

3.2. Scan Matching

Scan matching is a high-level self-localization strategy based on the assumption that two
spatio-temporally collocated laser range scans of an environment are alike and can be (to a large
extent) aligned [48]. Scan matching methods seek transformations that align two laser range scans
taken by a robot in the same environment but at different locations and from a different angle. The first
laser range scan, taken at the first location, is usually called the reference scan and the second laser
range scan, taken at the second location, is called the current scan. The transformation that aligns the
scans is defined by parameters that describe the relative position and rotation of the scan (see Figure 2).
Figure 2a shows two laser range scans before the transformation (alignment) and Figure 2b shows the
same scans after a successful alignment.

Scan matching is most often based on 2 or 3-dimensional point clouds captured by LiDAR laser
rangefinders. The LiDAR periodically measures the distance to the nearest object in the direction
of a laser beam it emits [48]. In a 2-dimensional LiDAR, the measuring laser beam is rotated on the
horizontal plane and creates a laser range scan that corresponds to the surrounding of the scanner [49].
3-dimensional LiDARs also tilt the measuring sensor in the vertical direction and obtain 3-dimensional
point clouds [50]. A typical 2-dimensional LiDAR laser range finder, also used in this study, is Sick
LMS 100 by SICK AG. This type of range scanner produces counterclockwise oriented vectors of
distances to the nearest obstacle. The output of the scanner is a range vector,

~a = 〈|a1|, |a2|, . . . , |asmax |〉, (1)
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composed of a sequence of distances to the nearest objects, |a1|, |a2|, . . . , |asmax | and smax is the
number of measurement steps within the aperture range of the scanner. Each measured distance, |aφi |,
corresponds to a particular angle, φi and each range vector,~a, corresponds to a vector of angles,

~φ = 〈φ1, φ2, . . . , φsmax〉, (2)

where the index of the angle corresponds to the orientation of the laser beam. The range vector, ~a,
together with the angle vector, ~φ, describe the surrounding of the scanner in the polar coordinate
system. The laser range scan, (~a,~φ), can be transformed to the Cartesian coordinates by

A =

(
〈|a1| · cos(φ1), |a2| · cos(φ2), . . . , |asmax | · cos(φsmax)〉
〈|a1| · sin(φ1), |a2| · sin(φ2), . . . , |asmax | · sin(φsmax)〉

)
, (3)

where A ∈ R2×smax is a real matrix with the first row representing the x coordinates and the second
row to the y coordinates of the points in the scan expressed in Cartesian coordinates. Each column of
A,~as ∈ A, corresponds to a single point of the scan in Cartesian coordinates:

~as =

(
ax

ay

)
=

(
|as| · cos(φs)

|as| · sin(φs)

)
, s ∈ {1, smax} (4)

The scan matching problem can be formulated as the search for a vector of parameters,
~t = 〈tx, ty, Φ〉, of an affine transformation,

T (~as, tx, ty, Φ) =

(
cos Φ − sin Φ
sin Φ cos Φ

)
·~as +

(
tx

ty

)
, ∀s ∈ {1, smax}, (5)

that leads to the best alignment of the reference scan to the transformed current scan.

(a) (b)

Figure 2. Scan matching: problem definition. (a) Scans before alignment (b) Scans after alignment.
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3.3. Iterative Closest Point

The Iterative closest point algorithm is the de-facto standard point-based scan matching algorithm.
It is based on the search for the pairs of the closest points in the matched laser range scans [51]. For each
point in the aligned scan, it finds the nearest point in the reference scan and seeks transformation
parameters that minimize the Euclidean distance between these two points [31]. The ICP consists of
the following steps [51]:

1. Preprocessing
2. Matching
3. Rejection
4. Cost function evaluation
5. Minimization of the cost function (go to step 1. when termination criteria are not met)

In the preprocessing step, the points that are not useful for matching of the two point clouds
(e.g., outliers) are filtered out to reduce the volume of the data. The pairs of the closest points in the
matched scans are found in the matching phase. The rejection phase discards the point pairs with too
large distance in-between.

