16 research outputs found

    Gas Sensor Array Drift in an E-Nose System: A Dataset for Machine Learning Applications

    Get PDF
    Gas sensor arrays are widely used in various applications such as environmental monitoring, industrial process control, and medical diagnosis. However, one of the main challenges in using gas sensor arrays is their tendency to drift over time, which can significantly affect their accuracy and reliability. In this research paper, we present a gas sensor array drift dataset that can be used to evaluate and develop drift compensation techniques. The dataset consists of measurements from an array of eight metal oxide gas sensors exposed to six different target gases at varying concentrations over several months. The paper also describes the experimental setup, data acquisition process, and preliminary dataset analysis. Our results show that the sensor array exhibits significant drift over time and that the drift patterns vary depending on the target gas and concentration. This dataset can provide a valuable resource for researchers and engineers working on gas sensor array applications and can help advance the development of more robust and accurate gas sensing systems

    Potentiometric Electronic Tongue to Resolve Mixtures of Sulfide and Perchlorate Anions

    Get PDF
    This work describes the use of an array of potentiometric sensors and an artificial neural network response model to determine perchlorate and sulfide ions in polluted waters, by what is known as an electronic tongue. Sensors used have been all-solid-state PVC membrane selective electrodes, where their ionophores were different metal-phtalocyanine complexes with specific and anion generic responses. The study case illustrates the potential use of electronic tongues in the quantification of mixtures when interfering effects need to be counterbalanced: relative errors in determination of individual ions can be decreased typically from 25% to less than 5%, if compared to the use of a single proposed ion-selective electrode

    Whisky tasting using a bimetallic nanoplasmonic tongue

    Get PDF
    Metallic nanostructures are ideal candidates for optical tongue devices thanks to their chemical stability, the sensitivity of their plasmonic resonance to environmental changes, and their ease of chemical-functionalization. Here, we describe a reusable optical tongue comprised of multiplexed gold and aluminum nano-arrays; a bimetallic device which produces two distinct resonance peaks for each sensing region. Through specific modification of these plasmonic arrays with orthogonal surface chemistries, we demonstrate that a dual-resonance device allows us to halve sensor sizes and data-acquisition times when compared to single-resonance, monometallic devices. We applied our bimetallic tongue to differentiate off-the-shelf whiskies with > 99.7% accuracy by means of linear discriminant analysis (LDA). This advance in device miniaturization, functionalization, and multiplexed readout indicates nanoplasmonic tongues will have future applications in chemical mixture identification in applications where portability, reusability, and measurement speed are key

    Electronic tongue coupled to an electrochemical flow reactor for emerging organic contaminants real time monitoring

    Get PDF
    UID/AMB/04085/2019. UID/FIS/00068/2019. PTDC/FIS-NAN/0909/2014. SFRH/BD/114674/2016.Triclosan, which is a bacteriostatic used in household items, has raised health concerns, because it might lead to antimicrobial resistance and endocrine disorders in organisms. The detection, identification, and monitoring of triclosan and its by-products (methyl triclosan, 2,4-Dichlorophenol and 2,4,6-Trichlorophenol) are a growing need in order to update current water treatments and enable the continuous supervision of the contamination plume. This work presents a customized electronic tongue prototype coupled to an electrochemical flow reactor, which aims to access the monitoring of triclosan and its derivative by-products in a real secondary effluent. An electronic tongue device, based on impedance measurements and polyethylenimine/poly(sodium 4-styrenesulfonate) layer-by-layer and TiO2, ZnO and TiO2/ZnO sputtering thin films, was developed and tested to track analyte degradation and allow for analyte detection and semiquantification. A degradation pathway trend was observable by means of principal component analysis, being the sample separation, according to sampling time, explained by 77% the total variance in the first two components. A semi-quantitative electronic tongue was attained for triclosan and methyl-triclosan. For 2,4-Dichlorophenol and 2,4,6-Trichlorophenol, the best results were achieved with only a single sensor. Finally, working as multi-analyte quantification devices, the electronic tongues could provide information regarding the degradation kinetic and concentrations ranges in a dynamic removal treatment.publishersversionpublishe

    Hybrid Electronic Tongue based on Multisensor Data Fusion for Discrimination of Beers

    Get PDF
    This paper reports the use of a hybrid Electronic Tongue based on data fusion of two different sensor families, applied in the recognition of beer types. Six modifiedgraphite- epoxy voltammetric sensors plus 15 potentiometric sensors formed the sensor array. The different samples were analyzed using cyclic voltammetry and direct potentiometry without any sample pretreatment in both cases. The sensor array coupled with feature extraction and pattern recognition methods, namely Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), was trained to classify the data clusters related to different beer varieties. PCA was used to visualize the different categories of taste profiles and LDA with leave-one-out cross-validation approach permitted the qualitative classification. The aim of this work is to improve performance of existing electronic tongue systems by exploiting the new approach of data fusion of different sensor types

