12 research outputs found

    Deployment, Coverage And Network Optimization In Wireless Video Sensor Networks For 3D Indoor Monitoring

    Get PDF
    As a result of extensive research over the past decade or so, wireless sensor networks (wsns) have evolved into a well established technology for industry, environmental and medical applications. However, traditional wsns employ such sensors as thermal or photo light resistors that are often modeled with simple omni-directional sensing ranges, which focus only on scalar data within the sensing environment. In contrast, the sensing range of a wireless video sensor is directional and capable of providing more detailed video information about the sensing field. Additionally, with the introduction of modern features in non-fixed focus cameras such as the pan, tilt and zoom (ptz), the sensing range of a video sensor can be further regarded as a fan-shape in 2d and pyramid-shape in 3d. Such uniqueness attributed to wireless video sensors and the challenges associated with deployment restrictions of indoor monitoring make the traditional sensor coverage, deployment and networked solutions in 2d sensing model environments for wsns ineffective and inapplicable in solving the wireless video sensor network (wvsn) issues for 3d indoor space, thus calling for novel solutions. In this dissertation, we propose optimization techniques and develop solutions that will address the coverage, deployment and network issues associated within wireless video sensor networks for a 3d indoor environment. We first model the general problem in a continuous 3d space to minimize the total number of required video sensors to monitor a given 3d indoor region. We then convert it into a discrete version problem by incorporating 3d grids, which can achieve arbitrary approximation precision by adjusting the grid granularity. Due in part to the uniqueness of the visual sensor directional sensing range, we propose to exploit the directional feature to determine the optimal angular-coverage of each deployed visual sensor. Thus, we propose to deploy the visual sensors from divergent directional angles and further extend k-coverage to ``k-angular-coverage\u27\u27, while ensuring connectivity within the network. We then propose a series of mechanisms to handle obstacles in the 3d environment. We develop efficient greedy heuristic solutions that integrate all these aforementioned considerations one by one and can yield high quality results. Based on this, we also propose enhanced depth first search (dfs) algorithms that can not only further improve the solution quality, but also return optimal results if given enough time. Our extensive simulations demonstrate the superiority of both our greedy heuristic and enhanced dfs solutions. Finally, this dissertation discusses some future research directions such as in-network traffic routing and scheduling issues

    Políticas de Copyright de Publicações Científicas em Repositórios Institucionais: O Caso do INESC TEC

    Get PDF
    A progressiva transformação das práticas científicas, impulsionada pelo desenvolvimento das novas Tecnologias de Informação e Comunicação (TIC), têm possibilitado aumentar o acesso à informação, caminhando gradualmente para uma abertura do ciclo de pesquisa. Isto permitirá resolver a longo prazo uma adversidade que se tem colocado aos investigadores, que passa pela existência de barreiras que limitam as condições de acesso, sejam estas geográficas ou financeiras. Apesar da produção científica ser dominada, maioritariamente, por grandes editoras comerciais, estando sujeita às regras por estas impostas, o Movimento do Acesso Aberto cuja primeira declaração pública, a Declaração de Budapeste (BOAI), é de 2002, vem propor alterações significativas que beneficiam os autores e os leitores. Este Movimento vem a ganhar importância em Portugal desde 2003, com a constituição do primeiro repositório institucional a nível nacional. Os repositórios institucionais surgiram como uma ferramenta de divulgação da produção científica de uma instituição, com o intuito de permitir abrir aos resultados da investigação, quer antes da publicação e do próprio processo de arbitragem (preprint), quer depois (postprint), e, consequentemente, aumentar a visibilidade do trabalho desenvolvido por um investigador e a respetiva instituição. O estudo apresentado, que passou por uma análise das políticas de copyright das publicações científicas mais relevantes do INESC TEC, permitiu não só perceber que as editoras adotam cada vez mais políticas que possibilitam o auto-arquivo das publicações em repositórios institucionais, como também que existe todo um trabalho de sensibilização a percorrer, não só para os investigadores, como para a instituição e toda a sociedade. A produção de um conjunto de recomendações, que passam pela implementação de uma política institucional que incentive o auto-arquivo das publicações desenvolvidas no âmbito institucional no repositório, serve como mote para uma maior valorização da produção científica do INESC TEC.The progressive transformation of scientific practices, driven by the development of new Information and Communication Technologies (ICT), which made it possible to increase access to information, gradually moving towards an opening of the research cycle. This opening makes it possible to resolve, in the long term, the adversity that has been placed on researchers, which involves the existence of barriers that limit access conditions, whether geographical or financial. Although large commercial publishers predominantly dominate scientific production and subject it to the rules imposed by them, the Open Access movement whose first public declaration, the Budapest Declaration (BOAI), was in 2002, proposes significant changes that benefit the authors and the readers. This Movement has gained importance in Portugal since 2003, with the constitution of the first institutional repository at the national level. Institutional repositories have emerged as a tool for disseminating the scientific production of an institution to open the results of the research, both before publication and the preprint process and postprint, increase the visibility of work done by an investigator and his or her institution. The present study, which underwent an analysis of the copyright policies of INESC TEC most relevant scientific publications, allowed not only to realize that publishers are increasingly adopting policies that make it possible to self-archive publications in institutional repositories, all the work of raising awareness, not only for researchers but also for the institution and the whole society. The production of a set of recommendations, which go through the implementation of an institutional policy that encourages the self-archiving of the publications developed in the institutional scope in the repository, serves as a motto for a greater appreciation of the scientific production of INESC TEC