The cost function, fcost, that evaluates the level of alignment between the reference scan, A and the
current scan, B, is defined as [52]

fcost
(
A, B, tx, ty, Φ

)
=

smax

∑
s=1

∥∥∥T (~as, tx, ty, Φ)−~bϑ(s)

∥∥∥2
, (6)

where T is an affine transformation defined in Equation (5), ϑ represents the function that finds for
each point~as ∈ A the nearest point~bϑ(s) ∈ B. The parameters of T in ICP are found by an arbitrary
real-parameter optimization method, for example the Newton-Raphson method [53].

3.4. Cross-Correlation

Cross-correlation is a concept known in the area of signal processing. It is a measure that
evaluates the similarity between two signals, x and y, shifted in time by a specific value, τ [54].
The cross-correlation of two arbitrary signals, expressed by N discrete samples,

Rxy(τ) =
N−1

∑
i=0

xi(t) · yi(t− τ), (7)

reaches maximum for a value of τ for which are the signals most similar. In this study,
the cross-corelation principle is used to match two laser range scans for indoor robot localization.
Cross-corelation of a laser range scan, A, with a translated and rotated version of another scan, B,
is maximized when the parameters of the transformation that correspond to the cumulative transition
and rotation of the robot (scanner) between the scans were taken are found [42]. The evaluation of the
cross-correlation between two 2-dimensional laser range scans under affine transformation T with
parameter vector~t = (tx, ty, Φ) can be expressed by

RAB(tx, ty, Φ) = A� (T (B, tx, ty, Φ)), (8)

where � is an operator that compares two 2-dimensional laser range scans and quantifies the degree of
their alignment (i.e., an implementation of Equation (7) suitable for the comparison of 2-dimensional
signals). The definition of � is essential for the properties of the process. A simple measure such as
the root mean square error (RMSE) can provide a reasonable estimate of the degree of scan alignment
and it can be used as a part of an optimization-based scan matching procedure [44]. However,
its computational complexity is too high for practical use. In this work, an efficient numerical algorithm,
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implementing the cross-correlation principle for 2-dimensional signals, is used instead of RMSE to
evaluate the level of alignment of two laser range scans in the scan matching procedure.

In the proposed approach, the laser range scan is converted to Cartesian coordinates in the same
manner as in [44]. Next, a grid map simplifying the scene is created from the point cloud data. The grid
map can be build using an arbitrary computationally feasible procedure. Figure 3 illustrates two
methods for grid map creation. The approach, shown in Figure 3a, is based on area comparison.
It assumes that the best scan match is achieved when the total volume of the overlapping regions
is maximized. For each cell in the grid, the algorithm decides whether it is inside of the first or the
second scan and then computes the number of overlapping cells. The second method, shown in
Figure 3b, is based on boundary line analysis. It assumes that the best scan match is obtained when
the intersection of the boundary lines is maximized. This approach does not require any operations
over empty grid cells and laser scans can be represented by lists of non-empty grid cells that contain
the points of the scans.

(a) (b)

Scan BScan A Intersection

Figure 3. Degree of alignment approaches: (a) Area comparison (b) Boundary line comparison.

During the grid map creation, more than one point can be located in a single grid cell. This fact
can be used by the scan matching procedure. For example, each cell can have a weight corresponding
to the number of points it contains [42]. The cell weight can then affect the remainder of the scan
matching procedure. However, initial experiments carried out in the scope of this study showed that
the use of cell weights leads to the premature convergence of the optimization process and, in many
cases, it prevents the algorithm from reaching the global optima. The scan matching algorithm is
more robust when the cell weights are not taken into account and the grid cells are simply marked as
occupied or empty. The number of occupied cells is usually not greater than 10% of all grid cells and
the creation of grid maps as well as their comparison is fast.

