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Abstract 

This paper reports the use of a hybrid Electronic Tongue based on data fusion of two 

different sensor families, applied in the recognition of beer types. Six modified graphite-

epoxy voltammetric sensors plus 15 potentiometric sensors formed the sensor array. The 

different samples were analyzed using cyclic voltammetry and direct potentiometry without 

any sample pretreatment in both cases. The sensor array coupled with feature extraction and 

pattern recognition methods, namely Principal Component Analysis (PCA) and Linear 

Discriminant Analysis (LDA), was trained to classify the data clusters related to different 

beer varieties. PCA was used to visualize the different categories of taste profiles and LDA 

with leave-one-out cross-validation approach permitted the qualitative classification. The 

aim of this work is to improve performance of existing electronic tongue systems by 

exploiting the new approach of data fusion of different sensor types. 
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1. Introduction 

Beer is a popular alcoholic beverage, and probably one of the oldest manufactured by 

mankind. Brewing is based on the fermentation of starches, commonly derived from cereal 

grains such as barley, wheat, maize and rice. Most beers are flavored with hops, which add 

bitterness and aroma besides acting as a natural preservative and occasionally, other 

flavorings such as seasonings, herbs or fruits may also be included in its elaboration [1]. 

The direct effect of the use of hops is the release of α-acids, which during the boiling 

process are converted into the iso-α-acids, whose significance is relevant not only for foam 

stability, but also for their bactericidal effects [2]. 

 Up to now, different styles of beer have been created around the world. These types 

of beers vary in characteristics such as flavor, color and aroma. Related to this, beer is 

generally classified into two main kinds based on the yeast used for fermentation. These 

two styles are Ales, which use top-fermenting yeast, and Lagers which are brewed with 

bottom-fermenting yeast. On the one hand, some common varieties of Ales include the 

Indian Pale Ale (IPA) variety, which commonly have a nutty or fruity state, and Stout 

which is easily identified by its very dark color and roasted taste. On the other hand, some 

beers categorized as Lagers include the following varieties: Pilsner which is widely 

produced industrially and could be considered the most popular type of beer in the world 

(identified by its light yellow to golden color and usually balanced taste) or the American 

style Lagers, mostly produced in America, and characterized by their light color and flavor 

as well as their high carbonic acid content [3].  

 An important characteristic of beers is bitterness. Bitterness determination is related 

with the total amount of iso-α-acids. This property is currently quantified in the European 

Bitter Units (EBU) scale. There are several methods related to the determination of iso-α-

acids in beers (i.e. using techniques as UltraViolet spectrophotometry (UV) and High 

Performance Liquid Chromatography (HPLC) coupled to UV or Mass Spectrometry (MS) 

detection [4, 5]). However, these analytical methods often require long analysis time, 
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complicate sample pretreatment and the use of sophisticated and expensive equipment. In 

this sense, due to its characteristics, working methodologies as Electronic Tongues (ETs) 

represent promising chemical analysis systems for the analysis of foods and beverages [6]. 

ETs are analytical systems consisting in an array of electrochemical sensors coupled to 

advanced data processing tools, able to interpret the complex chemical signals and provide 

the sought information of the analyzed samples [7]. Their use is becoming more widespread 

in food analysis, given the advantages offered in tasks such as recognition and 

classification, quantification of components and prediction of properties. In this sense, there 

are many reports using ETs for the analysis of milk, fruit juices, coffee, wine and beer [8, 

9]. Applications of ETs related to beer analysis are focused on the discrimination of 

samples and the prediction of some taste attributes [2, 10], in the correlation of features 

described by a sensory panel and ETs [11], and more recently, on the monitoring of beer 

aging and its fermentation process [12, 13].  

 Data analysis and pattern recognition in particular, are a fundamental part of any 

sensor array system [14]. For instance, ETs that incorporate non-linear chemometrics such 

as ANNs have been demonstrated in various applications. Many ANN configurations and 

training algorithms have been used to build up ETs;  these include Probabilistic Neural 

Networks (PNN) with Radial Basis Functions (RBF) or Feed-Forward Networks with 

Backpropagation (BP) learning method [12], Fuzzy ARTMAP Neural Networks [15] or 

Support Vector Machines (SVM) [16]. Apart, linear pattern recognition methods namely 

Principal Component Analysis (PCA), the K-Nearest Neighbor (KNN) and Linear 

Discriminant Analysis (LDA) have been commonly used in ET systems [17]. 

