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Local minimization of prediction 
errors drives learning of invariant 
object representations in a 
generative network model of 
visual perception
Matthias Brucklacher 1*, Sander M. Bohté 1,2, Jorge F. Mejias 1 and 
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The ventral visual processing hierarchy of the cortex needs to fulfill at least two 
key functions: perceived objects must be mapped to high-level representations 
invariantly of the precise viewing conditions, and a generative model must 
be learned that allows, for instance, to fill in occluded information guided by visual 
experience. Here, we show how a multilayered predictive coding network can learn 
to recognize objects from the bottom up and to generate specific representations 
via a top-down pathway through a single learning rule: the local minimization 
of prediction errors. Trained on sequences of continuously transformed objects, 
neurons in the highest network area become tuned to object identity invariant of 
precise position, comparable to inferotemporal neurons in macaques. Drawing 
on this, the dynamic properties of invariant object representations reproduce 
experimentally observed hierarchies of timescales from low to high levels of the 
ventral processing stream. The predicted faster decorrelation of error-neuron 
activity compared to representation neurons is of relevance for the experimental 
search for neural correlates of prediction errors. Lastly, the generative capacity of 
the network is confirmed by reconstructing specific object images, robust to partial 
occlusion of the inputs. By learning invariance from temporal continuity within a 
generative model, the approach generalizes the predictive coding framework to 
dynamic inputs in a more biologically plausible way than self-supervised networks 
with non-local error-backpropagation. This was achieved simply by shifting the 
training paradigm to dynamic inputs, with little change in architecture and learning 
rule from static input-reconstructing Hebbian predictive coding networks.
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1. Introduction

How networks of neurons in the brain infer the identity of objects from limited sensory 
information is one of the preeminent questions of neurobiology. Strengthening theories of 
generative perception (Gregory, 1980; Mumford, 1992; Rao and Ballard, 1999; Friston, 2010; 
Pennartz et al., 2019), evidence has accumulated to suggest that the mammalian perceptual 
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system is relying on various forms of prediction to facilitate this 
process. Across time, repetition suppression that requires explicit 
expectations (Summerfield et  al., 2008; Todorovic et  al., 2011), 
encoding of deviation from temporal expectations in macaque’s 
inferotemporal and prefrontal cortex (Schwiedrzik and Freiwald, 
2017; Bellet et  al., 2021) and encoding of expected movement 
outcomes in mouse V1 (Leinweber et al., 2017) show that the brain 
constantly tries to predict future inputs. V1 activity evoked by illusory 
contours (Bartels, 2014; Kok and de Lange, 2014), encoding of 
information from occluded scene areas in early visual areas of humans 
(Smith and Muckli, 2010) and modulation of neural responses by 
expectations based on the surrounding context (Knierim and van 
Essen, 1992) show that predictions are not only made forward in time, 
but also across space (in the present). According to predictive coding 
theory, these predictions are mediated by corticocortical top-down 
connections (Pennartz et al., 2019) and then corrected based on the 
received bottom-up input (Rao and Ballard, 1999) in line with 
hierarchical Bayesian perception (Lee and Mumford, 2003). Predictive 
coding models have successfully explained properties of the visual 
system such as end-stopping in V1 neurons and learning of wavelet-
like receptive fields (Rao and Ballard, 1999) and V1 activity in illusory 
contours (Lotter et al., 2020; Pang et al., 2021). However, these studies 
are focused on low-level effects, while the learned higher-level 
representations have been investigated much less (although see Dora 
et al., 2021 for learning of sparse representations).

Continuously generated by the awake brain, neural representations 
of the external world form a partial solution to the problem of 
inference, arguably constituting the basis of conscious experience 
(Pennartz, 2015), decision-making and adaptive planning (Butz and 
Kutter, 2016). They can be  loosely defined as activity patterns in 
response to a sensory stimulation elicited by an object. Especially 
important is the ability to represent multiple views of the same object 
in similar patterns of activity. These invariant representations have two 
key advantages: first, information acquired about an object (such as a 
novel action associated with it) can be  linked to only one 
representation, making learning more efficient. Secondly, as illustrated 
in Figure 1, the newly acquired invariant information about single 
objects generalizes automatically across all viewing conditions, 
facilitating learning from few examples. Evidence for invariant neural 
representations comes from the ventral temporal lobe (Haxby et al., 
2001), the hippocampus in humans (Quiroga et  al., 2005), 
inferotemporal cortex of rhesus (Desimone et al., 1984; Logothetis 
et al., 1995) and macaque monkeys (Freiwald and Tsao, 2010) as well 
as rats’ laterolateral extrastriate area (LL) (Tafazoli et al., 2012, 2017). 
Current theories of how neurons come to acquire such a specialized 
tuning either fail to account for fundamental aspects of brain circuitry 
and physiology or rely on artificial learning paradigms. To construct 
useful representations, biological systems are limited to mostly 
unsupervised learning (from unlabeled data) and local learning rules, 
whereas machine vision algorithms based on neural networks typically 
rely on large amounts of labeled training data and use mechanisms 
like weight-sharing (LeCun et al., 1989). These mechanisms facilitate 
generalization across viewing conditions but lack a 
biological foundation.

A biologically plausible approach to learn view-invariance from 
transformation sequences is so-called trace learning (Földiák, 1991; 
Elliffe et al., 2000; Rolls, 2012) which is linked to Slow Feature Analysis 
(SFA) (Sprekeler et al., 2007). It is based on the idea that temporal 

proximity between sensory patterns should be  reflected in 
representational similarity, as the assumption can be made about the 
world that the causes (objects etc.) vary more slowly than the 
stimulation patterns they evoke on the retina. Indeed there is evidence 
for the importance of temporal stimulus continuity for learning of 
transformation-tolerance in early visual areas of rats (Matteucci and 
Zoccolan, 2020) and area IT of monkeys (Li and DiCarlo, 2008). 
Based on this principle of representing consecutive inputs similarly 
Halvagal and Zenke (2022) recently showed that a more intricate 
learning rule with additional variance maximization leads to 
disentangled high-level representations. Other self-supervised models 
avoid representational collapse through contrasting examples (Illing 
et al., 2021).