3.5. Differential Evolution

Differential evolution (DE) is a successful stochastic evolutionary optimization method for
continuous parameter optimization [55,56]. It is an evolutionary optimization process based on
the concept of scaled vector differentials. The DE represents a continuous alternative to the widespread
genetic algorithms that work with a discrete encoding of the candidate solutions. Both algorithms are
nature-inspired problem-solving strategies that evolve a population of candidate solutions. On the
other hand, they use different solution encodings (real–valued vs. discrete one), apply different
operations to evolve the population and as a result implement different search strategies.
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The DE algorithm has a history of successful applications in many industrial and engineering
domains. It was designed as a generic global optimization metaheuristic but with practical engineering
applications in mind [56]. It was used, among others, to predict the ground state structures of
hydrogenated amorphous silicon (Si-H) clusters in material science, to streamline non-imaging optical
design in optics and lightning development, to achieve 3D image registration in healthcare imaging,
to design transversal digital filters in electronics and in particular signal processing, to fuse sensor
data in robotics , to optimize industrial compressor supply systems, to realize system identification
for decision making and in general in the area of robotics and expert systems [56]. The algorithm
has also been applied in electrical engineering and electromagnetics. For example, it was used to
optimize design of antennas for low signal-to-noise ratio conditions, to improve power allocation
for the interleave-division multiple-access channel access method, to optimize antenna locations
in a wireless network for maximum space coverage and to optimize source pulses and detection
template in ultra-wideband radio systems. In the area of electromagnetics, the DE has been used to
solve electromagnetic inverse scattering problems, the frequency assignment problem with real-world
constraints and multiple objectives and to model large devices with distributed dipoles [56].

The wide variety of industrial applications shows that the DE is a metaheuristic optimization
algorithm popular among practitioners. In this article, it is used as an optimization method for the
registration of two 2-dimensional laser range scans.

From an optimization point of view, the DE evolves a group (population) of real-valued vectors
by an iterative application of the differential mutation and crossover operations [55]. So-called trial
vectors are in every iteration of the algorithm created from the current population by the differential
mutation and recombined with corresponding target vectors by the crossover operator. The novel
solutions the trial vectors represent are evaluated in the context of the problem and the trial vectors
compete with the target vectors for survival in the population.

The DE procedure starts with a randomly constructed population of N real–valued vectors.
In the course of the evolution, new trial vectors are created as scaled perturbations of existing
population vectors. The algorithm creates trial vectors as scaled differences of a minimum of two
distinct population vectors added to a third one. If a trial vector represents a better solution than the
corresponding target vector, it takes its place in the population.

DE’s most important control parameters are scaling factor and mutation probability [55].
The scaling factor, F ∈ [0, ∞], affects the rate at which the population evolves and the crossover
probability, C ∈ [0, 1], regulates the ratio of elements (vector values) that are transferred to the trial
vector from the target vector. Population size, N and the choice of particular differential operators are
important parameters of the top–level optimization process, too.

The elementary DE operations can be defined using the following equations [55]: the random
initialization of the ith vector of length N is given by

~xi[j] = rand(bL
j , bU

j ), j ∈ {1, . . . , N}, (9)

where bL
j is the lower bound of the j-th parameter, bU

j is the upper bound of the j-th parameter
and rand(a, b) returns a random number from the range [a, b]. The basic differential mutation is
defined as

~vi = ~vr1 + F(~vr2 −~vr3), (10)

where F is the scaling factor and ~vr1, ~vr2 and ~vr3 are three distinct vectors selected randomly from
the population. The vector ~vr1 is the base vector, ~vr2 and ~vr3 are the difference vectors and ~vi is the
trial vector.
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The uniform (binomial) crossover that combines the target vector, ~xi, with the trial vector, ~vi,
is given by

vi[j] =

{
vi[j] if (rand(0, 1) < C) or j = jrand

xi[j], otherwise
(11)

for each j ∈ {1, . . . , N}. The index jrand is selected at random as jrand = rand(1, N). The operator
swaps the parameters in ~vi with the parameters in ~xi with probability equal to 1− C. The outline of
the classic DE according to [55] is summarized in Algorithm 1.