 A key principle in designing ETs is the selection of sensors forming the array and 

their ability to provide a useful chemical fingerprint from the samples. This potential might 

be increased if using sensors with different measuring principles (e.g. potentiometry, 

voltammetry, impedance, etc). However, the use of multiple source sensing demands more 

effective data processing tools.  Thus, sensor data fusion is a strategy that combines and 

analyzes the multisource data to take advantage of their characteristics and that improves 
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the representation of information to build a prediction or decision model [18]. Data fusion 

is therefore a tool that permits to make compatible measurements originated from very 

different nature. The research of data fusion in chemistry is in a development stage, 

although there are few reports describing its benefits in this field [19].  

 The aim of the present work is to use a hybrid ET based on potentiometric and 

voltammetric sensors, furnished with a data fusion processing tool,  to attempt the 

classification of beers. Considered beer samples for this study were selected taking into 

account three main classes: IPA, Lager and Stout. The electrochemical sensor array was 

composed by fifteen solid-state potentiometric sensors employing polymeric membranes 

with common cations and anions ion formulations and six voltammetric bulk-modified 

sensors using metallic nanoparticles and conducting polymers, in order to obtain 

differentiate catalytic responses.  Electrochemical responses obtained from potentiometric 

measures and Cyclic Voltammetry (CV) were used as departure information; data 

processing stages including feature extraction, Principal Component Analysis (PCA) and 

Linear Discriminant Analysis (LDA), were used till discrimination of the different types of 

beer was possible. 

 

 

2. Experimental 

 

2.1 Study case 

Samples under study were acquired at a craft brewery (Art Cervecers Company,  

Canovelles, Barcelona, Spain) and at a local supermarket. A total of 25 samples of beer 

from different brands and varieties were selected. Samples were chosen according with the 

mentioned types of beer (IPA, Lager and Stout) and also taking into account its production 

method (craft or commercial), in order to have a diversified sample set. In this way, the 

formed set included 17 Lager, 3 IPA and 5 Stout beers. Table 1 summarizes detailed 

information about the brands and beer types used. 
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2.2 Sensor preparation 

Due to the complexity of the case, samples were independently processed using two 

different arrays of electrochemical sensors (i.e. potentiometric and voltammetric) and their 

corresponding techniques.  

 The 15 potentiometric sensors used were all solid-state ion-selective electrodes 

(ISEs) with a solid contact from a conductive epoxy composite. This configuration has been 

extensively used in our laboratories [20]. The PVC membranes were formed by solvent 

casting the sensor cocktail dissolved in THF. The formulation of the different membranes 

used (components supplied by Fluka, Switzerland) is outlined in Table 2. 

 The voltammetric sensor array was formed by 6 graphite-epoxy voltammetric 

sensors made with different modifiers added to the bulk mixture, selected according  to 

previous experience in our laboratory [21]. Five of them were modified by adding 

components as nanoparticles of copper and platinum, conducting polymer in powder like 

polypyrrole, phtalocyanine and Glucose Oxidase (Sigma-Aldrich, St. Louis, USA) – one 

component per sensor (Table 2). The last sensor (GEC) did not incorporate any. Standard 

graphite-epoxy composites were prepared using 50-μm particle size graphite powder (BDH 

laboratory Supplies, UK) and Epotek H77 resin and hardener (both from Epoxy 

Technology, USA). Surface of the electrodes in contact with the samples was 28 mm2. 

 

2.3 Electrochemical measurements 

Each beer bottle was opened just before starting the measurement, thus to avoid oxidation 

and loss of CO2 in the sample; and to ensure there is no history effect. Also, each beer 

sample was diluted by mixing it with distilled water in a ratio 30:70 of beer and water 

respectively, in order to reduce matrix effect and to minimize the apparition of bubbles on 

the electrode surface. Potentiometric and voltammetric readings were carried out 

immediately after this sample dilution. 
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 Potentiometric measurements were performed using a laboratory constructed data-

acquisition system, consisting of 32 input channels implemented with amplifier-follower 

circuits employing operational amplifiers (TL071, Texas Instruments), which adapt the 

impedances of each sensor. Measurements were unipolar, with the reference electrode 

connected to ground, and were referred to an Orion 90-02-00 double junction Ag/AgCl 

reference electrode. Each channel was noise-shielded with its signal guard. The outputs of 

each amplifier were filtered using a passive low-pass filter and connected to an A/D 

conversion card (Advantech PC-Lab 813, Taiwan) installed into a Pentium PC. The 

readings were obtained employing custom designed software programmed with 

QuickBASIC 4.5 (Microsoft). Readings with the potentiometric electronic tongue were 

taken 5 min after dipping the sensors in the sample, once the emf values were stabilized.  

