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Abstract
Models of the environment are needed for a wide range of robotic applications, from search and rescue to automa-
ted vacuum cleaning. Learning maps has therefore been a major research focus in the robotics community over the
last decades. In general, one distinguishes between metricand topological maps. Metric maps model the environ-
ment based on grids or geometric representations whereas topological maps model the structure of the environment
using a graph.

The contribution of this paper is an approach that learns a metric as well as a topological map based on
laser range data obtained with a mobile robot. Our approach consists of two steps. First, the robots solves the
simultaneous localization and mapping problem using an efficient probabilistic filtering technique. In a second
step, it acquires semantic information about the environment using machine learning techniques. This semantic
information allows the robot to distinguish between different types of places like, e.g., corridors or rooms. This
enables the robot to construct annotated metric as well as topological maps of the environment. All techniques
have been implemented and thoroughly tested using real mobile robot in a variety of environments.

Zusammenfassung

Umgebungsmodelle sind die Grundlage für viele Applikationen innerhalb der mobilen Robotik wie beispiels-
weise Rettungsaufgaben oder autonomes Staubsaugen. Techniken zum Bauen von Karten mit mobilen Robotern
werden daher seit vielen Jahren intensiv untersucht. Meistunterscheidet man hier zwischen metrischen und to-
pologischen Karten. Metrische Modelle verwenden geometrische Darstellungen, wohingegen topologische Karten
typischerweise durch Graphen repräsentiert werden.

Der Beitrag dieser Arbeit besteht in einem Verfahren zum Erstellen von metrischen wie auch topologischen
Karten, basierend auf Daten, die mittels Abstandssensorenaufgenommen wurden. Unser Ansatz basiert auf zwei
Schritten. Zuerst wird das sogenannte simultane Lokalisierungs- und Kartenbauproblem mit Hilfe wahrscheinlich-
keitstheoretischer Filtertechniken gelöst. Im zweiten Schritt schätzt unser Verfahren semantische Informationen
über Orte in der Umgebung. Diese Technik erlaubt es einem Roboter beispielsweise zu entscheiden, ob dieser sich
gerade in einem Raum, einem Türrahmen oder in einem Korridorbefindet. Dadurch kann der Roboter die me-
trische Karte annotieren und somit die Topologie schätzen.Um Klassifikationsfehler zu minimieren, verwenden
wir eine probabilistische Relaxationsmethode. Das hier vorgestellte Verfahren wurde implementiert und mit Hilfe
echten mobilen Robotern intensiv getestet und evaluiert.
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1 Introduction

The problem of learning maps
is one of the fundamental pro-
blems in mobile robotics. Models
are needed for a series of appli-
cations like transportation, clea-
ning, rescue, localization, and va-
rious other service tasks. Lear-
ning maps has therefore been a
major research issue in the robo-
tics community over the last de-
cades.

Typically, one distinguishes
between the type of model the
mapping approach learns: me-
tric or topological maps. Metric
maps like, for example, occupan-
cy, feature, or geometric maps
model the objects observed by
the sensor. However, for different
robotic tasks the robot can im-
prove its capabilities or perfor-
mance when sematic or topolo-
gical information is available. In
contrast to metric maps, topolo-
gical maps model the structure of
the environment using a graph in
which the different places in the
environment are represented by
nodes.Topological maps are quite
popular in the robotics communi-
ty because they are believed to be
cognitively more adequate. Com-
pared to metric maps, they can be
stored in a compact manner and
can facilitate the communication
with the users.

While most other mapping
approaches address metric or to-
pological map learning, we fo-
cus in this paper on construc-
ting a metric as well as a to-
pological model of the environ-
ment. Our approach consists of
two steps. In the first one, we ap-

ply a highly efficient particle fil-
ter to solve thesimultaneous lo-
calization and mapping (SLAM)
problem. This step is based on
grid maps and eliminates the po-
se uncertainty of the robot. In the
second step, we use the grid re-
sulting from the first step in order
to learn the topology. Our techni-
que estimates semantic informa-
tion about local areas using su-
pervised learning. It furthermo-
re applies probabilistic relaxation
labeling to smooth the semantic
labels and then identifies distinct
places based on that data. This al-
lows a mobile robot to learn ac-
curate metric models of the envi-
ronment while at the same time
constructing a consistent topolo-
gical map.

