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ABSTRACT  

   

The increased adoption of Internet-of-Things (IoT) for various applications like 

smart home, industrial automation, connected vehicles, medical instrumentation, etc. has 

resulted in a large scale distributed network of sensors, accompanied by their power supply 

regulator modules, control and data transfer circuitry. Depending on the application, the 

sensor location can be virtually anywhere and therefore they are typically powered by a 

localized battery. To  ensure long battery-life without replacement, the power consumption 

of the sensor nodes, the supply regulator and, control and data transmission unit, needs to 

be very low. Reduction in power consumption in the sensor, control and data transmission 

is typically done by duty-cycled operation such that they are on periodically only for short 

bursts of time or turn on only based on a trigger event and are otherwise powered down. 

These approaches reduce their power consumption significantly and therefore the overall 

system power is dominated by the consumption in the always-on supply regulator.  

Besides having low power consumption, supply regulators for such IoT systems 

also need to have fast transient response to load current changes during a duty-cycled 

operation. Supply regulation using low quiescent current low dropout (LDO) regulators 

helps in extending the battery life of such power aware always-on applications with very 

long standby time. To serve as a supply regulator for such applications, a 1.24 µA quiescent 

current NMOS low dropout (LDO) is presented in this dissertation. This LDO uses a hybrid 

bias current generator (HBCG) to boost its bias current and improve the transient response. 

A scalable bias-current error amplifier with an on-demand buffer drives the NMOS pass 

device. The error amplifier is powered with an integrated dynamic frequency charge pump 

to ensure low dropout voltage. A low-power relaxation oscillator (LPRO) generates the 
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charge pump clocks. Switched-capacitor pole tracking (SCPT) compensation scheme is 

proposed to ensure stability up to maximum load current of 150 mA for a low-ESR output 

capacitor range of 1 - 47µF. Designed in a 0.25 µm CMOS process, the LDO has an output 

voltage range of 1V – 3V, a dropout voltage of 240 mV, and a core area of 0.11 mm2. 
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CHAPTER 1 

INTRODUCTION AND RESEARCH BACKGROUND 

1.1. Need For Low Power Consumption 

In the recent times, the influence of electronics on our everyday life has increased 

dramatically with the adoption of Internet of Things (IoT), where everything is 

interconnected. Smart home devices, medical instrumentation, industrial automation, 

automotive, etc. are just a few examples of the applications which have seen explosive 

growth in the number of internet connected electronic devices. Typically, sensor systems 

in such IoT devices have to be placed virtually anywhere and therefore have to be powered 

by a battery. Therefore, low power consumption between either successive recharge cycles 

or battery replacement is a necessity, particularly when the batteries are expensive, not 

easily accessible or when they are used in sensitive systems which have to be always-on 

[1]. The operating life of the battery powering an application can be given by 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐿𝑖𝑓𝑒 =
𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑜𝑎𝑑 𝑐𝑢𝑟𝑟𝑒𝑛𝑡
  (1) 

From equation (1), we can see that for a given capacity, the only way to increase the battery 

life is by reducing the average load current consumption. 

1.2. System-level Techniques for Low Power Consumption 

Always-on IoT sensor systems and other portable devices with low-power micro-

controller unit system-on-chip (SoC) ICs, rely on various power saving schemes to increase 

their battery life. Fig. 1.1 highlights some of these applications and their important 

characteristics. Dynamic supply voltage scaling and on/off supply schemes have been 

presented in [2] and [3] for low-power operation. Another increasingly common technique 
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is sleep/standby mode operation which is used to enable the system periodically only for 

short periods of time (duty cycled mode) or only when a trigger event (event driven mode) 

occurs. Otherwise, the system remains in off or very low power state of operation. This 

reduces the average current consumption dramatically. Clock driven or on-demand event 

driven fast wake-up schemes ensure fast response time for these systems. Due to these 

schemes, the standby power consumption of such systems is dominated by their supply 

regulators which have to invariably kept on all the time. Fig. 1.2 shows the load current 

profile of the regulator powering such an application. Two critical features of such a 

Medical and fitness monitors

Smart Home Devices

Voice activated assistants

Smartphones and Wearables

• Sensors placed virtually anywhere

• Not always powered by AC

• Mostly always-on

• Very long battery life a necessity

• Charged for life – IMDs 

• Reliable operation is critical

• Mostly duty – cycled operation

• Minimum power consumption between 

charging cycles

• Event – driven operation

• Reliable communication with cloud or 

in-memory computing

• Minimum power consumption 

between charging cycles

• Always battery powered

• Event – driven or duty – cycled 

operation

Power 

Management

 

Figure 1.1: Importance of low power consumption in common IoT applications. 
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regulator are: very low power consumption during standby mode and fast response to 

transient load currents during fast wake-up. 

1.3. Low Quiescent Current Low Dropout Regulator – Design Tradeoffs 

In comparison to switching regulators, low dropout (LDO) regulators are preferable 

for applications which need fast transient response for a relatively low quiescent current 

(𝐼𝑄). Output capacitor stabilized low dropout regulators powering such applications must 

have low power dissipation for better efficiency when the load current (𝐼𝐿𝑂𝐴𝐷) is close to 

zero and achieve good transient response to switching load current with minimum variation 

in their output voltage (𝑉𝑂𝑈𝑇). Since the time spent in the high load current state for IoT 

CLK

High power 

mode

Low power mode

Duty Cycled Operation

Trigger

Event Driven Operation

Load 

Current

High power 

mode

Low power mode

Start-up 

peaking

Load 

Current

Trigger 

event

 

Figure 1.2: Load current profile for low power operation. 
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applications is very low as shown in Fig 1.2 earlier, the losses due to dropout voltage also 

scale down significantly and the overall power consumption is dominated by the stand-by 

𝐼𝑄.  

Fig. 1.3 shows the block level description of a typical LDO with a PMOS pass device. 

Output voltage (𝑉𝑂𝑈𝑇) regulation with respect to varying supply and load current 

conditions is achieved by using an error amplifier in negative feedback. The gate voltage 

of the pass device is modulated to ensure that 𝑉𝑂𝑈𝑇 is a predetermined ratio of the input 

reference voltage (𝑉𝑅𝐸𝐹). The transient response of an LDO which is a critical feature under 

consideration, can be measured by looking at the variation in 𝑉𝑂𝑈𝑇 during a sudden step 

change in the load current (∆𝐼𝐿𝑂𝐴𝐷). The undershoot/overshoot voltage (∆𝑉𝑂) during a 

load transient event is given by 

∆𝑉𝑂 ≅
∆𝐼𝐿𝑂𝐴𝐷

𝐶𝐿𝑂𝐴𝐷
∗ 𝑡𝑅 + 𝐼𝐿𝑂𝐴𝐷 ∗ 𝑅𝐸𝑆𝑅 (2)

where 𝑡𝑅 is the recovery time of the LDO and, 𝐶𝐿𝑂𝐴𝐷 and 𝑅𝐸𝑆𝑅 are the output storage 

VOUT

VREF

PMOS pass 

device

CLOAD

R1

Error 

Amplifier
Buffer

R2

VIN

ILOAD

 

Figure 1.3: Block diagram of a typical low dropout regulator. 
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capacitance and its equivalent series resistance respectively. 𝑡𝑅 is governed by two distinct 

mechanisms [5] namely the loop bandwidth associated delay (𝑡𝐵𝑊) and the internal slew 

rate associated delay (𝑡𝑆𝑅). Effectively, 𝑡𝑅 is given by  

𝑡𝑅 = 𝑡𝐵𝑊 + 𝑡𝑆𝑅 (3) 

Assuming a single-pole response for the loop gain with a 3-dB bandwidth of 𝑓−3𝑑𝐵, 𝑡𝐵𝑊 

can be estimated to be  

𝑡𝐵𝑊 ≈
2.3

2𝜋𝑓−3𝑑𝐵
 (4) 

However, since load transients are large signal events, slewing of large parasitic 

capacitances inside the loop, adds even more delay to transient response. The biggest 

parasitic capacitance is at the gate of the  pass device (𝐶𝑝𝑎𝑟). Therefore 𝑡𝑆𝑅 can be 

estimated to be  

𝑡𝑆𝑅 ≈
𝐶𝑝𝑎𝑟 ∗ ∆𝑣𝑝𝑎𝑟

𝐼𝑂,𝐸𝐴
 (5) 

where ∆𝑣𝑝𝑎𝑟 is the required change in the gate capacitance voltage to address the load 

current change of ∆𝐼𝐿𝑂𝐴𝐷 and 𝐼𝑂,𝐸𝐴 corresponds to the maximum slew-rate limited output 

current of the error amplifier stage. For a pass device transconductance of 𝐺𝑀,𝑃𝐴𝑆𝑆, (5) can 

be re-written as  

𝑡𝑆𝑅 ≈
𝐶𝑝𝑎𝑟 ∗ ∆𝐼𝐿𝑂𝐴𝐷

𝐼𝑂,𝐸𝐴 ∗ 𝐺𝑀,𝑃𝐴𝑆𝑆
 (6) 

Using (3), (4) and (6) we have  

𝑡𝑅 ≈
2.3

2𝜋𝑓−3𝑑𝐵
+

𝐶𝑝𝑎𝑟 ∗ ∆𝐼𝐿𝑂𝐴𝐷

𝐼𝑂,𝐸𝐴 ∗ 𝐺𝑀,𝑃𝐴𝑆𝑆
 (7) 
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Thus, 𝑡𝑅 which is inversely proportional to 𝑓−3𝑑𝐵 and 𝐼𝑂,𝐸𝐴, can only be reduced at the 

expense of higher bias current. This shows that the LDO suffers from the traditional 

“Transient response vs. Power consumption tradeoff” which is addressed in this research 

to ensure better transient response while maintaining very low stand-by no-load 𝐼𝑄, both of 

which are critical for powering always-On applications. 

1.4. Applications of Low IQ LDOs 

This section discusses two applications to highlight the importance of a low 𝐼𝑄 LDO 

in improving the battery life of a portable and IoT system which uses either duty – cycling 

or event – driven schemes or both to reduce power consumption.  