However, all of these models process information in a strictly 
feedforward manner or limit the role of feedback connections to a 
modulatory function, in contrast to evidence on retinotopic, content-
carrying feedback connections in the visual cortex (Zmarz and Keller, 
2016; Marques et  al., 2018; Pak et  al., 2020). Here, we  propose a 
common underlying learning mechanism for both high-level 
representations and a generative model capable of reconstructing 
specific sensory inputs: the minimization of local prediction errors 
through inference and learning.

Like the abovementioned feedforward models of invariance 
learning, predictive coding offers a mechanism for maintenance of 
higher-level representations: they are only updated when lower levels 
send up error signals. It can be implemented in a hierarchical neural 
network model of the visual processing stream using local, Hebbian 
learning. Furthermore, it is intimately related to the abovementioned 
slowness principle, which states that the most meaningful features 
often change on a slow timescale (Wiskott and Sejnowski, 2002), 
because extracted causes tend to be good predictors for future input 
(Creutzig and Sprekeler, 2008). To sum up, predictive coding is a 
promising candidate to explain learning of invariant object 
representations within the framework of generative modeling.

To acquire transformation-tolerance from temporal continuity, 
input sequences are required. Most predictive coding models so far, 
however, either operate on static inputs (Rao and Ballard, 1999; 
Spratling, 2017; Dora et al., 2021) or use non-local learning rules 
(Jiang and Rao, 2022) such as backpropagation (Rumelhart et  al., 
1985; Singer et al., 2019) and biologically implausible LSTM units 
(Lotter et  al., 2016, 2020). Here, we  train multilayered predictive 
coding networks with only small architectural modifications from Rao 
and Ballard (1999) and Dora et al. (2021) on transformation sequences 
with purely Hebbian learning. We confirm learning of a generative 
model, showing that top-down predictions made by the network 
approximate the original input. Importantly, these predictions are not 
forward in time, but across retinotopic space, representing the current 
input. Presented with partially occluded input sequences, the network 
pattern-completes the occluded areas through top-down feedback, 
mimicking functions of human V1 and V2. While reconstructions 
from lower areas are more faithful, predictive neurons in the network’s 
higher areas develop view-invariant representations akin to responses 
of neurons in the inferotemporal area of primate cortex: input stimuli 
shown in temporal proximity are represented similarly. A decoding 
analysis confirms that distinct objects are well separable. Lastly, the 
temporal dynamics of the neural subpopulations are analyzed and 
compared to recent electrophysiological data from rats. As in the 
experiment, temporal stability of representation neurons (measured 
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by the decay of autocorrelation) increases as one moves up the 
hierarchy. In addition, the model makes the prediction that high-level 
error-coding neurons operate on a faster timescale than their 
representational counterparts.

2. Methods

We developed a neural network consisting of four hierarchically 
arranged areas. Applying the principles of predictive computation, 
we restricted ourselves to the minimally necessary components, 
but other connectivity patterns are conceivable [suggested, e.g., by 
Heeger (2017)]. As in previous implementations of predictive 
coding (Rao and Ballard, 1999; Dora et  al., 2021), each area 
contains two subpopulations of neurons that are illustrated in 
Figure 2:

 1. Representation neurons collectively hold the “inferred causes,” 
in higher areas corresponding to perceptual content. Together 
with the synaptic connections towards lower areas, they 
generate top-down predictions to match the current 
representations in the area below.

 2. Error neurons measure the mismatch between representation 
neuron activity (in the lowest area: the sensory input) and 
top-down predictions.

Some models such as (Sacramento et  al., 2018) suggest 
computation of errors in dendrites, but based on the evidence for 
neural encoding of errors (Zmarz and Keller, 2016; Green et  al., 
2023), we assign dedicated neurons to encode them. Development of 
such error-tuned neurons has been modeled by Hertäg and Sprekeler 
(2020) in cortical microcircuits and by Ali et al. (2021) as a result of 
energy efficiency. While the number of neurons in the input area 

FIGURE 1

View-invariant representations for efficient cognition. (A) Barely escaping an attack, the monkey learns to associate an action (“flee,” encoded by the 
neural pattern in primary motor area M1) with the activity pattern in its retinal ganglion cells (RGCs, bottom) triggered by the image of an approaching 
eagle. Active cells are shown in white. (B-1) When the monkey later encounters a similar eagle from a different angle, an invariant higher-level 
representation (center) can still trigger the same action. (B-2) Without invariant coding, the action does not generalize to this viewing condition. Red 
box: scope of this paper: how do multiple low-level activity patterns become linked to one high-level, invariant representation?

FIGURE 2

Model architecture and inference on video sequences. (A) Representational activity yl  in area l (l ∈ {1,2}) is influenced by both top-down predictions 
highlighted in red via the respective top-down errors bbl , and by the bottom-up errors bbl-1 . Intra-area connections between representation neurons 
(circles) and respective error neurons (squares) are one-to-one, while inter-area connections are all-to-all. Synaptic connections between neurons are 
drawn as filled circles if inhibitory and as triangles if excitatory. (B) A sequence of input images is fed into the lowest area of the network across 
subsequent moments in time t t- 2, ,¼( ). The network maintains representational activity through time and thus uses it as a prior for the inference of 
subsequent representations.
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depends on the dimensions of the dataset and varied between 784 
and 1,156, the consecutive areas consisted of [2000, 5,000, 30] 
neurons (for Area 1, 2, and 3, respectively), except where noted 
differently. This is supported by an analysis of how altering the 
number of neurons affects decoding performance in 
Supplementary material 1.13.