 The voltammetric measurement cell was formed by the 6-sensor voltammetric array, 

a reference double junction Ag/AgCl electrode (Thermo Orion 900200) plus a commercial 

platinum counter electrode (Model 52–67, Crison Instruments). Using the same diluted beer 

samples, CV measurements were done using a 6-channel AUTOLAB PGSTAT20 

(Ecochemie, Netherlands). Cyclic voltammograms were carried out at room temperature 

(25ºC) under quiescent condition. Potential was cycled between -1.0 V and 1.2 V vs 

Ag/AgCl, with a scan rate of 100 mV·s-1 and a step potential of 9 mV. All experiments 

were done without any physical regeneration of electrode surfaces. Instead, and to prevent 

the accumulative effect of impurities on electrode surfaces, an electrochemical cleaning 

stage was done between samples applying a conditioning potential of +1.4 V for 40 s after 

each measurement, in a separate cell containing 50 ml of distilled water. 

 

2.4 Feature extraction 

Feature extraction is an important stage in many signal treatment procedures. In the case of 

potentiometric ETs, this stage is not employed if departure information is formed by 

steady-state potentials coming from ion-selective electrodes.  Nevertheless, this situation is 

different for voltammetric ETs, given the nature of their signals involves the recording of 
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currents generated in the solutions under study related to an applied potential, i.e. one 

vector is generated per each sensor. Voltammetric signals contain hundreds of measures 

and usually overlapping regions with non-stationary characteristics. Thus, their high 

complexity should be reduced in order to avoid redundancies in the information and 

achieve proper mathematical models with correct generalization ability [9, 17]. In other 

words, by retrieving particular information from the original voltammogram, extracted 

features might be obtained that can confer more selectivity to voltammetric sensors. On the 

other hand, it is not uncommon that the number of original features may exceed the number 

of measurements available to train the pattern recognition methods; this is a dangerous 

situation because there is a high risk of overfitting. In this sense, the aim of feature 

extraction stage  in a data fusion procedure is not only focused to making compatible the 

nature of the two distinct signals for each sensor (discrete values from the potentiometric 

ET and vectors from the voltammetric ET) and to facilitating the computation, but also in 

retaining the relevant information from each signal type. To achieve this goal, seven 

representative features from the cyclic voltammogram of each sensor on the array were 

extracted as can be seen in Figure 1. The complete list of these features are: (1) Imean [-1, -

0.50]: the average value of the anodic current measured in the potential range [-1 V, -0.50 

V]; (2) Imean [-0.75, -0.50]: the average value of the anodic current measured in the potential 

range [-0.75 V, -0.50 V]; (3) Imean [-0.25, 0]: the average value of the anodic current 

measured in the potential range [-0.25 V, 0 V]; (4) Imean [0.25, 0.50]: the average value of 

the anodic current measured in the potential range [0.25 V, 0.50 V]; (5)  Imean [0.75, 1]: the 

average value of the anodic current measured in the potential range [0.75 V, 1 V]; (6) ΔI(-

0.75 V) = Imax(-0.75 V) - Imin(-0.75 V): the current change calculated as the difference 

between the cathodic and anodic values in the specific potential of -0.75 V and (7) ΔI(1 V) 

= Imax(1 V) - Imin(1 V): the current change calculated as the difference between the cathodic 

and anodic values in the specific potential of 1 V. 

 These 7 features were extracted from the voltammograms of each sensor. Since 

there were 6 voltammetric sensors within the array, each measurement from the 
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voltammetric ET was described by 42 variables. Whereas 15 potentiometric sensors were 

used to characterize beer samples, each potentiometric measurement was described by 15 

variables. The data fusion matrix considered had 25 rows (i.e. samples) and 57 columns 

(i.e. variables). In order to reduce the variability associated to possible fluctuations in both 

electronic tongue signals, and to minimize other sources of variance also affecting the total 

signal of the voltammetric and potentiometric sensors, normalized signals rather than 

absolute signals were used to construct PCA and LDA models. For variable normalization, 

each variable value was divided by the square of the maximum value in the same column. 

