16 research outputs found

    FVF-Based Low-Dropout Voltage Regulator with Fast Charging/Discharging Paths for Fast Line and Load Regulation

    Get PDF
    A new internally compensated low drop-out voltage regulator based on the cascoded flipped voltage follower is presented in this paper. Adaptive biasing current and fast charging/discharging paths have been added to rapidly charge and discharge the parasitic capacitance of the pass transistor gate, thus improving the transient response. The proposed regulator was designed with standard 65-nm CMOS technology. Measurements show load and line regulations of 433.80 μV/mA and 5.61 mV/V, respectively. Furthermore, the output voltage spikes are kept under 76 mV for 0.1 mA to 100 mA load variations and 0.9 V to 1.2 V line variations with rise and fall times of 1 μs. The total current consumption is 17.88 μA (for a 0.9 V supply voltage).Ministerio de Economía y Competitividad TEC2015-71072-C3-3-RConsejería de Economía, Innovación y Ciencia. Junta de Andalucía P12-TIC-186

    A low quiescent current low dropout voltage regulator with self-compensation

    Get PDF
    This paper proposed a low quiescent current low-dropout voltage regulator (LDO) with self-compensation loop stability. This LDO is designed for Silicon-on-Chip (SoC) application without off-chip compensation capacitor. Worst case loop stability phenomenon happen when LDO output load current (Iload) is zero. The second pole frequency decreased tremendously towards unity-gain frequency (UGF) and compromise loop stability. To prevent this, additional current is needed to keep the output in low impedance in order to maintain second pole frequency. As Iload slowly increases, the unneeded additional current can be further reduced. This paper presents a circuit which performed self-reduction on this current by sensing the Iload. On top of that, a self-compensation circuit technique is proposed where loop stability is self-attained when Iload reduced below 100μA. In this technique, unity-gain frequency (UGF) will be decreaed and move away from second pole in order to attain loop stability. The decreased of UGF is done by reducing the total gain while maintaining the dominant pole frequency. This technique has also further reduced the total quiescent current and improved the LDO’s efficiency. The proposed LDO exhibits low quiescent current 9.4μA and 17.7μA, at Iload zero and full load 100mA respectively. The supply voltage for this LDO is 1.2V with 200mV drop-out voltage. The design is validated using 0.13μm CMOS process technology

    Design of low-dropout regulator for ultra low power on-chip applications

    Get PDF
    Low Drop Out (LDO) voltage regulators are commonly used to supply low-voltage digital circuits such as microprocessor cores. These digital circuits normally are continuously changing from one mode of operation to another. Therefore, the load demand can change rapidly resulting in large voltage transients at the output of the regulator which can adversely affect the digital circuitry. In this Master's Thesis, design topologies and challenges of very low-power fully integrated On-Chip Low-Dropout (LDO) regulators have been analyzed. Instead of conventional LDO which makes use of a large external capacitor to have better dynamic response and stability, a CapacitorLess LDO (CL-LDO) is chosen on considerations of smaller area. The most challenging part of designing this kind of regulator is achieving high current efficiency by reducing the quiescent current while ensuring good stability response as well as good regulation performance. Thus, different circuit techniques must be carefully added in order to balance the lack of the large external capacitor having the minimum impact on system efficiency. This work focuses on designing a fully integrated low-dropout regulator with good dynamic performance, high regulation performance and ultra-low power consumption. The stability is achieved by the use of two pole-splitting techniques, namely Cascode and Nested-Miller compensation. The good dynamic response with low quiescent current are achieved by the use of an adaptive biasing circuit, a gm-boost circuit and adaptive power transistor architecture

    Ultra-low Quiescent Current NMOS Low Dropout Regulator With Fast Transient response for Always-On Internet-of-Things Applications