2.1. Inference: updating neural activity

At the start of a sequence, all neural activity is set to a uniform, 
low value (unless stated differently in the Results section). While an 
image is presented to the network, the lowest area representation 
neurons linearly reflect the pixel-wise intensity of the input (at the 
bottom of Figure 2B). Error neurons in area l  receive excitatory input 
from the activity ly  of associated representation neurons as shown in 
the one-to-one connections in Figure 2A, and are inhibited by the 
summed-up predictions 

yl from the higher area:
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where bold letters indicate vectors and matrices and ( )1t
l
-W  

denotes the symmetric weight matrix between area l and area l + 1 
from the previous time step (the weights will change during learning). 
Strictly symmetric weight matrices as frequently used in predictive 
coding models (Rao and Ballard, 1999; Dora et al., 2021) lead to a 
weight transport problem during learning. However, it has been 
shown that, in combination with weight decay, symmetric weights can 
be obtained by learning rule comparable to ours without explicitly 
enforcing symmetry (Alonso and Neftci, 2021), since the locally 
available pre- and postsynaptic activity that determine the weight 
change are identical (symmetric) for each pair of feedforward and 
feedback connections. Each representation neuron receives inhibitory 
input from one error neuron in the same area and excitatory input 
from the weighted bottom-up errors and thus changes its activation 
state at each time step (see “inference” in Alg S1):
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This adjustment of neural activation state lx  (akin to membrane 
potential) of representation neurons can be interpreted as matching 
top-down predictions better than before (and thus reducing activity 
of the associated error neuron) and sending down predictions that 
better match representation neuron activity in the area below (thus 
reducing errors there). The rate at which neuronal activation is 
changed is governed by the parameter inf .= 0 05 referred to in the 
following as the inference rate. The activation state lx  is now 
translated into an output firing rate ly :

  
( ) ( )( )t t

xl lf= + Dy x
 3( )

where f  denotes the sigmoid activation function, and xD  a 
constant lateral offset of the firing threshold. The saturation of the 

sigmoid for large inputs corresponds to a maximal firing rate of the 
representation neurons, in contrast to the more artificial (rectified) 
linear activation functions used in Rao and Ballard (1999) and Dora 
et al. (2021) that do not have an upper bound.

2.2. Learning without labels: updating 
synaptic strengths

Before training, weights are initialized to random values from a 
Gaussian distribution centered at zero and with standard deviation of 
0.5, clipped at zero to prevent negative weights and divided by the 
number of neurons in the next (higher) area. After 10 inference steps, 
long-term adaptation of synaptic weights is conducted in a Hebbian 
manner, strengthening synapses between active error neurons in area 
l and simultaneously active representation neurons in the area above 
(l + 1):

 
( ) ( ) ( ) ( ) ( )1

1 1 1· 4t t t t T
learnl l l l

-
- - -= +ÎW W yb

with learning rate learn. Apart from not using weight decay, 
normalization or a gating mechanism, we thus use the same learning 
rule as Rao and Ballard (1999) and Dora et al. (2021). Based on the 
slower change of synaptic efficacy in comparison to membrane 
potential dynamics, weights are assumed to be constant between these 
updates. In Equation 4, the sign of the prediction error controls the 
direction of the weight change. If the prediction is too large relative to 
the activity of the representation neurons in this area, the error is 
negative, and the weight mediating the prediction will be reduced. As 
a result, given the same prediction, the error in the consecutive time 
step will be smaller. This stabilizing effect on the response of error 
neurons is familiar from the work of Vogels et al. (2011) that showed 
how Hebbian plasticity regulates inhibitory input to reduce firing and 
achieve a balanced global state.

To summarize, both the balanced, excitatory-inhibitory wiring of 
the network and the unsupervised adaptation of weights based on 
remaining prediction errors lead to an alignment of representations 
and predictions, and thus a reduction in error neuron activity. The 
sum of squared prediction errors can then be  seen as an implicit 
objective function, upon which the inference steps conduct an 
approximate gradient descent taking into account only the sign and 
not value of the derivative of the activation function, unlike 
(Whittington and Bogacz, 2017), and upon which learning conducts 
a precise gradient descent.

2.3. Training procedure

We trained the network on temporally dynamic inputs, using 
short video sequences. After validating network performance on 
moving horizontal and vertical bars, we switched to using 10 digits of 
the MNIST handwritten digits dataset (one per digit from 0 to 9). 
Each sequence contained six gradually transformed images, and 
separate datasets were created for translational motion, rotation, and 
scaling (Figure  3). For translational and rotational motion, two 
transformation speeds were used, differing in overlap between 
consecutive images. The examples shown in Figure 3 are from the 
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dataset with larger step size (“fast” condition). To further examine 
robustness of the training paradigm under more realistic and less 
sparse inputs, random noise patterns were added to the image 
background during training. A last dataset consisted of five high-pass 
filtered images of toy objects (an airplane shown in the last row of 
Figure  3, a sports car, a truck, a lion and a tin man) from the 
smallNORB dataset (LeCun et al., 2004), undergoing a rotation.

The network was trained on the 10 (for the toy objects: five) 
sequences, each presenting a different digit, for multiple epochs. Each 
epoch consisted of 10 iterations of the same sequence (e.g., of a 
moving digit ‘6’) before switching to the next (of digit ‘7’). All 
hyperparameters are summarized in Supplementary material 1.1. This 
repetition of individual sequences drastically improved network 
performance and could be achieved by the brain through a replay or 
reactivation mechanism (observed in visual cortex by Ji and Wilson, 
2007 and Xu et al., 2012, see also Wilson and McNaughton, 1994; 
Lansink et  al., 2009). For laterally moving stimuli, repeated 
presentation can also be achieved by object-tracking saccades that lead 
to repeated motion across the same photoreceptors on the retina. As 
the most information-neutral state, the activity was reset to uniform, 
low values at the beginning of each sequence. This assumption is 
justified for objects that are seen independently of each other; 
for  instance, not every ‘6’ is followed by a ‘7’ (but see 
Supplementary material 1.15 for how this assumption can be relaxed). 
For each image, multiple inference-learning cycles (Equation 1–4) 
were conducted before switching to the next image in the sequence. A 
training epoch consisted of an iteration through all sequences from 
the dataset. Supplementary material 1.2 contains the pseudocode for 
the nested training loops.