Algorithm 1: A summary of the basic DE.
Randomly initialize the population, P, composed of M vectors by Equation (9);
For each vector in P, evaluate the objective function and rank the vectors according to their fitness;
while Termination criteria not met do

Let G = index of current generation;
for i ∈ {1, . . . , M} do

Mutation: Create trial vector vi according to Equation (10);

Validation: Check the range of all coordinates in vi and adjust them so that vi is a feasible problem solution;

Crossover: Randomly chose a parameter jrand in vi and modify the trial vector according to Equation (11);

Evaluation: Compute the fitness of the trial vector.;
if the trial vector, vi , represent a better solution than the target vector, xi , then

add vi to PG+1

else
add xi to PG+1

end
end

end

4. Scan Matching by Cross-Correlation and Differential Evolution

A novel mobile robot self-localization strategy that uses the combination of cross-correlation
of laser range scans [42] and the DE is designed and evaluated in this work. It improves a recent
DE-based scan matching algorithm [44] through the use of laser range scan cross-correlation as
an accurate and computationally lightweight fitness function. In this approach, the DE is used
as an optimization mechanism to find the optimal set of parameters for an affine transformation
that aligns two 2-dimensional laser range scans so that their mutual cross-correlation is maximized.
The parameters of the transformation correspond to the displacement of a mobile robot in the direction
of the x and y axes, tx and ty and its rotation, Φ. The algorithm evolves a population of 3-dimensional
candidate transformation vectors,~t = (tx, ty, Φ).

A graphical outline of the proposed scan matching process is shown in Figure 4. The figure
shows a mobile robot moving in an indoor environment. On its way, the robot moved from a point
of reference, A, to its current position, B. At each location, it acquired laser range scans denoted as A
and B, respectively. Each laser range scan produces a 2-dimensional point cloud in polar coordinates
that represents the surroundings of the robot in the field-of-view of the LiDAR. The first scan, A,
is transformed into a grid map, mapA, by Algorithm 2, to represent the original position of the robot.
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Algorithm 2: Pseudocode of grid map composition.
function GM(laser range scan A);

Initialize an empty grid map array GMA;
Initialize an empty grid map occupied cells list GMOC;
for s = 1 to n do

Transform as to Cartesian coordinates;
Find corresponding cell C in GMA;
if C is empty then

Set C as occupied;
Add C to GMOC;

end
end
return GMA and GMOC as GM;

Figure 4. Description of the proposed algorithm: laser range reading and DE-based scan matching.

The second scan, B, is matched with A by the DE algorithm. In each step, k, of every generation of
DE, scan B is transformed by T with parameter vector,~tk =

(
tx, ty, Φ

)
, encoded by the k-th trial vector.

Grid map mapBk is then created from Bk and the cross-correlation of mapA and mapBk is evaluated
using Algorithm 3. The resulting degree of alignment,

J(A, B,~tk) = CC
[
GM (A) , GM

(
T
(

B, tkx, tky, Φk

))]
, (12)

is taken by the DE as a fitness function. The fitness function consists of cross-correlation, CC, which is
basically the implementation of � (see Equation (8)) and the function which creates grid map from
a scan, GM. It determines whether the trial vector substitutes the corresponding target vector in the
population. This procedure is iteratively repeated until the DE terminates. The best solution found
by the DE corresponds to the best set of parameters and defines the transformation leading to the
maximum cross-correlation between grid mas mapA and mapBk.
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Algorithm 3: Pseudocode of cross-correlation.
function CC(GMA, GMB);

Initialize retVal = 0;
for s = 1 to GMA.GMOC.Length do

Cell C = GMA.GMOC[s];
if GMB.GMA[C.x_index, C.y_index] is occupied then

retVal++;
end

end
return retVal;

5. Experimental Evaluation

A variety of computer experiments were carried out to evaluate the ability of DE with
cross-correlation as fitness function to perform point-based laser scan matching for self-localization
of an autonomous mobile robot. The experiments used a series of simulated laser scans of an
indoor environment describing the sensor readings of a virtual mobile robot moving through a
room. The location data, corresponding to the simulated robot trajectory, was used as the ground truth.