Although this procedure could assure obtaining centered values, redundant information it is 

not avoided.  For final application, it is advisable to choose the most relevant features from 

the extracted ones using some feature selection process. 

 

2.5 Linear discriminant analysis 

Linear discriminant analysis (LDA) is one of the most used classification algorithms. It has 

been widely used and proven successfully in many applications of electronic nose [22, 23] 

and electronic tongue [24, 25]. In fact, using this method, data are separated in k a priori 

defined classes by using linear combinations of the variables in each group to create k-1 

new discriminant axis. LDA is widely recognized as an excellent tool to obtain vectors 

showing the maximal resolution between a set of previously defined categories. In LDA, 

vectors minimizing the Wilks’ lambda () are obtained [26]. This parameter is calculated 

as the sum of squares of the distances between points belonging to the same category 

divided by the total sum of squares. Values of    approaching zero are obtained with well-

resolved categories, whereas overlapped categories approach a  of one. Hence, LDA tries 

to find a linear discriminant function along which the classes are best separated. For 

theoretical background and details of the algorithm, reader is referred to [27]. Performance 

of the final LDA model was evaluated using leave-one-out cross-validation method.   
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2.6 Feature selection 

Feature selection is motivated by the need of using the best set of input variables which will 

allow the pattern recognition method to achieve the correct a posteriori classification of the 

data in their a priori groups [28, 29]. The selection of the features to be included in the 

LDA models was performed using the SPSS stepwise algorithm v.11.0 (SPSS Inc., 

Chicago, IL, USA). According to this algorithm, a feature is selected when the reduction of 

 produced after its inclusion in the model exceeds Fin, the incorporation threshold of a 

test of comparison of variances or Fisher’s F-test. However, the incorporation of a new 

feature modifies the significance of those features which are already present in the model. 

For this reason, after the inclusion of a new feature, a rejection threshold, Fout, is used to 

decide if one of the other features should be removed from the model. When all the features 

in the model meet the criterion to be kept and none of the other features meet the criterion 

to enter, the stepwise selection process is stopped.  

Then, after proper selection of features to be included in the classification model, 

LDA model is built and its accuracy is evaluated by means of leave-one-out cross 

validation method. At this point, based on obtained predictive capabilities and previous 

experience, Fin and Fout values are modified so that final performance of the model is 

optimized (maximum classification success rate). 

 

2.7 Data Processing 

Extracting the seven aforementioned features from each voltammogram and pre-processing 

the resulting data matrix were an automated process via written-in-house MATLAB® v. 

2012a routines (Math Works, Inc., Natick, MA). The Linear Discriminant Analysis (LDA 

from SPSS software) was applied on data grouping features of all the sensors and all the 

measurements. 
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3. Results and discussion 

The data obtained by the process mentioned above was subjected to different pattern 

recognition techniques such as PCA and LDA. First, resolution of the case was attempted 

using potentiometric sensors only, then voltammetric sensors alone and finally with the 

hybrid ET approach. 

 

3.1 Use of Potentiometric ET 

Radar plot was built in order to observe wether any patterns (i.e. fingerprints) were present 

in beer samples. Fig. 2A shows a representative case. This helped visualizing some ionic 

characteristics of the beers, although no clear pattern variation existed between IPA, Lager 

and Stout types. As it can be seen in Fig. 2A, differentiated response was obtained for the 

different type of sensors and beers. It should be noticed the differences obtained especially 

for Na+ sensor, also in the case of pH and Ca2+ ISEs. Other sensors like Cl-, NO3
- or NH4

+ 

displayed distinct responses for at least two beer types, even clear differences were not as 

noticeable. Other sensors like K+ ISE or some with generic response to cations did not 

present such distinguishable signals, probably due to their comparable content in beers. 

In this sense, the importance of those sensors could be expected given there are 

some ions in water (i.e. carbonate, calcium, magnesium, sodium, chloride and sulphate plus 

its pH) whose concentration can determine the type of beer obtained and to which much 

attention is paid during brewery [3]. Nevertheless, it should be noticed that the use of an 

array of cross-sensitive sensors with slightly different sensitivities (those non 

autocorrelated) forms an overdetermined system which would permit the simultaneous 

determination of a number of analytes in a complex mixture, although not clearly 

distinguished responses were individually obtained [7]. 