2.4. Analysis of neural representations

To quantify to what extent the network learned representations 
that are invariant to transformation, while at the same time retaining 
meaningful information about sample identity, we  combined 

representational similarity analysis (Kriegeskorte et al., 2008) with 
linear decoding. The distance d between two representations r1  and 
r2 , vectors of neural activity in a model area, was measured via 
cosine dissimilarity:

  
d r r r r

r r1 2
1 2

1 2

1,( ) = -
·

     5( )

Linear decoding was conducted by mapping the inferred 
representations through a fully connected layer to a layer with one 
neuron per class label. We implemented this via the linear model class 
and fitting function of the sklearn library in Python.1 Decodability was 
then measured by the classification accuracy on representations that 
the decoder had not been presented with before. How well the decoder 
generalized from representations of a subset of samples from each 
sequence to the other views of the object is a direct measure of 
downstream usefulness in the scenario outlined in Figure 1.

3. Results

We trained the network on sequences of moving objects as 
specified in the Methods section, and focused on the evolving high-
level representations, resulting neural dynamics, and generative input-
reconstructing capacities of the network, all in comparison 
to neurobiology.

3.1. Transformation-invariant stimulus 
representations

We found that neurons in network area 3 became tuned to 
samples in a position-invariant manner. To quantify invariance, 
we analyzed the neural representations in the highest area of trained 
networks (Figure  2) under changes of inputs. More specifically, 
inference was run on still images from the training datasets until 
convergence was reached (see Supplementary material 1.3 for a 
description of convergence). Then, pairwise comparison of inferred 
area 3 representations measured in cosine distance quantified 
representational dissimilarity between representations of the same 
sample, e.g., a digit (within-sequence) or different samples (across-
sequence). All pairwise values were plotted in Representational 
Dissimilarity Matrices (RDMs, Kriegeskorte et al., 2008) in Figure 4.

Indicating invariance, RDMs of trained networks showed high 
similarity within sequences; for instance, Digit “1”, “2”, etc. was 
represented by highly similar activity patterns in area 3, irrespective 
of position. Representations of samples from different sequences, such 
as digit “1” and digit “2” at the same position were distinct, as 
indicated by a high dissimilarity in matrix elements off the block 
diagonal. The same held true for the rotating and scaling digits 
(Figures 4B,E) as well as for the five rotating toy objects (Figure 4F). 
Supplementary material 1.9 contains a proof of principle 
demonstration of learning multiple transformations in the same 

1 https://pypi.org/project/sklearn-sfa/

FIGURE 3

Example sequences from the stimulus datasets. First row: digit 
translation (indicated by the horizontal arrow) without noise. Second 
row: digit scaling (expanding arrows) with noise. Third and fourth 
row: rotation (indicated by the counterclockwise arrow) of digit/toy 
plane without noise.
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network. Noise (shown for the translational motion in Figure 4D 
versus the noiseless motion in Figure 4C) slightly degraded clarity of 
the RDM but preserved the overall structure well. Additionally, the 
structure of the RDM proved to be quite tolerant to smaller weight 
initialization (Supplementary material 1.7).

Invariance of representations was a consequence of learning from 
inputs that are transformed continuously in the temporal domain as 
evidenced by the RDMs of the untrained network that showed very little 
structure (Figure 4A, note the different color scale, cosine distance below 
0.001). Networks trained on the static frames of the sequences, in which 
activity was reset after each frame also lacked a block-diagonal structure 
(Supplementary Figure S2), illustrating the role of continuous motion in 
the training paradigm, which is to provide the necessary temporal 
structure in which subsequent inputs can be assumed to be caused by the 

same objects. Interestingly, we did not find an influence of sequence order 
on decoding accuracy (Supplementary Figure S11), suggesting that only 
temporal (as shown by the comparison to the static training paradigm), 
but not spatial continuity of the input transformations was necessary for 
successful representation learning. The Hebbian learning rule thus groups 
together consecutive inputs in a manner reminiscent of contrastive, self-
supervised methods (Van Den Oord et  al., 2019; Illing et  al., 2021; 
Halvagal and Zenke, 2022) that explicitly penalize dissimilarity in the loss 
function. Here, the higher-level representation from the previous timestep 
provides a target for the consecutive inputs reminiscent of 
implementations of supervised learning with local learning rules (Lee 
et al., 2015; Whittington and Bogacz, 2017; Haider et al., 2021).

Area 3-representations were informative about the identity of the 
sample moving in sequence as decodability improved with training 

FIGURE 4

Representations invariant to viewing conditions are learned without data labels. The matrices depict cosine dissimilarity between representations in 
area 3. Each of the rows and columns in these plots corresponds to one input image (i.e., a digit sample in a specific spatial configuration), thus each 
matrix is symmetrical. Along each dimension, samples are ordered sequence-wise, i.e., rows and columns 0–5, 6–11 etc. are the same object in six 
different transformation states. Low values shown in purple correspond to similar activity patterns, i.e., a similar set of neurons represents the stimuli 
given by the combination of row and column, high values shown in yellow correspond to orthogonal activity vectors. (A) Baseline, an untrained 
network tested on the translationally moving digits dataset, for untrained versions of the other RDMs see Supplementary Figure S8. (B–E) Networks 
trained and tested on one of the three datasets of ten rotating, translating (with and without noise) and scaling digits show a clear block-diagonal 
structure with low values for comparisons within sequences. (F) Network trained and tested on five rotation sequences of toy objects.
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(Figures 5A,B). In addition to its behavioral relevance, decodability of 
representations quantifies the learned within-sequence invariance. A 
biologically plausible way to make high-level object representations 
available to downstream processes (such as action selection, Figure 1) is 
a layer of weighted synaptic connections, i.e., a linear decoder, to infer 
object identity. We  simulated this through a linear mapping of the 
converged area 3-activity vectors that were obtained as above to 10 object 
identity-encoding neurons (digits “0”, “1”, …, “9”). After fitting the 
decoding model to 2/3 of the representations, evaluation was conducted 
on the remaining 1/3 in a stratified k-fold manner (with k = 3). Compared 
to the information content in the input signal, as measured by the 
accuracy of a linear decoder, as well as k-means clustering, area 3 
representations achieved better decoding performance after around five 
training epochs (Figure 5A). The model also outperformed linear Slow 
Feature Analysis (SFA) (Wiskott and Sejnowski, 2002) of the raw inputs 
(for details see Supplementary material 1.12). This was confirmed across 
almost all used datasets (Table  1) and even increased as the 
transformation step size was increased, resulting in smaller overlap 
between consecutive images (“fast” conditions in Table 1, shown in the 
first and third row of Figure 3). Across the hierarchy, higher network 
areas developed more invariant representations than lower areas 
(Supplementary Figure S9).