Application 1: Wireless consumer medical devices such as blood glucose monitors, heart 

rate monitors or an insulin pump, not only enable patients to monitor their health at home 

or on the go, but also help the doctors in remote monitoring and data logging of the vital 

signs to assist in early detection and treatment of medical conditions [4]. Such devices 

monitor, collect and send data to the medical cloud in short bursts periodically and then 

enter sleep/stand-by mode to save power. Apart from ease of use, high measurement 

accuracy, secure connectivity, small form factor and long battery life are some of the 

necessary features of such devices.  

Application 2: A wall mounted wireless dimmer switch featuring a touchpad for dimming 

the lights in a smart home application [1]. The light bulb itself is connected to the AC mains 

supply, but the switch is battery-operated so that it can be placed anywhere in the room or 

relocated depending upon the user convenience. The switch wakes up on detection of finger 
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touch on the touchpad and a valid finger gesture is communicated to the lights wirelessly 

and then goes back to sleep-mode till the next user activity.  

A block diagram description for both of these applications look similar and is given 

in Fig. 1.4.  The most commonly used Li-Ion battery is used to power a very low 𝐼𝑄 LDO 

which powers the always-on real time clock (RTC). In case of an event driven application 

like the dimmer switch, the capacitive touchpad sensor is the always-on sensor which is 

also powered by this LDO. The rest of the circuitry is typically turned off using a load 

switch [4]. This load switch is enabled either when an activity is detected (as in the dimmer 

switch) or periodically based on RTC (as in medical monitors) and turns on the more 

efficient buck converter. The converter powers noise insensitive digital blocks like the 

microcontroller unit, memory and display while maintaining high conversion efficiency. 

Li – Ion Battery
Always-on 

Low-IQ LDO

Always-on 

RTC

Always-on 

SensorLoad 

Switch

Activity 

detection

Buck 

converter

Periodic enabling

Low power RF 

Tranciever

Event driven 

Sensor
MCU Memory

Interface 

and Display
 

Figure 1.4: Block diagram of a typical battery powered always-on IoT application.  
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Medical devices which use the RTC to turn on for short bursts enable the event – driven 

sensor during their on time to capture the patient vitals. This sensor and the RF transceiver, 

both of which are noise sensitive, are powered by the same low 𝐼𝑄 LDO during the on time 

periods. Based on these applications, it is clear that low 𝐼𝑄 LDO would be an appropriate 

fit as long as it features good transient response to the load current variations.  

To put it in numbers, let us revisit the dimmer switch application described in [1]. 

The active current (𝐼𝐴𝑐𝑡𝑖𝑣𝑒) is primarily dominated by the low power RF circuitry which 

gets activated during a user input to transmit data to the lights. However, the sleep mode 

current (𝐼𝑆𝑙𝑒𝑒𝑝) is primarily dominated by the power management and the always-on 

capacitive sensor with 𝐼𝐴𝑐𝑡𝑖𝑣𝑒 = 2.2 𝑚𝐴 and 𝐼𝑆𝑙𝑒𝑒𝑝 = 6 µ𝐴. Even if we assume a worst-

case active time (𝑇𝐴𝑐𝑡𝑖𝑣𝑒) of 2 seconds per user input and 20 such events in a day, the 

overall average consumption (𝐼𝐴𝑣𝑔) is given by 𝐼𝐴𝑣𝑔 =
2.2𝑚𝐴∗2∗20

60∗60∗24
+ 6µ𝐴 =

1µ𝐴 (𝐼𝐴𝑐𝑡𝑖𝑣𝑒) + 6µ𝐴 (𝐼𝑆𝑙𝑒𝑒𝑝). As can be clearly seen, 𝐼𝐴𝑣𝑔 is majorly a function of 𝐼𝑆𝑙𝑒𝑒𝑝 

rather than 𝐼𝐴𝑐𝑡𝑖𝑣𝑒. Therefore, low 𝐼𝑄 power management is critical in reducing 𝐼𝐴𝑣𝑔 and 

improving battery life.  

1.5. Organization of the Dissertation 

The rest of the thesis is organized as follows: Chapter 2 captures an overview of the 

past research literature on current scaling schemes for improving the transient response in 

low 𝐼𝑄 LDOs and describes the motivation for this research. Chapter 3 introduces the 

proposed NMOS LDO solution at block level and gives a brief overview of system level 

considerations for the design. Chapter 4 discusses the design details of the proposed current 

scaling approach along with the variable bias current error amplifier and the associated 
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charge-pump. Chapter 5 gives a detailed description of the proposed ultra-low power 

current or voltage tunable relaxation oscillator with very low switching losses and Chapter 

6 discusses the novel switched-capacitor pole tracking compensation scheme used in this 

LDO. Chapter 7 shows the simulated and measured results of the LDO and compares its 

performance with the prior-art. Chapter 8 concludes the thesis with the research conclusion 

and gives an account of the future improvements which can be done for complete product 

development.  
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CHAPTER 2 

LITERATURE SURVEY AND RESEARCH MOTIVATION 

For solving the transient response vs. 𝐼𝑄 trade-off presented in section 1.3, various 

current scaling schemes have been presented in the past to boost the bandwidth and slew-

rate of the LDO. These techniques can be broadly classified into 3 categories: adaptive 

biasing, dynamic slew-rate enhancement and a combination of both.  

2.1. Adaptive Biasing 

Adaptive biasing is a more simpler and straight-forward current scaling scheme in an 

LDO where the bias current is proportional to 𝐼𝐿𝑂𝐴𝐷 [6]-[8]. This is typically achieved 

using a current mirror at the pass device as shown in Fig. 2.1 where a scaled version of the 

load current (1 : k) is obtained and mirrored to boost the bias current in the error amplifier. 

This approach gives the benefit of better slew rate and better loop bandwidth at higher 

𝐼𝐿𝑂𝐴𝐷. However, the increase in bias current is only possible after the error amplifier has 

VREF

R1

R2

+

VOUT

CL

ILoad

VIN

RESR

EA_

Scaled load 

current mirroring

1:k

IB

IADP

 

Figure 2.1: Adaptive bias current scaling scheme. 
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reacted to the load current change and provided the gate voltage change (∆𝑣𝑝𝑎𝑟) as shown 

in equation (4), which makes this scaling scheme inherently slow to begin with due to low 

bias current at light load conditions. Therefore, the recovery time and undershoot for zero 

to full load transition of low-𝐼𝑄 LDOs, cannot be minimized with this scheme and requires 

faster current scaling approaches.  

2.2. Dynamic Slew-rate Enhancement 

Monitoring the error in output voltage during a load transient provides a faster way 

of scaling the bias current in comparison to adaptive biasing. Dynamic slew-rate 

enhancement schemes are presented in [9]-[15] where the slew rate at the gate of the pass 

device is scaled only during the load transient event, thereby reducing undershoot voltage. 

Fig. 2.2 shows two commonly used techniques to detect fast output voltage changes. First 

approach (a) presented in [9] and [12], monitors the error voltage between the output 

voltage and a reference voltage using an amplifier and translates this error voltage into an 

VREF

VOUT

CL

ILoad

VIN

RESR

EA

IB

Dynamic 

Bias

VREF VOUT

IDYN

(a)

VREF

VOUT

CL

ILoad

VIN

RESR

EA

IB + IDYN

VIN

VBIAS

CC

RC

(b)

+

_

+

_

 

Figure 2.2: Dynamic slew-rate enhancement scheme. 



 12  

increased bias current in the main error amplifier. The second technique (b) presented in 

[10], [11], [13]-[15] uses high pass filter schemes to capacitively couple the transient 

voltage error signal, amplify it and use it to boost the bias current momentarily. Dynamic 

slew-rate enhancement technique alone is very effective in output capacitor-less LDOs 

where the parasitic gate capacitance tends to decide the dominant pole as well as the 

required slew rate. In general, low 𝐼𝑄 output capacitor-less LDOs offer limited maximum 

load current capability and suffer from large undershoot voltage during zero to full-load 

current step due to the absence of output storage capacitance. Moreover, not utilizing 

adaptive biasing will reduce the overall performance of the LDO at mid to high 𝐼𝐿𝑂𝐴𝐷 

conditions. The capacitive coupling scheme is only efficient in tracking fast variations in 

𝑉𝑂𝑈𝑇 and does not react to slow changes. This is governed by the pole location of the RC 

high pass filter and therefore is ineffective in improving transient response for steps in 

𝐼𝐿𝑂𝐴𝐷 which are slower than the pole frequency. 

2.3. Combination of Adaptive Biasing and Dynamic Slew-rate Enhancement 

Recently, LDOs which employ dynamic slew enhancement along with adaptive 

biasing have been reported in [16]-[18]. Although increased slew rate helps in reducing 𝑡𝑆𝑅 

as shown in equations (3) to (5), high 𝑡𝐵𝑊 due to limited loop bandwidth at light load 

currents can still limit the total recovery time 𝑡𝑅 for zero to full load current transients, 

especially in output capacitor stabilized LDOs. Therefore, a more effective approach is to 

use the adaptively and dynamically scaled current to improve the loop bandwidth as well 

as the slew-rate. This in-turn reduces the 𝑡𝑅 and improves the overall transient response of 

the LDO.  
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2.4. Other low 𝑰𝑸 LDO techniques 

Apart from the above mentioned three categories, few other low 𝐼𝑄 LDO design 

approaches have been presented in the past for better transient performance. In [19], an 

LDO which uses multiple small-gain stages as a substitute for high-gain single stage 

amplifier is presented. Such stages are claimed to provide well-controlled gain 

enhancement without introducing low-frequency poles before the loop unity gain 

frequency (UGF) and simplify the overall compensation process even with low 𝐼𝑄. 