    Hardware realization of discrete wavelet transform cauchy Reed Solomon minimal instruction set computer architecture for wireless visual sensor networks

    Get PDF
    Large amount of image data transmitting across the Wireless Visual Sensor Networks (WVSNs) increases the data transmission rate thus increases the power transmission. This would inevitably decreases the operating lifespan of the sensor nodes and affecting the overall operation of WVSNs. Limiting power consumption to prolong battery lifespan is one of the most important goals in WVSNs. To achieve this goal, this thesis presents a novel low complexity Discrete Wavelet Transform (DWT) Cauchy Reed Solomon (CRS) Minimal Instruction Set Computer (MISC) architecture that performs data compression and data encoding (encryption) in a single architecture. There are four different programme instructions were developed to programme the MISC processor, which are Subtract and Branch if Negative (SBN), Galois Field Multiplier (GF MULT), XOR and 11TO8 instructions. With the use of these programme instructions, the developed DWT CRS MISC were programmed to perform DWT image compression to reduce the image size and then encode the DWT coefficients with CRS code to ensure data security and reliability. Both compression and CRS encoding were performed by a single architecture rather than in two separate modules which require a lot of hardware resources (logic slices). By reducing the number of logic slices, the power consumption can be subsequently reduced. Results show that the proposed new DWT CRS MISC architecture implementation requires 142 Slices (Xilinx Virtex-II), 129 slices (Xilinx Spartan-3E), 144 Slices (Xilinx Spartan-3L) and 66 Slices (Xilinx Spartan-6). The developed DWT CRS MISC architecture has lower hardware complexity as compared to other existing systems, such as Crypto-Processor in Xilinx Spartan-6 (4828 Slices), Low-Density Parity-Check in Xilinx Virtex-II (870 slices) and ECBC in Xilinx Spartan-3E (1691 Slices). With the use of RC10 development board, the developed DWT CRS MISC architecture can be implemented onto the Xilinx Spartan-3L FPGA to simulate an actual visual sensor node. This is to verify the feasibility of developing a joint compression, encryption and error correction processing framework in WVSNs

    Hardware realization of discrete wavelet transform cauchy Reed Solomon minimal instruction set computer architecture for wireless visual sensor networks