Before performing PCA using the potentiometric electronic tongue measurements, 

the data matrix was mean-centered. PCA is a powerful linear unsupervised pattern 

recognition method that reduces the dimensionality of a multivariate problem and helps to 
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visualize the different categories of taste and odor profiles [15, 21, 30] by highlighting 

similarities and differences between sample clusters. The results showed that the total 

variance of the first three principal components (PC1, PC2 and PC3) was 86.48%. Based on 

PCA, similarities and differences between Lager, Stout and IPA beers were not easy to 

find. The three kinds of beers cannot be accurately identified at all; the reason for this may 

be that the relationship among the used potentiometric sensors does not express a cross-

sensitivity to the studied beers. 

 To estimate the success rate in sample identification, a LDA classifier using leave-

one-out cross-validation was implemented, given the small sample set available. LDA was 

trained 25 times using 24 training samples and validated using the sample that had been left 

out. In this re-sampling approach all measurements available act as validation sample once. 

Performance of the model, estimated as the average performance over the n tests, can be 

summarized in that only 48% of the 25 samples from the three different beer types were 

correctly classified. Hence, the employed electronic tongue using such potentiometric 

sensors coupled to LDA model was not able to demonstrate the proper ability to 

differentiate between beer samples. 

 

3.2 Use of Voltammetric ET 

It is observed that the different voltammetric electrodes used (e.g. Figure 2B-2G) displayed 

differentiated signals for each kind of beer. As can be seen, different response profiles were 

obtained depending on the nature of the modifier employed (not only in the voltammogram 

shape, but also in the obtained currents); thus different fingerprints could be extracted with 

each type of sensor. Although similarities were observed, in general, some differentiated 

responses could be seen at both extreme potentials in the oxidation and reduction zone.  

A feature extraction-pattern recognition strategy was then chosen in order to reduce 

the huge amount of data contained in the whole voltammetric data set and to achieve 

correct recognition of the beer type. In this way, 7 different features representing major 
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differences observed in those regions were selected from each voltammogram; these, from 

an electrochemical point of view, could be taken as indicator of the compounds that can be 

easily reduced such as flavonols or oxidized such as saccharides. A mean centering pre-

processing technique was applied to the voltammetric data matrix. As first step, PCA was 

applied to the dataset obtained with the 42 extracted variables (6 sensors x 7 features). 

Results show that the first three principal components captured 81.7% of data variance, 

while overlapping between the beer classes was observed. 

 As before, LDA model was performed on the voltammetric electronic tongue data to 

estimate the classification success rate in sample identification using leave-one-out cross-

validation approach. A very low success rate in classification was obtained, with only seven 

samples classified correctly among 25 beer samples leading to 40% of classification 

success rate. Therefore, the used electronic tongue with the employed voltammetric 

sensors, and the information extracted coupled to LDA approach, was also not able to 

distinguish between the three kinds of beer.  

 

3.3 Hybrid ET 

Before performing pattern recognition with the hybrid ET, we attempted a variable 

selection using LDA stepwise technique separately on each data set in order to discard 

features that may disturb the classification task. Unfortunately, a clear area of overlapping 

still exists for the potentiometric ET measurements. Moreover, variable selection was quite 

suitable for voltammetric ET in terms of LDA classification success rate which increased 

significantly from 40% to 84%. However, this improvement was not sufficient to yield a 

good classification of the beers. In an attempt to further enhance this finding, we suggest to 

carry out data fusion technique. 

 In order to perform the fusion of data from the two ETs, a low level of abstraction 

was chosen [31, 32]. In our case, this means that the voltammetric and potentiometric ETs 

data sets are combined together to make a single data matrix, with number of rows equal to 
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the number of samples and number of columns equal to the number of features extracted 

from both voltammetric and potentiometric channels. The low level of abstraction for the 

feature selection is in connection with the fact of the different sensors signal dimensionality 

[31]. Nevertheless, merging measurements from the two sensor types could potentially 

provide increased redundancy connected with identification ability. The idea behind the 

data fusion approach was to observe the classification performance when using single 

sensors from the two sensor families. Besides, it is obvious that the number of features 

from the two sources would be similar when low-level abstraction data fusion is performed. 