Although it achieves competitive transient response, the LDO still depends heavily on the 

output capacitor ESR zero for its stability. The ESR zero is not guaranteed when low cost 

ceramic capacitor is used and therefore such an LDO would be unsuitable. A dual pass-

transistor multi-stage approach is presented in [20]. A small pass transistor is used in 

conjunction with an adaptively biased amplifier as a two stage design, for regulating small 

load currents. As the load current increases above a certain threshold value, the LDO 

transforms itself into a 3-stage structure biased by a fraction of the load current conducted 

by the small pass device. This helps the output capacitor-less LDO achieve stability even 

with a low 𝐼𝑄. However, the maximum output capacitance is limited to 100pF making this 

scheme unsuitable for output capacitor stabilized LDOs. [21] presents a fully-integrated 

NMOS LDO which generates a low-ripple regulated output voltage. It efficiently manages 

the available supply voltage for the error amplifier and then uses the  switched capacitor 

DC-DC converter output as the supply for pass device of the LDO. However, due to 

unavailability of a good output storage capacitance in this fully integrated scheme, it suffers 

from large undershoot voltage for a relatively small load current transient.   
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2.5. Research Motivation 

As seen from the analysis in chapter 1 and from all the prior-art in the field, the key 

considerations of low 𝐼𝑄 LDO design are mainly the transient response and stability across 

all load current conditions. As highlighted earlier, a better way to solve the 𝐼𝑄 vs 𝑡𝑅 trade-

off is to ensure that a fast current scaling scheme is utilized to improve both bandwidth and 

slew-rate while maintaining very low no-load 𝐼𝑄. This presents a challenging problem for 

the current scaling methodology. A bias current scalable fast response architecture for error 

amplifier and pass device is also critical for achieving fast load transient response. 

Moreover, achieving stability of the LDO for a range of 𝐶𝐿𝑂𝐴𝐷 values across all 𝐼𝐿𝑂𝐴𝐷 

conditions, without depending upon the availability of an ESR zero, requires development 

of a novel-approach for compensation. These major challenges serve as the motivation for 

this research with an end goal of developing a very low no-load 𝐼𝑄 LDO, which can be a 

favorable choice for supply regulation of battery powered and long standby time 

applications. 
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CHAPTER 3 

BLOCK LEVEL OVERVIEW OF THE PROPOSED NMOS LDO 

Fig. 3.1 shows the block diagram of the proposed LDO with a very low 𝐼𝑄 of 1.24 

µA. The LDO uses an NMOS pass device instead of the more common PMOS pass device 

for supply regulation as it offers three distinct and highly favorable advantages:  

1) Superior transient response due to inherent change in gate-source voltage 𝑉𝐺𝑆 during 

load transient undershoot/overshoot 

2) Lower output impedance even at light load current condition and, 

3) Smaller physical size and lower parasitic gate capacitance for a given maximum load 

current capability and dropout voltage due to higher electron mobility. 
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Figure 3.1: Block diagram of the proposed low 𝐼𝑄 NMOS LDO. 
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A bias-current scalable, two stage error amplifier with an on-demand pull-up/pull-down 

buffer is designed to drive the gate of the NMOS pass-device. A hybrid bias-current 

generator (HBCG) that scales the bias current dynamically during load transients and 

adaptively with 𝐼𝐿𝑂𝐴𝐷 is proposed for improved transient response. This HBCG scheme 

achieves fast 𝐼𝑄 scaling which improves both loop bandwidth and slew-rate of the error 

amplifier even at light 𝐼𝐿𝑂𝐴𝐷. Fig. 3.2 shows a comparison of the bias current profile of the 

HBCG scheme in this LDO with current scaling techniques presented earlier.  

In order to avoid higher dropout voltage due to limited overdrive at the gate of the 

NMOS pass device, the error amplifier is powered with a charge-pump voltage doubler. 

0

Max. load

ILOAD

t

t

t

t

IQ
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Dynamic 

biasing

Hybrid
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IQ
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Figure 3.2: Comparison of hybrid biasing with previously presented 𝐼𝑄 scaling schemes. 
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This charge-pump provides sufficiently higher supply voltage (≈ 2 ∗ 𝑉𝐼𝑁) and ensures that 

the pass device has sufficient gate voltage to keep the dropout voltage to 240mV. In the 

past literature, native NMOS which offers negative or close to zero threshold voltage have 

been used as the pass device for maintaining low dropout voltage. However, additional 

mask cost, larger area due to higher minimum length and well separation and, very high 

sub-threshold drain-source leakage which can be significant in such low 𝐼𝑄 LDO designs 

are the three major reasons for preferring the regular NMOS and charge-pump combination 

over native NMOS.  

Due to the hybrid biasing scheme for the error amplifier, its overall current 

consumption changes with load current and during a transient step. In terms of the charge-

pump, the error amplifier acts as a variable load current at its output. In order to mitigate 

the drop in the 2 ∗ 𝑉𝐼𝑁 voltage output, a dynamic frequency charge-pump is employed to 

power the hybrid-mode biased error amplifier. A low-power relaxation oscillator (LPRO) 

is proposed to generate the charge pump clocks with clock frequency proportional to the 

𝐼𝐿𝑂𝐴𝐷. This LPRO’s bias current is controlled by the HBCG output current and therefore, 

tracks the steady change as well as transient changes in load current. This variable 

frequency clock is re-used for LDO compensation in the proposed switched-capacitor pole 

tracking (SCPT) compensation scheme for loop stability across all load conditions.  

This LDO provides a maximum 𝐼𝐿𝑂𝐴𝐷 of 150 mA while using a low-ESR 1 µF load 

capacitor (𝐶𝐿𝑂𝐴𝐷). The LDO is shown to be stable even for load capacitance up-to 47 µF. 

A low-power scaling amplifier shifts the external reference voltage of 0.8 V to an internal 

reference (𝑉𝑅𝐸𝐹) equal to the required output voltage (𝑉𝑂𝑈𝑇) using a feedback resistor 

divider. The scaling amplifier ensures that the error amplifier is operated in unity-gain 
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configuration which provides the highest possible bandwidth across output voltage 

combinations. The input supply voltage range is from 1.5 V to 3.3 V and the LDO output 

voltage is programmable from 1.0 V  to 3.0 V. The following three chapters discuss the 

design details of each of the constituent blocks inside the LDO. 
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CHAPTER 4 

ERROR AMPLIFIER WITH HYBRID BIASING 

4.1. Hybrid Bias-current Generator (HBCG) 

The major considerations while designing the HBCG circuit apart from current 

scaling are quick response to load current transients and very low contribution to  𝐼𝑄. Since 

fast dynamic current scaling is critical for the overall transient response of the LDO, it has 

to respond quickly. Adaptive biasing on the other hand, is naturally a slow loop since the 

current scaling only happens after the overall loop responds and modulates the gate voltage 

in accordance with change in 𝐼𝐿𝑂𝐴𝐷.  

Load current dependent adaptive biasing is usually obtained by mirroring a fraction 

(1:k) of the pass device current using a current mirror. However, in the case of an NMOS 

pass device, the source voltage of the mirror NMOS needs to be matched to the source 
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Figure 4.1: Adaptive biasing current mirror with feedback amplifier. 
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voltage of the pass device which is 𝑉𝑂𝑈𝑇. Typically, a negative feedback amplifier is used 

to track the output voltage and regulate the source node of the mirror MN1 as shown in 

Fig. 4.1. However, such an amplifier will contribute to the already limited 𝐼𝑄 budget of the 

LDO and is not favorable. 

In order to avoid this additional amplifier, a zero 𝐼𝑄 load dependent adaptive current 

scaling is proposed as shown in Fig. 4.2. A fraction (1:4000) of the 𝐼𝐿𝑂𝐴𝐷 in pass device 

MNP is mirrored by the mirror MN1. In order to ensure accurate mirroring, the source 

voltage of MN1 needs to be equal to 𝑉𝑂𝑈𝑇 and this voltage mirroring is ensured using the 

current mirrors MN2 and MN3 along with MP1 and MP2. As 𝐼𝐿𝑂𝐴𝐷 increases, drain-source 

current in MN1 also increases and current mirror pair MN2-MN3 ensures equal current 

flow in both branches, forcing MP1 and MP2 to have the same 𝑉𝐺𝑆. As the gate terminal is 

1:4000
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Figure 4.2: Proposed zero 𝐼𝑄 adaptive current scaling circuit. 
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common to both MP1 and MP2, the source voltage of MP2 which is 𝑉𝑂𝑈𝑇 is copied onto 

the source terminals of MP1 and MN1. MN4 mirrors the final adaptive current (𝐼𝐴𝐷𝑃). At 

zero 𝐼𝐿𝑂𝐴𝐷, MN1 is in deep sub-threshold region and does not conduct any current. 

Effectively, the entire adaptive scaling implementation has no contribution in the overall 

𝐼𝑄 of the LDO and serves as a major advantage in such low 𝐼𝑄 LDOs. During power-up of 

the LDO, the gate voltage of MN2 and MN3 is pulled down to ground by diode connected 

MN2. However, the common gate voltage of both MP1 and MP2 is indeterministic at start-

up and if it is close to 𝑉𝐷𝐷, the entire adaptive scaling circuit may fail to turn on even when 

𝐼𝐿𝑂𝐴𝐷 increases as MP1 and MP2 will remain in off state. In order to avoid this faulty case, 

their gate node is discharged to ground by MN5 using a short pulse 𝑉𝑆𝑇𝑈𝑃 at start-up. 

Fast dynamic current scaling is based on virtual ground error voltage (∆𝑉 = 𝑉𝑂𝑈𝑇 - 

𝑉𝑅𝐸𝐹) which is obtained by monitoring the input voltages of the error amplifier. Fast 

detection is achieved by utilizing PMOS common-gate differential pair with source 

VOUT VREF

MP3 MP4

MN7MN6

IDYN

20nA 20nA 20nA

VIN

MN0

20nA

VNB

MN8

 

Figure 4.3: Error voltage dependent dynamic current scaling circuit.  
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terminals as inputs. As shown in Fig. 4.3, the input pair consists of highly matched MP3 

and MP4 transistors operating in sub-threshold region. When the LDO is in steady state, 

the error voltage ∆𝑉 ≅ 0 and the 20 nA bias current is mirrored to generate 𝐼𝐷𝑌𝑁 = 20 nA 

through MP3-MP4 and MN7-MN8 current mirrors. However, during an output undershoot 

event (∆𝑉 < 0 ) caused due sudden step-up of 𝐼𝐿𝑂𝐴𝐷, the undershoot in 𝑉𝑂𝑈𝑇 produces an 

increased gate drive (Δ𝑉𝑆𝐺) for MP4 through diode connected MP3. Effectively, current 

through MP4 which is biased in sub-threshold region increases exponentially and is 

mirrored by MN7-MN8 resulting in an exponential increase in 𝐼𝐷𝑌𝑁. Due to absence of 

high impedance paths, this scheme provides instantaneous current scaling during load 

transients. Fig. 4.4 shows the transient response of the dynamic biasing circuit during an 

output undershoot event. It can be seen that the bias current scales exponentially as the 

 

Figure 4.4: Transient response of the dynamic current scaling circuit. 
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undershoot voltage increases and is very quick to respond. There is a continuous increase 

in current for increase in undershoot voltage thereby increases the bias current for all load 

transient events as long as there is a voltage error.  