    Get PDF
    Large amount of image data transmitting across the Wireless Visual Sensor Networks (WVSNs) increases the data transmission rate thus increases the power transmission. This would inevitably decreases the operating lifespan of the sensor nodes and affecting the overall operation of WVSNs. Limiting power consumption to prolong battery lifespan is one of the most important goals in WVSNs. To achieve this goal, this thesis presents a novel low complexity Discrete Wavelet Transform (DWT) Cauchy Reed Solomon (CRS) Minimal Instruction Set Computer (MISC) architecture that performs data compression and data encoding (encryption) in a single architecture. There are four different programme instructions were developed to programme the MISC processor, which are Subtract and Branch if Negative (SBN), Galois Field Multiplier (GF MULT), XOR and 11TO8 instructions. With the use of these programme instructions, the developed DWT CRS MISC were programmed to perform DWT image compression to reduce the image size and then encode the DWT coefficients with CRS code to ensure data security and reliability. Both compression and CRS encoding were performed by a single architecture rather than in two separate modules which require a lot of hardware resources (logic slices). By reducing the number of logic slices, the power consumption can be subsequently reduced. Results show that the proposed new DWT CRS MISC architecture implementation requires 142 Slices (Xilinx Virtex-II), 129 slices (Xilinx Spartan-3E), 144 Slices (Xilinx Spartan-3L) and 66 Slices (Xilinx Spartan-6). The developed DWT CRS MISC architecture has lower hardware complexity as compared to other existing systems, such as Crypto-Processor in Xilinx Spartan-6 (4828 Slices), Low-Density Parity-Check in Xilinx Virtex-II (870 slices) and ECBC in Xilinx Spartan-3E (1691 Slices). With the use of RC10 development board, the developed DWT CRS MISC architecture can be implemented onto the Xilinx Spartan-3L FPGA to simulate an actual visual sensor node. This is to verify the feasibility of developing a joint compression, encryption and error correction processing framework in WVSNs

    Seventh Annual Workshop on Space Operations Applications and Research (SOAR 1993), volume 1

    Get PDF
    This document contains papers presented at the Space Operations, Applications and Research Symposium (SOAR) Symposium hosted by NASA/Johnson Space Center (JSC) on August 3-5, 1993, and held at JSC Gilruth Recreation Center. SOAR included NASA and USAF programmatic overview, plenary session, panel discussions, panel sessions, and exhibits. It invited technical papers in support of U.S. Army, U.S. Navy, Department of Energy, NASA, and USAF programs in the following areas: robotics and telepresence, automation and intelligent systems, human factors, life support, and space maintenance and servicing. SOAR was concerned with Government-sponsored research and development relevant to aerospace operations. More than 100 technical papers, 17 exhibits, a plenary session, several panel discussions, and several keynote speeches were included in SOAR '93