The remainder of this pa-
per describe the two steps of
our algorithm in the next secti-
ons. The first step explains our
Rao-Blackwellized particle filter
is applied to construct a metric
grid map. Based on this result,
Section 3 describes the second
step of our technique which is the
extraction of the topological in-
formation.

2 Step 1: Efficient
Metric Mapping

This section describes the first
step of our mapping approach.
The goal is to eliminate the po-
se uncertainty of the mobile robot
and to obtain a consistent grid re-
presentation. According to Mur-
phy [16], the key idea of the Rao-
Blackwellized particle filter for

SLAM is to estimate the joint
posterior p(x1:t,m | z1:t, u1:t−1)
about the mapm and the tra-
jectory x1:t = x1, . . . , xt of the
robot. This estimation is perfor-
med given the observationsz1:t =

z1, . . . , zt and the odometry mea-
surementsu1:t−1 = u1, . . . , ut−1

obtained by the mobile robot as

p(x1:t,m | z1:t, u1:t−1) =

p(m | x1:t, z1:t) ·

·p(x1:t | z1:t, u1:t−1).

This factorization allows us to
first estimate only the trajectory
of the robot and then to compute
the map given that trajectory.

The posterior over maps
p(m | x1:t, z1:t) can be computed
analytically using “mapping with
known poses” sincex1:t and z1:t

are known. To estimate the po-
steriorp(x1:t | z1:t, u1:t−1) over the
potential trajectories, one can ap-
ply a particle filter in which each
particle represents a potential tra-
jectory of the robot. Furthermore,
an individual map is associated
with each sample.

One of the most common par-
ticle filtering algorithms is the
sampling importance resampling
(SIR) filter. A SIR filter for
mapping can be summarized by
four steps: sampling, importance
weighting, resampling and map
estimation [4]. In the sampling
step, the next generation of par-
ticles is obtained from the so-
called proposal distribution. In
the importance weighting step an
individual weight is assigned to
each particle according to the im-
portance sampling principle. Par-
ticles are then drawn with repla-
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cement proportional to their im-
portance weight in the resamp-
ling step. Finally, for each par-
ticle, the corresponding map esti-
mate is computed based on the
trajectory of that sample and the
history of observations.

The general framework
for mapping with Rao-
Blackwellized particle filters lea-
ves open how the proposal dis-
tribution is computed. In general,
the filter produces more accura-
te results the closer the proposal
approximates the target distribu-
tion. The target distribution, ho-
wever, is typically not available
in a closed form solution suita-
ble for sampling. In our case, the
target distribution is given by

p(x1:t | z1:t, u1:t−1) =

η · p(zt | m
(i)
t−1, xt) ·

·p(xt | xt−1, ut−1) ·

·p(x1:t−1 | z1:t−1, u1:t−2),

whereη is a normalizing constant
resulting from Bayes’ rule.

Our approach uses the laser
range observations of the robot
in order to approximate the target
as close as possible while being
able to efficiently sample from
that distribution. The advantage
of this approach lies in the fact
that the laser range observations
are typically affected by signifi-
cantly less noise compared to the
odometry of the robot (which is
used as the proposal in classical
particle filter applications). This
fact is illustrated in Figure 1. Sin-
ce the resulting distribution is gi-
ven by the product of the motion
and the observation model, one
can restrict the search to areas of

high likelihood (called meaning-
ful areaL(i) in Figure 1). We con-
sider both components of the pro-
posal, the observation likelihood
and the motion model within the
meaningful intervalL(i) and we
locally approximate the posterior
p(xt | m(i)

t−1, x
(i)
t−1, zt, ut−1) around

the maximum of the likelihood
function reported by a scan re-
gistration procedure (see [5] for
more details).