    Get PDF
    abstract: The increased adoption of Internet-of-Things (IoT) for various applications like smart home, industrial automation, connected vehicles, medical instrumentation, etc. has resulted in a large scale distributed network of sensors, accompanied by their power supply regulator modules, control and data transfer circuitry. Depending on the application, the sensor location can be virtually anywhere and therefore they are typically powered by a localized battery. To ensure long battery-life without replacement, the power consumption of the sensor nodes, the supply regulator and, control and data transmission unit, needs to be very low. Reduction in power consumption in the sensor, control and data transmission is typically done by duty-cycled operation such that they are on periodically only for short bursts of time or turn on only based on a trigger event and are otherwise powered down. These approaches reduce their power consumption significantly and therefore the overall system power is dominated by the consumption in the always-on supply regulator. Besides having low power consumption, supply regulators for such IoT systems also need to have fast transient response to load current changes during a duty-cycled operation. Supply regulation using low quiescent current low dropout (LDO) regulators helps in extending the battery life of such power aware always-on applications with very long standby time. To serve as a supply regulator for such applications, a 1.24 µA quiescent current NMOS low dropout (LDO) is presented in this dissertation. This LDO uses a hybrid bias current generator (HBCG) to boost its bias current and improve the transient response. A scalable bias-current error amplifier with an on-demand buffer drives the NMOS pass device. The error amplifier is powered with an integrated dynamic frequency charge pump to ensure low dropout voltage. A low-power relaxation oscillator (LPRO) generates the charge pump clocks. Switched-capacitor pole tracking (SCPT) compensation scheme is proposed to ensure stability up to maximum load current of 150 mA for a low-ESR output capacitor range of 1 - 47µF. Designed in a 0.25 µm CMOS process, the LDO has an output voltage range of 1V – 3V, a dropout voltage of 240 mV, and a core area of 0.11 mm2.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Addressing On-Chip Power Conversion and Dissipation Issues in Many-Core System-on-a-Chip based on Conventional Silicon and Emerging Nanotechnologies

    Get PDF
    Title from PDF of title page viewed August 27, 2018Dissertation advisor: Masud H ChowdhuryVitaIncludes bibliographical references (pages 158-163)Thesis (Ph.D.)--School of Computing and Engineering and Department of Physics and Astronomy. University of Missouri--Kansas City, 2017Integrated circuits (ICs) are moving towards system-on-a-chip (SOC) designs. SOC allows various small and large electronic systems to be implemented in a single chip. This approach enables the miniaturization of design blocks that leads to high density transistor integration, faster response time, and lower fabrication costs. To reap the benefits of SOC and uphold the miniaturization of transistors, innovative power delivery and power dissipation management schemes are paramount. This dissertation focuses on on-chip integration of power delivery systems and managing power dissipation to increase the lifetime of energy storage elements. We explore this problem from two different angels: On-chip voltage regulators and power gating techniques. On-chip voltage regulators reduce parasitic effects, and allow faster and efficient power delivery for microprocessors. Power gating techniques, on the other hand, reduce the power loss incurred by circuit blocks during standby mode. Power dissipation (Ptotal = Pstatic and Pdynamic) in a complementary metal-oxide semiconductor (CMOS) circuit comes from two sources: static and dynamic. A quadratic dependency on the dynamic switching power and a more than linear dependency on static power as a form of gate leakage (subthreshold current) exist. To reduce dynamic power loss, the supply power should be reduced. A significant reduction in power dissipation occurs when portions of a microprocessor operate at a lower voltage level. This reduction in supply voltage is achieved via voltage regulators or converters. Voltage regulators are used to provide a stable power supply to the microprocessor. The conventional off-chip switching voltage regulator contains a passive floating inductor, which is difficult to be implemented inside the chip due to excessive power dissipation and parasitic effects. Additionally, the inductor takes a very large chip area while hampering the scaling process. These limitations make passive inductor based on-chip regulator design very unattractive for SOC integration and multi-/many-core environments. To circumvent the challenges, three alternative techniques based on active circuit elements to replace the passive LC filter of the buck convertor are developed. The first inductorless on-chip switching voltage regulator architecture is based on a cascaded 2nd order multiple feedback (MFB) low-pass filter (LPF). This design has the ability to modulate to multiple voltage settings via pulse with modulation (PWM). The second approach is a supplementary design utilizing a hybrid low drop-out scheme to lower the output ripple of the switching regulator over a wider frequency range. The third design approach allows the integration of an entire power management system within a single chipset by combining a highly efficient switching regulator with an intermittently efficient linear regulator (area efficient), for robust and highly efficient on-chip regulation. The static power (Pstatic) or subthreshold leakage power (Pleak) increases with technology scaling. To mitigate static power dissipation, power gating techniques are implemented. Power gating is one of the popular methods to manage leakage power during standby periods in low-power high-speed IC design. It works by using transistor based switches to shut down part of the circuit block and put them in the idle mode. The efficiency of a power gating scheme involves minimum Ioff and high Ion for the sleep transistor. A conventional sleep transistor circuit design requires an additional header, footer, or both switches to turn off the logic block. This additional transistor causes signal delay and increases the chip area. We propose two innovative designs for next generation sleep transistor designs. For an above threshold operation, we present a sleep transistor design based on fully depleted silicon-on-insulator (FDSOI) device. For a subthreshold circuit operation, we implement a sleep transistor utilizing the newly developed silicon-on ferroelectric-insulator field effect transistor (SOFFET). In both of the designs, the ability to control the threshold voltage via bias voltage at the back gate makes both devices more flexible for sleep transistors design than a bulk MOSFET. The proposed approaches simplify the design complexity, reduce the chip area, eliminate the voltage drop by sleep transistor, and improve power dissipation. In addition, the design provides a dynamically controlled Vt for times when the circuit needs to be in a sleep or switching mode.Introduction -- Background and literature review -- Fully integrated on-chip switching voltage regulator -- Hybrid LDO voltage regulator based on cascaded second order multiple feedback loop -- Single and dual output two-stage on-chip power management system -- Sleep transistor design using double-gate FDSOI -- Subthreshold region sleep transistor design -- Conclusio