If the number of variables from one instrument is significantly larger, they could dominate 

the fused data set [32]. Hence, in the low level fusion approach, the data set obtained from 

each sensor family (i.e. voltammetric and potentiometric) were merged in a single matrix of 

25 samples by 57 features (the 42 previous features from the voltammetric ET plus the 15 

emf potentials from the potentiometric sensors used). Afterwards, stepwise LDA was 

applied to the merged set to select the features with highest discriminating power while 

removing the ones that did not contribute to the classification. This extra-step, not 

performed in previous models, seeks to avoid irrelevant or redundant features from the low-

level abstraction data fusion set. In this manner, the stepwise technique used the Wilk’s 

lambda method with Fin=1.7 for a feature to be added and Fout=0.6 for a feature to be 

deleted from the model. These threshold values were chosen as a balance between keeping 

the number of selected features small and obtaining high classification success rate by 

LDA. For a given combination of Fin and Fout values, the algorithm used a leave-one-out 

resampling method within the training subset to select features and estimate the weights for 

the LDA classifier. The % of correct classification was used as the figure of merit for 

optimizing values of Fin and Fout. Out of the whole set of features only 15 features from the 

initial data set (14 from voltammetric data set and 1 from potentiometric data set) were 

finally required to achieve the best classification ability.  

Despite the efforts made to keep a similar number of features for both families (i.e. 

the use of a low-level abstraction for feature selection), a higher proportion of voltammetric 
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features were finally taken; this may be explained by the higher dimensionality of 

voltammetric sensor data (490 current values·sample-1·sensor-1, i.e. a total of 2940 data 

points·sample-1) when compared to potentiometric sensors (1 potential value·sample-

1·sensor-1, i.e. a total of 15 data points·sample-1). Besides, results of this feature selection 

stage suggest that slightly richer information related to beer composition (e.g. polyphenols, 

flavonols, saccharides, etc.) can be deduced from the voltammetric array, but still not 

enough to achieve the best classification. In this manner, by using the hybrid ET, 

complementary information may be obtained; that is, potentiometric sensors provided 

information related to ionic composition while amperometric sensors provided information 

more related to electroactive compounds present. Thus, when joining both data sets, 

complete information was obtained that allowed the correct discrimination of beer samples. 

 The resulting data matrix (25 samples x 15 features) was mean-centered before the 

PCA was performed. The score plot of the first three principal components for the three 

kinds of beers is shown in Figure 3. As can be appreciated, samples of the three different 

classes are well separated by the first three components (PC1, PC2 and PC3), which cover 

the 82.44% of the total variance. Because of this satisfactory result, it can be deduced that 

the combined data set contains now enough information and displays a high cross-

sensitivity to the beer samples. 

 Linear discriminant analysis (LDA) was conducted on the merged data set as 

classification tool, at a 5% significance level. Initially, the model was built using all the 

available samples as training set, in order to check the classification capability of LDA. It 

was found that all the samples were correctly classified in their origin group. LDA results 

are shown in Figure 4. The two first factors accounted for ca. 100 % of the variance in the 

data. Plots of the first two discriminant functions show high separation of the three groups. 

Function 1 seemed to discriminate mostly between Stout beer from Lager and IPA beers. In 

the vertical direction (Function 2) there was an evident discrimination between Lager from 

IPA and Lager from Stout. The classification results of LDA leave-one-out cross-validation 

approach, in terms of the confusion matrix, are reported in Table 3. Rows indicate expected 
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beers class and columns predicted ones. As it can be noticed in this table, only one beer 

sample was misclassified: specifically, one sample belonging to Stout was misclassified as 

IPA class. Hence, the classification success rate of the three kinds of beer reaches 96% of 

accuracy. The efficiency of the classification obtained was also evaluated according to its 

sensitivity, i.e. the percentage of objects of each class identified by the classifier model, and 

to its specificity, the percentage of objects from different classes correctly rejected by the 

classifier model. The value of sensitivity, averaged for the three classes considered was, 

93.3%, and that of specificity was 98.5%. 

 Finally, to verify the significance of the feature from the potentiometric data on the 

final performance of the LDA treatment, we applied LDA on the data set formed with only 

the 14 features selected from the voltammetric sensors. As a result, the classification rate 

was demoted to 84% of correct classification. This confirms best performance of LDA 

(96%) obtained when all LDA stepwise selected features were taken: 14 selected features 

from the voltammetric data set and one selected feature from the potentiometric data set. 