The overall HBCG circuit is shown in Fig. 4.5 where the adaptive current (𝐼𝐴𝐷𝑃) is 

added to dynamic current (𝐼𝐷𝑌𝑁) and then mirrored by MP5-MP6,MP7 to generate the bias 

currents of the error amplifier (𝐼𝐻𝑌𝐵1) and oscillator (𝐼𝐻𝑌𝐵2). Additionally, a current-

comparator based, on-demand pull-down circuit is added to discharge the load capacitor 

(𝐶𝐿𝑂𝐴𝐷) during an overshoot event (∆𝑉 > 0 ) caused due to sudden step-down of 𝐼𝐿𝑂𝐴𝐷. 

A sub-threshold biased PMOS pair MP8-MP9, similar to that of dynamic scaling circuit 

with reversed input voltage terminals is used as shown in the pull-down circuit segment of 

Fig. 4.3. In comparison to MN9, a 4x stronger current source MN10 is used to hold the 

gate of pull-down device MN11 to less than 15 mV which is much lower than the NMOS 

threshold voltage of 550mV. Such low gate voltage ensures that there is no unexpected 

leakage current through MN11 during steady state operation of the LDO. However, during 

𝑉𝑂𝑈𝑇 overshoot, higher gate drive (Δ𝑉𝑆𝐺) increases the current through MP9. This current 

overpowers the current source MN10 and pulls the gate of MN11 high, thereby discharging 

𝐶𝐿𝑂𝐴𝐷. This pull-down circuit is triggered only when the ∆𝑉 exceeds ~ 35 mV. 
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4.2. Reference Scaling Amplifier 

Fig. 4.6 shows the scaling amplifier which generates the scaled reference voltage 

𝑉𝑅𝐸𝐹 from the external reference 𝑉𝐵𝐺 which is set to 0.8 V. This scaling amplifier needs to 

provide the dynamic current increase of the HBCG circuit and therefore has to be capable 

of sourcing current. It consists of simple two-stage design with a differential amplifier as 

its first stage and a PMOS common source amplifier as its second stage driving a 2pF 

output capacitance (𝐶𝑆𝐴). Such a configuration looks similar to a PMOS LDO which is 

capable of sourcing any amount of current required by the HBCG circuit. To keep the 

current branches to minimum, the bias voltage (𝑉𝑁𝐵) for the tail current source (MN1) is 

derived from MN0 of the HBCG circuit in Fig. 4.4 and both devices are closely matched 

in layout to minimize mismatch. The scaling amplifier is stabilized using miller capacitance 

𝐶𝐶 and resistor 𝑅𝐶 is used to cancel the right half plane zero associated with miller 

MN1

MN2 MN3

MP1 MP2

40nA

MP3

VIN
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R2
CSA
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VNB

RC CC

Bias voltage 
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100nA

 
Figure 4.6: Scaling amplifier with programmable feedback resistor divider. 
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compensation. Digitally programmable resistor divider with fixed 𝑅2 and variable 𝑅1 is 

used to generate 𝑉𝑅𝐸𝐹 corresponding to the LDO output voltage range of 1.0 V – 3.0 V. 

4.3. Error Amplifier with On-demand Pull-up/Pull-down Buffer 

The regulation feedback loop consists of a two-stage error amplifier which is shown 

in Fig. 4.7. The 2x charge-pump provides the supply voltage to this bias current scalable 

error amplifier. Due to this 2*𝑉𝐼𝑁 voltage supply which can go as high as 6 V when 𝑉𝐼𝑁 = 

3.3 V, the error amplifier uses 7 V devices instead of 3.3 V devices. The pass device also 

is a 7 V regular NMOS. The bias current (𝐼𝐻𝑌𝐵1) of the error amplifier is generated by the 

HBCG circuit.  

The first stage of the amplifier is chosen to be a symmetrical operational 

transconductance amplifier (OTA) which provides ease of current scalability due to its   

automatic biasing voltage adjustments, merely by changing the input bias current. Small 

signal analysis of this amplifier shows that the gain of the amplifier (𝐺𝐴𝑀𝑃) and its 3-dB 

pole location (𝑃𝐴𝑀𝑃) are given by 

𝐺𝐴𝑀𝑃 ≅ 𝑔𝑚𝑀𝑁2 ∗ (𝑟𝑑𝑠,𝑀𝑃4||𝑟𝑑𝑠,𝑀𝑁5) (8) 

𝑃𝐴𝑀𝑃 ≅
1

2𝜋(𝑟𝑑𝑠,𝑀𝑃4||𝑟𝑑𝑠,𝑀𝑁5)𝐶𝐴𝑀𝑃

 (9) 

where 𝐶𝐴𝑀𝑃 is the effective load capacitance at the output of the first stage. With increase 

in 𝐼𝐻𝑌𝐵1, although output impedance (𝑟𝑑𝑠,𝑀𝑃4||𝑟𝑑𝑠,𝑀𝑁5) drops, increase in 𝑔𝑚𝑀𝑁2 

compensates for this drop, thereby maintaining a DC gain higher than 50 dB for all possible 

𝐼𝐻𝑌𝐵1 values. However, its 3-dB bandwidth increases proportionally with 𝐼𝐻𝑌𝐵1 as 𝑃𝐴𝑀𝑃 

moves to a higher frequency due to the reduction in output impedance. 
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A second stage bias current scalable dual-loop CMOS voltage buffer is placed in 

between the first stage and the pass device in order to increase the slew rate at the gate of 

the pass device and improve the load transient response. Unlike the voltage buffer with 

only on-demand pull-up capability as shown in [5] and super-source follower buffer with 

only on-demand pull-down presented in [6], the proposed buffer achieves on-demand fast 

pull-up (PU) as well as fast pull-down (PD) capability improving the transient response to 

𝐼𝐿𝑂𝐴𝐷 step-up and step-down respectively. 

At the core, the buffer consists of a PMOS source follower (MP8). For simplicity, the 

PU and PD loops are analyzed separately. Instead of a regular source follower biased with 

a fixed current source, dynamic fast pull-up is achieved through a negative feedback loop 

realized using common gate stage (MN9 and MP7) and common source stage (MP9) which 

constitute a cascoded flipped-voltage follower. This feedback loop not only provides the 

required on-demand sourcing current to charge the gate of pass device during a load step-

up but also reduces the small-signal output impedance of the buffer. The effective output 

impedance can be calculated using the small signal equivalent diagram as shown in Fig. 

4.8 (a) for the PU loop. Small signal test voltage ∆𝑣𝑥 is applied at the output of the buffer 

with input 𝑣𝑖𝑛 shorted to ground. The effective output impedance is given by 

𝑟0,𝑃𝑈 =
∆𝑣𝑥

∆𝑖𝑥
=

∆𝑣𝑥

∆𝑖1 − ∆𝑖2
 (10) 

The small signal current +∆𝑖1 is translated to −∆𝑖1 onto the CG stage MN9, drops across 

the equivalent impedance of (𝑟𝑑𝑠,𝑀𝑃7||𝑟𝑑𝑠,𝑀𝑁9) and is converted to voltage ∆𝑣𝐺𝑃. This 

∆𝑣𝐺𝑃 is converted to ∆𝑖2 using MP9 and is given by 

∆𝑖2 = 𝑔𝑚𝑀𝑃9 ∗ ∆𝑣𝐺𝑃 ≅ 𝑔𝑚𝑀𝑃9 ∗ −∆𝑖1 ∗ (𝑟𝑑𝑠,𝑀𝑃7||𝑟𝑑𝑠,𝑀𝑁9) (11) 
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Using (10) and (11) we get  

𝑟0,𝑃𝑈 ≅
∆𝑣𝑥

[1 + 𝑔𝑚𝑀𝑃9(𝑟𝑑𝑠,𝑀𝑃7||𝑟𝑑𝑠,𝑀𝑁9)]∆𝑖1

 (12) 

Substituting ∆𝑖1 = 𝑔𝑚𝑀𝑃8 ∗ ∆𝑣𝑥 in (12), we get 

𝑟0,𝑃𝑈 ≅
1

𝑔𝑚𝑀𝑃8 ∗ 𝑔𝑚𝑀𝑃9 ∗ (𝑟𝑑𝑠,𝑀𝑃7||𝑟𝑑𝑠,𝑀𝑁9)
 (13) 

Thus the effective output impedance is reduced by a factor of loop gain given by 𝐴𝑃𝑈 =

𝑔𝑚𝑀𝑃9 ∗ (𝑟𝑑𝑠,𝑀𝑃7||𝑟𝑑𝑠,𝑀𝑁9) in comparison to a simple source follower in which case it 

would have been just 
1

𝑔𝑚𝑀𝑃8
, thereby pushing the parasitic pole at the gate of pass device 

(𝑃𝐺𝐴𝑇𝐸) to higher frequency. Similar analysis can be done for the fast PD loop which is a 

super source follower formed by MP8, MN7 and MN10 as shown in Fig. 4.8 (b) where the 

effective output impedance is given by 
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Figure 4.8: Small signal equivalent circuits for determining output impedance for active 

(a) pull-up loop and (b) pull-down loop of the proposed buffer. 
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𝑟0,𝑃𝐷 =
∆𝑣𝑥