A further aspect that has a
major influence on the perfor-
mance of a particle filter is the
resampling step. During resamp-
ling, particles with a low import-
ance weightw(i) are typically re-
placed by samples with a high
weight. On the one hand, resamp-
ling is necessary since only a fi-
nite number of particles are used
to approximate the target distri-
bution. On the other hand, the
resampling step can remove good
samples from the filter which
can lead to particle impoverish-
ment. Accordingly, it is import-
ant to find a criterion for deciding
when to perform the resampling
step. Following the formulation
of Doucetet al. [2], we calcula-
te the so-called effective sample
size to estimate how well the cur-
rent particle set represents the tar-
get posterior as

Neff =
1

∑N
i=1
(

w̃(i)
)2
,

wherew̃(i) refers to the normali-
zed weight of particlei.

SinceNeff can be regarded as
a measure of the dispersion of
the importance weights, it is a
useful measure to evaluate how

well the particle set approximates
the target posterior. We resample
each timeNeff drops below the
threshold ofN/2 whereN is the
number of particles. In extensive
experiments, we found that this
approach drastically reduces the
risk of replacing good particles.

3 Step 2: Estima-
ting the Topology

In the previous section, we pre-
sented a way for learning accu-
rate metric maps of the environ-
ment. The results of this first step
are now used to build a topo-
logical representation of the en-
vironment. The complete proc-
cess is divided into two steps.
First, the semantic classification
of each unoccupied cell is de-
termined. Second, from the re-
sulting labeling we construct a
graph whose nodes correspond to
the regions of identically labeled
poses and whose edges represent
the connections between them.

For each unoccupied cell of
the grid map, our approach first
determines its semantic class
(room, corridor, doorway). This
is achieved by simulating a ran-
ge scan given the sensor is lo-
cated in that particular cell and
then classifying this scan into one
of the classes. The classificati-
on is done using a sequence of
classifiers learned with the Ada-
Boost algorithm. Each classifier
in the sequence is learned in a su-
pervised fashion from examples
represented by a vector of sim-
ple geometric features that are
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extracted from range scans si-
mulated in different, previously
labeled maps of standard envi-
ronments [12]. During the lear-
ning process, AdaBoost selects
the best features and combines
them to a strong classifier by
weighted majority voting. Ad-
ditionally, we calculate a confi-
dence value for the output clas-
sification Because this approach
distinguishes between only two
classes, we arrange the classifiers
into a decision list to create a
multi-class classifier [19].

Once we have classified each
free cell into one of the seman-
tic class, we apply a smoothing
process called probabilistic rela-
xation labeling to eliminate er-
rors in the labeling. This method
takes into account the labeling
of neighboring cells to change
or maintain the label of a con-
crete cell. The approach calcula-
tes prior probabilities about the
relation between neighboring la-
bels using already labeled envi-
ronments. The classification of
each cell is then updated in aN
iterative way using these priors
together with the neighborhood
information [11].

After the smoothing procedu-
re, we extract regions composed
of groups of 8-connected cells in
the grid map. Finally, a topologi-
cal graph is constructed in which
each node represents a complete
region and each edge represents a
connection between them. Addi-
tionally, we apply a heuristic re-
gion correction to the topological
map to increase the classification
rate [11].

4 Experiments

The approach described above
has been implemented and tested
using real robots and datasets ga-
thered with real robots. We first
present the results of our SLAM
approach and then illustrate how
topology of the environment.

A map of the Intel Research
Lab is depicted in the left image
of Figure 2 with a size of 28m by
28m. The dataset has been recor-
ded with a Pioneer II robot equip-
ped with a SICK laser range fin-
der. To successfully correct this
dataset, our algorithm needed on-
ly 15 particles. As can be seen in
the right image of Figure 2, the
quality of the final map is so high
that the map can be magnified up
to 1cm of resolution without sho-
wing any significant errors. In ad-
dition to the Intel dataset, we al-
so corrected other datasets which
can be found on the web [18].

In order to measure the im-
provement in terms of the num-
ber of particles, we compared the
performance of our system using
the informed proposal distributi-
on to the approach done by Häh-
nelet al. [6]. It turns out that in all
of the cases, the number of par-
ticles required by our approach
was approximately one order of
magnitude smaller than the one
required by the other approach.
Moreover, the resulting maps are
better due to our improved samp-
ling process that takes the last
reading into account. A more de-
tailed discussion on our approach
can be found in [5].