 

4. Conclusions 

A hybrid electronic tongue based on the combination of potentiometric and voltammetric 

sensors was developed in order to create a tool capable of distinguishing between different 

kinds of beers. The sensors array coupled with feature extraction and pattern recognition 

methods, namely Principal Component Analysis (PCA) and Linear Discriminant Analysis 

(LDA), were trained to classify the data clusters related to different beer types. PCA was 

used to visualize the different categories of taste profiles and LDA with leave-one-out 

cross-validation approach permitted the qualitative classification. According to the LDA 

model, 96% of beer samples were correctly classified. Moreover, the performance of hybrid 

electronic tongue systems by exploiting the new approach of data fusion of different sensor 

families, in comparison of simple electronic tongue, was illustrated. 
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Table 1. Beer samples under study. 

 

Brand Beer type

AK Damm Lager 

Amstel Lager 

Bock Damm Stout 

Budweiser Lager 

Carlsberg Lager 

Cervesa Montseny Lupulus IPA 

Cervesa Montseny Malta Lager 

Cervesa Montseny Negra Stout 

Cervesa Pilsen Bonpreu Lager 

Estrella Damm Lager 

Flama Art 2A IPA 

Flama Art 2B IPA 

Fosca Art 2A Stout 

Fosca Art 2B Stout 

Glimbergen Lager 

Guinness Stout 

Heineken Lager 

Moritz Lager 

Orus Art 2B Lager 

Orus Art 2C Lager 

Orus Art Lager 2A Lager 

Pilsner Urquell Lager 

Saaz Lager 

San Miguel Lager 

Voll Damm Lager 
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Table 2. Composition of the voltammetric and potentiometric sensors used in the study. 

 

Potentiometric sensors 

Sensor PVC(%) Plasticizer (%) Ionophore (%) Reference

Na+ 22 NPOE (70) CMDMM (6)* [33] 

K+ 30 DOS (66) Valinomycin (3)* [33] 

NH4
+ 33 BPA (66) Nonactin (1) [33] 

Ca2+ I 32.9 o-NPOE (66) Tetronasin (1.0)* [34] 

Ca2+ II 33.3 o-NPOE (65.2) ETH1001 (1.0)* [34] 

Ca2+ III 30 DOPP (65) BBTP (5.0) [34] 

Mg2+ 32.7 o-NPOE(65.6) ETH4030(1.0)* [34] 

Ba2+ 27 DBS (70) Monensin (3.0) [34] 

H+ 32.8 DOS (65.6) tri-N-dodecylamine (1) [35] 

Generic Cations I 29 DOS (67) Dibenzo-18-crown-6 (4) [35] 

Generic Cations II 27 DBS (70) Lasalocide (3) [35] 

NO3
- 30 DBP (67) TOAN (3.0) [36] 

Cl- 28.3 o-NPOE (70) TDMAC (0.3) [36] 

SO4
2- 33 o-NPOE(66) 1,3[bis(3-phenylthioureidomethyl)]benzene(1) [36] 

Generic Anions  29 DBP(65) Tetraoctylammonium bromide(4) [36] 

Amperometric sensors 

Sensor Modifier Reference 

GEC Graphite-epoxy composite 

[21] 

Ph Phthalocyanine 

Pt Platinum nanoparticles 

Cu Copper nanoparticles 

Ppy Polypyrrole 

GOX Glucose Oxidase biosensor 

* The formulation includes potassium tetrakis(4-chlorophenyl)-borate as additive. 
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Table 3. Confusion matrix for LDA using leave-one-out cross-validation approach in the 

classification of beer samples 

 

Expected  
Predicted 

Lager Stout IPA 

Lager 17 0 0 

Stout 0 4 1 

IPA 0 0 3 
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Figure captions 

 

Figure 1. Features extracted from voltammograms in the experiments with voltammetric 

sensors. 

 

Figure 2. Average responses for beer classes obtained with the sensor array, both 

potentiometric (radar plot) and voltammetric (cyclic voltammograms obtained 

for each sensor). (A) All potentiometric sensors, (B) Graphite-epoxy composite, 

(C) Phtalocyanine sensor, (D) Platinum nano-particle sensor and (E) Copper 

nano-particle sensor, (F) Polypyrrole sensor and (G) Glucose Oxidase 

biosensor. 

 

Figure 3. 3D-Score plot of PCA performed from data fusion of voltammetric and 

potentiometric sensors array. A total of 25 samples were analyzed. As can be 

observed, a correct discrimination is obtained for the different types of beers: 

(1) Lager, (2) Stout and (3) IPA. 

 

Figure 4. Projections of beer samples in the space defined by the LDA Discriminant 

Function (DF) 1 and 2. The centroid on each class is indicated as the asterisk. 
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