∆𝑖𝑥
=

∆𝑣𝑥

∆𝑖1 + ∆𝑖2
 (14) 

The small signal current ∆𝑖1 drops across the effective impedance (𝑟𝑑𝑠,𝑀𝑃8||𝑟𝑑𝑠,𝑀𝑁7) 

producing voltage ∆𝑣𝐺𝑁 which is translated to ∆𝑖2 given by 

∆𝑖2 = 𝑔𝑚𝑀𝑁10 ∗ ∆𝑣𝐺𝑁 ≅ 𝑔𝑚𝑀𝑁10 ∗ ∆𝑖1 ∗ (𝑟𝑑𝑠,𝑀𝑃8||𝑟𝑑𝑠,𝑀𝑁7) (15) 

Using (14) and (15) and substituting ∆𝑖1 = 𝑔𝑚𝑀𝑃8 ∗ ∆𝑣𝑥, we get 

𝑟0,𝑃𝐷 ≅
1

𝑔𝑚𝑀𝑃8 ∗ 𝑔𝑚𝑀𝑁10 ∗ (𝑟𝑑𝑠,𝑀𝑃8||𝑟𝑑𝑠,𝑀𝑁7)
 (16) 

reducing the effective output impedance by a factor of loop gain given by 𝐴𝑃𝐷 =

𝑔𝑚𝑀𝑁10 ∗ (𝑟𝑑𝑠,𝑀𝑃8||𝑟𝑑𝑠,𝑀𝑁7). At steady state, gate voltage of MN10 is held at a threshold 

voltage lower than 𝑉𝐵𝐶𝐺 and it conducts approximately 20 nA of drain-source current as 

shown in Fig. 4.7. 

Since 𝑟0,𝑃𝑈 is reduced by using the cascoded flipped voltage follower approach, 𝑃𝑃𝑈2 

is pushed to a higher frequency even at light bias current conditions. The effective 

impedance looking-in at the drain of MP8 is reduced due to the low impedance of MN9 

(
1

𝑔𝑚𝑀𝑁9
). This accompanied with the low equivalent parasitic capacitance (𝐶𝑝𝑎𝑟) at this 

node, ensure that  𝑃𝑃𝑈3 is at a much higher frequency. Therefore, the entire PU loop is 

stabilized using 𝐶1 (= 1 pF), which is connected to the gate of MP9 making  𝑃𝑃𝑈1 the 

dominant pole. 𝑃𝑃𝑈2 and 𝑃𝑃𝑈3 remain beyond the PU loop unity gain bandwidth (UGB) 

even at light bias current condition providing a minimum phase margin of 45º across all 

load conditions. 𝐶2 (= 1 pF) acts as a glitch filter capacitor to keep the gate voltage of MN9 

constant during large signal variations at its drain and source nodes. The PD loop gain is 

weak compared to PU loop in normal operation and is dominant only during 𝐼𝐿𝑂𝐴𝐷 step 
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down. It is naturally stabilized with the gate capacitance of MNP. As the variable biasing 

current 𝐼𝐻𝑌𝐵1 increases with 𝐼𝐿𝑂𝐴𝐷, the output impedance of the buffer is reduced further 

and pushes 𝑃𝐺𝐴𝑇𝐸 to higher frequency. 

The entire two stage error amplifier is powered by a cross coupled voltage doubler 

charge pump in order to maintain a low dropout voltage for the LDO. However, variable 

𝐼𝐻𝑌𝐵1 which biases the error amplifier, modulates the current drawn from the charge pump 

with 𝐼𝐿𝑂𝐴𝐷 and ultimately, changing its 2x output voltage. In order to maintain a constant 

output voltage of ≈ 2𝑉𝐷𝐷, the charge pump clock frequency (𝐹𝐶𝐿𝐾) is modulated to 

counteract its load current variations. A current tunable low power relaxation oscillator is 

proposed to generate the charge pump control clocks. 

4.4. Charge-pump Voltage Doubler  

Fig. 4.9 shows the employed cross-couple voltage doubler charge-pump [24]. It uses 

non-overlapping clock phases and two inverters INV1 and INV2 to drive two charging 

capacitors (𝐶𝐶𝐻). Due to the combined effect of NMOS switches MN1 and MN2 along 

with the inverters, the node voltages 𝑉1 and 𝑉2 swing between 𝑉𝐼𝑁 and 2 ∗ 𝑉𝐼𝑁. This higher 

voltage in-turn drives the NMOS switches such that their on-resistance is low. This charge 

is then transferred onto storage capacitance 𝐶𝑆𝑇 in every clock phase and maintains the 

output voltage of the charge-pump close to 2 ∗ 𝑉𝐼𝑁. As noted earlier, the error amplifier 

which is biased by HBCG circuit, is powered by this charge-pump to maintain low dropout 

voltage for this NMOS LDO. However, bias current scaling of the error amplifier means 

that the overall current drawn from the charge-pump, scales with 𝐼𝐿𝑂𝐴𝐷. In order to ensure 

that output voltage ripple is kept low across all load current conditions, the clock frequency 
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needs to be scaled linearly with 𝐼𝐿𝑂𝐴𝐷.  Therefore, a current controlled oscillator with 

scalable clock frequency is necessary to generate the control clocks for this charge-pump. 

Moreover,  both  𝐶𝐶𝐻 and 𝐶𝑆𝑇 are sized slightly higher to be 8pF each to maintain low 

ripple voltage across all conditions.  
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Figure 4.9: Voltage doubler charge-pump. 
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CHAPTER 5 

ULTRA-LOW POWER RELAXATION OSCILLATOR 

As noted at the end of the previous chapter, the charge-pump needs to operate at a 

dynamic frequency to ensure low ripple at its output while powering the bias current 

scalable error amplifier. A relaxation oscillator using a fixed current source to charge-up a 

capacitor, which in turn decides the clock frequency is commonly used in integrated 

applications. Moreover, scaling the bias current of relaxation oscillator naturally scales its 

frequency linearly. Therefore, relaxation oscillator would be an ideal fit for this NMOS 

LDO. However, steady current consumption and switching losses in such an oscillator, 

have to be minimized to keep its contribution to the overall 𝐼𝑄 to a minimum which presents 

an opportunity for innovation. 

 A typical relaxation oscillator architecture is shown in Fig. 5.1. A bias current (𝐼𝐵𝐼𝐴𝑆) 

charges the capacitor (𝐶) until its voltage (𝑉𝐶) exceeds a reference voltage (𝑉𝑅𝐸𝐹) at which 

the comparator momentarily changes its output state to logic high to discharge the 

capacitor. As soon as the capacitor is discharged, the comparator outputs a logic low and 

the same sequence repeats periodically to produce an output clock. The approximate output 

clock frequency (𝐹𝐶𝐿𝐾) of this oscillator is given by 

𝐹𝐶𝐿𝐾 ≅
𝐼𝐵𝐼𝐴𝑆

2𝐶 ∗ 𝑉𝑅𝐸𝐹
 (17) 

revealing that it is directly proportional to bias current. Although a preferred option for low 

power clock generation, the major limitation for nano-power operation of this circuit comes 

from the power consumption in comparator. This comparator typically consists of just a 

Schmitt Trigger or an OTA followed by a Schmitt Trigger. The long charging time of the 
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capacitor due to small 𝐼𝐵𝐼𝐴𝑆 results in higher switching losses and the OTA if used, 

consumes steady DC power. [22] presents the use of current comparator instead of OTA. 

The oscillator uses equal bias currents for generation of reference voltage and for capacitor 

charging and claims lower power consumption due to reduced number of current-

conducting branches.  

In this dissertation, a very low-power relaxation oscillator (LPRO) that does not use 

an OTA or an additional reference generator is proposed for charge-pump clock generation. 

Instead it uses the available external reference voltage and a fully digital current 

comparator for ultra-low power operation. The response time of this current comparator is 

proportional to the input current [23] which directly benefits the frequency scalability of 

the oscillator with its bias current.  

Fig. 5.2 shows the overall schematic of the proposed LPRO circuit. The second output 

from HBCG circuit (𝐼𝐻𝑌𝐵2) acts as the charging current. An NMOS switch MN3 is placed 

in between current source 𝐼𝐻𝑌𝐵2 and the capacitor (𝐶𝑆) with its gate controlled by 𝑉𝑅𝐸𝐹. A 
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Figure 5.1: Block diagram of typical relaxation oscillator. 
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T-filter is placed in between the external reference voltage (𝑉𝐵𝐺) and 𝑉𝑅𝐸𝐹 to avoid 

switching noise coupling onto 𝑉𝐵𝐺. Initially, the capacitor voltage 𝑉𝐶 and therefore the 

drain voltage of MN3 (𝑉𝐷) are at zero after the previous discharge cycle. At this state, 

output of inverter I1 in the current comparator is at logic high while the output of I2 is at 

logic low due to which transistor MP1 and MN1 are on and MP2 and MN2 are off. As 

𝐼𝐻𝑌𝐵2 charges 𝐶𝑆, 𝑉𝐶 increases linearly. This pushes MN3 into sub-threshold region where 

its drain – source current is given by 

𝐼𝐷𝑆,𝑀𝑁3 ∝ 𝑒
(

𝑉𝐺𝑆
𝜂𝑉𝑡

)
(1 − 𝑒

−(
𝑉𝐷𝑆

𝑉𝑡
)
) (18) 

where 𝑉𝑡 =
𝑘𝑇

𝑞
≈ 26𝑚𝑉 at T = 27ºC and 𝜂 is a process constant. As 𝑉𝐶 increases further, 

both 𝑉𝐺𝑆 and 𝑉𝐷𝑆 of MN3 reduces ensuring 𝑒
(

𝑉𝐺𝑆
𝜂𝑉𝑡

)
→ 0 and (1 − 𝑒

−(
𝑉𝐷𝑆

𝑉𝑡
)
) → 0 thereby 

VDD

IHYB2

VDD

CLK

MP1

MP2

MN1

MN2

MN4CS

Current Comparator

VREF

VC

MN3 D

Q

Q
VBG

T - Filter

VD

CPAR

I1 I2

I3I4

FF1

 

Figure 5.2: Proposed low power relaxation oscillator (LPRO) with current comparator 

and NMOS switch. 
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exponentially reducing 𝐼𝐷𝑆,𝑀𝑁3. The difference current (𝐼𝐻𝑌𝐵2 − 𝐼𝐷𝑆,𝑀𝑁3) increases 

exponentially and charges the small parasitic input capacitance 𝐶𝑃𝐴𝑅. Therefore 𝑉𝐷 

increases exponentially from zero and output of I1 changes to logic low turning on MP2. 