Decodability of network representations was maintained when the 
dataset size was significantly increased. We tested this by training 
networks on up to 20 random digits per digit class (totaling 200 
sequences of the fast translations). As shown in Figure 5C, the network 
maintained above 60% linear decoding accuracy of digit class while 
an enlarged version of the network shown in cyan further improved 
this. On the other hand, increasing dataset size negatively affected the 
invariance structure of the RDMs (Supplementary material 1.8). 
putatively due to the limitations discussed in section 4.4.

Lastly, generalization performance for the remaining MNIST 
dataset was measured by decoding accuracy on previously unseen 
digits. Here, accuracy was above 60% when more than 100 training 
sequences were used (Figure 5D). In the enlarged network, decoding 
accuracy rose above 75% (the blue line in Figure 5D), confirming the 
network’s capacity to generalize. The small standard deviation between 
randomly initialized runs indicates the representativeness of the 
chosen validation subset.

The continuous training paradigm improved decoding 
performance in comparison to networks trained on static inputs. 
There, decoding performance dropped from the initial value and was 
consistently more than 20 percentage points worse than in the 
continuously trained network (Figure  5B and Table  1). This can 

FIGURE 5

High-area representations encode object identity. Decoding accuracy of a linear decoder operating on area 3-representations of our predictive coding 
network trained in the continuous paradigm (PC-continuous) plotted across training epochs (iterations through the whole dataset). (A) Accuracy 
quickly rises above performance of k-means clustering, SFA and linear decoding directly on the input data (LD inputs) for the rotating toy objects 
dataset. The error bars for all figures are computed across four random seeds for the weight initializations. (B) Influence of continuous training: 
decoding accuracy in networks trained on continuous sequences (continuous lines) is increased compared to networks trained on isolated (static) 
frames of the sequences. (C) When increasing the size of the dataset from 10 to 200 sequences, the network of original size maintains a decoding 
accuracy far above chance level. Here, accuracy is significantly improved when the number of neurons in [area 1, area 2, area 3] is increased from 
[2000, 500, 30] (green curve) to [4,000, 2000, 90] neurons (blue curve). (D) Decoder accuracy on a previously unseen validation set of 200 randomly 
selected and transformed digits.
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partially be explained by the learning of more sample-specific and 
thus less invariant representations in the static training paradigm, 
where activity was not carried over from one image to the next 
(Supplementary Figure S2).

3.2. Temporal stability of representations

Without explicitly integrated constraints, the network developed 
a hierarchy of timescales in which representations in higher network 
areas decorrelated more slowly over inference time than in lower 
areas. We quantified this by measuring the autocorrelation R during 
presentation of rotating digits. It is defined as
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where ∆ is the time lag measured in inference steps between 
the points to be  compared, T is the duration of each sequence 
(consisting of 6,000 inference steps), N the number of neurons in 
the subpopulation and z (t) the activity vector in the subpopulation 
(averaged across 10 inference steps). High values indicate similar, 
non-zero activities and thus high temporal stability. The resulting 
autocorrelation curves for time lags between 0 and the length of an 
individual sequence are shown in Figures 6A,B, averaged across the 
10 rotation sequences. From these curves, decay constants were 
inferred by measuring the time until decay to 1/e. If that value was 
not reached until the sequence end, we extrapolated by using a 
linear continuation through the values at Δ = 0 and Δ = 6,000 time 
steps. Additionally, we varied the stimulus timescale by dividing 
the number of inference steps on each frame by the rotation speed. 
The resulting decay constants showed a clear and robust hierarchy 
across network areas, as well as a positive correlation with the 
stimulus timescale (Figure 6C). A significant difference was found 
between representation neurons in area 3 and area 1 (mean 
difference at speed one: 7377 time steps, p = 1.61e-2). p-values were 
determined by a Games-Howell post-hoc test (an extension of the 
familiar Tukey post-hoc test that does not assume equal variances) 

succeeding rejection of the null hypothesis across the six 
populations in a Welch’s ANOVA, as described in more detail in 
Supplementary material 1.16. A smaller, but significant difference 
was observed between representation neurons in area 2 and area 1 
(4,996 time steps, p = 9.68e-4). In error-coding neurons, the 
hierarchy was less pronounced, but area 0 and area 2 nonetheless 
showed a significant difference (p = 9.50e-5). Comparison to a 
statically trained network with the same architecture which failed 
to develop a temporal hierarchy in representations 
(Supplementary material 1.4) showed that the temporal hierarchy 
was not built into the model architecture, but instead is an 
emergent property of the model under the continuous training 
paradigm. This is underlined by the fact that the same inference 
rate was used in all network areas. The hierarchy in representational 
dynamics as well as the positive correlation with stimulus dynamics 
is in agreement with experimental findings in rat visual cortex 
(Piasini et  al., 2021). There, the authors computed neuronal 
timescales for the decay of autocorrelation in a similar manner and 
found more stable activity patterns in higher areas of rat visual 
cortex (Figure 6D).