5.1. Simulation Framework and Experimental Data

The software framework, introduced in [45], allows the simulation of a mobile robot in an indoor
environment. It provides data corresponding to the laser scans performed by a common type of
LiDAR, SICK LMS 100, mounted on top of a mobile robot. The robot moves through a surroundings
with topology and obstacles defined by a map (stored in an XML configuration file). The framework
provides data of the laser scans, robot’s absolute position and orientation assumed by the robot on its
way. The data is stored in a CSV file with each line corresponding to one laser range scan. Figure 5
displays an example of a map in the simulation framework with the simulated robot trajectory (yellow)
and two simulated laser scans (red, blue) highlighted.

5.2. Experimental Methodology

In each experiment, the DE was used to search for parameters of transformation T that would
align selected pairs of laser scans from the data set created using the simulation framework. 20 random
laser range scans were selected from a single robot trajectory and matched with subsequent scans taken
5, 10, 20, 30, 50, 100 and 200 LiDAR cycles later. That roughly corresponded to traveled distances of 75,
150, 300, 450, 750, 1500 and 3000 mm. In total, 140 distinct scans were matched during the experiments.

The experiments used the traditional/DE/rand/1 variant of the differential evolution with
cross-correlation defined according to Section 3.4 as the fitness function. The DE worked with
a population of 3-dimensional vectors representing the transformation parameters, tx, ty and Φ.
The remaining DE parameters were set after a series of trial-and-error runs and with respect to best
practices and past experience. The size of the population, M, was set to 100, the crossover probability,
C and the scaling factor, F, were both set to 0.9. The evolution was terminated after the maximum of
5000 generations and all experiments were independently executed 50 times to avoid bias caused the
stochastic nature of the algorithm.
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Figure 5. Simulation framework: an example of a map, robot trajectory (yellow) and two simulated
laser scans (red, blue).

6. Results

In this section, the results of the computational experiments are detailed and the proposed
evolutionary scan matching strategy based on cross-correlation (denoted CORR) is compared with
a recent approach based on root mean square error (denoted RMSE) [44] and with the standard ICP
algorithm [52].

Table 2 provides the results of the comparison between the ICP, RMSE and CORR scan matching
strategies. The table is divided into 8 sections. Each of the first 7 sections summarizes the relative
and absolute translation and rotation errors of all scan matching cases for scans taken after the robot
traveled 75, 150, 300, 450, 750, 1500 and 3000 mm, respectively. The 8th section provides a summary of
the errors for all scan matching experiments. The absolute translation error is the euclidean distance
between the true (ltrue) and the estimated (lest) location of the robot. The relative translation error
(in percent) is defined as

δl =
|ltrue − lest|

ltrue
· 100. (13)

The absolute rotation error is calculated as the difference between the true (Φtrue) and the
estimated (Φest) rotation of the robot and its relative form (in percent) is defined as

δΦ =
|Φtrue −Φcalc|

Φtrue
· 100. (14)

The percentile values corresponding to the 25th, 50th and the 75th percentile (i.e., the lower quartile,
median and the upper quartile) of the errors for each algorithm are shown in the individual sections
of Table 2. The lower the percentile value, the better the results and thus the algorithm performance.
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Table 2. The translation and rotation errors of scan matching by the ICP, RMSE and CORR methods.

Per- Absolute Translation Error Relative Translation Error Absolute Rotation Error Relative Rotation Error
Cen- (mm) (%) (◦) (%)
tile ICP RMSE CORR ICP RMSE CORR ICP RMSE CORR ICP RMSE CORR

75 mm

25th 3.5 2.7 5.4 4.6 3.6 7.0 0.18 0.02 0.08 11.0 2.1 2.8
50th 6.1 6.4 9.7 8.1 7.8 12.7 0.40 0.08 0.19 15.0 5.2 11.9
75th 11.9 15.7 22.5 15.9 20.9 30.0 0.78 0.26 0.36 49.0 14.0 38.4