However, I2 is designed to be weak so that its output transition to logic high happens after 

a small delay. During this momentary period, both MP1 and MP2 are on and quickly charge 

𝐶𝑃𝐴𝑅 such that 𝑉𝐷 shoots up instantaneously and speed-up the switching activity even for 

very low values of 𝐼𝐻𝑌𝐵2. I3 and I4 buffer the output of I2 to discharge 𝐶𝑆 through switch 

MN4. As 𝑉𝐶 drops, MN3 turns on. MN3 and MN4 along with the regenerative feedback of 

MN1 and MN2 discharges 𝐶𝑃𝐴𝑅 and 𝑉𝐷 is pulled down to zero. This cycle repeats to 

produce a periodic clock whose output duty cycle error is corrected by using a clock divider 

FF1 to obtain the output clock. Instead of current mode, the entire comparator can be 

analyzed in voltage mode similar to a Schmitt trigger circuit and can be considered as a 

voltage mode comparator with threshold voltage determined by the device sizing. The 

effective clock frequency of the output clock is given by 

𝐹𝐶𝐿𝐾 ≅
𝐼𝐻𝑌𝐵2

2𝐶𝑆 ∗ (𝑉𝐵𝐺 − 𝑉𝑇𝐻𝑁)
 (19) 

Since 𝐼𝐻𝑌𝐵2 changes with 𝐼𝐿𝑂𝐴𝐷, the clock frequency also changes proportionally to 

generate a load current dependent frequency as required by the dynamic frequency charge-

pump. 

Fig. 5.3 shows a comparison between the simulated transient capacitor voltage and 

supply current profiles for different types of oscillator. Even in case of an oscillator with 

Schmitt trigger, the effective area under the supply current curve is reduced when a switch 

is introduced in between the capacitor and bias current. This is reduced further by 
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introduction of the fast switching current comparator as in the case of LPRO. It can be seen 

that the switching time is cut down significantly by the addition of the switch. Moreover, 

during the entire charging operation, the current comparator only sees a max voltage of 

around 400mV which keeps the shoot-through current in the inverter I1 to a very minimal 

level.  Since, the transition from 400mV to the trip point of the comparator is very quick, 

the impact of variation in the comparator trip point, does not impact the frequency of the 

oscillator reducing the overall variation of the clock frequency across PVT. 

 

Figure 5.3: Comparison of the transient profile of supply current and capacitor voltage for 

the proposed LPRO with other architectures. 
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 The average 𝐼𝑄 of the proposed LPRO is only 40 nA for an output frequency of 22 

kHz which translates to an oscillator figure-of-merit of only 2.7 nW/kHz for a supply 

voltage case of 1.5 V.  Monte-Carlo simulation results with N = 100 samples for the output 

frequency and average 𝐼𝑄 of the LPRO are captured in Fig. 5.4 at 𝐼𝐿𝑂𝐴𝐷 = 0. A 3σ variation 

of ±10 nA is a negligible variation when compared to the overall 𝐼𝑄 of the LDO. The 3σ 

frequency variation of about ±8kHz does not impact the charge-pump output ripple as the 

storage capacitors are slightly oversized to counteract this variation.  

 

Figure 5.4: Histogram of clock frequency and average 𝐼𝑄 of the proposed LPRO for 

MonteCarlo simulation (N=100). 
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It is important to note that both 𝐼𝐻𝑌𝐵1 and 𝐼𝐻𝑌𝐵2, generated from the HBCG circuit, 

scale-up during a load transient event due to dynamic biasing loop. Due to increase in 

𝐼𝐻𝑌𝐵1, the error amplifier draws more current from the charge-pump momentarily due to 

increased bias current. However, since 𝐼𝐻𝑌𝐵2 also increases,  𝐹𝐶𝐿𝐾 increases with it and 

therefore the output ripple of the charge-pump is not increased during a load transient 

event. 
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CHAPTER 6 

SWITCHED CAPACITOR POLE TRACKING COMPENSATION 

The stability of this LDO is determined by the location of 3 distinctive poles: the 

LDO output pole 𝑃𝑂𝑈𝑇, amplifier output pole 𝑃𝐴𝑀𝑃 and the pass device gate pole 𝑃𝐺𝐴𝑇𝐸. 

Since the NMOS pass device acts like a source follower, the output impedance of the LDO 

is given by  

𝑅𝑂𝑈𝑇 ≅
1

𝑔𝑚,𝑀𝑁𝑃
||𝑅𝐿𝑂𝐴𝐷 (20) 

where 𝑅𝐿𝑂𝐴𝐷 is the load current equivalent resistance connected at the output of the LDO. 

Thus 𝑃𝑂𝑈𝑇 is given by 

𝑃𝑂𝑈𝑇 ≅
1

2𝜋 (
1

𝑔𝑚,𝑀𝑁𝑃
||𝑅𝐿𝑂𝐴𝐷) 𝐶𝐿𝑂𝐴𝐷

 (21)
 

𝑃𝐴𝑀𝑃 is given in (9) and 𝑃𝐺𝐴𝑇𝐸 is obtained by using (13) and parasitic pass device gate 

capacitance 𝐶𝐺𝐴𝑇𝐸 as 

𝑃𝐺𝐴𝑇𝐸 ≅
1

2𝜋(𝑔𝑚𝑀𝑃8 ∗ 𝑔𝑚𝑀𝑃9)(𝑟𝑑𝑠,𝑀𝑃7||𝑟𝑑𝑠,𝑀𝑁9)𝐶𝐺𝐴𝑇𝐸
 (22) 

𝑃𝑂𝑈𝑇 changes with 𝐼𝐿𝑂𝐴𝐷 and due to adaptive biasing, 𝑃𝐴𝑀𝑃, 𝑃𝐺𝐴𝑇𝐸 and the loop UGB also 

change with 𝐼𝐿𝑂𝐴𝐷. Fig. 6.1 shows the typical movement of these poles with 𝐼𝐿𝑂𝐴𝐷. The 

proposed buffer design makes sure that 𝑃𝐺𝐴𝑇𝐸 is always beyond the loop UGB and hence 

does not influence the overall loop stability. At zero to light load currents (𝐼𝐿𝑂𝐴𝐷1), 𝑃𝑂𝑈𝑇 

is at a very low frequency (~1 Hz) and is very close to 𝑃𝐴𝑀𝑃 (~10 Hz). As 𝐼𝐿𝑂𝐴𝐷 increases 

to about 1 mA (𝐼𝐿𝑂𝐴𝐷2), 𝑃𝑂𝑈𝑇 drastically shifts to higher frequency. Due to very minor 

increment in bias current, 𝑃𝐴𝑀𝑃 also moves slightly. Hereafter, as the 𝐼𝐿𝑂𝐴𝐷 increases, 𝑃𝑂𝑈𝑇 
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shifts to higher frequency eventually moving outside the UGB for close to maximum 𝐼𝐿𝑂𝐴𝐷 

conditions (𝐼𝐿𝑂𝐴𝐷3). 𝑃𝐴𝑀𝑃 also shifts to higher frequency due to proportional increase in 

bias current thereby increasing the loop UGB. Closely spaced low frequency poles at light 

𝐼𝐿𝑂𝐴𝐷 and constantly frequency shifting poles with increase in 𝐼𝐿𝑂𝐴𝐷 result in challenging 

considerations for the compensation scheme. 

6.1. Previously presented LDO compensation schemes 

Current buffer compensation or Ahuja compensation as presented in [6] is very 

effective in pole splitting where an indirect miller capacitor 𝐶𝐶 is used as shown in Fig. 

6.2. This capacitance provides pole-splitting by pushing out 𝑃𝑂𝑈𝑇 and pushing in 𝑃𝐴𝑀𝑃 in 

frequency. This separation provides a single pole response for the loop and achieves a high 

phase margin as long as 𝑃𝐺𝐴𝑇𝐸 is maintained out of the loop UGB for all conditions. This 

technique can achieve stability with a relatively small sized 𝐶𝐶 as long as the output pole 

location is at a higher frequency (≥ 1𝑘𝐻𝑧). However, in this case, since the two poles of 

interest are at very low frequency (1Hz to 10Hz), an unreasonably high compensation 
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Figure 6.1: LDO pole locations and their movement with increasing load current. 
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capacitance is required for pole splitting, which results in a huge area penalty for 

integration and therefore is ineffective for this design. The single miller compensation 

technique presented in [25] uses pole-splitting and feed-forward techniques to achieve 

stability in 3-stage amplifiers which can be used as the error amplifier in LDOs. Although 

stability is achieved by using a single miller capacitance, the overall 𝐼𝑄 consumption of the 

error amplifier is close to 200 µA which is prohibitively high for this application.  

An active-frequency compensation scheme is presented in [26] to minimize the value 

of the required compensation capacitance by using current amplification method. Instead 

of a regular load current mirror, an amplifier is used to boost the effective current and 

therefore pushing the introduced zero to a very low frequency. However, the current 

consumption in such an additional stage adds to the overall LDO 𝐼𝑄 and is unfavorable. A 

weighted current feedback technique along with miller compensation is presented in [27] 

where a weighted function of the load current is used for smart management of the output 
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Figure 6.2: Current buffer compensation scheme presented in [6]. 
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impedance as well as the gain from the inter-gain stage. This technique claims to avoid any 

right-half plane pole and pushes the left-half plane non-dominant complex pole pair to a 

higher frequency. However, it is suitable only for load capacitance up-to 10 nF and is not 

applicable for output capacitor stabilized LDOs. [28] presents a signal-current feedforward 

and amplification technique called dominant-pole substitution is used to introduce an 

ultralow-frequency zero to cancel the dominant pole, while a higher frequency pole 

substitutes in and becomes the new dominant pole. In doing so, a triple input error amplifier 

is used and the overall 𝐼𝑄 of the LDO is 135 µA which is significantly higher than the target 

𝐼𝑄 consumption for this research. 