    Micro-Nano-Bio Systems for on-line monitoring of in vitro biofilm responses

    Get PDF
    El treball presentat en aquesta tesi doctoral te com objectiu principal la contribució en el camp de la microbiologia per entendre el biofilms i el possible control de desenvolupament mitjançant l’ús de mètodes i enfoc multidisciplinari. Els biofilms estan definits com comunitats de microorganismes que creixen envoltats en una matriu exopolisacárida i s’adhereixen a una superfície inert o teixit viu. La formació dels biofilms bacterians tenen un gran interès en microbiologia clínica degut al desenvolupament d’infeccions que son causades pel contacte directe o per colonització de dispositius mèdics implantats i pròtesis. Actualment es consideren causa de més del 60 % de les infeccions bacterianes. El problema dels biofilms bacterians a nivell clínic es que mostren millor resistència a antibiòtics arribant inclús a ser de 500 a 5000 cops més resistents a agents antimicrobians comparant amb la mateixa bactèria planctònica (bactèria en suspensió). Hi ha hagut moltes temptatives d’adaptar mètodes a laboratoris clínics on es reprodueixen les condicions pel desenvolupament de biofilms, però encara no s’ha arribat a obtenir òptims protocols estàndard per a aquest propòsit de monitoritzar la formació i toxicitat a temps real. Ha crescut l’interès en disseny, desenvolupament i utilització de dispositius de microfluídica que poden emular els fenòmens biològics que ocorren amb diferents geometries, dinàmica de fluids i restriccions de transport de biomassa en microambients fisiològics. La recerca descrita en aquesta tesis s’ha dut a terme amb diferents mètodes “label-free” basats en la variació acústica y/o propietats elèctriques per a la monitorització de biofilms. El treball presentat en la monografia descriu un dispositiu “custom-made” per a la utilització d’Espectroscòpia de impedància electroquímica com a eina útil per a l’obtenció d’informació d’adherència i formació de biofilms. El fet d’afegir nanopartícules com a segon biosensor permet la correlació de biofilm amb la seva toxicitat a temps real per a la detecció del punt òptim de tractament de biofilms. Finalment el disseny d’aquesta tecnologia s’utilitza per l’assaig de la resposta de biofilms a antibiòtics com a model in vitro d’infeccions causades per biofilms.El trabajo presentado en esta tesis doctoral tiene como principal objetivo la contribución en el campo de la microbiología para entender los biofilms y el posible control de desarrollo mediante el uso de métodos y enfoque multidisciplinar. Los biofilms están definidos como comunidades de microorganismos que crecen embebidos en una matriz exopolisacárida y se adhieren a una superficie inerte o tejido vivo. La formación de los biofilms bacterianos tiene un gran interés en microbiología clínica debido al desarrollo de infecciones que son causadas por contacto directo o por colonización de dispositivos médicos implantados y prótesis. Actualmente se consideran la causa de más del 60 % de las infecciones bacterianas. El problema de los biofilms bacterianos a nivel clínico es que muestran mejor resistencia a antibióticos llegando incluso a ser de 500 a 5000 veces más resistentes a agentes antimicrobianos comparado a la misma bacteria planctónica (bacteria en suspensión). Ha habido muchas tentativas de adaptar métodos a laboratorios clínicos donde se reproducen las condiciones para el desarrollo de biofilms, pero aún no se ha llegado a obtener óptimos protocolos estándar para este propósito de monitorizar la formación y toxicidad en tiempo real. Ha crecido el interés en diseño, desarrollo y utilización de dispositivos de microfluídica que puedan emular los fenómenos biológicos que ocurren con diferentes geometrías, dinámica de fluidos y restricciones de transporte de biomasa en microambientes fisiológicos. La investigación descrita en esta tesis se lleva a cabo con diferentes métodos “label-free” basados en variación acústica y/o propiedades eléctricas para la monitorización de biofilms. El trabajo presentado en esta monografía describe un dispositivo “custom-made” para la utilización de Espectroscopia de impedancia electroquímica como herramienta útil para obtener información de adherencia y formación de biofilms. El hecho de añadir nanopartículas como segundo biosensor permite la correlación de biofilm con su toxicidad en tiempo real para la detección del punto óptimo del tratamiento de biofilms. Finalmente el diseño de esta tecnología es usada para el ensayo de la respuesta de biofilms a antibióticos como modelo in vitro de infecciones causadas por biofilms.The work presented in this thesis has the main aim to contribute in the field of clinical microbiology to understand the biofilms and the possible of development through the use of methods with multidisciplinary approach. Biofilms are defined as communities of microorganisms that grow embedded in a matrix of exopolysaccharides and adhering to an inert surface or living tissue. The formation of bacterial biofilms has an interest in clinical microbiology with the development of infections that usually arise from either direct contact or the colonization of implanted medical devices and prostheses. Currently they are considered the cause of over 60% of bacterial infections. The problem of bacterial biofilms at clinical level is showing great resistance to antibiotics, so that the biofilm bacteria are 500 to 5000 times more resistant to antimicrobial agents that the same bacteria grown in planktonic cultures (bacteria in suspension). There have been attempts to adapt methods to clinical laboratories where they reproduce the conditions of biofilms, but have not yet adopted an optimal standard protocol for this purpose to follow-up the formation and toxicity in real-time. There has been a growing interest in design, development and utilization of microfluidic devices that can emulate biological phenomena that occur in different geometries, fluid dynamics and mass transport restrictions in physiological microenvironments. The research described in this thesis deals with different label-free methods based on variation of acoustic and electric properties for biofilm monitoring. The work presented in this monograph describe a custom-made device for using electrochemical impedance spectroscopy (EIS) as useful tool to obtain information of adherence and formation of biofilms. The addition of nanoparticles as toxicity biomarker allows the correlation of biofilm formation with its toxicity in real-time for detention of the optimal point for biofilm treatment. Finally the design of this technology is used for testing the biofilm response to antibiotic as in vitro model of biofilm-related infection