The decay speed of autocorrelation also allowed us to differentiate 
between quickly decorrelating error neurons and more persistent 
representation neurons in higher network areas. Error-coding neurons 
in area 2 showed a shorter activity timescale than representation neurons 
within the same area. The difference equaled 4,991 time steps (p = 9.88e-
4), compared to only 211 time steps in the statically trained network 
(Supplementary Figure S3). In this context Piasini et al. (2021) discussed 
the following scenario: when perceiving a continuously moving object, 
its identity is predictable over time. Thus, one could expect a diminishing 
firing rate in neurons representing this object, in contrast to their 
evidence on larger timescales in higher visual areas. Our results reconcile 
the framework of predictive coding with these empirical observations by 
differentiating between quickly decorrelating error-signals and persistent 
representations. Remarkably, this prediction about the consequences of 
predictive coding circuitry for the activity autocorrelation timescales of 
error- and representation neurons has, to our knowledge, not been 
proposed before. Here it is important to mention the extensive literature 
on the analysis of different frequency bands in cortical feedforward and 
feedback signal propagation [summarized in Bastos et al. (2012) from a 

TABLE 1 Decoding accuracy (in percent) across datasets and models.

Dataset PC-continuous, area 
3

PC-static, area 3 k-means input Linear decoding 
input

SFA input

Toy objects rotating 95.83 ± 5.46 18.33 ± 1.67 53.33 83.33 73.33

Digits rotating 94.17 ± 2.50 13.33 ± 2.64 48.33 85.00 70.00

Digits rotating, noise 90.00 ± 5.14 15.83 ± 1.86 N/A N/A N/A

Digits scaling 91.67 ± 2.64 75.83 ± 1.44 68.33 100.00 70.00

Digits scaling, noise 86.67 ± 4.25 71.25 ± 12.33 N/A N/A N/A

Digits translation 83.75 ± 6.50 40.42 ± 4.31 60.00 75,00 70.00

Digits translation, noise 93.33 ± 4.08 47.92 ± 6.60 N/A N/A N/A

Digits fast rotation 94.17 ± 2.50 13.33 ± 2.64 31.67 40.00 70.00

Digits fast translation 94.58 ± 3.80 12.92 ± 0.72 38.33 25.00 70.00

Digits fast translation, 

noise
87.50 ± 4.49 14.17 ± 3.00 N/A N/A N/A

The best performing decoder per dataset is marked in bold. The left column is the predictive coding network trained in the continuous manner put forward in this paper.
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predictive coding perspective]. These sources did, however, not speak 
about temporal stability and the two concepts are not easily connected. 
It is, for instance, conceivable to have low-frequency signals that quickly 
decorrelate or high-frequency signals that are maintained over time.

3.3. Generative capacity

The network learned a generative model of the visual inputs as 
shown by successful input-reconstruction through the network’s 
top-down pathway (Figure 7). Since areas further up in the ventral 
processing stream of the cerebral cortex are thought to encode object 
identity, it is interesting to ask, in how far they are to be able to encode 
fully detailed scene information, or whether they contain only reduced 
information (such as object identity). To examine the functioning of this 
reverse pathway under the continuous transformation training 
paradigm, we investigated the representational content in each area by 
reconstructing sensory inputs in a top-down manner. After training, a 
static input image was presented until network activity converged 
(Supplementary material 1.3). Then, the input was blanked out and the 
inferred activity pattern (representation) from a selected area was 
propagated back down to the input neurons via the top-down weights. 
Area by area, activity yl of representation neurons was installed by the 
descending predictions 

yl  (see Supplementary material 1.5 for details).

As shown in Figure 7A, the accuracy of reconstruction strongly 
depended on the area it was initiated from. While predictions from 
latent representations in area 1 gave rise to reconstructions that 
resembled the original inputs and achieved low reconstruction 
errors (Figure  7B), higher areas were less accurate. From there, 
reconstructions were either blurry or showed the stimulus in a 
different position, rotational angle, or scale than presented prior to 
construction (e.g., the “0” from area 3 in the second row of Figure 7). 
This logically follows from the invariance achieved in these higher 
areas, from where a single generalized representation cannot suffice 
to regenerate many specific images. Despite this limitation in 
obtaining precise reconstructions, which resulted from training on 
extended sequences instead of individual frames, area 
1-representation neurons in all networks contained enough 
information to regenerate the inputs, thus confirming that the model 
had learned a generative model of the dataset.

3.4. Reconstructing objects from occluded 
scenes

The generative capacity of the network’s top-down pathway 
was further confirmed by its ability to reconstruct whole objects 
from partially occluded sequences as shown in Figure  8. A 

FIGURE 6

The network develops a hierarchy of timescales comparable to experimental data from rodent visual cortex. (A) Temporal decay of activity 
autocorrelation for the representation neuron subpopulations (RNs). (B) Decay of autocorrelation for the error-coding subpopulations (ENs). 
(C) Inferred decay constants per subpopulation across stimulus timescales. Error bars denote one standard deviation across four randomly initialized 
networks (p-values are given in the main text). Increasing the speed by a factor of two corresponds to 50% less inference steps per frame. 
(D) Comparison to experimental evidence from rat visual cortex. Hierarchical ordering of intrinsic timescales rendered as the decay constants of 
activity autocorrelation, from V1 across lateromedial (LM), laterointermediate (LI) to laterolateral (LL) visual areas, adapted from Piasini et al. (2021) 
under the license https://creativecommons.org/licenses/by/4.0. ***p  =  5e-7, 1e-13, 2e-14, respectively for LM, LI, and LL.
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behaviorally relevant use of a generative pathway is the ability to 
fill in for missing information, such as when guessing what the 
whole scene may look like and planning an action toward 
occluded parts of an object. To investigate filling-in in the model, 
we presented occluded test sequences to the network trained on 
laterally moving digits (the same as before). After inference on 
each frame of the test dataset, the predictions sent down to the 
lowest network area were normalized and plotted retinotopically 
in Figure 8. Details on the reconstruction process can be found 
in Supplementary material 1.6. Indeed, predictions sent toward 

the lowest area carried information about the occluded parts 
(Figure 8A).