150 mm

25th 1.7 9.9 7.9 1.2 6.6 5.1 0.11 0.12 0.09 2.5 6.7 1.7
50th 3.8 22.2 11.4 2.5 13.6 7.5 0.25 0.40 0.17 4.9 12.1 5.1
75th 13.8 38.4 25.4 9.2 25.6 16.9 0.64 1.27 0.36 21.6 21.0 15.8

300 mm

25th 3.0 36.5 5.9 0.9 12.2 2.0 0.08 0.48 0.07 0.5 11.9 1.0
50th 4.7 62.6 11.3 1.6 21.0 3.8 0.25 1.14 0.17 4.1 17.9 2.4
75th 11.1 120.5 20.5 3.7 32.0 6.6 0.49 5.50 0.37 9.5 42.8 5.3

450 mm

25th 1.2 77.1 7.8 0.3 17.2 1.7 0.03 1.03 0.10 0.2 14.1 0.9
50th 3.2 124.3 13.2 0.7 28.0 2.9 0.07 2.31 0.25 0.9 29.8 1.8
75th 10.4 376.2 31.4 2.0 83.7 7.0 0.43 9.37 0.44 3.0 95.7 6.4

750 mm

25th 2.3 215.0 11.0 0.3 28.7 1.5 0.05 5.12 0.09 0.3 34.7 0.5
50th 3.2 704.8 16.8 0.4 91.6 2.3 0.12 13.64 0.19 0.8 55.9 1.1
75th 135.9 1535.0 36.3 18.6 212.7 4.9 1.12 88.81 0.45 10.5 270.6 2.8

1500 mm

25th 814.7 615.4 9.5 55.1 41.5 0.6 26.66 13.04 0.15 71.1 58.3 0.5
50th 1212.9 975.1 23.5 100.8 65.1 1.7 81.03 37.67 0.53 127.1 111.5 1.7
75th 1709.7 1915.8 1479.4 115.9 127.4 98.8 128.64 117.91 90.90 369.2 275.8 88.5

3000 mm

25th 1382.2 1076.6 27.7 54.4 37.5 1.4 43.72 77.87 0.93 72.9 90.5 1.1
50th 2084.5 1700.7 1257.6 81.2 61.9 52.6 92.49 151.26 93.41 111.0 144.5 106.4
75th 2948.9 3129.6 2466.5 106.3 121.2 91.0 163.38 167.56 167.99 229.4 518.3 365.4

Total

25th 2.8 30.2 8.2 1.0 14.8 1.8 0.10 0.45 0.10 1.1 9.6 1.0
50th 8.9 141.5 15.6 5.1 31.0 5.3 0.49 2.57 0.25 9.6 28.4 2.8
75th 814.7 1076.6 51.6 69.1 91.1 18.0 26.07 51.61 1.17 85.9 113.4 19.7

Figure 6 illustrates the distribution of the absolute and the relative translation errors of all scan
matching experiments performed with the ICP, RMS and CORR algorithms. Results shown in Figure 6b
indicate that the difference between the medians of the relative translation errors of the standard ICP
and the proposed CORR algorithm is not significant (5.1% ICP, 5.3% CORR). This can be attributed to
the uniformly distributed noise generated by the simulation framework used for the experiments [45].
Furthermore, the CORR method has significantly lower translation error values at the lower and upper
quartiles than the other tested methods. This shows that the proposed algorithm achieves for the
majority of the considered test cases a robust and accurate scan matching functionality. In general,
the RMSE method obtains scan matching with a higher error than the other two methods.
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(a) (b)

Figure 6. A boxplot visualization of the absolute (a) and the relative (b) translation error of all scan
matching experiments (section Total of Table 2).

The absolute and the relative rotation errors of all scan matching experiments are shown
in Figure 7. The box plots clearly demonstrate that the proposed CORR algorithm achieves better
(i.e., lower) error values for all observed translation error percentiles. The median relative error value
of the CORR method is 2.8% while the standard ICP algorithm has relative error of 9.6%. Similarly to
its performance on translation, the RMSE method performs the worst of the three compared scan
matching strategies with median relative rotation error of 28.4% . Figure 7a also reveals some important
information about the nature of rotation errors of the ICP and CORR methods. The rotation outliers,
that is, scan matching cases with high absolute rotation error, are concentrated in the proximity of 90◦

and 180◦ values. The false alignments are caused by the tendency of both algorithms to converge to
local rotation optima which is typically situated around 90◦, 180◦ and 270◦. This situation is illustrated
in the following pair of figures. Figure 8a shows a wrong alignment at a local rotation optimum of
180◦, while Figure 8b shows the correct alignment. The relatively high number of rotation outliers in
results obtained by the CORR method indicate its higher sensitivity to rotation errors, compared to the
ICP algorithm.