    Solid-contact potentiometric sensors and multisensors based on polyaniline and thiacalixarene receptors for the analysis of some beverages and alcoholic drinks

    Get PDF
    © 2018 Sorvin, Belyakova, Stoikov, Shamagsumova and Evtugyn. Electronic tongue is a sensor array that aims to discriminate and analyze complex media like food and beverages on the base of chemometrics approaches for data mining and pattern recognition. In this review, the concept of electronic tongue comprising of solid-contact potentiometric sensors with polyaniline and thacalix[4]arene derivatives is described. The electrochemical reactions of polyaniline as a background of solid-contact sensors and the characteristics of thiacalixarenes and pillararenes as neutral ionophores are briefly considered. The electronic tongue systems described were successfully applied for assessment of fruit juices, green tea, beer, and alcoholic drinks They were classified in accordance with the origination, brands and styles. Variation of the sensor response resulted from the reactions between Fe(III) ions added and sample components, i.e., antioxidants and complexing agents. The use of principal component analysis and discriminant analysis is shown for multisensor signal treatment and visualization. The discrimination conditions can be optimized by variation of the ionophores, Fe(III) concentration, and sample dilution. The results obtained were compared with other electronic tongue systems reported for the same subjects

    Nanoplasmonic discrimination of organic solvents using a bimetallic optical tongue

    Get PDF
    Optical sensor arrays serve as excellent tools for the recognition and discrimination of a variety of liquid and gas mixtures. They achieve this via pattern-based recognition from signals across multiple sensing regions, where each region is modified to produce a different interaction, such as partial-selectivity, with desired analytes. As their use progresses towards rapid, highly personalized diagnosis and component identification devices, reduction in complexity and data-acquisition time is key. One way to achieve this is through reducing the number of elements in the array without compromising the differential capabilities of the device. Here, we present a device with elements consisting of plasmonic sensors of two superimposed plasmonic nanoarrays; one fabricated using gold and the other aluminum. Each material produces a distinct plasmonic response while also allowing us to selectively functionalize each pattern with a different â€sensing chemistry.' This allows for the development of different partially-selective elements, via modification with functional thiols and silanes, respectively. Since optical sensing arrays of this type require multiple sensing regions, each producing a different optical response, our bimetallic method results in twice as much data from one measurement, providing the same amount of data necessary to allow for successful differentiation with fewer elements in the sensing array. We demonstrate that by altering the surface chemistry of the nanostructures we can tune their partial selectivity to organic solvents. We believe this technology could be useful in areas that rely on assays for simultaneous determination of multiple analytes, such as the medical, food and drug, and security industries

    Real-Time Water Quality Monitoring with Chemical Sensors

    Get PDF
    Water quality is one of the most critical indicators of environmental pollution and it affects all of us. Water contamination can be accidental or intentional and the consequences are drastic unless the appropriate measures are adopted on the spot. This review provides a critical assessment of the applicability of various technologies for real-time water quality monitoring, focusing on those that have been reportedly tested in real-life scenarios. Specifically, the performance of sensors based on molecularly imprinted polymers is evaluated in detail, also giving insights into their principle of operation, stability in real on-site applications and mass production options. Such characteristics as sensing range and limit of detection are given for the most promising systems, that were verified outside of laboratory conditions. Then, novel trends of using microwave spectroscopy and chemical materials integration for achieving a higher sensitivity to and selectivity of pollutants in water are described

    Potentiometric Multisensory Systems with Novel Ion-Exchange Polymer-Based Sensors for Analysis of Drugs

    Get PDF
    This paper examines potentiometric multisensory systems that consist of novel cross-sensitive PD-sensors (Potential Donnansensors). The analytical signal of PD-sensors is the Donnan potential at the ion-exchange polymer/electrolyte test solution interface. The use of novel sensors for the quantitative analysis of multicomponent aqueous solutions of amino acids, vitamins and medical substances is based on protolytic and ion-exchange reactions at the interfaces of ion-exchangers and test solutions. The potentiometric sensor arrays consist of PD-sensors and ion-selective electrodes. Such systems were developed for the multicomponent quantitative analysis of lysine monohydrochloride, thiamine chloride and novocaine hydrochloride solutions that contained salts of alkaline and alkaline-earth metals, as well as for mixed solutions of nicotinic acid and pyridoxine hydrochloride. Multivariate methods of analysis were used for sensor calibration and the analysis of the total response of sensor arrays. The errors of measurement of the electrolytes in aqueous solutions did not exceed 10%. The developed multisensory systems were used to determine the composition of a therapeutic "Mineral salt with low content of sodium chloride" and to determine concentrations of novocaine in sewage samples from a dental clinic
    corecore