As the input deteriorated, predictions also visibly degraded, 
resulting in a rising MSE (Figure 8B). The continuously trained 
network consistently achieved slightly, but significantly better 
reconstructions than its counterpart trained on static images (for 
a more detailed analysis see Supplementary material 1.6). An 
independent t-test resulted in p < 6e-4 for all sequence frames 
except for the first, unoccluded frame where the difference was 
non-significant. That the difference was small can be explained by 

FIGURE 7

Learning of a generative model. (A) Illustration of top-down reconstructions in the model with invariant representations. The first column depicts 
original input images from different datasets. Columns two to four show the activity pattern in the input area generated by propagating latent 
representations from different network areas to the input layer in a top-down manner. The symbols at the beginning of each row indicate the 
underlying transformation: translation, rotation, scaling and rotation, respecitvely (as in Figure 3). In early network areas, representations inferred from 
sensory inputs carried enough information to reconstruct the input image once it was removed. Reconstructions from higher areas were less accurate. 
(B) Mean squared reconstruction errors (MSE), comparing the original input to the reconstructions on a pixel-level. The vanishingly small vertical bars 
indicate the standard deviation across four random seeds.
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two opposing mechanisms: on the one hand memorization of 
specific frames putatively aids reconstruction in the static network 
(Supplementary Figure S2). On the other hand, availability of 
invariant object identity from the temporal context, which can 
be expected to improve reconstruction in the continuously trained 
network. Overall, the availability of top-down information in 
occluded fields of network area 0 is comparable to the presence of 
concealed scene information observed in early visual areas of 
humans (Smith and Muckli, 2010) that cannot be explained by 
purely feedforward models of perception. Unlike auto-associative 
models of sequential pattern-completion (Herz et al., 1989), our 
network forms hierarchical representations comparable to Illing 
et al. (2021).

4. Discussion

4.1. Summary of results

We have shown how networks that minimize local prediction 
errors learn object representations invariant to the precise viewing 
conditions in higher network areas (Figure 4), while acquiring a 
generative model in which especially lower areas are able to 
reconstruct specific inputs (Figures 7, 8). The learned high-level 
representations distinguish between different objects, as linear 
decoding accuracy of object identity was high (Figure  5). 
Comparison to considerably worse decoding performance 
in networks trained on static images underlined the importance 
of  temporally continuous transformation for the learning 
process (Figure 5A), noting that spatially ordered sequences (as 
in,  e.g., visual object motion) are not strictly necessary 
(Supplementary Figure S11). Focusing on the implications for 
neural dynamics, learning from temporally continuous 
transformations such as continuous motion led to a hierarchy of 
timescales in representation neurons that showed more slowly 
changing activity in higher areas, where they notably differed from 
the more quickly varying error neurons (Figure 6).

4.2. A generative model to learn invariant 
representations

Without the need for explicit data labels, the model developed 
meaningful, decodable representations purely by Hebbian learning. 
Linking slowly varying predictions in higher areas to more quickly 
changing inputs in lower areas lead to emergence of temporally stable 
representations without the need for an explicit constraint for slowness 
as used for example in Wiskott and Sejnowski (2002). At the same 
time, the model acquired generative capacity that enables 
reconstruction of partially occluded stimuli, in line with retinotopic 
and content-carrying feedback connections to V1 (Smith and Muckli, 
2010; Marques et al., 2018), see also (Pennartz et al., 2019) for a review 
of predictive feedback mechanisms. Other neuron-level models of 
invariance-learning (LeCun et al., 1989; Földiák, 1991; Rolls, 2012; 
Halvagal and Zenke, 2022) neither account for such feedback nor 
experimentally observed explicit encoding of mismatch between 
prediction and observation (Zmarz and Keller, 2016; Leinweber et al., 
2017) and used considerably more complex learning rules requiring a 
larger set of assumptions (Halvagal and Zenke, 2022). Conversely, 
auto-associative Hopfield-type models that learn dynamic pattern 
completion from local learning rules (Herz et al., 1989; Brea et al., 
2013) do not learn hierarchical invariant representations like the 
proposed model does. By solving the task of invariance learning in 
agreement with the generativity of sensory cortical systems, the claim 
for predictive coding circuits as fundamental building blocks of the 
brain’s perceptual pathways is strengthened.

4.3. Related work

We argue that the model generalizes predictive coding to moving 
stimuli in a biologically more plausible way than other approaches 
(Lotter et  al., 2016, 2020; Ali et  al., 2021) that rely on error 
backpropagation, which is non-local (Rumelhart et al., 1985) or the 
equivalently non-local backpropagation through time (BPTT, Ali 
et  al., 2021). BPTT achieves global gradient descent and thus 

FIGURE 8

Reconstruction of partially occluded sequences. (A) First and third row: the input sequences shown to the PC-continuous network with the occluder 
outlined in red. Rows two and four: images arising from top-down predictions sent to the area 0 carried information about occluded areas of the 
input. (B) Comparison of a continuously trained predictive coding network to a purely feedforward network (no reconstruction) and a predictive 
coding network trained on static images. Shown is the mean squared reconstruction error in the occluded part, averaged across all ten sequences, 
rising as the occluded field becomes larger (plotted over the first to last image of the occlusion sequence). The vanishingly small error bars indicate the 
standard deviation across four network initializations.
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generally offers performance benefits over Hebbian learning rules. 
However, it is not straightforward to combine BPTT with invariance 
learning from temporal structure and direct comparison is thus 
difficult. As our network is based on the principles developed by Rao 
and Ballard (1999), its basic neural circuitry is shared with other 
implementations of predictive coding with local learning rules 
derived from it Whittington and Bogacz (2017) and Dora et  al. 
(2021). In terms of scope of the current model, focusing on 
representational invariance and investigating the consequences of 
training on dynamic inputs clearly distinguishes the present 
approach from Dora et  al. (2021). Mechanistic differences are 
biologically motivated, such as omissionof a gating term used by 
Dora et  al. (2021) that depended on the partial derivative with 
respect to presynaptic neuronal activity. This minimizes the set of 
necessary assumptions compared to other implementations that 
require such a term in inference (Whittington and Bogacz, 2017; 
Dora et al., 2021) and/or learning (Dora et al., 2021). Unlike (Dora 
et al., 2021), the present implementation also does not require weight 
regularization that depends on information not readily available at 
the synapses.