Based on the results of the
Rao-Blackwellized particle filter

shown in Figure 2, we now con-
struct the topological map. We
first trainned a general classi-
fier for detecting rooms, corri-
dors and doorways. The training
set was composed of two dif-
ferent maps of the University
of Freiburg in which the diffe-
rent places were manually labe-
led. Then, we applied the classi-
fication and topological extracti-
on method of Section 3. As de-
picted in Figure 3, the resulting
topology represents the environ-
ment in a good way. The main
error in the topology are missing
doorways, since the doors in this
environment look different to the
environment in which the classi-
fiers. Additional experiments can
be found in [11].

5 Related Work

Mapping techniques for mobile
robots can be roughly classified
according to the map representa-
tion and the underlying estimati-
on technique.

In a work by Murphy, Dou-
cet, and colleagues [1, 16],
Rao-Blackwellized particle fil-
ters (RBPF) have been introdu-
ced as an effective means to sol-
ve the SLAM problem. Each par-
ticle in a RBPF represents a pos-
sible robot trajectory and a map.
The framework has been subse-
quently extended by Montemerlo
et al. [14, 15] for approaching the
SLAM problem with landmark
maps. To learn accurate grid
maps, RBPFs have been used by
Eliazar and Parr [3] and Häh-
nel et al. [6]. The SLAM tech-

5



nique described in Section 2 is
an improvement of the algorithm
proposed by Hähnelet al. [6].
The computation of the proposal
distribution is done in a similar
way as in FastSLAM-2 presen-
ted by Montemerloet al. [14]. In
contrast to FastSLAM-2, our ap-
proach does not rely on predefi-
ned landmarks and uses raw laser
range finder data to acquire accu-
rate grid maps.

In the past, different algo-
rithms for creating topological
maps have been proposed. Kui-
pers and Byun [9] extract di-
stinctive points in the map. Kor-
tenkamp and Weymouth [7] fu-
se the information obtained with
vision and ultrasound sensors
to determine topologically rele-
vant places. Shatkey and Kaelb-
ling [17] apply a HMM lear-
ning approach to learn topolo-
gical maps. Additionally, Kui-
pers and Beeson [8] apply diffe-
rent learning algorithms to cal-
culate topological maps of envi-
ronments. These approaches only
identify points in the map that ha-
ve special properties but they do
not include semantic meaning.

In the context of learning to-
pological map from noisy da-
ta, Modayil et al. [13] presen-
ted a technique which combines
metrical SLAM with topological
SLAM. Similar ideas have be-
en realized by Lisienet al. [10],
which introduce a hierarchical
map in the context of SLAM.

With respect to place classifi-
cation, our approach is an exten-
tion of our previous work [12].
We additionally use a probabili-
stic variant of the classifier and

apply a probabilistic relaxation
labeling to incorporate similarity
constraints between neighboring
points and to eliminate false clas-
sifications.

6 Conclusion

In this paper, we presented a me-
thod to learn accurate metric as
well as topological maps under
uncertainty. We described our al-
gorithm that consists of two con-
secutive steps. First, it applies
a Rao-Blackwellized particle fil-
ter to solve the SLAM problem
and to create metric occupancy
grid maps. We compute a high-
ly accurate proposal distribution
based on the observation like-
lihood of the most recent sensor
information, the odometry, and a
scan-matching process. In the se-
cond step, we extract semantic
place labels from the metric mo-
del for categorizing places into
semantic classes such as rooms,
doorways, and corridors. We ap-
ply a probabilistic relaxation pro-
cess to reduce classification er-
rors. We then extract regions and
their connections which results
in a topological representation of
the environment. Our approach
has been implemented and eva-
luated using real robots equip-
ped with a laser range finder. The
experiments demonstrate that our
approach is well-suited to extract
metric and topology from indoor
environments.
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Abbildung 1: The two components of the target distribution.Within the intervalL(i) the product of both functions
is dominated by the observation likelihood, which is therefore well-suited to focus the proposal to the intervalL(i).

Abbildung 2: The Intel Research Lab. The robot starts in the upper part of the circular corridor, and runs several
times around the loop, before entering the rooms. The left image depicts the resulting map generated with 15
particles. The right image shows a cut-out with 1cm grid resolution to illustrate the accuracy of the map in the loop
closure point.

DoorwayRoomCorridor

Abbildung 3: The topological map learned from the Intel Research Lab.
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