    Custom Integrated Circuit Design for Portable Ultrasound Scanners

    Get PDF

    Diseño de circuitos electrónicos de ultra-bajo consumo en tecnologías nanométricas

    Get PDF
    El escalado de los procesos de fabricación de semiconductores, predicho por el Dr. Moore en los años sesenta, ha tenido un gran impacto en el desarrollo de la electrónica integrada actual. Por una parte, la reducción del tamaño de los transistores ha permitido incrementar la densidad de integración, dando la posibilidad a los diseñadores de introducir un mayor número de funcionalidades dentro de una misma área. Por otro lado, este fenómeno ha llevado consigo una reducción de los costes asociados a la fabricación, logrando abaratar el producto final. Esta continua evolución e incremento de la funcionalidad dentro de un mismo circuito integrado, implica, a su vez, un aumento de la complejidad a la hora de planificar la generación y distribución de las distintas tensiones de alimentación, necesarias para cada uno de los bloques incluidos en el chip. Esto provoca que las especificaciones de ruido, regulación y/o estabilidad asociadas a cada dominio de alimentación varíen según la naturaleza del sistema al que se pretende alimentar. Por esta razón, los circuitos destinados a la gestión de la potencia han tomado una mayor relevancia en los últimos años, puesto que las restricciones impuestas por los sistemas integrados son cada vez mayores. Dentro de los circuitos destinados a la gestión de potencia, los reguladores lineales y, en concreto, los de bajo dropout se corresponden con un bloque básico, ya que permiten la generación de tensiones de alimentación muy estables, precisas y de bajo ruido. Estas características los convierten en el circuito ideal para alimentar a sistemas analógicos o de radio-frecuencia, muy sensibles a variaciones de la alimentación. Otra característica de estos bloques, que ha provocado el creciente interés de la comunidad científica en ellos, es la posibilidad de poder integrarlos sin necesidad de incluir ningún dispositivo externo, con el consecuente ahorro económico y de área en la tarjeta impresa. Sin embargo, dentro de los inconvenientes cabe destacar dos. Por una parte, la eficiencia máxima teórica que pueden lograr es baja frente a soluciones basadas en capacidades conmutadas o inductores. Por otro lado, al buscarse un esquema de compensación interna, el polo dominante del sistema viene fijado por un nodo interno del circuito, provocando que el polo no-dominante esté dominado por la carga. Esto se traduce en un gran problema de estabilidad, debido a que las variaciones que sufre la carga se traducen en un desplazamiento en frecuencia del polo no dominante, degradando el margen de fase de todo el sistema. Según lo descrito anteriormente, esta investigación se ha centrado en el estudio de reguladores lineales de tipo Low-DropOut o LDO compensados internamente y sus propiedades, dada la problemática de este tipo de celdas cuando se busca minimizar su consumo quiescente. Para ello, uno de los objetivos marcados versa sobre la búsqueda de topologías alternativas que permitan el diseño de LDOs de altas prestaciones, sin suponer un incremento del consumo quiescente y que sean válidos para entornos de baja tensión de alimentación. En este sentido, se ha apostado por el uso de la celda Flipped Voltage Follower como regulador debido a su baja impendancia de salida, gran estabilidad y sencillez. Una segunda línea, se ha centrado en la búsqueda de esquemas de compensación simples que permitan extender la estabilidad de este tipo de regulador en todo el rango de funcionamiento. Para ello, se ha explorado un esquema basado en la compensación clásica de Miller donde se ha utilizado un esquema de replica para ajustar de forma dinámica el valor de la resistencia