(a) (b)

Figure 7. A boxplot visualization of the absolute (a) and the relative (b) rotation error of all scan
matching experiments (section Total of Table 2).
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(a) (b)

Figure 8. An example of scan alignment by the CORR method: (a) Incorrect alignment due to a rotation
error. (b) Correct alignment.

Comparisons of translation and rotation errors of scan matching experiments in relation to the
length of the robot trajectory between the scans are shown, respectively, in Figures 9 and 10. It can
be seen that the ICP algorithm provides the best alignment for scans taken after the robot traveled
between 75 mm to 450 mm. The error of scan alignment by ICP starts to rise for scans taken after the
robot traveled 750 mm or more. Its accuracy deteriorates even more when matching laser range scans
taken after the robot traveled long distances, that is, 1500 mm or 3000 mm. Based on the executed
scan matching experiments, the proposed scan matching method (CORR) has for scans spaced 75 mm
to 450 mm only slightly worse results than the ICP, still sufficient for practical indoor localization.
However, the CORR algorithm shows superior results when matching laser range scans taken after
the robot traveled long distances of 750 mm or more. In these cases, it provides significantly better
localization than the standard ICP algorithm.

(a) (b)

Figure 9. Absolute (a) and relative (b) translation errors of scan matching experiments for laser range
scans taken after robot movement of 75–3000 mm.
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(a) (b)

Figure 10. Absolute (a) and relative (b) rotation errors of scan matching experiments for laser range
scans taken after robot movement of 75–3000 mm.

Figures 9 and 10 also illustrate the convergence of the proposed approach. In contrast to the ICP,
RMSE and CORR are both stochastic methods with random initialization. They were outperformed by
the ICP for scans taken when the robot traveled between 75 and 750 mm in terms of minimum and
average absolute and translation and rotation errors. However, the figures also clearly illustrate that
all independent CORR runs that processed laser range scans taken after the robot moved 1500 mm and
more obtained better average results than the ICP method. This suggests that the proposed approach,
although not deterministic, produced in these cases, on average, scan alignments of better quality than
the ICP method.

7. Conclusions

A novel scan matching strategy, based on the combination of cross-correlation and differential
evolution, was introduced in this work. It uses cross-correlation as an accurate, robust
and computationally efficient measure of the similarity of 2-dimensional laser range scans
and differential evolution for the search of scan transformation parameters. The proposed scan
matching strategy was implemented and extensively evaluated. The evaluation used a software
framework for the simulation of the movement of an autonomous mobile robot in an interior.
The framework generated a data set composed of virtual laser range scans, taken when the robot
followed a pre-defined trajectory in a virtual room.

The proposed method was used to match laser range scans taken by the robot after it traveled
different distances ranging from 75 mm to 3000 mm. The accuracy of the estimated translation and
rotation of the robot was compared to the accuracy of translation and rotation obtained by a standard
scan matching algorithm, ICP and a previous method based on a combination of RMSE and differential
evolution. The experiments showed that the proposed method has only slightly lower accuracy than
the ICP algorithm when matching laser range scans taken after the robot traveled between 75 mm
and 750 mm but it achieved substantially better results for scans taken after it traveled 1500 mm or
3000 mm. The results of the computational experiments suggest that the proposed approach is an
accurate and robust scan matching strategy suitable in particular for situations when the mobile robot
travels longer distances.

The future work will include an efficient implementation of the proposed method for embedded
devices (for example, NVIDIA Jetson Nano) and field tests with a physical mobile robot in a
real environment.
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