Pole tracking compensation is presented in [29] - [30] where the movement of 𝑃𝑂𝑈𝑇 

is tracked and used for compensation. Fig. 6.3 shows the details of the scheme implemented 
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Figure 6.3: A variant of pole-zero tracking compensation scheme presented in [29]. 
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in [29]. A zero is introduced by using a MOS resistor (M3) along with compensation 

capacitance (𝐶𝐶𝑂𝑀𝑃) and is given by  

𝑠𝑧𝑒𝑟𝑜 =
1

𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑀3) ∗ 𝐶𝐶𝑂𝑀𝑃
=

1

𝑅𝑍𝐸𝑅𝑂 ∗ 𝐶𝐶𝑂𝑀𝑃
 (23) 

The location of 𝑠𝑧𝑒𝑟𝑜 is controlled by modulating 𝑅𝑍𝐸𝑅𝑂 with 𝐼𝐿𝑂𝐴𝐷 using a load current 

mirror M1 and M2. Therefore as  𝑃𝑂𝑈𝑇 varies with 𝐼𝐿𝑂𝐴𝐷, 𝑠𝑧𝑒𝑟𝑜 also shift proportionally, 

thereby providing phase boost for all load current conditions. Although the zero tracks 

𝑃𝑂𝑈𝑇, the variation in the MOS resistance can be significant especially at light load current 

conditions due to poor sub-threshold current matching and process variations. This 

variation can impact the overall stability of the LDO. In [30], a distributed pass device 

network consisting of 3 stages is used to obtain smooth pole tracking. Incremental sizing 

is used to ensure smooth turn-on and turn-off sequence of these pass transistors, while 

ensuring stable operation during load transients. However, the minimum value of 𝐼𝐿𝑂𝐴𝐷 for 

this LDO is limited to 100 µA which can pose a limitation on its use case for a 𝐼𝑄 

application. Moreover the overall 𝐼𝑄 of the LDO is also 100 µA and is on the higher side. 

For a compensation scheme to be applicable for this low 𝐼𝑄 LDO, it needs to meet 

the following criteria 

i. Ensure good LDO stability at all load current conditions even at 𝐼𝐿𝑂𝐴𝐷 = 0 when the 

pole locations are at a very low frequency 

ii. Should not contribute significantly to the overall 𝐼𝑄 

iii. Area and cost efficient 

iv. Should not depend on the output ESR zero for stability 

These conditions present challenging considerations for compensating this LDO.  
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6.2. Proposed switched-capacitor pole tracking (SCPT) compensation 

In this research, a 𝑃𝑂𝑈𝑇 tracking zero is introduced to provide a phase boost and 

ensure stability. A zero can be introduced in the loop by using a resistor 𝑅𝑍 as shown in 

Fig. 6.4. However with 𝐶𝐴𝑀𝑃 = 2.5pF, in order to introduce a zero at around UGB for no-

load, the required resistance can be as high as 100 MΩ which results in large area penalty. 

Moreover, 𝑅𝑍 needs to track 𝑃𝑂𝑈𝑇 and hence needs to be variable resistor. This is achieved 

using a novel switched capacitor pole tracking (SCPT) compensation scheme where a 

switched capacitor resistor (𝑅𝑆𝐶) is placed instead of 𝑅𝑍 to introduce a zero (𝑍𝑆𝐶). The 

same oscillator clock is used to control 𝑅𝑆𝐶  with its effective value given by 

𝑅𝑆𝐶 =
1

𝐹𝐶𝐿𝐾 ∗ 𝐶𝑆𝐶
 (24) 

where 𝐶𝑆𝐶 is the capacitance used to implement 𝑅𝑆𝐶  and the SCPT zero 𝑍𝑆𝐶  is given by 

𝑍𝑆𝐶 =
𝐹𝐶𝐿𝐾 ∗ 𝐶𝑆𝐶

2𝜋𝐶𝐴𝑀𝑃
 (25) 
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Figure 6.4: Proposed switched capacitor pole tracking (SCPT) compensation scheme. 
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However, from (19) we know that 𝐹𝐶𝐿𝐾 ∝ 𝐼𝐻𝑌𝐵1 and due to adaptive biasing we have 

𝐼𝐻𝑌𝐵1 ∝ 𝐼𝐿𝑂𝐴𝐷. Therefore from (25) we have 

𝑍𝑆𝐶  ∝ 𝐼𝐿𝑂𝐴𝐷 (26) 

 Thus, 𝑍𝑆𝐶  tracks 𝑃𝑂𝑈𝑇 which is proportional to 𝐼𝐿𝑂𝐴𝐷 and provides a phase boost for the 

entire range of load currents. A small capacitance 𝐶𝑆𝐶 = 0.25 pF is used to implement 𝑅𝑆𝐶 , 

providing an area efficient solution. Non-overlapping clocks control the switches used in 

this SC resistor. Fig. 6.5 shows the simulated gain and phase response of the LDO loop 

obtained using periodic steady state (PSS) followed by periodic AC (PAC) simulation for 

different load current values for a load capacitance of 1 µF. The impact of hybrid biasing 

can be seen as the UGB shifts with load current. The phase margin is always above 30º and 

demonstrates the effectiveness of the SCPT compensation. The 3σ variation of ±8 kHz in 

oscillator frequency might cause a minor change in the actual value of the phase margin 

but does not affect the stability. This scheme ensures that the LDO is stable even for 

 

Figure 6.5: LDO loop gain and phase response with the pole tracking SCPT zero 

movement highlighted. 
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increments in load capacitance up-to 47 µF. The zero introduced by SCPT compensation 

also increases the UGB of the loop thereby improving its transient response. It is to be 

noted that in this compensation scheme, the clock frequency is always at least 50 times the 

loop UGB (𝐹𝐶𝐿𝐾 ≥ 50*UGB) for all load current conditions. Therefore, any pole (𝑃𝑝𝑎𝑟) 

formed due to 𝑅𝑆𝐶  and net parasitic capacitance (𝐶𝑝𝑎𝑟) attached to it, given by 

𝑃𝑝𝑎𝑟 =
1

𝑅𝑧 ∗ 𝐶𝑝𝑎𝑟
=

𝐹𝐶𝐿𝐾 ∗ 𝐶𝑆𝐶

𝐶𝑝𝑎𝑟
 (27) 

will always be much beyond the loop UGB and does not affect the stability of the LDO. 
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CHAPTER 7 

MEASUREMENT RESULTS 

This LDO is fabricated in a 0.25µm single-poly four-metal CMOS process. Fig. 7.1 

shows the die micrograph. The core area is 400 µm x 260 µm excluding the test pads and 

the additional circuitry used for programming and testing. This LDO uses an external 

voltage reference. Although bandgap reference is not integrated within the LDO, sample-

and-hold approaches presented in [31] can be used to reduce its current consumption to 

few nano-Amperes and therefore its contribution to the overall 𝐼𝑄 of the LDO can be made 

negligible. The LDO has a digitally programmable output voltage range of 1.0 V to 3.0 V 

and a maximum output current capability of 150 mA at a dropout voltage of 240 mV. 

MCP2210 serial peripheral interface (SPI) module is used for digital programmability of 

 

Figure 7.1: Die Micrograph. 
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the LDO by sending data into an internal shift register network and latching it onto shadow 

latches. The load capacitance range is from 1 µF to 47 µF.  A single bond-wire is used to 

bond the output of the LDO to the package pin and impacts the DC load regulation which 

is 25 mV as 𝐼𝐿𝑂𝐴𝐷 increases from 0 to 150 mA.  

 Fig. 7.2 shows the PCB test-board used for characterizing this LDO. Low-ESR 

ceramic capacitance soldered close to the LDO is used as the 𝐶𝐿𝑂𝐴𝐷. A fast switching 

NMOS power FET is used for transient response. A voltage buffer Opamp with 200 mA 

current capability is used for PSR analysis. The actual measurement setup is shown in  Fig. 

7.3. A high accuracy source-measure unit (SMU) is used to measure the 𝐼𝑄 of the LDO at 

various load current conditions. A signal generator provides the clock for switching the 

power MOS during load transient measurements. The SPI module is programmed using a 

data transfer software. This data is then converted into Serial_Data and Serial_Clk for 

programming the internal shift register. The external reference is obtained by filtering a 

 

Figure 7.2: PCB for LDO performance measurement. 
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battery powered resistor divider output (0.8 V) with an on-board RC filter for low noise 

reference which is fed directly to the LDO.  

 Table I shows the simulated block level no-load 𝐼𝑄 consumption break-down of the 

LDO. In order to ensure good transient response, a major portion of the overall 𝐼𝑄 is alloted 

 

Figure 7.3: Measurement setup for the proposed LDO along with the PCB. 

Table I: Simulated block-level no-load 𝐼𝑄 break-down 

 

Block IQ (nA)

Error amplifier with buffer 400

Hybrid bias-current generator (HBCG) 100

Low power relaxation oscillator (LPRO) 40

Reference scaling amplifier 40

Programmable resistor divider 100

Charge-pump 480

Constant-gm current reference 40

Total 1200
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to the error amplifier and associated charge-pump. The programmable resistor divider 

which is critical for output voltage programmability consumes 100 nA which is significant 

portion of the overall budget. An  internal constant-gm current reference is used to generate 

the bias current of 20 nA going into the HBCG circuit. This current reference consumes a 

total of 40 nA.   