4.4. Limitations in performance

Although sufficient for learning of invariant representations on 
the datasets considered here, the fully connected architecture 
we  used can be  expected to limit the degree of representation 
invariance (as visible, e.g., in the structure of the RDMs) for more 
complex datasets. However, it has been shown that the lack of 
inductive bias in fully connected models can be compensated for by 
training on larger amounts of data (Bachmann et al., 2023). Here, 
the self-supervised nature of our model is an advantage, as it does 
not require labeled data. Another interesting extension of the model 
will be to investigate other common types of transformation such as 
rotation of three-dimensional objects into the plane. Based on the 
model’s ability to deal with the scaling transformation and 3D toy 
objects, we do not expect any fundamental obstacle: the temporal 
structure of the transformation is important, not the way that it 
affects the image.

Fully connected areas may also restrict performance on out-of-
sample testing. Here, combination of receptive field-like local filters 
with a pooling mechanism (Riesenhuber and Poggio, 1999) may 
be  helpful to become tolerant to the varying configurations of 
individual features comprising the objects from the same class. Using 
a weakly supervised paradigm could improve decoding accuracy even 
further. It has been shown that under constraints which would be out 
of the scope of this paper to discuss, inversely connected predictive 
coding networks can do exact backpropagation when clamping the 
highest layer activities in a supervised manner (Whittington and 
Bogacz, 2017; Salvatori et al., 2021).

Input reconstructions from higher network areas degraded as 
representations became more invariant. This is a direct 
consequence of Equation 7: each element from the set of area 
3-representations casts a unique prediction to the area below. 
Consequently, multiple different (not invariant) area 3 patterns 
would be  necessary to fully reconstruct a sequence of inputs. 
Thus, either the invariance in area 3 or the faithfulness of the 

reconstruction suffers. Nevertheless, the network as a whole 
appeared to strike a good balance in the trade-off of memorizing 
information to reconstruct individual samples in lower areas 
(hence the better reconstruction accuracy from area 1 in Figure 7) 
and abstracting over the sequence, where area 3 represents object 
identity invariantly (Figure 5), fitting theoretical descriptions of 
multilevel perception (ch. 9 in Pennartz, 2015). The more detailed 
and sample-specific information may provide useful input to the 
action-oriented dorsal processing stream (Goodale and Milner, 
1992), whereas the hierarchy of the ventral visual cortex extracts 
object identity and relevant concepts (Mishkin et al., 1983).

4.5. Hypotheses on the neural circuitry of 
predictive coding

The model captures neural response properties in early and high-
level areas of the visual cortical hierarchy. Retinotopic (Marques et al., 
2018) and information carrying (Smith and Muckli, 2010) feedback to 
early visual areas (cf. Figures 7, 8) as well as invariant (Logothetis et al., 
1995; Freiwald and Tsao, 2010) and object-specific representations (cf. 
Figure 4) in the temporal lobe (Desimone et al., 1984; Haxby et al., 
2001; Quiroga et  al., 2005) are captured by the simulation results. 
While there is ample evidence for a hierarchy of timescales in the visual 
processing streams of humans (Hasson et al., 2008), primates (Murray 
et al., 2014) and rodents (Piasini et al., 2021), with larger temporal 
stability in higher areas, the compatibility with deep predictive coding 
is debated (Piasini et al., 2021). Our simulation results of increasingly 
large timescales further up in the network hierarchy may help to 
reconcile predictive coding with the experimental evidence. 
Coincidentally, this was also found to be true in a recently developed 
predictive coding model, albeit with only two layers and without 
explicit error representations (Jiang and Rao, 2022). Compared to 
emergence of temporal hierarchies purely as a result of dynamics in 
spiking neurons (van Meegen and van Albada, 2021) or large-scale 
models (Chaudhuri et al., 2015; Mejias and Wang, 2022), our model 
provides a complementary account, postulating development of the 
temporal hierarchy as a consequence of a functional computation: 
learning invariance by local error minimization.

What novel insights can be extracted about the brain’s putative 
use of predictive algorithms? Theories of predictive coding range 
from limiting it to a few functions [such as subtraction of corollary 
discharges to compensate for self-motion (Leinweber et al., 2017)] 
and input reconstruction (Rao and Ballard, 1999) to claiming 
extended versions of it as the most important organizational 
principle of the brain (Friston, 2010), namely the free energy 
principle. PC models provide a critical step to make theories of 
perception and imagery quantitative and falsifiable as well as to 
guide experimental research (Pennartz et al., 2019). Based on the 
simulation results, error neurons in higher visual areas operate on 
a much shorter activity timescale than their representational 
counterparts. This comparison of distinct subpopulations may 
provide an additional angle to measuring neural correlates of 
prediction errors [for a review see (Walsh et  al., 2020)], as 
representation neuron responses have been barely considered in 
experimental work so far. In combination with work on encoding 
of errors in superficial, and representations in deep cortical layers 
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(Bastos et al., 2012; Keller and Mrsic-Flogel, 2018; Pennartz et al., 
2019; Jordan and Keller, 2020), area- and layer-wise recordings of 
characteristic timescales could lead to a better understanding of 
cortical microcircuits underlying predictive coding. Layer-wise 
investigations also show distinct patterns of feedforward and 
feedback connectivity (Markov et  al., 2014) and information 
processing (Oude Lohuis et al., 2022). Only with knowledge about 
these microcircuits, models of finer granularity can be constructed.

5. Conclusion

Predictive coding is a theory with great explanatory power, but 
with unclear scope. Here, we go beyond the original scope of pure 
input-reconstruction and find that predictive coding networks can 
additionally solve an important computational problem of vision. Our 
results are in line with experimental data from multiple species, 
strengthening predictive coding as a fundamental theory of 
mammalian perception.
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