según la carga del sistema. Por último, con el objetivo de minimizar lo máximo posible el consumo quiescente de los reguladores LDOs sin degradar las prestaciones de la respuesta transitoria, se ha explorado el uso de buffers clase AB para gestionar la puerta del transistor de paso. Esta técnica permite mejorar la respuesta transitoria, al ser capaz de crear corrientes elevadas durante las transiciones sin necesidad de penalizar la eficiencia del regulador.The continuous downscaling of semiconductor fabrication processes, which was predicted by PhD. Moore in 1965, have had a great impact in the development of nowadays integrated electronics. The reduction of transistor size has allowed, on one hand, the integration of more devices in the same área, increasing the integration density, while, on the other hand, has led to the reduction of fabrication costs, making the final product cheaper and accessible. However, this increase in the functionality of a single integrated circuit entails greater complexity in the generation and distribution of the different biasing voltages needed throughout one chip. Thus, as more different systems are integrated in the same chip, more different biasing domains coexists in it, leading several different requirements of noise, regulation and/or stability that need to be satisfied simultaneously. Therefore, power management circuits have been acquiring greater significance as technology downscales, reaching its maximum nowadays, when the nanoscale had taken those issues to its culmen. Linear regulators, and more concretely, low-dropout linear regulators, are an essential block in any power management system, able to generate precise and extremely-stable low-noise biasing voltages what make them the ideal choice for extremely biasing-sensitive circuits such as analog or radio-frequency systems. In addition to this, low-dropout linear regulators can be completely integrated without needing any external device, what translates to expenses and area savings. For all these reasons, low-dropout linear regulators have been lately acquiring extensive attention from the scientific community. However, those circuits also have some disadvantages, indeed, the maximum theoretical efficiency that can be achieved though low-dropout linear regulators is lower than switched capacitor or inductor-based solutions efficiency. In addition to this, as internal compensation is required, the system’s dominant pole is given by an internal node, making the non-dominant pole to be fixed by the charge. This leads to a great stability concern as charge variations translate to a frequency displacement of the non-dominant pole that degrades the whole system phase margin. In accordance with previously described issues, this research has been focused on the study of minimum-quiescent consumption internally compensated low-dropout linear regulators (LDO). The first objective of this research is the proposal of low-voltage high-performance LDO structures that do not increase quiescent consumption. Thus, the Flipped Voltage Follower cell has been proposed as regulator due to its inherent low output impedance, great stability and simplicity. The second aim of this research has been the proposal of simple compensation schemes that allow full-operation range stability. So that, a classical Miller compensation based scheme where a replica circuit dynamically adjust the charge resistance has been proposed. Finally, in order to minimize quiescent consumption of LDOs regulators without degrading transient response performance, class-AB buffers have been proposed to drive the pass transistor gate. This technique enhances the transient response as it generates high currents during transitions without compromising efficiency.Premio Extraordinario de Doctorado U
    corecore