    Geomorphometry 2020. Conference Proceedings

    Get PDF
    Geomorphometry is the science of quantitative land surface analysis. It gathers various mathematical, statistical and image processing techniques to quantify morphological, hydrological, ecological and other aspects of a land surface. Common synonyms for geomorphometry are geomorphological analysis, terrain morphometry or terrain analysis and land surface analysis. The typical input to geomorphometric analysis is a square-grid representation of the land surface: a digital elevation (or land surface) model. The first Geomorphometry conference dates back to 2009 and it took place in Zürich, Switzerland. Subsequent events were in Redlands (California), Nánjīng (China), Poznan (Poland) and Boulder (Colorado), at about two years intervals. The International Society for Geomorphometry (ISG) and the Organizing Committee scheduled the sixth Geomorphometry conference in Perugia, Italy, June 2020. Worldwide safety measures dictated the event could not be held in presence, and we excluded the possibility to hold the conference remotely. Thus, we postponed the event by one year - it will be organized in June 2021, in Perugia, hosted by the Research Institute for Geo-Hydrological Protection of the Italian National Research Council (CNR IRPI) and the Department of Physics and Geology of the University of Perugia. One of the reasons why we postponed the conference, instead of canceling, was the encouraging number of submitted abstracts. Abstracts are actually short papers consisting of four pages, including figures and references, and they were peer-reviewed by the Scientific Committee of the conference. This book is a collection of the contributions revised by the authors after peer review. We grouped them in seven classes, as follows: • Data and methods (13 abstracts) • Geoheritage (6 abstracts) • Glacial processes (4 abstracts) • LIDAR and high resolution data (8 abstracts) • Morphotectonics (8 abstracts) • Natural hazards (12 abstracts) • Soil erosion and fluvial processes (16 abstracts) The 67 abstracts represent 80% of the initial contributions. The remaining ones were either not accepted after peer review or withdrawn by their Authors. Most of the contributions contain original material, and an extended version of a subset of them will be included in a special issue of a regular journal publication

    Risk Management for the Future

    Get PDF
    A large part of academic literature, business literature as well as practices in real life are resting on the assumption that uncertainty and risk does not exist. We all know that this is not true, yet, a whole variety of methods, tools and practices are not attuned to the fact that the future is uncertain and that risks are all around us. However, despite risk management entering the agenda some decades ago, it has introduced risks on its own as illustrated by the financial crisis. Here is a book that goes beyond risk management as it is today and tries to discuss what needs to be improved further. The book also offers some cases

    A Routing Mechanism Based on the Sensing Relevancies of Source Nodes for Time-Critical Applications in Visual Sensor Networks

    No full text
    Abstract — Wireless sensor networks may be deployed to retrieve visual information from the monitored field, enriching monitoring and control applications. Whenever a set of cameraenabled sensor nodes are deployed for time-critical monitoring, visual information as still images and video streams may need to reach the sink as soon as possible, requiring a differentiated treating of the network when compared with non-critical visual data. In such way, considering that source nodes may have different sensing relevancies for the application, according to the desired monitoring tasks and the current sensors ’ poses and fields of view, we propose a delay-aware multihop routing mechanism where higher relevant visual data packets are routed through paths with lower end-to-end delay. As sensor nodes are expected to be energy-constrained, transmitting only highrelevant packets through shorter/faster paths may prolong their lifetime and assure longer time-critical delivering, with low impact to the overall monitoring quality. Keywords — Multihop routing; Energy-efficiency; Sensing relevance; Time-critical transmission; Visual sensor networks
    corecore