7 research outputs found

    Local minimization of prediction errors drives learning of invariant object representations in a generative network model of visual perception

    Get PDF
    The ventral visual processing hierarchy of the cortex needs to fulfill at least two key functions: perceived objects must be mapped to high-level representations invariantly of the precise viewing conditions, and a generative model must be learned that allows, for instance, to fill in occluded information guided by visual experience. Here, we show how a multilayered predictive coding network can learn to recognize objects from the bottom up and to generate specific representations via a top-down pathway through a single learning rule: the local minimization of prediction errors. Trained on sequences of continuously transformed objects, neurons in the highest network area become tuned to object identity invariant of precise position, comparable to inferotemporal neurons in macaques. Drawing on this, the dynamic properties of invariant object representations reproduce experimentally observed hierarchies of timescales from low to high levels of the ventral processing stream. The predicted faster decorrelation of error-neuron activity compared to representation neurons is of relevance for the experimental search for neural correlates of prediction errors. Lastly, the generative capacity of the network is confirmed by reconstructing specific object images, robust to partial occlusion of the inputs. By learning invariance from temporal continuity within a generative model, the approach generalizes the predictive coding framework to dynamic inputs in a more biologically plausible way than self-supervised networks with non-local error-backpropagation. This was achieved simply by shifting the training paradigm to dynamic inputs, with little change in architecture and learning rule from static input-reconstructing Hebbian predictive coding networks

    Local minimization of prediction errors drives learning of invariant object representations in a generative network model of visual perception

    Get PDF
    The ventral visual processing hierarchy of the cortex needs to fulfill at least two key functions: perceived objects must be mapped to high-level representations invariantly of the precise viewing conditions, and a generative model must be learned that allows, for instance, to fill in occluded information guided by visual experience. Here, we show how a multilayered predictive coding network can learn to recognize objects from the bottom up and to generate specific representations via a top-down pathway through a single learning rule: the local minimization of prediction errors. Trained on sequences of continuously transformed objects, neurons in the highest network area become tuned to object identity invariant of precise position, comparable to inferotemporal neurons in macaques. Drawing on this, the dynamic properties of invariant object representations reproduce experimentally observed hierarchies of timescales from low to high levels of the ventral processing stream. The predicted faster decorrelation of error-neuron activity compared to representation neurons is of relevance for the experimental search for neural correlates of prediction errors. Lastly, the generative capacity of the network is confirmed by reconstructing specific object images, robust to partial occlusion of the inputs. By learning invariance from temporal continuity within a generative model, the approach generalizes the predictive coding framework to dynamic inputs in a more biologically plausible way than self-supervised networks with non-local error-backpropagation. This was achieved simply by shifting the training paradigm to dynamic inputs, with little change in architecture and learning rule from static input-reconstructing Hebbian predictive coding networks

    A Recurrent Model of Transformation Invariance by Association

    No full text
    This paper describes an investigation of a recurrent artificial neural network which uses association to build transform-invariant representations. The simulation implements the analytic model of Parga and Rolls [16] which defines multiple (e.g. "view") patterns to be within the basin of attraction of a shared (e.g. "object") representation. First, it was shown that the network could store and correctly retrieve an "object" representation from any one of the views which define that object, with capacity as predicted analytically. Second, new results extended the analysis by showing that correct object retrieval could occur where retrieval cues were distorted; where there was some association between the views of different objects; and where connectivity was diluted, even when this dilution was asymmetric. The simulations also extended the analysis by showing that the system could work well with sparse patterns; and showing how pattern sparseness interacts with the number of views of each object (as a result of the statistical properties of the pattern coding) to give predictable object retrieval performance. The results thus usefully extend a recurrent model of invariant pattern recognition. Key words: Object Recognition; Invariance; Recurrent Networks; Attractor Networks; Associative Learning; Sparse Coding; Invariant Visual Representations. Preprint submitted to Elsevier Preprint 16 September 1999

    A Recurrent Model of Transformation Invariance by Association

    No full text
    This paper describes an investigation of a recurrent artificial neural network which uses association to build transform-invariant representations. The simulation implements the analytic model of Parga and Rolls [(1998). Transform-invariant recognition by association in a recurrent network. Neural Computation 10(6), 1507--1525.] which defines multiple (e.g. "view") patterns to be within the basin of attraction of a shared (e.g. "object") representation. First, i
    corecore