 

Figure 7.4: Simulated no-load 𝐼𝑄 using MonteCarlo 50 samples at 25ºC and 85 ºC. 
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Fig. 7.4 shows MonteCarlo simulation results for the overall 𝐼𝑄 of the LDO for 25º C 

and 85º C with process variation and device mismatch. The standard deviation σ = 200 nA 

results in a 3σ variation of only 600 nA. This variation can be further reduced by using 

programmability for the internal current reference. Fig. 7.5 captures the 𝐼𝑄 of the LDO and 

its current efficiency vs. 𝐼𝐿𝑂𝐴𝐷. The no-load 𝐼𝑄 of the proposed LDO is only 1.24 µA. It 

stays below 2 µA for 𝐼𝐿𝑂𝐴𝐷 < 200 µA and is only about 5 µA even when 𝐼𝐿𝑂𝐴𝐷 goes up to 

1 mA thereby consuming very low supply current even at light load conditions. The current 

efficiency is above 95% even for 𝐼𝐿𝑂𝐴𝐷 as low as 50 µA and is above 99% for 200 µA and 

above. The measured 𝐼𝑄 of 1.24 µA shows that the design is centered across the mean value 

as shown in the MonteCarlo simulation results in Fig. 7.4 and achieves a high current 

efficiency which is the critical feature for its applicability in always-on applications. Fig. 

7.6 shows the measured 𝐼𝑄 of 5 different testchips along with their output undershoot 

 

Figure 7.5: Quiescent current and current efficiency of the LDO vs. load current. 
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voltage for a 0 to 150 mA load current step. The results show consistency in both 𝐼𝑄 and 

undershoot voltage with less than 3% variation.  

The measured load transient response for different load steps and output capacitor 

combinations is shown in Fig. 7.7. For 𝐶𝐿𝑂𝐴𝐷= 1 µF, the undershoot and overshoot voltage 

for load step of 0 to 50 mA and vice-versa are 76 mV and 32 mV respectively and are 135 

mV and 65 mV respectively for a load step of 0 to 150 mA after subtracting the impact of 

DC load regulation which is 25 mV. The output recovers to tolerable error limit of ±1% 

within 10 µs showing very fast transient recovery from zero to full load transient and 

therefore, providing another critical feature of fast transient response required in supply 

regulation of fast wake-up systems. Further reduction in both undershoot and overshoot 

voltages is observed when  𝐶𝐿𝑂𝐴𝐷= 10 µF and 𝐶𝐿𝑂𝐴𝐷= 47 µF, which also confirms the 

 

Figure 7.6: Measured no-load 𝐼𝑄 for 5 different chips along with the undershoot voltage 

for a load transient of 0mA to 150mA. 
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stability of the LDO at these load capacitance levels. Besides using an NMOS pass device, 

low overshoot/undershoot and fast recovery performance of this low 𝐼𝑄 LDO is only 

possible due to the hybrid biasing working alongside the on-demand pull-up/pull-down 

buffer and SCPT compensation. Although choice of NMOS pass device results in 

additional requirement of charge-pump and associated oscillator for ensuring low dropout 

voltage, improved transient response and effective usage of the oscillator for SCPT 

compensation scheme overpowers this limitation. The impact of output capacitor pull down 

 

Figure 7.7: Measured load transient response of the proposed LDO for different load 

steps and output capacitor values. 
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circuit can be seen in the case of 0 to 150mA transition with 𝐶𝐿𝑂𝐴𝐷= 1 µF as the high output 

overshoot of 65 mV is quickly discharged and brought down to a tolerable error voltage. 

In all other cases when the output voltage overshoot is less than 35mV, the pull down 

circuit does not kick-in for capacitor discharge. However the worst case voltage error is 

less than 3% in such cases and is negligible. 

 Fig. 7.8 shows the line transient response of the LDO at maximum load  condition 

(𝐼𝐿𝑂𝐴𝐷 = 150 mA) for output voltage of 1.8V. The initial step-up and step-down in the 

supply voltage is 0.75V and results in an undershoot of 35 mV and overshoot of 25 mV.  

This constitutes less than 2% error for an output voltage of 1.8V. The power supply 

rejection (PSR) of the LDO is shown in Fig. 7.9 at 𝐼𝐿𝑂𝐴𝐷= 150 mA. The UGB improvement 

achieved due to hybrid biasing enables higher than 20 dB rejection for frequencies up-to 

20 kHz. 

 

Figure 7.8: Measured line transient response of the LDO at full load current. 
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Table II provides a comprehensive comparison of the proposed LDO with previously 

published work highlighting its major advantages. In comparison, this LDO has the lowest 

𝐼𝑄 which is critical for low power consumption during stand-by and light load conditions. 

The SCPT compensation not only ensures stability of the LDO from zero to entire range 

of load current, but also for a capacitance range of 1 µF to 47 µF without depending on an 

external ESR zero thereby providing the widest output capacitor range.  The figure of merit 

(FOM) defined as  

𝐹𝑂𝑀 = 𝑇𝑅 ∗
𝐼𝑄

𝐼𝐿𝑂𝐴𝐷,𝑀𝐴𝑋
 (28) 

 

is incorporated from [6] for a proper baseline comparison where 𝑇𝑅 is the recovery time 

given by  

 

Figure 7.9: Measured power supply rejection (PSR) of the LDO at full load current. 
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𝑇𝑅 =
𝐶𝐿𝑂𝐴𝐷 ∗ 𝛥𝑉

𝐼𝐿𝑂𝐴𝐷,𝑀𝐴𝑋
 (29) 

where 𝛥𝑉 is the undershoot voltage. A lower FOM suggests an overall better performing 

LDO. The proposed LDO achieves at least 66% reduction in FOM when compared to 

LDOs with maximum load current capability of 100mA or above. Although [18] has a 

comparable no-load 𝐼𝑄, its maximum load current is limited to 50 mA and it has a 2.5 times 

higher FOM. 
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CHAPTER 8 

CONCLUSION AND FUTURE WORK 

8.1. Conclusion  

This dissertation presents an NMOS LDO with a very low 𝐼𝑄 of 1.24 µA for supply 

regulation of always-on IoT applications. It is designed in a 0.25 µm CMOS process and 

has a maximum output current capability of 150 mA. Hybrid bias current scaling scheme 

which achieves load dependent adaptive current scaling as well as fast dynamic current 

scaling during load transient event, is proposed to improve the bandwidth and slew rate of 

the LDO for fast response to load current transients. A dynamic frequency charge-pump 

powered, bias current scalable two-stage error amplifier is implemented for LDO 

regulation. The proposed on-demand pull-up/pull-down buffer ensures high slew-rate at 

the gate of the pass device. The dynamic frequency scheme for the charge-pump, helps to 

maintain very low ripple at its output voltage.  

A low power relaxation oscillator with load current controlled clock frequency is 

proposed to generate the control clocks for the charge-pump. This oscillator consumes only 

40 nA of 𝐼𝑄 at light load currents. A novel switched capacitor pole tracking compensation 

scheme is employed for LDO stability. This technique uses the already available load 

dependent clock frequency to achieve stability for a load capacitance range of 1 to 47 µF 

without the requirement of an ESR zero.  

A totally current scalable approach for different blocks of the LDO, ensures fast 

transient response while maintaining a very-low no-load 𝐼𝑄. Measurement results show that 

the LDO has a recovery time of less than 10 µs for zero to full load current step-up and 
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achieves higher than 95% current efficiency even for small load current of 50 µA. Due to 

its very low 𝐼𝑄 and highly competitive transient figure-of-merit (FOM), this LDO is highly 

favorable for supply regulation of battery powered, long standby time and short wake-up 

time IoT applications.  

8.2. Future Work 

In terms of the system level improvement of the LDO, the major addition would be 

to integrate an on-chip bandgap reference. By using the switched-RC bandgap approach 

presented in [31], a very low 𝐼𝑄, low noise and high-PSR bandgap can be integrated onto 

the chip without any major change in the overall 𝐼𝑄 of the LDO. Additionally, features like 

current limit and thermal shutdown can be integrated easily to this LDO, to make it a 

complete standalone LDO product.  

Few other improvements can be made for the existing LDO design to bring its 𝐼𝑄 

lower without affecting its transient response. These are listed as below: 

1. Reducing the circuitry powered by charge-pump: As can be seen from Table I, majority  

of the 𝐼𝑄 is currently consumed in the charge-pump. This is primarily due to the fact 

that the entire error amplifier is powered by the LDO. Any 1x amount of reduction in 

the load of charge-pump would result in a 2x reduction in the overall 𝐼𝑄. Therefore, a 

low impedance, level-shifting buffer design for the driving the pass device gate can be 

a key area for innovation. This buffer will be the only circuit powered by charge-pump 

ad therefore can virtually cut down the 𝐼𝑄 by roughly 320 nA.  

2. Eliminate the current consumption in resistor divider: Currently, the feedback divider 

in the scaling amplifier consumes roughly 8% of the overall LDO 𝐼𝑄. This is a 
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significant portion of current budgeted just for the sake of output voltage 

programmability. This can be cut down by using a duty-cycled resistor divider or a 

capacitive divider which can bring down the current consumption from 100nA to a 

single digit nano-Ampere. This combined with the point above, can bring about 30% 

reduction in the overall 𝐼𝑄 of this LDO.  

3. Duty-cycling for error amplifier circuitry: The error amplifier and the associated 

circuity, can themselves be duty cycled to bring down the power consumption 

significantly. This will push the LDO 𝐼𝑄 towards the regime of 100nA and below.  

However, once the 𝐼𝑄 of the LDO is lowered down to about 100nA or below, few major 

challenges tend to affect the overall applicability of the LDO. The main challenges are 

listed below: 

a. Device leakage: As the technology scales down, the FET leakage especially drain-

source sub-threshold leakage tends to increase. This can become a noticeable portion 

of the overall 𝐼𝑄 of the LDO at nano-Ampere levels. 

b. Battery and on-board capacitor and other circuitry leakage: The battery itself has a 

self-discharge current associated with it. This self – discharge current plus the on-board 

decoupling capacitor leakage can become a significant disadvantage at lower 𝐼𝑄 levels. 

c. Electromagnetic interference: As the bias current is very low in these low 𝐼𝑄 LDOs, 

almost all of the nodes are high – impedance nodes. Therefore, any crosstalk or 

interference close to the LDO, can easily modulate these nodes and corrupt the 

performance of the LDO. This is a major drawback especially if the LDO is used in 

very high power transceiver applications.  
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